WO2018091808A1 - Lithium microbattery and production method - Google Patents

Lithium microbattery and production method Download PDF

Info

Publication number
WO2018091808A1
WO2018091808A1 PCT/FR2017/053086 FR2017053086W WO2018091808A1 WO 2018091808 A1 WO2018091808 A1 WO 2018091808A1 FR 2017053086 W FR2017053086 W FR 2017053086W WO 2018091808 A1 WO2018091808 A1 WO 2018091808A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
lithium
electrolyte
lithium salt
pvdf
Prior art date
Application number
PCT/FR2017/053086
Other languages
French (fr)
Inventor
Victor CHAUDOY
Fabien Pierre
François TRAN VAN
Fouad Ghamouss
Jean-Christophe Houdbert
Erwann LUAIS
Original Assignee
Universite Francois Rabelais De Tours
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Francois Rabelais De Tours filed Critical Universite Francois Rabelais De Tours
Publication of WO2018091808A1 publication Critical patent/WO2018091808A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to lithium micro-batteries, and more particularly a method of manufacturing such micro-batteries.
  • the lithium micro-batteries are solid microbatteries essentially comprising:
  • LiTiOS lithium titanium oxysulfide
  • LiCoO 2 lithium cobalt oxide
  • LiNixMnyCozO 2 (NMC) LiFePO 4 (LMO)
  • the use of an inorganic electrolyte such as LiPON poses various problems among which the fact that the LiPON deposition process is a slow process (8 hours to deposit 2 ⁇ LiPON).
  • the LiPON has low ionic conductivity of the order of 10 -5 to 10 "6 S / cm at room temperature.
  • the micro-battery resistance of this type is high, of the order of 170 Ohms at 25 ° C. for 3 cm 2 micro-batteries with a LiPON layer of 2 to 3 ⁇ in thickness
  • the deposition techniques used are expensive and require high or ultra-empty voids.
  • Solid micro-batteries are also known, the electrolyte of which is a polymer network incorporating a solid lithium salt at ambient temperature, such as a tris (2-methoxyethoxy) vinylsilane (TMVS) and LiClO 4 , tricouche TMVS network. / LiCIO 4 / TMVS, and whose negative electrode is lithium deposited by thermal evaporation.
  • TMVS tris (2-methoxyethoxy) vinylsilane
  • LiClO 4 LiClO 4
  • This type of micro-battery is likely to improve in terms of performance.
  • the invention aims to overcome the aforementioned drawbacks and proposes a micro-battery whose conductivity at ambient temperature of the electrolyte is improved.
  • the lithium micro-battery is characterized in that the electrolyte comprises at least one liquid formulation at room temperature of a lithium salt.
  • formulation liquid at room temperature of a lithium salt a solution comprising a lithium salt and a liquid phase at room temperature.
  • micro-battery is meant a battery size between 1 and 100 ⁇ thick.
  • the presence of the lithium salt formulation makes it possible to increase the conductivity of the electrolyte, and thus to improve the performance of the micro-battery.
  • the lithium salt formulation is integrated, inserted, incorporated, confined in a polymer network to obtain an electrolyte in the form of a solid film, with a thickness of between 1 ⁇ and 50 ⁇ .
  • the electrolyte is a solid electrolyte compatible with the lithium deposition by thermal evaporation constitutive of the anode, and the amount of the lithium salt formulation can reach 80% of the mass of all polymers while remaining mechanically self-supporting.
  • the polymer network reduces the equivalent series resistance of the device, enabling it to operate efficiently in temperature ranges of -40 ° C to 80 ° C.
  • the solid electrolyte in the form of a thin polymer film, is capable of being deposited on the cathode by means of an inexpensive method such as by spray, by ink jet printing, by laminar coating, or by the technologies designated in FIG. English by spin coating and deep coating.
  • the self-supporting term means that the lithium salt formulation is integrated, inserted, incorporated, confined in the polymer network.
  • the electrolyte is a solid electrolyte.
  • the polymer thin film also referred to hereinafter as the polymer network, is preferably an array of at least one cross-linked polymer and at least one linear polymer.
  • the polymer thin film is an array of at least one crosslinked polymer and at least one perfluorinated linear polymer.
  • SRIP semi-interpenetrating network
  • the polymer thin film is a network of at least one crosslinked polymer and at least one other crosslinked polymer.
  • RIP interpenetrating network
  • Another embodiment of the invention may consist of a simple network, in the form of a three-dimensional network, the thin film being a network of a crosslinked polymer.
  • the polymer thin film is a linear polymer, it is called a polymer membrane.
  • the crosslinked polymer may be chosen from bisphenol A ethoxylate diacrylate, bisphenol A ethoxylate dimethacrylate, poly (ethylene glycol) diacrylate (PEG DMA), tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, bisphenol A dimethacrylate, poly (propylene glycol) dimethacrylate, polypropylene glycol) diacrylate, Oligo ethylene dimethacrylate, Oligo ethylene diacrylate.
  • the crosslinked polymer is composed of oligooxyethylene dimethacrylate (PEGDMA) and oligooxyethylene methacrylate (PEGMA) and more preferably PEGDMA of molar mass of 550 g / mol (PEGDMA550) and PEGMA of 475 molar mass. g / mol (PEGMA475).
  • PEGDMA oligooxyethylene dimethacrylate
  • PEGMA oligooxyethylene methacrylate
  • the linear polymer is preferably polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polyvinylpyridine, SBR or NBR.
  • the linear polymer is even more preferably vinyldiene polyfluoride co-hexa fluoropropylene (PVDF-HFP), vinylidene-co-hexafluoropropylene-co-tetrafluoroethylene terpolymer (FKM) or polyvinylidene fluoride (PVdF).
  • PVDF-HFP vinyldiene polyfluoride co-hexa fluoropropylene
  • FKM vinylidene-co-hexafluoropropylene-co-tetrafluoroethylene terpolymer
  • PVdF polyvinylidene fluoride
  • the lithium salt formulation is advantageously composed of a mixture of lithium salt, such as LiTFSI, LiFSI, LiPF 6 , LiBF 4 , LiBOB, LiClO 4 , LiTDI, LiBETi, LiAsF 6 , sulphonate, sulphate, phosphonate, and ionic liquid, such as N-propyl-N-methylpyrrolidinium bis (fluorosulfonyl) amide (P13FSI), N-propyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P13TFSI), N-propyl-N-methylpyrrolidinium hexafluorophosphate (P13PF6), N propyl-N-methylpyrrolidinium tetrafluoroborate (P13BF4) or N-propyl-N-methylpyrrolidinium perchlorate (CIO4), 1-ethyl-3-methylimidazolium bis (tri
  • the electrolyte is composed of 4% PEGDMA550, 1% PEGMA475, 15% PVDF-HFP, 66% P13FSI and 14% LiTFSI.
  • the cathode constituting the micro-battery is LiCo0 2 (LCO), LiTiOS, LiNixMnyCoz0 2 (NMC) or LiFePO 4 (LMO) and more preferably LCO.
  • the invention also relates to a method of manufacturing a micro-battery comprising the following steps:
  • step c) Deposition of lithium by thermal evaporation, on the film prepared in step a), to form the anode.
  • si-interpenetrating network means a network comprising at least one crosslinked polymer and at least one linear polymer or a perfluorinated polymer.
  • An interpenetrating network is understood to mean a network comprising at least two crosslinked polymers.
  • the cathode consists of LiCoO 2 (LCO), LiTiOS, LiNixMnyCozO 2 (NMC) or LiFePO 4 (LMO).
  • This process consists of sublimating or evaporating the lithium, under vacuum Joule effect, at a temperature between 500 and 600 ° C to 2.10 "7 mBar.
  • the lithium vapors are recondensent on the thin polymer film placed in a cone. evaporation, allowing the formation of a lithium film on said thin polymer film.
  • the electrolyte is prepared by radical polymerization of oligooxyethylene methacrylate, such as PEGMA475, and oligooxyethylene dimethacrylate, such as PEGDMA550, oligomers constituting the crosslinked polymer, in the presence of PVDF-HFP, linear polymer, and a mixture of P13FSI / LiTFSI, lithium salt formulation.
  • oligooxyethylene methacrylate such as PEGMA475
  • PEGDMA550 oligooxyethylene dimethacrylate
  • oligomers constituting the crosslinked polymer in the presence of PVDF-HFP, linear polymer, and a mixture of P13FSI / LiTFSI, lithium salt formulation.
  • the proportions of each of the constituents are advantageously 4% of PEGDMA550, 1% of PEGMA475, 15% of PVDF-HFP, 66% of P13FSI and 14% of LiTFSI.
  • the film is obtained directly on the cathode.
  • the electrolyte in the form of a film is obtained by:
  • the invention provides a film with a thickness of between 1 ⁇ and 50 ⁇ , and preferably between 10 and 20 ⁇ , comprising a polymer network in which is incorporated a lithium salt formulation.
  • the polymer network is a semi-interpenetrating network, such as a dimethacrylate (PEGDMA) and methacrylate (PEGMA) and PVDF-HFP network.
  • PEGDMA dimethacrylate
  • PEGMA methacrylate
  • PVDF-HFP PVDF-HFP
  • the polymer network is an interpenetrating network.
  • the lithium salt formulation is preferably a mixture of P13FSI and LiTFSI. This film is suitable for use as an electrolyte in a micro-battery as described above.
  • the film according to the invention also has the advantage of separating the electrodes to avoid short circuits. We speak of separator.
  • the proportions of the constituents of said film are 4% of PEGDMA550, 1% of PEGMA475, 15% of PVDF-HFP, 66% of P13FSI and 14% of LiTFSI.
  • FIG. 1 is a schematic side view showing the constituents of a micro-battery according to the invention
  • FIG. 2 is a schematic view showing the manufacturing process of the micro-battery of FIG. 1,
  • FIG. 3A is a photograph of a mica substrate on which lithium has been deposited by evaporation
  • FIG. 3B is a photograph of the constituent electrolyte of the micro-battery of FIG. 1 on which lithium has been deposited by evaporation,
  • FIG. 4 is a diagram showing the capacity of the microbattery of FIG. 1, as a function of the number of cycles
  • FIG. 5 is a diagram representing the capacity of microbatteries according to the invention, comprising respectively 20% wt, 25% wt and 30% wt of polymer phase, as a function of the number of cycles
  • FIG. 6 is a diagram representing the performances of micro-batteries according to the invention, comprising respectively 5 ⁇ and 10 ⁇ of lithium, as a function of the number of cycles.
  • the micro-battery 1 according to the invention illustrated schematically in FIG. 1, comprises three superimposed layers, the lower layer being a cathode 2, the intermediate layer an electrolyte 3 and the upper layer an anode 4.
  • the cathode 2 consists of a plate 2A of mica, on which was deposited a plate 2B of platinum and a layer 2C of LiCo0 2 .
  • the electrolyte 3 is in the form of a film of thickness "e 3 " of 20 ⁇ , deposited on the cathode 1 according to a method described below.
  • the anode 4 is a layer of lithium deposited by thermal evaporation on the electrolyte 3, of thickness "e 4 " between 5 ⁇ and 10 ⁇ .
  • the electrolyte 3 in film form consists of a network (not shown) semi-interpenetrated of 4% PEGDMA550, 1% PEGMA475 and 15% PVdF-HFP, in which are integrated, inserted, incorporated, confined 66% P13FSI and 14% LiTPSI (the lithium salt formulation).
  • the percentage of lithium salt formulation is 80%.
  • FIG. 2 there is shown schematically the manufacturing process of the micro-battery 1.
  • a 2C layer of LiCoO 2 is deposited in a known manner on a platinum plate 2B previously deposited in a known manner on a mica plate 2A.
  • the electrolyte 3 is deposited by laminar coating on the 2C layer of LiCoO 2 , then the constituent lithium of the anode 4 is deposited by evaporation on the electrolyte.
  • the method of deposition of lithium by evaporation is a method known to those skilled in the art. More specifically, the electrolyte 3 is prepared and deposited on the cathode 2 by:
  • the amount of mixture deposited on the cathode is such that the thickness of the film is 20 ⁇ .
  • FIG. 3A represents a plate 5 of mica on which 1 ⁇ of lithium 4 has been deposited by evaporation.
  • FIG. 3B represents a plate 6 comprising the electrolyte 3 as previously described, on which 1 ⁇ at 10 ⁇ , and more particularly 5 ⁇ at 10 ⁇ , of lithium 4 has been deposited by evaporation.
  • Figure 3A is the control. It shows the slightly gray, smooth and flawless appearance representative of an optimal lithium deposit.
  • FIG. 3B shows that the lithium deposition method by evaporation operates on the electrolyte as described above.
  • this type of electrolyte is suitable for use in the manufacture of micro-batteries, the anode of which is lithium deposited by evaporation.
  • the polymer network traps the lithium salt formulation, without generating a phenomenon of syneresis during deposition of lithium by evaporation, and the lithium salt formulation confers mechanical properties adapted to deposition of lithium by evaporation.
  • the SRIP network makes it possible to improve the encapsulation properties of the liquid phase, with respect to a simple network or a linear polymer.
  • the solid phase containing 75% wt of PVdF-HFP (linear polymer) and 25% wt of crosslinked polymer is a good compromise in terms of ionic conductivity, -
  • the ratio of 4/1 PEGDMA / PEGMA confers good retention properties while keeping good transport properties
  • the concentration of 1.3 mol / L of LiTFSI in the lithium salt formulation shows an optimum of diffusion for the lithium ions
  • the amount of 80% lithium salt formulation is optimum in terms of ionic conductivity and mechanical integrity.
  • the micro-battery shows a very good capacity retention up to 100 cycles at a charging / discharging rate of 1 C.
  • the micro-battery of the invention therefore has good performance e cyclability, energy and power.
  • FIG. 5 represents the effect of the percentage of polymer phase on the capacity of the micro-battery according to the invention.
  • Figure 6 shows the effect of the percentage of evaporated lithium on the performance of the micro-battery according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a lithium microbattery characterised in that the electrolyte comprises at least one liquid formulation of a lithium salt at room temperature, the lithium salt formulation being integrated, inserted, incorporated and confined in a polymer network, and the electrolyte being in the form of a solid film having a thickness of between 1 μm et 50 μm.

Description

MICRO-BATTERIE AU LITHIUM ET PROCEDE DE FABRICATION  LITHIUM MICRO BATTERY AND METHOD OF MANUFACTURE
La présente demande concerne les micro-batteries au lithium, et plus particulièrement un procédé de fabrication de telles micro-batteries. D'une manière générale, les micro-batteries au lithium sont des microbatteries solides comprenant essentiellement : The present application relates to lithium micro-batteries, and more particularly a method of manufacturing such micro-batteries. In general, the lithium micro-batteries are solid microbatteries essentially comprising:
- Une couche constituant l'électrode positive (cathode), de quelques micromètres d'épaisseur, en matériau tel que du LiTiOS (oxysulfure de titane et de lithium), LiCoO2 (oxyde de cobalt et de lithium), LiNixMnyCozO2 (NMC), ou LiFePO4 (LMO), A layer constituting the positive electrode (cathode), of a few micrometers in thickness, made of a material such as LiTiOS (lithium titanium oxysulfide), LiCoO 2 (lithium cobalt oxide), LiNixMnyCozO 2 (NMC) , or LiFePO 4 (LMO),
- Une couche d'électrolyte inorganique, couramment en LiPON (oxynitrure phosphoré de lithium), et  An inorganic electrolyte layer, currently in LiPON (lithium phosphorus oxynitride), and
- Une couche constituant l'électrode négative (anode), en lithium, généralement déposé par évaporation thermique  A layer constituting the negative electrode (anode), made of lithium, generally deposited by thermal evaporation
Dans ces micro-batteries, l'utilisation d'un électrolyte inorganique tel que le LiPON pose divers problèmes parmi lesquels le fait que le processus de dépôt de LiPON est un processus lent (8 heures pour déposer 2 μιη de LiPON). De plus, le LiPON présente une conductivité ionique faible, de l'ordre de 10~5 à 10"6 S/cm à température ambiante. Par ailleurs, la résistance de micro-batterie de ce type est élevée, de l'ordre de 170 Ohms à 25°C pour des micro-batteries de 3 cm2 avec une couche de LiPON de 2 à 3 μιη d'épaisseur. Enfin, les techniques de dépôt utilisées sont onéreuses et nécessitent des vides poussés ou ultravides. In these micro-batteries, the use of an inorganic electrolyte such as LiPON poses various problems among which the fact that the LiPON deposition process is a slow process (8 hours to deposit 2 μιη LiPON). In addition, the LiPON has low ionic conductivity of the order of 10 -5 to 10 "6 S / cm at room temperature. Furthermore, the micro-battery resistance of this type is high, of the order of 170 Ohms at 25 ° C. for 3 cm 2 micro-batteries with a LiPON layer of 2 to 3 μιη in thickness Finally, the deposition techniques used are expensive and require high or ultra-empty voids.
On connaît également des micro-batteries solides dont l'électrolyte est un réseau de polymères incorporant un sel de lithium solide à température ambiante, tel qu'un réseau de tris(2-methoxyethoxy)vinylsilane (TMVS) et LiCIO4, en tricouche TMVS/LiCIO4/TMVS, et dont l'électrode négative est en lithium déposé par évaporation thermique. Ce type de micro-batterie est susceptible d'amélioration en termes de performances. L'invention vise à remédier aux inconvénients précités et propose une micro-batterie dont la conductivité, à température ambiante, de l'électrolyte est améliorée. Solid micro-batteries are also known, the electrolyte of which is a polymer network incorporating a solid lithium salt at ambient temperature, such as a tris (2-methoxyethoxy) vinylsilane (TMVS) and LiClO 4 , tricouche TMVS network. / LiCIO 4 / TMVS, and whose negative electrode is lithium deposited by thermal evaporation. This type of micro-battery is likely to improve in terms of performance. The invention aims to overcome the aforementioned drawbacks and proposes a micro-battery whose conductivity at ambient temperature of the electrolyte is improved.
A cette fin, selon l'invention, la micro-batterie au lithium est caractérisée en ce que l'électrolyte comprend au moins une formulation liquide à température ambiante d'un sel de lithium. On entend par « formulation liquide à température ambiante d'un sel de lithium », une solution comportant un sel de lithium et une phase liquide à température ambiante. To this end, according to the invention, the lithium micro-battery is characterized in that the electrolyte comprises at least one liquid formulation at room temperature of a lithium salt. The term "formulation liquid at room temperature of a lithium salt", a solution comprising a lithium salt and a liquid phase at room temperature.
Dans la suite du texte on parlera de formulation de sel de lithium. In the rest of the text we will talk about the formulation of lithium salt.
Par micro-batterie on entend une batterie de taille comprise entre 1 et 100 μιη d'épaisseur. By micro-battery is meant a battery size between 1 and 100 μιη thick.
La présence de la formulation de sel de lithium permet d'augmenter la conductivité de l'électrolyte, et ainsi d'améliorer les performances de la micro-batterie. The presence of the lithium salt formulation makes it possible to increase the conductivity of the electrolyte, and thus to improve the performance of the micro-battery.
Selon une caractéristique, la formulation de sel de lithium est intégrée, insérée, incorporée, confinée dans un réseau de polymères pour obtenir un électrolyte se présentant sous forme d'un film solide, d'épaisseur comprise entre 1 μιη et 50 μιη. According to one characteristic, the lithium salt formulation is integrated, inserted, incorporated, confined in a polymer network to obtain an electrolyte in the form of a solid film, with a thickness of between 1 μιη and 50 μιη.
De cette façon, l'électrolyte est un électrolyte solide compatible avec le dépôt de lithium par évaporation thermique constitutif de l'anode, et dont la quantité de la formulation de sel de lithium peut atteindre 80% de la masse de l'ensemble des polymères tout en restant mécaniquement autosupporté. In this way, the electrolyte is a solid electrolyte compatible with the lithium deposition by thermal evaporation constitutive of the anode, and the amount of the lithium salt formulation can reach 80% of the mass of all polymers while remaining mechanically self-supporting.
De plus, le réseau de polymère permet de réduire la résistance série équivalente du dispositif, lui permettant de fonctionner efficacement dans des gammes de température comprises entre - 40°C et 80°C. In addition, the polymer network reduces the equivalent series resistance of the device, enabling it to operate efficiently in temperature ranges of -40 ° C to 80 ° C.
L'électrolyte solide, sous forme de film mince de polymères, est apte à être déposé sur la cathode grâce à une méthode peu onéreuse telle que par spray, par impression jet d'encre, par enduction laminaire, ou encore par les technologies désignées en anglais par spin coating et deep coating. The solid electrolyte, in the form of a thin polymer film, is capable of being deposited on the cathode by means of an inexpensive method such as by spray, by ink jet printing, by laminar coating, or by the technologies designated in FIG. English by spin coating and deep coating.
Le terme autosupporté signifie que la formulation de sel de lithium est intégrée, insérée, incorporée, confinée dans le réseau de polymère. L'électrolyte est un électrolyte solide. The self-supporting term means that the lithium salt formulation is integrated, inserted, incorporated, confined in the polymer network. The electrolyte is a solid electrolyte.
Le film mince de polymère, également désigné ci-après réseau de polymères, est de préférence un réseau d'au moins un polymère réticulé et au moins un polymère linéaire. The polymer thin film, also referred to hereinafter as the polymer network, is preferably an array of at least one cross-linked polymer and at least one linear polymer.
De préférence encore, le film mince de polymère est un réseau d'au moins un polymère réticulé et au moins un polymère linéaire perfluoré. On parle de réseau semi-interpénétré (SRIP). More preferably, the polymer thin film is an array of at least one crosslinked polymer and at least one perfluorinated linear polymer. We speak of semi-interpenetrating network (SRIP).
Dans une autre variante de l'invention, le film mince de polymères est un réseau d'au moins un polymère réticulé et au moins un autre polymère réticulé. On parle de réseau interpénétré (RIP). In another variant of the invention, the polymer thin film is a network of at least one crosslinked polymer and at least one other crosslinked polymer. We speak of interpenetrating network (RIP).
Une autre forme de mise en œuvre de l'invention peut consister en un réseau simple, sous forme de réseau tridimensionnel, le film mince étant un réseau d'un polymère réticulé. Another embodiment of the invention may consist of a simple network, in the form of a three-dimensional network, the thin film being a network of a crosslinked polymer.
En variante, le film mince de polymères est un polymère linéaire, on parle de membrane polymère. Alternatively, the polymer thin film is a linear polymer, it is called a polymer membrane.
L'utilisation d'un réseau SRIP permet d'améliorer le confinement de la phase liquide dans le réseau. The use of a SRIP network makes it possible to improve the confinement of the liquid phase in the network.
Le polymère réticulé peut être choisi parmi Bisphenol A ethoxylate diacrylate, Bisphenol A ethoxylate dimethacrylate, Poly(ethylene glycol) diacrylate (PEG DMA), Tetraethylene glycol dimethacrylate, Polyethylene glycol dimethacrylate, Bisphenol A dimethacrylate, Poly(propylene glycol) dimethacrylate, Poly(propylene glycol) diacrylate, Oligo ethylene dimethacrylate, Oligo ethylene diacrylate. The crosslinked polymer may be chosen from bisphenol A ethoxylate diacrylate, bisphenol A ethoxylate dimethacrylate, poly (ethylene glycol) diacrylate (PEG DMA), tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, bisphenol A dimethacrylate, poly (propylene glycol) dimethacrylate, polypropylene glycol) diacrylate, Oligo ethylene dimethacrylate, Oligo ethylene diacrylate.
De manière avantageuse, le polymère réticulé est composé de diméthacrylate d'oligooxyéthylène (PEGDMA) et méthacrylate d'oligooxyéthylène (PEGMA) et de préférence encore de PEGDMA de masse molaire de 550 g/mol (PEGDMA550) et de PEGMA de masse molaire de 475 g/mol (PEGMA475). Advantageously, the crosslinked polymer is composed of oligooxyethylene dimethacrylate (PEGDMA) and oligooxyethylene methacrylate (PEGMA) and more preferably PEGDMA of molar mass of 550 g / mol (PEGDMA550) and PEGMA of 475 molar mass. g / mol (PEGMA475).
Le polymère linéaire est de préférence du Polyacrylonitrile (PAN), Polyvinylpyrrolidone (PVP), Polyvinylpyridine, SBR ou NBR. The linear polymer is preferably polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polyvinylpyridine, SBR or NBR.
Le polymère linéaire est de manière encore plus préférée du polyfluorure de vinyldiène co-hexa fluoropropylène (PVDF-HFP), du Vinylidene-co- hexafluoropropylene-co-tetrafluoroethylene terpolymer (FKM) ou du Polyvinylidene fluoride (PVdF). La formulation de sel de lithium est avantageusement composée d'un mélange de sel de lithium, tel que LiTFSI, LiFSI, LiPF6, LiBF4, LiBOB, LiCI04, LiTDI, LiBETi, LiAsF6, sulfonate, sulfate, phosphonate, et de liquide ionique, tel que N-propyl-N-méthylpyrrolidinium bis(fluorosulfonyl)amide (P13FSI), N-propyl-N-méthylpyrrolidinium bis(trifluoromethanesulfonyl)amide (P13TFSI), N-propyl-N- méthylpyrrolidinium hexafluorophosphate (P13PF6), N-propyl-N- méthylpyrrolidinium tétrafluoroborate (P13BF4) ou N-propyl-N- méthylpyrrolidinium perchlorate (CI04), 1 -ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (EMIMTFSI), 1 -ethyl-3- methylimidazolium bis(fluorosulfonyl)amide (EMIMTFSI), 1 -buthyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide (BMIMTFSI), N- propyl-N-methylpiperidinium bis(fluorosulfonyl)amide (PP13FSI), N-butyl- N-methylpiperidinium bis(trifluoromethanesulfonyl)amide (PP14TFSI), Triethyl-butylammonium bis(trifluoromethanesulfonyl)amide (N2224TFSI), N-butyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide (P24TFSI), N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide (P14FSI). The linear polymer is even more preferably vinyldiene polyfluoride co-hexa fluoropropylene (PVDF-HFP), vinylidene-co-hexafluoropropylene-co-tetrafluoroethylene terpolymer (FKM) or polyvinylidene fluoride (PVdF). The lithium salt formulation is advantageously composed of a mixture of lithium salt, such as LiTFSI, LiFSI, LiPF 6 , LiBF 4 , LiBOB, LiClO 4 , LiTDI, LiBETi, LiAsF 6 , sulphonate, sulphate, phosphonate, and ionic liquid, such as N-propyl-N-methylpyrrolidinium bis (fluorosulfonyl) amide (P13FSI), N-propyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P13TFSI), N-propyl-N-methylpyrrolidinium hexafluorophosphate (P13PF6), N propyl-N-methylpyrrolidinium tetrafluoroborate (P13BF4) or N-propyl-N-methylpyrrolidinium perchlorate (CIO4), 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide (EMIMTFSI), 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide (EMIMTFSI), 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide (BMIMTFSI), N-propyl-N-methylpiperidinium bis (fluorosulfonyl) amide (PP13FSI), N-butyl-N-methylpiperidinium bis (trifluoromethanesulfonyl) amide ( PP14TFSI), triethyl-butylammonium bis (trifluoromethanesulfonyl) amide (N2224TFS I), N-butyl-N-ethylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P24TFSI), N-butyl-N-methylpyrrolidinium bis (fluorosulfonyl) amide (P14FSI).
De manière encore plus préféré, l'électrolyte est composé de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. Even more preferably, the electrolyte is composed of 4% PEGDMA550, 1% PEGMA475, 15% PVDF-HFP, 66% P13FSI and 14% LiTFSI.
Selon une caractéristique, la cathode constitutive de la micro-batterie est du LiCo02 (LCO), du LiTiOS, du LiNixMnyCoz02 (NMC) ou du LiFeP04 (LMO) et de préférence encore du LCO. According to one characteristic, the cathode constituting the micro-battery is LiCo0 2 (LCO), LiTiOS, LiNixMnyCoz0 2 (NMC) or LiFePO 4 (LMO) and more preferably LCO.
L'invention vise également un procédé de fabrication d'une micro-batterie comportant les étapes suivantes :  The invention also relates to a method of manufacturing a micro-battery comprising the following steps:
a) Préparation d'un électrolyte se présentant sous forme d'un réseau semi-interpénétré ou interpénétré de polymères incorporant au moins un liquide ionique et un sel de lithium, pour former un film d'épaisseur entre 1 μιη et Ι ΟΟμιη, et de préférence entre 1 μιη et 50μιτι, a) Preparation of an electrolyte in the form of a semi-interpenetrating or interpenetrating network of polymers incorporating at least one ionic liquid and a lithium salt, to form a film of thickness between 1 μιη and Ι ΟΟμιη, and preferably between 1 μιη and 50μιτι,
b) Dépôt sur une cathode, du film préparé à l'étape a),  b) Deposition on a cathode of the film prepared in step a),
c) Dépôt de lithium par évaporation thermique, sur le film préparé à l'étape a), pour constituer l'anode.  c) Deposition of lithium by thermal evaporation, on the film prepared in step a), to form the anode.
On entend par réseau semi-interpénétré, un réseau comprenant au moins un polymère réticulé et au moins un polymère linéaire ou un polymère perfluoré. The term "semi-interpenetrating network" means a network comprising at least one crosslinked polymer and at least one linear polymer or a perfluorinated polymer.
On entend par réseau interpénétré, un réseau comprenant au moins deux polymères réticulés. An interpenetrating network is understood to mean a network comprising at least two crosslinked polymers.
De manière avantageuse, la cathode est constituée de LiCoO2 (LCO), LiTiOS, LiNixMnyCozO2 (NMC) ou LiFePO4 (LMO). Advantageously, the cathode consists of LiCoO 2 (LCO), LiTiOS, LiNixMnyCozO 2 (NMC) or LiFePO 4 (LMO).
Le procédé de dépôt de lithium par évaporation thermique tel que proposé dans le document (Young-Shin Park, Se-Hee Lee, Byung-ll Lee, and Seung-Ki Joo, All-Solid-State Lithium Thin-Film Rechargeable Battery with Lithium Manganèse Oxide Electrochemical and Solid-State Letters, 2 (2) 58-59 (1999)) est un procédé connu de l'homme du métier. The method of lithium deposition by thermal evaporation as proposed in the document (Young-Shin Park, Se-Hee Lee, Byung-ll Lee, and Seung-Ki Joo, All-Solid State Lithium Thin-Film Rechargeable Battery with Lithium Manganese Oxide Electrochemical and Solid-State Letters, 2 (2) 58-59 (1999)) is a method known to those skilled in the art.
Ce procédé consiste à sublimer ou évaporer le lithium, sous vide par effet joule, à une température comprise entre 500 et 600°C à 2.10"7 mBar. Les vapeurs de lithium se recondensent sur le film mince de polymères placé dans un cône d'évaporation, permettant la formation d'un film de lithium sur ledit film mince de polymères. This process consists of sublimating or evaporating the lithium, under vacuum Joule effect, at a temperature between 500 and 600 ° C to 2.10 "7 mBar.The lithium vapors are recondensent on the thin polymer film placed in a cone. evaporation, allowing the formation of a lithium film on said thin polymer film.
De préférence, l'électrolyte est préparé par polymérisation radicalaire de méthacrylate d' oligooxyéthylène, tel que PEGMA475, et diméthacrylate d'oligooxyéthylene, tel que PEGDMA550, oligomères constitutifs du polymère réticulé, en présence de PVDF-HFP, polymère linéaire, et d'un mélange de P13FSI/ LiTFSI, formulation de sel de lithium. Preferably, the electrolyte is prepared by radical polymerization of oligooxyethylene methacrylate, such as PEGMA475, and oligooxyethylene dimethacrylate, such as PEGDMA550, oligomers constituting the crosslinked polymer, in the presence of PVDF-HFP, linear polymer, and a mixture of P13FSI / LiTFSI, lithium salt formulation.
Les proportions de chacun des constituants sont avantageusement de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. The proportions of each of the constituents are advantageously 4% of PEGDMA550, 1% of PEGMA475, 15% of PVDF-HFP, 66% of P13FSI and 14% of LiTFSI.
En variante, l'obtention du film est effectuée directement sur la cathode. Dans cette variante, l'électrolyte sous forme de film est obtenu par : Alternatively, the film is obtained directly on the cathode. In this variant, the electrolyte in the form of a film is obtained by:
- Solubilisation du PVDF-HFP dans de l'acétone,  Solubilization of PVDF-HFP in acetone,
- Ajout d'un mélange de P13FSI et LiTFSI,  - Addition of a mixture of P13FSI and LiTFSI,
- Ajout de PEGDMA550 et PEGMA475 et d'un amorceur de polymérisation tel que AIBN,  - Addition of PEGDMA550 and PEGMA475 and a polymerization initiator such as AIBN,
- Dépôt du mélange sur la cathode,  - Deposition of the mixture on the cathode,
- Evaporation de l'acétone par traitement thermique sous vide pendant 2 heures à 90°C puis pendant 24 heures à 60°C.  Evaporation of the acetone by heat treatment under vacuum for 2 hours at 90 ° C. and then for 24 hours at 60 ° C.
En outre, l'invention vise un film d'épaisseur comprise entre 1 μιη et 50μιη, et de préférence entre 10 et 20 μιη, comportant un réseau de polymères dans lequel est incorporé une formulation de sel de lithium. In addition, the invention provides a film with a thickness of between 1 μιη and 50μιη, and preferably between 10 and 20 μιη, comprising a polymer network in which is incorporated a lithium salt formulation.
Avantageusement, le réseau de polymère est un réseau semi- interpénétré, tel qu'un réseau de diméthacrylate (PEGDMA) et méthacrylate (PEGMA) et de PVDF-HFP.  Advantageously, the polymer network is a semi-interpenetrating network, such as a dimethacrylate (PEGDMA) and methacrylate (PEGMA) and PVDF-HFP network.
En variante, le réseau de polymère est un réseau interpénétré. Alternatively, the polymer network is an interpenetrating network.
La formulation de sel de lithium est de préférence un mélange de P13FSI et de LiTFSI. Ce film est apte à être utilisé en tant qu'électrolyte dans une micro-batterie telle que décrite précédemment. The lithium salt formulation is preferably a mixture of P13FSI and LiTFSI. This film is suitable for use as an electrolyte in a micro-battery as described above.
Le film selon l'invention présente l'avantage également de séparer les électrodes pour éviter les courts-circuits. On parle de séparateur. The film according to the invention also has the advantage of separating the electrodes to avoid short circuits. We speak of separator.
Selon une caractéristique, les proportions des constituants dudit film sont de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. According to one characteristic, the proportions of the constituents of said film are 4% of PEGDMA550, 1% of PEGMA475, 15% of PVDF-HFP, 66% of P13FSI and 14% of LiTFSI.
D'autres objets, caractéristiques et avantages de la présente invention apparaîtront dans la description qui suit à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, à partir des illustrations ci-jointes et dans lesquelles : Other objects, features and advantages of the present invention will become apparent in the description which follows, by way of purely illustrative and in no way limiting examples of the scope of the invention, from the attached illustrations and in which:
- La figure 1 est une vue schématique de côté montrant les constituants d'une micro-batterie selon l'invention, FIG. 1 is a schematic side view showing the constituents of a micro-battery according to the invention,
- La figure 2 est une vue schématique montrant le procédé de fabrication de la micro-batterie de la figure 1 ,  FIG. 2 is a schematic view showing the manufacturing process of the micro-battery of FIG. 1,
- La figure 3A est une photographie d'un substrat de mica sur lequel du lithium a été déposé par évaporation,  FIG. 3A is a photograph of a mica substrate on which lithium has been deposited by evaporation,
- La figure 3B est une photographie de l'électrolyte constitutif de la micro-batterie de la figure 1 sur lequel du lithium a été déposé par évaporation,  FIG. 3B is a photograph of the constituent electrolyte of the micro-battery of FIG. 1 on which lithium has been deposited by evaporation,
- La figure 4 est un diagramme représentant la capacité de la microbatterie de la figure 1 , en fonction du nombre de cycles  FIG. 4 is a diagram showing the capacity of the microbattery of FIG. 1, as a function of the number of cycles
- La figure 5 est un diagramme représentant la capacité de microbatteries selon l'invention, comportant respectivement 20%wt, 25%wt et 30%wt de phase polymère, en fonction du nombre de cycles, - La figure 6 est un diagramme représentant les performances de micro-batteries selon l'invention, comportant respectivement 5μιη et 10μιη de lithium, en fonction du nombre de cycle. La micro-batterie 1 selon l'invention, illustrée schématiquement sur la figure 1 , comporte trois couches superposées, la couche inférieure étant une cathode 2, la couche intermédiaire un électrolyte 3 et la couche supérieure une anode 4. La cathode 2 est constituée d'une plaque 2A de mica, sur laquelle a été déposée une plaque 2B de platine puis une couche 2C de LiCo02. FIG. 5 is a diagram representing the capacity of microbatteries according to the invention, comprising respectively 20% wt, 25% wt and 30% wt of polymer phase, as a function of the number of cycles, FIG. 6 is a diagram representing the performances of micro-batteries according to the invention, comprising respectively 5μιη and 10μιη of lithium, as a function of the number of cycles. The micro-battery 1 according to the invention, illustrated schematically in FIG. 1, comprises three superimposed layers, the lower layer being a cathode 2, the intermediate layer an electrolyte 3 and the upper layer an anode 4. The cathode 2 consists of a plate 2A of mica, on which was deposited a plate 2B of platinum and a layer 2C of LiCo0 2 .
L'électrolyte 3 se présente sous forme d'un film d'épaisseur « e3 » de 20 μιη, déposé sur la cathode 1 selon un procédé décrit par la suite. The electrolyte 3 is in the form of a film of thickness "e 3 " of 20 μιη, deposited on the cathode 1 according to a method described below.
L'anode 4 est une couche de lithium déposé par évaporation thermique sur l'électrolyte 3, d'épaisseur « e4 » entre 5 μιη et 10μιη. The anode 4 is a layer of lithium deposited by thermal evaporation on the electrolyte 3, of thickness "e 4 " between 5 μιη and 10μιη.
L'électrolyte 3 sous forme de film se compose d'un réseau (non représenté) semi-interpénétré de 4% de PEGDMA550, de 1 % de PEGMA475 et de 15% de PVdF-HFP, dans lequel sont intégrés, insérés, incorporés, confinés 66% de P13FSI et 14% de LiTPSI (la formulation de sel de lithium). Le pourcentage de formulation de sel de lithium est de 80%. The electrolyte 3 in film form consists of a network (not shown) semi-interpenetrated of 4% PEGDMA550, 1% PEGMA475 and 15% PVdF-HFP, in which are integrated, inserted, incorporated, confined 66% P13FSI and 14% LiTPSI (the lithium salt formulation). The percentage of lithium salt formulation is 80%.
En référence à la figure 2, on a représenté schématiquement le procédé de fabrication de la micro-batterie 1 . Une couche 2C de LiCoO2 est déposée de manière connue sur une plaque 2B de platine préalablement déposée de manière connue sur une plaque 2A de mica. L'électrolyte 3 est déposé par enduction laminaire sur la couche 2C de LiCoO2, puis le lithium constitutif de l'anode 4 est déposé par évaporation sur l'électrolyte. Le procédé de dépôt de lithium par évaporation est un procédé connu de l'homme du métier. Plus précisément, l'électrolyte 3 est préparé et déposé sur la cathode 2 par : Referring to Figure 2, there is shown schematically the manufacturing process of the micro-battery 1. A 2C layer of LiCoO 2 is deposited in a known manner on a platinum plate 2B previously deposited in a known manner on a mica plate 2A. The electrolyte 3 is deposited by laminar coating on the 2C layer of LiCoO 2 , then the constituent lithium of the anode 4 is deposited by evaporation on the electrolyte. The method of deposition of lithium by evaporation is a method known to those skilled in the art. More specifically, the electrolyte 3 is prepared and deposited on the cathode 2 by:
- Solubilisation du PVDF-HFP dans de l'acétone,  Solubilization of PVDF-HFP in acetone,
- Ajout d'un mélange de P13FSI et LiTPSI,  - Addition of a mixture of P13FSI and LiTPSI,
- Ajout de PEGDMA550 et PEGMA475 et d'un amorceur de polymérisation tel que AIBN,  - Addition of PEGDMA550 and PEGMA475 and a polymerization initiator such as AIBN,
- Dépôt du mélange sur la cathode 2,  Deposition of the mixture on the cathode 2,
- Evaporation de l'acétone par traitement thermique sous vide pendant 2 heures à 90°C puis pendant 24 heures à 60°C. On obtient alors un film dont l'épaisseur dépend de la quantité de mélange déposé sur la cathode 2.  Evaporation of the acetone by heat treatment under vacuum for 2 hours at 90 ° C. and then for 24 hours at 60 ° C. This gives a film whose thickness depends on the amount of mixture deposited on the cathode 2.
De manière avantageuse, la quantité de mélange déposé sur la cathode est telle que l'épaisseur du film est de 20 μιη. Advantageously, the amount of mixture deposited on the cathode is such that the thickness of the film is 20 μιη.
Le fonctionnement et les avantages d'une telle micro-batterie sont maintenant décrits. The operation and advantages of such a micro-battery are now described.
La figure 3A représente une plaque 5 de mica sur laquelle 1 μιη de lithium 4 a été déposé par évaporation. La figure 3B représente une plaque 6 comportant l'électrolyte 3 tel que décrit précédemment, sur lequel 1 μιη à 10μιη, et plus particulièrement 5μιη à 10μιη, de lithium 4 a été déposé par évaporation. La figure 3A est le témoin. Elle montre l'aspect légèrement gris, lisse et sans défaut représentatif d'un dépôt de lithium optimal. FIG. 3A represents a plate 5 of mica on which 1 μιη of lithium 4 has been deposited by evaporation. FIG. 3B represents a plate 6 comprising the electrolyte 3 as previously described, on which 1 μιη at 10μιη, and more particularly 5μιη at 10μιη, of lithium 4 has been deposited by evaporation. Figure 3A is the control. It shows the slightly gray, smooth and flawless appearance representative of an optimal lithium deposit.
La comparaison avec la figure 3B, dont l'aspect est similaire, montre que le procédé de dépôt de lithium par évaporation fonctionne sur l'électrolyte tel que décrit précédemment. The comparison with FIG. 3B, whose appearance is similar, shows that the lithium deposition method by evaporation operates on the electrolyte as described above.
Ainsi, ce type d'électrolyte est apte à être utilisé pour la fabrication de micro-batteries, dont l'anode est du lithium déposé par évaporation. En effet, le réseau de polymère emprisonne la formulation de sel de lithium, sans générer de phénomène de synérèse lors du dépôt de lithium par évaporation, et la formulation de sel de lithium confère des propriétés mécaniques adaptées au dépôt de lithium par évaporation. Le réseau SRIP permet d'améliorer les propriétés d'encapsulation de la phase liquide, par rapport à un réseau simple ou un polymère linéaire. Thus, this type of electrolyte is suitable for use in the manufacture of micro-batteries, the anode of which is lithium deposited by evaporation. Indeed, the polymer network traps the lithium salt formulation, without generating a phenomenon of syneresis during deposition of lithium by evaporation, and the lithium salt formulation confers mechanical properties adapted to deposition of lithium by evaporation. The SRIP network makes it possible to improve the encapsulation properties of the liquid phase, with respect to a simple network or a linear polymer.
Différentes études (non représentées) ont permis de définir l'impact de la composition de l'électrolyte sur les propriétés de transport. Different studies (not shown) have made it possible to define the impact of the composition of the electrolyte on the transport properties.
Les inventeurs ont découvert de manière surprenante que : The inventors have surprisingly discovered that:
- La phase solide contenant 75%wt en PVdF-HFP (polymère linéaire) et 25%wt en polymère réticulé est un bon compromis en termes de conductivité ionique, - Le rapport de 4/1 en PEGDMA/PEGMA confère de bonnes propriétés de rétention tout en gardant de bonnes propriétés de transport, The solid phase containing 75% wt of PVdF-HFP (linear polymer) and 25% wt of crosslinked polymer is a good compromise in terms of ionic conductivity, - The ratio of 4/1 PEGDMA / PEGMA confers good retention properties while keeping good transport properties,
- La concentration de 1 ,3 mol/L de LiTFSI dans la formulation de sel de lithium montre un optimum de diffusion pour les ions lithium, The concentration of 1.3 mol / L of LiTFSI in the lithium salt formulation shows an optimum of diffusion for the lithium ions,
- La quantité de 80% de formulation de sel de lithium est un optimum en termes de conductivité ionique et d'intégrité mécanique. The amount of 80% lithium salt formulation is optimum in terms of ionic conductivity and mechanical integrity.
Comme le montre la figure 4, la micro-batterie montre une très bonne rétention de capacité jusqu'à 100 cycles à un régime de charge/décharge de 1 C. As shown in Figure 4, the micro-battery shows a very good capacity retention up to 100 cycles at a charging / discharging rate of 1 C.
La micro-batterie de l'invention présente donc de bonnes performances e cyclabilité, énergie et puissance. The micro-battery of the invention therefore has good performance e cyclability, energy and power.
La figure 5 représente l'effet du pourcentage de phase polymère sur la capacité de la micro-batterie selon l'invention. FIG. 5 represents the effect of the percentage of polymer phase on the capacity of the micro-battery according to the invention.
La figure 6 représente l'effet du pourcentage de lithium évaporé sur les performances de la micro-batterie selon l'invention. Figure 6 shows the effect of the percentage of evaporated lithium on the performance of the micro-battery according to the invention.

Claims

REVENDICATIONS
1 . Micro-batterie au lithium caractérisée en ce que l'électrolyte comprend au moins une formulation liquide à température ambiante d'un sel de lithium. 1. Lithium micro-battery characterized in that the electrolyte comprises at least one liquid formulation at room temperature of a lithium salt.
Micro-batterie selon la revendication 1 , caractérisée en ce que la formulation de sel de lithium est intégrée, insérée, incorporée, confinée dans un réseau de polymères, l'électrolyte se présentant sous forme d'un film solide, d'épaisseur comprise entre 1 μιη et 50 μιη. Micro-battery according to Claim 1, characterized in that the lithium salt formulation is integrated, inserted, incorporated, confined in a network of polymers, the electrolyte being in the form of a solid film, of thickness between 1 μιη and 50 μιη.
Micro-batterie selon l'une quelconque des revendications 1 à 2, caractérisée en ce que la formulation de sel de lithium est un mélange de sel de lithium, tel que LiTFSI, et de liquide ionique, tel que P13FSI. Micro-battery according to any one of claims 1 to 2, characterized in that the lithium salt formulation is a mixture of lithium salt, such as LiTFSI, and ionic liquid, such as P13FSI.
4. Micro-batterie selon l'une quelconque des revendications 2 à 3 caractérisée en ce que le réseau de polymère est un réseau semi- interpénétré d'au moins un polymère réticulé, tel que composé de diméthacrylate d'oligooxyéthylène (PEGDMA) et méthacrylate d'oligooxyéthylène (PEGMA), et au moins un polymère linéaire, tel que du polyfluorure de vinyldiène co-hexa fluoropropylène, PVDF- HFP. 4. Micro-battery according to any one of claims 2 to 3 characterized in that the polymer network is a semi-interpenetrating network of at least one crosslinked polymer, such as composed of oligooxyethylene dimethacrylate (PEGDMA) and methacrylate of oligooxyethylene (PEGMA), and at least one linear polymer, such as vinyldiene polyfluoride co-hexa fluoropropylene, PVDF-HFP.
Micro-batterie selon l'une quelconque des revendications précédentes, caractérisée en ce que l'électrolyte est composé de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. Micro-battery according to any one of the preceding claims, characterized in that the electrolyte is composed of 4% PEGDMA550, 1% PEGMA475, 15% PVDF-HFP, 66% P13FSI and 14% LiTFSI.
Procédé de fabrication d'une micro-batterie caractérisé en ce qu'il comporte les étapes suivantes : A method of manufacturing a micro-battery characterized in that it comprises the following steps:
a) Préparation d'un électrolyte se présentant sous forme d'un réseau semi-interpénétré ou interpénétré de polymères incorporant au moins un liquide ionique et un sel de lithium, pour former un film d'épaisseur entre 1 μιη et Ι ΟΟμιτι et de préférence entre 1 μιη et 50μιη, a) Preparation of an electrolyte in the form of a semi-interpenetrated or interpenetrating network of polymers incorporating at least one ionic liquid and a lithium salt, to form a film of thickness between 1 μιη and Ι ΟΟμιτι and preferably between 1 μιη and 50μιη,
b) Dépôt sur une cathode, du film préparé à l'étape a), b) Deposition on a cathode of the film prepared in step a),
c) Dépôt de lithium par évaporation thermique, sur le film préparé à l'étape a), pour constituer l'anode. c) Deposition of lithium by thermal evaporation, on the film prepared in step a), to form the anode.
Procédé selon la revendication 6 caractérisé en ce que l'électrolyte de l'étape a) est préparé par polymérisation radicalaire de méthacrylate d'oligooxyéthylène et diméthacrylate d'oligooxyéthylène en présence de PVDF-HFP, et d'un mélange de P13FSI/UTFSI. Process according to claim 6, characterized in that the electrolyte of step a) is prepared by radical polymerization of oligooxyethylene methacrylate and oligooxyethylene dimethacrylate in the presence of PVDF-HFP, and a mixture of P13FSI / UTFSI.
Procédé selon la revendication 7, caractérisé en ce que les proportions de chacun des constituants sont de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. Process according to claim 7, characterized in that the proportions of each of the constituents are 4% PEGDMA550, 1% PEGMA475, 15% PVDF-HFP, 66% P13FSI and 14% LiTFSI.
Film d'épaisseur comprise entre 1 μιη et 50μιη, comportant un réseau de diméthacrylate d'oligooxyéthylène, PEGDMA, et méthacrylate d'oligooxyéthylène, PEGMA, et de PVDF-HFP, dans lequel est incorporé une formulation de sel de lithium, telle qu'un mélange de P13FSI et de LiTFSI. Thick film between 1 μιη and 50μιη, comprising a network of oligooxyethylene dimethacrylate, PEGDMA, and oligooxyethylene methacrylate, PEGMA, and PVDF-HFP, in which a lithium salt formulation is incorporated, such as a mixture of P13FSI and LiTFSI.
10. Film selon la revendication 9, caractérisé en ce que les proportions des constituants sont de 4% de PEGDMA550, 1 % de PEGMA475, 15% de PVDF-HFP, 66% de P13FSI et 14% de LiTFSI. 10. Film according to claim 9, characterized in that the proportions of the constituents are 4% of PEGDMA550, 1% of PEGMA475, 15% of PVDF-HFP, 66% of P13FSI and 14% of LiTFSI.
PCT/FR2017/053086 2016-11-15 2017-11-13 Lithium microbattery and production method WO2018091808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661069A FR3058836B1 (en) 2016-11-15 2016-11-15 LITHIUM MICRO-BATTERY AND MANUFACTURING PROCESS
FR1661069 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018091808A1 true WO2018091808A1 (en) 2018-05-24

Family

ID=58213217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053086 WO2018091808A1 (en) 2016-11-15 2017-11-13 Lithium microbattery and production method

Country Status (2)

Country Link
FR (1) FR3058836B1 (en)
WO (1) WO2018091808A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873856A1 (en) * 2004-07-30 2006-02-03 Commissariat Energie Atomique Augmentation of the ionic conductivity of a solid lithium electrolyte for use in solid lithium micro-batteries by depositing alternate layers of electrolyte and lithium
WO2014006333A1 (en) * 2012-07-03 2014-01-09 Federal State Budgetary Institution For Science - A.N. Nesmeyanov Institute Of Organoelement Compounds Of Russian Academy Of Sciences (Ineos Ras) Solid polymeric electrolyte for lithium current sources
CN103840198A (en) * 2012-11-20 2014-06-04 中国科学院宁波材料技术与工程研究所 Lithium ion battery gel polymer electrolyte and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873856A1 (en) * 2004-07-30 2006-02-03 Commissariat Energie Atomique Augmentation of the ionic conductivity of a solid lithium electrolyte for use in solid lithium micro-batteries by depositing alternate layers of electrolyte and lithium
WO2014006333A1 (en) * 2012-07-03 2014-01-09 Federal State Budgetary Institution For Science - A.N. Nesmeyanov Institute Of Organoelement Compounds Of Russian Academy Of Sciences (Ineos Ras) Solid polymeric electrolyte for lithium current sources
CN103840198A (en) * 2012-11-20 2014-06-04 中国科学院宁波材料技术与工程研究所 Lithium ion battery gel polymer electrolyte and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG-SHIN PARK; SE-HEE LEE; BYUNG-II LEE; SEUNG-KI JOO, ALL-SOLID-STATE LITHIUM THIN-FILM RECHARGEABLE BATTERY WITH LITHIUM MANGANESE OXIDE ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 2, no. 2, 1999, pages 58 - 59

Also Published As

Publication number Publication date
FR3058836B1 (en) 2021-10-01
FR3058836A1 (en) 2018-05-18

Similar Documents

Publication Publication Date Title
CA2595355C (en) Bilayer electrolyte for a lithium battery
EP2729978B1 (en) Lithium/sulphur accumulator
EP3298644B1 (en) Positive electrode for a lithium electrochemical generator
EP3365933B1 (en) Method of manufacturing an accumulator of the lithium-ion type
EP2939296B1 (en) Positive electrode for lithium accumulator
EP3365937A1 (en) Method for producing a sodium-ion battery
EP3108524B1 (en) Positive electrode for lithium-sulphur electrochemical accumulator having a specific structure
WO2015092267A1 (en) Anode compartment having an amorphous-alloy collector
EP3649690A1 (en) Method for manufacturing a lithium-ion battery
EP3648205B1 (en) Lithium and carbon fluoride electrochemical generator comprising a specific negative electrode material
EP3648207B1 (en) Lithium-oxygen or lithium-air electrochemical generator comprising a specific negative electrode material
EP3685455B1 (en) Solid polymer electrolyte comprising a solvating polymer, a lithium salt and a selected halogenated polymer, and battery comprising same
WO2018091808A1 (en) Lithium microbattery and production method
EP3647443B1 (en) Specific negative electrode made of lithium and lithium electrochemical generator including such a negative electrode
EP4052314A1 (en) Gelled electrolyte for lithium ion electrochemical element
EP3648206B1 (en) Lithium electrochemical battery such as lithium-sulphur comprising a specific negative electrode material
EP3472882B1 (en) Process for manufacturing a structure acting as a positive electrode and as a current collector for a lithium-sulfur electrochemical accumulator
FR3054727A1 (en) ELECTROCHEMICAL DEVICE, SUCH AS A MICROBATTERY OR ELECTROCHROME DEVICE, AND METHOD FOR PRODUCING THE SAME
EP4256633A1 (en) Electrode for quasi-solid li-ion battery
CA3232453A1 (en) Method of operating a lithium battery
FR3091623A1 (en) ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING A SPECIFIC NEGATIVE ELECTRODE IN METAL LITHIUM AND A POSITIVE ELECTRODE ON AN ALUMINUM MANIFOLD
CA3160766A1 (en) Composite electrode comprising a metal and a polymer membrane, manufacturing method and battery containing same
FR3141561A1 (en) Multilayer electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17804629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17804629

Country of ref document: EP

Kind code of ref document: A1