WO2018088580A1 - Method for manufacturing precisely shaped parts, and precisely shaped parts using same - Google Patents

Method for manufacturing precisely shaped parts, and precisely shaped parts using same Download PDF

Info

Publication number
WO2018088580A1
WO2018088580A1 PCT/KR2016/012884 KR2016012884W WO2018088580A1 WO 2018088580 A1 WO2018088580 A1 WO 2018088580A1 KR 2016012884 W KR2016012884 W KR 2016012884W WO 2018088580 A1 WO2018088580 A1 WO 2018088580A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
precision
group
feedstock
steel
Prior art date
Application number
PCT/KR2016/012884
Other languages
French (fr)
Korean (ko)
Inventor
한관희
한보람
은영무
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to PCT/KR2016/012884 priority Critical patent/WO2018088580A1/en
Publication of WO2018088580A1 publication Critical patent/WO2018088580A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product

Definitions

  • the present invention relates to a method for producing a precisely shaped part using a metal powder comprising a metal or an alloy, and to a precision shaped part used.
  • a relatively coarse powder having a particle size of about 150 ⁇ m is usually used as a raw material.
  • the molding pressure is higher than the yield strength of the metal to increase the contact between the powders by plastic deformation and to form a compact filling the gap between the powders.
  • paraffin wax, stearic acid or N, enprime ethylene bis stearamide wax (N, N 'ethylene) within about 2 wt% in order to reduce the friction between the powder, the powder and the mold wall, and the powder and the punch generated during the molding process.
  • the pressure applied during compression molding of the powder filled in the mold may vary depending on the particle size, shape, and physical properties of the powder material.
  • the pressure is typically about 500 MPa to about 1 GPa. high.
  • the wear life of the mold is severely caused by frictional wear generated between the powder and the mold wall, which occurs during the molding process, and thus the mold life tends to be shortened.
  • the non-uniform density gradient present in the molded body produced by the conventional powder metallurgy method is then the pores are removed to cause densification During the sintering process, nonuniform shrinkage is caused for each part, resulting in shape and dimension deformation of the sintered body. Therefore, for example, in the case of forming iron alloy powder by the traditional powder metallurgy technique, in order to control the dimensional control and shape deformation of the sintered body, it is common to intentionally lower the relative density of the molded body to about 70% and then sinter it after manufacture. to be.
  • a relatively coarse powder is used as a raw material powder which does not deviate significantly from the particle size of the powder used in the conventional powder metallurgy method.
  • the molding is performed under a high pressure exceeding the yield strength of the powder metal of about 400 MPa or more. Has a limit.
  • the powder injection molding method uses a fine powder having a spherical shape or a shape close to it and a particle diameter of about 50 ⁇ m or less, more preferably 30 ⁇ m or less in order to secure fluidity to the extent that injection molding is possible, and a lubricant and a surfactant
  • a large amount of the organic binder is added in an amount of about 30 to 50 vol% based on the average particle size, particle size distribution, and shape of the metal powder, and used as a raw material.
  • the raw material feedstock made by mixing the metal powder and the organic binder shows high fluidity in the molten state of the organic binder according to the addition ratio of the organic binder, so that injection molding is performed to precisely manufacture a complicated three-dimensional product. can do.
  • critical solids volume percentage in which all organic binders fill the gaps between the metal powders filled with the tap density, that is, in a condition where the powder gaps are saturated with the organic binders
  • the organic binder is used to determine the mixing ratio of the metal powder and the organic binder under supersaturation conditions of about 5 to 10% relative to the volume of the empty gap.
  • the surplus organic binder imparts high flowability of the feedstock and enables injection molding. In the subsequent degreasing process, the organic binder is removed and the injection molding becomes porous.
  • the porosity is approximately 50 to 30%. Since the high-density sintered body having a porosity of 5% or less, that is, a relative density of 95% or more, should be produced only by the sintering process without any help from the outside from such a porous state, the sinterability of the raw metal powder used should be excellent. do. For this reason, the powder injection molding method uses a fine powder having a higher activity than the powder used in the conventional powder metallurgy method.
  • the manufacturing cost of the mold to be used and the raw material powder to be used are relatively expensive, and particularly include a long degreasing process for removing the organic binder from the injection molding. Because of the long manufacturing process time, the manufacturing cost is expensive.
  • the object of the present invention is to apply a much lower pressure than the conventional powder metallurgy method, and to control the size and shape control to realize a more complex and precise shape, there is almost no density gradient internally uniform density, relative density It is to manufacture high-density precision parts of more than 95%.
  • the step of preparing a feedstock by pressure kneading a metal powder having a particle size of 0.1 to 60 ⁇ m and a thermoplastic organic binder in a ratio at which the gap of the metal powder is not supersaturated Compressing or extruding the feedstock to produce a molded body; A degreasing step of removing the organic binder from the molded body; And sintering the degreased molded body to produce a sintered body.
  • a precision shaped part manufactured by the manufacturing method of the precision shaped part as described above.
  • the molded body can be discharged even at low pressure, and there are almost no defects such as laminar cracking that can occur due to stress relaxation and continuous friction with the mold wall due to the absence of pressure restraint during the discharge process. Does not occur.
  • the molded article produced by compression molding according to the present invention greatly reduces the incidence of shape deformation due to non-uniform shrinkage that commonly occurs when sintering at high density by a conventional powder metallurgy process using coarse powder.
  • a high-density sintered body having a relative density of 95% or more without accompanying distortion or deformation of the shape can be produced even if high-density sintering is performed.
  • the organic binder since the organic binder does not fill all the gaps between the metal powders, the content of the metal powder in the feedstock used for manufacturing the molded product is unsaturated, that is, it is set at a critical solid content or higher, so that waste or open pores are formed inside the product body.
  • the pores of the back are uniformly present.
  • the added organic binder is present in the form of coating the metal powder surface, rather than being trapped in the gap of the metal powder.
  • a gas passage is easily provided even when gas components generated from evaporation or decomposition of low melting point components among organic binders that are started from the surface portion during heat degreasing are generated inside, and defects such as swelling due to gas components are generated. This does not happen.
  • the metal powder is unevenly aggregated during the heat degreasing process. Since viscous flow does not occur, deformation or slumping is inhibited during degreasing, and sintered body having excellent surface roughness can be manufactured by sintering.
  • the amount of the organic binder to be used is relatively small, and the processing time is shortened, thereby reducing the manufacturing cost when manufacturing a similar product.
  • a novel method for producing a precise product in a real shape using a feedstock mixed with a metal powder and an organic binder at a critical solidity rate and warm or compression or extrusion molding technology can be provided. have.
  • This has the ripple effect of providing the industry with new parts manufacturing technology that is of high value in technical, economic and environmental aspects.
  • FIG. 1 is a flow chart showing a method of manufacturing a precision shaped part in an embodiment of the present invention
  • FIG. 2 is a schematic view illustrating the solid phase rate of the powder injection molding and the conventional powder metallurgy and the feedstock in order to explain the solid phase rate of the feedstock manufactured by the manufacturing method shown in FIG. 1;
  • Figure 3 shows the internal structure (a) of the injection molded body prepared by conventional powder injection molding and the internal structure (b) of the molded body produced by compression or extrusion molding a high solid feedstock according to an embodiment of the present invention Schematic diagram shown in comparison,
  • Fig. 4 is a molded article (a) powder-molded from a feedstock having a solid phase rate (meaning a percentage volume of solid powder to 100% total feedstock volume) of 65% and the critical solidity rate according to the present invention. Scanning electron microscope image of the fracture surface of the internal structure (b) of the molded article produced by warm compression of a feedstock having a solid phase rate exceeding 75%,
  • FIG. 5 is an image of the fracture surface of the degreasing body observed with a scanning electron microscope in the state where heating of the molded body of FIG. 4 (b) is completed.
  • Figure 6 is a feedstock made of a solid phase ratio of 80% according to the present invention and a comparative sample heating the two formed product specimens prepared using a powder injection molding feedstock made of a solid phase rate of 65% at the same heating rate Graph showing changes in degreasing rate,
  • FIG. 7 is an image photograph showing the appearance of a molded article prepared in a disk form by compression molding a feedstock having a 75% solid phase rate and a non-destructive test result taken by X-ray transmission test;
  • FIG. 8 shows that the feedstock having a solid phase ratio of 75% is degreased by compression molding, and then, the sintered body prepared by sintering in a nitrogen gas atmosphere at 1180 ° C. is polished and corroded in a Billella's reagent, followed by a scanning electron microscope. Microscopic tissue images,
  • FIG. 9 is a photograph of a molded body (a) and a sintered body (b) of an exhaust gas valve seat insert for a gasoline engine produced according to the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a precision shaped part in an embodiment of the present invention. As shown, the method of manufacturing a precision shaped part according to an embodiment of the present invention, the step of preparing a feedstock by mixing a metal powder and an organic binder (S10), the step of manufacturing a molded article (S20), of the molded article Degreasing step (S30) and the step of sintering to produce a sintered body (S40).
  • the metal powder in the manufacturing step (S10) of the feedstock, the metal powder, pure iron, low alloy steel, structural alloy steel, mar aging steel, stainless steel, heat-resistant steel, tool steel, high-speed steel, Fe-Ni-based super heat-resistant alloy, Ni-based super heat-resistant Alloys, Co-Cr-Mo biometals, Co-Si-Mo tripalloy (Tripallo® is a registered trademark of Kennametal-Stelite, USA), Co-Cr-WC cobalt alloy, Cr-Fe chromium alloy, Fe-Si Silicon steel, Fe-Si-Al sender alloy, iron-based magnetic alloy containing Fe-Co-Cr, pure copper, Cu-Be alloy, Cu-Al alloy, Cu-Ni-Sn alloy, Mo-Cu molybdenum alloy, W It may be a powder of a metal or alloy selected from the group consisting of -Cu, W-Ni-Cu, W-Ni-Fe tungsten alloys, transition metals including Ti and
  • the organic binder is one or two or more selected from the group consisting of a low melting point organic compound showing the functionality of the basic wax component, a surfactant and a plasticizer, and an organic polymer having a weight average molecular weight of 8,000 to 200,000 serving as a backbone polymer One or two or more selected from the group consisting of: water-insoluble and thermoplastic.
  • Montan Wax and N Enprime Ethylene Bis-Stearamide Wax (Rico® Wax, registered trademark of Clariant Inc., Switzerland, Accrawax® Seed, registered by Lonza, USA)
  • One or two or more selected from the group consisting of polyolefin waxes including amide waxes, phthalic acid and polyalphaolefin waxes are mixed and these are referred to as "first group" for convenience.
  • a polymer serving as a backbone to maintain the shape of the molded body in the final stage of degreasing including a polyolefin-based polymer selected from ethylene vinyl acetate, low density polyethylene, high density polyethylene or polypropylene, a polyolefin copolymer and polyoxymethylene Two or more selected from the group consisting of thermoplastic backbone polymers such as composite resins are selected for convenience.
  • the organic binder can be made by combining so that the weight ratio of the first group and the second group is 9: 1 to 2: 3. More preferably, the weight ratio of the first group and the second group may be combined so as to be 7: 3 to 1: 1.
  • FIG. 2 is a schematic view showing the conventional powder injection molding and powder metallurgy in order to explain the solid phase rate of the feedstock produced by the manufacturing method shown in FIG. 1.
  • the addition amount of the metal powder in the feedstock is a solid phase corresponding to the condition that the pores are formed in the molded body produced by compression or extrusion molding, that is, the unsaturated condition that the organic binder cannot fill all the gaps between the powders.
  • the content is in the range of not less than 85% or less, more preferably 80% or less, from the critical solid content (critical solid volume percentage). That is, the solid volume percentage of the feedstock prepared by mixing the metal powder and the organic binder may be from the critical solids ratio to 85%, more preferably from the critical solids ratio to 80%.
  • the critical solidity rate is difficult to specify a constant value because it depends on the particle size, particle size distribution, shape, etc.
  • the critical solidity rate is 70%, it can be seen that the feedstock has a solid phase rate of 70 to 85%, more preferably 70 to 80%.
  • the content of the organic binder added in the feedstock may be approximately 15 to 30% by volume percentage, more preferably 20 to 30%.
  • the metal powder is preferably a powder close to a spherical shape in order to secure formability and sinterability, and the size of the metal powder is preferably limited to a maximum of 60 ⁇ m. More specifically, the particle size of the metal powder is preferably 0.1 to 60 ⁇ m, more preferably 0.5 to 45 ⁇ m.
  • the feedstock may be prepared by kneading the metal powder and the organic binder at a temperature of 100 to 180 ° C. at which the organic binder is melted.
  • the average particle diameter of the feedstock prepared at this time is preferably made by grinding in the form of granules of 0.1 to 2.0 mm, more preferably in the form of granules of 0.1 to 0.5 mm.
  • the molded body is manufactured by compression or extrusion molding the feedstock.
  • the feedstock containing a considerable amount of the organic binder is heated at a temperature of 100 to 180 ° C., which is the melting temperature of the organic binder, in order to form a precise shaped product by compression or extrusion. It is desirable to ensure fluidity.
  • the molding pressure for compression or extrusion is preferably 20 to 400 MPa, more preferably 30 to 300 MPa.
  • the molding pressure is too low, the filling is incomplete due to the crosslinking of the solid powder in the mold, the filling rate may be lower than the tap density. In this case, the contact between the particles is poor, the sinterability is lowered, or due to the distribution of the non-uniform powder, there is a high tendency to form large pores therein.
  • the metal powder since the metal powder does not undergo plastic deformation under relatively low pressure and is molded by the organic binder, the conventional powder using the high molding pressure accompanied by plastic deformation of the metal powder is formed. There is a difference between the metallurgical method and the warm compression molding method.
  • Figure 3 is a schematic diagram showing the internal structure of the injection molded body produced by conventional injection molding and the internal structure of the molded body produced by compression or extrusion molding a high solid feedstock according to an embodiment of the present invention.
  • white spherical particles refer to metal powders
  • gray materials represent organic binders.
  • Figure 3 (b) shows the internal structure of the molded body formed by the warm compression of the feedstock of a high solids rate higher than the critical solids rate according to the present invention, the metal powder is all coated with an organic binder, Along these gaps, unfilled unsaturated regions are present as pores.
  • 4 is an internal structure of a molded article formed by powder injection molding using a feedstock having a solid phase rate of 65% as a raw material and a compact formed by warm compression of a feedstock having a solid phase rate of 75% exceeding a critical solidity rate according to the present invention.
  • the fracture surface was observed with a scanning electron microscope.
  • 4 (a) and 4 (b) are images obtained by scanning electron microscopy of the fracture surfaces of the molded bodies having the solid phase ratios of 65% and 75%, respectively, and in the case of the former, an organic binder filled between the particles of the metal powder is elongated. On the other hand, in the latter case, pores exist between the particles of the metal powder on the fracture surface.
  • a heating process is performed to remove the organic binder from the molded body. Since the pores are inevitably formed and distributed in the form of waste or open pores in the molded article produced by the present invention, it is advantageous to secure the discharge passage of the organic binder component that is decomposed or volatilized in the form of gas during heating for degreasing. In the degreasing process, defects such as swelling or cracks are inhibited. Therefore, although the degreasing time takes a relatively long time compared with the conventional powder metallurgy method, the degreasing time is greatly shortened compared with the case where the same type of molded body is manufactured by the powder injection molding technique.
  • FIG. 5 is an image of the fracture surface of the degreasing body observed by scanning electron microscopy after heating the molded body of FIG. 4 (b), and all organic binders are removed from the site except the contact area between particles. It shows the shape of metal powder particles.
  • the degreasing step and the sintering step to be described later are not performed separately from each other in a separate furnace, but are heated and degreased by a single step heating process by one heating furnace. And sintering can be performed efficiently.
  • the degreasing time is greatly shortened, so that a continuous operation at a constant speed under a gas atmosphere such as argon or nitrogen gas is carried out by using a push type continuous furnace having an appropriate temperature range. It is possible to implement, in which case higher productivity can be achieved.
  • the organic binder decomposition product produced in the degreasing step (S30) as described above the non-oxidizing one selected from the group consisting of argon, nitrogen, hydrogen, and mixed gas mixed with argon or hydrogen to within 5% by volume percentage. It is preferable to use gas as a carrier gas and to remove it by flowing at a flow rate of 0.1-20 L / min.
  • the degreased molded body is heated to remove pores and a densified sintered body is manufactured.
  • This sintering step (S40) is in many cases made in an atmosphere of vacuum. Even in the case of using a vacuum furnace, in the case of an alloy containing a high vapor pressure or a highly volatile element, in order to achieve volatilization of the component, it is made in a partial vacuum atmosphere in which the partial pressure of argon or nitrogen gas is adjusted to 0.1 to 100 torr. It is desirable to.
  • the degreasing step (S30) and the sintering step (S40) carry a non-oxidizing gas. It can be used as a gas or an atmosphere gas. In such a case, a mixed gas of argon or nitrogen containing argon or nitrogen as well as hydrogen, which is a reducing gas, may be used.
  • Corresponding alloy powders include pure iron, Fe-Si silicon steel, Fe-Si-Al sendust alloy, austenitic stainless steel, mar aging steel, Fe-Ni invar alloy, Co-Cr-Mo bioalloy, Co -Si-Mo tripalloy (Tripallo® is a registered trademark of Kennametal-Stelite, USA), pure copper and copper alloys such as Cu-Be, Cu-Al, Cu-Ni-Sn. Molybdenum alloys, such as Mo-Cu, tungsten alloys, such as W-Cu, W-Ni-Cu, and W-Ni-Fe, Nb alloy, Ti, and its alloy can be illustrated.
  • alloys in which carbon is an essential alloy element for example, low alloy steels, structural alloy steels, martensitic stainless steels, precipitation hardening stainless steels, heat resistant steels, tool steels, high speed steels, and high carbon alloys made of Stellite® cobalt alloys (Stellite ® is a registered trademark of Kennametal-Stelite Co., Ltd., USA, and Fe-Ni and Ni-based superalloy alloys, in the case of a metal selected from the group, in the degreasing step of carrying a neutral gas such as argon, nitrogen or a mixture thereof It is preferable to use as a gas.
  • a neutral gas such as argon, nitrogen or a mixture thereof It is preferable to use as a gas.
  • the metal powder may be selected from the alloy group consisting of high chromium-resistant steel, tool steel or high-speed steel, nickel-based heat-resistant alloy and cobalt-based heat-resistant alloy having a chromium content of 5 wt% or more among the alloying components, and added to the alloy as necessary.
  • abrasion resistance may be added, or an alloying element such as copper may be added to improve thermal conductivity, or sulfide may be added to improve lubricity.
  • the present invention can be applied to a variety of industrially useful alloys, but for comparative examples and examples of the present invention Cr-Ni-Nb heat-resistant steel, Ni-Fe-Cr-Mo-based high carbon Ni Precise parts such as heat-resistant alloys, Cr-Ni austenitic stainless steels, and Stellite® 6 (Co-Cr-WC-based high-carbon cobalt alloys). It will be described for the manufacturing method and the precision-shaped parts manufactured using the same.
  • the organic binder used in the conventional powder injection molding solid phase rate of the supersaturation state remaining after filling the metal powder gap Degreasing under the same heating conditions for the molded article made of the feedstock of the present invention with a solid phase ratio of 80% of the molded article prepared with a feedstock of 65% and the metal powder gap cannot be filled by the organic binder and the void is unsaturated. The speed was compared.
  • the solid powder used was nominally composed of 12 wt% chromium, 6 wt% molybdenum, 1.2 wt% manganese, 1.7 wt% silicon, 0.9 wt% vanadium, 0.5 wt% tungsten, 2.2 wt% carbon and the rest nickel. It is a high carbon nickel alloy powder (GHS-4, manufactured by Epson-Atmix, Japan) of 8.3 ⁇ m.
  • Thermoplastic organic having a composition of 264 g of the alloy powder, 35 wt% of paraffin wax, 4 wt% of stearic acid, 6 wt% of carnauba wax, 22 wt% of polyethylene and polyolefin copolymer, and 18 wt% of a composite resin including polyoxymethylene.
  • the binder was pressurized and kneaded at 170 ° C. to prepare 290 g of feedstock having a solid phase rate of 80%, and 244 g of a feedstock having a solid phase rate of 65% used in powder injection molding was prepared for comparative experiments.
  • the feedstock prepared as above is crushed into small granules of -50 mesh (US standard), charged into a mold preheated at 170 ° C, and 30 MPa (when the solid content is 65%) or 70 MPa, respectively, depending on the solid phase rate. Compression molding was carried out while applying a pressure (when the solid phase ratio was 80%) to form a disk shaped body having a diameter of 25.4 mm ⁇ and a thickness of about 6.5 mm.
  • the nitrogen gas was flowed at a flow rate of 0.4 L / min and heated up to 460 °C while changing the temperature increase rate to 1.5 °C / min, 3.6 °C / min, 7.3 °C / min.
  • the degreasing ratio was determined by measuring the weight loss from the initial weight after the heating was completed and cooled to investigate the degreasing ratio of the organic binder contained in the molded body under each condition.
  • the degreasing ratio is determined as "(molding weight-degreasing weight) / molding x 100%".
  • the feedstock thus prepared was charged to a mold preheated to 165 ° C. and a pressure of 40 MPa to 120 MPa was applied to form a disk shaped body having a diameter of 25.4 mm and a thickness of 4.5 mm. Subsequently, the molded body was charged into a tubular furnace to perform degreasing and sintering. Degreasing and sintering were carried out in a single heating process and carried out in an argon or nitrogen gas atmosphere.
  • FIG. 7 (d) shows the outer shapes of the disk-shaped molded bodies having a diameter of 25.4 mm and a height of 4.5 mm made by compression of 45 MPa, 65 MPa and 90 MPa, respectively.
  • (f) is a nondestructive test image by x-ray transmission method to determine the presence of internal defects of 100 ⁇ m or more for the specimen (a) (b), (c).
  • a small defect of about 400 ⁇ m in size was detected at the position marked by the arrow in the disk compression-molded at 45 MPa.
  • no pores larger than 100 ⁇ m were found in disk specimens produced at molding pressures above 45 MPa. Therefore, in the case of using the feedstock of the present embodiment, it can be seen that it is preferable to add 45 MPa or more as the molding pressure in order to produce a healthy formed body.
  • the three kinds of disk specimens were degreased by heating under nitrogen gas atmosphere and sintered to form a sintered body.
  • no pores having a size of 100 ⁇ m or more were detected in all specimens after sintering.
  • pores of about 20 ⁇ m or more were hardly observed. It was observed that relatively large defects in the product formation were removed during the sintering process, which suggests that sintering was caused by supersolid phase sintering involving liquid phase formation. That is, as the liquid phase is formed in the early stage of sintering, it is determined that the solid particles are removed when they cause rearrangement.
  • a feedstock was prepared under the same conditions as in ⁇ Example 1> and compression molded to prepare a disk-shaped specimen.
  • argon gas was used and sintering was carried out at a temperature range of 1170 to 1200 ° C. As a result, a healthy sintered body having a bow shrinkage of 10.0% and a relative density of 98% was produced.
  • Nominal composition 35 wt% chromium, 15 wt% nickel, 3 wt% molybdenum, 0.5 wt% tungsten, 0.8 wt% manganese, 0.8 wt% silicon, 1.1 wt% carbon, and the remainder is iron, with an average particle size of 8.52 ⁇ m 252 g of a nearly spherical heat-resistant steel powder (DIN 1.4091, manufactured by Epson-Atmix, Japan) was kneaded with a wax-based thermoplastic organic binder having a composition of ⁇ Example 1> at 160 ° C to feedstock 263 having a solid phase rate of 75%. g was prepared.
  • the feedstock prepared as described above was crushed into small granules of about 0.3 mm or less, and then charged into a mold preheated to 160 ° C. to produce a disk shaped body having a diameter of 25.4 mm and a thickness of 5 mm under a pressure of 45 to 150 MPa. It was.
  • the total heating time was 12 hours, and the temperature was raised to 10 ° C./min up to 100 ° C. and 250 ° C. to 1 ° C./min, and then maintained for 1 hour. Degreasing was completed by heating to 650 ° C. at a temperature increase rate of 5 ° C./min.
  • the mixture was heated to a temperature increase rate of 10 ° C./min to 950 ° C., held for 20 minutes, heated to 1210 ° C., and sintered for 90 minutes. At this time, all the processes were carried out while flowing nitrogen gas at a flow rate of 0.3 L / min. Thus, a healthy sintered body having a bow shrinkage of 9.6% and a relative density of 97% was produced.
  • Nominal composition 25 wt% chromium, 20 wt% nickel, 1.5 wt% manganese, 1.25 wt% silicon, 1.35 wt% niobium, 0.5 wt% molybdenum, 0.3 wt% carbon, and the rest of iron (Japan Epson-Artmix) Product) and AISI HK30 heat-resistant steel powder having an average particle size of 9 ⁇ m, mixed with the same organic binder as used in ⁇ Example 1> at a volume ratio of 3: 1, and pressure kneaded at 165 DEG C to feedstock with a 75% solid phase rate. 271 g were prepared.
  • the prepared feedstock was crushed into small granules having a size of -50 mesh, and then charged into a mold heated at 165 ° C. to compression molding at a pressure of 50 to 100 MPa to prepare a molded article having a diameter of 25.4 mm and a thickness of about 5 mm. .
  • the molded body was charged to a tubular furnace and de-sintered by a single heating program in a nitrogen gas atmosphere.
  • nitrogen gas was heated at a rate of 1.2 ° C./min while flowing at a flow rate of 0.3 L / min.
  • the temperature was increased to 5 ° C./min up to 950 ° C., and then 1200 ° C. It heated at the temperature increase rate of 10 degree-C / min, it hold
  • the specimens compression molded at 100 MPa were sintered at 1300 ° C. in a nitrogen atmosphere to prepare a healthy sintered body having a 9.5% bow shrinkage and 97% relative density.
  • AISI manufactured by gas spraying has a spherical shape, particle size is -22 ⁇ m, chromium 18 wt%, nickel 13 wt%, molybdenum 2 wt%, silicon 0.8 wt% and the remainder iron (manufactured by Carpenters, USA) 288 g of 316L stainless steel powder was kneaded at 165 ° C. with the same organic binder as used in ⁇ Example 1> at a volume ratio of 75 to 25 to prepare about 299 g of a feedstock having a 75% solid phase.
  • the prepared feedstock was crushed into small granules of -50 mesh size (US standard), charged into a mold and heated to 165 ° C. under a pressure of 50 to 100 MPa to a diameter of 25.4 mm and a thickness of about 5 mm.
  • a molded article was prepared.
  • the formed compacts were charged in an alumina tube furnace and degreased-sintered by a continuous heating program under a nitrogen atmosphere.
  • nitrogen gas was heated at a temperature rise rate of 1.2 ° C./min while flowing 0.3 L per minute, and heated while flowing hydrogen gas at a flow rate of 0.3 L / min after about 600 ° C. after degreasing. After 20 minutes at 600 ° C., heating was carried out at a rate of temperature increase of 5 ° C./min up to 950 ° C., and then at a temperature rising rate of 10 ° C./min up to 1200 ° C., and the final sintering temperature was maintained at this temperature for 30 minutes. It heated at the temperature increase rate of 3 degree-C / min to 1340 degreeC which is phosphorus.
  • a feedstock having a solid phase ratio of 75% was prepared, and then granulated into -50 mesh particles and charged into a mold preheated to 160 ° C. Compression molding was carried out to prepare an exhaust gas valve seat insert prototype for a gasoline passenger car engine.
  • the formed article was degreased and sintered in a nitrogen gas atmosphere by a heating schedule created by the same heating program as in ⁇ Example 2>. Sintering was carried out at 1190 ° C. for 90 minutes to produce a high-density exhaust gas valve seat insert sintered body having a density of 7.81 g / cm 3 (99.9% relative density).
  • 9 is an external photograph of an exhaust gas valve seat insert molded body and a sintered body produced by the present invention.
  • alloys such as high chromium heat-resistant steel, 316L austenitic stainless steel, Ni-based high carbon superheat alloy, and Co-based high carbon wear resistant alloy.
  • the alloy applicable in the present invention is not limited only to the above embodiment.
  • iron alloys such as pure iron, low alloy steel, structural alloy steel, stainless steel, maraging steel, tool steel, high speed steel, Fe-Cr-Al heat resistant steel, Fe-Ni and Ni-based super heat-resistant alloy, Co-Cr-Mo bioalloy, Co -Mo-Si Tripalloy, Co-Cr-WC Cobalt Alloy, Cr-Fe Alloy, Pure Iron, Fe-Si Silicon Steel, Fe-Si-Al Sendust, Fe-Ni Inva Alloy, Pure Copper, Cu-Be Alloy, Molybdenum alloys such as Cu-Al alloys, Cu-Ni-Sn alloys, Mo-Cu, tungsten alloys such as W-Cu, W-Ni-Cu, W-Ni-Fe, Nb alloys, Ti and industrially Applicable for a variety of useful metal powders.
  • iron alloys such as pure iron, low alloy steel, structural alloy steel, stainless steel, maraging steel, tool steel, high speed steel, Fe-

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

According to the present invention, provided are a method for manufacturing precisely shaped parts, and precisely shaped parts using the same, the method comprising: a step of preparing a feedstock by pressure-mixing a nearly spherical fine metal powder having a particle size of 0.1-60 μm, and a thermoplastic organic binder in a ratio in which the gaps between the metal powder particles are not supersaturated; a step of manufacturing a molded product by compressing or extrusion-molding the feedstock; a debinding step of removing the organic binder from the molded product; and a step of manufacturing a high density sintered body having a relative density of 95% or more by sintering the debound molded product. According to the present invention, provided is a method for manufacturing precisely shaped parts, the method being capable of: implementing a more complex and precise shape even while applying much lower pressure compared with that of a conventional powder metallurgy method; manufacturing precisely shaped parts having uniform internal density; and improving productivity by greatly reducing, in comparison to a conventional powder injection molding method, the debinding time for removing an organic binder.

Description

정밀형상 부품의 제조방법 및 이를 이용한 정밀형상 부품Manufacturing method of precision shaped parts and precision shaped parts using same
본 발명은 금속 또는 합금을 포함하는 금속분말을 사용하여 정밀한 형상의 부품을 제조하는 방법 및 이용한 정밀형상 부품에 관한 것이다.The present invention relates to a method for producing a precisely shaped part using a metal powder comprising a metal or an alloy, and to a precision shaped part used.
일반적으로 분말 형태의 금속 원료를 사용해서 정밀한 제품을 제조하는 방법으로서는 일축 압축성형 기반 하에 발전되어 온 전통적인 분말야금방법이 널리 쓰여 왔으며, 비교적 최근 들어 플라스틱의 사출성형방법을 금속분말에 응용하여 적용한 분말사출성형법이 개발되어 복잡한 형상을 갖는 제품의 정밀성형기술로서 쓰이고 있다.In general, as a method of manufacturing a precise product using a metal raw material in powder form, the traditional powder metallurgy method developed under the uniaxial compression molding has been widely used. In recent years, a powder applied by applying the plastic injection molding method to the metal powder has been widely used. The injection molding method has been developed and used as a precision molding technology for products having complex shapes.
상기 전통적인 분말야금방법에서는 통상 입도가 약 150 ㎛ 정도인 비교적 조대한 분말을 원료로 사용한다. 이러한 분말을 금형내로 가압 충진할 때, 성형압력을 금속의 항복강도보다 높게 하여 소성변형에 의해 분말간의 접촉도를 높이며, 분말사이의 틈새를 채워 치밀하게 성형되도록 한다. 이때, 성형 과정에서 발생하는 분말간의 마찰, 분말과 금형 벽 그리고 분말과 펀치 간의 마찰을 줄이기 위하여 약 2 wt% 이내로 파라핀 왁스, 스테아린 산 혹은 엔, 엔프라임 에틸렌 비스스테아르아미드 왁스 (N,N' ethylene bis-stearamide wax; 스위스 클라리안트 에이씨 사의 등록상표인 리코®왁스 (Licowax), 미국 론자 사의 등록상표인 아크라왁스TM 씨(AcrawaxTM C) 로 알려져 있슴)등과 같은 적합한 유기물 윤활제 혹은 계면활성제를 첨가하거나, 탄소를 합금원소로 포함하는 철계 합금 등의 경우에는 종종 카본블랙과 같은 고체윤활제를 원료 분말에 첨가하여 사용한다.In the conventional powder metallurgy method, a relatively coarse powder having a particle size of about 150 μm is usually used as a raw material. When the powder is pressurized and filled into the mold, the molding pressure is higher than the yield strength of the metal to increase the contact between the powders by plastic deformation and to form a compact filling the gap between the powders. At this time, paraffin wax, stearic acid or N, enprime ethylene bis stearamide wax (N, N 'ethylene) within about 2 wt% in order to reduce the friction between the powder, the powder and the mold wall, and the powder and the punch generated during the molding process. bis-stearamide wax; the addition of suitable organic lubricant or surfactant, such as the Ricoh ® wax (Licowax) registered trademark of Switzerland Clarita, ANT ac trademark, Available known as registered trademarks of American Lonza trademarks Accra wax TM seed (Acrawax TM C)), or In the case of an iron-based alloy containing carbon as an alloying element, a solid lubricant such as carbon black is often added to the raw material powder.
일반적으로 금형 내에 충진된 분말을 압축성형 할 때 부가하는 압력은 분말소재의 입도, 형상, 물성 등에 따라 달라질 수 있으나, 철계 합금 분말의 경우를 예로 들면, 전형적으로 약 500 MPa 내지 약 1 GPa 정도로 상당히 높다.In general, the pressure applied during compression molding of the powder filled in the mold may vary depending on the particle size, shape, and physical properties of the powder material. However, in the case of the iron-based alloy powder, for example, the pressure is typically about 500 MPa to about 1 GPa. high.
따라서 윤활제와 계면활성제 등을 사용하더라도 성형과정에서 금형 내에서 발생하는 분말간 혹은 분말과 금형내벽 혹은 펀치 사이에서 발생하는 다양한 형태의 마찰 작용으로 인해 부위별로 압력이 균일하게 전달되지 못하여 성형체 내부에는 불균일한 밀도구배가 나타난다. Therefore, even though lubricants and surfactants are used, the pressure is not uniformly transmitted to each part due to various types of frictional action generated between the powders generated in the mold during the molding process or between the powder and the inner wall of the mold or the punch. One density gradient appears.
또한 높은 압력 하에서 압축 성형이 이루어지므로, 작업 후에 생성형체를 금형으로 방출하기 위해 요구되는 압력이 높아질 뿐만 아니라, 과도한 스프링백(Spring back) 현상이 일어나므로, 생성형체에 균열 발생 등의 성형결함이 발생하는 경향이 높아진다.In addition, since the compression molding is performed under high pressure, not only the pressure required to release the product body into the mold after the operation is increased, but also excessive spring back phenomenon occurs, so that molding defects such as cracks are generated in the product body. The tendency to occur is high.
나아가 높은 성형압력을 채용하므로 인해 성형과정에서 일어나는 분말과 금형벽 사이에서 발생하는 마찰마모에 의해 금형의 마모손상이 심하게 발생하여 금형수명이 단축되는 경향이 있다. Furthermore, due to the high molding pressure, the wear life of the mold is severely caused by frictional wear generated between the powder and the mold wall, which occurs during the molding process, and thus the mold life tends to be shortened.
특히, 상기 전통적인 분말야금방법에 의해서 만들어지는 성형체 내에 존재하는 불균일한 밀도구배는 이후 기공이 제거되어 치밀화가 일어나는 소결과정 중에 부위별로 불균일한 수축을 유발시켜 소결체의 형상과 칫수 변형을 초래한다. 따라서 전통적인 분말야금 기술로 철계 합금분말을 성형할 경우를 예로 들면, 소결체의 치수관리와 형상변형을 제어하기 위해 의도적으로 성형체의 상대밀도를 약 70 % 전후로 얻어지는 조건으로 낮추어 제작한 후 소결하는 것이 보통이다. In particular, the non-uniform density gradient present in the molded body produced by the conventional powder metallurgy method is then the pores are removed to cause densification During the sintering process, nonuniform shrinkage is caused for each part, resulting in shape and dimension deformation of the sintered body. Therefore, for example, in the case of forming iron alloy powder by the traditional powder metallurgy technique, in order to control the dimensional control and shape deformation of the sintered body, it is common to intentionally lower the relative density of the molded body to about 70% and then sinter it after manufacture. to be.
따라서 이와 같이 전통적인 분말야금방법에서 치수관리와 형상변형제어를 위해 치밀화를 조정해서 만들어지는 소결체의 내부에는 적지 않은 양의 기공이 잔존하게 된다. 소결체내의 높은 기공함량은 소결체의 기계적 특성, 표면조도, 내식성 등에 악영향을 끼친다. 이러한 이유에서 많은 경우에는 예를 들면, 용융 동 등을 이용하는 함침처리와 같은 후처리를 통해 기공을 제거한다.Therefore, in the conventional powder metallurgical method, a significant amount of pores remain in the interior of the sintered body made by adjusting the densification for dimensional control and shape deformation control. The high pore content in the sintered compact adversely affects the mechanical properties, surface roughness and corrosion resistance of the sintered compact. For this reason, in many cases, pores are removed through post-treatment such as, for example, impregnation using molten copper or the like.
상기한 바와 같은 전통적인 분말야금 방법에서 나타나는 문제점을 보완하여 높은 밀도의 생성형체를 제조하는 방안으로서, 항복강도가 저하되는 상온보다 높은 온도에서 금속분말을 압축 성형하여, 보다 밀도가 높은 성형체를 제작하는 온간압축성형방법이 개발되어 있다. 이러한 선행기술로서는, 미국특허 US5,429,792호(Metal Powder Compositions Containing Binding Agents for Elevated Temperature Compaction), 미국 공개특허 US20002004540호(Metallurgical Compositions Containing Binding Agent/Lubricant and Process for Preparing Same), 독일특허 DE19745283A1호(Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen)등이 공개 되어 있다.Complementing the problems in the conventional powder metallurgical method as described above to produce a high density of the production molded body, by compression molding the metal powder at a temperature higher than the room temperature where the yield strength is reduced, to produce a more dense molded body Warm compression molding method has been developed. As such prior art, US Patent US 5,429,792 (Metal Powder Compositions Containing Binding Agents for Elevated Temperature Compaction), US Patent US 20002004540 (Metallurgical Compositions Containing Binding Agent / Lubricant and Process for Preparing Same), German Patent DE19745283A1 (Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen).
그러나 위와 같은 종래 온간 압축성형 기술에서는, 기본적으로 원료분말로서 전통적인 분말야금방법에 사용하던 분말의 입도에서 크게 벗어나지 않는 비교적 조대한 분말을 사용하고 있다. 또한 대략 400 MPa 이상으로 분말금속의 항복강도를 초과하는 높은 압력 하에서 성형을 실시한다는 기술적인 한계를 갖는다.However, in the conventional warm compression molding technique as described above, a relatively coarse powder is used as a raw material powder which does not deviate significantly from the particle size of the powder used in the conventional powder metallurgy method. In addition, it is technical that the molding is performed under a high pressure exceeding the yield strength of the powder metal of about 400 MPa or more. Has a limit.
한편, 상기 분말사출성형법에서는 사출성형이 가능할 정도의 유동성을 확보하기 위해 구형 혹은 그에 가까운 형상을 갖고 입경이 약 50 ㎛ 이하, 보다 바람직하게는 30 ㎛ 이하인 미세한 분말을 사용하며, 윤활제 및 계면활성제를 포함하는 유기결합제를 금속분말의 평균입도, 입도분포, 형상에 따라 부피백분율로 약 30 내지 50 vol% 정도로 다량 첨가하여 원료로서 사용한다. 즉, 금속분말과 유기결합제가 혼합되어 만들어진 원료 피드스탁은 유기결합제의 첨가비율에 따라 유기결합제가 용융된 상태에서 높은 유동성을 나타내므로 사출작업을 실시하여 복잡한 3차원적인 형상의 제품을 정밀하게 제조할 수 있다.On the other hand, the powder injection molding method uses a fine powder having a spherical shape or a shape close to it and a particle diameter of about 50 μm or less, more preferably 30 μm or less in order to secure fluidity to the extent that injection molding is possible, and a lubricant and a surfactant A large amount of the organic binder is added in an amount of about 30 to 50 vol% based on the average particle size, particle size distribution, and shape of the metal powder, and used as a raw material. In other words, the raw material feedstock made by mixing the metal powder and the organic binder shows high fluidity in the molten state of the organic binder according to the addition ratio of the organic binder, so that injection molding is performed to precisely manufacture a complicated three-dimensional product. can do.
사출성형이 가능한 높은 유동성을 얻기 위해서는 탭 밀도로 채워진 금속 분말사이의 틈새를 유기결합제가 모두 채우는 임계 고상부피백분율(이하 "임계고상율"이라 함), 즉 분말틈새가 유기결합제로 포화된 조건에서 추가로 빈 틈새의 부피에 비해 유기결합제가 약 5 내지 10 % 정도 과포화 조건으로 금속분말과 유기결합제의 혼합비율을 정하여 사용한다. 이때, 잉여 유기결합제가 피드스탁의 높은 유동성을 부여하고 사출성형을 가능하게 한다. 이어지는 탈지공정에서 유기결합제가 제거되어 사출체는 다공질 상태로 되는 데, 초기에 첨가된 유기결합제가 차지하던 부피가 기공으로 만들어지므로 기공율은 대략 약 50 내지 30 % 정도가 된다. 이 같은 다공질 상태로부터 외부에서 부가되는 어떠한 도움이 없이 소결과정에 의해서만 기공율이 5 % 이하, 즉 상대밀도가 95 % 이상인 고밀도의 소결체를 제조하여야 하기 때문에 사용하는 사용되는 원료 금속분말의 소결성이 우수하여야 한다. 이 같은 이유에서 분말사출성형법에서는 전통적인 분말야금방법에서 사용하는 분말에 비해 활성이 높은 미세한 분말이 사용된다.In order to achieve a high flowability that can be injection molded, the critical solids volume percentage (hereinafter referred to as "critical solid ratio") in which all organic binders fill the gaps between the metal powders filled with the tap density, that is, in a condition where the powder gaps are saturated with the organic binders In addition, the organic binder is used to determine the mixing ratio of the metal powder and the organic binder under supersaturation conditions of about 5 to 10% relative to the volume of the empty gap. At this time, The surplus organic binder imparts high flowability of the feedstock and enables injection molding. In the subsequent degreasing process, the organic binder is removed and the injection molding becomes porous. Since the volume occupied by the initially added organic binder is made of pores, the porosity is approximately 50 to 30%. Since the high-density sintered body having a porosity of 5% or less, that is, a relative density of 95% or more, should be produced only by the sintering process without any help from the outside from such a porous state, the sinterability of the raw metal powder used should be excellent. do. For this reason, the powder injection molding method uses a fine powder having a higher activity than the powder used in the conventional powder metallurgy method.
분말사출성형법에 의해서는 유기결합제가 과포화상태로 첨가된 피드스탁을 사출하여 성형하므로 사출체 내에는 밀도구배가 거의 발생하지 않는다. 따라서 분말사출성형기술에 의해 만들어진 사출체에서는 탈지하고 소결하는 공정 중에 치밀화에 따른 수축은 등방적으로 균일하게 발생하며, 당초 복잡하고 정밀한 형상으로 사출된 형상을 그대로 유지한 고밀도의 소결체가 제조된다.In the powder injection molding method, since the organic binder is injected by molding the feedstock added in a supersaturated state, almost no density gradient occurs in the injection molded product. Therefore, in the injection molded product produced by the powder injection molding technology, shrinkage due to densification occurs uniformly uniformly during the degreasing and sintering process, and a high density sintered compact is produced in which the original and intricately maintained shape is maintained.
그러나 분말사출성형의 경우, 제조할 수 있는 형상에는 거의 제약이 없으나, 사용하는 금형의 제조비용과 사용하는 원료분말이 상대적으로 고가이고, 특히 사출체로부터 유기결합제를 제거하는 긴 탈지공정시간을 포함하는 제조공정 시간이 길기 때문에 제조단가가 비싼 단점이 있다. However, in the case of powder injection molding, there is almost no restriction on the shape that can be manufactured, but the manufacturing cost of the mold to be used and the raw material powder to be used are relatively expensive, and particularly include a long degreasing process for removing the organic binder from the injection molding. Because of the long manufacturing process time, the manufacturing cost is expensive.
따라서 형상의 복잡성이 비교적으로 낮은 제품에 적용하기에는 경제성이 뒷받침 되지 않으며, 통상 단면두께가 10 mm 이상으로 큰 제품을 제조하는 데에는 너무 오랜 탈지시간이 요구되므로 적용하는 데 적합하지 않다는 한계를 갖는다.Therefore, it is not economical to be applied to a product having a relatively low shape complexity, and there is a limit that it is not suitable for application because it takes too long degreasing time to manufacture a product having a large cross-sectional thickness of 10 mm or more.
본 발명의 목적은 전통적인 분말야금방법에 비해 훨씬 낮은 압력을 적용하면서도, 치수관리와 형상제어가 가능하여 보다 복잡하고 정밀한 형상을 구현할 수 있고, 내부적으로 밀도 구배가 거의 없어서 밀도가 균일하며, 상대밀도 95% 이상인 고밀도의 정밀형상 부품을 제조하는데 있다.The object of the present invention is to apply a much lower pressure than the conventional powder metallurgy method, and to control the size and shape control to realize a more complex and precise shape, there is almost no density gradient internally uniform density, relative density It is to manufacture high-density precision parts of more than 95%.
또한 종래 분말사출성형법에 비하여 유기결합제를 제거하기 위한 탈지 시간을 대폭적으로 줄임으로써 생산성을 향상시켜 제조단가를 줄일 수 있는 정밀형상 부품의 제조방법 및 이를 이용한 정밀형상 부품을 제공하는 데 또 다른 목적이 있다.In addition, as compared to the conventional powder injection molding method by significantly reducing the degreasing time for removing the organic binder by improving the productivity to reduce the manufacturing cost and another object to provide a precision shaped parts using the same have.
상기 목적을 달성하기 위한 본 발명의 일 측면에 의하면, 입자 크기가 0.1 내지 60 ㎛인 금속분말과, 상기 금속분말의 틈새가 과포화되지 않는 비율의 열가소성 유기결합제를 가압혼련하여 피드스탁을 제조하는 단계; 상기 피드스탁을 압축 또는 압출 성형하여 성형체를 제조하는 단계; 상기 성형체로부터 상기 유기결합제를 제거하는 탈지 단계; 및 탈지된 상기 성형체를 소결하여 소결체를 제조하는 단계를 포함하는 정밀형상 부품의 제조방법이 제공된다.According to an aspect of the present invention for achieving the above object, the step of preparing a feedstock by pressure kneading a metal powder having a particle size of 0.1 to 60 ㎛ and a thermoplastic organic binder in a ratio at which the gap of the metal powder is not supersaturated ; Compressing or extruding the feedstock to produce a molded body; A degreasing step of removing the organic binder from the molded body; And sintering the degreased molded body to produce a sintered body.
또한 본 발명의 다른 측면에 의하면, 상기한 바와 같은 정밀형상 부품의 제조방법에 의해 제조된 정밀형상 부품을 제공한다.According to another aspect of the present invention, there is provided a precision shaped part manufactured by the manufacturing method of the precision shaped part as described above.
상기한 바와 같은 본 발명에 따른 정밀형상 부품의 제조방법 및 이를 이용한 정밀형상 부품에 의하면, 다음과 같은 효과를 갖는다. According to the manufacturing method of the precision shaped part according to the present invention as described above and the precision shaped part using the same, the following effects are obtained.
첫째, 60 ㎛ 이하 크기의 미세한 금속분말을 윤활제, 계면활성제, 가소제, 백본 폴리머 등을 포함하는 유기결합제와 혼합하여 원료로 사용함으로써, 전통적인 분말야금공법에 비해 상대적으로 낮은 압력 하에서 압축성형 및 압출성형이 가능하며, 균일한 내부밀도를 갖는 정밀한 형상의 성형체의 제조가 가능하다. First, by using a fine metal powder with a size of less than 60 ㎛ mixed with organic binders including lubricants, surfactants, plasticizers, backbone polymers, etc. as a raw material, compression molding and extrusion molding under a relatively low pressure compared to conventional powder metallurgy This is possible, and the manufacture of the molded object of the precise shape which has a uniform internal density is possible.
둘째, 압축성형 이후에 성형체를 낮은 압력으로도 배출할 수 있게 되어, 배출하는 과정에서 압력의 구속이 없어짐에 따른 응력이완, 금형 벽과의 지속적인 마찰 등에 의해 발생할 수 있는 층상 균열 등의 결함이 거의 발생하지 않는다.Second, after compression molding, the molded body can be discharged even at low pressure, and there are almost no defects such as laminar cracking that can occur due to stress relaxation and continuous friction with the mold wall due to the absence of pressure restraint during the discharge process. Does not occur.
셋째, 본 발명에 의해 압축성형에 의해 만들어지는 성형체는 조대한 분말을 사용하는 전통적인 분말야금 공정에 의해 고밀도로 소결할 때 흔히 발생하는 불균일한 수축 발생에 의한 형상 변형의 발생률이 크게 감소된다. 즉. 본 발명에 의해서는 고밀도 소결을 하더라도 형상의 일그러짐이나 변형을 수반하지 않는 상대밀도 95 % 이상인 고밀도의 소결체 제조가 가능하다.Third, the molded article produced by compression molding according to the present invention greatly reduces the incidence of shape deformation due to non-uniform shrinkage that commonly occurs when sintering at high density by a conventional powder metallurgy process using coarse powder. In other words. According to the present invention, a high-density sintered body having a relative density of 95% or more without accompanying distortion or deformation of the shape can be produced even if high-density sintering is performed.
넷째, 본 발명에서는 성형체 제조에 사용하는 피드스탁 중 금속분말의 함량을 유기결합제가 금속분말간의 틈새를 모두 채우지 못하여 불포화되는, 즉 임계고상율 이상으로 설정하기 때문에 생성형체 내부에는 폐기공 또는 개기공 등의 기공이 균일하게 존재한다. 특히 첨가된 유기결합제는 금속분말의 틈새에 갇혀진 형태가 아닌 금속분말표면을 코팅하는 형태로 존재한다. 그 결과 가열탈지과정에서 표면부위로부터 개시되는 유기결합제 중 저융점 성분의 증발 또는 분해로 인해 발생되는 가스 성분 등이 내부에서 발생하더라도 가스통로가 용이하게 마련되어, 가스성분의 생성에 의한 부풀음 등과 같은 결함이 발생하지 않는다.Fourth, in the present invention, since the organic binder does not fill all the gaps between the metal powders, the content of the metal powder in the feedstock used for manufacturing the molded product is unsaturated, that is, it is set at a critical solid content or higher, so that waste or open pores are formed inside the product body. The pores of the back are uniformly present. In particular, the added organic binder is present in the form of coating the metal powder surface, rather than being trapped in the gap of the metal powder. As a result, a gas passage is easily provided even when gas components generated from evaporation or decomposition of low melting point components among organic binders that are started from the surface portion during heat degreasing are generated inside, and defects such as swelling due to gas components are generated. This does not happen.
다섯째, 본 발명에 따라 압축성형으로 제조되는 성형체내에는 금속분말의 틈새를 모두 채우고 남아 윤활성을 높여 사출성형을 가능하게 하는 잉여 유기결합제가 존재하지 않으므로, 가열탈지과정에서 금속분말이 불균일하게 응집시키는 점성유동이 발생하지 않기 때문에 탈지과정에서 변형이나 슬럼핑 현상이 억지되며 소결에 의해 우수한 표면 조도를 갖는 소결체의 제조가 가능하다.Fifth, in the molded body produced by compression molding according to the present invention, since there is no surplus organic binder which fills all the gaps of the metal powder and remains lubrication to enable injection molding, the metal powder is unevenly aggregated during the heat degreasing process. Since viscous flow does not occur, deformation or slumping is inhibited during degreasing, and sintered body having excellent surface roughness can be manufactured by sintering.
여섯째, 본 발명에서는 종래의 분말사출성형법에 비해서, 사용하는 유기결합제의 양이 상대적으로 적게 소요되며, 공정시간이 단축되므로 형상적으로 유사한 제품을 제조할 경우 제조원가를 저감시키는 효과가 있다.Sixth, in the present invention, compared to the conventional powder injection molding method, the amount of the organic binder to be used is relatively small, and the processing time is shortened, thereby reducing the manufacturing cost when manufacturing a similar product.
일곱째, 본 발명에 의해 금속분말의 틈새가 유기결합제에 의해 모두 채워지지 못하는 높은 고상율의 피드스탁을 사용함으로써, 종래의 분말사출성형방법에 비해서는 탈지과정에서 발생하는 탄화수소계의 유기화합물 분해가스의 양이 크게 줄일 수 있으므로 대기환경의 오염이 줄어드는 부수적 효과가 있다. Seventh, according to the present invention, by using the feedstock of the high solidity rate that the gap of the metal powder is not filled by all the organic binder, hydrocarbon-based organic compound decomposition gas generated in the degreasing process compared to the conventional powder injection molding method Since the amount of water can be greatly reduced, there is a side effect of reducing air pollution.
여덟째, 다량의 유기결합제와 혼합된 상태의 금속분말을 원료로 사용하고 온간에서 저압으로 압축 성형하므로 금형과 분말간의 마찰이 경감되어 금형의 사용 수명을 연장시키는 효과가 있다.Eighth, since metal powder mixed with a large amount of organic binder is used as a raw material, and compression molding is performed at low pressure at warm temperature, friction between the mold and the powder is reduced, thereby extending the service life of the mold.
결론적으로, 본 발명에 의하면 임계고상율 이상으로 금속분말과 유기결합제가 혼합된 피드스탁과 온간에서의 압축 또는 압출 성형기술을 이용하여 정밀형상의 제품을 실형상으로 제조하는 새로운 공법이 제공될 수 있다. 이는 기술적, 경제적, 환경적인 측면에서 가치가 높은 새로운 부품 제조기술을 산업체에 제공하는 파급효과를 갖는다.In conclusion, according to the present invention, a novel method for producing a precise product in a real shape using a feedstock mixed with a metal powder and an organic binder at a critical solidity rate and warm or compression or extrusion molding technology can be provided. have. This has the ripple effect of providing the industry with new parts manufacturing technology that is of high value in technical, economic and environmental aspects.
도 1은 본 발명의 실시예에 정밀형상 부품의 제조방법을 나타낸 흐름도, 1 is a flow chart showing a method of manufacturing a precision shaped part in an embodiment of the present invention;
도 2는 도 1에 나타낸 제조방법에 의해 제조되는 피드스탁의 고상율을 설명하기 위해, 분말사출성형 및 종래 분말야금과 피드스탁 중 고상율 범위를 비교하여 나타낸 개략도,FIG. 2 is a schematic view illustrating the solid phase rate of the powder injection molding and the conventional powder metallurgy and the feedstock in order to explain the solid phase rate of the feedstock manufactured by the manufacturing method shown in FIG. 1;
도 3은 종래 분말사출성형에 의해 제조되는 사출성형체의 내부 조직(a)과 본 발명의 실시예에 따라 높은 고상율의 피드스탁을 압축 또는 압출 성형에 하여 제조된 성형체의 내부 조직(b)을 비교하여 나타낸 모식도,Figure 3 shows the internal structure (a) of the injection molded body prepared by conventional powder injection molding and the internal structure (b) of the molded body produced by compression or extrusion molding a high solid feedstock according to an embodiment of the present invention Schematic diagram shown in comparison,
도 4는 고상율(피드스탁 총부피 100%에 대해 고체분말이 차지하는 백분율 부피를 의미함) 이 65 %인 피드스탁을 원료로 하여 분말사출성형한 성형체(a)와 본 발명에 따라 임계고상율 초과하는 75 %의 고상율을 갖는 피드스탁을 온간 압축하여 만든 성형체의 내부 조직(b)에 대한 파단면을 주사전자현미경으로 관찰한 영상,Fig. 4 is a molded article (a) powder-molded from a feedstock having a solid phase rate (meaning a percentage volume of solid powder to 100% total feedstock volume) of 65% and the critical solidity rate according to the present invention. Scanning electron microscope image of the fracture surface of the internal structure (b) of the molded article produced by warm compression of a feedstock having a solid phase rate exceeding 75%,
도 5는, 도 4(b)의 성형체를 가열하여 탈지공정을 마친 상태에서 탈지체의 파단면을 주사전자현미경으로 관찰한 영상,FIG. 5 is an image of the fracture surface of the degreasing body observed with a scanning electron microscope in the state where heating of the molded body of FIG. 4 (b) is completed.
도 6은 본 발명에 의해 고상율을 80 %로 하여 만든 피드스탁과 비교예로서 고상율을 65 %로 하여 만든 분말사출성형용 피드스탁을 사용해서 제조한 두 생성형체 시편을 동일한 승온 속도로 가열할 때 발생하는 탈지율 변화를 나타낸 그래프,Figure 6 is a feedstock made of a solid phase ratio of 80% according to the present invention and a comparative sample heating the two formed product specimens prepared using a powder injection molding feedstock made of a solid phase rate of 65% at the same heating rate Graph showing changes in degreasing rate,
도 7은 고상율이 75 %인 피드스탁을 압축 성형하여 디스크 형태로 제조한 성형체의 외관과 x-선 투과시험에 의해 촬영한 비파괴 시험결과를 나타낸 영상사진,FIG. 7 is an image photograph showing the appearance of a molded article prepared in a disk form by compression molding a feedstock having a 75% solid phase rate and a non-destructive test result taken by X-ray transmission test;
도 8은 고상율이 75 %인 피드스탁을 압축 성형하여 탈지를 한 후, 1180 ℃에서 질소가스 분위기에서 소결하여 제조한 소결체를 연마하고, 빌렐라 시약 (Villela's reagent)에서 부식시킨 후에 주사전자현미경으로 관찰한 미세조직 사진, FIG. 8 shows that the feedstock having a solid phase ratio of 75% is degreased by compression molding, and then, the sintered body prepared by sintering in a nitrogen gas atmosphere at 1180 ° C. is polished and corroded in a Billella's reagent, followed by a scanning electron microscope. Microscopic tissue images,
도 9는 본 발명에 의하여 제작한 가솔린 엔진용 배기가스 밸브시트 인서트의 성형체(a)와 소결체(b)의 사진이다.9 is a photograph of a molded body (a) and a sintered body (b) of an exhaust gas valve seat insert for a gasoline engine produced according to the present invention.
이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.
도 1은 본 발명의 실시예에 정밀형상 부품의 제조방법을 나타낸 흐름도이다. 도시된 바와 같이, 본 발명의 실시예에 따른 정밀형상 부품의 제조방법은, 금속분말과 유기결합제를 혼련하여 피드스탁을 제조하는 단계(S10), 성형체를 제조하는 단계(S20), 이러한 성형체의 탈지 단계(S30) 및 소결하여 소결체를 제조하는 단계(S40)를 포함한다.1 is a flowchart illustrating a method of manufacturing a precision shaped part in an embodiment of the present invention. As shown, the method of manufacturing a precision shaped part according to an embodiment of the present invention, the step of preparing a feedstock by mixing a metal powder and an organic binder (S10), the step of manufacturing a molded article (S20), of the molded article Degreasing step (S30) and the step of sintering to produce a sintered body (S40).
먼저 상기 피드스탁의 제조단계(S10)에서, 상기 금속분말은, 순철, 저합금강, 구조용 합금강, 마르에이징강, 스테인레스강, 내열강, 공구강, 고속도강, Fe-Ni기 초내열합금, Ni기 초내열합금, Co-Cr-Mo 생체금속, Co-Si-Mo 트립알로이 (트립알로이®는 미국 케나메탈-스텔라이트 사의 등록상표), Co-Cr-W-C 코발트합금, Cr-Fe 크롬합금, Fe-Si 규소강, Fe-Si-Al 센더스트 합금, Fe-Co-Cr을 포함하는 철계 자석합금, 순동, Cu-Be 합금, Cu-Al 합금, Cu-Ni-Sn 합금, Mo-Cu 몰리브덴 합금, W-Cu, W-Ni-Cu, W-Ni-Fe 텅스텐 합금, Ti 및 Ti 합금을 포함하는 천이금속, 및 Nb 합금으로 이루어진 군에서 선택된 금속 또는 합금의 분말일 수 있다.First, in the manufacturing step (S10) of the feedstock, the metal powder, pure iron, low alloy steel, structural alloy steel, mar aging steel, stainless steel, heat-resistant steel, tool steel, high-speed steel, Fe-Ni-based super heat-resistant alloy, Ni-based super heat-resistant Alloys, Co-Cr-Mo biometals, Co-Si-Mo tripalloy (Tripallo® is a registered trademark of Kennametal-Stelite, USA), Co-Cr-WC cobalt alloy, Cr-Fe chromium alloy, Fe-Si Silicon steel, Fe-Si-Al sender alloy, iron-based magnetic alloy containing Fe-Co-Cr, pure copper, Cu-Be alloy, Cu-Al alloy, Cu-Ni-Sn alloy, Mo-Cu molybdenum alloy, W It may be a powder of a metal or alloy selected from the group consisting of -Cu, W-Ni-Cu, W-Ni-Fe tungsten alloys, transition metals including Ti and Ti alloys, and Nb alloys.
또한 상기 유기결합제는, 기본 왁스성분, 계면활성제 및 가소제의 기능성을 나타내는 저융점의 유기화합물로 이루어진 군에서 선택된 하나 또는 둘 이상과, 백본 고분자 역할을 하는 중량평균 분자량이 8,000 내지 200,000인 유기고분자로 이루어진 군에서 선택된 하나 또는 둘 이상을 혼합한 것으로서, 비수용성 및 열가소성을 가진다. In addition, the organic binder is one or two or more selected from the group consisting of a low melting point organic compound showing the functionality of the basic wax component, a surfactant and a plasticizer, and an organic polymer having a weight average molecular weight of 8,000 to 200,000 serving as a backbone polymer One or two or more selected from the group consisting of: water-insoluble and thermoplastic.
보다 구체적으로 살펴보면, 기본 왁스성분으로서 파라핀 왁스, 비즈 왁스, 마이크로크리스탈린 왁스, 카르나우바 왁스로 이루어진 군에서 하나 또는 둘 이상을 선택하고, 계면활성 및 윤활제로 주로 작용하는 스테아린산, 팜오일(Palm oil), 지방유(Fatty oil). 몬탄왁스 및 엔, 엔프라임 에틸렌 비스스테르아미드 왁스(N,N' ethylene bis-stearamide wax; 스위스 클라리안트 에이씨 사의 등록상표인'리코®왁스, 미국 론자 사의 등록상표인 아크라왁스® 씨) 로 알려진 아미드계왁스, 프탈산 및 폴리알파올레핀왁스를 포함하는 폴리올레핀계왁스로 이루어진 군에서 하나 또는 둘 이상을 선택하여, 이들을 혼합한다(이를 편의상 "제1그룹"이라 함). In more detail, one or more selected from the group consisting of paraffin wax, bead wax, microcrystalline wax and carnauba wax as basic wax components, stearic acid and palm oil mainly acting as surfactants and lubricants oil, Fatty oil. Known as Montan Wax and N, Enprime Ethylene Bis-Stearamide Wax (Rico® Wax, registered trademark of Clariant Inc., Switzerland, Accrawax® Seed, registered by Lonza, USA) One or two or more selected from the group consisting of polyolefin waxes including amide waxes, phthalic acid and polyalphaolefin waxes are mixed and these are referred to as "first group" for convenience.
다음으로 탈지의 마지막 단계에서 성형체의 형상을 유지시키는 백본 역할을 하는 고분자로서 에틸렌비닐아세테이트, 저밀도 폴리에틸렌, 고밀도 폴리에틸렌 또는 폴리프로필렌에서 선택된 폴리올레핀계 고분자와 폴리올레핀 공중합체 및 폴리옥시메틸렌(Polyoxymethylene)을 포함하는 복합수지 등 열가소성 백본 고분자류로 이루어진 군에서 선택된 둘 이상(편의상 "제2그룹"이라 함)을 선택한다. Next, a polymer serving as a backbone to maintain the shape of the molded body in the final stage of degreasing, including a polyolefin-based polymer selected from ethylene vinyl acetate, low density polyethylene, high density polyethylene or polypropylene, a polyolefin copolymer and polyoxymethylene Two or more selected from the group consisting of thermoplastic backbone polymers such as composite resins are selected for convenience.
위와 같이 선택되면, 상기 유기결합제는, 상기 제1그룹과 제2그룹의 중량비가 9:1 내지 2:3이 되도록 조합하여 만들 수 있다. 여기서 보다 바람직하게는, 상기 제1그룹과 제2그룹의 중량비가 7:3 내지 1:1이 되도록 조합할 수도 있다.When selected as above, the organic binder can be made by combining so that the weight ratio of the first group and the second group is 9: 1 to 2: 3. More preferably, the weight ratio of the first group and the second group may be combined so as to be 7: 3 to 1: 1.
도 2는 도 1에 나타낸 제조방법에 의해 제조되는 피드스탁의 고상율을 설명하기 위해, 종래 분말사출성형 및 분말야금과 비교하여 나타낸 개략도이다.FIG. 2 is a schematic view showing the conventional powder injection molding and powder metallurgy in order to explain the solid phase rate of the feedstock produced by the manufacturing method shown in FIG. 1.
도면을 참조하면, 본 발명에 있어서 상기 피드스탁 중 금속분말의 첨가량은 압축 또는 압출 성형하여 만들어지는 성형체 내에 기공이 형성되는 조건, 즉 분말간의 틈새를 유기결합제가 모두 채우지 못하는 불포화조건에 해당되는 고상함량인 임계고상율(임계고상부피백분율) 이상부터 85 % 이하, 보다 적합하게는 80 % 이하의 범위인 것이 바람직하다. 즉, 상기 금속분말과 유기결합제를 혼합하여 제조된 상기 피드스탁의 고상부피백분율이 임계고상율 내지 85 %이고, 보다 바람직하게는 임계고상율 내지 80 %일 수 있다. 여기서 임계고상율은 사용하는 금속분말의 입도, 입도분포, 형상 등에 의하여 달라지므로 일정한 값으로 명기하기는 곤란하지만, 현재 상업적으로 사용되는 금속분말의 경우 대략 60 내지 70 % 범위 내에 있다. 따라서 상기 임계고상율이 70 %라면, 상기 피드스탁은 70 내지 85 %, 보다 바람직하게는 70 내지 80 %의 고상율을 가진다고 볼 수 있다. 이 경우 상기 피드스탁 중에 첨가된 유기결합제의 함량은 부피백분율로 대략 15 내지 30 %가 될 수 있고, 보다 바람직하게는 20 내지 30 %가 될 수 있다.Referring to the drawings, in the present invention, the addition amount of the metal powder in the feedstock is a solid phase corresponding to the condition that the pores are formed in the molded body produced by compression or extrusion molding, that is, the unsaturated condition that the organic binder cannot fill all the gaps between the powders. It is preferable that the content is in the range of not less than 85% or less, more preferably 80% or less, from the critical solid content (critical solid volume percentage). That is, the solid volume percentage of the feedstock prepared by mixing the metal powder and the organic binder may be from the critical solids ratio to 85%, more preferably from the critical solids ratio to 80%. Here, the critical solidity rate is difficult to specify a constant value because it depends on the particle size, particle size distribution, shape, etc. of the metal powder to be used, but is currently in the range of about 60 to 70% for the metal powder currently used commercially. Therefore, if the critical solidity rate is 70%, it can be seen that the feedstock has a solid phase rate of 70 to 85%, more preferably 70 to 80%. In this case, the content of the organic binder added in the feedstock may be approximately 15 to 30% by volume percentage, more preferably 20 to 30%.
상기 금속분말은 성형성과 소결성을 확보하기 위해 구형에 가까운 분말을 사용하고, 그 크기를 최대 60 ㎛로 제한하는 것이 바람직하다. 보다 구체적으로, 상기 금속분말의 입자 크기는 0.1 내지 60 ㎛인 것이 바람직한데, 보다 바람직하게는 0.5 내지 45 ㎛일 수도 있다. The metal powder is preferably a powder close to a spherical shape in order to secure formability and sinterability, and the size of the metal powder is preferably limited to a maximum of 60 ㎛. More specifically, the particle size of the metal powder is preferably 0.1 to 60 μm, more preferably 0.5 to 45 μm.
한편 상기 피드스탁은 상기 금속분말과 유기결합제를, 유기결합제가 융해되는 온도인 100 내지 180 ℃의 온도에서 가압 혼련(Kneading)하여 제조할 수 있다. 이 때 제조되는 상기 피드스탁의 평균 입경은 0.1 내지 2.0 mm인 과립의 형태로 분쇄하여 만드는 것이 바람직한데, 보다 바람직하게는 0.1 내지 0.5 mm인 과립의 형태로 만들 수 있다. 이와 같이 상기 피드스탁을 작은 입도로 만듦에 따라, 크기가 다른 단면을 갖는 복잡한 형상이거나 또는 종횡비가 큰 형상이방성을 갖는 부품을 제조할 때, 금형 내의 빈 공간에 상기 피드스탁을 균일하게 장입할 수 있다. 따라서 이후 압축 성형으로 만들어지는 성형체 내에서 밀도구배의 발생을 최소화 시킬 수 있다.Meanwhile, the feedstock may be prepared by kneading the metal powder and the organic binder at a temperature of 100 to 180 ° C. at which the organic binder is melted. The average particle diameter of the feedstock prepared at this time is preferably made by grinding in the form of granules of 0.1 to 2.0 mm, more preferably in the form of granules of 0.1 to 0.5 mm. By making the feedstock into a small particle size as described above, the feedstock can be uniformly charged into the empty space in the mold when manufacturing a component having a complex shape having a cross-section having a different size or a shape anisotropy having a large aspect ratio. have. Therefore, it is possible to minimize the occurrence of the density gradient in the molded body made by compression molding after.
다음으로 상기 성형체의 제조단계(S20)에서, 상기 성형체는 상기 피드스탁을 압축 또는 압출 성형하여 제조된다. 본 발명에 따라 상당량의 유기결합제를 함유하는 상기 피드스탁을 압축 또는 및 압출 성형에 의해 정밀한 형상의 생성형체를 만들기 위해서, 상기 유기결합제의 융해 온도인 100 내지 180 ℃의 온도에서 가열하여 피드스탁의 유동성을 확보하는 것이 바람직하다. 이때 압축 또는 압출을 위한 성형 압력을 20 내지 400 MPa인 것이 바람직한데, 보다 바람직하게는 30 내지 300 MPa일 수도 있다.Next, in the manufacturing step (S20) of the molded body, the molded body is manufactured by compression or extrusion molding the feedstock. According to the present invention, the feedstock containing a considerable amount of the organic binder is heated at a temperature of 100 to 180 ° C., which is the melting temperature of the organic binder, in order to form a precise shaped product by compression or extrusion. It is desirable to ensure fluidity. At this time, the molding pressure for compression or extrusion is preferably 20 to 400 MPa, more preferably 30 to 300 MPa.
만일 상기 조건보다 높은 압력으로 성형을 실시하면, 금형으로부터 성형체를 방출시키는 과정에서 탄성응력 이완 등으로 인해 스프링백 현상이 과도하게 발생하므로 층상 균열이 발생하는 경향이 높아진다. 반면에 성형압력이 너무 낮으면, 금형 내부에서 고체 분말의 가교 형성 등에 의해 충진이 불완전하게 이루어져 충진율이 탭밀도 보다 낮아질 수 있다. 이 경우에는 입자간의 접촉성이 떨어져서 소결성이 저하되거나 불균일한 분말의 분포로 인해, 내부에 국지적으로 큰 기공이 형성되는 경향이 높아진다.If the molding is performed at a pressure higher than the above conditions, the spring back phenomenon occurs excessively due to elastic stress relaxation or the like in the process of releasing the molded body from the mold, thereby increasing the tendency of layered cracking. On the other hand, if the molding pressure is too low, the filling is incomplete due to the crosslinking of the solid powder in the mold, the filling rate may be lower than the tap density. In this case, the contact between the particles is poor, the sinterability is lowered, or due to the distribution of the non-uniform powder, there is a high tendency to form large pores therein.
특히, 본 발명에 의한 성형과정에서는 금속분말이 비교적 낮은 압력 하에서 소성변형을 겪지 않고, 유기결합제에 의해 결합되어 성형이 이루어진다는 점에서, 금속분말의 소성변형이 수반되는 높은 성형압력을 이용하는 전통적인 분말야금법과 온간압축성형법 등과는 차이가 있다.Particularly, in the molding process according to the present invention, since the metal powder does not undergo plastic deformation under relatively low pressure and is molded by the organic binder, the conventional powder using the high molding pressure accompanied by plastic deformation of the metal powder is formed. There is a difference between the metallurgical method and the warm compression molding method.
도 3은 종래 분말사출성형에 의해 제조되는 사출성형체의 내부 조직과 본 발명의 실시예 따라 높은 고상율의 피드스탁을 압축 또는 압출성형에 하여 제조된 성형체의 내부 조직을 비교하여 나타낸 모식도이다. 여기서 백색 구형 입자는 금속분말을 의미하며, 회색빛의 물질은 유기결합제를 나타낸다. 정상적인 종래 분말사출성형방법에 의해 제조한 성형체의 내부조직을 나타내는 도 3(a)에는 유기결합제가 금속입자 틈새를 모두 채우고 있으며, 금속입자들이 윤활제 역할을 하는 잉여분의 유기결합제로 분리되어 채워진 모습을 나타낸다. 이에 비해, 도 3(b)는 본 발명에 의해 임계고상율 이상의 높은 고상율의 피드스탁을 온간 압축에 의해 성형한 성형체의 내부조직을 나타내는 것으로, 금속분말이 유기결합제에 의해 모두 코팅이 되었지만, 이들의 틈새를 따라 미충진된 불포화 영역이 기공으로 존재하는 것을 나타내고 있다.Figure 3 is a schematic diagram showing the internal structure of the injection molded body produced by conventional injection molding and the internal structure of the molded body produced by compression or extrusion molding a high solid feedstock according to an embodiment of the present invention. Here, white spherical particles refer to metal powders, and gray materials represent organic binders. Figure 3 (a) showing the internal structure of the molded body produced by the conventional conventional powder injection molding method, the organic binder fills all the gaps of the metal particles, the metal particles are separated and filled with the excess organic binder acts as a lubricant. Indicates. On the other hand, Figure 3 (b) shows the internal structure of the molded body formed by the warm compression of the feedstock of a high solids rate higher than the critical solids rate according to the present invention, the metal powder is all coated with an organic binder, Along these gaps, unfilled unsaturated regions are present as pores.
도 4는 고상율이 65 %인 피드스탁을 원료로 하여 분말사출성형한 성형체와 본 발명에 따라 임계고상율 초과하는 75 %의 고상율을 갖는 피드스탁을 온간 압축하여 만든 성형체의 내부 조직에 대한 파단면을 주사전자현미경으로 관찰한 영상이다. 도 4(a) 및 4(b)는 고상율이 각각 65 %와 75 %인 성형체의 파단면을 주사전자현미경으로 관찰한 영상으로서, 전자의 경우에는 금속분말의 입자 사이를 채운 유기결합제가 늘어나면서 파단이 발생한 모습을 보이고 있는 반면에, 후자의 경우에는 파단면 상에서도 금속분말의 입자 사이에 기공이 존재하는 것을 보이고 있다.4 is an internal structure of a molded article formed by powder injection molding using a feedstock having a solid phase rate of 65% as a raw material and a compact formed by warm compression of a feedstock having a solid phase rate of 75% exceeding a critical solidity rate according to the present invention. The fracture surface was observed with a scanning electron microscope. 4 (a) and 4 (b) are images obtained by scanning electron microscopy of the fracture surfaces of the molded bodies having the solid phase ratios of 65% and 75%, respectively, and in the case of the former, an organic binder filled between the particles of the metal powder is elongated. On the other hand, in the latter case, pores exist between the particles of the metal powder on the fracture surface.
이어지는 상기 성형체의 탈지단계(S30)에서는, 상기 성형체로부터 상기 유기결합제를 제거하기 위해 가열과정을 거친다. 본 발명에 의해 제조되는 성형체 내에는 필연적으로 폐기공 혹은 개기공의 형태로 기공이 균일하게 형성되어 분포하므로, 탈지를 위한 가열과정에서 가스형태로 분해되거나 휘발되는 유기결합제 성분의 방출통로확보에 유리하며, 탈지과정에서 부풀음이나 크랙 등의 결함 발생이 억지된다. 따라서 비록 전통적인 분말야금방법에 비하면 탈지시간이 상대적으로 오래 걸리지만, 동일한 형태의 성형체를 분말사출성형기술에 제조한 경우에 비교하면 탈지시간이 크게 단축되는 효과가 있다.In the following degreasing step (S30) of the molded body, a heating process is performed to remove the organic binder from the molded body. Since the pores are inevitably formed and distributed in the form of waste or open pores in the molded article produced by the present invention, it is advantageous to secure the discharge passage of the organic binder component that is decomposed or volatilized in the form of gas during heating for degreasing. In the degreasing process, defects such as swelling or cracks are inhibited. Therefore, although the degreasing time takes a relatively long time compared with the conventional powder metallurgy method, the degreasing time is greatly shortened compared with the case where the same type of molded body is manufactured by the powder injection molding technique.
도 5는 도 4(b)의 성형체를 가열하여 탈지공정을 마친 상태에서 탈지체의 파단면을 주사전자현미경으로 관찰한 영상으로, 입자간의 접촉부위를 제외한 부위에서 유기결합제가 모두 제거되어 구형의 금속분말입자 형상이 그대로 드러난 모습을 보여준다.FIG. 5 is an image of the fracture surface of the degreasing body observed by scanning electron microscopy after heating the molded body of FIG. 4 (b), and all organic binders are removed from the site except the contact area between particles. It shows the shape of metal powder particles.
상술한 바와 같이 본 발명에 의하면 상기 탈지단계와 후술(後述)할 소결단계을 각각 다른 로에서 분리해서 별도로 실시하지 않고, 하나의 가열로에 의해 단일 단계(One-step)의 가열과정에 의해 가열탈지와 소결을 효율적으로 실시할 수 있다.As described above, according to the present invention, the degreasing step and the sintering step to be described later are not performed separately from each other in a separate furnace, but are heated and degreased by a single step heating process by one heating furnace. And sintering can be performed efficiently.
또한 본 발명에 의하여 비록 다량의 유기결합제를 사용하더라도 탈지시간이 크게 단축되므로 적합하게 온도구간이 설정되어 있는 푸쉬형의 연속로를 이용하여 아르곤이나 질소가스 등의 가스분위기하에서 일정속도의 연속작업으로 실시가 가능하며, 이 경우 보다 높은 생산성을 기할 수 있다.In addition, according to the present invention, even if a large amount of organic binder is used, the degreasing time is greatly shortened, so that a continuous operation at a constant speed under a gas atmosphere such as argon or nitrogen gas is carried out by using a push type continuous furnace having an appropriate temperature range. It is possible to implement, in which case higher productivity can be achieved.
한편, 위와 같은 탈지단계(S30)에서 생성되는 유기결합제 분해산물은, 아르곤, 질소, 수소, 및 아르곤 또는 질소에 수소를 부피백분율로 5 % 이내로 혼합시킨 혼합가스로 이루어진 군에서 선택된 하나의 비산화성 가스를 캐리어 가스로 사용하여, 0.1 내지 20 L/min의 유량으로 흘려 제거하는 것이 바람직하다. On the other hand, the organic binder decomposition product produced in the degreasing step (S30) as described above, the non-oxidizing one selected from the group consisting of argon, nitrogen, hydrogen, and mixed gas mixed with argon or hydrogen to within 5% by volume percentage. It is preferable to use gas as a carrier gas and to remove it by flowing at a flow rate of 0.1-20 L / min.
끝으로 상기 성형체의 제조단계(S40;소결단계)에서는, 탈지된 상기 성형체를 가열하여 기공을 제거하고 치밀화된 소결체를 제조한다. 이러한 소결단계(S40)는 많은 경우 진공의 분위기에서 이루어진다. 진공로를 사용하더라도, 증기압이 높거나 휘발성이 높은 원소를 함유하는 합금의 경우에는 그 성분의 휘발을 억제하기 위해 아르곤 또는 질소 가스의 분압을 0.1 내지 100 torr로 조정한 부분 진공의 분위기에서 이루어지도록 하는 것이 바람직하다.Finally, in the manufacturing step (S40; sintering step) of the molded body, the degreased molded body is heated to remove pores and a densified sintered body is manufactured. This sintering step (S40) is in many cases made in an atmosphere of vacuum. Even in the case of using a vacuum furnace, in the case of an alloy containing a high vapor pressure or a highly volatile element, in order to achieve volatilization of the component, it is made in a partial vacuum atmosphere in which the partial pressure of argon or nitrogen gas is adjusted to 0.1 to 100 torr. It is desirable to.
만일 합금원소로서 탄소가 배제되어 있거나 탄소 함량을 극도로 제한하는 합금의 경우와 같이 탈탄 등의 문제가 발생하지 않는 경우에는 상기 탈지단계(S30)와 소결단계(S40)는, 비산화성 기체를 캐리어 가스 혹은 분위기 가스로 사용하여 실시할 수 있다. 이 같은 경우에는 아르곤, 질소뿐만 아니라 환원성 가스인 수소를 포함하는 아르곤 혹은 질소의 혼합가스를 사용할 수 있다. 이에 해당하는 합금분말로는, 순철, Fe-Si 규소강, Fe-Si-Al 센더스트 합금, 오스테나이트계 스테인레스강, 마르에이징강, Fe-Ni 인바 합금, Co-Cr-Mo 생체합금, Co-Si-Mo 트립알로이(트립알로이®는 미국 케나메탈-스텔라이트 사의 등록상표), 순동 및 Cu-Be, Cu-Al, Cu-Ni-Sn 등 동합금. Mo-Cu 등 몰리브덴 합금, W-Cu, W-Ni-Cu, W-Ni-Fe 등 텅스텐 합금, Nb 합금, Ti 및 그 합금을 예시할 수 있다.If carbon is excluded as an alloying element or a problem such as decarburization does not occur as in the case of an alloy that limits the carbon content extremely, the degreasing step (S30) and the sintering step (S40) carry a non-oxidizing gas. It can be used as a gas or an atmosphere gas. In such a case, a mixed gas of argon or nitrogen containing argon or nitrogen as well as hydrogen, which is a reducing gas, may be used. Corresponding alloy powders include pure iron, Fe-Si silicon steel, Fe-Si-Al sendust alloy, austenitic stainless steel, mar aging steel, Fe-Ni invar alloy, Co-Cr-Mo bioalloy, Co -Si-Mo tripalloy (Tripallo® is a registered trademark of Kennametal-Stelite, USA), pure copper and copper alloys such as Cu-Be, Cu-Al, Cu-Ni-Sn. Molybdenum alloys, such as Mo-Cu, tungsten alloys, such as W-Cu, W-Ni-Cu, and W-Ni-Fe, Nb alloy, Ti, and its alloy can be illustrated.
이에 반하여, 탄소가 필수 합금원소인 합금, 예를 들면 저합금강, 구조용 합금강, 마르텐사이트계 스테인레스강, 석출경화형 스테인레스강, 내열강, 공구강, 고속도강, 고탄소 합금인 스텔라이트®계 코발트 합금 (스텔라이트®는 미국 케나메탈-스텔라이트 사의 등록상표), Fe-Ni 및 Ni기 초내열합금 합금으로 이루어진 군에서 선택된 금속의 경우에는, 상기 탈지단계에서 아르곤, 질소 혹은 이들의 혼합가스 등 중성가스를 캐리어 가스로서 사용하는 것이 바람직하다.In contrast, alloys in which carbon is an essential alloy element, for example, low alloy steels, structural alloy steels, martensitic stainless steels, precipitation hardening stainless steels, heat resistant steels, tool steels, high speed steels, and high carbon alloys made of Stellite® cobalt alloys (Stellite ® is a registered trademark of Kennametal-Stelite Co., Ltd., USA, and Fe-Ni and Ni-based superalloy alloys, in the case of a metal selected from the group, in the degreasing step of carrying a neutral gas such as argon, nitrogen or a mixture thereof It is preferable to use as a gas.
이상에서 살펴본 바와 같이, 본 발명에 따른 정밀형상 부품의 제조방법에 의하면, 임계고상율 이상으로 금속분말과 유기결합제가 혼합된 피드스탁과 온간에서의 압축 또는 압출 성형기술을 이용하여 다양한 용도의 정밀형상의 부품을 실형상으로 제조하는 새로운 공법이 제공된다.As described above, according to the manufacturing method of the precision-shaped component according to the present invention, by using the stockstock and the warm or compression or extrusion molding technology in which the metal powder and the organic binder are mixed above the critical solidity of various uses precision A new method of manufacturing a shaped part in real form is provided.
예를 들면, 사용조건상 높은 수준의 내열성과 내마모성이 을 요구되는 한 차량용 엔진(가솔린 또는 디젤)의 배기가스용 밸브시트의 인서트의 경우, 주변부품과의 결합 및 기능상 정밀한 형상을 요구하고, 대량 생산이 가능할 정도로 생산효율이 좋은 제조방법을 적용하여야 한다. 상기한 바와 같은 본 발명의 제조방법에 의하면, 이와 같은 요구조건에 부합하여 정밀형상 부품을 제조할 수 있다. 이 경우 상기 금속분말로는, 합금성분 중에서 크롬함량이 5 wt% 이상인 고크롬의 내열강이나 공구강 혹은 고속도강, 니켈기 내열합금 및 코발트기 내열합금으로 이루어진 합금 군에서 선택할 수 있으며, 필요에 따라 상기 합금에 추가로 경질 세라믹 분말이나 금속간화합물을 첨가하여 내마멸성을 보강하거나 동과 같은 합금원소를 첨가하여 열전도성을 개선하거나 황화물을 첨가하여 윤활성을 개선시키는 등의 성분개질을 실시할 수 있다.For example, in the case of inserts of valve seats for exhaust gases of automotive engines (gasoline or diesel), which require a high level of heat resistance and abrasion resistance under the conditions of use, they require precise shapes in combination with peripheral components and function. Manufacturing methods with good production efficiency should be applied to this extent. According to the manufacturing method of the present invention as described above, it is possible to manufacture a precision-shaped component in accordance with such requirements. In this case, the metal powder may be selected from the alloy group consisting of high chromium-resistant steel, tool steel or high-speed steel, nickel-based heat-resistant alloy and cobalt-based heat-resistant alloy having a chromium content of 5 wt% or more among the alloying components, and added to the alloy as necessary. By adding a hard ceramic powder or an intermetallic compound, abrasion resistance may be added, or an alloying element such as copper may be added to improve thermal conductivity, or sulfide may be added to improve lubricity.
이하, 본 발명의 이해를 돕기 위하여 비교예 및 바람직한 실시예를 제시한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, comparative examples and preferred examples are provided to aid in understanding the present invention. However, the following examples are merely to illustrate the present invention is not limited to the scope of the present invention.
앞서 언급한 바와 같이, 본 발명은 산업적으로 유용한 다양한 합금계에 대해 적용할 수 있으나, 본 발명의 비교예 및 실시예에 대해서는 Cr-Ni-Nb 내열강, Ni-Fe-Cr-Mo 계 고탄소 Ni기 내열합금, Cr-Ni 오스테나이트계 스테인레스강, Co-Cr-W-C 계 고탄소 코발트합금인 스텔라이트® 6 (스텔라이트® 6는 미국 케나 메탈-스텔라이트 사의 제품) 등을 예로 들어 정밀형상 부품의 제조방법과, 이를 이용하여 제조되는 정밀형상 부품을 대상으로 하여 설명하도록 한다.As mentioned above, the present invention can be applied to a variety of industrially useful alloys, but for comparative examples and examples of the present invention Cr-Ni-Nb heat-resistant steel, Ni-Fe-Cr-Mo-based high carbon Ni Precise parts such as heat-resistant alloys, Cr-Ni austenitic stainless steels, and Stellite® 6 (Co-Cr-WC-based high-carbon cobalt alloys). It will be described for the manufacturing method and the precision-shaped parts manufactured using the same.
<< 비교예Comparative example >>
본 발명에 따른 정밀형상 부품의 제조방법의 효과를 입증하기 위한 비교실험을 위하여, 도 1의 흐름도에 따라 통상적인 분말사출성형에 사용되는 유기결합제가 금속분말 틈새를 다 채우고 남는 과포화상태의 고상율 65 %인 피드스탁으로 제조한 성형체와 금속분말틈새가 유기결합제에 의해 다 채워지지 못해 공극이 불포화상태인 고상율이 80 %인 본 발명의 피드스탁으로 제조한 성형체에 대해 동일한 가열조건하에서 일어나는 탈지속도를 비교하였다.For comparative experiments to prove the effect of the manufacturing method of the precision shaped parts according to the present invention, according to the flow chart of Figure 1, the organic binder used in the conventional powder injection molding solid phase rate of the supersaturation state remaining after filling the metal powder gap Degreasing under the same heating conditions for the molded article made of the feedstock of the present invention with a solid phase ratio of 80% of the molded article prepared with a feedstock of 65% and the metal powder gap cannot be filled by the organic binder and the void is unsaturated. The speed was compared.
사용한 고체분말은 공칭조성이 크롬 12 wt%, 몰리브덴 6 wt%, 망간 1.2 wt%, 실리콘 1.7 wt%, 바나듐 0.9 wt%, 텅스텐 0.5 wt%, 탄소 2.2 wt% 그리고 나머지가 니켈이고, 평균입도가 8.3 ㎛인 고탄소 니켈합금분말 (GHS-4, 일본 엡슨-아트믹스사 제품) 이다.The solid powder used was nominally composed of 12 wt% chromium, 6 wt% molybdenum, 1.2 wt% manganese, 1.7 wt% silicon, 0.9 wt% vanadium, 0.5 wt% tungsten, 2.2 wt% carbon and the rest nickel. It is a high carbon nickel alloy powder (GHS-4, manufactured by Epson-Atmix, Japan) of 8.3 µm.
상기 합금분말 264 g과 파라핀 왁스 35 wt%, 스테아린산 4 wt%, 카르나우바 왁스 6 wt%, 폴리에틸렌과 폴리올레핀 공중합체 22 wt%, 폴리옥시메틸렌을 포함하는 복합수지 18 wt%의 조성을 갖는 열가소성 유기결합제를 170 ℃에서 가압 혼련하여 고상율이 80 %인 피드스탁 290 g을 제조하였으며, 비교실험을 위해 분말사출성형제조에 사용되는 고상율이 65 %인 피드스탁 244 g을 제조하였다.Thermoplastic organic having a composition of 264 g of the alloy powder, 35 wt% of paraffin wax, 4 wt% of stearic acid, 6 wt% of carnauba wax, 22 wt% of polyethylene and polyolefin copolymer, and 18 wt% of a composite resin including polyoxymethylene. The binder was pressurized and kneaded at 170 ° C. to prepare 290 g of feedstock having a solid phase rate of 80%, and 244 g of a feedstock having a solid phase rate of 65% used in powder injection molding was prepared for comparative experiments.
위와 같이 제조된 피드스탁은 -50 메쉬(미국 표준체) 크기의 작은 알갱이 형태로 파쇄하여 170 ℃로 예열된 금형에 장입하고 고상율에 따라 각각 30 MPa (고상율이 65 %인 경우) 또는 70 MPa (고상율이 80 %인 경우)의 압력을 가하면서 압축 성형하여 직경 25.4 mmφ, 두께 약 6.5 mm 되는 디스크 형태의 성형체를 제조하였다.The feedstock prepared as above is crushed into small granules of -50 mesh (US standard), charged into a mold preheated at 170 ° C, and 30 MPa (when the solid content is 65%) or 70 MPa, respectively, depending on the solid phase rate. Compression molding was carried out while applying a pressure (when the solid phase ratio was 80%) to form a disk shaped body having a diameter of 25.4 mmφ and a thickness of about 6.5 mm.
이 같이 준비한 고상율이 각각 65 %, 80 %인 두 종류의 디스크 형태의 생성형체를 알루미나 트레이에 담아 관상로에 장입하여 탈지 실험을 실시하였다. Two types of disk-shaped product bodies having the solid phase ratios of 65% and 80% prepared as described above were put in an alumina tray and charged in a tubular furnace to perform degreasing experiments.
이때 질소가스를 0.4 L/min의 유량으로 흘렸으며 최고로 460 ℃까지 승온 속도를 1.5 ℃/min, 3.6 ℃/min, 7.3 ℃/min 로 변화시키면서 가열하였다. 탈지율은 가열을 종료하고 냉각시킨 다음에 초기의 무게로부터의 무게감량을 측정하여 각 조건에서의 성형체에 함유된 유기결합제의 탈지율을 조사하였다. 여기서 탈지율은 "(성형체 무게-탈지체 무게)/성형체 x 100%"로 결정된다.At this time, the nitrogen gas was flowed at a flow rate of 0.4 L / min and heated up to 460 ℃ while changing the temperature increase rate to 1.5 ℃ / min, 3.6 ℃ / min, 7.3 ℃ / min. The degreasing ratio was determined by measuring the weight loss from the initial weight after the heating was completed and cooled to investigate the degreasing ratio of the organic binder contained in the molded body under each condition. Here, the degreasing ratio is determined as "(molding weight-degreasing weight) / molding x 100%".
상기 탈지실험의 결과를 도 6에 나타내었다. 이 결과에서 동일한 승온속도로 가열하였을 경우, 고상율이 65 %인 성형체에 비해 고상율이 80 %인 성형체의 탈지율이 확연히 높으며, 이 두 시편에서 나타나는 탈지율의 차이는 탈지 속도가 높아질수록 더 큰 현저해짐을 볼 수 있다. 구체적으로, 승온속도가 1.5 ℃/min 일 때에는 고상율이 각각 65 %, 80 %인 시편에 있어 탈지율은 각각 85 %, 94 % 이었으며, 승온속도가 3.6 ℃/min 인 경우에는 탈지율이 각각 78 %, 89 %, 그리고 승온속도가 7.3 ℃/min 인 경우에는 탈지율이 각각 43 %, 68 %로 그 차이가 승온속도가 증가함에 따라 더욱 커졌다.The results of the degreasing experiment are shown in FIG. 6. In this result, when heated at the same heating rate, the degreasing rate of the molded article having a solid phase ratio of 80% was significantly higher than that of the molded article having a solid phase ratio of 65%, and the difference in the degreasing ratio between the two specimens was higher as the degreasing rate increased. You can see great striking. Specifically, when the heating rate was 1.5 ℃ / min, the degreasing rate was 85% and 94% for the specimens of 65% and 80% solids, respectively, and the degreasing rate was 3.6 ℃ / min, respectively. In the case of 78%, 89%, and heating rate of 7.3 ° C./min, the degreasing rate was 43% and 68%, respectively.
위 실험결과는 본 발명에 의해 높은 고상율의 피드스탁을 사용하여 만들어진 생성형체는 분말사출성형체에 비해서 빠른 탈지가 가능하다는 것을 잘 보여주고 있다. 즉, 본 발명에 의해 만들어지는 임계고상율 이상의 높은 고상분말 함량을 갖는 피드스탁으로 만들어지는 성형체가 보다 낮은 고상율을 갖는 사출성형체에 비해 탈지효율이 월등히 높음이 분명하게 입증되었다.The above test results show that the product produced using the high solid feedstock of the present invention can be degreased faster than the powder injection molded product. In other words, it was clearly demonstrated that the molded article made of the feedstock having a high solid powder content higher than the critical solid ratio produced by the present invention has a much higher degreasing efficiency than the injection molded article having a lower solid phase ratio.
<실시예 1><Example 1>
상기 <비교예 1>의 피드스탁과 동일한 원료성분을 갖되, 고상율이 75 %인 피드스탁 275 g을 트윈 캠 믹서에 장입하여 165 ℃로 승온한 후 40 rpm 회전속도 조건 하에서 2시간 동안 혼련하여 피드스탁을 제조하고, 이것을 크기가 50 메쉬 체를 통과하는 -50 메쉬 크기의 작은 알갱이로 파쇄하였다.275 g of the feedstock having the same raw material as the feedstock of <Comparative Example 1> but having a solid phase rate of 75% was charged to a twin cam mixer, heated to 165 ° C, and kneaded for 2 hours under a rotation speed of 40 rpm. A feedstock was prepared and broken into small grains of -50 mesh size passing through a 50 mesh sieve.
이와 같이 제조된 피드스탁을 165 ℃로 예열된 금형에 장입하고 40 MPa 내지 120 MPa 의 압력을 가하여 직경 25.4 mm, 두께 4.5 mm 되는 디스크 형태의 성형체를 제조하였다. 이어서, 성형체를 관상로에 장입하여 탈지 및 소결을 실시하였다. 탈지와 소결은 단일 가열 과정으로 실시하였으며, 아르곤 또는 질소가스 분위기에서 실시하였다.The feedstock thus prepared was charged to a mold preheated to 165 ° C. and a pressure of 40 MPa to 120 MPa was applied to form a disk shaped body having a diameter of 25.4 mm and a thickness of 4.5 mm. Subsequently, the molded body was charged into a tubular furnace to perform degreasing and sintering. Degreasing and sintering were carried out in a single heating process and carried out in an argon or nitrogen gas atmosphere.
도 7의 (a), (b), (c) 는 각각 45 MPa, 65 MPa, 90 MPa로 압축하여 만든 직경 25.4 mm, 높이 4.5 mm의 디스크형태 성형체의 외형을 나타내며, (d), (e), (f)는 (a) (b), (c) 시편에 대해 100 ㎛ 크기 이상의 내부결함의 존재 유무를 알아보기 위해 실시한 x-선 투과법에 의한 비파괴검사 영상결과이다. 도 7(d)에서 성형 압력을 45 MPa으로 압축 성형한 디스크에서 화살표로 표지한 위치에서 약 400 ㎛ 정도 크기의 작은 결함이 감지되었다. 그러나 45 MPa이상의 성형압력으로 제조한 디스크 시편에서는 100 ㎛ 이상 크기의 기공은 발견되지 않았다. 따라서 본 실시예의 피드스탁을 사용하는 경우에는 건전한 생성형체를 제조하기 위해서는 성형압력으로 45 MPa 이상을 가하는 것이 바람직함을 알 수 있다. 7 (a), 7 (b) and 7 (c) show the outer shapes of the disk-shaped molded bodies having a diameter of 25.4 mm and a height of 4.5 mm made by compression of 45 MPa, 65 MPa and 90 MPa, respectively. ), (f) is a nondestructive test image by x-ray transmission method to determine the presence of internal defects of 100 ㎛ or more for the specimen (a) (b), (c). In FIG. 7 (d), a small defect of about 400 μm in size was detected at the position marked by the arrow in the disk compression-molded at 45 MPa. However, no pores larger than 100 µm were found in disk specimens produced at molding pressures above 45 MPa. Therefore, in the case of using the feedstock of the present embodiment, it can be seen that it is preferable to add 45 MPa or more as the molding pressure in order to produce a healthy formed body.
상기 세 종류의 디스크 시편을 질소가스 분위기 하에서 가열하여 탈지하고 소결하여 소결체를 만들었다. 제조된 세 종류 소결체에 대해 상기와 동일한 X-선 비파괴검사를 검사를 실시한 결과, 소결 후에는 모든 시편에서 100 ㎛이상 크기를 갖는 기공은 검출되지 않았다. 광학현미경하에서도 약 20 ㎛ 크기 이상의 기공도 거의 관찰되지 않았다. 특이하게 생성형체에 존재하던 비교적 큰 결함이 소결과정에서 제거되는 것으로 관찰되었는데, 이 결과는 소결이 액상형성을 수반하는 초고상선 액상소결에 의해 일어났음을 시사한다. 즉, 소결초기에 액상이 형성됨에 따라 고상입자들이 재배열을 일으킬 때 제거된 것으로 판단된다.The three kinds of disk specimens were degreased by heating under nitrogen gas atmosphere and sintered to form a sintered body. As a result of inspecting the same X-ray nondestructive test for the three kinds of sintered bodies, no pores having a size of 100 μm or more were detected in all specimens after sintering. Under the optical microscope, pores of about 20 μm or more were hardly observed. It was observed that relatively large defects in the product formation were removed during the sintering process, which suggests that sintering was caused by supersolid phase sintering involving liquid phase formation. That is, as the liquid phase is formed in the early stage of sintering, it is determined that the solid particles are removed when they cause rearrangement.
본 실시예에서와 같이 단순한 형상을 갖는 경우, 50 MPa 이상의 성형압력으로 제조한 성형체를 탈지-소결하여 얻어진 소결체의 경우, 상대밀도가 분말사출성형법으로 제조한 소결체와 대등한 결과가 얻어졌다. 특히, 질소가스 분위기에서 소결하였을 경우에는 선형수축율 10.1 %, 상대밀도가 99 %이상 되는 높은 밀도값이 얻어졌다.In the case of the sintered body obtained by degreasing-sintering a molded body produced at a molding pressure of 50 MPa or more, in the case of having a simple shape as in the present embodiment, results were obtained in which the relative density was comparable to that of the sintered body produced by the powder injection molding method. In particular, when sintered in a nitrogen gas atmosphere, a high density value with linear shrinkage of 10.1% and relative density of 99% or more was obtained.
질소가스 분위기 하에서 소결할 때에는 합금 중에 다량으로 첨가된 질소와의 친화력이 큰 크롬으로 인해 질소가스의 용해가 촉진되며, 액상소결이 이루어지면 기공 내에 갇혀진 질소가스가 합금 중에 용해되어 감압이 발생하기 때문에 주변의 액상이 침투하여 기공을 채움으로써 치밀화를 증진되는 효과가 나타난다. 그러나 이 과정에서 질소의 용해로 인해 소결체의 무게가 증가하는 결과가 초래된다.When sintering in a nitrogen gas atmosphere, the dissolution of nitrogen gas is promoted due to chromium having a high affinity with a large amount of nitrogen added to the alloy.When liquid phase sintering, nitrogen gas trapped in the pores is dissolved in the alloy to generate a reduced pressure. Therefore, the surrounding liquid penetrates and fills the pores, thereby promoting the effect of densification. However, this process results in an increase in the weight of the sintered body due to the dissolution of nitrogen.
<실시예 2><Example 2>
상기 <실시예 1>과 동일한 조건으로 피드스탁을 준비하고 압축몰딩하여 디스크 형태의 시편을 준비하였다. 단지 단일 가열프로그램에 의해 탈지와 소결을 실시할 때 아르곤가스를 사용하고, 1170 내지 1200 ℃의 온도구간에서 소결을 실시하였다. 그 결과, 선수축율이 10.0 %, 상대밀도가 98 %인 건전한 소결체가 제조되었다.A feedstock was prepared under the same conditions as in <Example 1> and compression molded to prepare a disk-shaped specimen. When degreasing and sintering by only a single heating program, argon gas was used and sintering was carried out at a temperature range of 1170 to 1200 ° C. As a result, a healthy sintered body having a bow shrinkage of 10.0% and a relative density of 98% was produced.
<실시예 3><Example 3>
공칭 조성이 크롬 35 wt%, 니켈 15 wt%, 몰리브덴 3 wt%, 텅스텐 0.5 wt%, 망간 0.8 wt%, 실리콘 0.8 wt%, 탄소 1.1 wt%, 그리고 나머지가 철이고, 평균입도가 8.52 ㎛인 구형에 가까운 내열강 분말(DIN 1.4091, 일본 엡슨-아트믹스사 제품) 252 g을 <실시예 1>의 조성을 갖는 왁스계열의 열가소성 유기바인더와 160 ℃에서 가압 혼련하여 고상율이 75 %인 피드스탁 263 g을 제조하였다. Nominal composition: 35 wt% chromium, 15 wt% nickel, 3 wt% molybdenum, 0.5 wt% tungsten, 0.8 wt% manganese, 0.8 wt% silicon, 1.1 wt% carbon, and the remainder is iron, with an average particle size of 8.52 μm 252 g of a nearly spherical heat-resistant steel powder (DIN 1.4091, manufactured by Epson-Atmix, Japan) was kneaded with a wax-based thermoplastic organic binder having a composition of <Example 1> at 160 ° C to feedstock 263 having a solid phase rate of 75%. g was prepared.
위와 같이 제조된 피드스탁을 약 0.3 mm 크기 이하의 작은 알갱이 형태로 파쇄한 후 160 ℃로 예열된 금형에 장입하여 45 내지 150 MPa의 압력 하에서 직경 25.4 mm, 두께 5 mm인 디스크 형태의 성형체를 제조하였다.The feedstock prepared as described above was crushed into small granules of about 0.3 mm or less, and then charged into a mold preheated to 160 ° C. to produce a disk shaped body having a diameter of 25.4 mm and a thickness of 5 mm under a pressure of 45 to 150 MPa. It was.
다음으로 총 가열시간을 12시간으로 하여, 100 ℃까지 10 ℃/min, 250 ℃까지는 1 ℃/min 승온한 후 1시간 유지하고 이후 400 ℃까지 2 ℃/min 승온한 후, 1시간 유지한 다음에는 5 ℃/min의 승온속도로 650 ℃까지 가열하여 탈지를 마쳤다. Next, the total heating time was 12 hours, and the temperature was raised to 10 ° C./min up to 100 ° C. and 250 ° C. to 1 ° C./min, and then maintained for 1 hour. Degreasing was completed by heating to 650 ° C. at a temperature increase rate of 5 ° C./min.
그 다음으로 950 ℃까지 10 ℃/min의 승온속도로 가열한 후 20분 유지하고 1210 ℃까지 승온하여 90분간 소결을 실시하였다. 이때 모든 과정은 0.3 L/min 의 유량으로 질소가스를 흘리면서 실시하였다. 그리하여, 선수축율 9.6 %, 상대밀도가 97 %인 건전한 소결체가 제조되었다.Then, the mixture was heated to a temperature increase rate of 10 ° C./min to 950 ° C., held for 20 minutes, heated to 1210 ° C., and sintered for 90 minutes. At this time, all the processes were carried out while flowing nitrogen gas at a flow rate of 0.3 L / min. Thus, a healthy sintered body having a bow shrinkage of 9.6% and a relative density of 97% was produced.
<실시예 4><Example 4>
공칭조성이 크롬 25 wt%, 니켈 20 wt%, 망간 1.5 wt%, 실리콘 1.25 wt%, 니오비움 1.35 wt%, 몰리브덴 0.5 wt%, 탄소 0.3 wt%, 그리고 나머지가 철(일본 엡슨-아트믹스사 제품)이고, 평균입도가 9 ㎛인 AISI HK30 내열강 분말을 <실시예 1>에서 사용한 것과 동일한 유기 바인더와 3:1의 부피비율로 혼합해서 165 ℃에서 가압 혼련하여 고상율이 75 %인 피드스탁 271 g을 제조하였다.Nominal composition: 25 wt% chromium, 20 wt% nickel, 1.5 wt% manganese, 1.25 wt% silicon, 1.35 wt% niobium, 0.5 wt% molybdenum, 0.3 wt% carbon, and the rest of iron (Japan Epson-Artmix) Product) and AISI HK30 heat-resistant steel powder having an average particle size of 9 µm, mixed with the same organic binder as used in <Example 1> at a volume ratio of 3: 1, and pressure kneaded at 165 DEG C to feedstock with a 75% solid phase rate. 271 g were prepared.
제조한 피드스탁을 -50 메쉬 크기의 작은 알갱이 형태로 파쇄한 후, 165 ℃로 가열된 금형에 장입하여 50 내지 100 MPa의 압력으로 압축 성형하여 직경 25.4 mm, 두께 약 5 mm인 성형체를 제조하였다.The prepared feedstock was crushed into small granules having a size of -50 mesh, and then charged into a mold heated at 165 ° C. to compression molding at a pressure of 50 to 100 MPa to prepare a molded article having a diameter of 25.4 mm and a thickness of about 5 mm. .
성형체를 관상로에 장입하고 질소가스분위기에서 단일 가열프로그램에 의해 탈지-소결을 실시하였다. 탈지과정에서는 질소가스를 0.3 L/min의 유량으로 흘리면서 1.2 ℃/min의 승온속도로 가열하였으며, 600 ℃에서 20분을 유지한 후에는 950 ℃까지는 5 ℃/min의 승온속도로, 이후 1200 ℃까지 10 ℃/min의 승온속도로 가열하고 이 온도에서 30 분을 유지한 다음에 최종 소결온도인 1300 ℃까지는 3 ℃/min 의 승온속도로 가열하였다.The molded body was charged to a tubular furnace and de-sintered by a single heating program in a nitrogen gas atmosphere. In the degreasing process, nitrogen gas was heated at a rate of 1.2 ° C./min while flowing at a flow rate of 0.3 L / min. After maintaining 20 minutes at 600 ° C., the temperature was increased to 5 ° C./min up to 950 ° C., and then 1200 ° C. It heated at the temperature increase rate of 10 degree-C / min, it hold | maintained 30 minutes at this temperature, and it heated at the temperature increase rate of 3 degree-C / min to 1300 degreeC which is the final sintering temperature.
100 MPa의 압력으로 압축 성형한 시편을 질소분위기에서 1300 ℃에서 소결하여 선수축율이 9.5 %, 상대밀도는 97 %인 건전한 소결체를 제조하였다.The specimens compression molded at 100 MPa were sintered at 1300 ° C. in a nitrogen atmosphere to prepare a healthy sintered body having a 9.5% bow shrinkage and 97% relative density.
<실시예 5>Example 5
가스분무로 제조하여 구형의 형상을 갖고 입자크기가 -22㎛, 성분이 크롬 18 wt%, 니켈 13 wt%, 몰리브덴 2 wt%, 실리콘 0.8 wt% 그리고 나머지가 철(미국 카펜터스사 제품)인 AISI 316L 스테인레스강 분말 288 g을 상기 <실시예 1>에서 사용한 것과 동일한 유기결합제와 75 대 25의 부피비율로 165 ℃에서 가압 혼련하여 고상율이 75 %인 피드스탁 약 299 g을 제조하였다.AISI manufactured by gas spraying, has a spherical shape, particle size is -22㎛, chromium 18 wt%, nickel 13 wt%, molybdenum 2 wt%, silicon 0.8 wt% and the remainder iron (manufactured by Carpenters, USA) 288 g of 316L stainless steel powder was kneaded at 165 ° C. with the same organic binder as used in <Example 1> at a volume ratio of 75 to 25 to prepare about 299 g of a feedstock having a 75% solid phase.
제조한 피드스탁을 -50메쉬(미국 표준체) 크기의 작은 알갱이 형태로 파쇄한 후, 금형에 장입하여 165 ℃로 가열된 상태에서 50 내지 100 MPa의 압력을 가하여 직경 25.4 mm, 두께 약 5 mm인 성형체를 제조하였다. 만들어진 성형체를 알루미나 관상로에 장입하고 질소분위기 하에서 연속가열 프로그램에 의한 탈지-소결을 실시하였다.The prepared feedstock was crushed into small granules of -50 mesh size (US standard), charged into a mold and heated to 165 ° C. under a pressure of 50 to 100 MPa to a diameter of 25.4 mm and a thickness of about 5 mm. A molded article was prepared. The formed compacts were charged in an alumina tube furnace and degreased-sintered by a continuous heating program under a nitrogen atmosphere.
탈지과정에서는 질소가스를 분당 0.3 L를 흘리면서 1.2 ℃/min의 승온속도로 가열하였으며, 탈지가 끝나는 약 600 ℃ 이후에는 0.3 L/min의 유량으로 수소가스를 흘리면서 가열하였다. 600 ℃에서 20분을 유지한 후에는 950 ℃까지는 5 ℃/min의 승온속도로, 이후 1200 ℃까지 10 ℃/min 의 승온 속도로 가열하고, 이 온도에서 30분을 유지한 다음에 최종 소결온도인 1340 ℃까지는 3 ℃/min 의 승온속도로 가열하였다.In the degreasing process, nitrogen gas was heated at a temperature rise rate of 1.2 ° C./min while flowing 0.3 L per minute, and heated while flowing hydrogen gas at a flow rate of 0.3 L / min after about 600 ° C. after degreasing. After 20 minutes at 600 ° C., heating was carried out at a rate of temperature increase of 5 ° C./min up to 950 ° C., and then at a temperature rising rate of 10 ° C./min up to 1200 ° C., and the final sintering temperature was maintained at this temperature for 30 minutes. It heated at the temperature increase rate of 3 degree-C / min to 1340 degreeC which is phosphorus.
1340 ℃에서의 소결과정을 통해 100 MPa의 압력으로 압축 성형하여 제조한 시험편에 대해 선수축율이 9.5 %, 상대밀도는 97 %인 건전한 소결체가 제조되었다.Through the sintering process at 1340 ° C, a healthy sintered body having a shrinkage ratio of 9.5% and a relative density of 97% was prepared for the specimens prepared by compression molding at a pressure of 100 MPa.
<실시예 6><Example 6>
<실시예 1>과 동일한 합금분말과 유기결합제 조성물을 사용하여 고상율이 75 %가 되는 피드스탁을 제조한 후에 -50 메쉬 크기의 알갱이로 만들어 160 ℃로 예열된 금형에 장입하여 60 MPa의 압력하에서 압축성형하여, 가솔린 승용차 엔진용 배기가스 밸브시트 인서트 시작품을 제조하였다.Using the same alloy powder and organic binder composition as in <Example 1>, a feedstock having a solid phase ratio of 75% was prepared, and then granulated into -50 mesh particles and charged into a mold preheated to 160 ° C. Compression molding was carried out to prepare an exhaust gas valve seat insert prototype for a gasoline passenger car engine.
제조한 성형체를 질소가스 분위기에서 <실시예 2>에서와 동일한 하나의 가열 프로그램으로 작성된 가열스케쥴에 의해 탈지와 소결하였다. 1190 ℃에서 90분간 소결을 실시하여, 밀도가 7.81 g/㎤(상대밀도 99.9 %)인 고밀도의 건전한 승용차 용 배기가스 밸브시트 인서트 소결체를 제조하였다. 도 9는 본 발명에 의해 제작한 배기가스 밸브시트 인서트 성형체 및 소결체의 외관 사진이다.The formed article was degreased and sintered in a nitrogen gas atmosphere by a heating schedule created by the same heating program as in <Example 2>. Sintering was carried out at 1190 ° C. for 90 minutes to produce a high-density exhaust gas valve seat insert sintered body having a density of 7.81 g / cm 3 (99.9% relative density). 9 is an external photograph of an exhaust gas valve seat insert molded body and a sintered body produced by the present invention.
지금까지의 설명과 첨부된 도면에서는 고크롬 내열강, 316L 오스테나이트계 스테인레스 강, Ni기 고탄소 초내열합금, Co기 고탄소 내마모합금 등의 합금을 대상으로 하여 본 발명의 실시예를 설명하였으나, 본 발명에서 적용 가능한 합금은 상기 실시예에만 한정되는 것이 아니다. 이외에도 순철, 저합금강, 구조용 합금강, 스테인레스강, 마르에이징강, 공구강, 고속도강, Fe-Cr-Al 내열강 등 철계 합금, Fe-Ni기 및 Ni기 초내열 합금, Co-Cr-Mo 생체합금, Co-Mo-Si 트립알로이, Co-Cr-W-C 코발트 합금, Cr-Fe계 합금, 순철, Fe-Si 규소강, Fe-Si-Al 센더스트, Fe-Ni 인바합금, 순동, Cu-Be 합금, Cu-Al 합금, Cu-Ni-Sn 합금, Mo-Cu 등 몰리브덴 합금, W-Cu, W-Ni-Cu, W-Ni-Fe 등 텅스텐 합금, Nb 합금, Ti 및 그 합금과 같이 공업적으로 유용한 다양한 금속소재 분말에 대해 적용이 가능하다.In the above description and the accompanying drawings, embodiments of the present invention have been described with reference to alloys such as high chromium heat-resistant steel, 316L austenitic stainless steel, Ni-based high carbon superheat alloy, and Co-based high carbon wear resistant alloy. The alloy applicable in the present invention is not limited only to the above embodiment. In addition, iron alloys such as pure iron, low alloy steel, structural alloy steel, stainless steel, maraging steel, tool steel, high speed steel, Fe-Cr-Al heat resistant steel, Fe-Ni and Ni-based super heat-resistant alloy, Co-Cr-Mo bioalloy, Co -Mo-Si Tripalloy, Co-Cr-WC Cobalt Alloy, Cr-Fe Alloy, Pure Iron, Fe-Si Silicon Steel, Fe-Si-Al Sendust, Fe-Ni Inva Alloy, Pure Copper, Cu-Be Alloy, Molybdenum alloys such as Cu-Al alloys, Cu-Ni-Sn alloys, Mo-Cu, tungsten alloys such as W-Cu, W-Ni-Cu, W-Ni-Fe, Nb alloys, Ti and industrially Applicable for a variety of useful metal powders.
또한 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.In addition, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and a patent will be described below by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

Claims (23)

  1. 입자 크기가 0.1 내지 60 ㎛인 금속분말과, 상기 금속분말의 틈새가 과포화되지 않는 비율의 열가소성 유기결합제를 가압혼련하여 피드스탁을 제조하는 단계; Preparing a feedstock by pressure kneading a metal powder having a particle size of 0.1 to 60 µm and a thermoplastic organic binder having a ratio in which the gap of the metal powder is not supersaturated;
    상기 피드스탁을 압축 또는 압출 성형하여 성형체를 제조하는 단계;Compressing or extruding the feedstock to produce a molded body;
    상기 성형체로부터 상기 유기결합제를 제거하는 탈지 단계; 및A degreasing step of removing the organic binder from the molded body; And
    탈지된 상기 성형체를 소결하여 소결체를 제조하는 단계를 포함하는 정밀형상 부품의 제조방법.Sintering the degreased molded body to produce a sintered body manufacturing method of the precision shaped part.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 금속분말의 입자 크기는 0.5 내지 45 ㎛ 인 것을 특징으로 하는 정밀형상 부품의 제조방법.The particle size of the metal powder is a manufacturing method of the precision-shaped component, characterized in that 0.5 to 45 ㎛.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 피드스탁은 상기 금속분말의 틈새가 상기 유기결합제에 의해 포화되는 임계고상율 내지 85 %의 고상율을 가지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method for producing a precision component, characterized in that the gap between the metal powder has a critical solidity rate of 85% to a solid phase saturation by the organic binder.
  4. 청구항 3에 있어서, The method according to claim 3,
    상기 피드스탁은 임계고상율 내지 80 %의 고상율을 가지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method of manufacturing a precision shaped part, characterized in that it has a critical solidity of 80% to a solids.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 피드스탁은 70 내지 80 %의 고상율을 가지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method of manufacturing a precision shaped part, characterized in that having a solid phase rate of 70 to 80%.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 피드스탁은 상기 금속분말과 유기결합제를 100 내지 180 ℃의 온도에서 가압 혼련하여 제조하는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method of producing a precision component, characterized in that the metal powder and the organic binder is produced by pressure kneading at a temperature of 100 to 180 ℃.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 피드스탁은, 그 입경이 0.1 내지 2.0 mm 인 과립의 형태로 만들어지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method for producing a precision shaped part, characterized in that the particle diameter is made in the form of granules of 0.1 to 2.0 mm.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 피드스탁은, 그 입경이 0.1 내지 0.5 mm 인 과립의 형태로 만들어지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method for producing a precision shaped part, characterized in that the particle diameter is made in the form of granules of 0.1 to 0.5 mm.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 금속분말은, 순철, 저합금강, 구조용 합금강, 마르에이징강, 스테인레스강, 내열강, 공구강, 고속도강, Fe-Ni기 초내열합금, Ni기 초내열합금, Co-Cr-Mo 생체합금, Co-Si-Mo 트립알로이, Co-Cr-W-C 코발트합금, Cr-Fe 크롬합금, Fe-Si 규소강, Fe-Si-Al 센더스트 합금, Fe-Cr-Co 합금, Fe-Ni 인바합금, 순동, Cu-Be 합금, Cu-Al 합금, Cu-Ni-Sn 합금, Mo-Cu 몰리브덴 합금, W-Cu, W-Ni-Cu, W-Ni-Fe 텅스텐합금, Ti 및 Ti 합금, 및 Nb 합금으로 이루어진 군에서 선택된 금속 또는 합금의 분말을 포함하는 것을 특징으로 하는 정밀형상 부품의 제조방법. The metal powder is pure iron, low alloy steel, structural alloy steel, mar aging steel, stainless steel, heat-resistant steel, tool steel, high-speed steel, Fe-Ni-based super alloys, Ni-based super alloys, Co-Cr-Mo bioalloy, Co- Si-Mo tripalloy, Co-Cr-WC cobalt alloy, Cr-Fe chromium alloy, Fe-Si silicon steel, Fe-Si-Al sendust alloy, Fe-Cr-Co alloy, Fe-Ni inva alloy, pure copper, Cu-Be alloys, Cu-Al alloys, Cu-Ni-Sn alloys, Mo-Cu molybdenum alloys, W-Cu, W-Ni-Cu, W-Ni-Fe tungsten alloys, Ti and Ti alloys, and Nb alloys Method for producing a precision shaped part comprising a powder of a metal or alloy selected from the group consisting of.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 유기결합제는, 기본 왁스성분으로 이루어진 군에서 선택되는 하나 또는 둘 이상, 계면활성제 및 윤활제의 역할을 하는 화합물로 이루어진 군에서 선택되는 하나 또는 둘 이상, 및 백본 고분자 역할을 하는 중량평균 분자량이 8,000 내지 200,000인 유기고분자로 이루어진 군에서 선택된 하나 또는 둘 이상의 혼합체인 것을 특징으로 하는 정밀형상 부품의 제조방법. The organic binder is one or two or more selected from the group consisting of basic wax components, one or two or more selected from the group consisting of compounds serving as surfactants and lubricants, and a weight average molecular weight of 8,000 to serve as a backbone polymer Method for producing a precision component, characterized in that one or two or more mixtures selected from the group consisting of 20 to 200,000 organic polymers.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 유기결합제는, The organic binder,
    상기 기본 왁스성분으로서 파라핀 왁스, 비즈 왁스, 마이크로크리스탈린 왁스 및 카르나우바 왁스로 이루어진 군에서 선택된 하나 또는 둘 이상과, 상기 계면활성제 및 윤활제 역할을 하는 팜오일(Palm oil), 지방유(Fatty oil), 몬탄왁스, 스테아린산, 아미드계 왁스, 프탈산, 및 폴리올레핀계 왁스로 이루어진 군에서 선택된 하나 또는 둘 이상을 혼합하여 만들어진 제1그룹과, One or more selected from the group consisting of paraffin wax, bead wax, microcrystalline wax and carnauba wax as the basic wax components, palm oil and fat oil serving as the surfactant and lubricant. ), A first group made by mixing one or two or more selected from the group consisting of montan wax, stearic acid, amide wax, phthalic acid, and polyolefin wax,
    상기 백본고분자 역할을 하는 폴리올레핀계 고분자, 폴리올레핀 공중합체, 폴리옥시메틸렌을 포함하는 복합수지 등 열가소성 고분자류로 이루어진 군에서 선택된 하나 또는 둘 이상을 포함하는 제2그룹을 각각 선택하여, Selecting a second group including one or two or more selected from the group consisting of thermoplastic polymers such as polyolefin-based polymers, polyolefin copolymers, and polyoxymethylene-containing composite resins that serve as the backbone polymer,
    상기 제1그룹과 제2그룹의 중량비가 9:1 내지 2:3이 되도록 조합하여 만드는 것을 특징으로 하는 정밀형상 부품의 제조방법. Method for producing a precision-shaped component characterized in that the combination is made so that the weight ratio of the first group and the second group is 9: 1 to 2: 3.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 제1그룹과 제2그룹의 중량비가 7:3 내지 1:1이 되도록 조합하여 만드는 것을 특징으로 하는 정밀형상 부품의 제조방법.Method for producing a precision-shaped component characterized in that the combination is made so that the weight ratio of the first group and the second group is 7: 3 to 1: 1.
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 피드스탁은 100 내지 180 ℃ 온도에서 압축 또는 압출 성형하는 것을 특징으로 하는 정밀형상 부품의 제조방법.The feedstock is a method for producing precision shaped parts, characterized in that the compression or extrusion molding at a temperature of 100 to 180 ℃.
  14. 청구항 13 있어서, The method according to claim 13,
    상기 성형체를 압축 또는 압출하기 위한 압력은 20 내지 400 MPa 인 것을 특징으로 하는 정밀형상 부품의 제조방법.Pressure for compressing or extruding the molded body is a method for producing a precision shaped part, characterized in that 20 to 400 MPa.
  15. 청구항 14에 있어서, The method according to claim 14,
    상기 성형체를 압축 또는 압출하기 위한 압력은 30 내지 300 MPa 인 것을 특징으로 하는 정밀형상 부품의 제조방법.Pressure for compressing or extruding the molded body is a method of manufacturing a precision shaped part, characterized in that 30 to 300 MPa.
  16. 청구항 1에 있어서,The method according to claim 1,
    상기 탈지단계와 소결단계는 하나의 가열로에서 단일 단계(One-step)의 가열과정으로 이루어지는 것을 특징으로 하는 정밀형상 부품의 제조방법.The degreasing step and the sintering step is a manufacturing method of the precision-shaped component, characterized in that consisting of a single step (One-step) heating process in one heating furnace.
  17. 청구항 1에 있어서,The method according to claim 1,
    상기 탈지단계에서 생성되는 유기결합제 분해산물을, 아르곤, 질소, 수소, 및 아르곤 또는 질소에 수소를 부피백분율로 5 % 이내로 혼합시킨 혼합가스로 이루어진 군에서 선택된 하나의 비산화성 가스를 캐리어 가스로 사용하여, 0.1 내지 20 L/min 의 유량으로 처리하는 것을 특징으로 하는 정밀형상 부품의 제조방법.The non-oxidizing gas selected from the group consisting of argon, nitrogen, hydrogen, and mixed gas in which hydrogen is mixed in argon or nitrogen to within 5% by volume percentage is used as a carrier gas. And processing at a flow rate of 0.1 to 20 L / min.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 소결단계를 진공의 분위기에서 실시하거나, 아르곤 또는 질소의 분압을 0.1 내지 100 torr로 유지 조절하는 부분 진공의 분위기에서 실시하는 것을 특징으로 하는 정밀형상 부품의 제조방법.The sintering step is carried out in a vacuum atmosphere, or a method of manufacturing a precision component, characterized in that carried out in a partial vacuum atmosphere to maintain and control the partial pressure of argon or nitrogen to 0.1 to 100 torr.
  19. 청구항 17에 있어서,The method according to claim 17,
    상기 금속분말이, 탄소 함량을 극도로 제한하거나 배제하는 것으로, 순철, 오스테나이트계 스테인레스강, 규소강, 센더스트, 마르에이징강, 철-니켈 인바 합금, 코발트계 생체합금, 트립알로이, 동, 동합금, 몰리브데늄 합금, 및 텅스텐 합금으로 이루어진 군에서 선택된 금속 또는 합금의 분말을 포함한 경우, The metal powder is extremely limited or excluded from the carbon content, pure iron, austenitic stainless steel, silicon steel, sendust, mar aging steel, iron-nickel invar alloy, cobalt-based bioalloy, tripalloy, copper, When it contains a powder of a metal or alloy selected from the group consisting of copper alloy, molybdenum alloy, and tungsten alloy,
    상기 소결 분위기 가스가, 아르곤, 질소, 수소 및 이들의 혼합된 가스로 이루어진 군에서 선택된 하나인 것을 특징으로 하는 정밀형상 부품의 제조방법. The sintering atmosphere gas is one of argon, nitrogen, hydrogen, and a mixed gas thereof, the manufacturing method of the precision-shaped component, characterized in that one.
  20. 청구항 18에 있어서,The method according to claim 18,
    상기 금속분말이, 탄소 함량을 필수적으로 요구하는 것으로, 저합금강, 구조용 합금강, 마르텐사이트계 스테인레스강, 석출경화형 스테인레스강, 내열강, 공구강, 고속도강, Fe-Ni기 초내열합금, Ni기 초내열합금, 및 Co-Cr-W-C 코발트합금으로 이루어진 군에서 선택된 금속 또는 합금의 분말을 포함한 경우, The metal powder, which is essentially required for the carbon content, low alloy steel, structural alloy steel, martensitic stainless steel, precipitation hardening stainless steel, heat-resistant steel, tool steel, high-speed steel, Fe-Ni-based super alloys, Ni-based super alloys And a powder of a metal or alloy selected from the group consisting of Co-Cr-WC cobalt alloy,
    상기 탈지단계에서 비산화성 캐리어 가스는, 아르곤 가스, 질소 및 이들의 혼합가스로 이루어진 군에서 선택된 하나이고,In the degreasing step, the non-oxidizing carrier gas is one selected from the group consisting of argon gas, nitrogen, and a mixed gas thereof,
    상기 소결단계에서 비산화성 분위기 가스로서, 아르곤, 질소 및 이들의 혼합가스로 이루어진 군에서 선택된 하나가 사용되는 것을 특징으로 하는 정밀형상 부품의 제조방법.In the sintering step, as the non-oxidizing atmosphere gas, one selected from the group consisting of argon, nitrogen and mixed gas thereof is used.
  21. 청구항 1 내지 청구항 20 중 선택된 하나의 방법에 의해 제조된 정밀형상 부품.A precision shaped part manufactured by the method of any one of claims 1-20.
  22. 청구항 21에 있어서,The method according to claim 21,
    상기 금속분말은, 그 성분 중 크롬 함량이 5 wt% 이상인 고크롬 내열강, 공구강, 고속도강, 니켈기 내열합금, 및 코발트기 내마모합금으로 이루어진 군에서 선택된 금속 또는 합금의 분말을 포함하는 정밀형상 부품. The metal powder is a precision-shaped part comprising a powder of a metal or alloy selected from the group consisting of high chromium-resistant steel, tool steel, high speed steel, nickel-based heat-resistant alloy, and cobalt-based wear-resistant alloy having a chromium content of 5 wt% or more. .
  23. 청구항 22에 있어서,The method according to claim 22,
    상기 소결체는 차량용 엔진의 배기가스용 밸브시트의 인서트인 것을 특징으로 하는 정밀형상 부품.The sintered compact is a precision component, characterized in that the insert of the valve seat for exhaust gas of the vehicle engine.
PCT/KR2016/012884 2016-11-10 2016-11-10 Method for manufacturing precisely shaped parts, and precisely shaped parts using same WO2018088580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/012884 WO2018088580A1 (en) 2016-11-10 2016-11-10 Method for manufacturing precisely shaped parts, and precisely shaped parts using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/012884 WO2018088580A1 (en) 2016-11-10 2016-11-10 Method for manufacturing precisely shaped parts, and precisely shaped parts using same

Publications (1)

Publication Number Publication Date
WO2018088580A1 true WO2018088580A1 (en) 2018-05-17

Family

ID=62109529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012884 WO2018088580A1 (en) 2016-11-10 2016-11-10 Method for manufacturing precisely shaped parts, and precisely shaped parts using same

Country Status (1)

Country Link
WO (1) WO2018088580A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102753A (en) * 2020-01-13 2021-07-13 天津大学 Indirect 3D printing tungsten-based alloy part degreasing sintering method
CN113290246A (en) * 2021-04-14 2021-08-24 济南大学 Metal powder injection molding MIM (metal injection molding) production process for fragile W-Ni-Fe alloy material
CN113500192A (en) * 2021-05-25 2021-10-15 宁波市鑫瑞鸿新材料科技有限公司 High-fluidity high-strength metal powder injection molding feed and application method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140139913A (en) * 2013-05-28 2014-12-08 한국피아이엠(주) Manufacturing method for cemented carbide tools and cemented carbide tools thereof
JP2015001010A (en) * 2013-06-16 2015-01-05 エクトム株式会社 Method for producing sintered metal compact and sintered metal compact
KR101525095B1 (en) * 2013-08-12 2015-06-02 (주)엠티아이지 Injection molding method using powder
JP2016186104A (en) * 2015-03-27 2016-10-27 日本シリコロイ工業株式会社 Metal power injection molding method, heat treatment method, metal powder and product
KR101673821B1 (en) * 2015-11-09 2016-11-08 영남대학교 산학협력단 Wax-based organic binder composition for powder forming and feedstock using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140139913A (en) * 2013-05-28 2014-12-08 한국피아이엠(주) Manufacturing method for cemented carbide tools and cemented carbide tools thereof
JP2015001010A (en) * 2013-06-16 2015-01-05 エクトム株式会社 Method for producing sintered metal compact and sintered metal compact
KR101525095B1 (en) * 2013-08-12 2015-06-02 (주)엠티아이지 Injection molding method using powder
JP2016186104A (en) * 2015-03-27 2016-10-27 日本シリコロイ工業株式会社 Metal power injection molding method, heat treatment method, metal powder and product
KR101673821B1 (en) * 2015-11-09 2016-11-08 영남대학교 산학협력단 Wax-based organic binder composition for powder forming and feedstock using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102753A (en) * 2020-01-13 2021-07-13 天津大学 Indirect 3D printing tungsten-based alloy part degreasing sintering method
CN113290246A (en) * 2021-04-14 2021-08-24 济南大学 Metal powder injection molding MIM (metal injection molding) production process for fragile W-Ni-Fe alloy material
CN113500192A (en) * 2021-05-25 2021-10-15 宁波市鑫瑞鸿新材料科技有限公司 High-fluidity high-strength metal powder injection molding feed and application method thereof

Similar Documents

Publication Publication Date Title
KR890001611B1 (en) Dimensionally-controlled cobalt-containing precision molded metal article
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
KR20040070318A (en) Method for producing sintered components from a sinterable material
WO2018088580A1 (en) Method for manufacturing precisely shaped parts, and precisely shaped parts using same
US10272496B2 (en) Method for producing a valve seat ring
US20200346365A1 (en) Cemented carbide powders for additive manufacturing
WO2017082597A1 (en) Wax-based thermoplastic organic binder composition for powder molding, and feedstock composition using same
KR940009337B1 (en) Method of manufacturing super alloy &amp; cermet alloy
JP2004525264A (en) Manufacture of structural members by metal injection molding
EP3178587A1 (en) Method for producing a porous shaped body
KR20050105243A (en) Cobalt-based metal powder and method for producing components thereof
KR20170022828A (en) Method to manufacture precision parts and the products thereof
GB2320741A (en) I.c. engine valve seat made from sintered Fe alloy
Chinnathaypgal et al. Evaluation of wear behaviour of metal injection moulded nickel based metal matrix composite
CA2319830A1 (en) Iron-based powder blend for use in powder metallurgy
JP4493880B2 (en) Manufacturing method of composite material
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
Khalil et al. Relationship between binder contents and mechanical properties of 17-4 ph stainless steel fabricated by PIM process and sintering
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JP2004308004A (en) Method of producing aluminum sintered material
US20230059163A1 (en) Additive manufacturing techniques and applications thereof
JPH0151521B2 (en)
KR100362844B1 (en) Making Method for Magnet Core Using Powder Extrusion Wire Rod
KR101230286B1 (en) Method of controlling carbon content in sintered body made by metal injection molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920932

Country of ref document: EP

Kind code of ref document: A1