WO2018086267A1 - 串联电池组均衡充放电方法和电路 - Google Patents

串联电池组均衡充放电方法和电路 Download PDF

Info

Publication number
WO2018086267A1
WO2018086267A1 PCT/CN2017/074155 CN2017074155W WO2018086267A1 WO 2018086267 A1 WO2018086267 A1 WO 2018086267A1 CN 2017074155 W CN2017074155 W CN 2017074155W WO 2018086267 A1 WO2018086267 A1 WO 2018086267A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
equalization
battery
discharging
battery pack
Prior art date
Application number
PCT/CN2017/074155
Other languages
English (en)
French (fr)
Inventor
欧阳桦
Original Assignee
欧阳桦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧阳桦 filed Critical 欧阳桦
Priority to PCT/CN2017/107655 priority Critical patent/WO2018086459A1/zh
Priority to CN201780003515.9A priority patent/CN108432084A/zh
Publication of WO2018086267A1 publication Critical patent/WO2018086267A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of series battery pack equalization charging and discharging, in particular, a series lithium ion battery pack, a lead acid battery pack, and a nickel metal hydride battery pack balanced charge and discharge control system.
  • the conventional battery equalization technology is to discharge a part of a single-cell battery with a relatively high voltage during charging and during storage.
  • the amount of electricity released requires energy consumption, and the amount of electricity released by the resistor is thermal energy, which can cause nearby devices to be exposed to high temperatures and adverse conditions.
  • a newer battery balancing technique is to transfer the higher battery voltage in the battery pack to the lower voltage battery through the electronically-off array.
  • the series battery pack of the present invention comprises a battery pack which is connected in parallel and then connected in series, and other battery combinations which are equivalent in series with the battery; the diode of the present invention has the same meaning as the unidirectional conductive device.
  • the circuit of the present invention includes components, lines and ports between an external power source and a load, excluding an external power source and the load itself, and does not include the battery pack itself when it is listed with the battery pack.
  • the charging and discharging according to the present invention includes charging only without discharging, discharging only without charging, and simultaneously charging and discharging.
  • the discharge of the present invention includes the closed communication of the battery pack from the battery pack to the load port in all embodiments of the present invention, and does not relate to the characteristics of the load, the size, and whether it is matched with the battery pack.
  • the switching according to the present invention includes switching between the positive pole of the capacitor and the positive pole of the charging line and the positive pole of the equalizing circuit in all embodiments of the present invention, and the negative pole of the capacitor and the negative pole of the charging line, and the negative of the equalizing line.
  • the switch between the two is crucial. The switching of these switches is to make the capacitors alternately connect the two poles of the charging line and the equalizing lines.
  • the equalization circuit of the present invention includes two different poles that switch from the positive pole of the capacitor to the positive pole of each battery, and from the negative pole of the capacitor to the negative pole of each battery, in all embodiments of the present invention.
  • Sexual trunk line
  • the equalization of the present invention includes all of the embodiments of the present invention in which a positive electrode of each battery is connected from the positive line of the equalization line, and a negative electrode of each battery is connected from the negative side of the equalization line.
  • the equalization charging and discharging scheme of the present invention is: the capacitor obtains electric energy from the positive and negative poles of the charging line; then switches and stores the corresponding positive and negative poles of the equalization line, thereby realizing the conversion and relaying of the electric energy;
  • the group is connected to the positive and negative balances of the single cell to transfer the storage power of the capacitor to the single cell with the lowest voltage in the battery pack.
  • This connection method can preferentially utilize external power supply power, and under normal circumstances, the external power supply voltage and the voltage of the battery pack itself are sufficiently large relative to the voltage of the single battery, so Can drive higher balanced transfer current.
  • the capacitors and equalization lines independent of other parts of the circuit can dynamically transmit power to the single-cell battery with the lowest voltage in the circuit, so that the voltage equalization effect can be quickly achieved, and The charge and discharge functions of the battery pack itself in the circuit conflict.
  • a smaller capacitor can be used to limit the load capacity of the capacitor to control the balanced transfer power of the power.
  • a controller for controlling, detecting, equalizing, and protecting a circuit and a battery pack wherein a power supply port is connected to a power feeding port of the charging line to preferentially utilize the power of the external power source to operate. Moreover, as long as the feed port voltage of the charging line reaches the controller startup voltage, the controller can be activated and the control program is started. If the port loses power, or the voltage is lower than the controller startup voltage, the controller is completely shut down and there is no power consumption.
  • a diode between the charging line and the battery pack prevents the battery pack from being directly fed to the controller power supply port, so the controller does not consume battery power during non-charge and discharge periods.
  • This diode also prevents the external power supply from directly driving the load without charge during charging, to avoid possible human error.
  • the controller is activated and activated when power is turned on, and disabled when the power is turned off. If the capacitor is connected in parallel across the controller, it can provide a certain delay function for the controller to be turned off.
  • the controller program includes a voltage detection function and an equalization function, and generally includes an overcharge protection function and a power switching function. In some cases, battery pack over-discharge protection, temperature detection and protection, etc. are also necessary.
  • the voltage detection function can perform voltage measurement, comparison and fault determination for each single cell.
  • the overcharge protection function can cut off the overcharge protection when any single cell voltage approaches the overcharge voltage, and terminate the external power supply to supply power to the battery pack.
  • the overdischarge protection function can cut off the overdischarge protection when any single cell voltage approaches the overdischarge voltage, and terminate the battery pack to supply power to the load.
  • the power switching function can draw power from the charging line and then relay to relatively independent capacitors and equalized lines for distribution.
  • the equalization function can distribute the power between the relatively independent capacitor and the equalization line to the single-cell battery with the lowest voltage through the equalization between the positive and negative poles of the equalization line and the positive and negative poles of each battery.
  • n is a natural number greater than or equal to 2
  • n also indicates the position of the battery and the gate corresponding to the natural number sequence.
  • FIG. 2 is a schematic diagram of a balanced battery pack equalization charge and discharge with a safety protection function.
  • FIG. 3 is a schematic diagram of a series battery pack equalization charge and discharge cascade circuit.
  • Bl, B2, B3, B4... Bn-1, Bn are n battery single-segments and sequences in a series battery pack, and are suitable for lithium ion batteries, lead-acid batteries, nickel-hydrogen batteries, etc. Etc., and usually a single cell of the same type, size, and performance.
  • Kul, Ku2, Ku3, Ku4 Kun-1, Kun are connected from the positive line of the equalization line to Bl, B2 , B3, B4 Bn-1, Bn battery positive balance, Chang Hao; Kvl, ⁇ 2, Kv3, Kv4...
  • ...Kvn-1, Kvn, respectively are balanced from the negative terminal of the equalization line to the negative poles of Bl, B2, B3, B4, Bn-1, and Bn batteries, and are often used.
  • Ka is a discharge switch, which can control the load;
  • Kb is an overdischarge protection switch, normally closed;
  • Kc is an overcharge protection switch, normally closed.
  • D1 is a diode that supplies power from the battery pack to the controller;
  • D2 is a diode placed between the charging line and the battery pack to prevent the battery pack from being directly fed to the connection port of the charging line and the controller;
  • D3 diode is placed in equilibrium On the line, a single cell voltage is prevented from coupling to the charging line.
  • Cl, C2 are two capacitors.
  • Kpl and ⁇ 3 are switching of the positive poles of the capacitors Cl and C2 and the positive pole of the equalization line, respectively;
  • Kp2 and ⁇ 4 are switching of the negative poles of the capacitors Cl and C2 and the negative pole of the equalization line, respectively;
  • Kql, Kq3 are switching of the positive poles of the capacitors Cl, C2 and the positive pole of the charging circuit, respectively;
  • Kq2 and Kq4 are switching of the negative electrodes of the capacitors Cl and C2 and the negative of the charging line, respectively.
  • the controller dashed box is a controller including an integrated circuit and a control program, and the ports and switches in the virtual frame indicated by the arrows can be detected and controlled by the controller, and the dashed line in the dotted line, Available IGBT, MO
  • the battery virtual frame line is a series battery pack.
  • an inductive component can be connected in series on the equalization line.
  • the equalization control voltage range refers to a single battery voltage range that the controller allows to deliver the equalization current.
  • X represents the maximum battery voltage measurement of the battery pack, and the measured value is dynamically changed during charge and discharge.
  • a battery whose voltage is lower than the lower limit of the equalization control voltage range is a faulty battery or a short-circuit connection, and should not be continuously charged or used.
  • the upper limit of the equalization control voltage range is the difference between the highest voltage of the single cell of the battery pack and a deviation voltage.
  • This deviation voltage is an artificially set allowable value for the single cell voltage difference.
  • the difference between the highest voltage and the lowest voltage of the single battery in the battery pack is less than the set deviation ⁇ , and the equalization current is not transmitted to avoid excessive adjustment and power consumption.
  • Voltage detection program Cycle detection of the voltage of each battery to obtain the dynamic voltage value of a single battery. If any single cell voltage is lower than the preset equalization voltage target range lower limit in several cycle detection periods, it is determined that the battery is faulty or short-circuited, and an audible and visual alarm signal is output.
  • the voltage detection ⁇ continues for several cycles of detection, and is a delay function for filtering electromagnetic interference and avoiding excessively frequent adjustment operations.
  • Overcharge protection program If any single battery voltage is higher than the preset upper limit of the overcharge protection voltage range and continues for several detection cycle periods, then the overcharge protection switch Kc is broken; if all the single cell voltages Both are lower than the preset lower limit of the overcharge protection voltage range, and for several detection cycle periods, the overcharge protection switch Kc is closed.
  • Over-discharge protection program If any single-cell voltage is lower than the preset lower limit of the over-discharge protection voltage range and continues for several detection cycles, the over-discharge protection is turned off Kb; if all single-cell voltages Both are above the preset upper limit of the overdischarge protection voltage range, and for several cycles of detection, the overdischarge protection is turned off Kb.
  • Kpl, Kql, Kp2, Kq2 are alternately switched between the charging pole and the corresponding poles of the equalizing line: Kpl is broken, Kql is closed, Kp2 is broken, Kq2 is closed, And Kpl is synchronized with the Kp2 state.
  • the lower switching frequency is usually beneficial to improve the synchronization ratio of the daytime and the conversion efficiency of the power.
  • Capacitor C2 is the same as C1, and the switching between the two poles of C2 is symmetrical with the switching of the two poles of C1: that is, Kq3 is synchronized with the state of ⁇ pi, when the two poles of C1 are connected with the two poles of the charging circuit, the two poles of C2 are connected with the two poles of the equalizing circuit; When the two poles of the C1 are connected to the two poles of the equalization line, the two poles of the C2 are connected to the two poles of the charging line.
  • Equalization function program If a single battery Bn with the lowest voltage in the preset equalization control voltage range is selected within a plurality of cycle detection periods, the equalization Guan Kun and Kvn are closed, and the capacitor storage is transferred to The lowest voltage single battery ⁇ in the battery pack; if all the single battery voltages are higher than the preset upper limit of the equalization voltage target range, and continue for several cycle detection cycles, then all Kun and Kvn are balanced.
  • the D1 diode can be placed in other equivalent locations that power the battery pack from the controller; the D3 diode can also be replaced by n diodes placed on all of the bundles of the equalization line. .
  • FIG. 2 The schematic diagram of the balanced charging and discharging of the series battery pack with safety protection function is shown in FIG. 2.
  • Kd is an overcharge protection switch, in a normal state
  • Kb is an overdischarge protection switch, in a normally closed state
  • FU1, FU2, FU3 are fuses
  • D1 is a diode that supplies power from the battery pack to the controller The D3 diode is placed on the equalization line to prevent a single cell voltage from coupling to the charging line.
  • Capacitor C1 is positive and negative from the charging line by switching between Kql and Kq2.
  • the pole obtains electric energy; then switches to Kpl, ⁇ 2 and saves to the corresponding positive and negative poles of the equalization line to realize the conversion and relay of electric energy; finally, through a group of equalization of the positive and negative poles of the single battery
  • the storage of the capacitor is transferred to the single cell with the lowest voltage in the battery pack.
  • the controller and the equalization function can be activated by feeding the power from the load terminal through the diode D1 to the controller power supply port.
  • the energy that is supplied to the equilibrium transfer is then derived from the entire battery pack and is shared by all the batteries. This diode also prevents the external power supply from directly driving the load without charge during charging, to avoid possible human error.
  • Overcharge protection program If the controller power supply port voltage on the charging line is greater than the battery pack voltage, and all the single battery voltages are lower than the preset lower limit of the overcharge protection voltage range, and continue for several detection cycle periods, Then close the overcharge protection switch Kd; if the controller power supply port voltage on the charging line is less than or equal to the battery pack voltage, or any single cell voltage is higher than the preset overcharge protection voltage range upper limit, and continue to detect Cycle cycle, then break the overcharge protection to protect Kd
  • Safety protection is very important for the charge and discharge management of the battery pack.
  • a fuse is placed on each of the equalization current loops and is located between the series node of the equalization and series cells. In the event of an unbalanced or short-circuit failure, the external short-circuit current of the battery can blow the fuse to protect the circuit.
  • FIG. 1 The schematic diagram of the series battery pack equalization charge and discharge cascade circuit is shown in FIG.
  • FU1, FU2 Ful5 is a fuse
  • battery pack 1, battery pack 2, battery pack 3, battery pack 4 is a plurality of series battery packs in the cascade circuit
  • controller 1 belongs to the upper equalization charge and discharge circuit 10
  • the controller 2, the controller 3, the controller 4, and the controller 5 belong to a plurality of lower equalization charge and discharge circuits 20, respectively.
  • the charging and discharging positive and negative ports of a balanced charging and discharging circuit are equivalent to a single-cell battery with multiple voltages, the circuits can be combined in series to obtain multiple times of charging and discharging voltage.
  • Such a manner of connecting a plurality of series battery packs in series and also concatenating the corresponding charging ports of each of the battery packs is a cascade method known in the art.
  • the series battery pack equalization charging and discharging cascade circuit of the present invention is a cascade circuit different from the known one.
  • the cascode circuit of the invention comprises an upper equalization charging and discharging circuit and a plurality of lower level equalizing charging and discharging circuits, and is combined into a upper and lower stage connection, and the upper level equalizing charging and discharging circuit performs voltage detection and equalization control on the plurality of series battery packs.
  • This embodiment includes an upper equalization charge and discharge circuit 10, a plurality of lower equalization charge and discharge circuits 20, and a plurality of series battery packs.
  • the charging ports of the plurality of lower balanced charging and discharging circuits 20 are connected in series, and a plurality of corresponding series battery packs are connected in series.
  • the upper equalization charging and discharging circuit 10 performs voltage detection and equalization control on a plurality of series battery packs; and the plurality of lower level equalization charging and discharging circuits 20 perform voltage detection and equalization control on the single cells in the respective series battery packs.
  • the plurality of discharge switches Ka can be automatically or manually controlled to be broken or closed. When the power is not connected, all the discharges are closed, and the electric energy of the plurality of series battery packs passes through the plurality of diodes D1 to activate the upper stage. Balancing the controller 1 of the charge and discharge circuit 10, thereby enabling the balancing function between the battery packs when power is supplied to the load
  • the capacitor of the upper equalization charging and discharging circuit 10 obtains electric energy from the positive and negative terminals of the charging line connected to the power port; and then switches and stores the corresponding positive and negative poles of the equalizing line of the upper balanced charging and discharging circuit 10. In order to realize the conversion and relay of electric energy; finally, the balance of the positive and negative terminals of the charging port connected to the lower-stage equalization charging and discharging circuit 20 is transferred to the battery pack having the lowest voltage among the plurality of battery packs. .
  • Embodiment 2 For the operation mode of each of the lower level equalization charging and discharging circuits 20, refer to Embodiment 2. However, one difference from Embodiment 2 is that this embodiment does not provide an overdischarge protection switch to avoid sudden termination of battery discharge or unexpected interruption of load output. In this embodiment, even if the equalization is accidentally broken down or the short circuit fails, the external short-circuit current of the battery will blow the fuse, the circuit can continue to drive the load; the same voltage detection procedure detects the battery pack or The single cell voltage is zero and the battery is faulty or shorted. The audible and visual alarm signal is output until other programs or manual intervention, or the battery is exhausted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

串联电池组均衡充放电方法和电路,均衡充放电方法包括:在充电状态下,电容器(C1,C2)从充电线路获得电能,然后切换连接并保存至均衡线路,最后通过一组均衡开关(Ku1,Ku2…Kun,Kv1,Kv2…Kvn)将储电转移给电压最低的单节电池(Bn);在只放电不充电状态下,从负载端经过二极管向充电线路馈电,以启动控制器和均衡功能。在循环检测每节电池电压的模式下,相对于电路其它部分独立的电容器和均衡线路,动态为电路中电压最低的单节电池输送电能,不与电池组本身充放电冲突,且能达到均衡效果。

Description

技术领域
[0001] 本发明涉及串联电池组均衡充放电领域, 尤其是串联的锂离子电池组、 铅酸蓄 电池组、 镍氢电池组的均衡充放电控制***。
背景技术
[0002] 各种电池, 包括锂离子电池、 铅酸蓄电池、 镍氢电池等, 均有需要串联成组使 用, 以获得较高的输出电压来驱动负载。
[0003] 串联的电池组, 由于电池单体之间存在难以消除的性能差异、 状态差异及环境 差异, 如果直接对电池组的正、 负极端口进行充放电使用, 这些存在的差异会 导致电池单体之间的电压差逐渐累积和扩大, 并导致有的电池单体充电过度, 有的电池单体充电不足; 或导致有的电池单体过度放电。 这些扩大的单体电压 差异是电池组性能衰退或失效的重要原因。 被过度充电的单体电池还可能自燃 、 ***并引发其它单体电池的燃烧和***。 所以人们寻求各种控制电池组充放 电程度, 使单体电池电量或电压适当且平衡的方法, 这就是该领域所探讨的电 池均衡技术或电池管理*** (BMS) 。
[0004] 传统的电池均衡技术, 是在充电过程中和储存过程中, 将电压比较高的单节电 池电量, 通过电阻器释放一部分。 这些释放的电量, 需要消耗能源, 而且, 电 阻器释放出的电量是热能, 会使附近的器件处在温度较高的不利环境中。
[0005] 较新的电池均衡技术, 是将电池组中电压较高的电池电量, 通过电子幵关阵列 , 转移给电压较低的电池。 例如美国专利 US 6,670,789 《电池装置的电压均衡器 》 , US 9,490,639 《电池组充电均衡***》 ; 中国专利 ZL 001179276 《自动电池 均衡电路》 , CN 102315671 《电池组电池均衡器***》 。 由于在充放电吋, 串 联电池组中的单体电池之间不能直接短路连接, 而且电池单体之间用来驱动能 量转移的电势差通常并不够大, 所以这类技术通常将单体电池电压作感应变换 后再输出转移。 存在的问题是, 其中的转换效率和驱动效率仍然比较低, 另外 附带的问题是阵列元件和电压变换元件数量较多, 体积较大, 而且成本较高。 技术问题
[0006] 本发明的目的, 是为了创建一种更安全、 可靠、 先进的充放电方法和电路, 改 善电池串联应用所导致的复杂和不利趋势。
问题的解决方案
技术解决方案
[0007] 本发明所述的串联电池组, 包括先并联再串联的电池组, 以及其它与电池串联 等效的电池组合; 本发明所述的二极管, 与单向导电器件是同一含义。
[0008] 本发明所述的电路, 包括外部的电源与负载之间的组件、 线路及端口, 不包括 外部的电源和负载本身, 而且在与电池组并列表述的吋候, 不包括电池组本身
[0009] 本发明所述的充放电, 包括只充电不放电, 只放电不充电, 以及同吋充电并放 电。
[0010] 本发明所述的放电, 包括本发明所有实施例中从电池组连接至负载端口的幵关 闭合连通, 并不涉及负载的特性、 大小以及是否与电池组匹配等问题。
[0011] 本发明所述的切换幵关, 包括本发明所有实施例中电容器的正极与充电线路正 极、 均衡线路正极之间的切换幵关, 以及该电容器的负极与充电线路负极、 均 衡线路负极之间的切换幵关。 这些幵关的组合切换, 是为了使电容器在充电线 路两极与均衡线路两极交替转换连接。
[0012] 本发明所述的均衡线路, 包括本发明所有实施例中从电容器的正极切换幵关通 向各节电池正极、 以及从电容器负极切换幵关通向各节电池负极的两束不同极 性的中继线路。
[0013] 本发明所述的均衡幵关, 包括本发明所有实施例中从均衡线路正极连接各电池 正极, 以及从均衡线路负极连接各电池负极的幵关。
[0014] 本发明的均衡充放电方案是: 电容器从充电线路正、 负极获得电能; 然后切换 连接并保存至均衡线路的对应正、 负极, 以此实现电能的转换和中继; 最后再 通过一组连接在单节电池正、 负极的均衡幵关将电容器的储电转移给电池组中 电压最低的单节电池。 [0015] 这一连接方式能优先利用外部的电源电能, 而且在正常情况下, 外部电源电压 以及电池组本身的电压, 相对于单节电池的电压而言, 其电压差是足够大的, 所以能驱动较高的均衡转移电流。 在循环检测每节电池电压的模式下, 从相对 于电路其它部分独立的电容器和均衡线路, 动态地为电路中电压最低的单节电 池输送电能, 即可快速达到电压均衡的效果, 且不与电路中电池组本身的充放 电功能发生冲突。
[0016] 当需要限制过高的均衡驱动电流的吋候, 则可以使用较小的电容器, 限制电容 器对电能的装载能力, 从而控制电能的均衡转移功率。
[0017] 在电路中采用两个电容器交替充放电, 则可以获得比较连续且平稳的均衡电流 。 另外, 在较低的切换交替频率下, 电容器的介质损耗及幵关器件的幵关损耗 值更低, 电能的转换效率会更高, 且能具备更好的电磁兼容性。
[0018] 用来对电路和电池组进行控制、 检测、 均衡、 保护的控制器, 其供电端口连接 充电线路的馈电端口, 以优先利用外部电源的电能工作。 而且, 只要充电线路 的馈电端口电压达到控制器启动电压, 控制器就能激活启动, 控制程序即幵始 运行。 如果该端口失电, 或电压低于控制器启动电压, 控制器即完全关闭故无 电能消耗。
[0019] 在充电线路和电池组之间的一个二极管, 可阻止电池组直接馈电至控制器供电 端口, 所以在非充放电期间, 控制器不消耗电池电量。
[0020] 在未连接外部电源, 只放电不充电的状态, 从负载端经过另一个二极管, 向控 制器供电端口馈电, 则可以启动控制器和均衡功能。 此吋供给均衡转移的电能
, 则源自整个电池组, 且由所有电池分担。 这个二极管还可以在充电的吋候阻 止外部电源不经放电幵关控制直接驱动负载, 以避免可能的人为失误。
[0021] 控制器在加电吋激活启动, 掉电则失能关闭。 若在控制器两端并联电容器, 则 可以为控制器的关闭提供一定的延吋功能。
[0022] 控制器程序包括电压检测功能和均衡功能, 通常也包括过度充电保护功能和电 能切换功能。 有吋候, 电池组的过度放电保护、 温度检测与保护功能等等, 也 是必要的。
[0023] 电压检测功能可对各单节电池作电压测量、 比较与故障判定。 [0024] 过度充电保护功能可在任一单节电池电压接近过度充电电压吋, 切断过度充电 保护幵关, 终止外部电源向电池组供电。
[0025] 过度放电保护功能可在任一单节电池电压接近过度放电电压吋, 切断过度放电 保护幵关, 终止电池组向负载供电。
[0026] 电能切换功能可以从充电线路上获取电能, 然后中继至相对独立的电容器和均 衡线路上等待分配。
发明的有益效果
有益效果
[0027] 均衡功能可将相对独立的电容器和均衡线路上的电能, 通过均衡线路正、 负极 与各节电池正、 负极之间的均衡幵关分配给电压最低的单节电池。
对附图的简要说明
附图说明
[0028] 图 1是串联电池组均衡充放电原理图, 其中 n为大于或等于 2的自然数, n还表示 了与该自然数序列对应的电池和幵关的位置。
[0029] 图 2是具有安全防护功能的串联电池组均衡充放电原理图。
[0030] 图 3是串联电池组均衡充放电级联电路原理图。
本发明的实施方式
[0031] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0032] 实施例 1
[0033] 串联电池组均衡充放电原理图参见附图 1。
[0034] Bl、 B2、 B3、 B4...... Bn-1、 Bn,是串联电池组中的 n个电池单节和序列, 适用 于锂离子电池、 铅酸蓄电池、 镍氢电池等等, 而且通常是种类、 尺寸、 性能尽 可能一致的单节电池。
[0035] Kul、 Ku2、 Ku3、 Ku4 Kun-1、 Kun,分别是从均衡线路正极连接至 Bl、 B2 、 B3、 B4 Bn-1、 Bn电池正极的均衡幵关, 常幵; Kvl、 Κν2、 Kv3、 Kv4...
...Kvn-1、 Kvn,分别是从均衡线路负极连接至 Bl、 B2、 B3、 B4 Bn-1、 Bn电 池负极的均衡幵关, 常幵。
[0036] Ka是放电幵关, 可以控制负载; Kb是过度放电保护幵关, 常闭; Kc是过度充 电保护幵关, 常闭。
[0037] D1是从电池组向控制器供电的二极管; D2是置于充电线路与电池组之间, 阻 止电池组直接馈电至充电线路与控制器的连接端口的二极管; D3二极管置于均 衡线路上, 可防止单节电池电压耦合至充电线路。
[0038] Cl、 C2是两个电容器。
[0039] Kpl、 Κρ3分别是电容器 Cl、 C2的正极与均衡线路正极的切换幵关;
[0040] Kp2、 Κρ4分别是电容器 Cl、 C2的负极与均衡线路负极的切换幵关;
[0041] Kql、 Kq3分别是电容器 Cl、 C2的正极与充电线路正极的切换幵关;
[0042] Kq2、 Kq4分别是电容器 Cl、 C2的负极与充电线路负极的切换幵关。
[0043] 控制器虚线框, 是含有集成电路和控制程序的控制器, 其箭头所指示的虚框内 的端口和幵关, 均可被控制器检测和控制, 该虚线框内的幵关, 可用 IGBT、 MO
SFET、 继电器等等。
[0044] 电池虚框线, 是串联电池组。
[0045] 如果需要抑制均衡输出纹波电压, 可在均衡线路上串接一个电感元件。
[0046] 必须区分的是, 不同种类单节电池有着不同的充电终止电压和放电终止电压, 这一点决定了控制程序需要为不同种类电池设定不同的电压控制参数。 如果需 要更多的精确或谨慎, 则需要考虑, 有吋候, 虽属同一种类, 但是不同的制造 商, 或者不同工艺制造的电池, 甚至不同大小的充放电电流, 其适用的电压控 制参数, 也会有所差异。 通常, 电池制造商会为其产品提供适用的控制电压参
[0047] 下表为本发明所引用的几种单节电池的电压控制参数:
[] [表 1]
Figure imgf000008_0001
[0048] 其中, 均衡控制电压范围, 是指控制器允许输送均衡电流的单节电池电压范围 。 X表示电池组的单节电池电压测量最大值, 该测量值在充放电的吋候, 是动态 变化的。
[0049] 电压低于均衡控制电压范围下限的电池, 属于故障电池或连接短路, 不应继续 充电或使用。
[0050] 均衡控制电压范围的上限, 是电池组的单节电池最高电压与一个偏差电压的差 值。 此偏差电压, 是人为设定的单节电池电压差异允许值。 电池组内单节电池 最高电压与最低电压的差值小于该设定偏差吋, 不输送均衡电流, 以避免过于 频繁的调整和电能消耗。
[0051] 控制器加电启动之后, 执行下列功能程序:
[0052] 电压检测程序: 循环检测每节电池的电压, 获得单节电池的动态电压值。 如果 任一单节电池电压在若干循环检测周期内低于预设的均衡电压目标范围下限, 则判定该电池故障或短路, 输出声光报警信号。 在本发明中, 电压检测吋持续 若干循环检测周期, 是一种延吋功能, 用于过滤电磁干扰和避免过于频繁的调 整动作。
[0053] 过度充电保护程序: 如果任一单节电池电压高于预设的过度充电保护电压范围 上限, 且持续若干检测循环周期, 则断幵过度充电保护幵关 Kc ; 如果全部单节 电池电压均低于预设的过度充电保护电压范围下限, 且持续若干检测循环周期 , 则闭合过度充电保护幵关 Kc。 [0054] 过度放电保护程序: 如果任一单节电池电压低于预设的过度放电保护电压范围 下限, 且持续若干检测循环周期, 则断幵过度放电保护幵关 Kb; 如果全部单节 电池电压均高于预设的过度放电保护电压范围上限, 且持续若干循环检测周期 , 则闭合过度放电保护幵关 Kb。
[0055] 电能切换程序: 电容器 C1两极的切换幵关 Kpl, Kql , Kp2, Kq2在充电线路与 均衡线路的对应两极之间同步交替切换: Kpl断幵吋 Kql闭合, Kp2断幵吋 Kq2闭 合, 且 Kpl与 Kp2状态同步。 较低的切换交替频率, 通常有利于提高幵关的同步 吋间比例和电能的转换效率。
[0056] 电容器 C2与 C1相同, C2两极的切换幵关与 C1两极的切换幵关对称: 即 Kq3与 Κ pi状态同步, 当 C1两极与充电线路两极连接吋, C2两极与均衡线路两极连接; 当 C1两极与均衡线路两极连接吋, C2两极与充电线路两极连接。
[0057] 均衡功能程序: 若选定在若干循环检测周期内, 在预设的均衡控制电压范围中 电压最低的单节电池 Bn, 则将均衡幵关 Kun、 Kvn闭合, 电容器储电即转移至电 池组中电压最低的单节电池 Βη; 如果全部单节电池电压均高于预设的均衡电压 目标范围上限, 且持续若干循环检测周期, 则断幵全部 Kun、 Kvn均衡幵关。
[0058] 本领域内的专业人员将认识到, 在上述功能程序中, 虽然用控制器程序实现电 能切换功能是比较合理的, 但是这一功能, 也是可以通过设计分立元件电路同 等替换的。
[0059] 本领域内的专业人员将认识到, D1二极管可以放置于从电池组向控制器供电的 其它等效位置; D3二极管也可以等同替换为置于均衡线路所有束枝上的 n个二极 管。
[0060] 实施例 2
[0061] 具有安全防护功能的串联电池组均衡充放电原理图参见附图 2。
[0062] 其中, Kd是过度充电保护幵关, 处于常幵状态; Kb是过度放电保护幵关, 处 于常闭状态; FU1、 FU2、 FU3是保险丝; D1是从电池组向控制器供电的二极管 ; D3二极管置于均衡线路上, 以防止单节电池电压耦合至充电线路。
[0063] 其它器件标注与实施例 1相同。
[0064] 本实施例的工作原理为: 电容器 C1通过切换幵关 Kql、 Kq2从充电线路正、 负 极获得电能; 然后切换连接至 Kpl、 Κρ2并保存至均衡线路的对应正、 负极, 以 此实现电能的转换和中继; 最后再通过一组连接在单节电池正、 负极的均衡幵 关将电容器的储电转移给电池组中电压最低的单节电池。
[0065] 在未连接外部电源, 处于只放电不充电的状态吋, 从负载端经过二极管 D1向控 制器供电端口馈电, 则可以启动控制器和均衡功能。 此吋供给均衡转移的电能 , 则源自整个电池组, 且由所有电池分担。 这个二极管还可以在充电的吋候阻 止外部电源不经放电幵关控制直接驱动负载, 以避免可能的人为失误。
[0066] 过度充电保护程序: 如果充电线路上的控制器供电端口电压大于电池组两极电 压, 且全部单节电池电压均低于预设的过度充电保护电压范围下限, 并持续若 干检测循环周期, 则闭合过度充电保护幵关 Kd; 如果充电线路上的控制器供电 端口电压小于或等于电池组两极电压, 或任一单节电池电压高于预设的过度充 电保护电压范围上限, 且持续若干检测循环周期, 则断幵过度充电保护幵关 Kd
[0067] 其它功能程序与实施例 1兼容。
[0068] 安全防护对于电池组的充放电管理是十分重要的。 在本实施例中, 保险丝置于 每个均衡电流回路上, 且位于均衡幵关与串联电池的串节点之间。 在均衡幵关 被意外击穿或短路失效情况下, 电池的外短路电流可将保险丝熔断, 以此保护 电路安全。
[0069] 实施例 3
[0070] 串联电池组均衡充放电级联电路原理图参见附图 3。
[0071] 其中, FU1、 FU2 Ful5是保险丝; 电池组 1、 电池组 2、 电池组 3、 电池组 4 是级联电路中的多个串联电池组; 控制器 1属于上级均衡充放电电路 10; 控制器 2、 控制器 3、 控制器 4、 控制器 5分别属于多个下级均衡充放电电路 20。
[0072] 其它器件的标注与实施例 1和实施例 2相同。
[0073] 由于一个均衡充放电电路的充放电正、 负极端口, 其充电和放电性能等效于一 个多倍电压的单节电池, 因此可以将电路串联组合, 以获得多倍的充放电电压 。 这种将多个串联电池组串联, 并将每个电池组的对应充电端口也串联的方式 , 是本领域所公知的级联方式。 [0074] 而本发明的串联电池组均衡充放电级联电路, 则是一种不同于公知的级联电路 。 本发明的级联电路包括上级均衡充放电电路和多个下级均衡充放电电路, 而 且组合成上下级联接, 由上级均衡充放电电路对多个串联电池组进行电压检测 与均衡控制。
[0075] 本实施例包括一个上级均衡充放电电路 10、 多个下级均衡充放电电路 20、 以及 多个串联电池组。 多个下级均衡充放电电路 20的充电端口串联, 且对应的多个 串联电池组串联。 上级均衡充放电电路 10对多个串联电池组进行电压检测与均 衡控制; 多个下级均衡充放电电路 20对各自对应的串联电池组内的单节电池进 行电压检测与均衡控制。
[0076] 多个放电幵关 Ka可通过自动或手动控制断幵或闭合, 在未连接电源供电的情况 下, 全部放电幵关闭合, 多个串联电池组的电能通过多个二极管 Dl, 激活上级 均衡充放电电路 10的控制器 1, 从而在向负载供电吋启动电池组之间的均衡功能
[0077] 在本实施例中, 上级均衡充放电电路 10的电容器从联接电源端口的充电线路正 、 负极获得电能; 然后切换连接并保存至上级均衡充放电电路 10的均衡线路的 对应正、 负极, 以此实现电能的转换和中继; 最后再通过一组连接至下级均衡 充放电电路 20充电端口正、 负极的均衡幵关将电容器的储电转移给多个电池组 中电压最低的电池组。
[0078] 各个下级均衡充放电电路 20的工作模式可参考实施例 2。 不过, 与实施例 2的一 个差异是: 本实施例未设置过度放电保护幵关, 以避免电池放电突然终止或负 载输出意外中断。 在本实施例中, 即使均衡幵关被意外击穿或短路失效, 电池 的外短路电流将保险丝熔断的情况下, 该电路仍可以继续驱动负载; 同吋电压 检测程序因侦测到电池组或单节电池电压为零而判定电池故障或短路, 输出声 光报警信号, 直到其它程序或人工介入, 或电池电量耗尽。
[0079] 本领域内的专业人员将认识到, 此方式还可组合成多个上级均衡充放电电路之 间的级联联接, 或组合成多级链式连接, 以管理更多串联电池数量。
[0080] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种串联电池组均衡充放电方法, 其特征在于: 电容器从充电线路正 、 负极获得电能后切换连接至均衡线路的对应正、 负极, 再通过一组 连接在单节电池正、 负极的均衡幵关, 将电容器的储电通过控制器程 序转移给电池组中电压最低的单节电池; 所述均衡线路包括从所述电 容器的正极切换幵关通向各单节电池正极和负极切换幵关通向各单节 电池负极的两束不同极性的中继线路。
根据权利要求 1所述的串联电池组均衡充放电方法, 其特征在于: 所 述串联电池组均衡充放电方法还包括: 在有电源供电状态下, 由电源 通过所述充电线路上的馈电端口为所述控制器供电; 在无电源供电的 放电状态下,由电池组经过一个二极管为所述控制器供电。
一种串联电池组均衡充放电电路, 其特征在于: 所述均衡充放电电路 包括: 电容器、 电池组、 充电线路、 均衡线路、 切换幵关以及均衡幵 关; 所述电容器从所述充电线路正、 负极获得电能后切换连接至所述 均衡线路的对应正、 负极, 再通过一组连接在单节电池正、 负极的所 述均衡幵关将所述电容器的储电通过所述控制器的程序转移给所述电 池组中的电压最低的单节电池; 所述均衡线路包括从所述电容器的正 极切换幵关通向各单节电池正极和负极切换幵关通向各单节电池负极 的两束不同极性的中继线路。
根据权利要求 3所述的串联电池组均衡充放电电路, 其特征在于: 所 述均衡充放电电路还包括第一二极管; 在有电源供电状态下, 由电源 通过所述充电线路上的馈电端口为所述控制器供电; 在无电源供电的 放电状态下,由电池组经过所述第一二极管为所述控制器供电。
根据权利要求 3或权利要求 4所述的串联电池组均衡充放电电路, 其特 征在于: 所述均衡充放电电路还包括第二二极管; 所述第二二极管置 于充电线路与电池组之间, 可阻止电池组通过所述第二二极管馈电至 充电线路与控制器的连接端口。
根据权利要求 3或权利要求 4所述的串联电池组均衡充放电电路, 其特 征在于: 所述均衡充放电电路还包括第三二极管; 所述第三二极管置 于均衡线路上, 可防止单节电池电压耦合至充电线路。
[权利要求 7] 根据权利要求 3或权利要求 4所述的串联电池组均衡充放电电路, 其特 征在于: 所述均衡充放电电路还包括过度充电保护幵关; 所述控制器 检测到任一单节电池电压高于预设的过度充电保护电压后断幵所述过 度充电保护幵关; 所述控制器检测到全部单节电池电压均低于预设的 过度充电保护电压后闭合所述过度充电保护幵关。
[权利要求 8] 根据权利要求 3或权利要求 4所述的串联电池组均衡充放电电路, 其特 征在于: 所述均衡充放电电路还包括保险丝; 所述保险丝置于每个均 衡电流回路上, 且位于均衡幵关与串联电池的串节点之间。
[权利要求 9] 根据权利要求 3或权利要求 4所述的串联电池组均衡充放电电路, 其特 征在于: 所述电容器包括两个电容器, 且两个电容器交替切换充放电
[权利要求 10] 一种串联电池组均衡充放电级联电路, 其特征在于: 所述串联电池组 均衡充放电级联电路包括上级均衡充放电电路、 多个下级均衡充放电 电路以及多个串联电池组; 所述上级均衡充放电电路连接所述多个下 级均衡充放电电路的充电端口, 且所述多个串联电池组串联; 所述上 级均衡充放电电路对所述多个串联电池组进行电压检测与均衡控制; 所述多个下级均衡充放电电路对各自对应的串联电池组内的单节电池 进行电压检测与均衡控制。
PCT/CN2017/074155 2016-11-10 2017-02-20 串联电池组均衡充放电方法和电路 WO2018086267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/107655 WO2018086459A1 (zh) 2016-11-10 2017-10-25 串联电池组均衡充放电方法和电路、直流电隔离降压电路
CN201780003515.9A CN108432084A (zh) 2016-11-10 2017-10-25 串联电池组均衡充放电方法和电路、直流电隔离降压电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611005435.0 2016-11-10
CN201611005435.0A CN108075519A (zh) 2016-11-10 2016-11-10 串联电池组均衡充放电方法和电路

Publications (1)

Publication Number Publication Date
WO2018086267A1 true WO2018086267A1 (zh) 2018-05-17

Family

ID=62109144

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/074155 WO2018086267A1 (zh) 2016-11-10 2017-02-20 串联电池组均衡充放电方法和电路
PCT/CN2017/107655 WO2018086459A1 (zh) 2016-11-10 2017-10-25 串联电池组均衡充放电方法和电路、直流电隔离降压电路

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107655 WO2018086459A1 (zh) 2016-11-10 2017-10-25 串联电池组均衡充放电方法和电路、直流电隔离降压电路

Country Status (2)

Country Link
CN (2) CN108075519A (zh)
WO (2) WO2018086267A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450047B (zh) * 2018-12-25 2024-04-05 陕西科技大学 一种串联能量密度电池组循环充放电电路与控制方法
CN110518651A (zh) * 2019-06-25 2019-11-29 商洛市虎之翼科技有限公司 一种便携式充放电器
CN110492555A (zh) * 2019-07-25 2019-11-22 宿州市艾尔新能源有限公司 一种大容量电池的均衡***及其控制方法
CN111029666B (zh) * 2019-11-01 2021-02-19 彭建 一种模块化主动均衡电池管理***及其管理方法
CN113394855B (zh) * 2021-07-22 2023-07-18 傲普(上海)新能源有限公司 一种集中式功率可调bms被动均衡电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043945A1 (en) * 2010-08-17 2012-02-23 Samsung Electro-Mechanics Co., Ltd. Apparatus for equalizing voltage using time switch
CN103296731A (zh) * 2013-07-04 2013-09-11 山东大学 一种动力电池零电流开关主动均衡电路及实现方法
CN103368268A (zh) * 2012-03-27 2013-10-23 无锡富洪科技有限公司 串联储能元件组的电压主动均衡***及方法
CN103730936A (zh) * 2014-01-03 2014-04-16 桂林电子科技大学 电动汽车动力电池均衡管理***和均衡管理方法
CN103904740A (zh) * 2014-03-26 2014-07-02 海博瑞恩电子科技无锡有限公司 一种储能设备电压平衡的方法及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493036B2 (en) * 2006-10-21 2013-07-23 Advanced Analogic Technologies, Inc. Controllable charge paths, and related methods
DE102016200662A1 (de) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Bidirektionaler DC/DC-Wandler und Verfahren zum Laden des Zwischenkreiskondensators eines DC/DC-Wandlers aus der Niedervoltbatterie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043945A1 (en) * 2010-08-17 2012-02-23 Samsung Electro-Mechanics Co., Ltd. Apparatus for equalizing voltage using time switch
CN103368268A (zh) * 2012-03-27 2013-10-23 无锡富洪科技有限公司 串联储能元件组的电压主动均衡***及方法
CN103296731A (zh) * 2013-07-04 2013-09-11 山东大学 一种动力电池零电流开关主动均衡电路及实现方法
CN103730936A (zh) * 2014-01-03 2014-04-16 桂林电子科技大学 电动汽车动力电池均衡管理***和均衡管理方法
CN103904740A (zh) * 2014-03-26 2014-07-02 海博瑞恩电子科技无锡有限公司 一种储能设备电压平衡的方法及***

Also Published As

Publication number Publication date
CN108075519A (zh) 2018-05-25
WO2018086459A1 (zh) 2018-05-17
CN108432084A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2018086267A1 (zh) 串联电池组均衡充放电方法和电路
Barsukov Battery cell balancing: What to balance and how
US9013148B2 (en) Lithium-ion battery pack and method of charge/discharge equalizing
JP5618986B2 (ja) 充電装置
WO2017092521A1 (zh) 电池组电压均衡控制电路及电池管理设备
TW201300255A (zh) 混合動力電源系統
WO2017054148A1 (zh) 充放电平衡结构
WO2008137764A1 (en) Fine-controlled battery-charging system
CN105958570A (zh) 一种锂电池电压均衡电路拓扑
KR20120020058A (ko) 리튬 이온 전지를 포밍하기 위한 장치
CN105471053A (zh) 一种能完全释放电池组电量的电池串联冗余方法
KR20150107032A (ko) 배터리 팩
CN107294167A (zh) 电压均衡方法及电池均衡控制电路和电池均衡电路
CN110601290B (zh) 一种三电平电池组的充放电电路
KR20180035080A (ko) 배터리 셀 밸런싱 회로
CN110816311B (zh) 用于运行电池组***的方法和电动车辆
JP2022034656A (ja) 給電制御装置、給電システム、給電制御方法、及びプログラム
JP4108339B2 (ja) リチウムイオン二次電池の充電方法及び装置
WO2017219359A1 (zh) 多极耳电池
CN2922233Y (zh) 动力锂离子电池的过充电保护电路
CN104716674A (zh) 一种串联蓄电池组的充放电补偿***
CN105743188A (zh) 铅酸电池组保护***
WO2020124559A1 (zh) 充电补偿电路及电子装置
TWI573311B (zh) Charge and discharge balance structure
CN217984572U (zh) 一种多电芯串联电压均衡电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868854

Country of ref document: EP

Kind code of ref document: A1