WO2018087900A1 - Vital module, diver module, and diver monitoring system - Google Patents

Vital module, diver module, and diver monitoring system Download PDF

Info

Publication number
WO2018087900A1
WO2018087900A1 PCT/JP2016/083611 JP2016083611W WO2018087900A1 WO 2018087900 A1 WO2018087900 A1 WO 2018087900A1 JP 2016083611 W JP2016083611 W JP 2016083611W WO 2018087900 A1 WO2018087900 A1 WO 2018087900A1
Authority
WO
WIPO (PCT)
Prior art keywords
diver
vital
unit
module
signal
Prior art date
Application number
PCT/JP2016/083611
Other languages
French (fr)
Japanese (ja)
Inventor
前田 英孝
石田 仁
Original Assignee
タキオニッシュホールディングス株式会社
五洋建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タキオニッシュホールディングス株式会社, 五洋建設株式会社 filed Critical タキオニッシュホールディングス株式会社
Priority to PCT/JP2016/083611 priority Critical patent/WO2018087900A1/en
Priority to JP2017525441A priority patent/JP6201084B1/en
Publication of WO2018087900A1 publication Critical patent/WO2018087900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/26Communication means, e.g. means for signalling the presence of divers

Definitions

  • the present invention relates to a vital module, a diver module, and a diver monitoring system.
  • the vital sensor shown in Patent Document 1 has been used to ensure the safety of divers (submersible workers) during diving.
  • This vital sensor is fixed near the base of the diver's finger, and can detect a pulse or the like (biological information) by irradiating the blood vessel with light.
  • the present invention has been made to solve the above-described problems, and a vital module, a diver module, and a diver that can obtain biological information of a diver with appropriate accuracy without strict positioning of the vital sensor. It is an object to provide a monitoring system.
  • the present invention is a vital module including a vital sensor that detects a diver's vital signal, and includes an arithmetic unit that processes the vital signal and outputs a biological information signal of the diver, and the vital sensor uses an antenna.
  • a microwave transmitting / receiving unit that radiates microwaves to the diver and receives microwaves from the diver, and a signal processing unit that processes a detection signal output from the microwave transmitting / receiving unit, and the vital.
  • the present invention uses a microwave to obtain a biological information signal indicating the biological information of a diver. For this reason, the external noise which enters a vital sensor during a dive can be reduced rather than when there is a vital sensor in the atmosphere. At the same time, by using the microwave, it is possible to detect in-vivo vibration, which is the biological information of the diver, with high sensitivity. Furthermore, since the vital sensor does not need to expose the diver's skin with a non-contact sensor, it does not require precise positioning only on the condition that it is placed on the chest of the diver.
  • the biological information signal may be a diver's respiration signal and a heartbeat signal. In that case, it becomes possible to grasp the diver's physical condition more accurately.
  • the microwave transmission / reception unit includes a generation unit that generates the pulsed microwave, and an antenna unit that radiates and receives the microwave output from the generation unit. Two receiving antennas are provided, and the signal processing unit performs a difference between the detection signals obtained from the two receiving antennas, and a high-frequency component of the differential output signal output from the differential unit A low-pass filter unit that cuts the filter, and an adjustment unit that adjusts a filter output signal output from the low-pass filter unit.
  • the vital sensor circuit configuration is relatively simple, and it is possible to obtain a vital signal with less noise while reducing power consumption and cost.
  • the microwave transmission / reception unit includes a generation unit that generates the microwave, and an antenna unit that radiates the microwave output from the generation unit and receives the microwave subjected to frequency modulation,
  • the signal processing unit performs a quadrature phase detection on the detection signal, an F / V conversion unit that converts the frequency of the detection signal output from the detection unit into a voltage, and the F / V conversion unit And an integrating unit for integrating the voltage signal output from.
  • a highly reliable vital signal can be obtained.
  • the vital module may be arranged outside the diver suit worn by the diver. In this case, the vital module can be easily attached to and detached from the diver.
  • a first pressure sensor that detects pressure may be provided on the side surface of the vital module casing on the diver side. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the first pressure sensor.
  • a second pressure sensor that detects the pressure outside the vital module may be provided on a surface other than the diver side surface of the casing of the vital module. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the second pressure sensor.
  • a change detection sensor that can detect a change in the state of the vital module may be provided. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the change detection sensor.
  • the change detection sensor may be a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor.
  • the triaxial acceleration sensor and the triaxial gyro sensor can detect the fine movement and direction change of the diver equipped with the vital module, and the triaxial geomagnetic sensor detects the location and orientation of the diver equipped with the vital module. This makes it possible to more easily determine the suitability of the obtained vital signal.
  • the present invention provides a diver module including any one of the vital modules described above, and includes a display device that is communicably connected to the vital module and capable of displaying information according to the biological information signal.
  • a diver module characterized in that it is arranged at a position where it can be visually recognized by the diver itself. In this case, since the diver himself can confirm the information according to the biological information signal himself / herself, the diver can act himself / herself so as to ensure safety during diving.
  • this invention is a diver monitoring system provided with the vital module as described above or the diver module as described above, wherein the vital module can transmit the biological information signal.
  • a second communication unit capable of receiving a biological information signal transmitted from the first communication unit; a biological information signal output from the second communication unit; and a temporal change of the biological information signal
  • a diver monitoring system comprising a monitoring device having a monitoring processing unit that makes it possible to observe the image.
  • the biological information of the diver can be objectively confirmed by a monitoring device that is away from the diver.
  • the monitoring device includes a storage unit that stores a reference biological information signal obtained before diving the diver, and the monitoring processing unit includes the biological information signal output from the second communication unit and the reference biological information.
  • the monitoring device can more quickly determine the diver's state.
  • the present invention is a diver monitoring system including the diver module described above, wherein the vital module includes a first communication unit capable of transmitting the biological information signal, and is transmitted from the first communication unit.
  • a second communication unit that can receive the biological information signal, a storage unit that stores a reference biological information signal obtained before the diver dives, a biological information signal output from the second communication unit, and the reference biological
  • a monitoring device includes a monitoring processing unit that performs comparison with an information signal and displays the comparison result on the display device via the second communication unit and the first communication unit. It can be said that it is a diver monitoring system.
  • the diver himself / herself is notified to the diver himself.For example, even if the diver is involved in an emergency situation, the diver himself / herself makes a quick avoidance action without making a judgment. It is easy to get started.
  • the present invention it is possible to obtain the biological information of the diver with appropriate accuracy without strict positioning of the vital sensor.
  • FIG. 1 is an overall schematic diagram showing an example of a diver monitoring system according to a first embodiment of the present invention.
  • Block diagram showing the diver monitoring system of FIG. Schematic diagram showing a diver module attached to the diver in FIG. 1 (overall view of diver (A), view of display device (B), cross-sectional view of chest where vital module is placed (C))
  • Mechanism diagram of the vital module of FIG. 1 (disassembled bird's-eye view (A), side view (B), front view (C))
  • FIG. 5 is a circuit diagram showing the antenna unit of the vital sensor of FIG.
  • FIG. 5 is a circuit diagram showing a differential section of the vital sensor of FIG. 5 is a circuit diagram showing a low-pass filter portion of the vital sensor of FIG.
  • Waveform diagram showing FFT processing (a signal before FFT processing (A), a signal after FFT processing (B))
  • the diver monitoring system 100 includes one or more (or three or more) diver modules 102 and a communication cable CC waterproofed to each diver module 102.
  • the diver module 102 communicates with the vital module 104 including a vital sensor 110 (FIG. 2) that detects a vital signal Sst of a diver (diving worker) Di during diving.
  • a display device 106 connected to be communicable with a cable CC.
  • the monitoring device 108 is disposed on the ship SP and can be operated by a monitor.
  • the diver Di wears a diver suit DS that covers the whole body as shown in FIG.
  • the diver suit DS may be a wet type or a dry type (in the case of the dry type, a regulator is also attached to the diver suit DS, but the regulator and the tank are omitted in any figure).
  • the diver Di wears a diver vest DV on the diver suit DS that covers almost the entire surface of the chest Db including the band on the shoulder and the band around the chest Db.
  • Inside the center of the diver vest DV is a pocket PC into which the vital module 104 is inserted (that is, the vital module 104 is arranged outside the diver suit DS worn by the diver Di, and the vital sensor 110 is disposed on the diver Di). It is configured to be placed on the chest Db).
  • the pressing force applied to the diver suit DS of the vital module 104 in the pocket PC can be adjusted to some extent by an expansion / contraction adjustment mechanism (not shown) of the band on the shoulder and the band around the chest Db. .
  • the diver Di wears a full face type mask MK on the head, for example (not necessarily the full face type due to the depth of diving).
  • the goggle portion corresponding to the eye position of the diver Di is transparent.
  • the mask MK is provided with a regulator (not shown) for breathing the mouse portion corresponding to the position of the mouth of the diver Di.
  • the mask MK is provided with a speaker and an earphone (not shown) so that the monitor on the ship SP and the diver Di can talk with each other (this voice information is stored in the first communication unit 138 and the second communication unit. 140 may be exchanged or another communication means may be used).
  • the support member RD supports the display device 106 so as to be able to translate and rotate within a certain range.
  • the display device 106 is configured to be disposed at a position that can be visually recognized by the diver Di itself. Note that the display device may be arranged not on the mask MK but on the arm, shoulder, foot, etc. of the diver Di.
  • the vital module 104 includes a vital sensor 110, a change detection sensor 122, a first pressure sensor 124, a second pressure sensor 126, an arithmetic unit 128, and a first communication unit 138. These are all housed in the casing 105 (FIG. 4A).
  • the casing 105 is a pressure-resistant structure capable of waterproofing 100 m, and has a size of, for example, about 100 mm * less than 100 mm * less than 50 mm.
  • the weight as the vital module 104 is about 100 g without including the communication cable CC, for example.
  • the casing 105 includes an upper case 105A and a base plate 105B as shown in FIG.
  • the upper case 105A and the base plate 105B can be sealed with a seal member SM.
  • the entire interior of the casing 105 (or a part thereof) is filled with resin, and the waterproof state is more reliably ensured.
  • Two waterproof connectors CN are provided on the side surface of the upper case 105 ⁇ / b> A, and the connector CN is connected to the first communication unit 138.
  • a detection hole 105AA in which the second pressure sensor 126 is arranged is provided on a side surface different from the side surface on which the connector CN of the upper case 105A is provided. As shown in FIG.
  • an upper substrate Usb and a lower substrate Dsb are supported on the base plate 105B.
  • the change detection sensor 122, the arithmetic unit 128, and the first communication unit 138 are disposed on the upper substrate Usb.
  • the vital sensor 110 is disposed on the lower substrate Dsb.
  • the configuration is such that there is no component such as a circuit board that may generate electromagnetic waves between the two antennas AT1 and AT2 (described later) included in the vital sensor 110 and the diver Di.
  • the base plate 105B is provided with a detection hole 105BA in which the first pressure sensor 124 is disposed.
  • the vital sensor 110 is a radar using a microwave Mwv called a UWB (ultra-wide band wireless) system balanced moving body sensor.
  • the vital sensor 110 returns the biological information, which is the internal vibration (slight displacement due to the movement of the heart and lungs) accompanying the life support activity of the diver Di, reflected by the microwave Mwv (the movement of the heart and lungs). It is obtained by measuring the relative change of the value (proportional to the minute displacement due to).
  • the vital sensor 110 is configured to detect the vital signal Sst of the diver Di.
  • the vital sensor 110 includes a microwave transmission / reception unit 111 and a signal processing unit 114, as shown in FIG.
  • the microwave transmission / reception unit 111 radiates the microwave Mwv to the diver Di using the antennas AT1 and AT2 (FIG. 7), and receives the microwave Mwv from the diver Di.
  • the signal processing unit 114 processes the detection signal Sdt output from the microwave transmission / reception unit 111.
  • the microwave Mwv used here is, for example, 10.5 GHz, and the output from the antennas AT1 and AT2 is the electric field strength of the weak radio station defined by the Ministry of Internal Affairs and Communications Ordinance Radio Law Enforcement Rules. For this reason, acquisition of a radio station is unnecessary for the vital sensor 110, and the vital module 104 can be suppressed at low cost.
  • the power supply voltage Vdd here is set to 3.3 V, for example.
  • the microwave transmission / reception unit 111 includes a generation unit 112 and an antenna unit 113 as shown in FIG.
  • the generation unit 112 generates a pulsed microwave Mwv that is the transmission signal Ssn.
  • the generation unit 112 has diodes D1 and D2, capacitors C1 and C2, resistors R1 and D1 with respect to the D flip-flop FF1 and the NOR elements N1 and N2. This can be realized by combining R2.
  • FIG. 6B shows a timing chart of signals obtained at the positions indicated by reference numerals S1 to S5 and Ssn in the circuit diagram of FIG.
  • the time T2 depends on the delay and rise time of the NOR elements N1 and N2, and can be set to about 11 nsec, for example.
  • the antenna unit 113 radiates and receives the microwave Mwv (transmission signal Ssn) output from the generation unit 112. Specifically, as shown in the circuit diagram of FIG. 7, the antenna unit 113 combines diodes D3 and D4, a coil L1, and resistors R3 and R4 with respect to two antennas AT1 and AT2 and transistors TR1 and TR2. Can be realized.
  • the microwaves Mwv (transmission signal Ssn) are radiated from the two antennas AT1 and AT2 toward the diver Di, and the microwaves Mwv reflected from the diver Di and returned by the two antennas AT1 and AT2 are received. That is, the two antennas AT1 and AT2 are both transmitting antennas and receiving antennas.
  • the antenna unit 113 outputs detection signals Sdt (Sdt1, Sdt2) obtained from the two antennas AT1, AT2.
  • the coil L1 uses microwaves Mwv (transmission signals Ssn) radiated from the two antennas AT1 and AT2 as different waveforms, and is reflected from the diver Di by the differential unit 115 described later and returned to the microwave Mwv. Is prevented from being offset.
  • the microwave Mwv may be radiated from either one of the antennas AT1 and AT2.
  • the signal processing unit 114 includes a differential unit 115, a low-pass filter unit 116, and an adjustment unit 117.
  • the differential unit 115 performs a difference between the detection signals Sdt (Sdt1 and Sdt2) obtained from the two antennas AT1 and AT2.
  • the differential unit 115 can cancel in-phase signals such as disturbance noise by the difference.
  • the differential unit 115 can be realized by combining capacitors C3 to C8 and resistors R5 to R17 with three operational amplifiers OP1 to OP4.
  • the operational amplifier OP4, the capacitors C7 and C8, and the resistors R14 to R17 constitute a DC servo circuit.
  • the DC servo circuit applies feedback so that the DC component of the differential output signal Sdo output from the differential unit 115 is half the power supply voltage Vdd (1.65 V).
  • the low-pass filter unit 116 cuts a high frequency component of the differential output signal Sdo output from the differential unit 115 as shown in FIG. Specifically, as shown in the circuit diagram of FIG. 9, the low-pass filter unit 116 is a second-order multiple feedback low-pass filter, and capacitors C9 to C11 and resistors R18 to R22 are assembled to one operational amplifier OP5. It can be realized by combining them. In addition, the low-pass filter unit 116 performs corresponding amplification by the operational amplifier OP5. The low-pass filter unit 116 outputs a filter output signal Sfo.
  • the adjustment unit 117 adjusts the filter output signal Sfo output from the low-pass filter unit 116 as shown in FIG.
  • the vital signal Sst that is the output of the adjusting unit 117 is processed by the arithmetic unit 128 that is a microcomputer or a DSP. For this reason, the adjustment unit 117 amplifies the vital signal Sst so as to have an optimum form for the processing of the arithmetic unit 128.
  • the adjustment unit 117 is divided into a front part and a rear part (the function of the adjustment part 117 may be realized by a single circuit). Specifically, the front and rear stages of the adjustment unit 117 are shown in the circuit diagrams of FIGS. 10 and 11, respectively.
  • the preceding stage of the adjustment unit 117 can be realized by combining a capacitor C12, resistors R23 and R24, and a variable resistor VR1 with respect to one operational amplifier OP6.
  • the subsequent stage of the adjustment unit 117 can be realized by combining capacitors C13 to C15, resistors R25 to R30, and a variable resistor VR2 with respect to one operational amplifier OP7.
  • the change detection sensor 122 shown in FIG. 2 is a sensor that can detect a change in the state of the vital module 104, and can check the body movement of the diver Di.
  • the change detection sensor 122 is, for example, a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor.
  • the change detection sensor 122 includes a microcomputer, and can externally output detection data of each of the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetic sensor as digital data through I 2 C communication.
  • the first pressure sensor 124 shown in FIG. 2 is provided on the diver side surface of the casing 105 of the vital module 104 in order to confirm the pressing force of the vital module 104 to the diver suit DS. Specifically, the first pressure sensor 124 is attached to the base plate 105B so that the pressure detection window of the first pressure sensor 124 fits into the detection hole 105BA shown in FIGS. As the first pressure sensor 124, for example, a sensor made by using MEMS technology can be used (the same applies to the second pressure sensor 126).
  • the second pressure sensor 126 shown in FIG. 2 is provided on a surface other than the diver side surface of the casing 105 of the vital module 104 in order to detect the pressure (submersible pressure) outside the vital module 104. Specifically, the second pressure sensor 126 is attached to the upper case 105A so that the pressure detection window of the second pressure sensor 126 fits into the detection hole 105AA shown in FIGS.
  • the arithmetic unit 128 is a microcomputer or a DSP. As shown in FIG. 2, the vital sensor 110, the first pressure sensor 124, and the second pressure sensor 126 are each connected to an A / D conversion circuit (not shown) of the arithmetic unit 128. Since the change detection sensor 122 outputs a digital signal, it is connected to an I 2 C communication port (not shown) of the arithmetic unit 128. The arithmetic unit 128 can process the vital signal Sst from the vital sensor 110 and output the biological information signal Sb of the diver Di.
  • the arithmetic unit 128 includes a first filter unit 130, a second filter unit 132, a waveform shaping unit 134, and an arithmetic processing unit 136.
  • the biological information signal Sb is the diver's Di respiration signal Sbr and the heartbeat signal Shb.
  • the first filter unit 130 is a band-pass filter, and cuts frequency components in a low frequency region and a high frequency region that deviate significantly from the period (for example, near 1 Hz) of the respiratory signal Sbr and the heartbeat signal Shb.
  • the first filter unit 130 outputs a BPF output signal Sbp to the waveform shaping unit 134.
  • the second filter unit 132 includes a filter for each of the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetic sensor, and an appropriate filter is applied according to the output of any sensor input to the second filter unit 132. can do.
  • the output from the second filter unit 132 is input to the arithmetic processing unit 136. Note that the second filter unit may not be provided, and the output of the change detection sensor may be directly input to the arithmetic processing unit.
  • the waveform shaping unit 134 separates the BPF output signal Sbp output from the first filter unit 130 into a respiration signal Sbr and a heartbeat signal Shb, which are biological information signals Sb.
  • a respiration signal Sbr and a heartbeat signal Shb, which are biological information signals Sb.
  • an FFT or the like is used to change the BPF output signal Sbp (FIG. 12A) changing on the time axis (s) once to the signal changing the frequency axis (f) (FIG. 12B).
  • the frequency of the respiratory signal Sbr is higher than the frequency of the heartbeat signal Shb, and is a value exceeding 1 Hz.
  • the arithmetic processing unit 136 is connected to the waveform shaping unit 134. Based on the output of the second filter unit 132, the output of the first pressure sensor 124, and the output of the second pressure sensor 126, the arithmetic processing unit 136 performs the biological information signal Sb (the respiratory signal Sbr and the heartbeat signal Shb). ) For various suitability determinations and processing. For example, when the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126 do not indicate abnormal values and are within the allowable range, the biological information signal Sb is regarded as reliable. It is possible to output from the vital module 104 via one communication unit 138.
  • the arithmetic processing unit 136 for example, based on a command from the monitoring device 108 (or the display device 106) via the first communication unit 138, not only the biological information signal Sb, but also the change detection sensor 122, the first pressure It is also possible to transmit the outputs of the sensor 124 and the second pressure sensor 126 to the monitoring device 108 (or the display device 106). Further, the arithmetic processing unit 136 can also give various commands to the monitoring device 108 and the display device 106.
  • the arithmetic processing unit 136 generates the biological information signal Sb (respiration signal Sbr and heart rate signal Shb) based on the output of the second filter unit 132, the output of the first pressure sensor 124, and the output of the second pressure sensor 126. ) Noise removal and waveform shaping may be performed.
  • the first communication unit 138 is connected to the arithmetic unit 128, and based on the suitability determination and processing of the arithmetic processing unit 136, the command from the display device 106, and the command from the monitoring device 108, Not only the information signal Sb but also various data are transmitted and received.
  • the RS485 standard (TIA-485) that defines differential data transmission of up to 10 Mbps using, for example, a terminated twisted pair is applied to the first communication unit 138 ( The same applies to the second communication unit 140 and the communication unit (not shown) of the display device 106).
  • the vital module 104, the display device 106, and the monitoring device 108 can be daisy chain connected, and not only biological information but also voice information and display information can be managed in an integrated manner.
  • the display device 106 is communicably connected to the vital module 104 via a communication cable CC as shown in FIGS. 2 and 3A.
  • the display device 106 can display information according to the biological information signal Sb on the display unit 106A. That is, the display device 106 can display not only the biological information signal Sb but also the determination result on the biological information signal Sb by the arithmetic processing unit 136 and the monitoring device 108. Further, the display device 106 can display the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126.
  • the display device 106 is provided with an input unit 106B in addition to the display unit 106A and a communication unit (not shown) so that various information can be called and responded to the vital module 104 and the monitoring device 108.
  • the monitoring device 108 includes a second communication unit 140, a monitoring processing unit 142, an input unit 143, a storage unit 144, and a display unit 146.
  • the second communication unit 140 is connected to the first communication unit 138 of the vital module 104 via the communication cable CC (that is, the second communication unit 140 transmits the biological information signal Sb transmitted from the first communication unit 138). Can be received).
  • the second communication unit 140 has the same configuration as that of the first communication unit 138, and based on the command from the vital module 104, the command from the display device 106, and the command from the monitoring device 108, not only the biological information signal Sb. Send and receive various data.
  • the second communication unit 140, the input unit 143, the storage unit 144, and the display unit 146 are connected to the monitoring processing unit 142.
  • the monitoring processing unit 142 can operate the second communication unit 140, the storage unit 144, and the display unit 146 in accordance with instructions from the input unit 143.
  • Various controls and processes can be performed according to various programs read from the storage unit 144.
  • the monitoring processing unit 142 processes the biological information signal Sb output from the second communication unit 140, displays the result on the display unit 146, and enables the temporal change of the biological information signal Sb to be observed. Can do.
  • the monitoring processing unit 142 can operate the processing result, the storage unit 144, and the display unit 146 in accordance with instructions of the display device 106 and the arithmetic processing unit 136.
  • the monitoring processing unit 142 uses a FFT or the like to change the biological information signal Sb (FIG. 12A) that changes on the time axis (s) to a signal that changes on the frequency axis (f) (FIG. 12B). )) And the result may be displayed on the display unit 146.
  • the input unit 143 shown in FIG. 2 inputs various commands, updates various threshold values stored in the storage unit 144, and inputs initial values.
  • the input unit 143 can also select the diver module 102 or the vital module 104 to be monitored by the monitoring device 108.
  • a switch, a mouse, a keyboard, or the like can be used for the input unit 143.
  • the storage unit 144 shown in FIG. 2 can store various initial information and various programs.
  • storage part 144 can memorize
  • the monitoring processing unit 142 can compare the biological information signal Sb and the reference biological information signal Sbb, and display (output) the comparison result on the display unit 146. In that case, the monitoring processing unit 142 can also display the comparison result on the display device 106 via the second communication unit 140 and the first communication unit 138. *
  • the display unit 146 shown in FIG. 2 can display information according to the biological information signal Sb. That is, the display unit 146 can display not only the biological information signal Sb but also the determination result on the biological information signal Sb by the arithmetic processing unit 136 and the monitoring device 108. Further, the display unit 146 can display the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126.
  • the microwave Mwv is used to obtain the biological information signal Sb indicating the biological information of the diver Di.
  • the microwave Mwv is greatly attenuated in water, the external noise that enters the vital sensor 110 during diving can be reduced more than when the vital sensor 110 is in the atmosphere.
  • the microwave Mwv it is possible to detect the in-vivo vibration (small displacement due to the movement of the heart and lungs) which is the biological information of the diver Di with high sensitivity.
  • the vital sensor 110 is a non-contact sensor, and unlike the vital sensor shown in Patent Document 1, it is not necessary to directly expose the skin of the diver Di, so that only the condition that the vital sensor 110 is disposed on the chest Db of the diver Di, Does not require precise positioning.
  • the vital module 104 is disposed outside the diver suit DS. Therefore, the vital module 104 can be easily attached to and detached from the diver Di.
  • the present invention is not limited thereto, and the vital module may be disposed inside the diver suit DS.
  • the biological information signal Sb is the diver's Di respiration signal Sbr and the heartbeat signal Shb. For this reason, it is possible to grasp
  • the biological information signal Sb is not limited to this, and any one of the respiratory signal Sbr and the heartbeat signal Shb may be used, and other internal vibrations may be used if possible.
  • the microwave transmission / reception unit 111 includes a generation unit 112 that generates a pulsed microwave Mwv, and an antenna unit 113 that radiates and receives the microwave Mwv output from the generation unit 112. ing.
  • the antenna unit 113 is provided with two antennas AT1 and AT2.
  • the signal processing unit 114 cuts the high-frequency component of the differential output signal Sdo output from the differential unit 115 that performs a difference between the detection signals Sdt obtained from the two antennas AT1 and AT2, and the differential unit 115.
  • the low-pass filter unit 116 and the adjustment unit 117 that adjusts the filter output signal Sfo output from the low-pass filter unit 116 are provided. Therefore, the circuit configuration of the vital sensor 110 is relatively simple, and it is possible to obtain a vital signal Sst with less noise while reducing power consumption and cost.
  • a first pressure sensor 124 that detects pressure is further provided on the side surface of the casing 105 of the vital module 104 on the diver Di side. Therefore, the vital signal obtained in consideration of the output of the first pressure sensor 124, that is, based on whether or not the pressing force to the diver Di of the vital module 104 is appropriate as a condition for detecting the vital signal Sst. It is possible to determine the suitability of Sst. However, the present invention is not limited to this, and the first pressure sensor may not be provided.
  • a second pressure sensor 126 that detects the pressure outside the vital module 104 is provided on a surface other than the side surface of the casing 105 of the vital module 104 on the diver Di side. Therefore, considering the output of the second pressure sensor 126, that is, based on whether the diving pressure applied to the vital module 104 is appropriate as a condition for detecting the vital signal Sst (whether the diving environment of the diver Di is appropriate). Thus, it is possible to determine the suitability of the obtained vital signal Sst.
  • the present invention is not limited to this, and the second pressure sensor may not be provided.
  • a change detection sensor 122 that can detect a change in the state of the vital module 104 is provided. Therefore, it is possible to determine the suitability of the obtained vital signal Sst in consideration of the output of the change detection sensor 122, that is, based on whether the body movement of the diver Di is within an allowable range.
  • the change detection sensor 122 is a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor.
  • the triaxial acceleration sensor and the triaxial gyro sensor can detect the fine movement and the direction change of the diver Di attached with the vital module 104, and the location and orientation of the diver Di equipped with the vital module 104 with the triaxial geomagnetic sensor. And the suitability of the obtained vital signal can be determined more easily.
  • the present invention is not limited to this, and the change detection sensor may not be a 9-axis sensor, and the change detection sensor may not be provided in the first place.
  • the diver module 102 includes a display device 106 that is communicably connected to the vital module 104 and can display information according to the biological information signal Sb. And the display apparatus 106 is arrange
  • the vital module 104 includes the first communication unit 138. Then, the monitoring device 108 processes the biological information signal Sb output from the second communication unit 140 and the second communication unit 140, and allows the temporal change of the biological information signal Sb to be observed. Have. For this reason, the monitor can objectively confirm the state of the diver Di with the monitoring device 108 on the ship SP away from the diver Di with the biological information of the diver Di. Thereby, the supervisor can also instruct
  • the monitoring apparatus 108 is provided with the memory
  • the monitoring processing unit 142 displays the result of comparison between the biological information signal Sb and the reference biological information signal Sbb via the second communication unit 140 and the first communication unit 138. 106 can be displayed. For this reason, since the diver Di itself is notified to the diver Di itself of the result of judging the state of the diver Di by the monitoring device 108, for example, even if the diver Di is involved in an emergency situation, the diver Di itself does not make a judgment quickly. It is easy to start avoidance behavior.
  • the vital sensor 110 is a radar that uses a microwave Mwv called a UWB balanced moving body sensor, and obtains an output proportional to internal vibration (a minute displacement due to the movement of the heart or lungs).
  • a microwave Mwv called a UWB balanced moving body sensor
  • the vital sensor is a radar using the microwave Mwv, but is a Doppler radar. That is, the vital sensor here detects the biological information that is the internal vibration of the diver Di (small displacement due to the motion of the heart or lungs) from the frequency change of the microwave Mwv, and obtains the biological information signal Sb.
  • the microwave Mwv here is, for example, 24 GHz, and is generated by a highly accurate local oscillator having an oscillation frequency.
  • the microwave transmission / reception unit 211 continuously generates (may be intermittent) the microwave Mwv, and the microwave Mwv (transmission signal) output from the generation unit 212.
  • the antenna unit 213 radiates Ssn) and receives the frequency-modulated microwave Mwv.
  • the signal processing unit 214 includes a detection unit 215 that performs quadrature detection on the detection signal Sdt, an F / V conversion unit 216 that converts the frequency of the detection signal Siq output from the detection unit 215 into a voltage, An integration unit 217 that integrates the voltage signal Svl output from the / V conversion unit 216.
  • the present invention can be widely applied particularly to obtain biological information of divers during diving.
  • SYMBOLS 100 Diver monitoring system 102 ... Diver module 104 ... Vital module 105 ... Casing 105A ... Upper case 105AA, 105BA ... Detection hole 105B ... Base plate 106 ... Display device 106A, 146 ... Display unit 106B, 143 ... Input unit 108 ... Monitoring device DESCRIPTION OF SYMBOLS 110 ... Vital sensor 111, 211 ... Microwave transmission / reception part 112, 212 ... Generating part 113, 213 ... Antenna part 114, 214 ... Signal processing part 115 ... Differential part 116 ... Low-pass filter part 117 ... Adjustment part 122 ...
  • Lower substrate DV Diver vest FF1 ... D-type flip-flop L1 ... Coil MK ... Mask Mwv ... Microwave N1, N2 ... NOR element OP1-OP7 ... Operational amplifier PC ... Pocket R1- R30 ... resistor RD ... support member S1-S5 ... signal Sb ... biological information signal Sbb ... reference biological information signal Sbp ... BPF output signal Sbr ... respiration signal Sdo ... differential output signal Sdt, Sdt1, Sdt2 ... detection signal Sfo ... filter output Signal Shb ... Heart rate signal Siq ... Detection signal SM ... Seal member SP ... Ship Ssn ... Transmission signal Sss ... Intermediate amplification signal Sst ... Vital signal Svl ... Voltage signal T1, T2 ... Time TR1, TR2 ... Transistor Usb ... Upper substrate Vdd ... Power supply voltage VR1, VR2 ... Variable resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A vital module 104 provided with a vital sensor 110 for detecting the vital signal Sst of a diver Di, the vital module 104 being provided with a calculation unit 128 which processes the vital signal Sst and outputs the biometric information signal Sb of the diver Di. The vital sensor 110 is provided with a microwave receiver-transmitter 111 which irradiates the diver Di with microwaves Mwv using antennas AT1, AT2 and receives the microwaves Mwv from the diver Di, and a signal processor 114 which processes the detection signal Sdt output from the microwave receiver-transmitter 111. The vital sensor 110 is disposed at the chest Db of the diver Di. Thus, it is possible to acquire, with appropriate accuracy, the biometric information of the diver even without accurately positioning the vital sensor.

Description

バイタルモジュール、ダイバーモジュール、及びダイバー監視システムVital module, diver module, and diver monitoring system
 本発明は、バイタルモジュール、ダイバーモジュール、及びダイバー監視システムに関する。 The present invention relates to a vital module, a diver module, and a diver monitoring system.
 従来、特許文献1に示すバイタルセンサは潜水中のダイバー(潜水作業者)の安全を確保するために用いられている。このバイタルセンサは、ダイバーの指の根元近傍に固定され、血管に光を照射することで脈拍等(生体情報)を検出することができる。 Conventionally, the vital sensor shown in Patent Document 1 has been used to ensure the safety of divers (submersible workers) during diving. This vital sensor is fixed near the base of the diver's finger, and can detect a pulse or the like (biological information) by irradiating the blood vessel with light.
特開2005-126049号公報JP 2005-126049 A
 しかしながら、特許文献1におけるバイタルセンサでは、相応の精度で脈拍等を検出しようとすると、相応の太さの血管に対して同じ位置から光を安定して当てることが必要となる。つまり、特許文献1のバイタルセンサでは位置決めを正確にする必要がある。加えて、潜水中のダイバーの動作には多くの制限があり、例えば、潜水中に特許文献1のバイタルセンサの位置がずれた際に、そのずれを完全に元の位置に戻すことは困難であると考えられる。また、ダイバーが潜水中に作業を行う際には、特許文献1のバイタルセンサをつけることで、手の動きに相応の制約が生じその作業を迅速に行うことが困難になるおそれもある。 However, with the vital sensor in Patent Document 1, in order to detect a pulse or the like with appropriate accuracy, it is necessary to stably apply light from the same position to a blood vessel of appropriate thickness. In other words, the vital sensor disclosed in Patent Document 1 needs to be accurately positioned. In addition, there are many restrictions on the operation of divers during diving. For example, when the position of the vital sensor in Patent Document 1 shifts during diving, it is difficult to completely return the shift to the original position. It is believed that there is. In addition, when a diver performs work during diving, by attaching the vital sensor of Patent Document 1, there is a possibility that appropriate restrictions are imposed on the movement of the hand, making it difficult to perform the work quickly.
 本発明は、前記問題点を解決するべくなされたもので、バイタルセンサの位置決めを厳密にしなくても、相応の精度でダイバーの生体情報を得ることを可能とするバイタルモジュール、ダイバーモジュール、及びダイバー監視システムを提供することを課題とする。 The present invention has been made to solve the above-described problems, and a vital module, a diver module, and a diver that can obtain biological information of a diver with appropriate accuracy without strict positioning of the vital sensor. It is an object to provide a monitoring system.
 本発明は、ダイバーのバイタル信号を検出するバイタルセンサを備えるバイタルモジュールであって、前記バイタル信号を処理して前記ダイバーの生体情報信号を出力する演算ユニットを備え、該バイタルセンサが、アンテナを用いてマイクロ波を前記ダイバーに放射し、且つ該ダイバーからのマイクロ波を受信するマイクロ波送受信部と、該マイクロ波送受信部から出力される検出信号を処理する信号処理部と、を備え、前記バイタルセンサが前記ダイバーの胸部に配置されることにより、上記課題を解決したものである。 The present invention is a vital module including a vital sensor that detects a diver's vital signal, and includes an arithmetic unit that processes the vital signal and outputs a biological information signal of the diver, and the vital sensor uses an antenna. A microwave transmitting / receiving unit that radiates microwaves to the diver and receives microwaves from the diver, and a signal processing unit that processes a detection signal output from the microwave transmitting / receiving unit, and the vital The above-described problem is solved by arranging a sensor on the chest of the diver.
 本発明は、ダイバーの生体情報を示す生体情報信号を得るためにマイクロ波を用いている。このため、潜水中にバイタルセンサに入ってくる外来ノイズを、大気中にバイタルセンサがある時よりも低減させることができる。同時に、マイクロ波を用いることで、ダイバーの生体情報である体内振動を高感度に検出することが可能となる。更に、バイタルセンサは、非接触センサでダイバーの肌を露出させる必要もないので、ダイバーの胸部に配置されるという条件だけで、厳密な位置決めを必要としない。 The present invention uses a microwave to obtain a biological information signal indicating the biological information of a diver. For this reason, the external noise which enters a vital sensor during a dive can be reduced rather than when there is a vital sensor in the atmosphere. At the same time, by using the microwave, it is possible to detect in-vivo vibration, which is the biological information of the diver, with high sensitivity. Furthermore, since the vital sensor does not need to expose the diver's skin with a non-contact sensor, it does not require precise positioning only on the condition that it is placed on the chest of the diver.
 なお、前記生体情報信号は、前記ダイバーの呼吸信号と心拍信号とされていてもよい。その場合には、ダイバーの身体状況をより正確に把握することが可能となる。 The biological information signal may be a diver's respiration signal and a heartbeat signal. In that case, it becomes possible to grasp the diver's physical condition more accurately.
 なお、前記マイクロ波送受信部が、パルス状の前記マイクロ波を発生させる発生部と、該発生部から出力される該マイクロ波を放射及び受信するアンテナ部と、を備え、該アンテナ部には、2つの受信アンテナが設けられ、前記信号処理部が、該2つの受信アンテナから得られた前記検出信号の差分を行う差動部と、該差動部から出力される差動出力信号の高周波成分をカットするローパスフィルタ部と、該ローパスフィルタ部から出力されるフィルタ出力信号を調整する調整部と、を備えてもよい。その場合には、バイタルセンサの回路構成としては比較的簡素な構成であり、低電力・低コストとしながら、よりノイズの少ないバイタル信号を得ることが可能となる。 The microwave transmission / reception unit includes a generation unit that generates the pulsed microwave, and an antenna unit that radiates and receives the microwave output from the generation unit. Two receiving antennas are provided, and the signal processing unit performs a difference between the detection signals obtained from the two receiving antennas, and a high-frequency component of the differential output signal output from the differential unit A low-pass filter unit that cuts the filter, and an adjustment unit that adjusts a filter output signal output from the low-pass filter unit. In this case, the vital sensor circuit configuration is relatively simple, and it is possible to obtain a vital signal with less noise while reducing power consumption and cost.
 なお、前記マイクロ波送受信部が、前記マイクロ波を発生させる発生部と、該発生部から出力される該マイクロ波を放射し、周波数変調された該マイクロ波を受信するアンテナ部と、を備え、前記信号処理部が、前記検出信号に対して直交位相検波を行う検波部と、該検波部から出力される検波信号の周波数を電圧に変換するF/V変換部と、該F/V変換部から出力される電圧信号を積分する積分部と、を備えてもよい。その場合には、バイタル信号はドップラーレーダの原理で検出されるので、信頼性の高いバイタル信号を得ることが可能となる。 The microwave transmission / reception unit includes a generation unit that generates the microwave, and an antenna unit that radiates the microwave output from the generation unit and receives the microwave subjected to frequency modulation, The signal processing unit performs a quadrature phase detection on the detection signal, an F / V conversion unit that converts the frequency of the detection signal output from the detection unit into a voltage, and the F / V conversion unit And an integrating unit for integrating the voltage signal output from. In that case, since the vital signal is detected by the principle of Doppler radar, a highly reliable vital signal can be obtained.
 なお、当該バイタルモジュールが、前記ダイバーの着るダイバースーツの外側に配置されていてもよい。この場合には、バイタルモジュールのダイバーへの脱着が容易となる。 The vital module may be arranged outside the diver suit worn by the diver. In this case, the vital module can be easily attached to and detached from the diver.
 なお、更に、当該バイタルモジュールのケーシングのダイバー側の側面に圧力を検出する第1圧力センサが設けられていてもよい。この場合には、第1圧力センサの出力を考慮して、得られたバイタル信号の適否を判断することが可能となる。 Furthermore, a first pressure sensor that detects pressure may be provided on the side surface of the vital module casing on the diver side. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the first pressure sensor.
 なお、更に、当該バイタルモジュールのケーシングのダイバー側の側面以外の面に当該バイタルモジュールの外部の圧力を検出する第2圧力センサが設けられていてもよい。この場合には、第2圧力センサの出力を考慮して、得られたバイタル信号の適否を判断することが可能となる。 Furthermore, a second pressure sensor that detects the pressure outside the vital module may be provided on a surface other than the diver side surface of the casing of the vital module. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the second pressure sensor.
 なお、更に、当該バイタルモジュールの状態変化を検知可能とする変化検出センサが設けられていてもよい。この場合には、変化検出センサの出力を考慮して、得られたバイタル信号の適否を判断することが可能となる。 Furthermore, a change detection sensor that can detect a change in the state of the vital module may be provided. In this case, it is possible to determine the suitability of the obtained vital signal in consideration of the output of the change detection sensor.
 なお、前記変化検出センサは、3軸加速度センサと3軸ジャイロセンサと3軸地磁気センサから構成される9軸センサとされていてもよい。この場合には、3軸加速度センサと3軸ジャイロセンサとで、バイタルモジュールを装着したダイバーの微動や向き変化を検出でき、且つ3軸地磁気センサでバイタルモジュールを装着したダイバーの場所や向きを検出でき、得られたバイタル信号の適否をより容易に判断することが可能となる。 The change detection sensor may be a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor. In this case, the triaxial acceleration sensor and the triaxial gyro sensor can detect the fine movement and direction change of the diver equipped with the vital module, and the triaxial geomagnetic sensor detects the location and orientation of the diver equipped with the vital module. This makes it possible to more easily determine the suitability of the obtained vital signal.
 なお、本発明は、上記のいずれかに記載のバイタルモジュールを備えたダイバーモジュールにおいて、前記バイタルモジュールに通信可能に接続され、前記生体情報信号に従う情報を表示可能な表示装置を備え、該表示装置が前記ダイバー自身で視認可能な位置に配置されることを特徴とするダイバーモジュールともいえる。この場合には、ダイバー自身が生体情報信号に従う情報を自ら確認できるので、ダイバーが潜水時の安全性を確保するように自ら行動することが可能となる。 The present invention provides a diver module including any one of the vital modules described above, and includes a display device that is communicably connected to the vital module and capable of displaying information according to the biological information signal. Can be said to be a diver module characterized in that it is arranged at a position where it can be visually recognized by the diver itself. In this case, since the diver himself can confirm the information according to the biological information signal himself / herself, the diver can act himself / herself so as to ensure safety during diving.
 なお、本発明は、上記のいずれかに記載のバイタルモジュール、または上記に記載のダイバーモジュールを備えたダイバー監視システムであって、前記バイタルモジュールが、前記生体情報信号を送信可能な第1通信ユニットを備え、該第1通信ユニットから送信された生体情報信号を受信可能な第2通信ユニットと、該第2通信ユニットから出力される生体情報信号を処理し、前記生体情報信号の時間的な変化を観察可能とする監視処理部と、を有する監視装置を備えることを特徴とするダイバー監視システムともいえる。この場合には、ダイバーの生体情報をダイバーから離れた監視装置で客観的に確認することができる。 In addition, this invention is a diver monitoring system provided with the vital module as described above or the diver module as described above, wherein the vital module can transmit the biological information signal. A second communication unit capable of receiving a biological information signal transmitted from the first communication unit; a biological information signal output from the second communication unit; and a temporal change of the biological information signal It can also be said to be a diver monitoring system comprising a monitoring device having a monitoring processing unit that makes it possible to observe the image. In this case, the biological information of the diver can be objectively confirmed by a monitoring device that is away from the diver.
 なお、前記監視装置が、前記ダイバーの潜水前に得られた基準生体情報信号を記憶する記憶部を備え、前記監視処理部が、前記第2通信ユニットから出力される生体情報信号と該基準生体情報信号との比較を行い、該比較した結果を出力する場合には、監視装置でダイバーの状態をより迅速に判断することができる。 The monitoring device includes a storage unit that stores a reference biological information signal obtained before diving the diver, and the monitoring processing unit includes the biological information signal output from the second communication unit and the reference biological information. When comparing with the information signal and outputting the comparison result, the monitoring device can more quickly determine the diver's state.
 なお、本発明は、上記に記載のダイバーモジュールを備えたダイバー監視システムであって、前記バイタルモジュールが、前記生体情報信号を送信可能な第1通信ユニットを備え、該第1通信ユニットから送信された生体情報信号を受信可能な第2通信ユニットと、前記ダイバーの潜水前に得られた基準生体情報信号を記憶する記憶部と、該第2通信ユニットから出力される生体情報信号と該基準生体情報信号との比較を行い、該比較した結果を、該第2通信ユニットと前記第1通信ユニットとを介して、前記表示装置に表示させる監視処理部と、を有する監視装置を備えることを特徴とするダイバー監視システムともいえる。この場合には、監視装置でダイバーの状態を判断した結果をダイバー自身に知らせるので、例えばダイバーが緊急性のある事態に巻き込まれても、ダイバー自身が判断をすることなく、迅速な回避行動を開始させることが容易となる。 The present invention is a diver monitoring system including the diver module described above, wherein the vital module includes a first communication unit capable of transmitting the biological information signal, and is transmitted from the first communication unit. A second communication unit that can receive the biological information signal, a storage unit that stores a reference biological information signal obtained before the diver dives, a biological information signal output from the second communication unit, and the reference biological A monitoring device is provided that includes a monitoring processing unit that performs comparison with an information signal and displays the comparison result on the display device via the second communication unit and the first communication unit. It can be said that it is a diver monitoring system. In this case, since the diver's condition is determined by the monitoring device, the diver himself / herself is notified to the diver himself.For example, even if the diver is involved in an emergency situation, the diver himself / herself makes a quick avoidance action without making a judgment. It is easy to get started.
 本発明によれば、バイタルセンサの位置決めを厳密にしなくても、相応の精度でダイバーの生体情報を得ることが可能となる。 According to the present invention, it is possible to obtain the biological information of the diver with appropriate accuracy without strict positioning of the vital sensor.
本発明の第1実施形態に係るダイバー監視システムの一例を示す全体模式図1 is an overall schematic diagram showing an example of a diver monitoring system according to a first embodiment of the present invention. 図1のダイバー監視システムを示すブロック図Block diagram showing the diver monitoring system of FIG. 図1のダイバーに装着されたダイバーモジュールを示す模式図(ダイバーの全体図(A)、表示装置の図(B)、バイタルモジュールの配置された胸部の断面図(C))Schematic diagram showing a diver module attached to the diver in FIG. 1 (overall view of diver (A), view of display device (B), cross-sectional view of chest where vital module is placed (C)) 図1のバイタルモジュールの機構図(分解鳥瞰図(A)、側面図(B)、正面図(C))Mechanism diagram of the vital module of FIG. 1 (disassembled bird's-eye view (A), side view (B), front view (C)) 図1のバイタルモジュールのバイタルセンサを示すブロック図The block diagram which shows the vital sensor of the vital module of FIG. 図5のバイタルセンサの発生部を示す模式図(回路図(A)、タイミングチャート(B))Schematic diagram (circuit diagram (A), timing chart (B)) showing the generating part of the vital sensor of FIG. 図5のバイタルセンサのアンテナ部を示す回路図FIG. 5 is a circuit diagram showing the antenna unit of the vital sensor of FIG. 図5のバイタルセンサの差動部を示す回路図5 is a circuit diagram showing a differential section of the vital sensor of FIG. 図5のバイタルセンサのローパスフィルタ部を示す回路図5 is a circuit diagram showing a low-pass filter portion of the vital sensor of FIG. 図5のバイタルセンサの調整部の前段を示す回路図The circuit diagram which shows the front | former stage of the adjustment part of the vital sensor of FIG. 図5のバイタルセンサの調整部の後段を示す回路図The circuit diagram which shows the latter part of the adjustment part of the vital sensor of FIG. FFT処理を示す波形図(FFT処理前の信号の図(A)、FFT処理後の信号の図(B))Waveform diagram showing FFT processing (a signal before FFT processing (A), a signal after FFT processing (B)) 本発明の第2実施形態に係るバイタルセンサを示すブロック図The block diagram which shows the vital sensor which concerns on 2nd Embodiment of this invention.
 以下、本発明の第1実施形態の一例について、図1~図12を参照して詳細に説明する。 Hereinafter, an example of the first embodiment of the present invention will be described in detail with reference to FIGS.
 図1、図2に示す如く、本発明の第1実施形態に係るダイバー監視システム100は、1以上(3以上でもよい)のダイバーモジュール102と、各ダイバーモジュール102に防水された通信ケーブルCCで接続された監視装置108と、を備える。ダイバーモジュール102は、図3(A)に示す如く、潜水中のダイバー(潜水作業者)Diのバイタル信号Sstを検出するバイタルセンサ110(図2)を備えるバイタルモジュール104と、バイタルモジュール104に通信ケーブルCCで通信可能に接続された表示装置106と、を備える。また、監視装置108は、船SP上に配置されており、監視員が操作可能となっている。 As shown in FIGS. 1 and 2, the diver monitoring system 100 according to the first embodiment of the present invention includes one or more (or three or more) diver modules 102 and a communication cable CC waterproofed to each diver module 102. Connected monitoring device 108. As shown in FIG. 3A, the diver module 102 communicates with the vital module 104 including a vital sensor 110 (FIG. 2) that detects a vital signal Sst of a diver (diving worker) Di during diving. And a display device 106 connected to be communicable with a cable CC. The monitoring device 108 is disposed on the ship SP and can be operated by a monitor.
 以下、各構成について、詳細に説明する。 Hereinafter, each configuration will be described in detail.
 前記ダイバーDiは、図3(A)に示す如く、全身を覆うダイバースーツDSを着ている。ダイバースーツDSは、ウエットタイプでもよいしドライタイプでもよい(なお、ドライタイプの場合にはダイバースーツDSにもレギュレータが取付けられるが、いずれの図でもレギュレータ及びタンクを省略している)。そして、ダイバーDiは、肩にかかるバンド及び、胸部Db周りのバンドを備えた胸部Dbのほぼ全面を覆うダイバーベストDVをダイバースーツDSの上に着ている。ダイバーベストDVの中央部内側には、バイタルモジュール104が入るポケットPCが設けられている(つまり、バイタルモジュール104は、ダイバーDiの着るダイバースーツDSの外側に配置され、バイタルセンサ110はダイバーDiの胸部Dbに配置される構成となっている)。なお、肩にかかるバンド及び、胸部Db周りのバンドの伸縮調整機構(図示せず)により、ポケットPCに入った状態のバイタルモジュール104のダイバースーツDSへの押圧力がある程度調整可能となっている。 The diver Di wears a diver suit DS that covers the whole body as shown in FIG. The diver suit DS may be a wet type or a dry type (in the case of the dry type, a regulator is also attached to the diver suit DS, but the regulator and the tank are omitted in any figure). The diver Di wears a diver vest DV on the diver suit DS that covers almost the entire surface of the chest Db including the band on the shoulder and the band around the chest Db. Inside the center of the diver vest DV is a pocket PC into which the vital module 104 is inserted (that is, the vital module 104 is arranged outside the diver suit DS worn by the diver Di, and the vital sensor 110 is disposed on the diver Di). It is configured to be placed on the chest Db). Note that the pressing force applied to the diver suit DS of the vital module 104 in the pocket PC can be adjusted to some extent by an expansion / contraction adjustment mechanism (not shown) of the band on the shoulder and the band around the chest Db. .
 また、ダイバーDiは、図3(A)に示す如く、例えばフルフェイス型のマスクMKを頭部に装着している(潜水深度等の関係から必ずしもフルフェイス型でなくてもよい)。マスクMKは、ダイバーDiの目の位置に該当するゴーグル部分が透明となっている。また、マスクMKには、ダイバーDiの口の位置に該当するマウス部分に呼吸をするためのレギュレータ(図示せず)が設けられている。また、マスクMKには、図示せぬスピーカ及びイヤホンが設けられ、船SP上の監視員及びダイバーDi同士で会話可能となっている(この音声情報は、第1通信ユニット138や第2通信ユニット140を介してやり取りを行ってもよいし、別の通信手段を用いてもよい)。なお、マスクMKのゴーグル部分近傍において、支持部材RDは表示装置106をある程度の範囲で並進移動及び回転傾斜を可能に支持している。このため、表示装置106はダイバーDi自身で視認可能な位置に配置される構成となっている。なお、表示装置は、マスクMKではなく、ダイバーDiの腕や肩や足等に配置されていてもよい。 Further, as shown in FIG. 3A, the diver Di wears a full face type mask MK on the head, for example (not necessarily the full face type due to the depth of diving). In the mask MK, the goggle portion corresponding to the eye position of the diver Di is transparent. Further, the mask MK is provided with a regulator (not shown) for breathing the mouse portion corresponding to the position of the mouth of the diver Di. Further, the mask MK is provided with a speaker and an earphone (not shown) so that the monitor on the ship SP and the diver Di can talk with each other (this voice information is stored in the first communication unit 138 and the second communication unit. 140 may be exchanged or another communication means may be used). In the vicinity of the goggle portion of the mask MK, the support member RD supports the display device 106 so as to be able to translate and rotate within a certain range. For this reason, the display device 106 is configured to be disposed at a position that can be visually recognized by the diver Di itself. Note that the display device may be arranged not on the mask MK but on the arm, shoulder, foot, etc. of the diver Di.
 前記バイタルモジュール104は、図2に示す如く、バイタルセンサ110と、変化検出センサ122と、第1圧力センサ124と、第2圧力センサ126と、演算ユニット128と、第1通信ユニット138と、を備え、これらすべてをケーシング105(図4(A))内に収納している。ケーシング105は、100m防水の可能な耐圧構造であり、例えば約100mm*100mm未満*50mm未満のサイズとされている。そして、バイタルモジュール104としての重量は、例えば通信ケーブルCCを含まずに100g程度とされている。 As shown in FIG. 2, the vital module 104 includes a vital sensor 110, a change detection sensor 122, a first pressure sensor 124, a second pressure sensor 126, an arithmetic unit 128, and a first communication unit 138. These are all housed in the casing 105 (FIG. 4A). The casing 105 is a pressure-resistant structure capable of waterproofing 100 m, and has a size of, for example, about 100 mm * less than 100 mm * less than 50 mm. And the weight as the vital module 104 is about 100 g without including the communication cable CC, for example.
 ケーシング105は、図4(A)に示す如く、上ケース105Aとベース板105Bとを備えている。上ケース105Aとベース板105Bとは、シール部材SMにより、密封可能とされている。そして、本実施形態では、ケーシング105内部全体(一部でもよい)に樹脂が充填され、防水状態をより確実に確保している。上ケース105Aの側面には、2つの防水型のコネクタCNが設けられ、コネクタCNは第1通信ユニット138に接続されている。また、上ケース105AのコネクタCNが設けられている側面とは異なる側面には、第2圧力センサ126が配置される検出孔105AAが設けられている。ベース板105Bには、図4(B)に示す如く、上基板Usbと下基板Dsbとが支持されている。上基板Usbには、変化検出センサ122と、演算ユニット128と、第1通信ユニット138と、が配置されている。下基板Dsbには、バイタルセンサ110が配置されている。つまり、バイタルセンサ110が備える2つのアンテナAT1、AT2(後述)とダイバーDiとの間には、回路基板などの電磁波を発生させるおそれのある構成要素がこないような構成とされている。また、ベース板105Bには、図4(C)に示す如く、第1圧力センサ124が配置される検出孔105BAが設けられている。 The casing 105 includes an upper case 105A and a base plate 105B as shown in FIG. The upper case 105A and the base plate 105B can be sealed with a seal member SM. In this embodiment, the entire interior of the casing 105 (or a part thereof) is filled with resin, and the waterproof state is more reliably ensured. Two waterproof connectors CN are provided on the side surface of the upper case 105 </ b> A, and the connector CN is connected to the first communication unit 138. Further, a detection hole 105AA in which the second pressure sensor 126 is arranged is provided on a side surface different from the side surface on which the connector CN of the upper case 105A is provided. As shown in FIG. 4B, an upper substrate Usb and a lower substrate Dsb are supported on the base plate 105B. The change detection sensor 122, the arithmetic unit 128, and the first communication unit 138 are disposed on the upper substrate Usb. The vital sensor 110 is disposed on the lower substrate Dsb. In other words, the configuration is such that there is no component such as a circuit board that may generate electromagnetic waves between the two antennas AT1 and AT2 (described later) included in the vital sensor 110 and the diver Di. Further, as shown in FIG. 4C, the base plate 105B is provided with a detection hole 105BA in which the first pressure sensor 124 is disposed.
 バイタルセンサ110は、図5に示す如く、UWB(超広帯域無線)方式バランス型動体センサと称するマイクロ波Mwvを用いたレーダとされている。つまり、バイタルセンサ110は、ダイバーDiの生命維持活動に伴う体内振動(心臓や肺の動きによる微少変位)である生体情報を、マイクロ波Mwvの反射して戻ってくる時間(心臓や肺の動きによる微少変位に比例する値)の相対変化を計測することで求める。これにより、バイタルセンサ110は、ダイバーDiのバイタル信号Sstを検出する構成となっている。具体的に、バイタルセンサ110は、図5に示す如く、マイクロ波送受信部111と、信号処理部114とを備える。マイクロ波送受信部111は、アンテナAT1、AT2(図7)を用いてマイクロ波MwvをダイバーDiに放射し、且つダイバーDiからのマイクロ波Mwvを受信する。信号処理部114は、マイクロ波送受信部111から出力される検出信号Sdtを処理する。なお、ここで使用するマイクロ波Mwvは、例えば10.5GHzであり、そのアンテナAT1、AT2からの出力は総務省令電波法施行規則で規定されている微弱無線局の電界強度とされている。このため、バイタルセンサ110に対して無線局の取得が不要であり、バイタルモジュール104を低コストに抑えることができる。また、ここでの電源電圧Vddは、例えば、3.3Vとされている。 As shown in FIG. 5, the vital sensor 110 is a radar using a microwave Mwv called a UWB (ultra-wide band wireless) system balanced moving body sensor. In other words, the vital sensor 110 returns the biological information, which is the internal vibration (slight displacement due to the movement of the heart and lungs) accompanying the life support activity of the diver Di, reflected by the microwave Mwv (the movement of the heart and lungs). It is obtained by measuring the relative change of the value (proportional to the minute displacement due to). Thereby, the vital sensor 110 is configured to detect the vital signal Sst of the diver Di. Specifically, the vital sensor 110 includes a microwave transmission / reception unit 111 and a signal processing unit 114, as shown in FIG. The microwave transmission / reception unit 111 radiates the microwave Mwv to the diver Di using the antennas AT1 and AT2 (FIG. 7), and receives the microwave Mwv from the diver Di. The signal processing unit 114 processes the detection signal Sdt output from the microwave transmission / reception unit 111. The microwave Mwv used here is, for example, 10.5 GHz, and the output from the antennas AT1 and AT2 is the electric field strength of the weak radio station defined by the Ministry of Internal Affairs and Communications Ordinance Radio Law Enforcement Rules. For this reason, acquisition of a radio station is unnecessary for the vital sensor 110, and the vital module 104 can be suppressed at low cost. The power supply voltage Vdd here is set to 3.3 V, for example.
 マイクロ波送受信部111は、図5に示す如く、発生部112と、アンテナ部113と、を備える。発生部112は、送信信号Ssnであるパルス状のマイクロ波Mwvを発生させている。具体的には、図6(A)の回路図に示す如く、発生部112は、D型フリップフロップFF1とNOR素子N1、N2に対して、ダイオードD1、D2、コンデンサC1、C2、抵抗R1、R2を組みあわせることで実現することができる。なお、図6(A)の回路図の符号S1~S5、Ssnの示す位置で得られる信号のタイミングチャートを図6(B)に示す。ここで、図6(B)で示される時間T1は、コンデンサC1、C2と抵抗R1、R2による時定数とD型フリップフロップFF1の閾値電圧に依存し、例えば11μsec程度とすることができる。また、時間T2は、NOR素子N1、N2の遅延と立ち上がり時間に依存し、例えば11nsec程度とすることができる。 The microwave transmission / reception unit 111 includes a generation unit 112 and an antenna unit 113 as shown in FIG. The generation unit 112 generates a pulsed microwave Mwv that is the transmission signal Ssn. Specifically, as shown in the circuit diagram of FIG. 6A, the generation unit 112 has diodes D1 and D2, capacitors C1 and C2, resistors R1 and D1 with respect to the D flip-flop FF1 and the NOR elements N1 and N2. This can be realized by combining R2. Note that FIG. 6B shows a timing chart of signals obtained at the positions indicated by reference numerals S1 to S5 and Ssn in the circuit diagram of FIG. Here, the time T1 shown in FIG. 6B depends on the time constant of the capacitors C1 and C2 and the resistors R1 and R2 and the threshold voltage of the D-type flip-flop FF1, and can be about 11 μsec, for example. The time T2 depends on the delay and rise time of the NOR elements N1 and N2, and can be set to about 11 nsec, for example.
 アンテナ部113は、発生部112から出力されるマイクロ波Mwv(送信信号Ssn)を放射及び受信する。具体的には、図7の回路図に示す如く、アンテナ部113は、2つのアンテナAT1、AT2とトランジスタTR1、TR2とに対して、ダイオードD3、D4、コイルL1、抵抗R3、R4を組みあわせることで実現することができる。2つのアンテナAT1、AT2からマイクロ波Mwv(送信信号Ssn)がダイバーDiに向けて放射され、且つ2つのアンテナAT1、AT2でダイバーDiから反射して戻ってくるマイクロ波Mwvを受信する。つまり、2つのアンテナAT1、AT2は送信アンテナでもあり、受信アンテナでもある。アンテナ部113は、2つのアンテナAT1、AT2から得られた検出信号Sdt(Sdt1、Sdt2)を出力する。ここで、コイルL1は、2つのアンテナAT1、AT2から放射されるマイクロ波Mwv(送信信号Ssn)を互いに異なる波形として、後述する差動部115でダイバーDiから反射して戻ってきたマイクロ波Mwvが相殺されることを防止している。なお、マイクロ波Mwvを送信する際には、アンテナAT1、AT2のいずれか1つからマイクロ波Mwvが放射されるような構成となっていてもよい。 The antenna unit 113 radiates and receives the microwave Mwv (transmission signal Ssn) output from the generation unit 112. Specifically, as shown in the circuit diagram of FIG. 7, the antenna unit 113 combines diodes D3 and D4, a coil L1, and resistors R3 and R4 with respect to two antennas AT1 and AT2 and transistors TR1 and TR2. Can be realized. The microwaves Mwv (transmission signal Ssn) are radiated from the two antennas AT1 and AT2 toward the diver Di, and the microwaves Mwv reflected from the diver Di and returned by the two antennas AT1 and AT2 are received. That is, the two antennas AT1 and AT2 are both transmitting antennas and receiving antennas. The antenna unit 113 outputs detection signals Sdt (Sdt1, Sdt2) obtained from the two antennas AT1, AT2. Here, the coil L1 uses microwaves Mwv (transmission signals Ssn) radiated from the two antennas AT1 and AT2 as different waveforms, and is reflected from the diver Di by the differential unit 115 described later and returned to the microwave Mwv. Is prevented from being offset. When transmitting the microwave Mwv, the microwave Mwv may be radiated from either one of the antennas AT1 and AT2.
 信号処理部114は、図5に示す如く、差動部115と、ローパスフィルタ部116と、調整部117と、を備える。差動部115は、2つのアンテナAT1、AT2から得られた検出信号Sdt(Sdt1、Sdt2)の差分を行う。差動部115は、差分により、外乱ノイズ等の同相信号を相殺することができる。具体的には、図8の回路図に示す如く、差動部115は、3つのオペアンプOP1~OP4に対して、コンデンサC3~C8、抵抗R5~R17を組みあわせることで実現することができる。ここで、オペアンプOP4とコンデンサC7、C8、抵抗R14~R17は、DCサーボ回路を構成している。このDCサーボ回路は、差動部115から出力される差動出力信号SdoのDC成分が電源電圧Vddの半分(1.65V)となるようにフィードバックをかけている。 As shown in FIG. 5, the signal processing unit 114 includes a differential unit 115, a low-pass filter unit 116, and an adjustment unit 117. The differential unit 115 performs a difference between the detection signals Sdt (Sdt1 and Sdt2) obtained from the two antennas AT1 and AT2. The differential unit 115 can cancel in-phase signals such as disturbance noise by the difference. Specifically, as shown in the circuit diagram of FIG. 8, the differential unit 115 can be realized by combining capacitors C3 to C8 and resistors R5 to R17 with three operational amplifiers OP1 to OP4. Here, the operational amplifier OP4, the capacitors C7 and C8, and the resistors R14 to R17 constitute a DC servo circuit. The DC servo circuit applies feedback so that the DC component of the differential output signal Sdo output from the differential unit 115 is half the power supply voltage Vdd (1.65 V).
 ローパスフィルタ部116は、図5に示す如く、差動部115から出力される差動出力信号Sdoの高周波成分をカットする。具体的には、図9の回路図に示す如く、ローパスフィルタ部116は、2次多重帰還形のローパスフィルタであり、1つのオペアンプOP5に対して、コンデンサC9~C11、抵抗R18~R22を組みあわせることで実現することができる。また、このオペアンプOP5により、ローパスフィルタ部116は相応の増幅を行っている。ローパスフィルタ部116からは、フィルタ出力信号Sfoが出力される。 The low-pass filter unit 116 cuts a high frequency component of the differential output signal Sdo output from the differential unit 115 as shown in FIG. Specifically, as shown in the circuit diagram of FIG. 9, the low-pass filter unit 116 is a second-order multiple feedback low-pass filter, and capacitors C9 to C11 and resistors R18 to R22 are assembled to one operational amplifier OP5. It can be realized by combining them. In addition, the low-pass filter unit 116 performs corresponding amplification by the operational amplifier OP5. The low-pass filter unit 116 outputs a filter output signal Sfo.
 調整部117は、図5に示す如く、ローパスフィルタ部116から出力されるフィルタ出力信号Sfoを調整する。調整部117の出力であるバイタル信号Sstは、マイコンあるいはDSPである演算ユニット128で処理される。このため、調整部117では、演算ユニット128の処理に最適な形態となるようにバイタル信号Sstを増幅させる。このバイタル信号Sstの最適化のために、本実施形態では、調整部117を前段部と後段部に分けて示す(調整部117の機能は1つの回路で実現されてもよい)。具体的には、図10、図11の回路図に調整部117の前段部と後段部を、それぞれ示す。調整部117の前段部は、1つのオペアンプOP6に対して、コンデンサC12、抵抗R23、R24、可変抵抗VR1を組みあわせることで実現することができる。調整部117の後段部は、1つのオペアンプOP7に対して、コンデンサC13~C15、抵抗R25~R30、可変抵抗VR2を組みあわせることで実現することができる。 The adjustment unit 117 adjusts the filter output signal Sfo output from the low-pass filter unit 116 as shown in FIG. The vital signal Sst that is the output of the adjusting unit 117 is processed by the arithmetic unit 128 that is a microcomputer or a DSP. For this reason, the adjustment unit 117 amplifies the vital signal Sst so as to have an optimum form for the processing of the arithmetic unit 128. In order to optimize the vital signal Sst, in the present embodiment, the adjustment unit 117 is divided into a front part and a rear part (the function of the adjustment part 117 may be realized by a single circuit). Specifically, the front and rear stages of the adjustment unit 117 are shown in the circuit diagrams of FIGS. 10 and 11, respectively. The preceding stage of the adjustment unit 117 can be realized by combining a capacitor C12, resistors R23 and R24, and a variable resistor VR1 with respect to one operational amplifier OP6. The subsequent stage of the adjustment unit 117 can be realized by combining capacitors C13 to C15, resistors R25 to R30, and a variable resistor VR2 with respect to one operational amplifier OP7.
 図2に示す変化検出センサ122は、バイタルモジュール104の状態変化を検知可能とするセンサで、ダイバーDiの体動を確認可能としている。具体的に、変化検出センサ122は、例えば、3軸加速度センサと3軸ジャイロセンサと3軸地磁気センサから構成される9軸センサとされている。そして、変化検出センサ122は、マイコンを含み、外部からIC通信で、3軸加速度センサ、3軸ジャイロセンサ、3軸地磁気センサそれぞれの検出データをデジタルデータとして外部に出力可能としている。 The change detection sensor 122 shown in FIG. 2 is a sensor that can detect a change in the state of the vital module 104, and can check the body movement of the diver Di. Specifically, the change detection sensor 122 is, for example, a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor. The change detection sensor 122 includes a microcomputer, and can externally output detection data of each of the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetic sensor as digital data through I 2 C communication.
 図2に示す第1圧力センサ124は、バイタルモジュール104のダイバースーツDSへの押圧力を確認するために、バイタルモジュール104のケーシング105のダイバー側の側面に設けられている。具体的は、図4(A)、(C)に示す検出孔105BAに第1圧力センサ124の圧力検出窓が適合するように、第1圧力センサ124がベース板105Bに取り付けられる。第1圧力センサ124には、例えば、MEMS技術を用いて作られたセンサを用いることができる(第2圧力センサ126も同様)。 The first pressure sensor 124 shown in FIG. 2 is provided on the diver side surface of the casing 105 of the vital module 104 in order to confirm the pressing force of the vital module 104 to the diver suit DS. Specifically, the first pressure sensor 124 is attached to the base plate 105B so that the pressure detection window of the first pressure sensor 124 fits into the detection hole 105BA shown in FIGS. As the first pressure sensor 124, for example, a sensor made by using MEMS technology can be used (the same applies to the second pressure sensor 126).
 図2に示す第2圧力センサ126は、バイタルモジュール104の外部の圧力(潜水圧)を検出するために、バイタルモジュール104のケーシング105のダイバー側の側面以外の面に設けられている。具体的は、図4(A)、(B)に示す検出孔105AAに第2圧力センサ126の圧力検出窓が適合するように、第2圧力センサ126が上ケース105Aに取り付けられる。 The second pressure sensor 126 shown in FIG. 2 is provided on a surface other than the diver side surface of the casing 105 of the vital module 104 in order to detect the pressure (submersible pressure) outside the vital module 104. Specifically, the second pressure sensor 126 is attached to the upper case 105A so that the pressure detection window of the second pressure sensor 126 fits into the detection hole 105AA shown in FIGS.
 演算ユニット128は、マイコン、あるいはDSPである。図2に示す如く、バイタルセンサ110、第1圧力センサ124、第2圧力センサ126は、それぞれ演算ユニット128の図示しないA/D変換回路に接続されている。なお、変化検出センサ122からはデジタル信号が出力されるので、演算ユニット128の図示しないIC通信ポートに接続されている。演算ユニット128は、バイタルセンサ110からのバイタル信号Sstを処理してダイバーDiの生体情報信号Sbを出力することができる。具体的に、演算ユニット128は、第1フィルタ部130と、第2フィルタ部132と、波形成形部134と、演算処理部136と、を備える。なお、本実施形態では、生体情報信号Sbは、ダイバーDiの呼吸信号Sbrと心拍信号Shbとされている。 The arithmetic unit 128 is a microcomputer or a DSP. As shown in FIG. 2, the vital sensor 110, the first pressure sensor 124, and the second pressure sensor 126 are each connected to an A / D conversion circuit (not shown) of the arithmetic unit 128. Since the change detection sensor 122 outputs a digital signal, it is connected to an I 2 C communication port (not shown) of the arithmetic unit 128. The arithmetic unit 128 can process the vital signal Sst from the vital sensor 110 and output the biological information signal Sb of the diver Di. Specifically, the arithmetic unit 128 includes a first filter unit 130, a second filter unit 132, a waveform shaping unit 134, and an arithmetic processing unit 136. In the present embodiment, the biological information signal Sb is the diver's Di respiration signal Sbr and the heartbeat signal Shb.
 第1フィルタ部130は、バンドパスフィルタであり、呼吸信号Sbrと心拍信号Shbの周期(例えば1Hz近傍)から大きく外れる低周波領域と高周波領域の周波数成分をカットする。第1フィルタ部130は、波形成形部134に対してBPF出力信号Sbpを出力する。 The first filter unit 130 is a band-pass filter, and cuts frequency components in a low frequency region and a high frequency region that deviate significantly from the period (for example, near 1 Hz) of the respiratory signal Sbr and the heartbeat signal Shb. The first filter unit 130 outputs a BPF output signal Sbp to the waveform shaping unit 134.
 第2フィルタ部132は、3軸加速度センサと3軸ジャイロセンサと3軸地磁気センサそれぞれに対するフィルタを備え、第2フィルタ部132に入力するいずれかのセンサの出力に応じて、適切なフィルタを適用することができる。第2フィルタ部132からの出力は、演算処理部136に入力する。なお、第2フィルタ部がなく、変化検出センサの出力が直接演算処理部に入力されてもよい。 The second filter unit 132 includes a filter for each of the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetic sensor, and an appropriate filter is applied according to the output of any sensor input to the second filter unit 132. can do. The output from the second filter unit 132 is input to the arithmetic processing unit 136. Note that the second filter unit may not be provided, and the output of the change detection sensor may be directly input to the arithmetic processing unit.
 波形成形部134は、第1フィルタ部130から出力されるBPF出力信号Sbpを、生体情報信号Sbである呼吸信号Sbrと心拍信号Shbに分離する。信号を分離する際には、FFT等を用いて、時間軸(s)で変化するBPF出力信号Sbp(図12(A))を一旦、周波数軸(f)で変化する信号(図12(B))に変換してもよい。なお、呼吸信号Sbrの周波数は、心拍信号Shbの周波数に比べて高く、1Hzを超える値ともなる。 The waveform shaping unit 134 separates the BPF output signal Sbp output from the first filter unit 130 into a respiration signal Sbr and a heartbeat signal Shb, which are biological information signals Sb. When separating the signals, an FFT or the like is used to change the BPF output signal Sbp (FIG. 12A) changing on the time axis (s) once to the signal changing the frequency axis (f) (FIG. 12B). )). Note that the frequency of the respiratory signal Sbr is higher than the frequency of the heartbeat signal Shb, and is a value exceeding 1 Hz.
 演算処理部136は、波形成形部134に接続されている。そして、演算処理部136は、第2フィルタ部132の出力と、第1圧力センサ124の出力と、第2圧力センサ126の出力とに基づいて、生体情報信号Sb(呼吸信号Sbrと心拍信号Shb)に対して、各種の適否判定と処理を行う。例えば、変化検出センサ122、第1圧力センサ124、第2圧力センサ126の出力が異常値を示さず許容範囲内の値である場合には、生体情報信号Sbを、信頼性のあるものとして第1通信ユニット138を介してバイタルモジュール104から出力可能とする。また、演算処理部136は、例えば、第1通信ユニット138を介して、監視装置108(あるいは表示装置106)からの指令に基づき、生体情報信号Sbだけでなく、変化検出センサ122、第1圧力センサ124、及び第2圧力センサ126の出力を監視装置108(あるいは表示装置106)に送信することも可能とされている。更に、演算処理部136は、監視装置108や表示装置106に、各種の指令を行うことも可能とされている。なお、演算処理部136は、第2フィルタ部132の出力と、第1圧力センサ124の出力と、第2圧力センサ126の出力とに基づいて、生体情報信号Sb(呼吸信号Sbrと心拍信号Shb)のノイズの除去と波形成形とを行ってもよい。 The arithmetic processing unit 136 is connected to the waveform shaping unit 134. Based on the output of the second filter unit 132, the output of the first pressure sensor 124, and the output of the second pressure sensor 126, the arithmetic processing unit 136 performs the biological information signal Sb (the respiratory signal Sbr and the heartbeat signal Shb). ) For various suitability determinations and processing. For example, when the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126 do not indicate abnormal values and are within the allowable range, the biological information signal Sb is regarded as reliable. It is possible to output from the vital module 104 via one communication unit 138. Further, the arithmetic processing unit 136, for example, based on a command from the monitoring device 108 (or the display device 106) via the first communication unit 138, not only the biological information signal Sb, but also the change detection sensor 122, the first pressure It is also possible to transmit the outputs of the sensor 124 and the second pressure sensor 126 to the monitoring device 108 (or the display device 106). Further, the arithmetic processing unit 136 can also give various commands to the monitoring device 108 and the display device 106. Note that the arithmetic processing unit 136 generates the biological information signal Sb (respiration signal Sbr and heart rate signal Shb) based on the output of the second filter unit 132, the output of the first pressure sensor 124, and the output of the second pressure sensor 126. ) Noise removal and waveform shaping may be performed.
 第1通信ユニット138は、図2に示す如く、演算ユニット128に接続されており、演算処理部136の適否判断と処理、表示装置106からの指令、及び監視装置108からの指令に基づき、生体情報信号Sbだけでなく各種データの送受信を行う。具体的には、第1通信ユニット138には、例えば終端処理されたツイスト・ペアを使用した、最高10Mbpsの差動データ伝送を規定しているRS485規格(TIA-485)が適用されている(第2通信ユニット140と、表示装置106の通信部(図示せず)も同様)。これにより、バイタルモジュール104と表示装置106と監視装置108とをデージーチェーン接続することが可能であり、生体情報だけでなく、音声情報、表示情報を一元管理することができる。 As shown in FIG. 2, the first communication unit 138 is connected to the arithmetic unit 128, and based on the suitability determination and processing of the arithmetic processing unit 136, the command from the display device 106, and the command from the monitoring device 108, Not only the information signal Sb but also various data are transmitted and received. Specifically, the RS485 standard (TIA-485) that defines differential data transmission of up to 10 Mbps using, for example, a terminated twisted pair is applied to the first communication unit 138 ( The same applies to the second communication unit 140 and the communication unit (not shown) of the display device 106). Accordingly, the vital module 104, the display device 106, and the monitoring device 108 can be daisy chain connected, and not only biological information but also voice information and display information can be managed in an integrated manner.
 前記表示装置106は、図2、図3(A)に示す如く、バイタルモジュール104に通信ケーブルCCを介して通信可能に接続されている。そして、表示装置106は、その表示部106Aに生体情報信号Sbに従う情報を表示可能としている。つまり、表示装置106は、生体情報信号Sbだけでなく、演算処理部136及び監視装置108による生体情報信号Sbに対する判定結果等も表示可能とされている。更に、表示装置106は、変化検出センサ122、第1圧力センサ124、及び第2圧力センサ126の出力を表示することも可能とされている。なお、表示装置106には、表示部106Aや図示しない通信部以外に、入力部106Bが設けられており、バイタルモジュール104や監視装置108に対する各種情報の呼び出しや応答等が可能となっている。 The display device 106 is communicably connected to the vital module 104 via a communication cable CC as shown in FIGS. 2 and 3A. The display device 106 can display information according to the biological information signal Sb on the display unit 106A. That is, the display device 106 can display not only the biological information signal Sb but also the determination result on the biological information signal Sb by the arithmetic processing unit 136 and the monitoring device 108. Further, the display device 106 can display the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126. The display device 106 is provided with an input unit 106B in addition to the display unit 106A and a communication unit (not shown) so that various information can be called and responded to the vital module 104 and the monitoring device 108.
 前記監視装置108は、図2に示す如く、第2通信ユニット140と、監視処理部142と、入力部143と、記憶部144と、表示部146と、を備える。第2通信ユニット140は、通信ケーブルCCを介してバイタルモジュール104の第1通信ユニット138と接続されている(つまり、第2通信ユニット140は、第1通信ユニット138から送信された生体情報信号Sbを受信可能とされている)。第2通信ユニット140は、第1通信ユニット138と同様の構成であり、バイタルモジュール104からの指令、表示装置106からの指令、及び監視装置108からの指令に基づき、生体情報信号Sbだけでなく各種データの送受信を行う。 As shown in FIG. 2, the monitoring device 108 includes a second communication unit 140, a monitoring processing unit 142, an input unit 143, a storage unit 144, and a display unit 146. The second communication unit 140 is connected to the first communication unit 138 of the vital module 104 via the communication cable CC (that is, the second communication unit 140 transmits the biological information signal Sb transmitted from the first communication unit 138). Can be received). The second communication unit 140 has the same configuration as that of the first communication unit 138, and based on the command from the vital module 104, the command from the display device 106, and the command from the monitoring device 108, not only the biological information signal Sb. Send and receive various data.
 監視処理部142には、図2に示す如く、第2通信ユニット140、入力部143、記憶部144、及び表示部146が接続されている。監視処理部142は、入力部143の指令に従い、第2通信ユニット140、記憶部144、及び表示部146を操作することができる。また、記憶部144から読み出した各種プログラムに従って、各種制御・処理を行うことができる。例えば、監視処理部142は、第2通信ユニット140から出力される生体情報信号Sbを処理し、その結果を表示部146に表示させ、生体情報信号Sbの時間的な変化を観察可能とすることができる。また、監視処理部142は、逆に表示装置106や演算処理部136の指令に従い、自身における処理結果、記憶部144、及び表示部146を操作することもできる。なお、監視処理部142は、FFT等を用いて、時間軸(s)で変化する生体情報信号Sb(図12(A))を一旦、周波数軸(f)で変化する信号(図12(B))に変換し、その結果を表示部146に表示させてもよい。 2, the second communication unit 140, the input unit 143, the storage unit 144, and the display unit 146 are connected to the monitoring processing unit 142. The monitoring processing unit 142 can operate the second communication unit 140, the storage unit 144, and the display unit 146 in accordance with instructions from the input unit 143. Various controls and processes can be performed according to various programs read from the storage unit 144. For example, the monitoring processing unit 142 processes the biological information signal Sb output from the second communication unit 140, displays the result on the display unit 146, and enables the temporal change of the biological information signal Sb to be observed. Can do. Conversely, the monitoring processing unit 142 can operate the processing result, the storage unit 144, and the display unit 146 in accordance with instructions of the display device 106 and the arithmetic processing unit 136. The monitoring processing unit 142 uses a FFT or the like to change the biological information signal Sb (FIG. 12A) that changes on the time axis (s) to a signal that changes on the frequency axis (f) (FIG. 12B). )) And the result may be displayed on the display unit 146.
 図2に示す入力部143は、各種指令の入力、記憶部144に記憶された各種閾値更新、初期値の入力等を行う。また、入力部143は、監視装置108で監視対象とするダイバーモジュール102やバイタルモジュール104を選択することもできる。入力部143には、具体的には、スイッチ、マウス、キーボード等を用いることができる。 The input unit 143 shown in FIG. 2 inputs various commands, updates various threshold values stored in the storage unit 144, and inputs initial values. The input unit 143 can also select the diver module 102 or the vital module 104 to be monitored by the monitoring device 108. Specifically, a switch, a mouse, a keyboard, or the like can be used for the input unit 143.
 図2に示す記憶部144は、各種初期情報や各種プログラムを記憶しておくことができる。例えば、記憶部144は、ダイバーDiの潜水前に得られた生体情報を示す基準生体情報信号Sbbを記憶することができる。これにより、監視処理部142は、生体情報信号Sbと基準生体情報信号Sbbとの比較を行い、比較した結果を表示部146に表示させる(出力させる)ことも可能である。その際には、監視処理部142は、その比較した結果を第2通信ユニット140と第1通信ユニット138とを介して、表示装置106に表示させることもできる。  The storage unit 144 shown in FIG. 2 can store various initial information and various programs. For example, the memory | storage part 144 can memorize | store the reference | standard biometric information signal Sbb which shows the biometric information obtained before the diver's diving. Accordingly, the monitoring processing unit 142 can compare the biological information signal Sb and the reference biological information signal Sbb, and display (output) the comparison result on the display unit 146. In that case, the monitoring processing unit 142 can also display the comparison result on the display device 106 via the second communication unit 140 and the first communication unit 138. *
 図2に示す表示部146は、生体情報信号Sbに従う情報を表示可能としている。つまり、表示部146は、生体情報信号Sbだけでなく、演算処理部136及び監視装置108による生体情報信号Sbに対する判定結果等も表示可能とされている。更に、表示部146は、変化検出センサ122、第1圧力センサ124、及び第2圧力センサ126の出力を表示することも可能とされている。 The display unit 146 shown in FIG. 2 can display information according to the biological information signal Sb. That is, the display unit 146 can display not only the biological information signal Sb but also the determination result on the biological information signal Sb by the arithmetic processing unit 136 and the monitoring device 108. Further, the display unit 146 can display the outputs of the change detection sensor 122, the first pressure sensor 124, and the second pressure sensor 126.
 このように、本実施形態では、ダイバーDiの生体情報を示す生体情報信号Sbを得るためにマイクロ波Mwvを用いている。ここで、マイクロ波Mwvは水中では大きく減衰されることから、潜水中にバイタルセンサ110に入ってくる外来ノイズを、大気中にバイタルセンサ110がある時よりも低減させることができる。同時に、マイクロ波Mwvを用いることで、ダイバーDiの生体情報である体内振動(心臓や肺の動きによる微少変位)を高感度に検出することが可能である。更に、バイタルセンサ110は、非接触センサで、特許文献1に示すバイタルセンサとは異なり、ダイバーDiの肌を直接暴露させる必要もないので、ダイバーDiの胸部Dbに配置されるという条件だけで、厳密な位置決めを必要としない。 Thus, in this embodiment, the microwave Mwv is used to obtain the biological information signal Sb indicating the biological information of the diver Di. Here, since the microwave Mwv is greatly attenuated in water, the external noise that enters the vital sensor 110 during diving can be reduced more than when the vital sensor 110 is in the atmosphere. At the same time, by using the microwave Mwv, it is possible to detect the in-vivo vibration (small displacement due to the movement of the heart and lungs) which is the biological information of the diver Di with high sensitivity. Furthermore, the vital sensor 110 is a non-contact sensor, and unlike the vital sensor shown in Patent Document 1, it is not necessary to directly expose the skin of the diver Di, so that only the condition that the vital sensor 110 is disposed on the chest Db of the diver Di, Does not require precise positioning.
 また、本実施形態では、バイタルモジュール104が、ダイバースーツDSの外側に配置されている。このため、バイタルモジュール104のダイバーDiへの脱着が容易である。なお、これに限らず、バイタルモジュールはダイバースーツDSの内側に配置されていてもよい。 In this embodiment, the vital module 104 is disposed outside the diver suit DS. Therefore, the vital module 104 can be easily attached to and detached from the diver Di. However, the present invention is not limited thereto, and the vital module may be disposed inside the diver suit DS.
 また、本実施形態では、生体情報信号Sbが、ダイバーDiの呼吸信号Sbrと心拍信号Shbとされていている。このため、この2つの生体情報を用いることで、ダイバーDiの身体状況をより正確に把握することが可能である。なお、これに限らず、生体情報信号Sbとしては、呼吸信号Sbrと心拍信号Shbとのうちのいずれかだけでもよいし、可能であればそれ以外の体内振動を用いるようにしてもよい。 In the present embodiment, the biological information signal Sb is the diver's Di respiration signal Sbr and the heartbeat signal Shb. For this reason, it is possible to grasp | ascertain the physical condition of the diver Di more correctly by using these two biological information. However, the biological information signal Sb is not limited to this, and any one of the respiratory signal Sbr and the heartbeat signal Shb may be used, and other internal vibrations may be used if possible.
 また、本実施形態では、マイクロ波送受信部111が、パルス状のマイクロ波Mwvを発生させる発生部112と、発生部112から出力されるマイクロ波Mwvを放射及び受信するアンテナ部113と、を備えている。そして、アンテナ部113には、2つのアンテナAT1、AT2が設けられている。更に、信号処理部114が、2つのアンテナAT1、AT2から得られた検出信号Sdtの差分を行う差動部115と、差動部115から出力される差動出力信号Sdoの高周波成分をカットするローパスフィルタ部116と、ローパスフィルタ部116から出力されるフィルタ出力信号Sfoを調整する調整部117と、を備えている。このため、バイタルセンサ110の回路構成としては比較的簡素な構成であり、低電力・低コストとしながら、よりノイズの少ないバイタル信号Sstを得ることが可能である。 In the present embodiment, the microwave transmission / reception unit 111 includes a generation unit 112 that generates a pulsed microwave Mwv, and an antenna unit 113 that radiates and receives the microwave Mwv output from the generation unit 112. ing. The antenna unit 113 is provided with two antennas AT1 and AT2. Furthermore, the signal processing unit 114 cuts the high-frequency component of the differential output signal Sdo output from the differential unit 115 that performs a difference between the detection signals Sdt obtained from the two antennas AT1 and AT2, and the differential unit 115. The low-pass filter unit 116 and the adjustment unit 117 that adjusts the filter output signal Sfo output from the low-pass filter unit 116 are provided. Therefore, the circuit configuration of the vital sensor 110 is relatively simple, and it is possible to obtain a vital signal Sst with less noise while reducing power consumption and cost.
 また、本実施形態では、更に、バイタルモジュール104のケーシング105のダイバーDi側の側面に圧力を検出する第1圧力センサ124が設けられている。このため、第1圧力センサ124の出力を考慮して、即ち、バイタルモジュール104のダイバーDiへの押圧力がバイタル信号Sstを検出する条件として適正かどうかをもとにして、得られたバイタル信号Sstの適否を判断することが可能である。なお、これに限らず、第1圧力センサが設けられていなくてもよい。 Further, in the present embodiment, a first pressure sensor 124 that detects pressure is further provided on the side surface of the casing 105 of the vital module 104 on the diver Di side. Therefore, the vital signal obtained in consideration of the output of the first pressure sensor 124, that is, based on whether or not the pressing force to the diver Di of the vital module 104 is appropriate as a condition for detecting the vital signal Sst. It is possible to determine the suitability of Sst. However, the present invention is not limited to this, and the first pressure sensor may not be provided.
 また、本実施形態では、更に、バイタルモジュール104のケーシング105のダイバーDi側の側面以外の面にバイタルモジュール104の外部の圧力を検出する第2圧力センサ126が設けられている。このため、第2圧力センサ126の出力を考慮して、即ち、バイタルモジュール104にかかる潜水圧がバイタル信号Sstを検出する条件として適正かどうか(ダイバーDiの潜水環境が適正かどうか)をもとにして、得られたバイタル信号Sstの適否を判断することが可能である。なお、これに限らず、第2圧力センサが設けられていなくてもよい。 Further, in the present embodiment, a second pressure sensor 126 that detects the pressure outside the vital module 104 is provided on a surface other than the side surface of the casing 105 of the vital module 104 on the diver Di side. Therefore, considering the output of the second pressure sensor 126, that is, based on whether the diving pressure applied to the vital module 104 is appropriate as a condition for detecting the vital signal Sst (whether the diving environment of the diver Di is appropriate). Thus, it is possible to determine the suitability of the obtained vital signal Sst. However, the present invention is not limited to this, and the second pressure sensor may not be provided.
 また、本実施形態では、バイタルモジュール104の状態変化を検知可能とする変化検出センサ122が設けられている。このため、変化検出センサ122の出力を考慮して、即ち、ダイバーDiの体動が許容範囲であるかどうかをもとにして、得られたバイタル信号Sstの適否を判断することが可能となる。しかも、変化検出センサ122は、3軸加速度センサと3軸ジャイロセンサと3軸地磁気センサから構成される9軸センサとされている。このため、3軸加速度センサと3軸ジャイロセンサとで、バイタルモジュール104を装着したダイバーDiの微動や向き変化を検出でき、且つ3軸地磁気センサでバイタルモジュール104を装着したダイバーDiの場所や向きを検出でき、得られたバイタル信号の適否をより容易に判断することが可能である。なお、これに限らず、変化検出センサは9軸センサでなくてもよいし、そもそも変化検出センサが設けられていなくてもよい。 In the present embodiment, a change detection sensor 122 that can detect a change in the state of the vital module 104 is provided. Therefore, it is possible to determine the suitability of the obtained vital signal Sst in consideration of the output of the change detection sensor 122, that is, based on whether the body movement of the diver Di is within an allowable range. . Moreover, the change detection sensor 122 is a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor. For this reason, the triaxial acceleration sensor and the triaxial gyro sensor can detect the fine movement and the direction change of the diver Di attached with the vital module 104, and the location and orientation of the diver Di equipped with the vital module 104 with the triaxial geomagnetic sensor. And the suitability of the obtained vital signal can be determined more easily. However, the present invention is not limited to this, and the change detection sensor may not be a 9-axis sensor, and the change detection sensor may not be provided in the first place.
 また、本実施形態では、ダイバーモジュール102が、バイタルモジュール104に通信可能に接続され、生体情報信号Sbに従う情報を表示可能な表示装置106を備えている。そして、表示装置106がダイバーDi自身で視認可能な位置に配置されている。このため、ダイバーDi自身が生体情報信号Sbに従う情報を自ら確認できるので、ダイバーDiが潜水時の安全性を確保するように自ら行動することが可能である。なお、これに限らず、表示装置を備えないバイタルモジュールだけが、ダイバーDiに装着されていてもよい。 In the present embodiment, the diver module 102 includes a display device 106 that is communicably connected to the vital module 104 and can display information according to the biological information signal Sb. And the display apparatus 106 is arrange | positioned in the position which can be visually recognized by the diver Di itself. For this reason, since the diver Di himself can confirm the information according to the biological information signal Sb himself, the diver Di can act himself so as to ensure safety at the time of diving. In addition, not only this but only the vital module which is not provided with a display apparatus may be mounted | worn with the diver Di.
 また、本実施形態では、バイタルモジュール104が第1通信ユニット138を備えている。そして、監視装置108が、第2通信ユニット140と、第2通信ユニット140から出力される生体情報信号Sbを処理し、生体情報信号Sbの時間的な変化を観察可能とする監視処理部142と、を有する。このため、ダイバーDiの生体情報をダイバーDiから離れた船SP上で監視装置108で監視員が客観的にダイバーDiの状態を確認することができる。これにより、監視員は、例えば音声情報を用いて、ダイバーDiに対して適切な行動を指示することもできる。あるいは、監視員が表示装置106に適切な警告・指示を表示させることもできる。 In this embodiment, the vital module 104 includes the first communication unit 138. Then, the monitoring device 108 processes the biological information signal Sb output from the second communication unit 140 and the second communication unit 140, and allows the temporal change of the biological information signal Sb to be observed. Have. For this reason, the monitor can objectively confirm the state of the diver Di with the monitoring device 108 on the ship SP away from the diver Di with the biological information of the diver Di. Thereby, the supervisor can also instruct | indicate an appropriate action with respect to the diver Di using audio | voice information, for example. Alternatively, the monitor can display an appropriate warning / instruction on the display device 106.
 また、本実施形態では、監視装置108が、ダイバーDiの潜水前に得られた基準生体情報信号Sbbを記憶する記憶部144を備えている。そして、監視処理部142が、第2通信ユニット140から出力される生体情報信号Sbと基準生体情報信号Sbbとの比較を行い、比較した結果を出力して表示部146に表示させる。このため、監視員は監視装置108でダイバーDiの状態をより迅速に判断することができる。なお、生体情報信号Sbと基準生体情報信号Sbbとの比較を行った結果は、スピーカ等で監視員やダイバーDiに対して直接音声出力されてもよい。 Moreover, in this embodiment, the monitoring apparatus 108 is provided with the memory | storage part 144 which memorize | stores reference | standard biometric information signal Sbb obtained before the diver's diving. Then, the monitoring processing unit 142 compares the biological information signal Sb output from the second communication unit 140 with the reference biological information signal Sbb, outputs the comparison result, and causes the display unit 146 to display the comparison result. For this reason, the monitoring person can judge the state of the diver Di more quickly with the monitoring device 108. Note that the result of the comparison between the biological information signal Sb and the reference biological information signal Sbb may be directly output to the monitor or the diver Di using a speaker or the like.
 また、本実施形態では、監視処理部142が、生体情報信号Sbと基準生体情報信号Sbbとの比較を行った結果を、第2通信ユニット140と第1通信ユニット138とを介して、表示装置106に表示させることができる。このため、監視装置108でダイバーDiの状態を判断した結果をダイバーDi自身に知らせるので、例えばダイバーDiが緊急性のある事態に巻き込まれても、ダイバーDi自身が判断をすることなく、迅速な回避行動を開始させることが容易である。 In the present embodiment, the monitoring processing unit 142 displays the result of comparison between the biological information signal Sb and the reference biological information signal Sbb via the second communication unit 140 and the first communication unit 138. 106 can be displayed. For this reason, since the diver Di itself is notified to the diver Di itself of the result of judging the state of the diver Di by the monitoring device 108, for example, even if the diver Di is involved in an emergency situation, the diver Di itself does not make a judgment quickly. It is easy to start avoidance behavior.
 即ち、本実施形態によれば、バイタルセンサ110の位置決めを厳密にしなくても、相応の精度でダイバーDiの生体情報を得ることが可能である。 That is, according to the present embodiment, it is possible to obtain the biological information of the diver Di with appropriate accuracy without strict positioning of the vital sensor 110.
 本発明について第1実施形態を挙げて説明したが、本発明は第1実施形態に限定されるものではない。即ち、本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでもない。  Although the present invention has been described with reference to the first embodiment, the present invention is not limited to the first embodiment. That is, it goes without saying that improvements and design changes can be made without departing from the scope of the present invention. *
 例えば、第1実施形態では、バイタルセンサ110が、UWB方式バランス型動体センサと称するマイクロ波Mwvを用いたレーダであって、体内振動(心臓や肺の動きによる微少変位)に比例する出力を得る構成であったが、本発明はこれに限定されるものではない。例えば、図13に示す第2実施形態の如くであってもよい。第2実施形態でも、バイタルセンサは、マイクロ波Mwvを用いたレーダであるが、ドップラーレーダとされている。つまり、ここでのバイタルセンサは、ダイバーDiの体内振動(心臓や肺の動きによる微少変位)である生体情報を、マイクロ波Mwvの周波数変化で検出し、生体情報信号Sbを求めている。なお、ここでのマイクロ波Mwvは、例えば24GHzとされ、発振周波数の高精度な局部発振器で発生される構成である。 For example, in the first embodiment, the vital sensor 110 is a radar that uses a microwave Mwv called a UWB balanced moving body sensor, and obtains an output proportional to internal vibration (a minute displacement due to the movement of the heart or lungs). Although it is a structure, this invention is not limited to this. For example, the second embodiment shown in FIG. 13 may be used. In the second embodiment, the vital sensor is a radar using the microwave Mwv, but is a Doppler radar. That is, the vital sensor here detects the biological information that is the internal vibration of the diver Di (small displacement due to the motion of the heart or lungs) from the frequency change of the microwave Mwv, and obtains the biological information signal Sb. Note that the microwave Mwv here is, for example, 24 GHz, and is generated by a highly accurate local oscillator having an oscillation frequency.
 本実施形態では、図13に示す如く、マイクロ波送受信部211が、マイクロ波Mwvを連続(断続でもよい)して発生させる発生部212と、発生部212から出力されるマイクロ波Mwv(送信信号Ssn)を放射し、周波数変調されたマイクロ波Mwvを受信するアンテナ部213と、を備える。そして、信号処理部214は、検出信号Sdtに対して直交位相検波を行う検波部215と、検波部215から出力される検波信号Siqの周波数を電圧に変換するF/V変換部216と、F/V変換部216から出力される電圧信号Svlを積分する積分部217と、を備える。このような構成により、バイタル信号Sstはドップラーレーダの原理で検出されるので、信頼性の高いバイタル信号Sstを得ることが可能である。 In the present embodiment, as shown in FIG. 13, the microwave transmission / reception unit 211 continuously generates (may be intermittent) the microwave Mwv, and the microwave Mwv (transmission signal) output from the generation unit 212. The antenna unit 213 radiates Ssn) and receives the frequency-modulated microwave Mwv. The signal processing unit 214 includes a detection unit 215 that performs quadrature detection on the detection signal Sdt, an F / V conversion unit 216 that converts the frequency of the detection signal Siq output from the detection unit 215 into a voltage, An integration unit 217 that integrates the voltage signal Svl output from the / V conversion unit 216. With such a configuration, the vital signal Sst is detected based on the principle of Doppler radar, so that it is possible to obtain a highly reliable vital signal Sst.
 本発明は、特に、潜水中のダイバーの生体情報を取得するために、広く適用することができる。 The present invention can be widely applied particularly to obtain biological information of divers during diving.
 100…ダイバー監視システム
 102…ダイバーモジュール
 104…バイタルモジュール
 105…ケーシング
 105A…上ケース
 105AA、105BA…検出孔
 105B…ベース板
 106…表示装置
  106A、146…表示部
  106B、143…入力部
  108…監視装置
 110…バイタルセンサ
 111、211…マイクロ波送受信部
 112、212…発生部
 113、213…アンテナ部
 114、214…信号処理部
 115…差動部
 116…ローパスフィルタ部
 117…調整部
  122…変化検出センサ
 124…第1圧力センサ
 126…第2圧力センサ
 128…演算ユニット
 130…第1フィルタ部
 132…第2フィルタ部
 134…波形成形部
 136…演算処理部
 138…第1通信ユニット
 140…第2通信ユニット
 142…監視処理部
 143…入力部
 144…記憶部
 215…検波部
 216…F/V変換部
 217…積分部
 AT1、AT2…アンテナ
 C1~D15…コンデンサ
 CC…通信ケーブル
 CN…コネクタ
 D1~D4…ダイオード
 Db…胸部
 Di…ダイバー
 DS…ダイバースーツ
 Dsb…下基板
 DV…ダイバーベスト
 FF1…D型フリップフロップ
 L1…コイル
 MK…マスク
 Mwv…マイクロ波
 N1、N2…NOR素子
 OP1~OP7…オペアンプ
 PC…ポケット
 R1~R30…抵抗
 RD…支持部材
 S1~S5…信号
 Sb…生体情報信号
 Sbb…基準生体情報信号
 Sbp…BPF出力信号
 Sbr…呼吸信号
 Sdo…差動出力信号
 Sdt、Sdt1、Sdt2…検出信号
 Sfo…フィルタ出力信号
 Shb…心拍信号
 Siq…検波信号
 SM…シール部材
 SP…船
 Ssn…送信信号
 Sss…中間増幅信号
 Sst…バイタル信号
 Svl…電圧信号
 T1、T2…時間
 TR1、TR2…トランジスタ
 Usb…上基板
 Vdd…電源電圧
 VR1、VR2…可変抵抗
 
 
DESCRIPTION OF SYMBOLS 100 ... Diver monitoring system 102 ... Diver module 104 ... Vital module 105 ... Casing 105A ... Upper case 105AA, 105BA ... Detection hole 105B ... Base plate 106 ... Display device 106A, 146 ... Display unit 106B, 143 ... Input unit 108 ... Monitoring device DESCRIPTION OF SYMBOLS 110 ... Vital sensor 111, 211 ... Microwave transmission / reception part 112, 212 ... Generating part 113, 213 ... Antenna part 114, 214 ... Signal processing part 115 ... Differential part 116 ... Low-pass filter part 117 ... Adjustment part 122 ... Change detection sensor DESCRIPTION OF SYMBOLS 124 ... 1st pressure sensor 126 ... 2nd pressure sensor 128 ... Arithmetic unit 130 ... 1st filter part 132 ... 2nd filter part 134 ... Waveform shaping part 136 ... Arithmetic processing part 138 ... 1st communication unit 140 ... 2nd communication unit 1 2 ... monitoring processing unit 143 ... input unit 144 ... storage unit 215 ... detection unit 216 ... F / V conversion unit 217 ... integration unit AT1, AT2 ... antenna C1-D15 ... capacitor CC ... communication cable CN ... connector D1-D4 ... diode Db ... Chest Di ... Diver DS ... Diver suit Dsb ... Lower substrate DV ... Diver vest FF1 ... D-type flip-flop L1 ... Coil MK ... Mask Mwv ... Microwave N1, N2 ... NOR element OP1-OP7 ... Operational amplifier PC ... Pocket R1- R30 ... resistor RD ... support member S1-S5 ... signal Sb ... biological information signal Sbb ... reference biological information signal Sbp ... BPF output signal Sbr ... respiration signal Sdo ... differential output signal Sdt, Sdt1, Sdt2 ... detection signal Sfo ... filter output Signal Shb ... Heart rate signal Siq ... Detection signal SM ... Seal member SP ... Ship Ssn ... Transmission signal Sss ... Intermediate amplification signal Sst ... Vital signal Svl ... Voltage signal T1, T2 ... Time TR1, TR2 ... Transistor Usb ... Upper substrate Vdd ... Power supply voltage VR1, VR2 ... Variable resistance

Claims (13)

  1.  ダイバーのバイタル信号を検出するバイタルセンサを備えるバイタルモジュールであって、
     前記バイタル信号を処理して前記ダイバーの生体情報信号を出力する演算ユニットを備え、
     該バイタルセンサは、アンテナを用いてマイクロ波を前記ダイバーに放射し、且つ該ダイバーからのマイクロ波を受信するマイクロ波送受信部と、該マイクロ波送受信部から出力される検出信号を処理する信号処理部と、を備え、
     前記バイタルセンサは前記ダイバーの胸部に配置される
     ことを特徴とするバイタルモジュール。
    A vital module comprising a vital sensor for detecting a vital signal of a diver,
    An arithmetic unit that processes the vital signal and outputs a biological information signal of the diver,
    The vital sensor radiates a microwave to the diver using an antenna and receives a microwave from the diver, and a signal processing for processing a detection signal output from the microwave transceiver And comprising
    The vital module, wherein the vital sensor is disposed on a chest of the diver.
  2.  請求項1において、
     前記生体情報信号は、前記ダイバーの呼吸信号と心拍信号とされている
     ことを特徴とするバイタルモジュール。
    In claim 1,
    The vital information signal is a respiration signal and a heartbeat signal of the diver.
  3.  請求項1または2において、
     前記マイクロ波送受信部は、パルス状の前記マイクロ波を発生させる発生部と、該発生部から出力される該マイクロ波を放射及び受信するアンテナ部と、を備え、
     該アンテナ部には、2つの受信アンテナが設けられ、
     前記信号処理部は、該2つの受信アンテナから得られた前記検出信号の差分を行う差動部と、該差動部から出力される差動出力信号の高周波成分をカットするローパスフィルタ部と、該ローパスフィルタ部から出力されるフィルタ出力信号を調整する調整部と、
     を備える
     ことを特徴とするバイタルモジュール。
    In claim 1 or 2,
    The microwave transmission / reception unit includes a generation unit that generates the pulsed microwave, and an antenna unit that radiates and receives the microwave output from the generation unit,
    The antenna unit is provided with two receiving antennas,
    The signal processing unit includes a differential unit that performs a difference between the detection signals obtained from the two receiving antennas, a low-pass filter unit that cuts a high-frequency component of a differential output signal output from the differential unit, An adjustment unit for adjusting a filter output signal output from the low-pass filter unit;
    Vital module characterized by comprising.
  4.  請求項1または2において、
     前記マイクロ波送受信部は、前記マイクロ波を発生させる発生部と、該発生部から出力される該マイクロ波を放射し、周波数変調された該マイクロ波を受信するアンテナ部と、を備え、
     前記信号処理部は、前記検出信号に対して直交位相検波を行う検波部と、該検波部から出力される検波信号の周波数を電圧に変換するF/V変換部と、該F/V変換部から出力される電圧信号を積分する積分部と、を備える
     ことを特徴とするバイタルモジュール。
    In claim 1 or 2,
    The microwave transmission / reception unit includes a generation unit that generates the microwave, and an antenna unit that radiates the microwave output from the generation unit and receives the frequency-modulated microwave,
    The signal processing unit includes a detection unit that performs quadrature detection on the detection signal, an F / V conversion unit that converts the frequency of the detection signal output from the detection unit into a voltage, and the F / V conversion unit. And an integration unit for integrating the voltage signal output from the Vital module.
  5.  請求項1乃至4のいずれかにおいて、
     当該バイタルモジュールは、前記ダイバーの着るダイバースーツの外側に配置されている
     ことを特徴とするバイタルモジュール。
    In any one of Claims 1 thru | or 4,
    The vital module is arranged outside the diver suit worn by the diver.
  6.  請求項5において、更に、
     当該バイタルモジュールのケーシングのダイバー側の側面に圧力を検出する第1圧力センサが設けられている
     ことを特徴とするバイタルモジュール。
    In claim 5, further:
    A vital module in which a first pressure sensor for detecting pressure is provided on a diver side surface of a casing of the vital module.
  7.  請求項1乃至6のいずれかにおいて、更に、
     当該バイタルモジュールのケーシングのダイバー側の側面以外の面に当該バイタルモジュールの外部の圧力を検出する第2圧力センサが設けられている
     ことを特徴とするバイタルモジュール。
    In any one of Claims 1 thru | or 6, Furthermore,
    A vital module, wherein a second pressure sensor for detecting a pressure outside the vital module is provided on a surface other than the diver side surface of the casing of the vital module.
  8.  請求項1乃至7のいずれかにおいて、更に、
     当該バイタルモジュールの状態変化を検知可能とする変化検出センサが設けられていることを特徴とするバイタルモジュール。
    In any one of Claims 1 thru | or 7, Furthermore,
    A vital module comprising a change detection sensor capable of detecting a state change of the vital module.
  9.  請求項8において、
     前記変化検出センサは、3軸加速度センサと3軸ジャイロセンサと3軸地磁気センサから構成される9軸センサとされている
     ことを特徴とするバイタルモジュール。
    In claim 8,
    The change detection sensor is a 9-axis sensor including a 3-axis acceleration sensor, a 3-axis gyro sensor, and a 3-axis geomagnetic sensor.
  10.  請求項1乃至9のいずれかに記載のバイタルモジュールを備えたダイバーモジュールにおいて、
     前記バイタルモジュールに通信可能に接続され、前記生体情報信号に従う情報を表示可能な表示装置を備え、
     該表示装置は前記ダイバー自身で視認可能な位置に配置される
     ことを特徴とするダイバーモジュール。
    In the diver module provided with the vital module according to any one of claims 1 to 9,
    A display device that is communicably connected to the vital module and capable of displaying information according to the biological information signal;
    The diver module, wherein the display device is disposed at a position where the diver can visually recognize the display device.
  11.  請求項1乃至9のいずれかに記載のバイタルモジュール、または請求項10に記載のダイバーモジュールを備えたダイバー監視システムであって、
     前記バイタルモジュールは、前記生体情報信号を送信可能な第1通信ユニットを備え、
     該第1通信ユニットから送信された生体情報信号を受信可能な第2通信ユニットと、該第2通信ユニットから出力される生体情報信号を処理し、前記生体情報信号の時間的な変化を観察可能とする監視処理部と、を有する監視装置を備える
     ことを特徴とするダイバー監視システム。
    A diver monitoring system comprising the vital module according to any one of claims 1 to 9, or the diver module according to claim 10.
    The vital module includes a first communication unit capable of transmitting the biological information signal,
    A second communication unit capable of receiving a biological information signal transmitted from the first communication unit and a biological information signal output from the second communication unit can be processed to observe temporal changes in the biological information signal. A diver monitoring system comprising: a monitoring processing unit including: a monitoring processing unit.
  12.  請求項11において、
     前記監視装置は、前記ダイバーの潜水前に得られた基準生体情報信号を記憶する記憶部を備え、
     前記監視処理部は、前記第2通信ユニットから出力される生体情報信号と該基準生体情報信号との比較を行い、該比較した結果を出力する
     ことを特徴とするダイバー監視システム。
    In claim 11,
    The monitoring device includes a storage unit that stores a reference biological information signal obtained before diving the diver,
    The diver monitoring system, wherein the monitoring processing unit compares the biological information signal output from the second communication unit with the reference biological information signal and outputs the comparison result.
  13.  請求項10に記載のダイバーモジュールを備えたダイバー監視システムであって、
     前記バイタルモジュールは、前記生体情報信号を送信可能な第1通信ユニットを備え、
     該第1通信ユニットから送信された生体情報信号を受信可能な第2通信ユニットと、前記ダイバーの潜水前に得られた基準生体情報信号を記憶する記憶部と、該第2通信ユニットから出力される生体情報信号と該基準生体情報信号との比較を行い、該比較した結果を、該第2通信ユニットと前記第1通信ユニットとを介して、前記表示装置に表示させる監視処理部と、を有する監視装置を備える
     ことを特徴とするダイバー監視システム。
     
    A diver monitoring system comprising the diver module according to claim 10,
    The vital module includes a first communication unit capable of transmitting the biological information signal,
    A second communication unit capable of receiving a biological information signal transmitted from the first communication unit, a storage unit for storing a reference biological information signal obtained before diving of the diver, and an output from the second communication unit. A monitoring processing unit that compares the biological information signal with the reference biological information signal and displays the comparison result on the display device via the second communication unit and the first communication unit. A diver monitoring system comprising: a monitoring device having:
PCT/JP2016/083611 2016-11-11 2016-11-11 Vital module, diver module, and diver monitoring system WO2018087900A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083611 WO2018087900A1 (en) 2016-11-11 2016-11-11 Vital module, diver module, and diver monitoring system
JP2017525441A JP6201084B1 (en) 2016-11-11 2016-11-11 Vital module, diver module, and diver monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083611 WO2018087900A1 (en) 2016-11-11 2016-11-11 Vital module, diver module, and diver monitoring system

Publications (1)

Publication Number Publication Date
WO2018087900A1 true WO2018087900A1 (en) 2018-05-17

Family

ID=59895690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083611 WO2018087900A1 (en) 2016-11-11 2016-11-11 Vital module, diver module, and diver monitoring system

Country Status (2)

Country Link
JP (1) JP6201084B1 (en)
WO (1) WO2018087900A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865569A (en) * 2019-10-29 2020-03-06 深圳志蓝技术有限公司 Electronic equipment and system applied to diving and control method thereof
JP2021107190A (en) * 2019-12-27 2021-07-29 ソフトバンク株式会社 Monitoring device, program, system, and monitoring method
JP2021187414A (en) * 2020-06-04 2021-12-13 三国屋建設株式会社 Diving mask and diver support system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163309B1 (en) * 2018-07-09 2020-10-08 정승일 face mask

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109041A (en) * 1979-02-15 1980-08-21 Nissan Motor Co Ltd Communication equipment for car
JPH07313649A (en) * 1994-05-27 1995-12-05 Awaji Ferry Boat Kk Movement data collector for underwater mover and skin diving training system with it
JP2001097280A (en) * 1999-09-30 2001-04-10 Aiwa Co Ltd Safe dive monitoring device for diver
JP2002341069A (en) * 2001-03-13 2002-11-27 Seiko Epson Corp Information processing device for diver
JP2008018928A (en) * 2006-07-14 2008-01-31 Johnson Outdoors Inc Diving computer with heart rate monitor
JP2010162069A (en) * 2009-01-13 2010-07-29 Nihon Univ Apparatus, method and program for estimating age by non-contact biological information collection
JP2011089864A (en) * 2009-10-22 2011-05-06 Alps Electric Co Ltd Radio sensor apparatus
WO2015060284A1 (en) * 2013-10-22 2015-04-30 アルプス電気株式会社 Biological information measurement apparatus
WO2016136400A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Living-body monitoring device, living-body monitoring method, and living-body monitoring system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109041A (en) * 1979-02-15 1980-08-21 Nissan Motor Co Ltd Communication equipment for car
JPH07313649A (en) * 1994-05-27 1995-12-05 Awaji Ferry Boat Kk Movement data collector for underwater mover and skin diving training system with it
JP2001097280A (en) * 1999-09-30 2001-04-10 Aiwa Co Ltd Safe dive monitoring device for diver
JP2002341069A (en) * 2001-03-13 2002-11-27 Seiko Epson Corp Information processing device for diver
JP2008018928A (en) * 2006-07-14 2008-01-31 Johnson Outdoors Inc Diving computer with heart rate monitor
JP2010162069A (en) * 2009-01-13 2010-07-29 Nihon Univ Apparatus, method and program for estimating age by non-contact biological information collection
JP2011089864A (en) * 2009-10-22 2011-05-06 Alps Electric Co Ltd Radio sensor apparatus
WO2015060284A1 (en) * 2013-10-22 2015-04-30 アルプス電気株式会社 Biological information measurement apparatus
WO2016136400A1 (en) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 Living-body monitoring device, living-body monitoring method, and living-body monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865569A (en) * 2019-10-29 2020-03-06 深圳志蓝技术有限公司 Electronic equipment and system applied to diving and control method thereof
CN110865569B (en) * 2019-10-29 2023-06-20 深圳志蓝技术有限公司 Electronic equipment, system and control method applied to diving
JP2021107190A (en) * 2019-12-27 2021-07-29 ソフトバンク株式会社 Monitoring device, program, system, and monitoring method
JP2021187414A (en) * 2020-06-04 2021-12-13 三国屋建設株式会社 Diving mask and diver support system

Also Published As

Publication number Publication date
JPWO2018087900A1 (en) 2018-11-15
JP6201084B1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6201084B1 (en) Vital module, diver module, and diver monitoring system
US20190064344A1 (en) Use of body-worn radar for biometric measurements, contextual awareness and identification
US11116415B2 (en) Use of body-worn radar for biometric measurements, contextual awareness and identification
US20210393127A1 (en) Analyte sensor transceiver configured to provide tactile, visual, and/or aural feedback
US9642574B2 (en) Biometric sensors assembly for a hard hat
KR20150142310A (en) Watch type mobile terminal
EP2722005A1 (en) Portable information terminal with microphone
CN106551682B (en) Earphone for measuring human body vital signs
WO2018043018A1 (en) Biometric information measuring device, biometric information measuring system, and biometric information measuring method
CN107554727A (en) A kind of Underwater Navigation detection means and method
US10524732B2 (en) Composite monitoring apparatus and method
JP2008054795A (en) Heartbeat information acquiring apparatus
US20230051613A1 (en) Systems and methods for locating mobile electronic devices with ear-worn devices
JP2019002900A (en) Electronic apparatus having waterproof structure, method for detecting state of the same, and program
JP2009166752A (en) Pressure detection device and information display system
JP2013094222A (en) Congestion determination device, pulse wave measuring device and congestion determination method
US20170223160A1 (en) Wearable device with an antenna system
EP3030150B1 (en) Analyte sensor transceiver configured to provide tactile, and optionally visual and / or aural, feedback
US20100064827A1 (en) Device for passive monitoring of diver ascent rates
US20210225193A1 (en) Stringed instrument teaching apparatus and method
US20240081660A1 (en) Sensorized earphone device for out-of-ear measurements
US20210077025A1 (en) Earpiece with glucose sensor and system
KR200282676Y1 (en) device for voice sensing of helmet
EP4309573A1 (en) Determination of a parameter related to blood flow in a blood perfused part using a vcsel
JP2009272980A (en) Communication apparatus, communication system, and communication method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017525441

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921369

Country of ref document: EP

Kind code of ref document: A1