WO2018090167A1 - 一种废酸处理工艺 - Google Patents

一种废酸处理工艺 Download PDF

Info

Publication number
WO2018090167A1
WO2018090167A1 PCT/CN2016/105836 CN2016105836W WO2018090167A1 WO 2018090167 A1 WO2018090167 A1 WO 2018090167A1 CN 2016105836 W CN2016105836 W CN 2016105836W WO 2018090167 A1 WO2018090167 A1 WO 2018090167A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
waste acid
waste
liquid
treatment process
Prior art date
Application number
PCT/CN2016/105836
Other languages
English (en)
French (fr)
Inventor
贲道祥
Original Assignee
江苏双能太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏双能太阳能有限公司 filed Critical 江苏双能太阳能有限公司
Priority to PCT/CN2016/105836 priority Critical patent/WO2018090167A1/zh
Publication of WO2018090167A1 publication Critical patent/WO2018090167A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/14Sulfates

Definitions

  • the invention belongs to the field of solar energy technology, and particularly relates to a waste acid treatment process.
  • the acid utilization rate is very low, and a large amount of acid is discharged along with the acid wastewater. If the waste acid is discharged into the environment without treatment, it not only acidifies the water or soil, but also harms the ecological environment and wastes a lot of resources. In addition to being acidic, waste acid and acid waste water also contain a large amount of impurities.
  • the waste acid containing ferrous chloride is treated, and the waste acid is generally concentrated by evaporation, and then the excess concentrated sulfuric acid is added while being heated, and then absorbed by the recovery purification tower, and the generated ferrous sulfate solution is then subjected to baking treatment, but this treatment is performed.
  • the by-products obtained by the method are of low quality.
  • the technical problem to be solved by the present invention is to provide a waste acid treatment process capable of producing high quality by-products and enabling recycling of spent acid after treatment.
  • the technical solution of the present invention is: a waste acid treatment process, wherein the waste acid contains ferrous chloride
  • the innovation is that the method includes the following steps: conveying the waste acid liquid generated by pickling to The impurities are removed by precipitation in the acid storage tank; the waste acid after removing impurities is sent to the three-effect evaporator group for evaporation and concentration, so that the content of ferrous chloride in the spent acid is increased, and the excess concentrated sulfuric acid is added in batches to make chlorine The chlorine in the ferrous iron is replaced; when the chlorine gas is volatilized, it is absorbed by the recovery tower to form a recyclable hydrochloric acid, and a ferrous sulfate solution is formed; the ferrous sulfate solution is sent to the regulating tank, and sulfuric acid is added to the sulfuric acid concentration.
  • the waste acid solution in the conditioning tank is sent to the cooling crystallization tank, and the waste acid solution is stirred at a temperature of 0 to 5 degrees with a stirrer rotating at 60 to 70 rpm until The spent acid solution is no longer crystallized; the spent acid solution after crystallization is sent to a centrifugal separation device for solid-liquid separation to obtain ferrous sulfate crystal grains and a regenerated acid solution, respectively.
  • the waste acid treatment process of the present invention wherein the conventional evaporation is three-effect evaporation, thereby completely evaporating, capable of producing high quality by-products, and the regenerated acid after treatment can be recycled;
  • the waste acid treatment process of the present invention is Before cooling and crystallization, the concentration of sulfuric acid in the spent acid is adjusted to 15% to 20%, and the temperature is controlled to be 0 to 5 degrees during the cooling crystallization process. Increasing the concentration of concentrated sulfuric acid and lowering the crystallization temperature can make the sulfuric acid The solubility of ferrous iron becomes small, and ferrous sulfate crystal grains are crystallized.
  • the waste acid contains ferrous chloride, and the following steps are included:
  • the waste acid solution produced by pickling is transported to the acid storage tank to remove impurities by precipitation; the waste acid after removing the impurities is sent to a 60-degree three-effect evaporator group for evaporation and concentration for 1.5 hours to make ferrous chloride in the spent acid.
  • the excess concentrated sulfuric acid is added in batches to displace the chlorine in the ferrous chloride; when the chlorine gas is volatilized, it is absorbed by the recovery and purification tower to form a recyclable hydrochloric acid, and at the same time, a ferrous sulfate solution is formed;
  • the ferrous solution is sent to the conditioning tank, and sulfuric acid is added to the sulfuric acid concentration of 15%; the waste acid liquid in the conditioning tank is sent to the cooling crystallization tank, and the waste is continuously stirred at a temperature of 5 degrees at a rate of 60 degrees per minute.
  • the acid solution is not crystallized until the waste acid solution is no longer crystallized; the spent acid solution after crystallization is sent to a centrifugal separation device for solid-liquid separation to obtain ferrous sulfate crystal grains and a regenerated acid solution, respectively.
  • the waste acid contains ferrous chloride, and the following steps are included:
  • the waste acid solution produced by pickling is transported to the acid storage tank to remove impurities by precipitation; the waste acid after removing impurities is sent to a 50-degree three-effect evaporator group for evaporation and concentration for 1.5 hours to make ferrous chloride in the spent acid.
  • the excess concentrated sulfuric acid is added in batches to displace the chlorine in the ferrous chloride; when the chlorine gas is volatilized, it is absorbed by the recovery and purification tower to form a recyclable hydrochloric acid, and at the same time, a ferrous sulfate solution is formed;
  • the ferrous solution is sent to the conditioning tank, and sulfuric acid is added to the sulfuric acid concentration of 20%; the waste acid liquid in the conditioning tank is sent to the cooling crystallization tank, and the waste acid is continuously stirred at a temperature of 0 degrees at a rate of 70 revolutions per minute.
  • the liquid is not crystallized until the waste acid solution is no longer crystallized; the spent acid solution after crystallization is sent to a centrifugal separation device for solid-liquid separation to obtain ferrous sulfate crystal grains and a regenerated acid solution, respectively.
  • the waste acid contains ferrous chloride, and the following steps are included:
  • the waste acid solution produced by pickling is transported to the acid storage tank to remove impurities by precipitation; the waste acid after removing impurities is sent to a 55-degree three-effect evaporator group for evaporation and concentration for 1.5 hours to make ferrous chloride in the spent acid.
  • the excess concentrated sulfuric acid is added in batches to displace the chlorine in the ferrous chloride; when the chlorine gas is volatilized, it is absorbed by the recovery and purification tower to form a recyclable hydrochloric acid, and at the same time, a ferrous sulfate solution is formed;
  • the ferrous solution is sent to the conditioning tank, and sulfuric acid is added to the sulfuric acid concentration of 17%; the waste acid liquid in the conditioning tank is sent to the cooling crystallization tank, and the waste acid is continuously stirred at a temperature of 3 degrees at a rate of 65 rpm.
  • the liquid is not crystallized until the waste acid solution is no longer crystallized; the spent acid solution after crystallization is sent to a centrifugal separation device for solid-liquid separation to obtain ferrous sulfate crystal grains and a regenerated acid solution, respectively.
  • the content of sulfuric acid in the regenerated acid obtained by the waste acid treatment process of the invention is about 25 percent, which can meet the requirements of the pickling process, that is, the regenerated acid can be recycled; the obtained content of ferrous sulfate crystal grains exceeds 95 In addition, it can meet the quality standards of chemical products and has high economic value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种废酸处理工艺,所述废酸中含有氯化亚铁,包括如下步骤:将酸洗产生的废酸液沉淀除去杂质;将除去杂质后的废酸送入三效蒸发器组进行蒸发浓缩,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸将调节池内的废酸液输送至冷却结晶罐,持续搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。优点在于:该处理工艺能够产生高质量的副产品,且降低废酸的处理成本,及处理后的再生酸还能循环利用。

Description

一种废酸处理工艺 一种废酸处理工艺
技术领域
本发明属于太阳能技术领域,特别涉及一种废酸处理工艺。
背景技术
在太阳能生产过程中,酸的利用率很低,大量的酸随同酸废水排放出去。这些废酸如不经过处理而排放到环境中,不仅使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。废酸和酸性废水除具有酸性外,还含有大量的杂质。
现有的一些企业针对上述现象,采用了比较简单的用含碱性材料对废酸中和处理,但由于废渣太多不易脱水,极易产生二次污染,且成本太高,因此这些设施基本上是处于半瘫痪状态。其他大部分企业均采用蒸发浓缩法进行废酸处理,由于副产品质量差、销路窄、运行成本太高,这些环保设施也是举步维艰。
现在对含有氯化亚铁的废酸进行处理,一般将废酸蒸发浓缩,然后趁热加入过量浓硫酸,再经回收净化塔吸收,生成的硫酸亚铁溶液再通过焙烧处理,但这种处理方法得到的副产品质量低。
因此,研发一种能够产生高质量的副产品,而且能使处理后的废酸能够循环利用的废酸处理工艺是非常有必要的。
发明内容
本发明要解决的技术问题是提供一种能够产生高质量的副产品,而且能使处理后的废酸能够循环利用的废酸处理工艺。
为解决上述技术问题,本发明的技术方案为:一种废酸处理工艺,所述废酸中含有氯化亚铁,其创新点在于:包括如下步骤:将酸洗产生的废酸液输送至储酸池内经沉淀除去杂质;将除去杂质后的废酸送入三效蒸发器组进行蒸发浓缩,使废酸内的氯化亚铁含量升高,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸至硫酸浓度为百分之15至百分之20;将调节池内的废酸液输送至冷却结晶罐,在0度至5度的温度下持续用转速为60至70转每分钟的搅拌机搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。
本发明的优点在于:
本发明的废酸处理工艺,其中,该传统的蒸发为三效蒸发,因而使蒸发完全,能够产生高质量的副产品,且处理后的再生酸还能循环利用;本发明的废酸处理工艺在冷却结晶前将废酸中硫酸的浓度调配为15百分之至20百分之,并在冷却结晶过程中将温度控制在0度至5度,增加浓硫酸浓度和降低结晶温度都能使得硫酸亚铁的溶解度变小,结晶出硫酸亚铁晶粒。
具体实施方式
下面的实施例可以使本专业的技术人员更全面地理解本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例废酸处理工艺,废酸中含有氯化亚铁,包括如下步骤:
将酸洗产生的废酸液输送至储酸池内经沉淀除去杂质;将除去杂质后的废酸送入60度的三效蒸发器组进行蒸发浓缩1.5h,使废酸内的氯化亚铁含量升高,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸至硫酸浓度为百分之15;将调节池内的废酸液输送至冷却结晶罐,在5度的温度下以60度转每分钟的速率持续搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。
实施例2
本实施例废酸处理工艺,废酸中含有氯化亚铁,包括如下步骤:
将酸洗产生的废酸液输送至储酸池内经沉淀除去杂质;将除去杂质后的废酸送入50度的三效蒸发器组进行蒸发浓缩1.5h,使废酸内的氯化亚铁含量升高,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸至硫酸浓度为百分之20;将调节池内的废酸液输送至冷却结晶罐,在0度的温度下以70转每分钟的速率持续搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。
实施例3
本实施例废酸处理工艺,废酸中含有氯化亚铁,包括如下步骤:
将酸洗产生的废酸液输送至储酸池内经沉淀除去杂质;将除去杂质后的废酸送入55度的三效蒸发器组进行蒸发浓缩1.5h,使废酸内的氯化亚铁含量升高,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸至硫酸浓度为百分之17;将调节池内的废酸液输送至冷却结晶罐,在3度的温度下以65转每分钟的速率持续搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。
本发明的废酸处理工艺处理得到的再生酸中硫酸的含量为25百分之左右,可满足酸洗工序的要求,即再生酸可循环利用;得到的硫酸亚铁晶粒的含量超过95百分之,能够达到化工产品质量标准,具有很高的经济价值。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

  1. 一种废酸处理工艺,所述废酸中含有氯化亚铁,其特征在于:包括如下步骤:将酸洗产生的废酸液输送至储酸池内经沉淀除去杂质;将除去杂质后的废酸送入三效蒸发器组进行蒸发浓缩,使废酸内的氯化亚铁含量升高,趁热分批加入过量浓硫酸,使氯化亚铁中的氯被置换出来;氯气挥发出来时,经回收净化塔吸收生成可回用盐酸,同时生成硫酸亚铁溶液;将硫酸亚铁溶液输送至调节池,并加入硫酸至硫酸浓度为百分之15至百分之20;将调节池内的废酸液输送至冷却结晶罐,在0度至5度的温度下持续用转速为60至70转每分钟的搅拌机搅拌废酸液,直至废酸液不再结晶;将结晶后的废酸液输送至离心分离装置进行固液分离,分别得到硫酸亚铁晶粒和再生酸液。
PCT/CN2016/105836 2016-11-15 2016-11-15 一种废酸处理工艺 WO2018090167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105836 WO2018090167A1 (zh) 2016-11-15 2016-11-15 一种废酸处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105836 WO2018090167A1 (zh) 2016-11-15 2016-11-15 一种废酸处理工艺

Publications (1)

Publication Number Publication Date
WO2018090167A1 true WO2018090167A1 (zh) 2018-05-24

Family

ID=62145955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105836 WO2018090167A1 (zh) 2016-11-15 2016-11-15 一种废酸处理工艺

Country Status (1)

Country Link
WO (1) WO2018090167A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149082A (zh) * 2021-04-29 2021-07-23 斯瑞尔环境科技股份有限公司 一种利用废酸生产高纯硫酸亚铁水和七水硫酸亚铁的方法
CN114604901A (zh) * 2022-03-20 2022-06-10 深圳市长隆科技有限公司 一种染料磺化废酸处理方法
CN114671421A (zh) * 2022-04-29 2022-06-28 中国科学院过程工程研究所 一种利用含铁盐酸酸洗废液资源化制备磷酸铁的方法及***
CN115232645A (zh) * 2022-08-17 2022-10-25 山东沾化阳光化学有限公司 一种氯化石蜡生产过程中回收盐酸精制工艺及设备
CN116143179A (zh) * 2022-09-09 2023-05-23 河北圣雪大成制药有限责任公司 一种利用盐酸土霉素废酸制备Fenton氧化用硫酸亚铁的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273326A (ja) * 1997-03-28 1998-10-13 Nittetsu Mining Co Ltd 第一鉄化合物を含有する廃塩酸より高純度の硫酸第一鉄又はポリ硫酸鉄を製造する方法
US20050281732A1 (en) * 2004-06-22 2005-12-22 Alexander Kehrmann Method of producing ferrous sulfate heptahydrate
CN1803656A (zh) * 2006-01-24 2006-07-19 杨淙垣 钢板酸洗废液的再生处理方法
CN105110540A (zh) * 2015-08-28 2015-12-02 新兴铸管股份有限公司 一种镀锌酸洗废盐酸的回收处理方法
CN105776139A (zh) * 2016-03-16 2016-07-20 江苏双能太阳能有限公司 一种废酸处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273326A (ja) * 1997-03-28 1998-10-13 Nittetsu Mining Co Ltd 第一鉄化合物を含有する廃塩酸より高純度の硫酸第一鉄又はポリ硫酸鉄を製造する方法
US20050281732A1 (en) * 2004-06-22 2005-12-22 Alexander Kehrmann Method of producing ferrous sulfate heptahydrate
CN1803656A (zh) * 2006-01-24 2006-07-19 杨淙垣 钢板酸洗废液的再生处理方法
CN105110540A (zh) * 2015-08-28 2015-12-02 新兴铸管股份有限公司 一种镀锌酸洗废盐酸的回收处理方法
CN105776139A (zh) * 2016-03-16 2016-07-20 江苏双能太阳能有限公司 一种废酸处理工艺

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149082A (zh) * 2021-04-29 2021-07-23 斯瑞尔环境科技股份有限公司 一种利用废酸生产高纯硫酸亚铁水和七水硫酸亚铁的方法
CN114604901A (zh) * 2022-03-20 2022-06-10 深圳市长隆科技有限公司 一种染料磺化废酸处理方法
CN114671421A (zh) * 2022-04-29 2022-06-28 中国科学院过程工程研究所 一种利用含铁盐酸酸洗废液资源化制备磷酸铁的方法及***
CN114671421B (zh) * 2022-04-29 2023-10-10 中国科学院过程工程研究所 一种利用含铁盐酸酸洗废液资源化制备磷酸铁的方法及***
CN115232645A (zh) * 2022-08-17 2022-10-25 山东沾化阳光化学有限公司 一种氯化石蜡生产过程中回收盐酸精制工艺及设备
CN116143179A (zh) * 2022-09-09 2023-05-23 河北圣雪大成制药有限责任公司 一种利用盐酸土霉素废酸制备Fenton氧化用硫酸亚铁的方法

Similar Documents

Publication Publication Date Title
WO2018090167A1 (zh) 一种废酸处理工艺
CN102249262B (zh) 沉钒母液高盐废水中硫酸钠、硫酸铵浓缩、冷析分离方法
CN106865571B (zh) 一种化工浓盐水制取小苏打和硫酸铵的方法
JP5466749B2 (ja) 酸化バナジウム生産廃水の処理方法
CN105776139A (zh) 一种废酸处理工艺
CN110227702B (zh) 一种利用化工废盐制备熔剂的方法
CN106185989A (zh) 一种生活垃圾焚烧飞灰中回收无机盐的方法
CN113105138A (zh) 垃圾焚烧飞灰水洗脱氯和水洗液蒸发分质结晶的处理方法及***
CN110550680B (zh) 一种阻止硫酸法钛白废酸多效浓缩一效结垢的方法
CN109607503A (zh) 含磷酸盐的废盐资源化处理方法
CN103402917A (zh) 硼酸的回收方法和回收装置
CN104495953A (zh) 一种盐析法资源化处理工业废盐酸的工艺
WO2018000730A1 (zh) 一种含六价铬废渣的资源循环再利用的处理方法
WO2016110081A1 (zh) 酸性废气的治理及资源化利用
WO2014194791A1 (zh) 一种处理焦炉煤气脱硫副产品硫膏的方法
CN112225242A (zh) 一种垃圾焚烧飞灰与盐酸反应的母液的资源化处理装置及工艺
CN106277005A (zh) 一种从氟化钙污泥资源中回收冰晶石、碳酸钙和硫酸钠的方法
CN100357176C (zh) 从含金属盐的废硫酸中回收硫酸的方法
CN116199377B (zh) 一种水洗废盐分质调控的焚烧飞灰资源化利用方法
CN113800539A (zh) 一种大修渣湿法浸出液中盐提纯回收工艺
CN109336138A (zh) 一种含钾和钠的混合硫酸盐中钾钠的分离方法
CN101973650A (zh) 一种电石法pvc生产中乙炔清净工艺次氯酸钠废水处理闭路循环的方法
CN107162935A (zh) 废化学抛光剂中含磷化合物的回收方法
CN103819042A (zh) 一种盐酸废液净化处理方法
CN113526542B (zh) 一种脱除硫酸锌液中氟氯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921469

Country of ref document: EP

Kind code of ref document: A1