WO2018092223A1 - Workpiece thickness measuring device and machine tool - Google Patents

Workpiece thickness measuring device and machine tool Download PDF

Info

Publication number
WO2018092223A1
WO2018092223A1 PCT/JP2016/084005 JP2016084005W WO2018092223A1 WO 2018092223 A1 WO2018092223 A1 WO 2018092223A1 JP 2016084005 W JP2016084005 W JP 2016084005W WO 2018092223 A1 WO2018092223 A1 WO 2018092223A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
medium
side wall
main body
measuring device
Prior art date
Application number
PCT/JP2016/084005
Other languages
French (fr)
Japanese (ja)
Inventor
大 別当
佳隆 山口
雄人 篠原
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to PCT/JP2016/084005 priority Critical patent/WO2018092223A1/en
Priority to JP2018550924A priority patent/JP6628899B2/en
Priority to DE112016007342.9T priority patent/DE112016007342B4/en
Publication of WO2018092223A1 publication Critical patent/WO2018092223A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Definitions

  • the present invention relates to an ultrasonic workpiece thickness measuring device that measures the thickness of a workpiece on the machine tool, and a machine tool including the workpiece thickness measuring device.
  • Patent Document 1 a taper shank attached to a spindle of a machine tool, and an ultrasonic wave that is provided on the taper shank while contacting the ultrasonic probe at the tip thereof to the surface of the workpiece, and the echo is detected.
  • An ultrasonic plate thickness measurement unit that measures the thickness of the workpiece and wirelessly transmits the measurement data to the control unit, and is provided in the spindle injection nozzle provided on the spindle and the ultrasonic plate thickness measurement device.
  • An ultrasonic plate thickness measuring apparatus is disclosed in which coolant is injected from a measurement injection nozzle to improve the contact state between the ultrasonic probe and the surface of the workpiece during thickness measurement.
  • the ultrasonic plate thickness measuring device of Patent Document 1 is applicable only to a machine tool having a so-called through-spindle type coolant supply device that feeds coolant to a machining region by penetrating the main shaft in the axial direction. There is a problem that its versatility is low.
  • the present invention has a technical problem to solve such problems of the prior art, and a gel-like contact medium having a relatively high viscosity can be applied to the surface of the workpiece measurement site. It is an object of the present invention to provide a workpiece thickness measuring device that can be easily applied and a machine tool including the workpiece thickness measuring device.
  • a spindle air conduit that communicates with the pneumatic source and extends through the spindle, and a workpiece thickness measuring device that is attachable to and detachable from a tool mounting portion of the spindle,
  • the measuring device has a base end side wall facing the main shaft and a front end side wall provided on the opposite side of the base end side wall and capable of facing the workpiece.
  • a main body a shank projecting from the base end side wall and detachable from the front end of the main shaft, a measuring element provided on the front end side wall of the measuring apparatus main body so as to be able to come into contact with the surface of the workpiece,
  • ultrasonic waves are transmitted and received by the measuring element in a state where the measuring element is in contact with the surface of the workpiece, and the thickness of the workpiece is calculated from a time difference between transmission and reception of the ultrasonic wave.
  • a control unit that wirelessly transmits measurement data to the outside; a medium tank that is provided in the measurement apparatus main body and stores a gel-like contact medium applied between the probe and the work surface; and the measurement apparatus main body Before While being attached to the spindle, by using the air pressure received from the spindle air pipeline, the machine tool comprising a metering device for discharging a certain amount of couplant to the work surface is provided.
  • the surface of the work is brought into contact with the surface of the work tool on a machine tool equipped with a feed device of at least three axes orthogonal to the X axis, the Y axis, and the Z axis for moving the main shaft and the work relatively.
  • a workpiece thickness measuring device that measures the thickness of a workpiece from the time difference between transmission and reception, when mounted on the distal end portion of the main shaft, the base end side wall facing the main shaft and the opposite side of the base end side wall
  • a measuring apparatus main body having a distal end side wall which is provided and can face the workpiece; a shank projecting from the proximal end side wall and detachable from the distal end of the main shaft; and a distal end of the measuring apparatus main body capable of contacting the surface of the workpiece
  • a measuring element provided on the side wall for transmitting and receiving ultrasonic waves and an ultrasonic wave transmitted and received by the measuring element provided in the measuring device main body and in contact with the measuring element in contact with the surface of the workpiece.
  • the thickness of the workpiece is obtained by calculation, and a control unit that wirelessly transmits measurement data to the outside and a gel-like contact medium that is provided between the measuring element and the workpiece surface are provided in the measurement apparatus main body. While the medium tank and the measuring device main body are mounted on the main shaft, the air pressure received from the spindle air line extending through the main shaft and communicating with the air pressure source of the machine tool is constant. There is provided a workpiece thickness measuring device including a quantitative feeder for discharging an amount of a contact medium onto a workpiece surface.
  • a predetermined amount of the gel-like contact medium is discharged toward the workpiece by the quantitative feeder using the spindle air of the machine tool and reliably applied to the measurement site. Furthermore, according to the present invention, since the workpiece thickness measuring device has a shank portion that can be attached to the tip end portion of the spindle, it can be easily attached to various machine tools and existing machine tools. Is possible.
  • 1 is a schematic view showing an example of a machine tool according to the present invention.
  • 1 is a schematic diagram of a workpiece thickness measuring device according to a preferred embodiment of the present invention. It is a flowchart explaining the thickness measuring method of the workpiece
  • FIG. 1 is a schematic view of a machine tool according to a preferred embodiment of the present invention.
  • the machine tool 100 includes a spindle device 110 having a spindle 114 and a housing 112 that rotatably supports the spindle 114 about the rotation axis O, and a Z axis in front of the spindle device 110 along the guide surface 120 of the bed.
  • a table 122 provided so as to be capable of reciprocating in the axial direction (left-right direction in FIG. 1).
  • the machine tool 100 further includes an X-axis feeding device (not shown) and Y for feeding the spindle device 110 in the X-axis direction (direction perpendicular to the paper surface of FIG. 1) and the Y-axis direction (vertical direction in FIG. 1).
  • An axis feeding device (not shown) and a Z-axis feeding device (not shown) for feeding the table 122 in the Z-axis direction parallel to the rotation spindle O are provided.
  • the X-axis feeding device, the Y-axis feeding device, and the Z-axis feeding device are a ball screw (not shown) extending in the X-axis, Y-axis, and Z-axis directions, and the X-axis, Y-axis, and Z-axis.
  • Servo motors (not shown) for driving the respective ball screws can be provided.
  • a rotary table 124 that can be rotated and fed in the B-axis direction about an axis parallel to the Y-axis.
  • the workpiece W to be processed is fixed so as to face the tip of the main shaft 114 via an scale 126 attached to the upper surface of the rotary table 124.
  • the scale 126 is a double-sided scale, and has workpiece mounting surfaces 126a and 126b to which the workpiece W is attached.
  • a servo motor that drives the X-axis, Y-axis, and Z-axis feeding devices and a servo motor (not shown) that drives the rotary table 124 in the B-axis direction are connected to a control device (NC device) 140 of the machine tool 100.
  • the control device 140 controls the X-axis, Y-axis, Z-axis, and B-axis servomotors.
  • the control device 140 can be housed in the operation panel of the machine tool 100.
  • the operation panel includes an operation status of the machine tool 100, a machining program sent to the control device 140, and a machine tool 100 for operating the machine tool 100.
  • the display 142 displays an input screen for inputting various parameters by an operator.
  • a tool mounting hole 114a for mounting a tool is formed at the tip of the main spindle 114, and a shank portion of a tool holder (not shown) in which the tool is mounted is introduced into the tool mounting hole 114a.
  • the tool is attached to the tip end of the main spindle 114.
  • an automatic tool changer 130 can be used to attach / detach the tool to / from the tip of the main spindle 114.
  • the automatic tool changer 130 can also be controlled by the controller 140.
  • the main shaft 114 may also include a spindle air conduit 114b extending along the axis O.
  • the spindle air conduit 114 b is connected to the pneumatic source 102 via the external pneumatic conduit 106.
  • a solenoid-type shut-off valve 106a is disposed in the external pneumatic conduit 106 as a pneumatic control valve.
  • the shut-off valve 106a has a first position (see FIG. 2) where the spindle air conduit 114b is shut off from the air pressure source 102 and released to the outside air, and a first position where the spindle air conduit 114b communicates with the air pressure source 102. It is possible to operate between the two positions.
  • the shutoff valve 106a can be provided with a muffler 106b that reduces exhaust noise from the spindle air conduit 114b at the first position.
  • the solenoid of the shutoff valve 106a is connected to the control device 140, and the control device 140 controls the operation of the shutoff valve 106a.
  • the pneumatic source 102 can be service air of a factory where the machine tool 100 is installed.
  • the air pressure source 102 may be an air pressure source including, for example, a compressor (not shown) and a tank (not shown) provided separately from the service air, and a dryer (not shown).
  • a coolant passage 112 a is formed in the housing 112 of the spindle device 110, and the coolant passage 112 a is connected to an external coolant source 104 via a coolant conduit 108.
  • the coolant passage 112 a extends through the receiving member 116 provided at the end of the housing 112.
  • the coolant passage 112 a is preferably formed through the side wall of the housing 112, but may be formed by a pipe line or a hose extending inside or outside the housing 112.
  • the coolant source 104 can include, for example, a tank (not shown) that stores coolant and a pump (not shown) that sends coolant from the tank to the coolant conduit 108.
  • a solenoid type shut-off valve 108a is disposed as a coolant control valve.
  • the shutoff valve 108a is operable between a first position (see FIG. 2) where the coolant passage 112a is shut off from the coolant source 104 and a second position where the coolant passage 112a communicates with the coolant source 104.
  • the solenoid of the shutoff valve 108a is connected to the control device 140, and the control device 140 controls the operation of the shutoff valve 108a.
  • a transmission / reception device 80 that communicates with a transmission / reception unit 36 of the workpiece thickness measurement device 10 to be described later can be attached to the housing 112 of the spindle device 110.
  • the transmission / reception device 80 is connected to the control device 140. Further, a receiving member 116 described later is attached to the housing 112.
  • the workpiece thickness measuring device 10 is attached to the tip of the main spindle 114.
  • the workpiece thickness measuring device 10 includes a hollow main body 12, and the main body 12 has a base end side wall 12 a that faces the main shaft 114 and a front end side wall 12 b that faces the work W when mounted on the front end portion of the main shaft 114. And have.
  • a shank portion 76a adapted to a tool mounting hole 114a formed at the distal end portion of the main shaft 114, and a shaft portion 76 having a circumferentially extending V groove 76b that engages with the exchange arm 132 of the automatic tool changer 130 are proximal side walls. It protrudes outward from 12a.
  • a pneumatic passage 76c is formed in the shaft portion 76.
  • the pneumatic passage 76c is a spindle air conduit 114b that penetrates the main shaft 114 in the axial direction when the shank portion 76a is installed in the tool mounting hole 114a. Communicate with.
  • the pneumatic passage 76c also communicates with an internal pneumatic conduit 52 described later.
  • the shaft portion 76 is provided with a rotation stop member 78 again.
  • the rotation preventing member 78 engages with the receiving member 116 provided on the housing 112 of the spindle device 110 when the workpiece thickness measuring device 10 is attached to the tip end portion of the spindle 114, so that the workpiece thickness measuring device 10. Prevent rotation.
  • the coolant passage 112 a communicates with the coolant passage 72 in the main body 12, and when the shut-off valve 108 a is opened, the cleaning coolant from the coolant source 104 causes the check valve 74. It is pushed open and discharged from the cleaning coolant nozzle 40.
  • the workpiece thickness measuring apparatus 10 also includes a measuring unit 14 and a medium nozzle 38 that protrude outward from the distal end side wall 12b of the main body 12.
  • the workpiece thickness measuring apparatus 10 can further include a cleaning coolant nozzle 40.
  • the measurement unit 14 includes a cylindrical measurement unit main body 16, a slider 18 disposed in the measurement unit main body 16 so as to be slidable in the axial direction, a measuring element 26 provided at the tip of the slider 18, and a rear end of the main body 16.
  • a rear end wall 20 that closes the slider 18 and is disposed between the slider 18 and the rear end wall 20 in the main body 16, and is disposed between the main body 16 and the slider 18 for biasing the slider 18 in the front end direction.
  • An O-ring 24 as a sealed member can be provided.
  • the slider 18 has a cylindrical recess 18a formed at the tip, and the measuring element 26 is disposed in the recess 18a.
  • the probe 26 can be an ultrasonic transducer that transmits and receives ultrasonic waves.
  • a center hole 18b extends from the recess 18a of the slider 18 to the rear end surface.
  • a flange portion 18c is formed at the rear end portion of the slider 18, and the inner peripheral surface of the main body 16 is in contact with the flange portion 18c.
  • a shoulder portion 16a is formed so as to be able to contact.
  • a central hole 20 a is formed in the rear end wall 20.
  • the measuring element 26 is connected to the control unit 30 by a wire 28.
  • the control unit 30 performs arithmetic processing on the signal received from the probe 26 via the wire 28 to calculate the thickness of the workpiece W, the on / off switch 34 of the workpiece thickness measuring apparatus 10, and an external unit.
  • the transmitter / receiver 36 communicates with the transmitter / receiver 80.
  • the control unit 30 can also incorporate a battery 39.
  • the medium nozzle 38 preferably protrudes toward the center from the tip side wall 12b so that the medium can be discharged toward the front of the measuring element 26.
  • the medium nozzle 38 is connected to a cylinder 44 as a fixed amount feeder via a medium discharge pipe 42.
  • the cylinder 44 includes a pneumatic chamber 48, a medium chamber 46, and a double-headed piston 50 that are arranged coaxially.
  • the double-headed piston 50 has a large-diameter first piston portion 50 a disposed in the pneumatic chamber 48 and a small-diameter second piston portion 50 b disposed in the medium chamber 46.
  • the pneumatic chamber 48 is connected to the external pneumatic source 102 via the internal pneumatic pipeline 52, the pneumatic passage 76c, the spindle air pipeline 114b, and the external pneumatic pipeline 106.
  • the internal pneumatic pipeline 52, the pneumatic passage 76c, the spindle air pipeline 114b, and the external pneumatic pipeline 106 form an pneumatic supply passage system.
  • the medium chamber 46 communicates with the medium nozzle 38 via the medium discharge pipe 42.
  • a check valve 56 for blocking the flow from the medium chamber 46 to the medium nozzle 38 is disposed in the medium discharge pipe 42.
  • the check valve 56 is a pilot-operated check valve that is operated by a pilot air pressure supplied by a pilot line 54 branched from the internal pneumatic line 52.
  • the pilot air pressure supplied to the check valve 56 increases, the check valve 56 opens and the medium nozzle 38 communicates with the medium chamber 46 so that the medium can be discharged from the medium nozzle 38.
  • the check valve 56 closes and the flow from the medium chamber 46 toward the medium nozzle 38 is blocked.
  • the medium chamber 46 communicates with a medium tank 58 serving as a medium supply source via a medium supply pipe 68.
  • a gel-like contact medium is stored in the medium tank.
  • the gel-like contact medium can be various gel-like substances. Preferably, as shown in FIG. 1, a substance having an appropriate viscosity that does not immediately flow down when applied to the vertical surface of the workpiece W. For example, grease can be used.
  • the medium supply pipe 68 is provided with a check valve 70 that blocks the flow of the medium from the medium tank 58 to the medium chamber 46.
  • a piston 60 and a spring 62 that urges the piston 60 in a direction to push out the medium in the medium tank 58 are disposed in the medium tank 58.
  • the medium tank 58 is connected to the nipple 66 through the medium replenishment conduit 64.
  • the nipple 66 is a joint that prevents leakage of the medium from the medium tank 58.
  • the operator can replenish the medium to the medium tank 58 from the outside using the injector through the nipple 66.
  • the medium replenishment pipe line 64 opens in the vicinity of the bottom wall of the medium tank 58 to which the medium supply pipe line 68 is connected.
  • the workpiece thickness measuring device 10 is attached to the tip of the main spindle 114 (step S10). This can be done by the automatic tool changer 130 under the control of the controller 140.
  • the workpiece thickness measuring apparatus 10 may be attached to the tip end of the main spindle 114 by an operator. Subsequently, the operator operates the on / off switch 34 provided in the main body of the workpiece thickness measuring apparatus 10 by manual operation, thereby turning on the power of the workpiece thickness measuring apparatus 10 (step S12).
  • a power-on command from the control device 140 may be transmitted from the transmission / reception device 80 to the control unit 30 to turn on the on / off switch 34.
  • the control device 140 of the machine tool 100 determines whether or not a predetermined amount or more of the medium is stored in the medium tank 58, and when the medium in the medium tank 58 is less than the predetermined amount, A warning that the medium should be replenished is displayed on the display 142 on the operation panel (in the case of Yes in step S14).
  • the control device 140 feeds the machine tool 100.
  • the workpiece thickness measuring apparatus 10 is moved to the measurement site of the workpiece W using the apparatus (step S18).
  • the shutoff valve 108a of the coolant conduit 108 is opened for a predetermined time, cleaning coolant is injected from the coolant source 104 toward the work W from the cleaning coolant nozzle 40, and the measurement site is cleaned (step S20).
  • the shutoff valve 106a of the external pneumatic pipe line 106 is opened, and air pressure is applied from the air pressure source 102 to the air pressure chamber 48 of the cylinder 44 through the air pressure supply passage system. At this time, the air pressure is applied to the pilot actuated check valve 56 via the pilot conduit 54, and the check valve 56 is opened.
  • the piston 50 is driven by the air pressure in the air pressure chamber 48, and the contact medium in the medium chamber 46 is discharged from the medium nozzle 38 through the medium discharge line 42. While the piston 50 is driven, the air in the pneumatic chamber 48 is exhausted to the outside through the exhaust pipe 47. The piston 50 is driven to the stroke end by the air pressure in the air pressure chamber 48, and the contact medium having a volume corresponding to the volume determined by the area and stroke of the small-diameter second piston portion 50 b of the piston 50 is once. And is applied to the surface of the measurement site of the workpiece W (step S22). At this time, the controller 140 counts how many times the current contact medium discharge is the discharge after the contact medium is replenished to the medium tank 58, and stores it.
  • the control device 140 moves the shut-off valve 106a of the external pneumatic pipe line 106 to the first position, the pneumatic chamber 48 communicates with the outside air through the pneumatic supply system and the shut-off valve 106a. Air pressure is exhausted from the shutoff valve 106a through the air pressure supply passage system. At that time, the pressure in the pilot line 54 decreases and the check valve 56 closes. Further, the contact medium stored in the medium tank 58 is introduced into the medium chamber 46 of the cylinder 44 through the medium supply pipe 68 by the pressure of the medium tank 58.
  • the workpiece thickness measuring device 10 is brought close to the workpiece W together with the spindle device 110 by the Z-axis feeding device of the machine tool 100, and the measuring element 26 contacts the surface of the measurement site of the workpiece W (step S24).
  • ultrasonic waves are transmitted from the probe 26 and the reflected waves are detected by the probe 26.
  • the ultrasonic wave has a property of being reflected at the boundary surface between the objects, and in this case, it is reflected at the boundary surface between the workpiece W and the scale 126, that is, the workpiece mounting surface 126a.
  • the calculation unit 32 calculates the thickness of the work W by calculation from the time from transmission to reception of the ultrasonic wave.
  • the measurement result obtained in this manner is transmitted to the control device 140 through the transmission / reception unit 36 and the transmission / reception device 80 and stored in a predetermined memory area of the control device 140.
  • the measurement result may be displayed on the display 142 (step S28).
  • control device 140 calculates and stores the amount of the contact medium remaining in the medium tank 58 from the stored count value (step S30).
  • the control device 140 determines whether or not all the measurement sites of the workpiece W have been completed from the measurement program. When the next measurement site remains (Yes in step S32), the control device 140 executes the measurement process from step S14 again.
  • the operator operates the on / off switch 34 to turn off the power of the workpiece thickness measuring apparatus 10 (step S34).
  • a power-off command from the control device 140 may be transmitted from the transmission / reception device 80 to the control unit 30 to turn off the on / off switch 34.
  • the workpiece thickness measuring device 10 is removed from the tip end portion of the spindle 114 by the automatic tool changer 130 (step S36), and the workpiece W thickness measuring process is completed.
  • the workpiece thickness measuring apparatus 10 may be removed from the tip end of the main spindle 114 by an operator.
  • the workpiece thickness measuring apparatus 10 has the shank portion 76a that is adapted to the tool mounting hole 114a at the tip end portion of the main spindle 114, so that it can be easily mounted on various machine tools. It is.
  • a predetermined amount of the contact medium is discharged from the medium nozzle 38 toward the workpiece W by using the spindle air of the machine tool 100 by the metering feeder.
  • the workpiece thickness measuring apparatus 10 can be attached to and detached from the tip end portion of the spindle 114 by the automatic tool changer 130, from cleaning the surface of the workpiece W to discharging the contact medium and measuring the thickness of the workpiece W. It can be programmed and automated.
  • the four-axis machine tool of the X axis, the Y axis, and the Z axis linearly moving three axes and the B axis rotating one axis has been described.
  • the present invention can also be applied to a 5-axis machine tool having another rotary feed shaft. Further, the present invention can be applied to a vertical machine tool and a horizontal machine tool.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

This workpiece thickness measuring device (10), which contacts the surface of a workpiece (W) on a machine of a machine tool (100) and measures the thickness of the workpiece from the time difference between the transmission and receipt of an ultrasonic wave, is provided with: a main body (12) having a shank part (76a) which is detachably provided on the tip portion of a main shaft (114); a measuring probe (26) provided in the main body so as to be able to contact the surface of the workpiece; a control unit (30) which is provided to the main body, transmits and receives an ultrasonic wave by means of the measuring probe, obtains the thickness of the workpiece by calculation from the time difference between the transmission and receipt of the ultrasonic wave, and wirelessly transmits the measurement data to the outside; a medium tank (58) which is provided in the main body and stores a gel-like contact medium that is applied between the measuring probe and the workpiece surface; and a constant amount supply unit (44) which discharges a constant amount of contact media onto the workpiece surface by using the pneumatic pressure received from a spindle air passage (114a) of the machine tool.

Description

ワーク厚さ測定装置および工作機械Work thickness measuring device and machine tool
 本発明は、工作機械の機上にてワークの厚さを測定する超音波式のワーク厚さ測定装置および該ワーク厚さ測定装置を備えた工作機械に関する。 The present invention relates to an ultrasonic workpiece thickness measuring device that measures the thickness of a workpiece on the machine tool, and a machine tool including the workpiece thickness measuring device.
 特許文献1には、工作機械の主軸に取付けられるテーパーシャンクと、このテーパーシャンクに設けられ、その先端の超音波プローブをワークの表面に接触させながら超音波を発信し、その反響音波を検知してワークの厚さを計測し、その計測データを制御部に無線送信する超音波板厚計測部とを具備し、主軸に設けられた主軸噴射ノズルと、超音波板厚計測装置に設けられた測定噴射ノズルとからクーラントを噴射して、厚さ計測時に超音波プローブとワークの表面との間における接触状態を向上させた超音波板厚計測装置が開示されている。 In Patent Document 1, a taper shank attached to a spindle of a machine tool, and an ultrasonic wave that is provided on the taper shank while contacting the ultrasonic probe at the tip thereof to the surface of the workpiece, and the echo is detected. An ultrasonic plate thickness measurement unit that measures the thickness of the workpiece and wirelessly transmits the measurement data to the control unit, and is provided in the spindle injection nozzle provided on the spindle and the ultrasonic plate thickness measurement device. An ultrasonic plate thickness measuring apparatus is disclosed in which coolant is injected from a measurement injection nozzle to improve the contact state between the ultrasonic probe and the surface of the workpiece during thickness measurement.
WO2016/056499WO2016 / 056499
 特許文献1の超音波板厚計測装置では、接触媒質としてワークを切削加工する際に供給されるクーラントを用いているが、通常クーラントは粘性が低いので、ワークの測定部位の表面が傾斜面や鉛直面である場合に、ワークの表面に適用されたクーラントが沿って流下して、超音波によるワーク厚さ測定に必要な量のクーラントがワークの表面に残留できない問題がある。 In the ultrasonic plate thickness measuring apparatus of Patent Document 1, a coolant supplied when cutting a workpiece as a contact medium is used. However, since the coolant is usually low in viscosity, the surface of the workpiece measurement site is an inclined surface or In the case of a vertical surface, there is a problem that the coolant applied to the surface of the work flows down, and an amount of coolant necessary for measuring the work thickness by ultrasonic waves cannot remain on the work surface.
 また、特許文献1の超音波板厚計測装置は、主軸を軸方向に貫通させてクーラントを加工領域に供給する、いわゆるスルースピンドル方式のクーラント供給装置を備えた工作機械にのみ適用可能であって、その汎用性が低い問題がある。 Further, the ultrasonic plate thickness measuring device of Patent Document 1 is applicable only to a machine tool having a so-called through-spindle type coolant supply device that feeds coolant to a machining region by penetrating the main shaft in the axial direction. There is a problem that its versatility is low.
 本発明は、こうした従来技術の問題を解決することを技術課題としており、ワークの測定部位の表面に粘性の比較的高いゲル状の接触媒質を塗布することができ、また、既存の工作機械に容易に適用可能なワーク厚さ測定装置および該ワーク厚さ測定装置を備えた工作機械を提供することを目的としている。 The present invention has a technical problem to solve such problems of the prior art, and a gel-like contact medium having a relatively high viscosity can be applied to the surface of the workpiece measurement site. It is an object of the present invention to provide a workpiece thickness measuring device that can be easily applied and a machine tool including the workpiece thickness measuring device.
 上述の目的を達成するために、本発明によれば、主軸とワークとを相対移動させる少なくともX軸、Y軸、Z軸の直交3軸の送り装置を備えた工作機械において、空圧源と、前記空圧源に連通し、前記主軸を貫通して延びるスピンドルエア管路と、前記主軸の工具装着部に着脱可能なワーク厚さ測定装置とを具備し、
 前記ワーク厚さ測定装置が、前記主軸の先端部に装着したときに、該主軸に対面する基端側壁および該基端側壁の反対側に設けられワークに対面可能な先端側壁を有した測定装置本体と、前記基端側壁から突出し、前記主軸の先端部に着脱可能なシャンク部と、ワークの表面に接触可能に前記測定装置本体の先端側壁に設けられ超音波を送受信する測定子と、前記測定装置本体に設けられ、前記ワークの表面に前記測定子を接触させた状態で前記測定子によって超音波を送受信し、超音波の送信時と受信時の時間差から前記ワークの厚さを演算により求め、測定データを外部に無線送信する制御部と、前記測定装置本体に設けられ、前記測定子とワーク表面との間に塗布するゲル状の接触媒質を貯留する媒質タンクと、前記測定装置本体が前記主軸に装着されている間、前記スピンドルエア管路から受け入れた空圧を利用して、一定量の接触媒質をワーク表面に吐出する定量供給器とを具備する工作機械が提供される。
In order to achieve the above-described object, according to the present invention, in a machine tool provided with at least an X-axis, a Y-axis, and a Z-axis orthogonal feed device for moving a spindle and a workpiece relatively, A spindle air conduit that communicates with the pneumatic source and extends through the spindle, and a workpiece thickness measuring device that is attachable to and detachable from a tool mounting portion of the spindle,
When the workpiece thickness measuring device is attached to the distal end portion of the main shaft, the measuring device has a base end side wall facing the main shaft and a front end side wall provided on the opposite side of the base end side wall and capable of facing the workpiece. A main body, a shank projecting from the base end side wall and detachable from the front end of the main shaft, a measuring element provided on the front end side wall of the measuring apparatus main body so as to be able to come into contact with the surface of the workpiece, Provided in the measuring device body, ultrasonic waves are transmitted and received by the measuring element in a state where the measuring element is in contact with the surface of the workpiece, and the thickness of the workpiece is calculated from a time difference between transmission and reception of the ultrasonic wave. A control unit that wirelessly transmits measurement data to the outside; a medium tank that is provided in the measurement apparatus main body and stores a gel-like contact medium applied between the probe and the work surface; and the measurement apparatus main body Before While being attached to the spindle, by using the air pressure received from the spindle air pipeline, the machine tool comprising a metering device for discharging a certain amount of couplant to the work surface is provided.
 更に、本発明によれば、主軸とワークとを相対移動させる少なくともX軸、Y軸、Z軸の直交3軸の送り装置を備えた工作機械の機上でワーク表面に接触し、超音波の送信時と受信時の時間差からワークの厚さを測定するワーク厚さ測定装置において、前記主軸の先端部に装着したときに、該主軸に対面する基端側壁および該基端側壁の反対側に設けられワークに対面可能な先端側壁を有した測定装置本体と、前記基端側壁から突出し、前記主軸の先端部に着脱可能なシャンク部と、ワークの表面に接触可能に前記測定装置本体の先端側壁に設けられ超音波を送受信する測定子と、前記測定装置本体に設けられ、前記ワークの表面に前記測定子を接触させた状態で前記測定子によって超音波を送受信し、超音波の送信時と受信時の時間差から前記ワークの厚さを演算により求め、測定データを外部に無線送信する制御部と、前記測定装置本体に設けられ、前記測定子とワーク表面との間に塗布するゲル状の接触媒質を貯留する媒質タンクと、前記測定装置本体が前記主軸に装着されている間、前記工作機械の空圧源に連通し前記主軸を貫通して延びるスピンドルエア管路から受け入れた空圧を利用して、一定量の接触媒質をワーク表面に吐出する定量供給器とを具備するワーク厚さ測定装置が提供される。 Furthermore, according to the present invention, the surface of the work is brought into contact with the surface of the work tool on a machine tool equipped with a feed device of at least three axes orthogonal to the X axis, the Y axis, and the Z axis for moving the main shaft and the work relatively. In a workpiece thickness measuring device that measures the thickness of a workpiece from the time difference between transmission and reception, when mounted on the distal end portion of the main shaft, the base end side wall facing the main shaft and the opposite side of the base end side wall A measuring apparatus main body having a distal end side wall which is provided and can face the workpiece; a shank projecting from the proximal end side wall and detachable from the distal end of the main shaft; and a distal end of the measuring apparatus main body capable of contacting the surface of the workpiece A measuring element provided on the side wall for transmitting and receiving ultrasonic waves and an ultrasonic wave transmitted and received by the measuring element provided in the measuring device main body and in contact with the measuring element in contact with the surface of the workpiece. And the time difference at the time of reception The thickness of the workpiece is obtained by calculation, and a control unit that wirelessly transmits measurement data to the outside and a gel-like contact medium that is provided between the measuring element and the workpiece surface are provided in the measurement apparatus main body. While the medium tank and the measuring device main body are mounted on the main shaft, the air pressure received from the spindle air line extending through the main shaft and communicating with the air pressure source of the machine tool is constant. There is provided a workpiece thickness measuring device including a quantitative feeder for discharging an amount of a contact medium onto a workpiece surface.
 本発明によれば、定量供給器によって、工作機械のスピンドルエアを利用して所定量のゲル状の接触媒質がワークへ向けて吐出され、確実に測定部位に塗布される。更に、本発明によれば、ワーク厚さ測定装置が、主軸の先端部に装着可能なシャンク部を有しているので、容易に種々の工作機械に、また既存の工作機械に装着することが可能である。 According to the present invention, a predetermined amount of the gel-like contact medium is discharged toward the workpiece by the quantitative feeder using the spindle air of the machine tool and reliably applied to the measurement site. Furthermore, according to the present invention, since the workpiece thickness measuring device has a shank portion that can be attached to the tip end portion of the spindle, it can be easily attached to various machine tools and existing machine tools. Is possible.
本発明による工作機械の一例を示す略図である。1 is a schematic view showing an example of a machine tool according to the present invention. 本発明の好ましい実施形態によるワーク厚さ測定装置の略図である。1 is a schematic diagram of a workpiece thickness measuring device according to a preferred embodiment of the present invention. 本発明のワーク厚さ測定装置を用いたワークの厚さ測定方法を説明するフローチャートである。It is a flowchart explaining the thickness measuring method of the workpiece | work using the workpiece | work thickness measuring apparatus of this invention.
 以下、添付図面を参照して本発明の好ましい実施形態を説明する。
 図1は、本発明の好ましい実施形態による工作機械の略図である。工作機械100は、主軸114および該主軸114を回転軸線Oを中心として回転可能に支持するハウジング112を有した主軸装置110と、主軸装置110の前方で、ベッドの案内面120に沿って、Z軸方向(図1では左右方向)に往復動可能に設けられたテーブル122とを具備している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view of a machine tool according to a preferred embodiment of the present invention. The machine tool 100 includes a spindle device 110 having a spindle 114 and a housing 112 that rotatably supports the spindle 114 about the rotation axis O, and a Z axis in front of the spindle device 110 along the guide surface 120 of the bed. And a table 122 provided so as to be capable of reciprocating in the axial direction (left-right direction in FIG. 1).
 工作機械100は、更に、主軸装置110をX軸方向(図1の紙面に垂直な方向)およびY軸方向(図1では上下方向)に送るためのX軸送り装置(図示せず)およびY軸送り装置(図示せず)、並びに、テーブル122を回転主軸Oに対して平行なZ軸方向に送るためのZ軸送り装置(図示せず)を具備している。X軸送り装置、Y軸送り装置、および、Z軸送り装置は、X軸、Y軸およびZ軸方向に延設されたボールねじ(図示せず)、および、X軸、Y軸およびZ軸の各ボールねじを駆動するサーボモータ(図示せず)を具備することができる。 The machine tool 100 further includes an X-axis feeding device (not shown) and Y for feeding the spindle device 110 in the X-axis direction (direction perpendicular to the paper surface of FIG. 1) and the Y-axis direction (vertical direction in FIG. 1). An axis feeding device (not shown) and a Z-axis feeding device (not shown) for feeding the table 122 in the Z-axis direction parallel to the rotation spindle O are provided. The X-axis feeding device, the Y-axis feeding device, and the Z-axis feeding device are a ball screw (not shown) extending in the X-axis, Y-axis, and Z-axis directions, and the X-axis, Y-axis, and Z-axis. Servo motors (not shown) for driving the respective ball screws can be provided.
 本実施形態では、テーブル122の上面には、Y軸に平行な軸線を中心としてB軸方向に回転送り可能な回転テーブル124が設けられている。加工すべきワークWは、回転テーブル124の上面に取付けられたイケール126を介して主軸114の先端に対面するように固定される。本実施形態において、イケール126は両面イケールであって、ワークWを取付けるワーク取付面126a、126bを有している。 In this embodiment, on the upper surface of the table 122, there is provided a rotary table 124 that can be rotated and fed in the B-axis direction about an axis parallel to the Y-axis. The workpiece W to be processed is fixed so as to face the tip of the main shaft 114 via an scale 126 attached to the upper surface of the rotary table 124. In the present embodiment, the scale 126 is a double-sided scale, and has workpiece mounting surfaces 126a and 126b to which the workpiece W is attached.
 X軸、Y軸およびZ軸の各送り装置を駆動するサーボモータおよび回転テーブル124をB軸方向に駆動するサーボモータ(図示せず)は、工作機械100の制御装置(NC装置)140に接続されており、該制御装置140によって、X軸、Y軸、Z軸およびB軸の各サーボモータが制御される。制御装置140は、工作機械100の操作盤内に収納することができ、該操作盤には、工作機械100の動作状況、制御装置140に送出される加工プログラム、工作機械100を操作するための各種パラメータをオペレータが入力する入力画面を表示するディスプレイ142を有している。 A servo motor that drives the X-axis, Y-axis, and Z-axis feeding devices and a servo motor (not shown) that drives the rotary table 124 in the B-axis direction are connected to a control device (NC device) 140 of the machine tool 100. The control device 140 controls the X-axis, Y-axis, Z-axis, and B-axis servomotors. The control device 140 can be housed in the operation panel of the machine tool 100. The operation panel includes an operation status of the machine tool 100, a machining program sent to the control device 140, and a machine tool 100 for operating the machine tool 100. The display 142 displays an input screen for inputting various parameters by an operator.
 主軸114の先端部には工具(図示せず)を取付けるための工具取付穴114aが形成されており、該工具取付穴114aに工具を装着した工具ホルダ(図示せず)のシャンク部を導入することによって、工具が主軸114の先端に取付けられる。工具を主軸114の先端部に着脱するために、例えば自動工具交換装置130を用いることができる。自動工具交換装置130もまた制御装置140によって制御することができる。 A tool mounting hole 114a for mounting a tool (not shown) is formed at the tip of the main spindle 114, and a shank portion of a tool holder (not shown) in which the tool is mounted is introduced into the tool mounting hole 114a. Thus, the tool is attached to the tip end of the main spindle 114. For example, an automatic tool changer 130 can be used to attach / detach the tool to / from the tip of the main spindle 114. The automatic tool changer 130 can also be controlled by the controller 140.
 主軸114は、また軸線Oに沿って延びるスピンドルエア管路114bを備えることができる。スピンドルエア管路114bは、外部空圧管路106を介して空圧源102に接続されている。外部空圧管路106には、空圧制御弁としてソレノイド式の遮断弁106aが配設されている。 The main shaft 114 may also include a spindle air conduit 114b extending along the axis O. The spindle air conduit 114 b is connected to the pneumatic source 102 via the external pneumatic conduit 106. A solenoid-type shut-off valve 106a is disposed in the external pneumatic conduit 106 as a pneumatic control valve.
 遮断弁106aは、スピンドルエア管路114bが空圧源102から遮断されるとともに外気に解放される第1の位置(図2参照)と、スピンドルエア管路114bが空圧源102に連通する第2の位置との間で動作可能となっている。遮断弁106aには、第1の位置において、スピンドルエア管路114bからの排気騒音を低減するマフラ106bを配設することができる。遮断弁106aのソレノイドは制御装置140に接続されており、該制御装置140によって遮断弁106aの動作が制御される。 The shut-off valve 106a has a first position (see FIG. 2) where the spindle air conduit 114b is shut off from the air pressure source 102 and released to the outside air, and a first position where the spindle air conduit 114b communicates with the air pressure source 102. It is possible to operate between the two positions. The shutoff valve 106a can be provided with a muffler 106b that reduces exhaust noise from the spindle air conduit 114b at the first position. The solenoid of the shutoff valve 106a is connected to the control device 140, and the control device 140 controls the operation of the shutoff valve 106a.
 空圧源102は、工作機械100が設置される工場のサービスエアとすることができる。しかしながら、空圧源102は、例えばサービスエアとは別設されたコンプレッサ(図示せず)およびタンク(図示せず)、更にはドライヤ(図示せず)等を備えた空圧源としてもよい。 The pneumatic source 102 can be service air of a factory where the machine tool 100 is installed. However, the air pressure source 102 may be an air pressure source including, for example, a compressor (not shown) and a tank (not shown) provided separately from the service air, and a dryer (not shown).
 主軸装置110のハウジング112にはクーラント通路112aが形成されており、該クーラント通路112aは、クーラント管路108を介して外部のクーラント源104に接続されている。クーラント通路112aは、ハウジング112の端部に設けられた受け部材116を貫通して延びている。クーラント通路112aは、好ましくは、ハウジング112の側壁を貫通させて形成されるが、ハウジング112の内部または外部に延設された管路またはホースによって形成してもよい。 A coolant passage 112 a is formed in the housing 112 of the spindle device 110, and the coolant passage 112 a is connected to an external coolant source 104 via a coolant conduit 108. The coolant passage 112 a extends through the receiving member 116 provided at the end of the housing 112. The coolant passage 112 a is preferably formed through the side wall of the housing 112, but may be formed by a pipe line or a hose extending inside or outside the housing 112.
 クーラント源104は、例えばクーラントを貯留するタンク(図示せず)と、該タンクからクーラント管路108へクーラントを送り出すポンプ(図示せず)とを具備することができる。クーラント管路108には、クーラント制御弁としてソレノイド式の遮断弁108aが配設されている。遮断弁108aは、クーラント通路112aをクーラント源104から遮断する第1の位置(図2参照)と、クーラント通路112aをクーラント源104に連通させる第2の位置との間で動作可能となっている。遮断弁108aのソレノイドは制御装置140に接続されており、該制御装置140によって遮断弁108aの動作が制御される。 The coolant source 104 can include, for example, a tank (not shown) that stores coolant and a pump (not shown) that sends coolant from the tank to the coolant conduit 108. In the coolant pipe line 108, a solenoid type shut-off valve 108a is disposed as a coolant control valve. The shutoff valve 108a is operable between a first position (see FIG. 2) where the coolant passage 112a is shut off from the coolant source 104 and a second position where the coolant passage 112a communicates with the coolant source 104. . The solenoid of the shutoff valve 108a is connected to the control device 140, and the control device 140 controls the operation of the shutoff valve 108a.
 主軸装置110のハウジング112には、また、後述するワーク厚さ測定装置10の送受信部36と通信する送受信装置80を取付けることができる。送受信装置80は制御装置140に接続されている。更に、ハウジング112には、後述する、受け部材116が取付けられている。 A transmission / reception device 80 that communicates with a transmission / reception unit 36 of the workpiece thickness measurement device 10 to be described later can be attached to the housing 112 of the spindle device 110. The transmission / reception device 80 is connected to the control device 140. Further, a receiving member 116 described later is attached to the housing 112.
 本実施形態において、ワーク厚さ測定装置10は主軸114の先端部に装着される。ワーク厚さ測定装置10は中空状の本体12を具備し、該本体12は、主軸114の先端部に装着したときに主軸114に対面する基端側壁12aと、ワークWに対面する先端側壁12bとを有している。主軸114の先端部に形成された工具取付穴114aに適合したシャンク部76a、自動工具交換装置130の交換アーム132に係合する周方向に延びるV溝76bを有した軸部76が基端側壁12aから外方に突出している。 In this embodiment, the workpiece thickness measuring device 10 is attached to the tip of the main spindle 114. The workpiece thickness measuring device 10 includes a hollow main body 12, and the main body 12 has a base end side wall 12 a that faces the main shaft 114 and a front end side wall 12 b that faces the work W when mounted on the front end portion of the main shaft 114. And have. A shank portion 76a adapted to a tool mounting hole 114a formed at the distal end portion of the main shaft 114, and a shaft portion 76 having a circumferentially extending V groove 76b that engages with the exchange arm 132 of the automatic tool changer 130 are proximal side walls. It protrudes outward from 12a.
 軸部76には空圧通路76cが形成されており、該空圧通路76cは、シャンク部76aが工具取付穴114aに装着されたときに、主軸114を軸方向に貫通するスピンドルエア管路114bに連通する。空圧通路76cは、また、後述する内部空圧管路52に連通している。 A pneumatic passage 76c is formed in the shaft portion 76. The pneumatic passage 76c is a spindle air conduit 114b that penetrates the main shaft 114 in the axial direction when the shank portion 76a is installed in the tool mounting hole 114a. Communicate with. The pneumatic passage 76c also communicates with an internal pneumatic conduit 52 described later.
 軸部76には、また回転止め部材78が設けられている。回転止め部材78は、ワーク厚さ測定装置10を主軸114の先端部に装着したときに、主軸装置110のハウジング112に設けられた受け部材116に係合して、ワーク厚さ測定装置10の回転を防止する。回転止め部材78が受け部材116と係合すると、クーラント通路112aと本体12内のクーラント通路72とが連通し、遮断弁108aが開放されたとき、クーラント源104からクリーニングクーラントが逆止弁74を押し開けてクリーニングクーラントノズル40から吐出される。 The shaft portion 76 is provided with a rotation stop member 78 again. The rotation preventing member 78 engages with the receiving member 116 provided on the housing 112 of the spindle device 110 when the workpiece thickness measuring device 10 is attached to the tip end portion of the spindle 114, so that the workpiece thickness measuring device 10. Prevent rotation. When the rotation preventing member 78 is engaged with the receiving member 116, the coolant passage 112 a communicates with the coolant passage 72 in the main body 12, and when the shut-off valve 108 a is opened, the cleaning coolant from the coolant source 104 causes the check valve 74. It is pushed open and discharged from the cleaning coolant nozzle 40.
 ワーク厚さ測定装置10は、また本体12の先端側壁12bから外方に突出する測定部14、媒質ノズル38を具備している。ワーク厚さ測定装置10は、更にクリーニングクーラントノズル40を具備することができる。測定部14は、筒状の測定部本体16、軸方向に摺動可能に測定部本体16内に配設されたスライダ18、スライダ18の先端に設けられた測定子26、本体16の後端を閉鎖する後端壁20、本体16内においてスライダ18と後端壁20との間に配設され、スライダ18を先端方向に付勢するばね22、本体16とスライダ18との間に配設されたシール部材としてのOリング24を具備することができる。 The workpiece thickness measuring apparatus 10 also includes a measuring unit 14 and a medium nozzle 38 that protrude outward from the distal end side wall 12b of the main body 12. The workpiece thickness measuring apparatus 10 can further include a cleaning coolant nozzle 40. The measurement unit 14 includes a cylindrical measurement unit main body 16, a slider 18 disposed in the measurement unit main body 16 so as to be slidable in the axial direction, a measuring element 26 provided at the tip of the slider 18, and a rear end of the main body 16. A rear end wall 20 that closes the slider 18 and is disposed between the slider 18 and the rear end wall 20 in the main body 16, and is disposed between the main body 16 and the slider 18 for biasing the slider 18 in the front end direction. An O-ring 24 as a sealed member can be provided.
 本実施形態では、スライダ18は、先端部に円筒状の凹所18aが形成されており、該凹所18aに測定子26が配置される。測定子26は、超音波を送受信する超音波トランスデューサとすることができる。スライダ18の凹所18aから後端面に中心穴18bが延設されている。また、スライダ18が本体16の先端から脱落することを防止するために、スライダ18の後端部にはフランジ部18cが形成されており、本体16の内周面には、フランジ部18cに当接可能に肩部16aが形成されている。後端壁20には、中心穴20aが形成されている。 In the present embodiment, the slider 18 has a cylindrical recess 18a formed at the tip, and the measuring element 26 is disposed in the recess 18a. The probe 26 can be an ultrasonic transducer that transmits and receives ultrasonic waves. A center hole 18b extends from the recess 18a of the slider 18 to the rear end surface. Further, in order to prevent the slider 18 from falling off from the front end of the main body 16, a flange portion 18c is formed at the rear end portion of the slider 18, and the inner peripheral surface of the main body 16 is in contact with the flange portion 18c. A shoulder portion 16a is formed so as to be able to contact. A central hole 20 a is formed in the rear end wall 20.
 測定子26は、ワイヤ28により制御部30に接続されている。制御部30は、ワイヤ28を介して測定子26から受信した信号を演算処理して、ワークWの厚さを演算する演算部32、ワーク厚さ測定装置10のオンオフスイッチ34、および、外部の送受信装置80と通信する送受信部36を具備する。制御部30は、また、電池39を内蔵することができる。 The measuring element 26 is connected to the control unit 30 by a wire 28. The control unit 30 performs arithmetic processing on the signal received from the probe 26 via the wire 28 to calculate the thickness of the workpiece W, the on / off switch 34 of the workpiece thickness measuring apparatus 10, and an external unit. The transmitter / receiver 36 communicates with the transmitter / receiver 80. The control unit 30 can also incorporate a battery 39.
 媒質ノズル38は、好ましくは、測定子26の前方へ向けて媒質を吐出可能なように、先端側壁12bから中心へ傾斜させて向けて突出している。媒質ノズル38は、媒質吐出管路42を介して定量供給器としてのシリンダ44に接続されている。シリンダ44は、同軸に配置された空圧室48と、媒質室46と、双頭ピストン50とを備えている。双頭ピストン50は、空圧室48内に配置される大径の第1のピストン部50aと、媒質室46内に配置される小径の第2のピストン部50bとを有している。 The medium nozzle 38 preferably protrudes toward the center from the tip side wall 12b so that the medium can be discharged toward the front of the measuring element 26. The medium nozzle 38 is connected to a cylinder 44 as a fixed amount feeder via a medium discharge pipe 42. The cylinder 44 includes a pneumatic chamber 48, a medium chamber 46, and a double-headed piston 50 that are arranged coaxially. The double-headed piston 50 has a large-diameter first piston portion 50 a disposed in the pneumatic chamber 48 and a small-diameter second piston portion 50 b disposed in the medium chamber 46.
 空圧室48は、内部空圧管路52、空圧通路76c、スピンドルエア管路114bおよび外部空圧管路106を介して外部の空圧源102に接続される。本実施形態では、内部空圧管路52、空圧通路76c、スピンドルエア管路114bおよび外部空圧管路106が空圧供給通路システムを形成している。 The pneumatic chamber 48 is connected to the external pneumatic source 102 via the internal pneumatic pipeline 52, the pneumatic passage 76c, the spindle air pipeline 114b, and the external pneumatic pipeline 106. In this embodiment, the internal pneumatic pipeline 52, the pneumatic passage 76c, the spindle air pipeline 114b, and the external pneumatic pipeline 106 form an pneumatic supply passage system.
 媒質室46は媒質吐出管路42を介して媒質ノズル38に連通している。媒質吐出管路42には、媒質室46から媒質ノズル38へ向かう流れを遮断する逆止弁56が配設されている。逆止弁56は、内部空圧管路52から分岐したパイロット管路54によって供給されるパイロット空圧によって操作されるパイロット操作式の逆止弁である。逆止弁56に供給されるパイロット空圧が高くなると逆止弁56が開き、媒質ノズル38が媒質室46に連通して媒質ノズル38から媒質の吐出が可能となる。パイロット空圧が消失すると逆止弁56が閉じて、媒質室46から媒質ノズル38へ向かう流れが遮断される。 The medium chamber 46 communicates with the medium nozzle 38 via the medium discharge pipe 42. A check valve 56 for blocking the flow from the medium chamber 46 to the medium nozzle 38 is disposed in the medium discharge pipe 42. The check valve 56 is a pilot-operated check valve that is operated by a pilot air pressure supplied by a pilot line 54 branched from the internal pneumatic line 52. When the pilot air pressure supplied to the check valve 56 increases, the check valve 56 opens and the medium nozzle 38 communicates with the medium chamber 46 so that the medium can be discharged from the medium nozzle 38. When the pilot air pressure disappears, the check valve 56 closes and the flow from the medium chamber 46 toward the medium nozzle 38 is blocked.
 媒質室46は、また媒質供給管路68を介して媒質供給源としての媒質タンク58に連通している。媒質タンク内にはゲル状の接触媒質が貯留される。ゲル状の接触媒質は、種々のゲル状物質とすることができるが、好ましくは、図1に示すように、ワークWの鉛直表面に塗布したときに、直ちに流下しない適当な粘度を有した物質、例えばグリースとすることができる。媒質供給管路68には媒質タンク58から媒質室46への媒質の流れを遮断する逆止弁70が配設されている。媒質タンク58内にはピストン60と、媒質タンク58内の媒質を押し出す方向にピストン60を付勢するばね62が配設されている。 The medium chamber 46 communicates with a medium tank 58 serving as a medium supply source via a medium supply pipe 68. A gel-like contact medium is stored in the medium tank. The gel-like contact medium can be various gel-like substances. Preferably, as shown in FIG. 1, a substance having an appropriate viscosity that does not immediately flow down when applied to the vertical surface of the workpiece W. For example, grease can be used. The medium supply pipe 68 is provided with a check valve 70 that blocks the flow of the medium from the medium tank 58 to the medium chamber 46. A piston 60 and a spring 62 that urges the piston 60 in a direction to push out the medium in the medium tank 58 are disposed in the medium tank 58.
 また、媒質タンク58は媒質補充管路64を介してニップル66に接続されている。ニップル66は、媒質タンク58からの媒質の漏洩を防止する接手である。オペレータは、ニップル66を介して注入器を用いて外部から媒質タンク58に媒質を補充することが可能となる。媒質補充管路64は、媒質タンク58において媒質供給管路68が接続されている底壁の近傍に開口している。 Further, the medium tank 58 is connected to the nipple 66 through the medium replenishment conduit 64. The nipple 66 is a joint that prevents leakage of the medium from the medium tank 58. The operator can replenish the medium to the medium tank 58 from the outside using the injector through the nipple 66. The medium replenishment pipe line 64 opens in the vicinity of the bottom wall of the medium tank 58 to which the medium supply pipe line 68 is connected.
 以下、図3を参照して、本実施形態によるワーク厚さ測定装置10の作用を説明する。
 まず、ワーク厚さ測定装置10が主軸114の先端に取付けられる(ステップS10)。これは制御装置140による制御の下で自動工具交換装置130によって行うことができる。ワーク厚さ測定装置10は、オペレータが手操作によって主軸114の先端に取付けてもよい。次いで、オペレータが手操作によって、ワーク厚さ測定装置10の本体に設けられているオンオフスイッチ34を操作することによってワーク厚さ測定装置10の電源がオンされる(ステップS12)。或いは、制御装置140からの電源オン指令を送受信装置80から制御部30に送信して、オンオフスイッチ34をオンさせてもよい。
Hereinafter, the operation of the workpiece thickness measuring apparatus 10 according to the present embodiment will be described with reference to FIG.
First, the workpiece thickness measuring device 10 is attached to the tip of the main spindle 114 (step S10). This can be done by the automatic tool changer 130 under the control of the controller 140. The workpiece thickness measuring apparatus 10 may be attached to the tip end of the main spindle 114 by an operator. Subsequently, the operator operates the on / off switch 34 provided in the main body of the workpiece thickness measuring apparatus 10 by manual operation, thereby turning on the power of the workpiece thickness measuring apparatus 10 (step S12). Alternatively, a power-on command from the control device 140 may be transmitted from the transmission / reception device 80 to the control unit 30 to turn on the on / off switch 34.
 次いで、工作機械100の制御装置140は、媒質タンク58内に所定量以上の媒質が貯留されているか否かを判別し、媒質タンク58内の媒質が所定量より少ない場合に、工作機械100の操作盤上のディスプレイ142に媒質を補充すべき旨の警告を表示する(ステップS14においてYesの場合)。媒質タンク58内に所定量の媒質が貯留されている場合(ステップS14においてNoの場合)、或いは、オペレータが警告に従い媒質を補充する(ステップS16)と、制御装置140は、工作機械100の送り装置を用いてワーク厚さ測定装置10をワークWの測定部位に移動する(ステップS18)。 Next, the control device 140 of the machine tool 100 determines whether or not a predetermined amount or more of the medium is stored in the medium tank 58, and when the medium in the medium tank 58 is less than the predetermined amount, A warning that the medium should be replenished is displayed on the display 142 on the operation panel (in the case of Yes in step S14). When a predetermined amount of medium is stored in the medium tank 58 (in the case of No in step S14), or when the operator replenishes the medium according to a warning (step S16), the control device 140 feeds the machine tool 100. The workpiece thickness measuring apparatus 10 is moved to the measurement site of the workpiece W using the apparatus (step S18).
 次いで、クーラント管路108の遮断弁108aが所定時間開かれて、クーラント源104からクリーニングクーラントがクリーニングクーラントノズル40からワークWへ向けて噴射され、測定部位が清掃される(ステップS20)。次いで、外部空圧管路106の遮断弁106aが開かれ、空圧源102から空圧供給通路システムを介してシリンダ44の空圧室48に空圧が印加される。このとき、パイロット管路54を介して空圧がパイロット作動式の逆止弁56に印加され逆止弁56が開く。 Next, the shutoff valve 108a of the coolant conduit 108 is opened for a predetermined time, cleaning coolant is injected from the coolant source 104 toward the work W from the cleaning coolant nozzle 40, and the measurement site is cleaned (step S20). Next, the shutoff valve 106a of the external pneumatic pipe line 106 is opened, and air pressure is applied from the air pressure source 102 to the air pressure chamber 48 of the cylinder 44 through the air pressure supply passage system. At this time, the air pressure is applied to the pilot actuated check valve 56 via the pilot conduit 54, and the check valve 56 is opened.
 これによって、空圧室48内の空圧によってピストン50が駆動され、媒質室46内の接触媒質が媒質吐出管路42を介して媒質ノズル38から吐出される。ピストン50が駆動される間、空圧室48内の空気は排気管路47を通じて外部へ排気される。ピストン50は、空圧室48内の空圧によってストロークエンドまで駆動され、ピストン50の小径の第2のピストン部50bの面積と行程によって決定される容積に相当する体積の接触媒質が一回量として媒質ノズル38から吐出され、ワークWの測定部位の表面に塗布される(ステップS22)。このとき、制御装置140は、今般の接触媒質吐出が、媒質タンク58に接触媒質を補充した後、何回目の吐出であるかカウントし、それを記憶する。 Thereby, the piston 50 is driven by the air pressure in the air pressure chamber 48, and the contact medium in the medium chamber 46 is discharged from the medium nozzle 38 through the medium discharge line 42. While the piston 50 is driven, the air in the pneumatic chamber 48 is exhausted to the outside through the exhaust pipe 47. The piston 50 is driven to the stroke end by the air pressure in the air pressure chamber 48, and the contact medium having a volume corresponding to the volume determined by the area and stroke of the small-diameter second piston portion 50 b of the piston 50 is once. And is applied to the surface of the measurement site of the workpiece W (step S22). At this time, the controller 140 counts how many times the current contact medium discharge is the discharge after the contact medium is replenished to the medium tank 58, and stores it.
 制御装置140が、外部空圧管路106の遮断弁106aを第1の位置に移動させると、空圧室48が前記空圧供給システムおよび遮断弁106aを通じて外気に連通し、空圧室48内の空圧が空圧供給通路システムを通じて遮断弁106aから排気される。そのとき、パイロット管路54内の圧力が低下して逆止弁56が閉じる。更には、媒質タンク58の圧力によって、媒質タンク58内に貯留されている接触媒質が媒質供給管路68を通じてシリンダ44の媒質室46内に導入される。 When the control device 140 moves the shut-off valve 106a of the external pneumatic pipe line 106 to the first position, the pneumatic chamber 48 communicates with the outside air through the pneumatic supply system and the shut-off valve 106a. Air pressure is exhausted from the shutoff valve 106a through the air pressure supply passage system. At that time, the pressure in the pilot line 54 decreases and the check valve 56 closes. Further, the contact medium stored in the medium tank 58 is introduced into the medium chamber 46 of the cylinder 44 through the medium supply pipe 68 by the pressure of the medium tank 58.
 次いで、工作機械100のZ軸送り装置によって、ワーク厚さ測定装置10を主軸装置110とともにワークWへ向けて接近させ、測定子26がワークWの測定部位の表面に接触する(ステップS24)。次いで、測定子26から超音波が送信され、その反射波が測定子26によって検知される。超音波は物体と物体の境界面で反射する性質があり、この場合は、ワークWとイケール126との境界面、すなわちワーク取付面126aで反射される。演算部32は、超音波の送信から受信までの時間から、ワークWの厚さを演算により求める。こうして得られた測定結果は、送受信部36および送受信装置80を通じて制御装置140に送信され、該制御装置140の所定のメモリ領域に記憶される。測定結果をディスプレイ142に表示するようにしてもよい(ステップS28)。 Next, the workpiece thickness measuring device 10 is brought close to the workpiece W together with the spindle device 110 by the Z-axis feeding device of the machine tool 100, and the measuring element 26 contacts the surface of the measurement site of the workpiece W (step S24). Next, ultrasonic waves are transmitted from the probe 26 and the reflected waves are detected by the probe 26. The ultrasonic wave has a property of being reflected at the boundary surface between the objects, and in this case, it is reflected at the boundary surface between the workpiece W and the scale 126, that is, the workpiece mounting surface 126a. The calculation unit 32 calculates the thickness of the work W by calculation from the time from transmission to reception of the ultrasonic wave. The measurement result obtained in this manner is transmitted to the control device 140 through the transmission / reception unit 36 and the transmission / reception device 80 and stored in a predetermined memory area of the control device 140. The measurement result may be displayed on the display 142 (step S28).
 次いで、制御装置140は、記憶した前記カウント値から媒質タンク58に残っている接触媒質の量を演算により求め記憶する(ステップS30)。制御装置140は、測定プログラムからワークWの全ての測定部位が終了したか否かを判断する。次の測定部位が残っている場合(ステップS32でYesの場合)、制御装置140は、ステップS14からの測定工程を再び実行する。全ての測定部位の測定が終了した場合(ステップS32でNoの場合)、オペレータがオンオフスイッチ34を操作して、ワーク厚さ測定装置10の電源がオフされる(ステップS34)。或いは、制御装置140からの電源オフ指令を送受信装置80から制御部30に送信して、オンオフスイッチ34をオフさせてもよい。次いで、ワーク厚さ測定装置10が、自動工具交換装置130によって主軸114の先端部から取り外され(ステップS36)、ワークWの厚さ測定プロセスが終了する。ワーク厚さ測定装置10は、オペレータが手操作によって主軸114の先端から取り外してもよい。 Next, the control device 140 calculates and stores the amount of the contact medium remaining in the medium tank 58 from the stored count value (step S30). The control device 140 determines whether or not all the measurement sites of the workpiece W have been completed from the measurement program. When the next measurement site remains (Yes in step S32), the control device 140 executes the measurement process from step S14 again. When the measurement of all measurement parts is completed (No in step S32), the operator operates the on / off switch 34 to turn off the power of the workpiece thickness measuring apparatus 10 (step S34). Alternatively, a power-off command from the control device 140 may be transmitted from the transmission / reception device 80 to the control unit 30 to turn off the on / off switch 34. Next, the workpiece thickness measuring device 10 is removed from the tip end portion of the spindle 114 by the automatic tool changer 130 (step S36), and the workpiece W thickness measuring process is completed. The workpiece thickness measuring apparatus 10 may be removed from the tip end of the main spindle 114 by an operator.
 本実施形態によれば、ワーク厚さ測定装置10は、主軸114の先端部の工具取付穴114aに適合したシャンク部76aを有しているので、容易に種々の工作機械に装着することが可能である。 According to the present embodiment, the workpiece thickness measuring apparatus 10 has the shank portion 76a that is adapted to the tool mounting hole 114a at the tip end portion of the main spindle 114, so that it can be easily mounted on various machine tools. It is.
 更に、本発明によれば、定量供給器によって、工作機械100のスピンドルエアを利用して所定量の接触媒質が媒質ノズル38からワークWへ向けて吐出される。また、ワーク厚さ測定装置10は、自動工具交換装置130によって、主軸114の先端部に着脱することができるので、ワークWの表面の清掃から接触媒質の吐出、ワークWの厚さの測定までプログラム化して自動化することが可能となる。 Furthermore, according to the present invention, a predetermined amount of the contact medium is discharged from the medium nozzle 38 toward the workpiece W by using the spindle air of the machine tool 100 by the metering feeder. Further, since the workpiece thickness measuring apparatus 10 can be attached to and detached from the tip end portion of the spindle 114 by the automatic tool changer 130, from cleaning the surface of the workpiece W to discharging the contact medium and measuring the thickness of the workpiece W. It can be programmed and automated.
 本実施の形態では、X軸、Y軸、Z軸の直動3軸と、B軸の回転1軸の4軸工作機械について述べたが、直動3軸だけの工作機械でも、或いは、更にもう1軸の回転送り軸を持った5軸工作機械等でも本発明は適用可能である。また、本発明は、立形工作機械にも横形工作機械にも適用可能である。 In the present embodiment, the four-axis machine tool of the X axis, the Y axis, and the Z axis linearly moving three axes and the B axis rotating one axis has been described. The present invention can also be applied to a 5-axis machine tool having another rotary feed shaft. Further, the present invention can be applied to a vertical machine tool and a horizontal machine tool.
 10  測定装置
 12  本体
 12a  基端側壁
 12b  先端側壁
 26  測定子
 30  制御部
 32  演算部
 36  送受信部
 38  媒質ノズル
 40  クリーニングクーラントノズル
 44  シリンダ
 58  媒質タンク
 76a  シャンク部
 76b  V溝
 80  送受信装置
 100  工作機械
 114  主軸
 114b  スピンドルエア管路
 140  制御装置(NC装置)
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 12 Main body 12a Base end side wall 12b Front end side wall 26 Measuring element 30 Control part 32 Calculation part 36 Transmission / reception part 38 Medium nozzle 40 Cleaning coolant nozzle 44 Cylinder 58 Medium tank 76a Shank part 76b V groove 80 Transmission / reception apparatus 100 Machine tool 114 Spindle 114b Spindle air pipe 140 Control device (NC device)

Claims (6)

  1.  主軸とワークとを相対移動させる少なくともX軸、Y軸、Z軸の直交3軸の送り装置を備えた工作機械において、
     空圧源と、
     前記空圧源に連通し、前記主軸を貫通して延びるスピンドルエア管路と、
     前記主軸の工具装着部に着脱可能なワーク厚さ測定装置と、
     を具備し、前記ワーク厚さ測定装置が、
     前記主軸の先端部に装着したときに、該主軸に対面する基端側壁および該基端側壁の反対側に設けられワークに対面可能な先端側壁を有した測定装置本体と、
     前記基端側壁から突出し、前記主軸の先端部に着脱可能なシャンク部と、
     ワークの表面に接触可能に前記測定装置本体の先端側壁に設けられ超音波を送受信する測定子と、
     前記測定装置本体に設けられ、前記ワークの表面に前記測定子を接触させた状態で前記測定子によって超音波を送受信し、超音波の送信時と受信時の時間差から前記ワークの厚さを演算により求め、測定データを外部に無線送信する制御部と、
     前記測定装置本体に設けられ、前記測定子とワーク表面との間に塗布するゲル状の接触媒質を貯留する媒質タンクと、
     前記測定装置本体が前記主軸に装着されている間、前記スピンドルエア管路から受け入れた空圧を利用して、一定量の接触媒質をワーク表面に吐出する定量供給器と、
     を具備することを特徴とした工作機械。
    In a machine tool provided with a feed device of at least three axes orthogonal to the X axis, the Y axis, and the Z axis that move the spindle and the workpiece relatively,
    An air pressure source,
    A spindle air line communicating with the pneumatic source and extending through the main shaft;
    A workpiece thickness measuring device detachable from the tool mounting portion of the spindle;
    Comprising the workpiece thickness measuring device,
    A measuring apparatus main body having a base end side wall facing the main shaft and a front end side wall that is provided on the opposite side of the base end side wall and that can face the workpiece when mounted on the front end of the main shaft;
    A shank that protrudes from the proximal side wall and is attachable to and detachable from the distal end of the main shaft;
    A measuring element that is provided on the tip side wall of the measuring apparatus main body so as to be able to contact the surface of the workpiece, and transmits and receives ultrasonic waves;
    Provided in the measuring device main body, the ultrasonic wave is transmitted and received by the measuring element in a state where the measuring element is in contact with the surface of the workpiece, and the thickness of the workpiece is calculated from a time difference between transmission and reception of the ultrasonic wave. And a control unit that wirelessly transmits measurement data to the outside,
    A medium tank that is provided in the measuring device main body and stores a gel-like contact medium applied between the measuring element and the workpiece surface;
    While the measuring device main body is mounted on the main shaft, using a pneumatic pressure received from the spindle air pipe, a fixed amount feeder for discharging a certain amount of contact medium to the work surface;
    A machine tool characterized by comprising:
  2.  前記シャンク部は、前記基端側壁から突出した軸部の先端に形成されており、該軸部は、前記シャンク部と前記基端側壁との間に周方向に延びるV溝が形成されており、
     前記工作機械は、更に前記V溝に係合可能なアームを有した自動工具交換装置を具備し、該自動工具交換装置によって、前記ワーク厚さ測定装置を前記主軸の先端部に着脱可能にした請求項1に記載の工作機械。
    The shank portion is formed at a distal end of a shaft portion protruding from the base end side wall, and the shaft portion is formed with a V-groove extending in the circumferential direction between the shank portion and the base end side wall. ,
    The machine tool further includes an automatic tool changer having an arm engageable with the V-groove, and the automatic tool changer enables the workpiece thickness measuring device to be attached to and detached from the tip end portion of the spindle. The machine tool according to claim 1.
  3.  主軸とワークとを相対移動させる少なくともX軸、Y軸、Z軸の直交3軸の送り装置を備えた工作機械の機上でワーク表面に接触し、超音波の送信時と受信時の時間差からワークの厚さを測定するワーク厚さ測定装置において、
     前記主軸の先端部に装着したときに、該主軸に対面する基端側壁および該基端側壁の反対側に設けられワークに対面可能な先端側壁を有した測定装置本体と、
     前記基端側壁から突出し、前記主軸の先端部に着脱可能なシャンク部と、
     ワークの表面に接触可能に前記測定装置本体の先端側壁に設けられ超音波を送受信する測定子と、
     前記測定装置本体に設けられ、前記ワークの表面に前記測定子を接触させた状態で前記測定子によって超音波を送受信し、超音波の送信時と受信時の時間差から前記ワークの厚さを演算により求め、測定データを外部に無線送信する制御部と、
     前記測定装置本体に設けられ、前記測定子とワーク表面との間に塗布するゲル状の接触媒質を貯留する媒質タンクと、
     前記測定装置本体が前記主軸に装着されている間、前記工作機械の空圧源に連通し前記主軸を貫通して延びるスピンドルエア管路から受け入れた空圧を利用して、一定量の接触媒質をワーク表面に吐出する定量供給器と、
     を具備することを特徴としたワーク厚さ測定装置。
    From the time difference between the time of transmitting and receiving the ultrasonic wave, contacting the surface of the work on the machine tool machine equipped with at least the X-axis, Y-axis, and Z-axis three-axis feeders that move the spindle and the workpiece relative to each other In the workpiece thickness measuring device that measures the thickness of the workpiece,
    A measuring apparatus main body having a base end side wall facing the main shaft and a front end side wall that is provided on the opposite side of the base end side wall and that can face the workpiece when mounted on the front end of the main shaft;
    A shank that protrudes from the proximal side wall and is attachable to and detachable from the distal end of the main shaft;
    A measuring element that is provided on the tip side wall of the measuring apparatus main body so as to be able to contact the surface of the workpiece, and transmits and receives ultrasonic waves;
    Provided in the measuring device main body, the ultrasonic wave is transmitted and received by the measuring element in a state where the measuring element is in contact with the surface of the workpiece, and the thickness of the workpiece is calculated from a time difference between transmission and reception of the ultrasonic wave. And a control unit that wirelessly transmits measurement data to the outside,
    A medium tank that is provided in the measuring device main body and stores a gel-like contact medium applied between the measuring element and the workpiece surface;
    While the measuring device main body is mounted on the main shaft, a certain amount of contact medium is obtained by utilizing the air pressure received from the spindle air pipe line that communicates with the air pressure source of the machine tool and extends through the main shaft. A quantitative feeder that discharges
    A workpiece thickness measuring apparatus comprising:
  4.  前記定量供給器は、前記スピンドルエア管路に連通する空圧室および前記媒質タンクに連通する媒質室を有したシリンダと、
     前記空圧室内に配設された第1のピストン部および前記媒質室内に配設された第2のピストン部を有した双頭ピストンとを具備する請求項3に記載のワーク厚さ測定装置。
    The metering feeder includes a cylinder having a pneumatic chamber communicating with the spindle air line and a medium chamber communicating with the medium tank;
    The workpiece thickness measuring apparatus according to claim 3, further comprising a double-headed piston having a first piston part disposed in the pneumatic chamber and a second piston part disposed in the medium chamber.
  5.  前記媒質タンクに連する媒質ノズルを更に具備し、該媒質ノズルが前記測定子に隣接させて前記基端側壁から突出するように設けられている請求項4に記載のワーク厚さ測定装置。 5. The workpiece thickness measuring device according to claim 4, further comprising a medium nozzle connected to the medium tank, wherein the medium nozzle is provided so as to protrude from the base end side wall adjacent to the measuring element.
  6.  前記工作機械のクーラント源に連通し、ワーク表面に向けてクーラントを吐出可能に、測定子に隣接させて前記基端側壁から突出するクリーニングクーラントノズルを更に具備する請求項3に記載のワーク厚さ測定装置。 The workpiece thickness according to claim 3, further comprising a cleaning coolant nozzle that communicates with a coolant source of the machine tool and that is capable of discharging coolant toward the workpiece surface and protrudes from the base end side wall adjacent to the measuring element. measuring device.
PCT/JP2016/084005 2016-11-16 2016-11-16 Workpiece thickness measuring device and machine tool WO2018092223A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/084005 WO2018092223A1 (en) 2016-11-16 2016-11-16 Workpiece thickness measuring device and machine tool
JP2018550924A JP6628899B2 (en) 2016-11-16 2016-11-16 Work thickness measuring device and machine tool
DE112016007342.9T DE112016007342B4 (en) 2016-11-16 2016-11-16 Workpiece thickness measuring device and processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084005 WO2018092223A1 (en) 2016-11-16 2016-11-16 Workpiece thickness measuring device and machine tool

Publications (1)

Publication Number Publication Date
WO2018092223A1 true WO2018092223A1 (en) 2018-05-24

Family

ID=62146240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084005 WO2018092223A1 (en) 2016-11-16 2016-11-16 Workpiece thickness measuring device and machine tool

Country Status (3)

Country Link
JP (1) JP6628899B2 (en)
DE (1) DE112016007342B4 (en)
WO (1) WO2018092223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990390A (en) * 2023-09-26 2023-11-03 启东启控消声设备有限公司 Muffler riveting detection device and detection method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212676B (en) * 2020-09-29 2022-06-07 安德里茨(中国)有限公司 Material thickness measuring mechanism, closed-loop control distributing device and dryer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296657U (en) * 1976-01-16 1977-07-20
JPS63209U (en) * 1986-06-18 1988-01-05
JPH08166277A (en) * 1994-12-14 1996-06-25 Keyence Corp Fixing method for ultrasonic transducer and jig for fixing the same
WO2010020940A1 (en) * 2008-08-19 2010-02-25 Breton Spa Method and device for measuring and verifying the thickness of structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166229A (en) 1994-12-16 1996-06-25 Mitsui Petrochem Ind Ltd Board thickness measuring device
US7021143B2 (en) 2003-12-11 2006-04-04 General Motors Corporation Cylindrically-rotating ultrasonic phased array inspection method for resistance spot welds
KR20170018413A (en) 2014-06-13 2017-02-17 가이디드 테라피 시스템스, 엘.엘.씨. System for fast ultrasound treatment
JP2016075584A (en) 2014-10-07 2016-05-12 三菱重工業株式会社 Ultrasonic plate thickness measuring device, machine tool having the same, and ultrasonic plate thickness measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296657U (en) * 1976-01-16 1977-07-20
JPS63209U (en) * 1986-06-18 1988-01-05
JPH08166277A (en) * 1994-12-14 1996-06-25 Keyence Corp Fixing method for ultrasonic transducer and jig for fixing the same
WO2010020940A1 (en) * 2008-08-19 2010-02-25 Breton Spa Method and device for measuring and verifying the thickness of structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990390A (en) * 2023-09-26 2023-11-03 启东启控消声设备有限公司 Muffler riveting detection device and detection method thereof
CN116990390B (en) * 2023-09-26 2023-11-28 启东启控消声设备有限公司 Muffler riveting detection device and detection method thereof

Also Published As

Publication number Publication date
DE112016007342B4 (en) 2024-05-08
JPWO2018092223A1 (en) 2019-06-24
DE112016007342T5 (en) 2019-06-27
JP6628899B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP5638768B2 (en) Nozzle rotation mechanism and coating apparatus having the same
US10369673B2 (en) Spindle device for a program-controlled machine tool
WO2016056499A1 (en) Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method
WO2018092223A1 (en) Workpiece thickness measuring device and machine tool
CN112672849B (en) Intelligent coolant pump
US10232482B2 (en) Work seating detection device and adjustment method for same
JP7258563B2 (en) automatic grinder
JP7463496B2 (en) Tool blade adjustment head, its operation method, and tool blade wear compensation
KR100673336B1 (en) Automatic cutting liquid supply apparatus
JP7083232B2 (en) Automatic grinding equipment
US8790053B2 (en) Cutting liquid supply device for machine tool
JP5023919B2 (en) Machine Tools
KR101917269B1 (en) High speed spindle including flushing device
WO2003013785A1 (en) Machine tool and lubricant jetting state detector for machine tool
US8934998B1 (en) Method and apparatus for delivery of minimum quantity lubrication
US20110209529A1 (en) Measuring Apparatus and Method
JP2005103735A (en) Tool attachment confirmation device
JP4915319B2 (en) Machine tool control device
JP2001062666A (en) Machining and washing composite device
KR101593832B1 (en) Cleaning Tools
KR101672543B1 (en) Method for controlling injection pressure
JP5960539B2 (en) Cutting fluid injection device
JP2002331426A (en) Depth designating machining method in thin hole electric discharge machine and thin hole electric discharge machine having depth designating machining means
KR20160112270A (en) Injection device of washing raw material for washing device of processed product surface
JPS6232752Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550924

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16921673

Country of ref document: EP

Kind code of ref document: A1