WO2018092366A1 - 硫化物固体電解質 - Google Patents

硫化物固体電解質 Download PDF

Info

Publication number
WO2018092366A1
WO2018092366A1 PCT/JP2017/028791 JP2017028791W WO2018092366A1 WO 2018092366 A1 WO2018092366 A1 WO 2018092366A1 JP 2017028791 W JP2017028791 W JP 2017028791W WO 2018092366 A1 WO2018092366 A1 WO 2018092366A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
crystal structure
peak
sulfide
Prior art date
Application number
PCT/JP2017/028791
Other languages
English (en)
French (fr)
Inventor
太 宇都野
明子 中田
恒太 寺井
中川 將
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020237006349A priority Critical patent/KR102605002B1/ko
Priority to US16/461,235 priority patent/US11444317B2/en
Priority to EP23196825.6A priority patent/EP4273986A3/en
Priority to EP17872060.3A priority patent/EP3544108B1/en
Priority to JP2018551032A priority patent/JP7012022B2/ja
Priority to CN201780070493.8A priority patent/CN109937507B/zh
Priority to CN202211232327.2A priority patent/CN115458802A/zh
Priority to KR1020227025606A priority patent/KR102505389B1/ko
Priority to KR1020197013894A priority patent/KR102428981B1/ko
Publication of WO2018092366A1 publication Critical patent/WO2018092366A1/ja
Priority to US17/814,374 priority patent/US20220367907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte.
  • lithium-ion batteries use electrolytes containing flammable organic solvents, so safety devices that prevent temperature rises during short circuits and improvements in structure and materials to prevent short circuits Is required.
  • a lithium ion battery that uses a solid electrolyte by changing the electrolyte to a solid electrolyte does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • a sulfide solid electrolyte is known as a solid electrolyte used in a lithium ion battery.
  • Various crystal structures of sulfide solid electrolytes are known. One of them is an Argyrodite type crystal structure (Patent Documents 1 to 5, Non-Patent Documents 1 to 4).
  • Algirodite type crystal structure is a crystal with high stability, and some have high ionic conductivity. However, further improvements in ionic conductivity are desired.
  • One of the objects of the present invention is to provide a novel sulfide solid electrolyte having high ionic conductivity.
  • an argilodite-type crystal comprising lithium, phosphorus, sulfur and chlorine, having a molar ratio c (Cl / P) of chlorine to phosphorus of greater than 1.0 and 1.9 or less.
  • a sulfide solid electrolyte having a structure and having a lattice constant of not less than 9.750 and not more than 9.820 in the argilodite crystal structure.
  • the electrode compound material containing the said sulfide solid electrolyte and an active material is provided.
  • a lithium ion battery including at least one of the sulfide solid electrolyte and the electrode mixture.
  • a novel sulfide solid electrolyte with high ionic conductivity can be provided.
  • FIG. 2 is an X-ray diffraction (XRD) pattern of the sulfide solid electrolyte obtained in Example 1.
  • FIG. 3 is a solid 31 P-NMR spectrum of the sulfide solid electrolyte obtained in Example 1.
  • 4 is an XRD pattern of the intermediate obtained in Example 4.
  • 7 is an XRD pattern of a mixed powder obtained in Comparative Example 5.
  • the first aspect of the sulfide solid electrolyte of the present invention contains lithium, phosphorus, sulfur and chlorine, and the molar ratio c (Cl / P) of chlorine to phosphorus is greater than 1.0 and 1.9 or less. And it has an argilodite type crystal structure, and the lattice constant of the argilodite type crystal structure is 9.750 ⁇ or more and 9.820 ⁇ or less.
  • the molar ratio c (Cl / P) of chlorine to phosphorus is larger than 1.0, and the lattice constant of the aldilodite crystal structure contained in the sulfide solid electrolyte is 9.820 ⁇ or less.
  • a small lattice constant of the aldilodite type crystal structure is considered to mean that the amount of chlorine contained in the crystal structure is large.
  • various crystalline components and amorphous components are mixed in the sulfide solid electrolyte.
  • Some of the chlorine added as a constituent element of the sulfide solid electrolyte forms an aldilodite-type crystal structure, and other chlorine forms a crystal structure and an amorphous component other than the aldilodite-type crystal structure. Moreover, the case where it is contained in the residual raw material is also considered.
  • the present inventors have found that by increasing the amount of chlorine contained in the aldilodite-type crystal structure, the lattice constant of the aldilodite-type crystal structure is reduced, and the ionic conductivity of the sulfide solid electrolyte can be improved.
  • the lattice constant of the aldilodite crystal structure contained in the sulfide solid electrolyte is 9.8189 or less.
  • the lattice constant of the aldilodite type crystal structure contained in the sulfide solid electrolyte is 9.815 ⁇ or less.
  • the molar ratio c is usually 1.9 or less, but may be 1.8 or less.
  • the lattice constant of the aldilodite type crystal structure is 9.750 to 9.820, preferably 9.79 to 9.820, more preferably 9.79 to 9.815. .
  • the measuring method of ICP emission spectrometry is described in an Example.
  • the molar ratio of each element can be controlled by adjusting the content of each element in the raw material.
  • the lattice constant of the argilodite-type crystal structure is calculated from the XRD pattern obtained by X-ray diffractometry (XRD) by analyzing the entire pattern fitting (WPF) with crystal structure analysis software. Details of the measurement are given in the examples.
  • the sulfide solid electrolyte of this embodiment includes an argilodite type crystal structure.
  • the diffraction peak is a peak derived from an aldilodite type crystal structure.
  • the sulfide solid electrolyte of the present invention may have these peaks.
  • the position of the diffraction peak is determined as A ⁇ 0.5 deg or A ⁇ 0.4 deg when the median is A, but is preferably A ⁇ 0.3 deg.
  • aldilodite-type crystal structure examples include the crystal structures disclosed in Non-Patent Documents 1 to 3, JP-T 2010-540396, JP-A 2011-096630, and JP-A 2013-2111171. it can.
  • the second aspect of the sulfide solid electrolyte of the present invention contains lithium, phosphorus, sulfur and chlorine, and has a molar ratio c (Cl / P) of chlorine to phosphorus of more than 1.0 and 1.9 or less. Has a crystalline structure. Then, in solid 31 P-NMR measurement, each peak has 80.3 to 81.7 ppm, 82.4 to 83.7 ppm, and 84.0 to 85.6 ppm, and the total of all peaks at 78 to 92 ppm The area ratio of the peak at 80.3 to 81.7 ppm relative to the area is 40% or more.
  • the molar ratio c (Cl / P) of chlorine to phosphorus and the aldilodite crystal structure are the same as those of the first embodiment described above.
  • the sulfide solid electrolyte of this embodiment has a solid 31 P-NMR measurement of 80.3 to 81.7 ppm (hereinafter referred to as the first region) and 82.4 to 83.7 ppm (hereinafter referred to as the second region). And 84.0 to 85.6 ppm (hereinafter referred to as the third region).
  • the peak in the first region is referred to as a first peak (P 1 )
  • the peak in the second region is referred to as a second peak (P 2 )
  • the peak in the third region is referred to as a third peak (P 3 ).
  • a peak in a region means that there is a peak having a peak top in the region, or that there is a peak in this region during separation by the non-linear least square method.
  • the ratio (S P1 ⁇ 100 / S all ) of the area (S P1 ) of the first peak to the total area (S all ) of all peaks at 78 to 92 ppm is 40% or more. It is presumed that a high area ratio of the first peak indicates that a large amount of chlorine is incorporated into the argilodite type crystal structure. As a result, the ionic conductivity of the solid electrolyte is increased.
  • the sulfide solid electrolyte of this embodiment preferably has an area ratio of the first peak of 45% or more when the molar ratio c is 1.2 or more.
  • the area ratio of the first peak is 50% or more.
  • the molar ratio c is usually 1.9 or less, but may be 1.8 or less.
  • the area ratio of the first peak is usually 65% or less.
  • Non-patent Document 4 the azirodite type crystal structure (Li 6 PS 5 Cl) in which the halogen is chlorine has two types of free element sites having different occupancy rates of chlorine and sulfur.
  • the free element means sulfur or halogen surrounded by Li in the argilodite type crystal structure.
  • the solid 31 P-NMR spectrum has resonance lines of a plurality of phosphorus having different chemical shifts. It has been reported that they are observed in an overlapping manner (Non-Patent Document 1).
  • the present inventors examined solid 31 P-NMR spectra of azirodite crystals having different ratios of free Cl and free S. As a result, it was found that the NMR signal observed in the region of 78 to 92 ppm can be separated into three types of PS 4 3- structure peaks having different distribution states of surrounding free S and free Cl. Moreover, when the area ratio of the peak (the said 1st peak) of the highest magnetic field side among three types of peaks is high, it discovered that the ionic conductivity of a solid electrolyte was high. From this fact, the first peak is presumed to be a peak of PS 4 3- structure in which all of the surrounding free elements are Cl.
  • the ratio of the area of the peaks at 84.0 ⁇ 85.6ppm to the total area (S all) (P 3) (S P3) (S P3 ⁇ 100 / S all) is not more than 30% preferable. Within this range, it is considered that the structure has a small number of free S surrounded by Li adjacent to the PS 4 3- structure.
  • the area ratio of the third peak is 25% or less.
  • the area ratio of the third peak is 20% or less.
  • the area ratio of the third peak is usually 15% or more.
  • the total area ratio (S P2 ⁇ 100 / S all ) of the area of the peak in 82.4 ⁇ 83.7ppm for (S all) (P 2) (S P2) is 20% to 35% Is preferred. If it is within this range, it is presumed that free Cl close to the PS 4 3- structure is larger than the number of free S, so that a high ion conduction phase is considered to be obtained.
  • the area ratio of the second peak is more preferably 21% or more and 32% or less, and more preferably 22% or more and 30% or less.
  • the sulfide solid electrolyte of the present invention only needs to have the configuration of the first aspect or the second aspect described above. Moreover, you may have all the structures prescribed
  • the sulfide solid electrolytes of the first and second aspects of the present invention are collectively referred to as “the sulfide solid electrolyte of the present invention”.
  • the sulfide solid electrolyte of the present invention has a molar ratio a (Li / P) of lithium to phosphorus, a molar ratio b (S / P) of sulfur to phosphorus, and a molar ratio c (Cl / P) of chlorine to phosphorus.
  • a molar ratio a (Li / P) of lithium to phosphorus a molar ratio b (S / P) of sulfur to phosphorus
  • a molar ratio c (Cl / P) of chlorine to phosphorus it is preferable that the following formulas (A) to (C) are satisfied. 5.0 ⁇ a ⁇ 6.5 (A) 6.1 ⁇ a + c ⁇ 7.5 (B) 0.5 ⁇ ab ⁇ 1.5 (C) (In the formula, b> 0 and c> 1.0 are satisfied.)
  • an aldilodite crystal structure is easily formed.
  • the formula (A) preferably satisfies 5.1 ⁇ a ⁇ 6.4, and more preferably satisfies 5.2 ⁇ a ⁇ 6.3.
  • 6.2 ⁇ a + c ⁇ 7.4 is preferable, and 6.3 ⁇ a + c ⁇ 7.3 is more preferable.
  • 0.6 ⁇ ab ⁇ 1.3 is preferable, and 0.7 ⁇ ab ⁇ 1.3 is more preferable.
  • elements such as Si, Ge, Sn, Pb, B, Al, Ga, As, Sb, and Bi may be included in addition to the lithium, phosphorus, sulfur, and chlorine.
  • the sulfide solid electrolyte contains one or more elements M selected from the group consisting of Si, Ge, Sn, Pb, B, Al, Ga, As, Sb, and Bi
  • the molar ratio of each element is the molar ratio with respect to the total of the element M and phosphorus.
  • the molar ratio a (Li / P) of lithium to phosphorus is Li / (P + M).
  • a halogen element other than chlorine and a chalcogen element oxygen (O), selenium (Se), tellurium (Te), etc.
  • O oxygen
  • Se selenium
  • Te tellurium
  • the sulfide solid electrolyte of the present invention preferably satisfies, for example, a composition represented by the following formula (1).
  • Li a PS b Cl c (1) (In the formula (1), a to c satisfy the following formulas (A) to (C).) 5.0 ⁇ a ⁇ 6.5 (A) 6.1 ⁇ a + c ⁇ 7.5 (B) 0.5 ⁇ ab ⁇ 1.5 (C) (In the formula, b> 0 and c> 1.0 are satisfied.)
  • the formula (A) preferably satisfies 5.1 ⁇ a ⁇ 6.4, and more preferably satisfies 5.2 ⁇ a ⁇ 6.3.
  • 6.2 ⁇ a + c ⁇ 7.4 is preferable, and 6.3 ⁇ a + c ⁇ 7.3 is more preferable.
  • 0.6 ⁇ ab ⁇ 1.3 is preferable, and 0.7 ⁇ ab ⁇ 1.3 is more preferable.
  • the above-mentioned molar ratios and compositions of the elements are not the molar ratios and compositions of the input materials used in the production, but the products in the sulfide solid electrolyte.
  • the molar ratio of each element can be controlled by adjusting the content of each element in the raw material, for example.
  • the above formula (2) represents that the amount of LiCl is relatively small as compared with the aldilodite type crystal structure.
  • Equation (2) is 0 ⁇ more preferably I A / I B ⁇ 0.04, even more preferably from 0 ⁇ I A / I B ⁇ 0.03.
  • Li 3 PS 4 crystal structure Since the crystal structure specified by I C (hereinafter referred to as Li 3 PS 4 crystal structure) has low ionic conductivity, the ionic conductivity of the solid electrolyte is lowered.
  • the above formula (3) represents that the amount of the Li 3 PS 4 crystal structure is relatively small as compared with the aldilodite crystal structure.
  • 0 ⁇ I E / ID ⁇ 0.05 is more preferable, and 0 ⁇ I E / ID ⁇ 0.03 is further preferable.
  • the present invention is not limited to these.
  • the sulfide solid electrolyte of the present invention is, for example, a process comprising a step of producing an intermediate by reacting a mixture of raw materials described later by applying mechanical stress, and a step of crystallizing the intermediate by heat treatment It can be produced by a method.
  • the raw material to be used is a combination of two or more compounds or simple substances containing the elements contained in the sulfide solid electrolyte to be produced, that is, lithium, phosphorus, sulfur and chlorine as a whole.
  • Examples of the raw material containing lithium include lithium compounds such as lithium sulfide (Li 2 S), lithium oxide (Li 2 O), and lithium carbonate (Li 2 CO 3 ), and lithium metal alone. Among these, lithium compounds are preferable, and lithium sulfide is more preferable. Although the said lithium sulfide can be used without a restriction
  • Lithium can be synthesized (Japanese Patent Laid-Open No. 2010-163356). In addition, lithium hydroxide and hydrogen sulfide are reacted at 10 ° C. to 100 ° C. in an aqueous solvent to produce lithium hydrosulfide, and then this reaction solution is dehydrosulfurized to synthesize lithium sulfide (special feature). No. 2011-84438).
  • Examples of the raw material containing phosphorus include phosphorus sulfide such as diphosphorus trisulfide (P 2 S 3 ) and diphosphorus pentasulfide (P 2 S 5 ), phosphorus compounds such as sodium phosphate (Na 3 PO 4 ), and Examples include phosphorus alone. Among these, phosphorus sulfide is preferable and diphosphorus pentasulfide (P 2 S 5 ) is more preferable. Phosphorus compounds such as diphosphorus pentasulfide (P 2 S 5 ) and simple phosphorus can be used without particular limitation as long as they are industrially produced and sold.
  • a chlorine compound represented by the following formula (4) is preferable.
  • M is sodium (Na), lithium (Li), boron (B), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), germanium (Ge), arsenic (As), selenium (Se), tin (Sn), antimony (Sb), tellurium (Te), lead (Pb), bismuth (Bi), or a combination of these elements with oxygen and sulfur Lithium (Li) or phosphorus (P) is preferable, and lithium (Li) is more preferable.
  • l is an integer of 1 or 2
  • m is an integer of 1 to 10.
  • Chlorine compounds specifically, NaCl, LiCl, BCl 3, AlCl 3, SiCl 4, SiCl 3, Si 2 Cl 6, SiBrCl 3, SiBr 2 Cl 2, PCl 3, PCl 5, POCl 3, P 2 Cl 4, SCl 2, S 2 Cl 2, GeCl 4, GeCl 2, AsCl 3, SeCl 2, SeCl 4, SnCl 4, SnCl 2, SbCl 3, SbCl 5, TeCl 2, TeCl 4, PbCl 4, PbCl 2, BiCl 3 etc. are mentioned.
  • lithium chloride LiCl
  • phosphorus pentachloride PCl 5
  • phosphorus trichloride PCl 3
  • a chlorine compound may be used individually by 1 type from said compound, and may be used in combination of 2 or more type. That is, at least one of the above compounds can be used.
  • the raw material includes a lithium compound, a phosphorus compound, and a chlorine compound, and at least one of the lithium compound and the phosphorus compound preferably includes elemental sulfur, and is a combination of lithium sulfide, phosphorus sulfide, and lithium chloride. Is more preferable, and a combination of lithium sulfide, diphosphorus pentasulfide and lithium chloride is more preferable.
  • mechanical stress is applied to the raw material to cause a reaction to obtain an intermediate.
  • applying mechanical stress means mechanically applying a shearing force, an impact force or the like.
  • the means for applying mechanical stress include a pulverizer such as a planetary ball mill, a vibration mill, and a rolling mill, and a kneader.
  • pulverization and mixing are performed to such an extent that crystallinity of the raw material powder can be maintained.
  • the sulfide solid electrolyte of this embodiment expresses high ionic conductivity.
  • the presence of the glass (amorphous) component in the intermediate can be confirmed by the presence of a broad peak (halo pattern) due to the amorphous component in the XRD measurement.
  • the sulfide solid electrolyte of the present embodiment has high mass productivity because it is not necessary to heat the raw material at 550 ° C. for 6 days as in Patent Document 1.
  • the rotational speed may be several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours. More specifically, in the planetary ball mill (manufactured by Fritsch: Model No. P-7) used in the examples of the present application, the rotational speed of the planetary ball mill is preferably 350 rpm or more and 400 rpm or less, more preferably 360 rpm or more and 380 rpm or less. For example, when a zirconia ball is used as the grinding media, the diameter is preferably 0.2 to 20 mm.
  • the intermediate produced by pulverization and mixing is heat-treated.
  • the heat treatment temperature is preferably 350 to 650 ° C., more preferably 360 to 500 ° C., and more preferably 380 to 450 ° C.
  • the atmosphere of the heat treatment is not particularly limited, but is preferably not an atmosphere of hydrogen sulfide but an inert gas atmosphere such as nitrogen or argon.
  • the lattice constant can be 9.815 ⁇ or more and 9.820 ⁇ or less.
  • the lattice constant can be set to 9.800 to 9.810.
  • the sulfide solid electrolyte of the present invention can be used for a solid electrolyte layer such as a lithium ion secondary battery, a positive electrode, a negative electrode, and the like.
  • the electrode mixture of one embodiment of the present invention includes the above-described sulfide solid electrolyte of the present invention and an active material. Or it manufactures with the sulfide solid electrolyte of this invention.
  • a negative electrode active material is used as the active material, a negative electrode mixture is obtained.
  • a positive electrode active material is used, it becomes a positive electrode mixture.
  • a negative electrode compound material is obtained by mix
  • the negative electrode active material for example, a carbon material, a metal material, or the like can be used. Among these, a complex composed of two or more kinds can also be used. Moreover, a negative electrode active material developed in the future can also be used. Moreover, it is preferable that the negative electrode active material has electronic conductivity.
  • Examples of carbon materials include graphite (eg, artificial graphite), graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon. Examples thereof include fibers, vapor-grown carbon fibers, natural graphite, and non-graphitizable carbon.
  • Examples of the metal material include simple metals, alloys, and metal compounds. Examples of the metal simple substance include metal silicon, metal tin, metal lithium, metal indium, and metal aluminum. Examples of the alloy include an alloy containing at least one of silicon, tin, lithium, indium, and aluminum. Examples of the metal compound include metal oxides. Examples of the metal oxide include silicon oxide, tin oxide, and aluminum oxide.
  • an electrical capacity will become small.
  • the negative electrode active material has electronic conductivity and does not contain a conductive aid or contains only a small amount of a conductive aid, the electronic conductivity (electron conduction path) in the negative electrode is reduced, and the rate It is considered that there is a possibility that the characteristics may be lowered, or the utilization rate of the negative electrode active material may be reduced, and the electric capacity may be reduced.
  • the content of the negative electrode active material in the negative electrode mixture is too large, the ion conductivity (ion conduction path) in the negative electrode is lowered, the rate characteristics may be lowered, the utilization rate of the negative electrode active material is lowered, and We think that capacity may decrease.
  • the negative electrode mixture can further contain a conductive additive.
  • a conductive additive When the negative electrode active material has low electronic conductivity, it is preferable to add a conductive additive.
  • the conductive auxiliary agent only needs to have conductivity, and its electronic conductivity is preferably 1 ⁇ 10 3 S / cm or more, more preferably 1 ⁇ 10 5 S / cm or more.
  • conductive aids are preferably carbon materials, nickel, copper, aluminum, indium, silver, cobalt, magnesium, lithium, chromium, gold, ruthenium, platinum, beryllium, iridium, molybdenum, niobium, osnium, rhodium, A substance containing at least one element selected from the group consisting of tungsten and zinc, and more preferably a carbon simple substance having a high conductivity, or a carbon material other than simple carbon; nickel, copper, silver, cobalt, magnesium, lithium, ruthenium , Gold, platinum, niobium, osnium or rhodium, simple metals, mixtures or compounds.
  • carbon materials include carbon blacks such as ketjen black, acetylene black, denka black, thermal black, and channel black; graphite, carbon fiber, activated carbon, and the like. These may be used alone or in combination of two or more. Is possible. Among these, acetylene black, denka black, and ketjen black having high electron conductivity are preferable.
  • the content of the conductive additive in the mixed material is preferably 1 to 40% by mass, more preferably 2 to 20% by mass. If the content of the conductive additive is too small, the electron conductivity of the negative electrode may be reduced to lower the rate characteristics, and the utilization rate of the negative electrode active material may be reduced, resulting in a decrease in electric capacity.
  • the quantity of a negative electrode active material and / or the quantity of a solid electrolyte will decrease. It is estimated that the electric capacity decreases when the amount of the negative electrode active material decreases. Further, when the amount of the solid electrolyte is reduced, it is considered that the ion conductivity of the negative electrode is lowered, the rate characteristics may be lowered, the utilization rate of the negative electrode active material is lowered, and the electric capacity may be lowered.
  • Binders include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resins such as fluorine rubber, thermoplastic resins such as polypropylene and polyethylene, ethylene-propylene-diene rubber (EPDM), and sulfonation.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • fluorine-containing resins such as fluorine rubber
  • thermoplastic resins such as polypropylene and polyethylene
  • EPDM ethylene-propylene-diene rubber
  • SBR aqueous dispersion of cellulose or styrene butadiene rubber
  • the negative electrode mixture can be produced by mixing a solid electrolyte, a negative electrode active material, and an optional conductive additive and / or binder.
  • the mixing method is not particularly limited. For example, dry mixing using a mortar, ball mill, bead mill, jet mill, planetary ball mill, vibrating ball mill, sand mill, cutter mill; and after dispersing the raw materials in an organic solvent, Mixing using a mortar, ball mill, bead mill, planetary ball mill, vibrating ball mill, sand mill, and fill mix, followed by wet mixing to remove the solvent can be applied. Among these, wet mixing is preferable in order not to destroy the negative electrode active material particles.
  • a positive electrode mixture is obtained by mix
  • the positive electrode active material is a material capable of inserting and removing lithium ions, and those known as positive electrode active materials in the battery field can be used. Moreover, the positive electrode active material developed in the future can also be used.
  • Examples of the positive electrode active material include metal oxides and sulfides.
  • the sulfide includes a metal sulfide and a nonmetal sulfide.
  • the metal oxide is, for example, a transition metal oxide.
  • V 2 O 5 , V 6 O 13 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (where 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), LiNi 1-Y Co Y 2 O 2 , LiCo 1-Y Mn Y 2 O 2 , LiNi 1-Y Mn Y 2 O 2 (where 0 ⁇ Y ⁇ 1), Li (Ni a Co b Mn c ) O 4 (0 ⁇ a ⁇ 2, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 2, a + b +
  • metal sulfide examples include titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), and nickel sulfide (Ni 3 S 2 ).
  • metal oxide examples include bismuth oxide (Bi 2 O 3 ) and bismuth leadate (Bi 2 Pb 2 O 5 ).
  • non-metal sulfides include organic disulfide compounds and carbon sulfide compounds.
  • niobium selenide (NbSe 3 ) metal indium, and sulfur can also be used as the positive electrode active material.
  • the positive electrode mixture may further contain a conductive additive.
  • the conductive auxiliary agent is the same as the negative electrode mixture.
  • the blending ratio of the solid electrolyte and the positive electrode active material of the positive electrode mixture, the content of the conductive additive, and the method for producing the positive electrode mixture are the same as those of the negative electrode mixture described above.
  • the lithium ion battery which concerns on one Embodiment of this invention contains at least 1 among the sulfide solid electrolyte and electrode compound material of this invention mentioned above. Or it manufactures with at least 1 among the sulfide solid electrolyte of this invention, and an electrode compound material.
  • the configuration of the lithium ion battery is not particularly limited, but generally has a structure in which a negative electrode layer, an electrolyte layer, and a positive electrode layer are laminated in this order.
  • each layer of the lithium ion battery will be described.
  • Negative electrode layer The negative electrode layer is preferably a layer produced from the negative electrode mixture of the present invention.
  • the negative electrode layer is preferably a layer containing the negative electrode mixture of the present invention.
  • the thickness of the negative electrode layer is preferably from 100 nm to 5 mm, more preferably from 1 ⁇ m to 3 mm, and even more preferably from 5 ⁇ m to 1 mm.
  • a negative electrode layer can be manufactured by a well-known method, for example, can be manufactured by the apply
  • the electrolyte layer is a layer containing a solid electrolyte or a layer manufactured from a solid electrolyte.
  • the solid electrolyte is not particularly limited, but is preferably the sulfide solid electrolyte of the present invention.
  • the electrolyte layer may consist only of a solid electrolyte, and may further contain a binder.
  • the binder the same binder as that for the negative electrode mixture of the present invention can be used.
  • the thickness of the electrolyte layer is preferably 0.001 mm or more and 1 mm or less.
  • the solid electrolyte of the electrolyte layer may be fused. Fusion means that a part of the solid electrolyte particles is dissolved and the dissolved part is integrated with other solid electrolyte particles.
  • the electrolyte layer may be a solid electrolyte plate, and the plate includes a case where a part or all of the solid electrolyte particles are dissolved to form a plate.
  • the electrolyte layer can be manufactured by a known method, and can be manufactured by, for example, a coating method or an electrostatic method (an electrostatic spray method, an electrostatic screen method, or the like).
  • Positive electrode layer is a layer containing a positive electrode active material, Preferably it is a layer containing the positive electrode compound material of this invention, or the layer manufactured from the positive electrode compound material of this invention.
  • the thickness of the positive electrode layer is preferably 0.01 mm or more and 10 mm or less.
  • a positive electrode layer can be manufactured by a well-known method, for example, can be manufactured by the apply
  • the lithium ion battery of the present embodiment preferably further includes a current collector.
  • the negative electrode current collector is provided on the side of the negative electrode layer opposite to the electrolyte layer side
  • the positive electrode current collector is provided on the side of the positive electrode layer opposite to the electrolyte layer side.
  • a plate or foil made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, or an alloy thereof can be used.
  • the lithium ion battery of this embodiment can be manufactured by bonding and joining the above-described members.
  • a method of joining there are a method of laminating each member, pressurizing and pressure bonding, a method of pressing through two rolls (roll to roll), and the like.
  • the lithium ion battery of this embodiment can be manufactured also by forming each member mentioned above sequentially. It can be manufactured by a known method, for example, it can be manufactured by a coating method or an electrostatic method (electrostatic spray method, electrostatic screen method, etc.).
  • the evaluation method is as follows.
  • (1) Ion conductivity measurement and electronic conductivity measurement The sulfide solid electrolyte produced in each example was filled in a tablet molding machine, and a pressure of 407 MPa (press display value 22 MPa) was applied using a mini-press machine. did. Carbon was placed on both sides of the molded body as an electrode, and pressure was again applied with a tablet molding machine to prepare a molded body for measurement (diameter of about 10 mm, thickness of 0.1 to 0.2 cm). The ion conductivity of this molded body was measured by AC impedance measurement. The value at 25 ° C. was adopted as the value of ionic conductivity.
  • the ion conductivity measurement method used in this example cannot be measured because the ion conductivity cannot be accurately measured when the ion conductivity is less than 1.0 ⁇ 10 ⁇ 6 S / cm. It was. Further, the electronic conductivity of this molded body was measured by direct current electric measurement. The value at 25 ° C. was used for the value of electron conductivity. When the electron conductivity when a voltage of 5 V was applied was less than 1.0 ⁇ 10 ⁇ 6 S / cm, the electron conductivity was not measurable.
  • Tube voltage 45kV
  • Tube current 200 mA
  • X-ray wavelength Cu-K ⁇ ray (1.5418mm)
  • Optical system Parallel beam method
  • Slit configuration Solar slit 5 °, entrance slit 1 mm, light receiving slit 1 mm
  • the XRD analysis program JADE was used, and the peak position was obtained by subtracting the baseline by cubic approximation.
  • the two peak intensities of the PS 4 crystal structure were analyzed by the following procedure, and the intensity ratio was calculated.
  • a signal derived from a polymethyl methacrylate (PMMA) sealed cell is present on the low angle side.
  • PMMA polymethyl methacrylate
  • the peak component was identified by superimposing the pattern calculated from the structural information on an inorganic crystal structure database (ICSD) on the XRD pattern. Table 1 shows the structure information used.
  • ISD inorganic crystal structure database
  • Fitting parameter The peak shape was approximated as a symmetrical peak. The temperature factor was excluded from the fitting. When a crystal phase such as Li 2 S remains as a fine peak, the fitting may not converge. In such a case, the structure other than the argilodite phase and the lithium chloride phase was excluded from the fitting target, and the half-value width and strength were manually input, and fitting was performed to calculate the lattice constant of the argilodite crystal. Regarding the lattice constant, it was confirmed whether the peak position of the crystal structure to be evaluated was in good agreement with the fitting result. Regarding the area ratio, an R value of 10% or less was used as a measure of the validity of the results. The R value that is a measure of the accuracy of fitting may be high when there are many unknown peaks or amorphous peaks remain.
  • Solid 31 P-NMR Measurement About 60 mg of a powder sample was filled into an NMR sample tube, and a solid 31 P-NMR spectrum was obtained with the following apparatus and conditions.
  • Device ECZ400R device (manufactured by JEOL Ltd.) Observation nucleus: 31 P Observation frequency: 161.944 MHz Measurement temperature: Room temperature Pulse sequence: Single pulse (90 ° pulse used) 90 ° pulse width: 3.8 ⁇ Waiting time until the next pulse application after FID measurement: 300s Magic angle rotation speed: 12kHz Integration count: 16 Measurement range: 250 ppm to -150 ppm
  • the chemical shift was obtained by using (NH 4 ) 2 HPO 4 (chemical shift 1.33 ppm) as an external reference.
  • An NMR signal in the range of 78 to 92 ppm of the solid 31 P-NMR spectrum was separated into a Gaussian function or a Pseudo-Voigt function (linear sum of Gaussian function and Lorentz function) by a non-linear least square method.
  • a peak due to Li 7 PS 6 is overlapped at 88.5 to 90.5 ppm
  • a peak due to ⁇ crystal of Li 3 PS 4 is overlapped at 86 to 87.6 ppm in addition to the peak due to the azirodite type crystal structure containing chlorine. May be observed. Therefore, the waveforms were separated by different methods depending on whether the two peaks were not observed or observed.
  • Example 1 Using lithium sulfide (purity 98.5%), diphosphorus pentasulfide (Thermophos, purity 99.9% or more) and lithium chloride (Sigma Aldrich, purity 99%) produced in Production Example 1 as starting materials (Hereinafter, in all examples, the purity of each starting material is the same).
  • Lithium sulfide (Li 2 S), mol ratio of phosphorus pentasulfide (P 2 S 5) and lithium chloride (LiCl) (Li 2 S: P 2 S 5: LiCl) is 1.9: 0.5: 1.
  • Each raw material was mixed so as to be 6. Specifically, 0.492 g of lithium sulfide, 0.626 g of diphosphorus pentasulfide, and 0.382 g of lithium chloride were mixed to obtain a raw material mixture.
  • the raw material mixture and 30 g of zirconia balls having a diameter of 10 mm were placed in a planetary ball mill (Fritsch Co., Ltd .: Model No. P-7) zirconia pot (45 mL) and completely sealed. The inside of the pot was an argon atmosphere.
  • a planetary ball mill was used for 72 hours (mechanical milling) at a rotational speed of 370 rpm to obtain a glassy powder (intermediate).
  • a Tamman tube (PT2, manufactured by Tokyo Glass Equipment Co., Ltd.) in a glove box under an Ar atmosphere, and the mouth of the Tamman tube is closed with quartz wool.
  • the container was sealed to prevent air from entering. Thereafter, the sealed container was placed in an electric furnace (FUW243PA, manufactured by Advantech) and heat-treated. Specifically, the temperature was raised from room temperature to 430 ° C. at 2.5 ° C./min and held at 430 ° C. for 8 hours. Thereafter, it was gradually cooled to obtain a sulfide solid electrolyte.
  • the ionic conductivity ( ⁇ ) of the sulfide solid electrolyte was 10.6 mS / cm.
  • the electron conductivity was less than 10 ⁇ 6 S / cm.
  • the sulfide solid electrolyte was analyzed by ICP and the molar ratio of each element was measured.
  • FIG. 2 shows a solid 31 P-NMR spectrum of the sulfide solid electrolyte obtained in Example 1.
  • Example 2 to 4 Comparative Examples 1 and 2 A sulfide solid electrolyte was produced and evaluated in the same manner as in Example 1 except that the raw material composition and production conditions were changed as shown in Table 6. The results are shown in Tables 4 and 5. Note that the electronic conductivity of any sulfide solid electrolyte was less than 10 ⁇ 6 S / cm.
  • the XRD pattern of the intermediate obtained in Example 4 is shown in FIG. A halo pattern indicating that the raw material has been vitrified can be confirmed by treatment with a planetary ball mill. Most of the raw material remained but was mostly glass.
  • Example 5 to 12 Comparative Examples 3 to 9 A sulfide solid electrolyte was produced and evaluated in the same manner as in Example 1 except that the raw material composition and production conditions were changed as shown in Table 7. The results are shown in Tables 8 and 9. Note that the electronic conductivity of any sulfide solid electrolyte was less than 10 ⁇ 6 S / cm.
  • the raw material powder of the comparative example 5 it mixed to the grade which can maintain the crystallinity of a raw material powder with a planetary ball mill, and was set as mixed powder.
  • the XRD pattern of the obtained mixed powder is shown in FIG. From the XRD pattern, the peaks of the raw materials Li 2 S, P 2 S 5 , and LiCl were confirmed, and the crystallinity of the raw material powder was maintained.
  • About 1.5 g of the above mixed powder was packed in a glass tube with a sealing function in a glove box under an Ar atmosphere, and the tip of the glass tube was sealed with a special jig so as not to enter the atmosphere. Thereafter, the glass tube was set in an electric furnace.
  • a dedicated jig was inserted into a joint in the electric furnace, connected to a gas flow pipe, and heat treated while flowing hydrogen sulfide at 20 mL / min. Specifically, the temperature was raised from room temperature to 500 ° C. at a rate of 2.5 ° C./min (heated to 500 ° C. over 3 hours) and held at 500 ° C. for 4 hours. Thereafter, it was gradually cooled to obtain a sulfide solid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウム、リン、硫黄及び塩素を含み、塩素のリンに対するモル比c(Cl/P)が1.0より大きく1.9以下であり、アルジロダイト型結晶構造を有し、アルジロダイト型結晶構造の格子定数が9.820Å以下である、硫化物固体電解質。

Description

硫化物固体電解質
 本発明は、硫化物固体電解質に関する。
 近年におけるパソコン、ビデオカメラ及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。
 現在市販されているリチウムイオン電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造及び材料面での改善が必要となる。これに対し、電解液を固体電解質に変えて、電池を全固体化したリチウムイオン電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 リチウムイオン電池に用いられる固体電解質として、硫化物固体電解質が知られている。硫化物固体電解質の結晶構造としては種々のものが知られている。その1つとしてアルジロダイト(Argyrodite)型結晶構造がある(特許文献1~5、非特許文献1~4)。
 アルジロダイト型結晶構造は、安定性が高い結晶であり、また、イオン伝導度の高いものも存在する。しかしながら、イオン伝導度のさらなる改善が求められている。
特表2010-540396号公報 国際公開WO2015/011937 国際公開WO2015/012042 特開2016-24874号公報 国際公開WO2016/104702
Angew.chem.Int.Ed.Vol.47(2008),No.4,P.755-758 Phys.Status.Solidi Vol.208(2011),No.8,P.1804-1807 Solid State Ionics Vol.221(2012)P.1-5 J.Solid State Electrochem.,16(2012)P.1807-1813
 本発明の目的の1つは、イオン伝導度が高い、新規な硫化物固体電解質を提供することである。
 本発明の一実施形態によれば、リチウム、リン、硫黄及び塩素を含み、前記塩素の前記リンに対するモル比c(Cl/P)が1.0より大きく1.9以下であり、アルジロダイト型結晶構造を有し、前記アルジロダイト型結晶構造の格子定数が9.750Å以上、9.820Å以下である、硫化物固体電解質が提供される。
 また、本発明の一実施形態によれば、上記硫化物固体電解質と、活物質を含む電極合材が提供される。
 また、本発明の一実施形態によれば、上記硫化物固体電解質及び上記電極合材のうち少なくとも1つを含むリチウムイオン電池が提供される。
 本発明の一実施形態によれば、イオン伝導度の高い、新規な硫化物固体電解質が提供できる。
実施例1で得た硫化物固体電解質のX線回折(XRD)パターンである。 実施例1で得た硫化物固体電解質の固体31P-NMRスペクトルである。 実施例4で得た中間体のXRDパターンである。 比較例5で得た混合粉末のXRDパターンである。
 本発明の硫化物固体電解質の第1の態様は、リチウム、リン、硫黄及び塩素を含み、塩素のリンに対するモル比c(Cl/P)が1.0より大きく1.9以下である。そして、アルジロダイト型結晶構造を有し、該アルジロダイト型結晶構造の格子定数が9.750Å以上、9.820Å以下であることを特徴とする。
 本態様の硫化物固体電解質は、塩素のリンに対するモル比c(Cl/P)が1.0より大きく、硫化物固体電解質に含まれるアルジロダイト型結晶構造の格子定数が9.820Å以下である。
 アルジロダイト型結晶構造の格子定数が小さいことは、該結晶構造に含まれている塩素量が多いことを意味していると考えられる。一般に硫化物固体電解質中には、多種の結晶成分及び非晶質成分が混在している。硫化物固体電解質の構成元素として投入した塩素の一部は、アルジロダイト型結晶構造を形成し、他の塩素はアルジロダイト型結晶構造以外の結晶構造及び非晶質成分を形成している。また、残留原料に含まれている場合も考えられる。本発明者らは、アルジロダイト型結晶構造に含まれる塩素量を多くすることにより、アルジロダイト型結晶構造の格子定数が小さくなり、硫化物固体電解質のイオン伝導度を向上できることを見出した。
 本態様の硫化物固体電解質において、好ましくは、モル比cが1.2以上であるときに、硫化物固体電解質に含まれるアルジロダイト型結晶構造の格子定数が9.818Å以下である。また、好ましくは、モル比cが1.4以上であるときに、硫化物固体電解質に含まれるアルジロダイト型結晶構造の格子定数が9.815Å以下である。なお、モル比cは通常1.9以下であるが、1.8以下であってもよい。また、アルジロダイト型結晶構造の格子定数は9.750Å以上、9.820Å以下であるが、9.795Å以上、9.820Å以下が好ましく、9.795Å以上、9.815Å以下であることがより好ましい。
 硫化物固体電解質における各元素のモル比や組成は、分析困難である等の特別な事情を除いて、ICP発光分析法で測定した値を用いるものとする。なお、ICP発光分析法の測定方法は、実施例に記載する。
 各元素のモル比は、原料における各元素の含有量を調製することにより制御できる。
 アルジロダイト型結晶構造の格子定数は、X線回折測定(XRD)で得られるXRDパターンから、結晶構造解析ソフトにて全パターンフィッティング(WPF)解析することにより算出する。測定の詳細は実施例に示す。
 本態様の硫化物固体電解質は、アルジロダイト型結晶構造を含む。アルジロダイト型結晶構造を含むことは、例えば、CuKα線を使用した粉末X線回折測定において、2θ=25.5±0.5deg及び30.0±0.5degに回折ピークを有することで確認できる。該回折ピークは、アルジロダイト型結晶構造に由来するピークである。
 アルジロダイト型結晶構造の回折ピークは、例えば、2θ=15.6±0.5deg、18.0±0.5deg、31.4±0.5deg、45.0±0.5deg、47.9±0.5degにも現れることがある。本発明の硫化物固体電解質は、これらのピークを有していてもよい。
 なお、本願において回折ピークの位置は、中央値をAとした場合、A±0.5deg又はA±0.4degで判定しているが、A±0.3degであることが好ましい。例えば、上述した2θ=25.5±0.5degの回折ピークの場合、中央値Aは25.5degであり、2θ=25.5±0.3degの範囲に存在することが好ましい。本願における他のすべての回折ピーク位置の判定についても同様である。
 アルジロダイト型結晶構造としては、例えば、非特許文献1~3、特表2010-540396号公報、特開2011-096630号公報、特開2013-211171号公報に開示されている結晶構造を挙げることができる。
 本発明の硫化物固体電解質の第2の態様は、リチウム、リン、硫黄及び塩素を含み、塩素のリンに対するモル比c(Cl/P)が1.0より大きく1.9以下であり、アルジロダイト型結晶構造を有する。そして、固体31P-NMR測定において、80.3~81.7ppm、82.4~83.7ppm及び84.0~85.6ppmのそれぞれにピークを有し、78~92ppmにある全ピークの合計面積に対する80.3~81.7ppmにあるピークの面積比が40%以上であることを特徴とする。
 本態様の硫化物固体電解質において、構成元素、塩素のリンに対するモル比c(Cl/P)及びアルジロダイト型結晶構造については、上述した第1の態様と同じである。
 本態様の硫化物固体電解質は、固体31P-NMR測定において、80.3~81.7ppm(以下、第1領域という。)、82.4~83.7ppm(以下、第2領域という。)及び84.0~85.6ppm(以下、第3領域という。)のそれぞれにピークを有する。以下、第1領域にあるピークを第1ピーク(P)と、第2領域にあるピークを第2ピーク(P)と、第3領域にあるピークを第3ピーク(P)という。領域にピークがあるとは、領域内にピークトップを有するピークがあるか、又は、非線形最少二乗法による分離時にこの領域のピークがあることを意味する。
 本態様では、78~92ppmにある全ピークの合計面積(Sall)に対する第1ピークの面積(SP1)の比(SP1×100/Sall)が40%以上である。第1ピークの面積比が高いことは、アルジロダイト型結晶構造中に取り込まれている塩素量が多いことを示していると推定する。その結果、固体電解質のイオン伝導度が高くなる。
 本態様の硫化物固体電解質は、好ましくは、モル比cが1.2以上であるときに、第1ピークの面積比が45%以上である。また、好ましくは、モル比cが1.4以上であるときに、第1ピークの面積比が50%以上である。なお、モル比cは通常1.9以下であるが、1.8以下であってもよい。また、第1ピークの面積比は通常65%以下である。
 ハロゲンが塩素であるアジロダイト型結晶構造(LiPSCl)には、塩素と硫黄の占有率が異なる、2種類の遊離元素サイトが存在することが知られている(非特許文献4)。本願において遊離元素とは、アルジロダイト型結晶構造中にあるLiに囲まれた硫黄又はハロゲンを意味する。また、結晶中のPS 3-構造周囲の遊離塩素(Cl)と遊離硫黄(S)の分布状態の違いにより、その固体31P-NMRスペクトルには化学シフトの異なる複数のリンの共鳴線が重なって観察されることが報告されている(非特許文献1)。本発明者らは、これらの知見に基づき、遊離Clと遊離Sの比率が異なるアジロダイト結晶の固体31P-NMRスペクトルを検討した。その結果、78~92ppmの領域に観察されるNMR信号は、周囲の遊離Sと遊離Clの分布状態が異なる3種類のPS 3-構造のピークに分離できることを見出した。また、3種類のピークのうち、最も高磁場側のピーク(上記第1ピーク)の面積比が高い場合、固体電解質のイオン伝導度が高いことを見出した。なお、本事実から、第1ピークは、周囲の遊離元素の全てがClであるPS 3-構造のピークであると推定している。
 本態様では、合計面積(Sall)に対する84.0~85.6ppmにあるピーク(P)の面積(SP3)の比(SP3×100/Sall)が30%以下であることが好ましい。この範囲であれば、PS 3-構造に近接するLiに囲まれた遊離Sの数が少ない構造になると考えられる。
 好ましくは、モル比cが1.2以上であるときに、第3ピークの面積比が25%以下である。また、好ましくは、モル比cが1.4以上であるときに、第3ピークの面積比が20%以下である。なお、第3ピークの面積比は通常15%以上である。
 また、合計面積(Sall)に対する82.4~83.7ppmにあるピーク(P)の面積(SP2)の比(SP2×100/Sall)が20%以上35%以下であることが好ましい。この範囲であれば、PS 3-構造に近接する遊離Clの方が、遊離Sの数よりも多くなると推測されるため、高イオン伝導相が得られると考えられる。第2ピークの面積比は21%以上32%以下であることが更に好ましく、22%以上30%以下であることがより好ましい。
 固体31P-NMR測定による上記第1ピーク、第2ピーク及び第3ピークの特定及び面積は、固体31P-NMR測定により得られるスペクトルの78~92ppmに観察される信号を、非線形最少二乗法により各ピークに分離し、各ピークの面積を測定することにより算出する。詳細は後述する実施例に記載する。各ピーク面積は、周辺環境が同じリンの存在量を示している。
 本発明の硫化物固体電解質は、上述した第1の態様の構成又は第2の態様の構成を有していればよい。また、第1の態様及び第2の態様で規定したすべての構成を有していてもよい。
 以下、本発明の第1の態様及び第2の態様の硫化物固体電解質をまとめて「本発明の硫化物固体電解質」という。
 本発明の硫化物固体電解質は、リチウムのリンに対するモル比a(Li/P)、硫黄のリンに対するモル比b(S/P)及び塩素のリンに対するモル比c(Cl/P)とした場合に、下記式(A)~(C)を満たすと好ましい。
    5.0≦a≦6.5    ・・・(A)
    6.1≦a+c≦7.5  ・・・(B)
    0.5≦a-b≦1.5  ・・・(C)
(式中、b>0且つc>1.0を満たす。)
 上記式(A)~(C)を満たすことにより、アルジロダイト型結晶構造が形成されやすくなる。
 上記式(A)は、5.1≦a≦6.4であることが好ましく、5.2≦a≦6.3であることがより好ましい。
 上記式(B)は、6.2≦a+c≦7.4であることが好ましく、6.3≦a+c≦7.3であることがより好ましい。
 上記式(C)は、0.6≦a-b≦1.3であることが好ましく、0.7≦a-b≦1.3であることがより好ましい。
 本発明の効果を阻害しない範囲において、上記リチウム、リン、硫黄及び塩素の他に、Si、Ge、Sn、Pb、B、Al、Ga、As、Sb、Bi等の元素を含んでいてもよい。硫化物固体電解質が、Si、Ge、Sn、Pb、B、Al、Ga、As、Sb及びBiからなる群より選択される1以上の元素Mを含む場合、上記(A)~(C)における各元素のモル比は、元素Mとリンの合計に対するモル比とする。例えば、リチウムのリンに対するモル比a(Li/P)は、Li/(P+M)とする。
 また、本発明の効果を阻害しない範囲において、塩素以外のハロゲン元素や、カルコゲン元素(酸素(O)、セレン(Se)、テルル(Te)等)を含んでいてもよい。
 本発明の硫化物固体電解質は、例えば、下記式(1)で表される組成を満たすことが好ましい。
   LiPSCl   (1)
(式(1)中、a~cは下記式(A)~(C)を満たす。)
    5.0≦a≦6.5    ・・・(A)
    6.1≦a+c≦7.5  ・・・(B)
    0.5≦a-b≦1.5  ・・・(C)
(式中、b>0且つc>1.0を満たす。)
 上記式(A)は、5.1≦a≦6.4であることが好ましく、5.2≦a≦6.3であることがより好ましい。
 上記式(B)は、6.2≦a+c≦7.4であることが好ましく、6.3≦a+c≦7.3であることがより好ましい。
 上記式(C)は、0.6≦a-b≦1.3であることが好ましく、0.7≦a-b≦1.3であることがより好ましい。
 上述した各元素のモル比や組成は、製造に使用した投入原料におけるモル比や組成ではなく、生成物である硫化物固体電解質におけるものである。各元素のモル比は、例えば原料における各元素の含有量を調製することにより制御できる。
 本発明の硫化物固体電解質は、CuKα線を使用した粉末X線回折において、2θ=50.3±0.5degに回折ピークを有しないか、有する場合には下記式(2)を満たすことが好ましい。
    0<I/I<0.05   (2)
(式中、Iは2θ=50.3±0.5degの回折ピークの強度を表し、Iは2θ=25.5±0.5degの回折ピークの強度を表す。)
 上記式(2)は、アルジロダイト型結晶構造に比して、LiClの量が相対的に少ないことを表す。LiClの存在は、原料中の塩素含有量が多い場合などの原因により、固体電解質内に過剰な塩素が存在することを意味する。式(2)は、0<I/I<0.04であることがより好ましく、0<I/I<0.03であることがさらに好ましい。
 また、本発明の硫化物固体電解質は、CuKα線を使用した粉末X線回折において、2θ=17.6±0.4deg及び2θ=18.1±0.4degに回折ピーク(アルジロダイト型結晶構造に起因する回折ピークではない)を有しないか、有する場合には下記式(3)を満たすことが好ましい。
    0<I/I<0.05   (3)
(式中、Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうち、アルジロダイト型結晶構造の回折ピークではないものの回折ピークの強度を表し、Iは2θ=30.0±0.5degの回折ピークの強度を表す。)
 Iで特定される結晶構造(以下、LiPS結晶構造という。)は、低イオン伝導性であるため、固体電解質のイオン伝導度を低下させる。上記式(3)は、アルジロダイト型結晶構造に比して、LiPS結晶構造の量が相対的に少ないことを表す。式(3)は、0<I/I<0.03であることがより好ましく、0<I/I<0.02であることがさらに好ましい。
 なお、2θ=17.6±0.4deg及び2θ=18.1±0.4degのいずれかは、通常、比較的ピーク強度の強いアルジロダイト型結晶構造の回折ピークと重なるため測定できない場合がある。従って、2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造の回折ピークではないものとは、通常、観測されるこれら2つのピークのうち強度の弱い方を意味する。なお、測定強度S/N比のバックグランドやノイズがピークのように観察される場合もある。かかる場合にこれらをIと仮定しても式(3)を満たすことはいうまでもない。
 また、本発明の硫化物固体電解質は、CuKα線を使用した粉末X線回折において、アルジロダイト型結晶構造の回折ピーク以外の回折ピークを有しないか、有する場合には、下記式を満たすことが好ましい。
    0<I/I<0.1
(式中、Iはアルジロダイト型結晶構造の回折ピーク以外の回折ピークの強度を表し、Iは2θ=30.0±0.5degの回折ピークの強度を表す。)
 上記式は、0<I/I<0.05であることがより好ましく、0<I/I<0.03であることがさらに好ましい。
 アルジロダイト型結晶構造の回折ピークは、例えば、2θ=15.6±0.5deg、18.0±0.5deg、2θ=25.5±0.5deg、30.0±0.5deg、31.4±0.5deg、45.0±0.5deg、47.9±0.5degの位置にある回折ピークが挙げられる。但し、これらに限定されず、例えば、無機結晶構造データベース(ICSD)上の構造情報にてアルジロダイト型結晶構造の回折ピークと認識されているピークもある。
 本発明の硫化物固体電解質は、例えば、後述する原料の混合物に、機械的応力を加えて反応させることにより、中間体を作製する工程と、中間体を熱処理して結晶化する工程を有する製造方法により作製できる。
 使用する原料は、製造する硫化物固体電解質が必須として含む元素、すなわち、リチウム、リン、硫黄及び塩素を全体として含む2種以上の化合物又は単体を組み合わせて使用する。
 リチウムを含む原料としては、例えば、硫化リチウム(LiS)、酸化リチウム(LiO)、炭酸リチウム(LiCO)等のリチウム化合物、及びリチウム金属単体等が挙げられる。中でも、リチウム化合物が好ましく、硫化リチウムがより好ましい。
 上記硫化リチウムは、特に制限なく使用できるが、高純度のものが好ましい。硫化リチウムは、例えば、特開平7-330312号公報、特開平9-283156号公報、特開2010-163356号公報、特開2011-84438号公報に記載の方法により製造することができる。
 具体的には、炭化水素系有機溶媒中で水酸化リチウムと硫化水素とを70℃~300℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2010-163356号公報)。
 また、水溶媒中で水酸化リチウムと硫化水素とを10℃~100℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2011-84438号公報)。
 リンを含む原料としては、例えば、三硫化二リン(P)、五硫化二リン(P)等の硫化リン、リン酸ナトリウム(NaPO)等のリン化合物、及びリン単体等が挙げられる。これらの中でも、硫化リンが好ましく、五硫化二リン(P)がより好ましい。五硫化二リン(P)等のリン化合物、リン単体は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。
 塩素を含む原料としては、例えば、下記式(4)で表される塩素化合物が好ましい。
   M-Cl   (4)
 式(4)中、Mは、ナトリウム(Na)、リチウム(Li)、ホウ素(B)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、ゲルマニウム(Ge)、ヒ素(As)、セレン(Se)、スズ(Sn)、アンチモン(Sb)、テルル(Te)、鉛(Pb)、ビスマス(Bi)、又はこれらの元素に酸素元素、硫黄元素が結合したものを示し、リチウム(Li)又はリン(P)が好ましく、リチウム(Li)がより好ましい。
 lは1又は2の整数であり、mは1~10の整数である。
 塩素化合物は、具体的には、NaCl、LiCl、BCl、AlCl、SiCl、SiCl、SiCl、SiBrCl、SiBrCl、PCl、PCl、POCl、PCl、SCl、SCl、GeCl、GeCl、AsCl、SeCl、SeCl、SnCl、SnCl、SbCl、SbCl、TeCl、TeCl、PbCl、PbCl、BiCl等が挙げられる。
 中でも、塩化リチウム(LiCl)、五塩化リン(PCl)、三塩化リン(PCl)が好ましい。
 塩素化合物は、上記の化合物の中から一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。すなわち、上記の化合物の少なくとも1つを用いることができる。
 本発明では、原料がリチウム化合物、リン化合物及び塩素化合物を含み、該リチウム化合物、及びリン化合物の少なくとも一方が硫黄元素を含むことが好ましく、硫化リチウムと硫化リンと塩化リチウムとの組合せであることがより好ましく、硫化リチウムと五硫化二リンと塩化リチウムの組合せであることが更に好ましい。
 例えば、本発明の硫化物固体電解質の原料として、硫化リチウム、五硫化二リン及び塩化リチウムを使用する場合には、投入原料のモル比を、硫化リチウム:五硫化二リン:塩化リチウム=40~60:10~20:25~50とすることができる。
 本実施形態においては、上記の原料に機械的応力を加えて反応させ、中間体とする。ここで、「機械的応力を加える」とは、機械的にせん断力や衝撃力等を加えることである。機械的応力を加える手段としては、例えば、遊星ボールミル、振動ミル、転動ミル等の粉砕機や、混練機等を挙げることができる。
 従来技術(例えば、特許文献2等)では、原料粉末の結晶性を維持できる程度に粉砕混合している。一方、本実施形態では原料に機械的応力を加えて反応させ、ガラス成分を含む中間体とすることが好ましい。すなわち、従来技術よりも強い機械的応力により、原料粉末の少なくとも一部が結晶性を維持できない状態まで粉砕混合する。これにより、中間体の段階でアルジロダイト型結晶構造の基本骨格であるPS構造を生じさせ、かつ、ハロゲンを高分散させることができる。その結果、次工程の熱処理時に、安定相であるアルジロダイト型結晶構造となる際に、ハロゲンがアルジロダイト型結晶構造に取り込まれやすくなる。また、領域毎に異なる相を経ないため、LiPS結晶構造等の低イオン伝導相が生じにくいと推定している。これにより、本実施形態の硫化物固体電解質は高いイオン伝導度を発現すると推定している。
 尚、中間体がガラス(非晶質)成分を含むことは、XRD測定において非晶質成分に起因するブロードなピーク(ハローパターン)の存在により確認できる。
 また、本実施形態の硫化物固体電解質は、特許文献1のように原料を550℃で6日間も加熱する必要はないため、量産性が高い。
 ガラス成分を含む中間体を経由せずに、原料から直接、アルジロダイト型結晶構造を含む硫化物固体電解質を製造する場合、イオン伝導度の高い硫化物固体電解質を得るのは難しい。ハロゲンは安定した相に留まり易く、原料から直接、硫化物固体電解質を製造する場合に、硫化物固体電解質中でアルジロダイト型結晶構造が生成している最中に、ハロゲンが他の安定した相に取り込まれてしまったり、分散せずに凝集あるいは再凝集が起こったりするためである。
 ガラス成分を含む中間体を製造し、原子レベルで材料成分を混ぜ合わせることで、ガラス成分を含む中間体の熱処理中に、ハロゲンがスムーズにアルジロダイト結晶構造のサイトに入ることができる。
 粉砕混合の条件としては、例えば、粉砕機として遊星ボールミル機を使用した場合、回転速度を数十~数百回転/分とし、0.5時間~100時間処理すればよい。より具体的に、本願実施例で使用した遊星型ボールミル(フリッチュ社製:型番P-7)の場合、遊星ボールミルの回転数は350rpm以上400rpm以下が好ましく、360rpm以上380rpm以下がより好ましい。
 粉砕メディアであるボールは、例えば、ジルコニア製ボールを使用した場合、その直径は0.2~20mmが好ましい。
 粉砕混合で作製した中間体を熱処理する。熱処理温度は350~650℃が好ましく、360~500℃がさらに好ましく、380~450℃がより好ましい。熱処理温度は従来と比べて若干低くした方が、アルジロダイト型結晶構造に含まれる塩素は増加する傾向がある。
 熱処理の雰囲気は特に限定しないが、好ましくは硫化水素気流下ではなく、窒素、アルゴン等の不活性ガス雰囲気下である。結晶構造中の遊離塩素が硫黄で置換されることを抑制することにより、結晶構造中の塩素量を高めることができ、その結果、得られる硫化物固体電解質のイオン伝導度が向上すると推定される。
 アルジロダイト型結晶構造に含まれる塩素量を多くするには、例えば、原料の塩素含有量を増やすことが考えられる。しかしながら、硫化物固体電解質の他の部分に存在する塩素量及び原料(例えば、塩化リチウム)の状態で残留する塩素量も増加するため、硫化物固体電解質の性能が低下する場合がある。
 原料の塩素含有量を増やす方法の他に、例えば、上述したように、原料の粉砕混合を十分に実施すること、熱処理(焼成)雰囲気を調整すること、熱処理温度を調整することが有効である。これら条件を調整することにより、硫化物固体電解質のアルジロダイト型結晶構造以外の部分に存在する塩素量の増加を抑制し、アルジロダイト型結晶構造に含まれる塩素量を効率よく増やすことができる。
 本発明では、硫化物固体電解質の製造条件を調整することにより、従来よりもアルジロダイト型結晶構造に含まれる塩素量の多い硫化物固体電解質が得られる。
 例えば、本発明ではモル比cが1.2以上1.4以下であるときに格子定数を9.815Å以上9.820Å以下にできる。また、モル比cが1.4より大きく1.8以下であるときに、格子定数を9.800Å以上9.810Å以下にできる。
 本発明の硫化物固体電解質は、リチウムイオン二次電池等の固体電解質層、正極、負極等に用いることができる。
[電極合材]
 本発明の一実施形態の電極合材は、上述した本発明の硫化物固体電解質と、活物質を含む。又は、本発明の硫化物固体電解質により製造される。活物質として負極活物質を使用すると負極合材となる。一方、正極活物質を使用すると正極合材となる。
・負極合材
 本発明の硫化物固体電解質に負極活物質を配合することにより負極合材が得られる。
 負極活物質としては、例えば、炭素材料、金属材料等を使用することができる。これらのうち2種以上からなる複合体も使用できる。また、今後開発される負極活物質も使用することができる。
 また、負極活物質は電子伝導性を有していることが好ましい。
 炭素材料としては、グラファイト(例えば、人造黒鉛)、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられる。
 金属材料としては、金属単体、合金、金属化合物が挙げられる。当該金属単体としては、金属ケイ素、金属スズ、金属リチウム、金属インジウム、金属アルミニウムが挙げられる。当該合金としては、ケイ素、スズ、リチウム、インジウム及びアルミニウムのうち少なくとも1つを含む合金が挙げられる。当該金属化合物としては、金属酸化物が挙げられる。金属酸化物は、例えば酸化ケイ素、酸化スズ、酸化アルミニウムである。
 負極活物質と固体電解質の配合割合は、負極活物質:固体電解質=95重量%:5重量%~5重量%:95重量%が好ましく、90重量%:10重量%~10重量%:90重量%がより好ましく、85重量%:15重量%~15重量%:85重量%がさらに好ましい。
 負極合材における負極活物質の含有量が少なすぎると電気容量が小さくなる。また、負極活物質が電子伝導性を有し、導電助剤を含まないか、又は少量の導電助剤しか含まない場合には、負極内の電子伝導性(電子伝導パス)が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。一方、負極合材における負極活物質の含有量が多すぎると、負極内のイオン伝導性(イオン伝導パス)が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。
 負極合材は導電助剤をさらに含有することができる。
 負極活物質の電子伝導性が低い場合には、導電助剤を添加することが好ましい。導電助剤は、導電性を有していればよく、その電子伝導度は、好ましくは1×10S/cm以上であり、より好ましくは1×10S/cm以上である。
 導電助剤の具体例としては、好ましくは炭素材料、ニッケル、銅、アルミニウム、インジウム、銀、コバルト、マグネシウム、リチウム、クロム、金、ルテニウム、白金、ベリリウム、イリジウム、モリブデン、ニオブ、オスニウム、ロジウム、タングステン及び亜鉛からなる群より選択される少なくとも1つの元素を含む物質であり、より好ましくは導電性が高い炭素単体、炭素単体以外の炭素材料;ニッケル、銅、銀、コバルト、マグネシウム、リチウム、ルテニウム、金、白金、ニオブ、オスニウム又はロジウムを含む金属単体、混合物又は化合物である。
 なお、炭素材料の具体例としては、ケッチェンブラック、アセチレンブラック、デンカブラック、サーマルブラック、チャンネルブラック等のカーボンブラック;黒鉛、炭素繊維、活性炭等が挙げられ、これらは単独でも2種以上でも併用可能である。なかでも、電子伝導性が高いアセチレンブラック、デンカブラック、ケッチェンブラックが好適である。
 負極合材が導電助剤を含む場合の導電助剤の合材中の含有量は、好ましくは1~40質量%、より好ましくは2~20質量%である。導電助剤の含有量が少なすぎると、負極の電子伝導性が低下してレート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。一方、導電助剤の含有量が多すぎると、負極活物質の量及び/又は固体電解質の量が少なくなる。負極活物質の量が少なくなると電気容量が低下すると推測する。また、固体電解質の量が少なくなると負極のイオン伝導性が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。
 負極活物質と固体電解質を互いに密に結着させるため、さらに結着剤を含んでもよい。
 結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、あるいはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。
 負極合材は、固体電解質と負極活物質、並びに任意の導電助剤及び/又は結着剤を混合することで製造できる。
 混合方法は特に限定されないが、例えば、乳鉢、ボールミル、ビーズミル、ジェットミル、遊星型ボールミル、振動ボールミル、サンドミル、カッターミルを用いて混合する乾式混合;及び有機溶媒中に原料を分散させた後に、乳鉢、ボールミル、ビーズミル、遊星型ボールミル、振動ボールミル、サンドミル、フィルミックスを用いて混合し、その後溶媒を除去する湿式混合を適用することができる。これらのうち、負極活物質粒子を破壊しないために湿式混合が好ましい。
・正極合材
 本発明の固体電解質に正極活物質を配合することにより正極合材が得られる。
 正極活物質は、リチウムイオンの挿入脱離が可能な物質であり、電池分野において正極活物質として公知のものが使用できる。また、今後開発される正極活物質も使用することができる。
 正極活物質としては、例えば、金属酸化物、硫化物等が挙げられる。硫化物には、金属硫化物、非金属硫化物が含まれる。
 金属酸化物は、例えば遷移金属酸化物である。具体的には、V、V13、LiCoO、LiNiO、LiMnO、LiMn、Li(NiCoMn)O(ここで、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1-YCo、LiCo1-YMn、LiNi1-YMn(ここで、0≦Y<1)、Li(NiCoMn)O(0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2-ZNi、LiMn2-ZCo(ここで、0<Z<2)、LiCoPO、LiFePO、CuO、Li(NiCoAl)O(ここで、0<a<1、0<b<1、0<c<1、a+b+c=1)等が挙げられる。
 金属硫化物としては、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が挙げられる。
 その他、金属酸化物としては、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)等が挙げられる。
 非金属硫化物としては、有機ジスルフィド化合物、カーボンスルフィド化合物等が挙げられる。
 上記の他、セレン化ニオブ(NbSe)、金属インジウム、硫黄も正極活物質として使用できる。
 正極合材は、さらに導電助剤を含んでいてもよい。
 導電助剤は、負極合材と同様である。
 正極合材の固体電解質及び正極活物質の配合割合、導電助剤の含有量、並びに正極合材の製造方法は、上述した負極合材と同様である。
[リチウムイオン電池]
 本発明の一実施形態に係るリチウムイオン電池は、上述した本発明の硫化物固体電解質及び電極合材のうち少なくとも1つを含む。又は、本発明の硫化物固体電解質及び電極合材のうち少なくとも1つにより製造される。
 リチウムイオン電池の構成は特に限定されないが、一般に、負極層、電解質層及び正極層をこの順に積層した構造を有する。以下、リチウムイオン電池の各層について説明する。
(1)負極層
 負極層は、好ましくは本発明の負極合材から製造される層である。
 又は、負極層は、好ましくは本発明の負極合材を含む層である。
 負極層の厚さは、100nm以上5mm以下が好ましく、1μm以上3mm以下がより好ましく、5μm以上1mm以下がさらに好ましい。
 負極層は公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(2)電解質層
 電解質層は、固体電解質を含む層又は固体電解質から製造された層である。当該固体電解質は特に限定されないが、好ましくは本発明の硫化物固体電解質である。
 電解質層は、固体電解質のみからなってもよく、さらにバインダーを含んでもよい。当該バインダーとしては、本発明の負極合材の結着剤と同じものが使用できる。
 電解質層の厚さは、0.001mm以上1mm以下であることが好ましい。
 電解質層の固体電解質は、融着していてもよい。融着とは、固体電解質粒子の一部が溶解し、溶解した部分が他の固体電解質粒子と一体化することを意味する。また、電解質層は、固体電解質の板状体であってもよく、当該板状体は、固体電解質粒子の一部又は全部が溶解し、板状体になっている場合も含む。
 電解質層は、公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(3)正極層
 正極層は、正極活物質を含む層であり、好ましくは本発明の正極合材を含む層又は本発明の正極合材から製造された層である。
 正極層の厚さは、0.01mm以上10mm以下であることが好ましい。
 正極層は、公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(4)集電体
 本実施形態のリチウムイオン電池は、好ましくは集電体をさらに備える。例えば負極集電体は負極層の電解質層側とは反対側に、正極集電体は正極層の電解質層側とは反対側に設ける。
 集電体として、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又はこれらの合金等からなる板状体や箔状体等が使用できる。
 本実施形態のリチウムイオン電池は、上述した各部材を貼り合せ、接合することで製造できる。接合する方法としては、各部材を積層し、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある。
 また、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。
 接合においては、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。
 また、本実施形態のリチウムイオン電池は、上述した各部材を順次形成することでも製造できる。公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
 以下、本発明を実施例により、さらに詳細に説明する。
 なお、評価方法は以下のとおりである。
(1)イオン伝導度測定と電子伝導性測定
 各例で製造した硫化物固体電解質を、錠剤成形機に充填し、ミニプレス機を用いて407MPa(プレス表示値22MPa)の圧力を加え成形体とした。電極としてカーボンを成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、測定用の成形体(直径約10mm、厚み0.1~0.2cm)を作製した。この成形体について交流インピーダンス測定によりイオン伝導度を測定した。イオン伝導度の値は25℃における数値を採用した。
 なお、本実施例で用いたイオン伝導度の測定方法では、イオン伝導度が1.0×10-6S/cm未満の場合には、イオン伝導度を正確に測ることができないため、測定不能とした。
 また、この成形体について直流電気測定により電子伝導度を測定した。電子伝導度の値は25℃における数値を採用した。なお、5Vの電圧を印加したときの電子伝導度が1.0×10-6S/cm未満の場合、電子伝導性は測定不能とした。
(2)X線回折(XRD)測定
 各例で製造した硫化物固体電解質の粉末から、直径10mm、高さ0.1~0.3cmの円形ペレットを成形して試料とした。この試料を、XRD用気密ホルダーを用いて空気に触れさせずに測定した。回折ピークの2θ位置は、XRD解析プログラムJADEを用いて重心法にて決定した。
 株式会社リガクの粉末X線回折測定装置SmartLabを用いて以下の条件にて実施した。なお、試料測定前に、Si粉末の標準試料にて装置の角度校正を実施した。
   管電圧:45kV
   管電流:200mA
   X線波長:Cu-Kα線(1.5418Å)
   光学系:平行ビーム法
   スリット構成:ソーラースリット5°、入射スリット1mm、受光スリット1mm
   検出器:シンチレーションカウンター
   測定範囲:2θ=10-60deg
   ステップ幅、スキャンスピード:0.02deg、1deg/分
 測定結果より結晶構造の存在を確認するためのピーク位置の解析では、XRD解析プログラムJADEを用い、3次式近似によりベースラインを引いて、ピーク位置を求めた。
 ピーク強度においては、2θ=30.0deg±0.5degに存在するアルジロダイト型結晶構造の1本のピーク強度、2θ=17.6±0.4degかつ18.1±0.4degに存在するLiPS結晶構造の2本のピーク強度を次の手順で解析し、強度比を計算した。
 実測データの5点のデータの移動平均によりスムージングを行い、17.5~18.5degの間の最低強度点をバックグランドとして実測データから差し引いた。その後、17.0~17.8deg及び17.9~18.5degの実測データの最大値間の実測データの最大値を算出し、その小さい方のピーク強度をLiPS結晶構造のピーク強度として用いた。また、アルジロダイト型結晶構造のピーク強度は29.0~32.0degの実測データの最大値をピーク強度として算出した。
(3)ICP測定
 各例で製造した硫化物固体電解質の粉末を秤量し、アルゴン雰囲気中で、バイアル瓶に採取した。バイアル瓶にKOHアルカリ水溶液を入れ、硫黄分の捕集に注意しながらサンプルを溶解し、適宜希釈、測定溶液とした。これを、パッシェンルンゲ型ICP-OES装置(SPECTRO社製SPECTRO ARCOS)にて測定し、組成を決定した。
 検量線溶液は、Li、P、SはICP測定用1000mg/L標準溶液を、Clはイオンクロマトグラフ用1000mg/L標準溶液を用いて調製した。
 各試料で2つの測定溶液を調整し、各測定溶液で5回の測定を行い、平均値を算出した。その2つの測定溶液の測定値の平均で組成を決定した。
(4)アルジロダイト型結晶構造の格子定数
 XRDを上記(2)と同様の条件で測定した。得られたXRDパターンを、MDI社製の結晶構造解析ソフトJADE ver6を用いて全パターンフィッティング(WPF)解析し、XRDパターンに含まれる各結晶成分を特定し、各成分の格子定数を算出した。
・XRDパターンのバックグラウンド除去
 測定後のXRDパターンには、ポリメタクリル酸メチル(PMMA)製密封セル由来の信号が低角側に存在する。このような信号を除去するため、XRDパターンにあわせて、低角側から減衰するベースラインを、3次元近似により算出した。
・ピーク成分の同定
 試料中に含まれる各成分について、XRDパターンに無機結晶構造データベース(ICSD)上の構造情報より計算したパターンを重ねあわせることにより、ピーク成分を同定した。表1に使用した構造情報を示す。
Figure JPOXMLDOC01-appb-T000001
・WPF解析
 WPF解析の主なパラメータ設定を以下に示す。
 X線波長:Cukα線(λ=1.54184Å)
 フィッティングパラメータ:ピーク形状は対称ピークとして近似した。温度因子はフィッティングから除外した。LiS等の結晶相が微細なピークとして残留している場合は、フィッティングが収束しない場合がある。そのような場合は、アルジロダイト相と塩化リチウム相以外の構造をフィッティング対象から外して半値幅と強度を手入力して、フィッティングを行いアルジロダイト型結晶の格子定数を算出した。
 格子定数については、評価する結晶構造のピーク位置がフィッティング結果とよく一致しているかを確認した。面積比については、R値が10%以下になることが結果の妥当性の目安とした。フィッティングの精度の目安となるR値は、不明ピークが多かったり、非晶ピークが残っている場合にR値が高くなる場合がある。
(5)固体31P-NMR測定
 粉末試料約60mgをNMR試料管へ充填し、下記の装置及び条件にて固体31P-NMRスペクトルを得た。
 装置:ECZ400R装置(日本電子株式会社製)
 観測核:31
 観測周波数:161.944MHz
 測定温度:室温
 パルス系列:シングルパルス(90°パルスを使用)
 90°パルス幅:3.8μ
 FID測定後、次のパルス印加までの待ち時間:300s
 マジックアングル回転の回転数:12kHz
 積算回数:16回
 測定範囲:250ppm~-150ppm
 固体31P-NMRスペクトルの測定において、化学シフトは、外部基準として(NHHPO(化学シフト1.33ppm)を用いることで得た。
 固体31P-NMRスペクトルの78~92ppmの範囲にあるNMR信号を、非線形最少二乗法によりガウス関数又はPseudo-Voigt関数(ガウス関数とローレンツ関数の線形和)に分離した。上記範囲には塩素を含むアジロダイト型結晶構造によるピークの他に、88.5~90.5ppmにLiPSによるピークが、86~87.6ppmにLiPSのβ晶によるピークが重なって観察されることがある。従って、この2つのピークが観察されない場合と、観察される場合とで、異なる手法で波形分離した。
(1)LiPS及びLiPSのβ晶によるピークが観察されない場合
 78~92ppmの範囲にあるNMR信号を非線形最少二乗法により表2に示した位置と半値幅の範囲の3本のガウス関数又はPseudo-Voigt関数(ガウス関数とローレンツ関数の線形和)に分離した。得られたA~Cのピークの各面積S~S及びその合計Sall(=S+S+S)から、各ピークの面積比(%)を算出した。
Figure JPOXMLDOC01-appb-T000002
(2)LiPS又はLiPSのβ晶によるピークが観察される場合
 表3に示すように、塩素を含むアジロダイト型結晶構造による3本のピークに加えて、LiPS(ピークI)又はLiPS(ピークII)によるピークを用いて、78~92ppmのNMR信号を、非線形最小二乗法を用いて分離し、得られたピークA~Cの面積S~Sと、ピークI及びIIの面積b及びbと、それらの合計Sall+b(=S+S+S+b+b)から、各ピークの面積比(%)を算出した。
Figure JPOXMLDOC01-appb-T000003
製造例1
(硫化リチウム(LiS)の製造)
 撹拌機付きの500mLセパラブルフラスコに、不活性ガス下で乾燥したLiOH無水物(本荘ケミカル社製)を200g仕込んだ。窒素気流下にて昇温し、内部温度を200℃に保持した。窒素ガスを硫化水素ガス(住友精化)に切り替え、500mL/minの流量にし、LiOH無水物と硫化水素を反応させた。
 反応により発生する水分はコンデンサーにより凝縮して回収した。反応を6時間行った時点で水が144mL回収された。さらに3時間反応を継続したが、水の発生は見られなかった。
 生成物粉末を回収して、純度及びXRDを測定した。その結果、純度は98.5%であり、XRDではLiSのピークパターンが確認できた。
実施例1
 製造例1で製造した硫化リチウム(純度98.5%)、五硫化二リン(サーモフォス社製、純度99.9%以上)及び塩化リチウム(シグマアルドリッチ社製、純度99%)を出発原料に用いた(以下、全ての実施例において、各出発原料の純度は同様である)。硫化リチウム(LiS)、五硫化二リン(P)及び塩化リチウム(LiCl)のmol比(LiS:P:LiCl)が1.9:0.5:1.6となるように、各原料を混合した。具体的には、硫化リチウム0.492g、五硫化二リン0.626g、塩化リチウム0.382gを混合し、原料混合物とした。
 原料混合物と、直径10mmのジルコニア製ボール30gとを遊星型ボールミル(フリッチュ社製:型番P-7)ジルコニア製ポット(45mL)に入れ、完全密閉した。ポット内はアルゴン雰囲気とした。遊星型ボールミルで回転数を370rpmにして72時間処理(メカニカルミリング)し、ガラス状の粉末(中間体)を得た。
 上記中間体の粉末約1.5gをAr雰囲気下のグローブボックス内で、タンマン管(PT2,東京硝子機器株式会社製)内に詰め、石英ウールでタンマン管の口を塞ぎ、さらにSUS製の密閉容器で大気が入らないよう封をした。その後、密閉容器を電気炉(FUW243PA、アドバンテック社製)内に入れ熱処理した。具体的には、室温から430℃まで2.5℃/minで昇温し、430℃で8時間保持した。その後、徐冷し、硫化物固体電解質を得た。
 硫化物固体電解質のイオン伝導度(σ)は、10.6mS/cmであった。なお、電子伝導性は10-6S/cm未満であった。
 硫化物固体電解質のXRDパターンを図1に示す。2θ=15.64、18.06、25.66、30.20、31.58、40.04、41.12、45.24、49.16、52.74、55.36、56.22、59.56degにアルジロダイト型結晶構造に由来するピークが観測された。一方、LiPS結晶構造に由来するピークは観測されなかった。
 硫化物固体電解質をICP分析し、各元素のモル比を測定した。また、硫化物固体電解質に含まれているアルジロダイト型結晶構造の格子定数、XRDにおけるLiCl及びLiPS結晶構造のピークのピーク強度比、並びにイオン伝導度σを測定した。結果を表4に示す。また、硫化物固体電解質の固体31P-NMRスペクトルにおける各ピークの面積比を測定した。結果を表5に示す。
 また、図2に実施例1で得た硫化物固体電解質の固体31P-NMRスペクトルを示す。
Figure JPOXMLDOC01-appb-T000004
*Iは2θ=50.3±0.5degの回折ピーク強度であり、Iは2θ=25.5±0.5degの回折ピークの強度である。Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造に起因する回折ピークではないものの回折ピークの強度である。Iは2θ=30.0±0.5degの回折ピークの強度である。
Figure JPOXMLDOC01-appb-T000005
実施例2~4、比較例1、2
 原料組成及び作製条件を表6に示すように変更した他は、実施例1と同様にして硫化物固体電解質を作製し、評価した。結果を表4及び5に示す。
 なお、いずれの硫化物固体電解質も電子伝導性は10-6S/cm未満であった。
 実施例4で得た中間体のXRDパターンを図3に示す。遊星型ボールミルによる処理により、原料がガラス化したことを示すハローパターンが確認できる。原料の一部が残存しているものの大部分はガラスとなっていた。
Figure JPOXMLDOC01-appb-T000006
実施例5~12、比較例3~9
 原料組成及び作製条件を表7に示すように変更した他は、実施例1と同様にして硫化物固体電解質を作製し、評価した。結果を表8及び9に示す。
 なお、いずれの硫化物固体電解質も電子伝導性は10-6S/cm未満であった。
 比較例5の原料粉末の処理について、遊星型ボールミルで原料粉末の結晶性を維持できる程度に混合し、混合粉末とした。
 得られた混合粉末のXRDパターンを図4に示す。XRDパターンから、原料であるLiS、P、LiClのピークが確認でき、原料粉末の結晶性が維持されていた。
 上記混合粉末の約1.5gをAr雰囲気下のグローブボックス内で、シール機能付きのガラス管内に詰め、大気が入らないように、ガラス管の先端を専用治具で封をした。その後、ガラス管を電気炉内にセットした。専用治具を電気炉内にある継手に差し入れて、ガス流通管に繋ぎ、硫化水素を20mL/minで流通しながら熱処理した。具体的には室温から500℃まで2.5℃/minで昇温し(3時間で500℃に昇温)、500℃で4時間保持した。その後、徐冷し、硫化物固体電解質を得た。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
*Iは2θ=50.3±0.5degの回折ピーク強度であり、Iは2θ=25.5±0.5degの回折ピークの強度である。Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造に起因する回折ピークではないものの回折ピークの強度である。Iは2θ=30.0±0.5degの回折ピークの強度である。
Figure JPOXMLDOC01-appb-T000009
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (13)

  1.  リチウム、リン、硫黄及び塩素を含み、
     前記塩素の前記リンに対するモル比c(Cl/P)が1.0より大きく1.9以下であり、
     アルジロダイト型結晶構造を有し、
     前記アルジロダイト型結晶構造の格子定数が9.750Å以上、9.820Å以下である、硫化物固体電解質。
  2.  前記アルジロダイト型結晶構造の格子定数が9.795Å以上、9.820Å以下である、請求項1に記載の硫化物固体電解質。
  3.  前記アルジロダイト型結晶構造の格子定数が9.795Å以上、9.815Å以下である、請求項1に記載の硫化物固体電解質。
  4.  CuKα線を使用した粉末X線回折において、2θ=25.5±0.5deg及び30.0±0.5degに回折ピークを有する、請求項1~3のいずれかに記載の硫化物固体電解質。
  5.  前記リチウムの前記リンに対するモル比a(Li/P)、前記硫黄の前記リンに対するモル比b(S/P)及び前記塩素の前記リンに対するモル比c(Cl/P)が、下記式(A)~(C)を満たす請求項1~4のいずれかに記載の硫化物固体電解質。
        5.0≦a≦6.5    ・・・(A)
        6.1≦a+c≦7.5  ・・・(B)
        0.5≦a-b≦1.5  ・・・(C)
    (式中、b>0且つc>1.0を満たす。)
  6.  下記式(1)で表される組成を有する請求項1~5のいずれかに記載の硫化物固体電解質。
       LiPSCl   (1)
    (式(1)中、a~cは下記式(A)~(C)を満たす。
        5.0≦a≦6.5    ・・・(A)
        6.1≦a+c≦7.5  ・・・(B)
        0.5≦a-b≦1.5  ・・・(C)
    (式中、b>0且つc>1.0を満たす。)
  7.  CuKα線を使用した粉末X線回折において、2θ=50.3±0.5degに回折ピークを有しないか、有する場合には下記式(2)を満たす、請求項1~6のいずれかに記載の硫化物固体電解質。
        0<I/I<0.05   (2)
    (式中、Iは2θ=50.3±0.5degの回折ピークの強度を表し、Iは2θ=25.5±0.5degの回折ピークの強度を表す。)
  8.  CuKα線を使用した粉末X線回折において、2θ=17.6±0.4deg及び2θ=18.1±0.4degに回折ピーク(アルジロダイト型結晶構造に起因するピークではない)を有しないか、有する場合には下記式(3)を満たす、請求項1~7のいずれかに記載の硫化物固体電解質。
        0<I/I<0.05   (3)
    (式中、Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造に起因する回折ピークではない回折ピークの強度を表し、Iは2θ=30.0±0.5degの回折ピークの強度を表す。)
  9.  固体31P-NMR測定において、80.3~81.7ppm、82.4~83.7ppm及び84.0~85.6ppmのそれぞれにピークを有し、
     78~92ppmにある全ピークの合計面積に対する前記80.3~81.7ppmにあるピークの面積比が40%以上である請求項1~8のいずれかに記載の硫化物固体電解質。
  10.  請求項1~9のいずれかに記載の硫化物固体電解質と、活物質を含む電極合材。
  11.  請求項1~9のいずれかに記載の硫化物固体電解質及び請求項10に記載の電極合材のうち少なくとも1つを含むリチウムイオン電池。
  12.  請求項1~9のいずれかに記載の硫化物固体電解質により製造された電極合材。
  13.  請求項1~9のいずれかに記載の硫化物固体電解質、請求項10に記載の電極合材及び請求項12に記載の電極合材のうち少なくとも1つにより製造されたリチウムイオン電池。
PCT/JP2017/028791 2016-11-16 2017-08-08 硫化物固体電解質 WO2018092366A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020237006349A KR102605002B1 (ko) 2016-11-16 2017-08-08 황화물 고체 전해질
US16/461,235 US11444317B2 (en) 2016-11-16 2017-08-08 Sulfide solid electrolyte
EP23196825.6A EP4273986A3 (en) 2016-11-16 2017-08-08 Sulfide solid electrolyte
EP17872060.3A EP3544108B1 (en) 2016-11-16 2017-08-08 Sulfide solid electrolyte
JP2018551032A JP7012022B2 (ja) 2016-11-16 2017-08-08 硫化物固体電解質
CN201780070493.8A CN109937507B (zh) 2016-11-16 2017-08-08 硫化物固体电解质
CN202211232327.2A CN115458802A (zh) 2016-11-16 2017-08-08 硫化物固体电解质
KR1020227025606A KR102505389B1 (ko) 2016-11-16 2017-08-08 황화물 고체 전해질
KR1020197013894A KR102428981B1 (ko) 2016-11-16 2017-08-08 황화물 고체 전해질
US17/814,374 US20220367907A1 (en) 2016-11-16 2022-07-22 Sulfide solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222931 2016-11-16
JP2016222931 2016-11-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/461,235 A-371-Of-International US11444317B2 (en) 2016-11-16 2017-08-08 Sulfide solid electrolyte
US17/814,374 Continuation US20220367907A1 (en) 2016-11-16 2022-07-22 Sulfide solid electrolyte

Publications (1)

Publication Number Publication Date
WO2018092366A1 true WO2018092366A1 (ja) 2018-05-24

Family

ID=62145347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028791 WO2018092366A1 (ja) 2016-11-16 2017-08-08 硫化物固体電解質

Country Status (7)

Country Link
US (2) US11444317B2 (ja)
EP (2) EP4273986A3 (ja)
JP (1) JP7012022B2 (ja)
KR (3) KR102428981B1 (ja)
CN (2) CN115458802A (ja)
TW (1) TW201819288A (ja)
WO (1) WO2018092366A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131725A1 (ja) * 2017-12-28 2019-07-04 三井金属鉱業株式会社 固体電解質
WO2020061354A1 (en) * 2018-09-19 2020-03-26 Blue Current, Inc. Lithium oxide argyrodites
EP3716389A1 (en) * 2019-03-28 2020-09-30 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
JP2020167151A (ja) * 2019-03-28 2020-10-08 トヨタ自動車株式会社 硫化物固体電解質、硫化物固体電解質の前駆体、全固体電池および硫化物固体電解質の製造方法
KR20200129330A (ko) * 2019-05-08 2020-11-18 한국과학기술연구원 할로겐 원소의 함량이 조절된 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법
WO2021049665A1 (ja) * 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池
JP2021144867A (ja) * 2020-03-12 2021-09-24 マクセルホールディングス株式会社 全固体二次電池
US11572459B2 (en) 2019-12-20 2023-02-07 Blue Current, Inc. Composite electrolytes with binders
WO2023053611A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 硫化物系固体電解質とその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637442A4 (en) * 2017-06-09 2021-03-17 Idemitsu Kosan Co.,Ltd. SOLID SULPHIDE ELECTROLYTE MANUFACTURING PROCESS
US20220376291A1 (en) * 2019-07-18 2022-11-24 Idemitsu Kosan Co.,Ltd. Compound and battery comprising the same
WO2021188535A1 (en) * 2020-03-16 2021-09-23 Solid Power, Inc. Solid electrolyte material and solid-state battery made therewith
KR102376178B1 (ko) * 2020-05-08 2022-03-21 한국과학기술연구원 전고체 전지용 황화물계 고체전해질, 그 제조방법 및 이를 포함하는 전고체 전지
KR102396159B1 (ko) * 2020-05-08 2022-05-11 한국과학기술연구원 전고체 전지용 황화물계 고체전해질, 그 제조방법 및 이를 포함하는 전고체 전지
CN112271322A (zh) * 2020-10-23 2021-01-26 蜂巢能源科技有限公司 一种固体电解质及其制备方法和应用
KR102590896B1 (ko) * 2020-12-22 2023-10-19 울산대학교 산학협력단 고체 전해질의 제조방법 및 이로부터 제조된 고체 전해질
CN114709474B (zh) * 2022-04-28 2023-07-11 上海屹锂新能源科技有限公司 一种铋掺杂硫银锗矿型硫化物固态电解质及其制备方法
US12009478B1 (en) 2023-07-25 2024-06-11 Rivian Ip Holdings, Llc Solid state electrolyte

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JPH09283156A (ja) 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質およびその製造方法
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法
JP2010540396A (ja) 2007-10-08 2010-12-24 ウニヴェルジテート ジーゲン リチウム硫銀ゲルマニウム鉱
JP2011084438A (ja) 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd 硫化リチウム及びその製造方法
JP2011096630A (ja) 2009-10-02 2011-05-12 Sanyo Electric Co Ltd 固体リチウム二次電池及びその製造方法
JP2013211171A (ja) 2012-03-30 2013-10-10 Mitsui Mining & Smelting Co Ltd 硫化物系固体電解質の製造方法
WO2015012042A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2015220013A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234665B2 (ja) * 2011-11-07 2017-11-22 出光興産株式会社 固体電解質
JP5720753B2 (ja) 2013-10-02 2015-05-20 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6044588B2 (ja) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6633538B2 (ja) 2014-10-31 2020-01-22 出光興産株式会社 硫化物ガラス及び結晶性固体電解質の製造方法、結晶性固体電解質、硫化物ガラス及び固体電池
EP3499629A4 (en) * 2016-08-10 2020-01-29 Idemitsu Kosan Co., Ltd SOLID-SULFIDE ELECTROLYTE
EP3511949B1 (en) 2016-09-12 2021-05-19 Idemitsu Kosan Co.,Ltd. Sulfide solid electrolyte

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JPH09283156A (ja) 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質およびその製造方法
JP2010540396A (ja) 2007-10-08 2010-12-24 ウニヴェルジテート ジーゲン リチウム硫銀ゲルマニウム鉱
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法
JP2011096630A (ja) 2009-10-02 2011-05-12 Sanyo Electric Co Ltd 固体リチウム二次電池及びその製造方法
JP2011084438A (ja) 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd 硫化リチウム及びその製造方法
JP2013211171A (ja) 2012-03-30 2013-10-10 Mitsui Mining & Smelting Co Ltd 硫化物系固体電解質の製造方法
WO2015012042A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2015011937A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2015220013A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 47, no. 4, 2008, pages 755 - 758
J. SOLID STATE ELECTROCHEM., vol. 16, 2012, pages 1807 - 1813
PHYS. STATUS. SOLIDI, vol. 208, no. 8, 2011, pages 1804 - 1807
SOLID STATE IONICS, vol. 221, 2012, pages 1 - 5

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131725A1 (ja) * 2017-12-28 2019-07-04 三井金属鉱業株式会社 固体電解質
US11631887B2 (en) 2017-12-28 2023-04-18 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte
WO2020061354A1 (en) * 2018-09-19 2020-03-26 Blue Current, Inc. Lithium oxide argyrodites
US11575151B2 (en) 2019-03-28 2023-02-07 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
KR20200115295A (ko) * 2019-03-28 2020-10-07 도요타 지도샤(주) 황화물 고체전해질, 황화물 고체전해질의 전구체, 전고체전지 및 황화물 고체전해질의 제조 방법
CN111755740A (zh) * 2019-03-28 2020-10-09 丰田自动车株式会社 硫化物固体电解质、硫化物固体电解质的前体、全固体电池及硫化物固体电解质的制造方法
CN111755740B (zh) * 2019-03-28 2023-12-05 丰田自动车株式会社 硫化物固体电解质、硫化物固体电解质的前体、全固体电池及硫化物固体电解质的制造方法
JP2020167151A (ja) * 2019-03-28 2020-10-08 トヨタ自動車株式会社 硫化物固体電解質、硫化物固体電解質の前駆体、全固体電池および硫化物固体電解質の製造方法
JP7318569B2 (ja) 2019-03-28 2023-08-01 トヨタ自動車株式会社 硫化物固体電解質、硫化物固体電解質の前駆体、全固体電池および硫化物固体電解質の製造方法
EP3716389A1 (en) * 2019-03-28 2020-09-30 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
KR102378488B1 (ko) * 2019-03-28 2022-03-25 도요타 지도샤(주) 황화물 고체전해질, 황화물 고체전해질의 전구체, 전고체전지 및 황화물 고체전해질의 제조 방법
KR102218226B1 (ko) * 2019-05-08 2021-02-22 한국과학기술연구원 할로겐 원소의 함량이 조절된 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법
US11329314B2 (en) 2019-05-08 2022-05-10 Korea Institute Of Science And Technology Lithium ion conductive sulfide-based solid electrolyte with controlled halogen elements content and method of preparing the same
KR20200129330A (ko) * 2019-05-08 2020-11-18 한국과학기술연구원 할로겐 원소의 함량이 조절된 리튬 이온 전도성 황화물계 고체전해질 및 이의 제조방법
WO2021049665A1 (ja) * 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池
US11572459B2 (en) 2019-12-20 2023-02-07 Blue Current, Inc. Composite electrolytes with binders
JP2021144867A (ja) * 2020-03-12 2021-09-24 マクセルホールディングス株式会社 全固体二次電池
JP7328166B2 (ja) 2020-03-12 2023-08-16 マクセル株式会社 全固体二次電池
WO2023053611A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 硫化物系固体電解質とその製造方法

Also Published As

Publication number Publication date
TW201819288A (zh) 2018-06-01
EP3544108A1 (en) 2019-09-25
KR20230034422A (ko) 2023-03-09
KR102505389B1 (ko) 2023-03-02
KR20190082794A (ko) 2019-07-10
EP4273986A2 (en) 2023-11-08
CN115458802A (zh) 2022-12-09
KR102428981B1 (ko) 2022-08-03
KR102605002B1 (ko) 2023-11-22
KR20220107331A (ko) 2022-08-02
JP7012022B2 (ja) 2022-01-27
EP4273986A3 (en) 2024-01-17
JPWO2018092366A1 (ja) 2019-10-10
CN109937507A (zh) 2019-06-25
CN109937507B (zh) 2022-10-28
EP3544108B1 (en) 2023-09-27
US20220367907A1 (en) 2022-11-17
US20190319305A1 (en) 2019-10-17
EP3544108A4 (en) 2020-07-15
US11444317B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2018092366A1 (ja) 硫化物固体電解質
JP7178452B2 (ja) 硫化物固体電解質
JP7187637B2 (ja) 硫化物固体電解質の製造方法
JP7258089B2 (ja) 硫化物固体電解質
JP6679730B2 (ja) 硫化物固体電解質
WO2018164224A1 (ja) 硫化物固体電解質粒子
US11387486B2 (en) Sulfide solid electrolyte
JP7013456B2 (ja) 硫化物固体電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551032

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197013894

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872060

Country of ref document: EP

Effective date: 20190617