WO2018097096A1 - 強化ガラス板、強化ガラス板の製造方法 - Google Patents

強化ガラス板、強化ガラス板の製造方法 Download PDF

Info

Publication number
WO2018097096A1
WO2018097096A1 PCT/JP2017/041643 JP2017041643W WO2018097096A1 WO 2018097096 A1 WO2018097096 A1 WO 2018097096A1 JP 2017041643 W JP2017041643 W JP 2017041643W WO 2018097096 A1 WO2018097096 A1 WO 2018097096A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
compressive stress
tempered glass
glass plate
layer
Prior art date
Application number
PCT/JP2017/041643
Other languages
English (en)
French (fr)
Inventor
清貴 木下
睦 深田
利之 梶岡
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018552568A priority Critical patent/JP7004222B2/ja
Publication of WO2018097096A1 publication Critical patent/WO2018097096A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a tempered glass plate and a manufacturing method thereof, and more specifically, to a tempered glass plate chemically strengthened by an ion exchange method and a manufacturing method thereof.
  • a tempered glass plate that has been chemically strengthened is used as a cover glass plate for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface (for example, Patent Document 1, 2).
  • the tempered glass having a compressive stress layer on the surface has a tensile stress layer formed inside so that the stress balance is balanced.
  • the tensile stress (CT) of the tensile stress layer increases as the depth (DOL) and the compressive stress (CS) of the compressive stress layer increase.
  • the damage modes (fracture modes) of tempered glass actually mounted on smartphones and tablet computers are various, and in specific damage modes, the tensile stress (CT) and the depth of the compressive stress layer (DOL) are not necessarily set. It has not always been preferable to restrict the size as small as in the past.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a tempered glass sheet having high strength and a method for producing the same.
  • the method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate in which at least a part of the surface of the glass plate for tempering is ion-exchanged to form a compressive stress layer, and the depth in the compressive stress layer is from the surface. It is characterized by comprising an ion exchange step of performing ion exchange until the compressive stress at a position of 50 ⁇ m becomes 200 MPa or more.
  • ions are increased until the maximum value of the compressive stress in the compressive stress layer is 400 MPa or more and the depth (DOL_Z) from the outer surface of the layer becomes deeper than 100 ⁇ m.
  • Exchange processing is preferable.
  • the ion exchange step includes a first ion exchange step in which the tempered glass plate is brought into contact with the molten salt at the first temperature to perform ion exchange, and the tempered glass plate at the second temperature.
  • a second ion exchange step in which ion exchange is performed by contacting the molten salt, and before the first ion exchange step, at least a part of the surface of the reinforcing glass is previously provided with an ion exchange prevention film for preventing ion exchange. It is preferable to further include a film forming step to be provided and a removing step of removing the ion exchange preventing film after the first ion exchange step, and performing the second ion exchange step after the removing step.
  • the second temperature is preferably lower than the first temperature
  • the ion exchange treatment time in the first ion exchange step is preferably longer than the ion exchange treatment time in the second ion exchange step.
  • the first temperature is preferably higher than 430 ° C. and the second temperature is preferably 430 ° C. or lower.
  • the difference between the first temperature and the second temperature is preferably within ⁇ 5 ° C.
  • the ion exchange step it is preferable to perform ion exchange by bringing the tempered glass sheet into contact with a molten potassium nitrate salt having a sodium ion concentration of 50000 ppm or less continuously for 10 hours or more.
  • the tempered glass plate of the present invention is characterized in that a compressive stress deep layer having a compressive stress of 200 MPa or more at a depth of 50 ⁇ m is provided on at least a part of the outer surface.
  • the maximum value of the compressive stress of the deep compressive stress layer is 400 MPa or more and the depth is deeper than 100 ⁇ m.
  • the tempered glass sheet of the present invention preferably has a deep compressive stress layer along the peripheral edge.
  • the tempered glass sheet of the present invention preferably has a compressive stress shallow layer shallower than the compressive stress deep layer in at least a part of the surface of the surface where the compressive stress deep layer is not formed.
  • the compressive stress shallow layer preferably has a depth of 35 to 60 ⁇ m and a maximum value of the compressive stress of 600 to 1500 MPa.
  • a tempered glass plate having high strength can be obtained.
  • FIG. 1 is a schematic diagram of a test apparatus for measuring a break height according to an embodiment of the present invention. It is a figure which shows the relationship between the depth from the surface, and the magnitude
  • 1a to 1e are diagrams showing an example of a method for producing a tempered glass sheet according to the present invention.
  • the preparation step is a step of preparing the reinforcing glass plate G1.
  • the strengthening glass plate G1 is a plate-like glass plate that can be strengthened using an ion exchange method.
  • the reinforcing glass plate G1 in the present embodiment is a substantially rectangular glass plate having a main surface S and an end surface E as shown in FIGS. 1a and 2.
  • FIG. 2 is a plan view of the reinforcing glass plate G1 in the thickness direction.
  • FIG. 1a is AA arrow sectional drawing of the glass plate G1 for reinforcement
  • the reinforcing glass plate G1 is chamfered and has a chamfered surface B between the main surface S and the end surface E. That is, the outer surface of the reinforcing glass plate G1 includes the main surface S, the end surface E, and the chamfered surface B.
  • the glass sheet G1 for strengthening contains, by mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% as a glass plate composition. Is preferred. If the glass plate composition range is regulated as described above, it is easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the plate thickness of the reinforcing glass plate G1 is, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, particularly 0.9 mm or less.
  • a tempered glass board can be reduced in weight, so that the board
  • the thickness of the strengthening glass plate G1 is 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, particularly 0.8 mm or less. It is still better if it is 1 mm or less.
  • productivity etc. are considered, it is preferable that the plate
  • the planar size of the reinforcing glass plate G1 can be arbitrarily set, and is, for example, 10 ⁇ 10 mm to 3350 ⁇ 3950 mm.
  • the strengthening glass plate G1 is, for example, glass formed using an overflow downdraw method. In addition, you may select arbitrarily the shaping
  • the reinforcing glass plate G1 may be glass formed using a float method. Further, the main surface S, the end surface E, and the chamfered surface B may be polished.
  • the film forming process is a process of forming the ion-exchange preventing film M on at least a part of the surface of the reinforcing glass sheet G1 to obtain the reinforcing glass sheet G1m with film.
  • the ion exchange prevention film M is formed in the center part S1 of the front and back main surfaces of the reinforcing glass plate G1.
  • 1b corresponds to a cross-sectional view taken along the line AA in FIG. Of the surface of the strengthening glass plate G1, the peripheral portion other than the central portion S1 is exposed.
  • the peripheral portion is a portion including an outer peripheral region S2, a chamfered surface B, and an end surface E surrounding the central portion S1 of the main surface S.
  • the ion exchange preventive membrane M is a membrane layer that suppresses or blocks the permeation of ions when performing ion exchange on the surface layer of the reinforcing glass plate G1 in the first ion exchange step described later.
  • the material of the ion exchange preventing film M any material may be used as long as the permeation of ions to be ion exchanged can be suppressed or blocked.
  • the ion to be exchanged is an alkali metal ion
  • the ion exchange preventing film M is, for example, a metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride film, or the like. Is preferred. Carbon materials, metals, and alloys that are excellent in heat resistance and chemical durability can also be used as the ion exchange preventing film M.
  • the material of the ion exchange preventing film M for example, SiO 2 , Al 2 O 3 , SiN, SiC, AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , HfO 2 , A film containing one or more of SnO 2 , carbon nanotube, graphene, diamond-like carbon, and stainless steel can be obtained.
  • the ion exchange preventing film M is preferably an amorphous film whose crystallinity hardly changes during the ion exchange treatment.
  • the ion exchange preventing film M includes a film that suppresses ion permeation, that is, does not completely block.
  • a film that suppresses ion permeation that is, does not completely block.
  • ZrO 2 , SnO 2 , ITO film, or AlN can be used as the material of the ion exchange preventing film M.
  • the crystallinity of a film made of these materials is likely to change at a high temperature, the ion permeability may be easily changed during the ion exchange process.
  • the ion exchange preventing film M preferably has a composition containing 20 to 99% SiO 2 and 1 to 80% Al 2 O 3 by mass%.
  • the thickness of the ion exchange preventing film M may be any thickness as long as ion permeation can be blocked and suppressed. However, if the thickness of the ion exchange preventing film M is excessive, the film formation time, material cost, and the like increase, and therefore it is preferable to form the ion exchange preventing film M as thin as possible so that ion permeation can be blocked and suppressed. Specifically, the film thickness of the ion exchange preventing film M is preferably, for example, 1 to 5000 nm, and more preferably 50 to 4000 nm.
  • the film formation method of the ion exchange preventive film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum deposition method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, or dip coating.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method is particularly preferable.
  • the ion exchange preventing film M can be easily and uniformly formed.
  • the deposition location of the ion exchange preventing film M may be set by an arbitrary method. For example, film formation can be performed with the peripheral edge masked. Alternatively, the ion exchange preventing film M previously formed into a sheet shape may be bonded to the main surface of the strengthening glass plate G1 to form a film.
  • an ion exchange preventing film M containing SiO 2 and Al 2 O 3 and having a film thickness of 100 nm or more and capable of blocking the permeation of alkali metal ions is formed.
  • an ion exchange process is performed.
  • the ion exchange step at least part of the surface of the strengthening glass plate G1, ion exchange is performed until the compressive stress at a depth of 50 ⁇ m from the surface reaches 200 MPa or more to form a compressive stress deep layer C (C1, C2). It is processing to do.
  • the ion exchange process of this embodiment includes a first ion exchange process shown in FIG. 1c and a second ion exchange process shown in FIG. 1e.
  • the first ion exchange step is a step of obtaining a strengthened glass plate G2 obtained by partially chemically strengthening the strengthening glass plate G1 by an ion exchange method.
  • strengthening is immersed in molten salt T1 containing an alkali metal ion, and ion exchange is carried out.
  • the molten salt T1 in the present embodiment is, for example, a potassium nitrate molten salt.
  • the ion exchange is not performed in the region (central portion S1) where the ion exchange preventing film M is formed on the surface of the reinforcing glass plate G1, the compressive stress layer is not formed.
  • ion exchange is performed in a region (peripheral portion) where the ion exchange preventive film M is not formed on the surface of the reinforcing glass plate G1, and a deep compressive stress layer C1 is formed.
  • the compressive stress deep layer C1 is a compressive stress layer having a compressive stress CS (50) at a depth of 50 ⁇ m of 200 MPa or more.
  • the maximum value CSmax of the compressive stress is preferably 400 MPa or more, and the depth DOL_Z of the layer is preferably deeper than 100 ⁇ m.
  • the temperature of the molten salt T1 in the first ion exchange step is over 430 ° C., preferably 440 to 500 ° C., more preferably 450 to 490 ° C.
  • the time for immersing the glass sheet for reinforcing glass G1m in the molten salt T1 is, for example, 10 to 200 hours, preferably 12 to 170 hours, more preferably 24 to 100 hours.
  • the molten salt T1 may increase the concentration of Na ions during repeated use, and the ion exchange characteristics may fluctuate. Therefore, it is preferable to maintain the Na ion concentration of the molten salt T1 within a certain range.
  • the Na ion concentration of the molten salt T1 is preferably regulated to 50000 ppm or less, more preferably 30000 ppm or less, and even more preferably 20000 ppm or less. .
  • the Na ion concentration in the molten salt T1 can be adjusted by adding potassium nitrate or the like.
  • the tempered glass board G2 provided with the ion exchange prevention film M obtained when the process of the first ion exchange process is completed is referred to as a tempered glass board G2m with a film.
  • membrane removal process is a process of removing the ion exchange prevention film
  • a method for removing the ion exchange preventing film M for example, a method such as polishing or etching can be used.
  • a polishing apparatus used for polishing a well-known double-side polishing machine or single-side polishing machine can be used.
  • a well-known double-side polishing machine or single-side polishing machine can be used.
  • only the ion exchange preventing film M may be polished, or the glass plate portion may be polished together with the ion exchange preventing film M.
  • Etching methods such as dry etching and wet etching can be used.
  • a solution containing fluorine, TMAH, EDP, KOH, NaOH, or the like can be used as the etchant, and a hydrofluoric acid solution is particularly preferably used as the etchant.
  • the concentration of HF in the hydrofluoric acid solution is preferably 10% or less.
  • the tempered glass sheet G2a obtained as described above has a deep compressive stress layer C1 at the periphery. That is, the tempered glass plate G2a is a glass having high breakage resistance at the periphery.
  • the second ion exchange step is a step of obtaining a tempered glass sheet G2b by forming a relatively shallow compressive stress shallow layer D in a region where the compressive stress layer is not formed in the first ion exchange step.
  • the tempered glass plate G2 is immersed in a molten salt T2 containing alkali metal ions, and a compressive stress is applied to the entire region (center portion S1) where the ion exchange preventing film M is formed.
  • a shallow layer D is formed.
  • the molten salt T2 is, for example, a potassium nitrate molten salt.
  • the compressive stress deep layer C1 formed in the peripheral edge part is changed into a compressive stress deep layer C2 due to a slight variation in characteristics due to contact with the molten salt T2 by the above-described treatment.
  • the compressive stress deep layer C2 is a compressive stress layer having a compressive stress CS (50) at a depth of 50 ⁇ m of 200 MPa or more.
  • the compressive stress CS (50) at a depth of 50 ⁇ m of the compressive stress deep layer C2 is preferably 200 to 500 MPa, more preferably 220 to 450 MPa, and further preferably 250 to 400 MPa.
  • the temperature of the molten salt T2 in the second ion exchange step is preferably lower than the temperature of the molten salt T1 used in the first ion exchange step.
  • the temperature of the molten salt T2 is, for example, 430 ° C. or less, more preferably 390 to 430 ° C., and further preferably 400 to 425 ° C.
  • the time for immersing the tempered glass plate G2 in the molten salt T2 is, for example, 0.1 to 72 hours, preferably 0.3 to 50 hours, and more preferably 0.5 to 24 hours.
  • the Na ion concentration of the molten salt T2 is preferably regulated to 30000 ppm or less, more preferably 20000 ppm or less, and further preferably 10,000 ppm or less.
  • the maximum value of the compressive stress in the compressive stress deep layer C2 and the compressive stress shallow layer D can be easily increased.
  • the maximum value of the compressive stress in the compressive stress deep layer C2 is preferably 400 MPa or more, more preferably 450 to 1500 MPa, and further preferably 500 to 1200 MPa.
  • the depth of the compressive stress deep layer C2 is preferably 100 ⁇ m or more, more preferably 100 to 300 ⁇ m, and further preferably 100 to 250 ⁇ m.
  • the compressive stress deep layer C2 that is a relatively deep compressive stress layer and the compressive stress shallow layer D that is a relatively shallow compressive stress layer are provided in different regions.
  • a tempered glass plate G2b can be obtained.
  • a deep compressive stress deep layer C2 can be formed at the peripheral edge where breakage tends to occur, and high damage resistance can be obtained, and at the same time, shallow compression can be achieved at the central portion S1. It is possible to suppress the increase in internal tensile stress by forming the shallow stress layer D and suppress the increase in tensile stress formed inside the tempered glass sheet G2.
  • the tensile stress is reduced in the central portion S1, it is difficult to form fine fragments as compared with the peripheral portion at the time of breakage. Therefore, for example, when the tempered glass plate G2 is used for a display or the like, it is easy to maintain the visibility of the display even after it is damaged.
  • the tempered glass plate G2 (G2a, G2b) has the above-described compression stress deep layer C (C1, C2), and thus has high strength in a specific failure mode at the formation site of the layer.
  • the specific failure mode means that a sharp protrusion is present at the tip of the tempered glass sheet G2, and the protrusion breaks through the compressive stress layer on the surface and reaches the internal tensile stress layer. It refers to a failure mode in which cracks develop and break due to internal tensile stress.
  • the treatment conditions such as the temperature and immersion time of the molten salt T1 in the first ion exchange step, the temperature and immersion time of the molten salt T2 in the second ion exchange step are examples, and the compression stress depth layer C to be formed is You may adjust arbitrarily so that it may become a stress layer whose compressive stress CS (50) in the depth of 50 micrometers is 200 Mpa or more.
  • the first ion exchange step and the second ion exchange step may be performed in the same tempering tank (molten salt).
  • the difference between the temperature of the molten salt at the time of performing the first ion exchange step and the temperature of the molten salt at the time of performing the second ion exchange step tends to be within a range of ⁇ 5 ° C.
  • the said embodiment demonstrated the case where the compressive-stress deep layer C1 formed by the process of a 1st ion exchange process has the reinforcement
  • a finishing process may be performed (not shown).
  • the surface of the tempered glass sheet G2b for example, at least one of the main surface S and the end surface E is polished.
  • the dimension or surface state of the tempered glass sheet G2b is not a desired state such as a product standard due to the processing of the second ion exchange step, it can be brought into a desired state by performing the processing of such a finishing process.
  • the tempered glass sheet G2 (G2m, G2b) having high strength in the above-described specific breakage mode can be stably and efficiently manufactured.
  • a processing step for performing processing such as cutting processing, drilling processing, polishing processing, etching processing, etc. may be provided before and after the arbitrary steps shown above. Moreover, before and after the arbitrary steps shown above, the glass plate may be appropriately washed and dried.
  • molten salt T1 was potassium nitrate molten salt
  • T2 was potassium nitrate molten salt
  • the ion exchange treatment is not limited to the immersion in the molten salt as described above, and may be performed by applying a molten salt, for example.
  • the magnitude of the compressive stress and the depth of each layer in the above-described compressive stress deep layers C1 and C2 and the compressive stress shallow layer D can be measured by, for example, a stress meter (FSM-6000LE and FsmV manufactured by Orihara Seisakusho).
  • FIG. 4a is a preparatory step for preparing the reinforcing glass plate G1 in the same manner as in the first embodiment.
  • the process of a film-forming process is abbreviate
  • the tempered glass board G2 (G2c) in which the compressive stress deep layer C (C3) is formed on the entire outer surface can be easily manufactured.
  • tempered glass plate G2 (G2b or G2c) of the present invention will be described based on examples.
  • Table 1 no. Examples 1 to 6 are examples of the present invention. 7 to 9 are comparative examples. The following examples are merely illustrative, and the present invention is not limited to the following examples.
  • each sample no. 1 to 9 were produced.
  • mol%, SiO 2 66.3%, Al 2 O 3 11.4%, Na 2 O 15.2%, B 2 O 3 0.5%, Li 2 O 0.2%, K 2 The glass raw material was prepared so that it might become a glass containing 1.4% O, 4.8% MgO, and 0.2% SnO 2 and melted at 1600 ° C. for 21 hours using a platinum pot. Thereafter, the obtained molten glass was formed by flow-down molding from a refractory molded body using an overflow downdraw method to form a 0.4 mm thick plate to obtain a strengthening glass plate.
  • the sample No. For 1 to 3, 5, and 7, an ion exchange preventing film containing 70% SiO 2 and 30% Al 2 O 3 by mass was formed in accordance with the process shown in FIG. 1b. Then, each sample No. 1 to 9 were immersed in a molten potassium nitrate salt under the conditions shown in Table 1 for ion exchange treatment (first ion exchange step). Subsequently, sample No. which has an ion exchange prevention film In 1-3, 5, and 7, the film was removed by polishing (removal step). Then, no. Samples 1 to 3, 5, 7, and 8 were again immersed in potassium nitrate molten salt under the conditions shown in Table 1 for ion exchange treatment (second ion exchange step).
  • the break height fb was measured using a test apparatus J shown in FIG.
  • the test apparatus J includes a hammer H that collides with a tempered glass plate G2 that is a measurement sample, and a support device L that supports the measurement sample.
  • the support device L is a member that supports the tempered glass plate G2.
  • the support device L includes, for example, a support base having an inclined surface and a pin protruding from the inclined surface.
  • the tempered glass plate G2 is supported by the support device L so that the inclined surface and the main surface S are in contact with each other, and the pin and the end surface E of the tempered glass plate G2 are in contact with each other.
  • the hammer H has an arm part and a head part.
  • the arm portion is a long member having a constant cross-sectional shape in the extending direction.
  • the arm portion is a rod-shaped member made of aluminum having a length of about 500 mm.
  • the arm portion is arranged to be rotatable around one end by a fastener such as a bolt.
  • a head part is a member which is provided in the side part of the other end of an arm part, and contacts the tempered glass board G2.
  • the head portion is a member made of stainless alloy.
  • the head portion includes a convex portion extending in the extending direction of the arm portion, and contacts the end surface portion of the tempered glass sheet G2 at the tip of the convex portion.
  • the tempered glass plate G2 is installed in the support device L.
  • the tempered glass plate G2 is installed so that the head portion of the hammer H collides with the peripheral portion of the tempered glass plate G2, more specifically, the chamfered surface B.
  • a 100th sandpaper SP is placed on the surface of the tempered glass plate G2 so that the head portion of the hammer H collides so that the abrasive surface abuts the tempered glass plate G2.
  • the hammer H is swung up to a predetermined height.
  • the hammer H swung up is dropped to cause the head portion and the tempered glass plate G2 to collide with each other. Then, the above test is repeated while gradually raising the swinging height f of the hammer H until the tempered glass plate G2 is broken. Thus, the value of the swing-up height f when the tempered glass plate G2 was damaged was measured as the damage height fb.
  • the sandpaper SP was replaced with a new one every time the hammer H dropped.
  • the samples 1 to 6 were glass having a high breakage resistance because the compressive stress CS (50) at the peripheral depth of 50 ⁇ m was 200 MPa or more, and thus the breakage height fb was 50 mm or more.
  • Samples 7 to 9 were glasses having a low breakage height fb and low breakage resistance because the compressive stress CS (50) at a peripheral depth of 50 ⁇ m was less than 200 MPa.
  • the processing time in the first ion exchange process was short, and it is considered that the compressive stress CS (50) became a small value.
  • No. In No. 8 since the Na ion concentration of the molten salt T1 in the first ion exchange step was high, it is considered that the compressive stress CS (50) became a small value.
  • FIG. 6 shows the relationship between the depth from the surface at the peripheral edge of the tempered glass sheet and the magnitude of the compressive stress for each of 2 to 4, 6, and 7.
  • the stress value is positive on the vertical axis in the figure, it indicates that compressive stress is acting, and when it is negative, tensile stress is acting. It shows that.
  • the tempered glass plate and the production method thereof of the present invention are useful as a glass plate substrate used for a touch panel display and the like, and a production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明の強化ガラス板の製造方法は、強化用ガラス板の表面の少なくとも一部をイオン交換して圧縮応力層を形成する強化ガラス板の製造方法であって、圧縮応力層において表面から深さ50μmの位置における圧縮応力が200MPa以上となるまでイオン交換を行うイオン交換工程を備えることを特徴とする。

Description

強化ガラス板、強化ガラス板の製造方法
 本発明は、強化ガラス板およびその製造方法に関し、より具体的には、イオン交換法によって化学強化された強化ガラス板およびその製造方法に関する。
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラス板として化学強化された強化ガラス板が用いられている。
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される(例えば、特許文献1、2)。
 表面に圧縮応力層を有する強化ガラスは、応力バランスが釣り合うように内部に引張応力層が形成されている。引張応力層の引張応力(CT)は、圧縮応力層の深さ(DOL)および圧縮応力(CS)が大きいほど大きくなる。
 例えば、特許文献1のように鋭い圧子ツールの点衝突に起因する破壊を想定した場合や、特許文献2のように曲げによる破壊を想定した場合、引張応力(CT)が過大であると、強化ガラスは破損し易くなると考えられていた。そのため、従来は、圧縮応力層の深さ(DOL)は一定値以下に制御することが好ましいとされていた。例えば、特許文献2においてDOLは35μm以下であることが好ましいとされていた。
特表2015-523310号公報 特開2014-001124号公報
 しかしながら、実際にスマートフォンやタブレットコンピュータ等に搭載された強化ガラスの破損態様(破損モード)は様々であり、特定の破損態様においては必ずしも引張応力(CT)や圧縮応力層の深さ(DOL)を従来のように小さく規制することが好ましいとは限らなかった。
 本発明は、このような事情を考慮して成されたものであり、高い強度を有する強化ガラス板およびその製造方法を提供することを課題とする。
 本発明の強化ガラス板の製造方法は、強化用ガラス板の表面の少なくとも一部をイオン交換して圧縮応力層を形成する強化ガラス板の製造方法であって、圧縮応力層において表面から深さ50μmの位置における圧縮応力が200MPa以上となるまでイオン交換を行うイオン交換工程を備えることを特徴とする。
 本発明の強化ガラス板の製造方法では、イオン交換工程において、圧縮応力層における圧縮応力の最大値が400MPa以上、且つ、当該層の外表面からの深さ(DOL_Z)が100μmより深くなるまでイオン交換処理することが好ましい。
 本発明の強化ガラス板の製造方法では、イオン交換工程は、強化用ガラス板を第一温度の溶融塩に接触させてイオン交換を行う第一イオン交換工程と、強化用ガラス板を第二温度の溶融塩に接触させてイオン交換を行う第二イオン交換工程と、を含み、第一イオン交換工程前に、強化用ガラスの表面の少なくとも一部にイオン交換を防止するイオン交換防止膜を予め設ける成膜工程と、第一イオン交換工程後に、イオン交換防止膜を除去する除去工程とをさらに備え、除去工程後に第二イオン交換工程を実施することが好ましい。
 本発明の強化ガラス板の製造方法では、第二温度は第一温度より低く、第一イオン交換工程におけるイオン交換処理時間は、第二イオン交換工程におけるイオン交換処理時間より長いことが好ましい。
 本発明の強化ガラス板の製造方法では、第一温度は430℃を超え、第二温度は430℃以下であることが好ましい。
 本発明の強化ガラス板の製造方法では、第一温度と第二温度との差が±5℃以内であることが好ましい。
 本発明の強化ガラス板の製造方法では、イオン交換工程において、強化用ガラス板を連続して10時間以上、ナトリウムイオン濃度が50000ppm以下の硝酸カリウム溶融塩に接触させてイオン交換を行うことが好ましい。
 本発明の強化ガラス板は、外表面の少なくとも一部に深さ50μmにおける圧縮応力が200MPa以上の圧縮応力深層を有することを特徴とする。
 本発明の強化ガラス板において、圧縮応力深層の圧縮応力の最大値が400MPa以上且つその深さが100μmより深いことが好ましい。
 本発明の強化ガラス板は、周縁部に沿って圧縮応力深層を備えることが好ましい。
 本発明の強化ガラス板は、表面のうち圧縮応力深層が形成されていない領域の少なくとも一部に圧縮応力深層より浅い圧縮応力浅層を有することが好ましい。
 本発明の強化ガラス板において、圧縮応力浅層は、深さが35~60μmであり、圧縮応力の最大値が600~1500MPaであることが好ましい。
 以上のような本発明によれば、高い強度を有する強化ガラス板を得られる。
本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の第一の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の実施形態に係る強化用ガラス板の平面図である。 本発明の実施形態に係るイオン交換防止膜を備えた強化用ガラス板の平面図である。 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の第二の実施形態に係る強化ガラス板の製造方法を示す図である。 本発明の実施形態に係る破損高さ測定用試験装置の概要図である。 強化ガラス板について表面からの深さと圧縮応力の大きさとの関係を示す図である。
<第一の実施形態>
 以下、本発明の実施形態の強化ガラス板の製造方法について説明する。図1a~図1eは、本発明の強化ガラス板の製造方法の一例を示す図である。
 先ず、図1aに示す準備工程の処理を実施する。準備工程は、強化用ガラス板G1を準備する工程である。強化用ガラス板G1は、イオン交換法を用いて強化可能な板状のガラス板である。本実施形態における強化用ガラス板G1は、図1aおよび図2に示すように、主表面Sと端面Eとを有する略矩形状のガラス板である。なお、図2は強化用ガラス板G1を板厚方向に平面視した図である。また、図1aは、図2における強化用ガラス板G1のAA矢視断面図である。強化用ガラス板G1は、面取り加工されており、主表面Sと端面Eとの間に面取り面Bを有する。すなわち、強化用ガラス板G1の外表面には、主表面S、端面E、および面取り面Bが含まれる。
 強化用ガラス板G1は、ガラス板組成として質量%で、SiO2 45~75%、Al23 1~30%、Na2O 0~20%、K2O 0~20%を含有することが好ましい。上記のようにガラス板組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。
 強化用ガラス板G1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、特に0.9mm以下である。なお、強化ガラス板の板厚が小さい程、強化ガラス板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる場合がある。このような場合には、強化用ガラス板G1の板厚は、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下とすると尚良い。また、生産性等を考慮すれば強化用ガラス板G1の板厚は0.01mm以上であることが好ましい。
 強化用ガラス板G1の平面視寸法は任意に設定可能であるが、例えば、10×10mm~3350×3950mmである。
 強化用ガラス板G1は、例えば、オーバーフローダウンドロー法を用いて成形されたガラスである。なお、強化用ガラス板G1の成形方法や加工状態は任意に選択して良い。例えば、強化用ガラス板G1はフロート法を用いて成形されたガラスであっても良い。また、主表面S、端面E、および面取り面Bは、研磨加工されたものであって良い。
 次いで、上記準備工程の後、図1bに示す成膜工程の処理を実施する。成膜工程は、強化用ガラス板G1の表面の少なくとも一部にイオン交換防止膜Mを形成して膜付強化用ガラス板G1mを得る工程である。本実施形態では、図3に示すように強化用ガラス板G1の表裏主表面の中央部S1にイオン交換防止膜Mが形成される。なお、図1bは図3におけるAA矢視断面図に相当する。強化用ガラス板G1の表面のうち、中央部S1以外の周縁部は露出した状態とされている。なお、周縁部は、主表面Sのうち中央部S1を取り囲む外周領域S2、面取り面B、および端面Eを含む部位である。イオン交換防止膜Mは、後述の第一イオン交換工程において、強化用ガラス板G1表層のイオン交換を行う際にイオンの透過を抑制または遮断する膜層である。
 イオン交換防止膜Mの材質としては、イオン交換されるイオンの透過を抑制または遮断可能であれば任意の材質を用いて良い。交換されるイオンがアルカリ金属イオンである場合、イオン交換防止膜Mは、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸炭化物、金属炭窒化物膜などであることが好ましい。また耐熱性や化学的耐久性に優れた炭素材料や金属、合金もイオン交換防止膜Mとして使用可能である。より詳細には、イオン交換防止膜Mの材質としては、例えば、SiO2、Al23、SiN、SiC、AlN、ZrO2、TiO2、Ta25、Nb25、HfO2、SnO2、カーボンナノチューブ、グラフィン、ダイヤモンドライクカーボン、ステンレスの中から1種類以上を含む膜とすることができる。また、イオン交換防止膜Mは、イオン交換処理中に結晶性が変動しにくいアモルファス膜であることが好ましい。
 なお、イオン交換防止膜Mにはイオン透過を抑制する、すなわち完全に遮断しない膜も含まれる。このようなイオン交換防止膜Mの材質としては、たとえばZrO2、SnO2、ITO膜、AlNが使用可能である。但し、これらの材質からなる膜は高温下において結晶性が変化しやすいため、イオン交換処理中にイオンの透過性が変動し易くなる場合がある。
 機械的強度やコストを考慮した場合、SiO2を主成分とし、Al23を含む膜をイオン交換防止膜Mとして用いることが好適である。この場合、イオン交換防止膜Mは、質量%でSiO20~99%、Al21~80%を含有する組成を有することが好ましい。
 イオン交換防止膜Mの厚さは、イオン透過の遮断および抑制が可能であれば任意の厚さであって良い。ただし、イオン交換防止膜Mの厚さが過大であると、成膜時間や材料コスト等が増大するため、イオン透過の遮断および抑制が可能な範囲で薄く形成することが好ましい。具体的には、イオン交換防止膜Mの膜厚は、例えば1~5000nmが好ましく、より好ましくは50~4000nmである。
 イオン交換防止膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、が好ましい。スパッタ法を用いた場合、イオン交換防止膜Mを容易に均一に形成できる。イオン交換防止膜Mの成膜箇所は任意の手法で設定して良い。例えば、周縁部をマスクした状態で成膜を行うことができる。また、予めシート状に成形したイオン交換防止膜Mを強化用ガラス板G1の主表面に接合して成膜しても良い。
 なお、本実施形態では、SiO2およびAl23を含有し、膜厚が100nm以上であり、アルカリ金属イオンの透過を遮断可能なイオン交換防止膜Mを形成した場合を一例として説明する。
 次いで、上記成膜工程の後、イオン交換工程の処理を行う。イオン交換工程は、強化用ガラス板G1の表面の少なくとも一部において、表面から深さ50μmの位置における圧縮応力が200MPa以上となるまでイオン交換を行い、圧縮応力深層C(C1、C2)を形成する処理である。本実施形態のイオン交換工程は、図1cに示す第一イオン交換工程、および図1eに示す第二イオン交換工程を含む。
 先ず、図1cに示す第一イオン交換工程の処理を実施する。第一イオン交換工程は、強化用ガラス板G1をイオン交換法により部分的に化学強化した強化ガラス板G2を得る工程である。具体的には、アルカリ金属イオンを含む溶融塩T1に強化用ガラス板G1を浸漬してイオン交換する。本実施形態における溶融塩T1は、例えば、硝酸カリウム溶融塩である。
 ここで、強化用ガラス板G1の表面のうちイオン交換防止膜Mが形成された領域(中央部S1)ではイオン交換が行われないため、圧縮応力層が形成されない。一方、強化用ガラス板G1の表面のうちイオン交換防止膜Mが形成されていない領域(周縁部)ではイオン交換が行われ、圧縮応力深層C1が形成される。
 圧縮応力深層C1は、深さ50μmにおける圧縮応力CS(50)が200MPa以上の圧縮応力層である。また、圧縮応力深層C1に於いて、圧縮応力の最大値CSmaxは400MPa以上であり、且つ当該層の深さDOL_Zは100μmより深いことが好ましい。
 第一イオン交換工程における溶融塩T1の温度は430℃を超え、好ましくは440~500℃、より好ましくは450~490℃である。また、膜付強化用ガラス板G1mを溶融塩T1中に浸漬する時間は、例えば、10~200時間、好ましくは12~170時間、より好ましくは24~100時間である。このように比較的高い温度でイオン交換処理を行うことにより、短時間で深い圧縮応力層を周縁部に形成できる。
 なお、溶融塩T1は繰り返し使用するうちにNaイオンの濃度が増加し、イオン交換特性が変動する場合がある。したがって、溶融塩T1のNaイオン濃度は一定範囲内に維持することが好ましい。また、効率良く圧縮応力深層C1、C2の深さを大きくするためには、溶融塩T1のNaイオン濃度は好ましくは50000ppm以下、より好ましくは30000ppm以下、さらに好ましくは20000ppm以下に規制することが好ましい。溶融塩T1におけるNaイオン濃度は、硝酸カリウムを添加する等して調整できる。
 なお、第一イオン交換工程の処理を完了した時点で得られるイオン交換防止膜Mを備えた強化ガラス板G2を、膜付強化ガラス板G2mと称する。
 次いで、上記第一イオン交換工程の後、図1dに示す膜除去工程の処理を実施する。膜除去工程は、膜付強化ガラス板G2mからイオン交換防止膜Mを除去する工程である。イオン交換防止膜Mの除去方法としては、例えば、研磨やエッチング等の方法を用いることができる。
 研磨に用いる研磨装置としては、周知の両面研磨機や片面研磨機を用いることができる。なお、研磨によりイオン交換防止膜Mを除去する場合、イオン交換防止膜Mのみを研磨しても良いし、イオン交換防止膜Mとともにガラス板部分を研磨しても良い。
 エッチング方法としては、ドライエッチングやウェットエッチングなどの方法を用いることができる。
 ドライエッチングを用いる場合、特に、Ar、O2、CH4、BC13、C12、SF6などのプラズマを用いることが好ましい。
 ウェットエッチングに用いるエッチング液としては、例えば、フッ素、TMAH、EDP、KOH、NaOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。なお、フッ酸溶液を用い、ガラスの寸法を変更することなくイオン交換防止膜Mのみを除去する場合には、当該フッ酸溶液におけるHFの濃度を10%以下とすることが好ましい。
 上記のようにして得られた強化ガラス板G2aは、周縁部において圧縮応力深層C1を有する。すなわち、強化ガラス板G2aは、周縁部において高い耐破損性を有するガラスとなっている。
 次いで、上記膜除去工程の後、図1eに示す第二イオン交換工程の処理を実施する。第二イオン交換工程は、第一イオン交換工程で圧縮応力層が形成されていなかった領域に、相対的に浅い圧縮応力浅層Dを形成して強化ガラス板G2bを得る工程である。本実施形態では、図1eに示すように、アルカリ金属イオンを含む溶融塩T2に強化ガラス板G2を浸漬し、イオン交換防止膜Mが形成されていた領域(中央部S1)の全体に圧縮応力浅層Dを形成する。溶融塩T2は、例えば、硝酸カリウム溶融塩である。
 周縁部に形成されていた圧縮応力深層C1は、上記処理で溶融塩T2と接触することにより特性が多少変動して圧縮応力深層C2となる。本実施形態では、変動後においても圧縮応力深層C2は、深さ50μmにおける圧縮応力CS(50)が200MPa以上の圧縮応力層である。圧縮応力深層C2の深さ50μmにおける圧縮応力CS(50)は、好ましくは200~500MPaであり、より好ましくは220~450MPaであり、さらに好ましくは250~400MPaである。
 第二イオン交換工程における溶融塩T2の温度は、上述の第一イオン交換工程において用いた溶融塩T1の温度より低い温度であることが好ましい。このように比較的低い温度でイオン交換処理を行うことにより、中央部S1において形成される圧縮応力浅層Dの深さが過大となることを防止し易くなる。溶融塩T2の温度は、例えば、430℃以下であり、より好ましくは390~430℃、さらに好ましくは400~425℃である。
 強化ガラス板G2を溶融塩T2中に浸漬する時間は、例えば、0.1~72時間、好ましくは0.3~50時間、より好ましくは0.5~24時間である。
 なお、溶融塩T2のNaイオン濃度も溶融塩T1と同様に一定範囲内に維持することが好ましい。また、溶融塩T2のNaイオン濃度は好ましくは30000ppm以下、より好ましくは20000ppm以下、さらに好ましくは10000ppm以下に規制することが好ましい。このように溶融塩T2のNaイオン濃度を調整することにより、圧縮応力深層C2および圧縮応力浅層Dにおける圧縮応力の最大値を容易に大きな値とすることができる。
 圧縮応力深層C2における圧縮応力の最大値は、好ましくは400MPa以上であり、より好ましくは450~1500MPaであり、さらに好ましくは500~1200MPaである。また、圧縮応力深層C2の深さは、好ましくは100μm以上であり、より好ましくは100~300μmであり、さらに好ましくは100~250μmである。
 上述の通り二度のイオン交換工程の処理を行うことによって、相対的に深い圧縮応力層である圧縮応力深層C2および相対的に浅い圧縮応力層である圧縮応力浅層Dを各々異なる領域に有する強化ガラス板G2bを得られる。このような強化ガラス板G2bによれば、例えば、破損の起点となり易い周縁部においては深い圧縮応力深層C2を形成して高い耐破損性を得ることができ、同時に、中央部S1においては浅い圧縮応力浅層Dを形成して内部引張応力の増大を抑制して強化ガラス板G2内部に形成される引張応力の増大を抑制できる。また、中央部S1では引張応力が低減されるため、破損時に周縁部に比べて細かい破片となり難い。したがって、例えば強化ガラス板G2がディスプレイ等に用いられた場合、破損した後であっても、ディスプレイの視認性を維持し易い。
 強化ガラス板G2(G2a、G2b)は、上記のような圧縮応力深層C(C1、C2)を有することにより、当該層の形成部位において、特定の破損モードで高い強度を有する。特定の破損モードとは、強化ガラス板G2の落下先に鋭利な突起物が存在し、その突起物が表面の圧縮応力層を突き破り、内部の引張応力層まで達することによりクラックが発生し、該クラックが内部引張応力に因って進展して破損するような破損モードを指す。
 なお、上記第一イオン交換工程における溶融塩T1の温度や浸漬時間、第二イオン交換工程における溶融塩T2の温度や浸漬時間等の処理条件は一例であり、形成される圧縮応力深層Cが、深さ50μmにおける圧縮応力CS(50)が200MPa以上である応力層となるよう任意に調整して良い。
 また、強化ガラス板の製造コストを抑制するために、例えば、上記第一イオン交換工程と第二イオン交換工程とを同一の強化槽(溶融塩)で行ってもよい。この場合、第一イオン交換工程を行う際の溶融塩の温度と第二イオン交換工程を行う際の溶融塩の温度との差が、±5℃の範囲内に収まりやすい。
 なお、上記実施形態では、第一イオン交換工程の処理で形成された圧縮応力深層C1が、深さ50μmにおける圧縮応力CS(50)が200MPa以上である強化特性を有する場合を一例として説明したが、第二イオン交換工程の処理を経て圧縮応力深層C2となった時点で当該特性を有していれば、第一イオン交換工程の処理を経た時点で上記特性を有していなくとも良い。
 また、第二イオン交換工程の後、さらに仕上げ加工工程の処理を実施しても良い(図示せず)。仕上げ加工工程では、強化ガラス板G2bの表面、例えば主表面Sおよび端面Eの少なくとも何れかを研磨加工する。第二イオン交換工程の処理によって強化ガラス板G2bの寸法や表面状態が製品規格等の所望の状態でない場合、このような仕上げ加工工程の処理を実施することによって所望の状態にすることができる。
 以上に説明した通り、本発明の実施形態に係る強化ガラス板の製造方法によれば、上述特定の破損モードにおいて高い強度を有する強化ガラス板G2(G2m、G2b)を安定して効率良く製造できる。
 なお、上記に示した任意の工程の前後において、切断加工、孔あけ加工、研磨加工、エッチング加工等の加工を実施する加工工程を設けても良い。また、上記に示した任意の工程の前後において、ガラス板の洗浄および乾燥処理を適宜行っても良い。
 また、上記実施形態では溶融塩T1、T2が、硝酸カリウム溶融塩である場合を一例として説明したが、これに限らずガラス板のイオン交換に用いられる周知の溶融塩を代替して、或いは組み合わせて用いても良い。
 また、イオン交換の処理は上記のような溶融塩への浸漬に限らず、例えば、溶融塩を塗布して行っても良い。
 また、上述した圧縮応力深層C1、C2および圧縮応力浅層Dにおける圧縮応力の大きさおよび各層の深さは、例えば、応力計(折原製作所製のFSM-6000LEおよびFsmV)で測定可能である。
<第二の実施形態>
 上記第一の実施形態では強化ガラス板G2の周縁部にのみ圧縮応力深層C(C1、C2)が形成されている場合を一例として説明したが、強化ガラス板G2の外表面全面に圧縮応力深層Cを形成しても良い。図4aおよび図4bは本発明の第二の実施形態に係る強化ガラス板の製造方法の概略を示す図である。
 図4aは第一の実施形態と同様にして強化用ガラス板G1を準備する準備工程である。その後、第二の実施形態では、成膜工程の処理が省略され、図4bに示す通り、イオン交換防止膜Mを有しない強化用ガラス板G1に対してイオン交換工程の処理を実施する。このような処理によれば、外表面全面に圧縮応力深層C(C3)が形成された強化ガラス板G2(G2c)を容易に製造できる。
 以下、本発明の強化ガラス板G2(G2b或いはG2c)について実施例に基づいて説明する。表1においてNo.1~6は本発明の実施例であり、No.7~9は比較例である。なお、以下の実施例は単なる例示であり、本発明は以下の実施例に何ら限定されない。
 まず、次のようにして各試料No.1~9を作製した。ガラス組成としてモル%で、SiO2 66.3%、Al23 11.4%、Na2O 15.2%、B23 0.5%、Li2O 0.2%、K2O 1.4%、MgO 4.8%、SnO2 0.2%を含むガラスとなるように、ガラス原料を調合し、白金ポットを用いて1600℃で21時間溶融した。その後、得られた溶融ガラスを、オーバーフローダウンドロー法を用いて耐火物成形体から流下成形して、厚さ0.4mmの板状に成形し、強化用ガラス板を得た。
 次いで、得られた強化用ガラス板のうち、試料No.1~3、5、7については、図1bに示す工程に準じて、組成として質量%でSiO2 70%、Al23 30%含むイオン交換防止膜を形成した。次いで、各試料No.1~9を表1に示す条件で硝酸カリウム溶融塩に浸漬してイオン交換処理した(第一イオン交換工程)。次いで、イオン交換防止膜を有する試料No.1~3、5、7は研磨により当該膜を除去した(除去工程)。その後、No.1~3、5、7、8の試料を表1に示す条件で再度硝酸カリウム溶融塩に浸漬してイオン交換処理した(第二イオン交換工程)。
 上記のようにして得た各資料について、下記の特性の測定、および強度試験を行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示す周縁部および中央部における圧縮応力の最大値CSmax、各圧縮応力層の計算上の深さDOL_C、実際に圧縮応力がゼロとなる深さDOL_Z、50μm深さにおける圧縮応力CS(50)、引張応力CTは、折原製作所社製の表面応力計FSM-6000LEおよびアプリケーションソフトFsmVを用いて測定した。なお、DOL_Cは、圧縮応力が深さ方向に線形比例して変化するものと仮定して計算された仮想的な計算値であり、DOL_Zは、圧縮応力が深さ方向に屈曲して変化するものとして測定された測定値である。また、CS(50)として負の数が表記されている場合、当該数値は深さ50μmにおいて圧縮応力ではなく引張応力が生じていることを示す。
 破損高さfbは、図5に示す試験装置Jを用いて行った。試験装置Jは、測定試料である強化ガラス板G2と衝突するハンマーH、および測定試料を支持する支持装置Lを備える。
 支持装置Lは、強化ガラス板G2を支持する部材である。支持装置Lは、例えば、傾斜面を有する支持台、および当該傾斜面から突出したピンから成る。強化ガラス板G2は、傾斜面と主表面Sとが当接し、ピンと強化ガラス板G2の端面Eとが当接するようにして支持装置Lに支持される。
 ハンマーHは、アーム部およびヘッド部を備える。アーム部は、伸長方向に一定の断面形状を有する長尺状の部材である。具体的には、アーム部は長さ500mm程度のアルミニウム製の棒状部材である。アーム部は、ボルト等の留め具により一方端を中心に回動自在となるよう配置される。ヘッド部は、アーム部の他方端の側面部に設けられ強化ガラス板G2と接触する部材である。具体的にはヘッド部は、ステンレス合金製の部材である。ヘッド部は、アーム部の伸長方向に延びる凸部を備え、該凸部の先端において強化ガラス板G2の端面部分と接触する。
 以下、試験装置Jを用いた試験方法について説明する。まず、強化ガラス板G2を支持装置Lに設置する。この際、ハンマーHのヘッド部が強化ガラス板G2の周縁部、より特定的には面取り面Bに衝突するよう強化ガラス板G2を設置する。次いで、強化ガラス板G2表面のうちハンマーHのヘッド部が衝突する位置に100番手のサンドペーパーSPを砥面が強化ガラス板G2と当接するように載置する。次いで、ハンマーHを、所定の高さまで回動して振り上げる。次いで、振り上げたハンマーHを落下させてヘッド部と強化ガラス板G2とを衝突させる。そして、強化ガラス板G2が破損するまでハンマーHの振り上げ高さfを徐々に上げながら上記の試験を繰り返す。このようにして強化ガラス板G2が破損した際の振り上げ高さfの値を破損高さfbとして測定した。なお、サンドペーパーSPは1回のハンマーHの落下ごとに新品に交換した。
 上記の試験装置Jを用いた試験によれば、周縁部における上述特定のモードでの耐破損性を測定できる。なお、試料へ加わる衝突エネルギーの大きさは振り上げ高さfに応じて大きくなるため、破損高さfbの値が大きいほど、当該モードにおいて高い耐破損性を有すると言える。
 No.1~6の試料は、周縁部の深さ50μmにおける圧縮応力CS(50)が200MPa以上であるため、何れも破損高さfbが50mm以上であり、高い耐破損性を有するガラスであった。一方、No.7~9の試料は、周縁部の深さ50μmにおける圧縮応力CS(50)が200MPa未満であるため何れも破損高さfbが低く、耐破損性が低いガラスであった。特に、No.7、9は、第一イオン交換工程における処理時間が短かったため、圧縮応力CS(50)が小さな値になったと考えられる。また、No.8は、第一イオン交換工程における溶融塩T1のNaイオン濃度が高かったため、圧縮応力CS(50)が小さな値になったと考えられる。
 ここで、上記No.1~9のうち、参考のためにNo.2~4、6、7のそれぞれについて、強化ガラス板の周縁部における表面からの深さと圧縮応力の大きさとの関係を図6に示す。なお、同図の縦軸にて応力値が正の値となっている場合は、圧縮応力が作用していることを示し、負の値となっている場合は、引張応力が作用していることを示す。同図から理解されるように、No.2~4、6では、No.7との比較において、深さに対して緩やかに圧縮応力の値が小さくなっていることが分かる。そして、No.2~4、6では、No.7よりも深い位置まで圧縮応力が作用していることが分かる。
 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられるガラス板基板およびその製造方法等として有用である。
 G1              強化用ガラス板
 G2(G2a、G2b、G2c) 強化ガラス板
 M               イオン交換防止膜
 T1              第一溶融塩
 T2              第二溶融塩

Claims (12)

  1.  強化用ガラス板の表面の少なくとも一部をイオン交換して圧縮応力層を形成する強化ガラス板の製造方法であって、
     前記圧縮応力層において表面から深さ50μmの位置における圧縮応力が200MPa以上となるまで前記イオン交換を行うイオン交換工程を備えることを特徴とする強化ガラス板の製造方法。
  2.  イオン交換工程において、前記圧縮応力層における圧縮応力の最大値が400MPa以上、且つ、当該層の外表面からの深さが100μmより深くなるまでイオン交換処理することを特徴とする、請求項1に記載の強化ガラス板の製造方法。
  3.  前記イオン交換工程は、
      強化用ガラス板を第一温度の溶融塩に接触させてイオン交換を行う第一イオン交換工程と、
      強化用ガラス板を第二温度の溶融塩に接触させてイオン交換を行う第二イオン交換工程と、を含み
     前記第一イオン交換工程前に、前記強化用ガラスの表面の少なくとも一部に前記イオン交換を防止するイオン交換防止膜を予め設ける成膜工程と、
     前記第一イオン交換工程後に、前記イオン交換防止膜を除去する除去工程とをさらに備え、
     前記除去工程後に前記第二イオン交換工程を実施する、請求項1または2に記載の強化ガラス板の製造方法。
  4.  前記第二温度は前記第一温度より低く、
     前記第一イオン交換工程におけるイオン交換処理時間は、前記第二イオン交換工程におけるイオン交換処理時間より長い、請求項3に記載の強化ガラス板の製造方法。
  5.  前記第一温度は430℃を超え、
     前記第二温度は430℃以下である、請求項4に記載の強化ガラス板の製造方法。
  6.  前記第一温度と前記第二温度との差が±5℃以内である、請求項3に記載の強化ガラス板の製造方法。
  7.  前記イオン交換工程において、前記強化用ガラス板を連続して10時間以上、ナトリウムイオン濃度が50000ppm以下の硝酸カリウム溶融塩に接触させてイオン交換を行う、請求項1から6の何れか1項に記載の強化ガラス板の製造方法。
  8.  外表面の少なくとも一部に深さ50μmにおける圧縮応力が200MPa以上の圧縮応力深層を有することを特徴とする、強化ガラス板。
  9.  前記圧縮応力深層の圧縮応力の最大値が400MPa以上且つ深さが100μmより深い、請求項8に記載の強化ガラス板。
  10.  周縁部に沿って前記圧縮応力深層を備える、請求項8または9に記載の強化ガラス板。
  11.  表面のうち前記圧縮応力深層が形成されていない領域の少なくとも一部に前記圧縮応力深層より浅い圧縮応力浅層を有する、請求項8から10の何れか1項に記載の強化ガラス板。
  12.  前記圧縮応力浅層は、深さが35~60μmであり、圧縮応力の最大値が600~1500MPaである、請求項11に記載の強化ガラス板。
PCT/JP2017/041643 2016-11-22 2017-11-20 強化ガラス板、強化ガラス板の製造方法 WO2018097096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552568A JP7004222B2 (ja) 2016-11-22 2017-11-20 強化ガラス板、強化ガラス板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226390 2016-11-22
JP2016226390 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097096A1 true WO2018097096A1 (ja) 2018-05-31

Family

ID=62195924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041643 WO2018097096A1 (ja) 2016-11-22 2017-11-20 強化ガラス板、強化ガラス板の製造方法

Country Status (3)

Country Link
JP (1) JP7004222B2 (ja)
TW (1) TW201825434A (ja)
WO (1) WO2018097096A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030738A1 (ja) * 2012-08-23 2014-02-27 Hoya株式会社 電子機器用カバーガラスのガラス基板及び電子機器用カバーガラス、並びに電子機器用カバーガラスのガラス基板の製造方法
JP2014510012A (ja) * 2011-03-16 2014-04-24 アップル インコーポレイテッド 薄いガラスの制御された化学的強化
JP2014208570A (ja) * 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2015127483A2 (en) * 2014-02-24 2015-08-27 Corning Incorporated Strengthened glass articles having improved survivability
JP2016060664A (ja) * 2014-09-18 2016-04-25 旭硝子株式会社 ガラス板の製造方法
WO2016152657A1 (ja) * 2015-03-25 2016-09-29 日本電気硝子株式会社 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771909B (zh) * 2015-12-08 2022-07-21 美商康寧公司 S型應力輪廓及製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510012A (ja) * 2011-03-16 2014-04-24 アップル インコーポレイテッド 薄いガラスの制御された化学的強化
WO2014030738A1 (ja) * 2012-08-23 2014-02-27 Hoya株式会社 電子機器用カバーガラスのガラス基板及び電子機器用カバーガラス、並びに電子機器用カバーガラスのガラス基板の製造方法
JP2014208570A (ja) * 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
WO2015127483A2 (en) * 2014-02-24 2015-08-27 Corning Incorporated Strengthened glass articles having improved survivability
JP2016060664A (ja) * 2014-09-18 2016-04-25 旭硝子株式会社 ガラス板の製造方法
WO2016152657A1 (ja) * 2015-03-25 2016-09-29 日本電気硝子株式会社 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法

Also Published As

Publication number Publication date
TW201825434A (zh) 2018-07-16
JP7004222B2 (ja) 2022-01-21
JPWO2018097096A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
TWI814830B (zh) 有改善掉落性能的玻璃
JP6312722B2 (ja) 耐衝撃損傷性ガラス板の製造方法
JP2020510595A (ja) 低たわみおよび高損傷抵抗性ガラス物品のための非対称応力プロファイル
CN107108347B (zh) 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
JP5066626B2 (ja) 携帯機器用カバーガラスのガラス基材及び携帯機器用カバーガラス
WO2020075708A1 (ja) 強化ガラスおよび強化ガラスの製造方法
TW201922643A (zh) 在玻璃中達成應力分佈的方法
KR20140074900A (ko) 표시장치용 커버 유리 및 그 제조 방법
TW201412655A (zh) 具有高彎曲強度之玻璃物件及其製造方法
WO2012153797A1 (ja) 電子機器用カバーガラスの製造方法および電子機器用カバーガラスのガラス基板保持具
JP6827652B2 (ja) 強化ガラスの製造方法および強化ガラス製造装置
WO2018066314A1 (ja) 強化ガラス板の製造方法、膜付ガラス板及び強化ガラス板
JP2018002552A (ja) 強化ガラスの製造方法および強化ガラス製造装置
WO2022024767A1 (ja) 強化ガラスの製造方法、および強化ガラス
JP6886127B2 (ja) 強化ガラス板および強化ガラス板の製造方法
WO2017221805A1 (ja) 強化ガラスの製造方法および強化ガラス製造装置
WO2018097096A1 (ja) 強化ガラス板、強化ガラス板の製造方法
WO2018008359A1 (ja) 強化ガラス板の製造方法
JP2013241291A (ja) 電子機器用カバーガラスの製造方法
WO2018056329A1 (ja) 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
JP2019001691A (ja) 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
EP4028369A1 (en) Fracture resistant glass-based articles
JP2013241292A (ja) 電子機器用カバーガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873206

Country of ref document: EP

Kind code of ref document: A1