WO2018083917A1 - 電池用電極及び電池 - Google Patents

電池用電極及び電池 Download PDF

Info

Publication number
WO2018083917A1
WO2018083917A1 PCT/JP2017/035005 JP2017035005W WO2018083917A1 WO 2018083917 A1 WO2018083917 A1 WO 2018083917A1 JP 2017035005 W JP2017035005 W JP 2017035005W WO 2018083917 A1 WO2018083917 A1 WO 2018083917A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
conductive
material layer
layer
Prior art date
Application number
PCT/JP2017/035005
Other languages
English (en)
French (fr)
Inventor
一樹 在原
剛正 中川
堀江 英明
雄樹 草地
政法 小池
仁寿 大倉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780067396.3A priority Critical patent/CN109923696B/zh
Priority to EP17866928.9A priority patent/EP3537511B1/en
Priority to PCT/JP2017/039763 priority patent/WO2018084252A1/ja
Priority to US16/346,597 priority patent/US10601050B2/en
Priority to MYPI2019001787A priority patent/MY177525A/en
Publication of WO2018083917A1 publication Critical patent/WO2018083917A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode and a battery.
  • a lithium ion secondary battery As a battery for driving a motor, a lithium ion secondary battery having a high theoretical energy is attracting attention, and is currently being developed rapidly in order to make the battery have higher performance.
  • a lithium ion secondary battery has a configuration in which a positive electrode, a negative electrode, and an electrolyte positioned therebetween are housed in a battery case.
  • the positive electrode is formed by applying a positive electrode slurry containing a positive electrode active material to the surface of the current collector
  • the negative electrode is formed by applying a negative electrode slurry containing a negative electrode active material to the surface of the current collector.
  • a conductive resin layer is formed on at least one surface of a conductive substrate, the surface roughness Ra of the conductive resin layer is 0.1 ⁇ m or more and 1.0 ⁇ m or less, and the conductive structure (1/3) t + 0.5 ⁇ ⁇ a ⁇ (1/3) t + 10, where t is a thickness of the resin layer having the property and t is an average inclination angle of the unevenness on the surface of the resin layer.
  • a current collector that has a conductive material layer formed on a conductive resin layer (see Patent Document 1).
  • the present invention has been made in view of such problems of the conventional technology. And an object of this invention is to provide the battery electrode and battery which can reduce the contact resistance between a resin electrical power collector and an electrode active material layer.
  • the inventors of the present invention made extensive studies to achieve the above object. As a result, it has been found that the above object can be achieved by providing a conductive layer having a concavo-convex shape satisfying a predetermined relationship on the surface side of the electrode active material layer of the resin current collector, and the present invention has been completed. .
  • the present invention it is possible to provide a battery electrode and a battery that can reduce the contact resistance between the resin current collector and the electrode active material layer.
  • FIG. 1 is a perspective view schematically showing the external appearance of a battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section taken along line II-II of the battery shown in FIG.
  • FIG. 3 is an enlarged view schematically showing a portion surrounded by line III of the battery electrode shown in FIG.
  • FIG. 4 is a scanning electron microscope (SEM) photograph showing a state in which the binder (PVdF) in an uncrystallized state binds the constituent components of the electrode active material layer in a fibrous form.
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • the battery electrode of the present embodiment is disposed on at least one surface side of a planar resin current collector containing a resin and a conductive filler and the resin current collector, and contains electrode active material particles.
  • the resin current collector includes a conductive layer having an uneven shape on the surface side of the electrode active material layer.
  • the concavo-convex shape is represented by the formula (1): h / tan ⁇ ⁇ D (wherein h is the average height of the concavo-convex, ⁇ is the average inclination angle of the concavo-convex, and D is the average particle diameter of the electrode active material particles.) Satisfies the relationship expressed by
  • the “average height of the unevenness (h)” means the sum of the heights of the cross-sectional curve elements in the reference length of the cross-sectional curve, which is an example of a contour curve defined in JIS B 0601. The calculated average height obtained by dividing by the number of elements.
  • the cross section curve by actually observing the scanning electron microscope image of the cross section of the battery electrode, it is possible to define the cross section curve and calculate the average value. In calculating such an average value, for example, the unevenness observed in several to several tens of fields may be measured.
  • the “average inclination angle ( ⁇ ) of unevenness” means a ridge line (for example, a base in each valley and a mountain in an uneven shape of a conductive layer in a scanning electron microscope image of a cross section of a battery electrode (for example, This may be obtained by measuring the angle between the bottom of the valley and the top of the mountain, etc.) and calculating the average value. In calculating such an average value, for example, the unevenness observed in several to several tens of fields may be measured.
  • the “average particle diameter (D) of the electrode active material particles” means, for example, on the contour line of the electrode active material particles in the scanning electron microscope image of the cross section of the electrode active material powder itself or the battery electrode. It is obtained by measuring the maximum distance among the distances between any two points and calculating the average value. In calculating such an average value, for example, the particles observed in several to several tens of fields may be measured.
  • Such a battery electrode can effectively increase the contact portion between the conductive layer and the electrode active material particles in the electrode active material layer. As a result, the contact resistance between the resin current collector and the electrode active material layer can be reduced.
  • the electrode active material layer does not substantially contain a crystallized binder.
  • Such a battery electrode can more effectively increase the contact portion between the conductive layer and the electrode active material particles in the electrode active material layer. As a result, the contact resistance between the resin current collector and the electrode active material layer can be further reduced.
  • the “crystallized binder” refers to a binder that does not bind the electrode active material particles and the electrode active material particles, or the electrode active material particles and other members, and does not contribute to the maintenance of the structure of the electrode active material layer.
  • a slurry containing electrode active material particles and a binder is applied to a current collector, and then the coating film is heat-treated at a temperature not lower than the crystallization temperature and lower than the melting point, and then cooled, whereby spherulite is formed by crystallization of the binder. May be formed.
  • Such spherulites do not bind electrode active material particles and electrode active material particles, or electrode active material particles and other members, and do not exhibit a function as a binder.
  • the above-mentioned spherulites may be formed by crystallization of the binder.
  • a conductive layer, the conductive support agent mentioned later in detail, an ion conductive polymer, etc. can be mentioned, for example.
  • the electrode active material layer is a layer that does not substantially contain a binder in a crystallized state
  • the content ratio of the binder in the electrode active material layer is reduced, or the coating film is heated at a temperature that is higher than the crystallization temperature and lower than the melting point. It is preferable to refrain from heat treatment.
  • the adhesion between the electrode active material layer and the resin current collector may be reduced.
  • an electrode active material layer substantially free of a crystallized binder and Adhesion with the conductive layer is improved. Thereby, the contact part of an electroconductive layer and the electrode active material particle in an electrode active material layer can be increased more effectively. As a result, the contact resistance between the resin current collector and the electrode active material layer can be further reduced.
  • the average height (h) of the unevenness is 0.1 ⁇ m or more and 20 ⁇ m or less.
  • Such a battery electrode can more effectively increase the contact portion between the conductive layer and the electrode active material particles in the electrode active material layer. As a result, the contact resistance between the resin current collector and the electrode active material layer can be further reduced.
  • the average height (h) of the unevenness is 0.1 ⁇ m or more and 20 ⁇ m or less because the contact portion with the active material having a particle diameter of 0.1 to 100 ⁇ m can be efficiently increased. It is more preferable that the average height (h) is 1 ⁇ m or more and 10 ⁇ m or less because the contact site with the active material having a particle diameter of 1 to 20 ⁇ m can be increased efficiently.
  • the conductive layer contains conductive particles, and the conductive particles have the formula (2): A ⁇ D (where A is the average particle diameter of the conductive particles, D Represents the average particle diameter of the electrode active material particles.) It is preferable that the relationship expressed by:
  • the “average particle diameter (A) of the conductive particles” is, for example, an arbitrary value on the outline of the conductive particles in the scanning electron microscope image of the cross section of the conductive powder itself or the battery electrode. It is obtained by measuring the maximum distance among the distances between two points and calculating the average value. In calculating such an average value, for example, the particles observed in several to several tens of fields may be measured.
  • the uneven shape of the conductive layer is more appropriately formed, and the contact portion between the conductive layer and the electrode active material particles in the electrode active material layer can be increased more effectively. As a result, the contact resistance between the resin current collector and the electrode active material layer can be further reduced.
  • the average particle diameter (A) of the conductive particles is 20 ⁇ m or less.
  • the lower limit of the average particle diameter (A) of the conductive particles is not particularly defined, but is preferably 0.01 ⁇ m or more from the viewpoint of ease of handling.
  • the concavo-convex shape of the conductive layer is more appropriately formed, and the contact site between the conductive layer and the electrode active material particles in the electrode active material layer can be increased more effectively. As a result, the contact resistance between the resin current collector and the electrode active material layer can be further reduced.
  • the average particle diameter (A) of the conductive particles is set to 20 ⁇ m or less.
  • the average particle diameter (A) of the conductive particles is preferably 10 ⁇ m or less. This is more preferable because the average height (h) of the unevenness can be made 10 ⁇ m or less.
  • the battery of this embodiment has the electrode for batteries which concerns on one Embodiment of this invention mentioned above.
  • Such a battery can effectively increase the contact portion between the conductive layer and the electrode active material particles in the electrode active material layer, and reduce the contact resistance between the resin current collector and the electrode active material layer. can do. As a result, the internal resistance of the battery can be reduced.
  • FIG. 1 is a perspective view schematically showing an external appearance of a bipolar lithium ion secondary battery which is an example of a battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross section taken along line II-II of the bipolar lithium ion secondary battery shown in FIG.
  • FIG. 3 is an enlarged view schematically showing a portion surrounded by line III of the electrode for the bipolar lithium ion secondary battery shown in FIG.
  • the bipolar lithium ion secondary battery 10 of the present embodiment includes an outer package 31 in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is formed of a laminate film. It has a structure sealed inside.
  • the positive electrode active material layer 13 electrically coupled to one surface side of the current collector 11 is formed, and the other surface side of the current collector 11 is formed. It has a plurality of bipolar electrodes 23 in which a negative electrode active material layer 15 that is electrically coupled is formed. Note that the positive electrode active material layer and the negative electrode active material layer are specific examples of the electrode active material layer.
  • Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21.
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the in-plane direction of a separator as a base material.
  • the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other through the electrolyte layer 17.
  • the bipolar electrodes 23 and the electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is interposed between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. ing.
  • the bipolar electrode 23 includes a planar resin current collector 111, a positive electrode active material layer 13 disposed on one surface side of the resin current collector 111, and the other surface side of the resin current collector 111.
  • the negative electrode active material layer 15 is provided.
  • the resin current collector 111 includes a conductive layer 113 having an uneven shape on the surface side of the positive electrode active material layer 13 and the negative electrode active material layer 15.
  • the negative electrode active material layer 15 contains negative electrode active material particles 151.
  • the negative electrode active material particles are an example of electrode active material particles, and the electrode active material particles may be positive electrode active material particles. That is, although the negative electrode active material layer side is shown in the drawing, it is needless to say that the present invention is not limited to this. Furthermore, the same structure may be provided on the positive electrode active material layer side.
  • the resin current collector contains a resin and a conductive filler.
  • the uneven shape in the conductive layer 113 is expressed by the following formula (1): h / tan ⁇ ⁇ D (where h is the average height of the unevenness, ⁇ is the average inclination angle of the unevenness, and D is the average particle diameter of the negative electrode active material particles. Is satisfied.)
  • the height of the unevenness, the inclination angle of the unevenness, and the particle diameter of the negative electrode active material particles are the same, but it goes without saying that the present invention is not limited to this. That is, the height of the unevenness, the inclination angle of the unevenness, and the particle diameter of the negative electrode active material may be different from each other.
  • the average height (h) of the unevenness can be calculated from (h 1 + h 2 + h 3 + h 4 ) / 4.
  • the average inclination angle ( ⁇ ) of the unevenness can be calculated from ( ⁇ 1 + ⁇ 1 ′ + ⁇ 2 + ⁇ 2 ′ + ⁇ 3 + ⁇ 3 ′ + ⁇ 4 + ⁇ 4 ′ ) / 8.
  • the bipolar lithium ion secondary battery 10 has a configuration in which the single battery layers 19 are stacked.
  • a seal portion (insulating layer) 29 is disposed on the outer peripheral portion of the unit cell layer 19.
  • a positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21.
  • the negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
  • the positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 11 a on the positive electrode side, and is extended from the exterior body 31 formed of a laminate film.
  • the negative electrode current collector plate 27 is arranged so as to be adjacent to the outermost layer current collector 11 b on the negative electrode side, and is similarly extended and led out from the exterior body 31.
  • the number of times the single battery layer 19 is stacked is adjusted according to the desired voltage.
  • the number of stacks of the single battery layers 19 may be reduced if a sufficient output can be secured even if the thickness of the battery is reduced as much as possible.
  • the power generation element 21 is sealed under reduced pressure in an outer package 31 formed of a laminate film, and the positive electrode current collector plate 25.
  • the negative electrode current collector plate 27 is preferably taken out of the exterior body.
  • the current collector 11 has a planar resin current collector 111 containing a resin and a conductive filler, and has a concavo-convex shape on the surface side of the positive electrode active material layer 13 (or the negative electrode active material layer 15), preferably A conductive layer 113 containing conductive particles is provided.
  • the concavo-convex shape is the formula (1): h / tan ⁇ ⁇ D (where h is the average height of the concavo-convex, ⁇ is the average inclination angle of the concavo-convex, and D is the positive electrode (or the positive electrode (or negative electrode) active material layer)).
  • the negative electrode represents the average particle diameter of the active material particles.
  • the average height (h) of the irregularities is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • Examples of the resin contained in the resin current collector 111 include conductive polymer materials and non-conductive polymer materials.
  • the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, and polyoxadiazole.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN).
  • Polyimide PI
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PVdF polyvinylidene fluoride
  • PS polystyrene
  • the conductive filler contained in the resin current collector 111 can be used without particular limitation as long as it is a substance having conductivity.
  • metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, and lithium ion interruption
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, and Sb, or these metals. It is preferable to include an alloy or metal oxide.
  • the conductive carbon is not particularly limited.
  • the conductive filler is not particularly limited as long as it is an amount that can impart sufficient electrical conductivity to the current collector, and is generally about 5 to 35% by mass.
  • the conductive layer 113 is not particularly limited as long as it can form the above-described uneven shape to reduce the contact resistance.
  • the conductive layer 113 preferably contains conductive particles.
  • an epoxy resin etc. can be used, for example.
  • the conductive particles any conductive material can be used without particular limitation.
  • a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity and electric potential resistance.
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, and Sb, or these metals. It is preferable to include an alloy or metal oxide.
  • the conductive carbon is not particularly limited.
  • the conductive particles are represented by the formula (2): A ⁇ D (where A represents the average particle size of the conductive particles and D represents the average particle size of the positive electrode (or negative electrode) active material particles). It is preferable to satisfy this relationship.
  • the average particle diameter (A) of the conductive particles is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • electroconductive polymer materials such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyoxadiazole, can be used.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PAI polyimide
  • PAI polyamide
  • PA polyamide
  • PA polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PVdF polyvinylidene fluoride
  • PS polystyrene
  • the uneven shape of the conductive layer described above is obtained by, for example, applying a coating ink containing conductive particles having an average particle diameter (A) satisfying the relationship of D> A on a planar resin current collector and drying the coating.
  • the present invention is not limited to this.
  • the average particle diameter (A) of the conductive particles is reduced, the content ratio is decreased, the viscosity of the coating ink is decreased, or the drying is performed. It is preferable to increase the time, and in order to increase the average height (h) of the unevenness, the average particle diameter (A) of the conductive particles is increased, the content ratio is increased, or the viscosity of the coating ink is increased.
  • corrugated shape of the conductive layer mentioned above for example by forming the conductive layer which forms the uneven
  • the uneven shape of the conductive layer described above is, for example, applied by applying a coating ink containing conductive particles onto a planar resin current collector, dried, and then hot-pressed with a mold that forms the uneven shape described above. You may form by doing.
  • the average particle diameter (A) satisfying the relationship of D> A is satisfied on the planar resin current collector from the viewpoint of the convenience of the work that a conductive layer having an uneven shape can be formed with a small number of steps. It is preferable to form an uneven shape of the conductive layer by applying a coating ink containing conductive particles and drying.
  • the positive electrode active material layer 13 includes positive electrode active material particles, and includes a binder, a conductive additive, an ion conductive polymer, a lithium salt, and the like as necessary.
  • a metal oxide is preferably used as the positive electrode active material.
  • the positive electrode active material is a metal oxide, it is practical from the viewpoint of battery characteristics (capacity).
  • the metal oxide does not have high affinity with the gel-forming polymer constituting the shell portion of the core-shell type electrode material, which is a preferred embodiment described in detail later, and is bonded. You may not get enough power.
  • the adhesion of the gel-forming polymer to the positive electrode active material can be improved by coating the surface of the positive electrode active material with a first conductive material described later in detail. Therefore, it is preferable to use a metal oxide as the positive electrode active material in that the effect of using the first conductive material can be remarkably exhibited.
  • Preferred metal oxides used as the positive electrode active material include, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , Li 4 Ti 5 O 12 , Li (Ni—Mn—Co) O 2 and transitions thereof.
  • Examples thereof include lithium-transition metal composite oxides in which a part of the metal is substituted with other elements, lithium-transition metal phosphate compounds such as LiFePO 4 , and lithium-transition metal sulfate compounds.
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide and a lithium-transition metal phosphate compound are used as the positive electrode active material.
  • a composite oxide containing lithium and nickel is used, and more preferably, Li (Ni—Mn—Co) O 2 and a part of these transition metals substituted with other elements (hereinafter referred to as “following”) Simply referred to as “NMC composite oxide”).
  • the NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in order) are alternately stacked via an oxygen atomic layer.
  • One Li atom is contained, and the amount of Li that can be taken out is twice that of the spinel lithium manganese oxide, that is, the supply capacity is doubled, so that a high capacity can be obtained.
  • the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of Co
  • d represents the atomic ratio of Mn
  • x represents the atomic ratio of M. Represents. From the viewpoint of cycle characteristics, it is preferable that 0.4 ⁇ b ⁇ 0.6 in the general formula (1).
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • b, c and d are 0.49 ⁇ b ⁇ 0.51, 0.29 ⁇ c ⁇ 0.31, 0.19 ⁇ d ⁇ 0.21. It is preferable from the viewpoint of improving the balance between capacity and life characteristics.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 is LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2, etc. that have been proven in general consumer batteries.
  • the capacity per unit mass is large, and the energy density can be improved, so that there is an advantage that a compact and high-capacity battery can be manufactured, which is preferable from the viewpoint of cruising distance.
  • LiNi 0.8 Co 0.1 Al 0.1 O 2 is more advantageous in terms of a larger capacity, but there are difficulties in life characteristics.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 has life characteristics as excellent as LiNi 1/3 Mn 1/3 Co 1/3 O 2 .
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer is particularly limited. Although not intended, it is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of high output.
  • the positive electrode active material is preferably contained in the positive electrode active material layer 13 in the form of a core-shell type electrode material (core-shell type positive electrode material).
  • the core-shell type positive electrode material is composed of a core part in which at least a part of the surface of the positive electrode active material is covered with a first conductive material, and a shell part covering the surface of the core part.
  • the core portion a metal oxide as a positive electrode active material (e.g., LoCoO 2) is has a structure obtained is coated with a carbon material, which is an example of a first conductive material.
  • a carbon material which is an example of a first conductive material.
  • the entire surface of the positive electrode active material may be coated with the first conductive material, or a part of the surface of the positive electrode active material may be exposed and directly in contact with the base material (details will be described later).
  • the shell portion has a structure in which acetylene black, which is an example of the second conductive material, is included in a base material made of a gel-forming polymer.
  • acetylene black which is an example of the second conductive material
  • the entire surface of the core part may be covered with the shell part, or a part of the surface of the core part may be exposed.
  • the mass ratio of the shell part to the core part is not particularly limited, but the shell part is preferably 0.1 to 20 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the core part. And more preferred.
  • the core part and the shell part will be described in detail by taking as an example the case where the core-shell type electrode material is a positive electrode material.
  • the core-shell electrode material can also be applied as a negative electrode material.
  • the core portion includes a positive electrode active material and a first conductive material.
  • the surface of the positive electrode active material is coated (supported) with the first conductive material.
  • coating means that the first conductive material is chemically or physically bonded to at least a part of the surface of the electrode active material.
  • the surface of the electrode active material is covered with the first conductive material is that the manufactured electrode active material or the electrode active material collected (separated) from the electrode is obtained by a known means such as a scanning electron microscope. This can be confirmed by observation. That is, it can be confirmed by observing the first conductive material attached to the active material particles in a scanning electron microscope image or the like.
  • the coverage (support rate) of the positive electrode active material by the first conductive material is not particularly limited. Considering the battery characteristics and the effect of improving conductivity, the coverage (support rate) of the positive electrode active material with the first conductive material is preferably 20 area% or more, more preferably 50 area% or more. Even more preferably, it is 75 area% or more (upper limit: 100 area%).
  • measurement ratio (support rate) of the active material with the conductive material is a value measured and calculated by Auger electron spectroscopy.
  • the first conductive material coated with the positive electrode active material may be any material as long as it can cover at least a part of the surface of the positive electrode active material and has conductivity. That is, the first conductive material may be any material that can form a conductive path between the core portion and the surface of the electrode material (the outer surface of the shell portion).
  • Examples of the first conductive material include carbon materials, conductive metal oxides, metals, conductive ceramics, and conductive polymers.
  • the first conductive material is preferably a carbon material. Due to the affinity between the gel-forming polymer constituting the shell portion and the carbon material, the positive electrode active material can firmly hold the base material made of the gel-forming polymer via the carbon material. That is, the core portion and the shell portion are firmly bonded. Therefore, a structurally stable electrode material can be provided. Even when the conductivity of the positive electrode active material itself is low, the conductivity of the core portion can be improved due to the conductivity of the carbon material by covering the positive electrode active material with the carbon material. .
  • the carbon material as the first conductive material is not particularly limited and may be any material as long as it can cover at least a part of the surface of the positive electrode active material.
  • the carbon material may be the same as that used as a conductive additive (additive compounded to improve the conductivity of the electrode active material layer).
  • the carbon material preferably has low crystallinity, and more preferably acetylene black, from the viewpoint of maintaining the coating of the carbon material by suppressing the insertion and desorption of Li ions.
  • the shape of the carbon material (the shape in the state coated with the active material) is also not particularly limited, and may be in the form of particles or fibers. From the viewpoint of easy coating, a particle form is preferable, and from a conductive point, a fiber form is preferable.
  • the size of the carbon material is not particularly limited.
  • the average particle size (secondary particle size) is preferably 10 to 200 nm, more preferably 20 to 150 nm.
  • the diameter is preferably 20 to 500 nm, more preferably 50 to 300 nm, and the length is preferably 5 to 20 ⁇ m, more preferably 8 to 15 ⁇ m. It is. If it is such a magnitude
  • the shell part has a configuration in which the second conductive material (here, acetylene black) is included in the base material made of the gel-forming polymer as described above.
  • the electrolyte contained in the electrolyte layer to be described later contains an electrolytic solution (that is, when the electrolyte is a liquid electrolyte or a gel electrolyte)
  • the positive electrode active material layer 13 is usually an electrolyte derived from the electrolyte contained in the electrolyte layer. Has penetrated.
  • the base material (gel-forming polymer) that constitutes the shell part absorbs the electrolytic solution and swells to a gel state.
  • vinyl resin, urethane resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, polycarbonate resin, etc. may be used. it can. These can be used individually by 1 type or in mixture of 2 or more types.
  • a vinyl resin what is called an acrylic resin which uses methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate as an essential structural monomer is preferable, for example.
  • a gel-forming polymer having a tensile elongation at break in the gel state of 10% or more is preferable.
  • the vinyl resin preferably contains a polymer having a vinyl monomer as an essential constituent monomer. Since a polymer having a vinyl monomer as an essential constituent monomer has flexibility, coating the electrode active material with a polymer can alleviate the volume change of the electrode and suppress the expansion of the electrode.
  • vinyl monomers having a carboxyl group examples include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid, crotonic acid, cinnamic acid; (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid, citraconic acid, Examples thereof include dicarboxylic acids having 4 to 24 carbon atoms such as mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms and trivalent to tetravalent or higher valence such as aconitic acid.
  • (meth) acrylic acid is preferable, and methacrylic acid is particularly preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is preferably a methyl group.
  • R 2 is a branched alkyl group having 4 to 36 carbon atoms. Specific examples of R 2 include a 1-alkylalkyl group (1-methylpropyl group (sec-butyl group), 1,1-dimethylethyl group (tert -Butyl group), 1-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1-methylpentyl group, 1-ethylbutyl group, 1-methylhexyl group, 1-ethylpentyl group, 1-methyl Heptyl, 1-ethylhexyl, 1-methyloctyl, 1-ethylheptyl, 1-methylnonyl, 1-ethyloctyl, 1-methyldecyl, 1-ethylnonyl, 1-butyleicosyl, Hexyl
  • a mixed alkyl group containing one or more branched alkyl groups such as an alkyl residue of an oxo alcohol corresponding to an oligomer (4 to 8 mer) and the like.
  • a 2-alkylalkyl group is preferable from the viewpoint of absorbing the electrolyte solution, and 2-ethylhexyl group and 2-decyltetradecyl group are more preferable.
  • the monomer constituting the polymer may include a copolymerizable vinyl monomer that does not contain active hydrogen.
  • Examples of the copolymerizable vinyl monomer not containing active hydrogen include the following (1) to (5).
  • the monool includes (i) an aliphatic monool [methanol, ethanol, n- and i-propyl.
  • Alcohol n-butyl alcohol, n-pentyl alcohol, n-octyl alcohol, nonyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.], (ii) alicyclic monool [ Cyclohexyl alcohol etc.], (iii) araliphatic monools [benzyl alcohol etc.] and mixtures of two or more thereof.
  • Nitrogen-containing vinyl compound (3-1) Amido group-containing vinyl compound (i) (Meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide [N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.], diacetone acrylamide (ii) amide group having 4 to 20 carbon atoms, excluding the above (meth) acrylamide compound Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides (pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone))
  • (3-2) (Meth) acrylate compound (i) Dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.] (Ii) Quaternary of quaternary ammonium group-containing (meth) acrylate [tertiary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.]] Chemicals (quaternized with the above quaternizing agents), etc.]
  • Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate
  • Vinyl hydrocarbon (4-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.] Dienes having 4 to 10 or more carbon atoms [butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.], etc.
  • Cyclic unsaturated compounds having 4 to 18 or more carbon atoms such as cycloalkene (eg cyclohexene), (di) cycloalkadiene [eg (di) cyclopentadiene], terpene ( For example, pinene, limonene and indene)
  • Aromatic vinyl hydrocarbons Aromatic unsaturated compounds having 8 to 20 or more carbon atoms and derivatives thereof such as styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, Isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene, lithium styrene sulfonate
  • Vinyl esters, vinyl ethers, vinyl ketones, unsaturated dicarboxylic acid diesters (5-1)
  • Vinyl esters Aliphatic vinyl esters [4-15, for example, alkenyl esters of aliphatic carboxylic acids (mono- and dicarboxylic acids) (for example, Vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxyacetate)]
  • Aromatic vinyl esters [containing 9 to 20 carbon atoms, eg alkenyl esters of aromatic carboxylic acids (mono- and dicarboxylic acids) (eg vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring containing aliphatic carboxylic acid Ester (eg acetoxystyrene)]
  • (5-2) Vinyl ether Aliphatic vinyl ether [carbon number 3 to 15, for example, vinyl alkyl (carbon number 1 to 10) ether [vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.], vinyl alkoxy (carbon number 1 to 6) alkyl (1 to 4 carbon atoms) ether [vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2′-vinyloxydiethyl ether, vinyl-2 -Ethyl mercaptoethyl ether, etc.], poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) [diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.] ]
  • Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms, such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic having 1 to 22 carbon atoms) Group, dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms)
  • (3-1), (3-2), (3-3) and (3-4) are preferable from the viewpoint of the absorption of the electrolytic solution and the withstand voltage. More preferred are methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate of (3-1), and lithium styrenesulfonate of (3-4).
  • the content of the vinyl monomer having a carboxyl group, the vinyl monomer represented by the general formula (2) and the copolymerizable vinyl monomer not containing active hydrogen is 0.1 to 80% by mass, 0.1 to 99.9% by mass of the vinyl monomer represented by the above general formula (2), and 0 to 99.8% by mass of the copolymerizable vinyl monomer not containing active hydrogen are desirable.
  • the content of the monomer is within the above range, the liquid absorptivity to the electrolytic solution is good.
  • More preferable contents are 30 to 60% by mass of the vinyl monomer having a carboxyl group, 5 to 60% by mass of the vinyl monomer represented by the general formula (2), and 5 of the copolymerizable vinyl monomer not containing active hydrogen. More preferable content is 35 to 50% by mass of the vinyl monomer having a carboxyl group, 15 to 45% by mass of the vinyl monomer represented by the general formula (2), and no active hydrogen.
  • the copolymerizable vinyl monomer is 20 to 60% by mass.
  • the preferable lower limit of the number average molecular weight of the polymer is 3,000, more preferably 50,000, particularly preferably 100,000, most preferably 200,000, and the preferable upper limit is 2,000,000, more preferably 1. 500,000, particularly preferably 1,000,000, most preferably 800,000.
  • the number average molecular weight of the polymer can be determined by GPC (gel permeation chromatography) measurement under the following conditions.
  • Apparatus Alliance GPC V2000 (manufactured by Waters) Solvent: Orthodichlorobenzene Standard substance: Polystyrene Sample concentration: 3 mg / ml
  • Column stationary phase PLgel 10 ⁇ m, MIXED-B 2 in series (manufactured by Polymer Laboratories) Column temperature: 135 ° C
  • the solubility parameter (SP value) of the polymer is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 .
  • the SP value of the polymer (B) is more preferably 9.5 to 18.0 (cal / cm 3 ) 1/2 , and 9.5 to 14.0 (cal / cm 3 ) 1/2 . More desirable.
  • the SP value of the polymer (B) is 9.0 to 20.0 (cal / cm 3 ) 1/2, it is preferable in terms of liquid absorption of the electrolytic solution.
  • the glass transition point of the polymer is preferably 80 to 200 ° C., more preferably 90 to 180 ° C. from the viewpoint of heat resistance of the battery. Particularly preferred is 100 to 150 ° C.
  • tensile elongation at break is an index indicating the flexibility of a gel-forming polymer that is a constituent material of a base material.
  • the value of the tensile elongation at break of the gel-forming polymer may be 10% or more, preferably 20% or more, more preferably 30% or more, particularly preferably 40% or more, and most preferably Is 50% or more. The larger the value of the tensile elongation at break of the gel-forming polymer, the better.
  • the second conductive material contained in the base material in the shell there is no particular limitation on the specific type and content of the second conductive material contained in the base material in the shell, and the electrical conductivity between the core and the surface of the electrode material (the outer surface of the shell) Any form that can form a path is acceptable. Further, the same material may be used for the first conductive material and the second conductive material, but these are clearly distinguished in the core-shell type positive electrode material. That is, what is directly coated on the surface of the positive electrode active material is the first conductive material, and what is dispersed in the shell portion is the second conductive material.
  • the core part is manufactured in advance by covering the surface of the positive electrode active material with the first conductive material, and then the shell part including the second conductive material is formed on the surface of the core part. In this way, the first conductive material and the second conductive material are distinguished from the viewpoint of when they are added in the manufacturing process of the core-shell type positive electrode material.
  • the second conductive material examples include carbon materials such as ketjen black and acetylene black, carbon materials such as graphite and carbon fiber (for example, vapor grown carbon fiber (VGCF)), various carbon nanotubes ( CNT) and other conductive fibers.
  • the conductive material when the second conductive material is a material that can take a fibrous structure such as acetylene black or carbon fiber, the electrode active material constituting the core portion or the first conductive material It is preferable that the surface of the material and the surface of the electrode material (outer surface of the shell portion) are electrically connected via the second conductive material.
  • the ratio of the content of the base material and the second conductive material contained in the shell part is not particularly limited, as an example, the content of the second conductive material is 100 parts by weight of the base material.
  • the amount is preferably 10 to 400 parts by mass, more preferably 25 to 150 parts by mass.
  • the content of the conductive material is 10 parts by mass or more, a sufficient conductive path can be formed, and the internal resistance of the battery can be reduced (suppression of increase).
  • content of an electroconductive material is 400 mass parts or less, it is preferable from a viewpoint of stability of a shell layer.
  • the value of the ratio of these contents shall be calculated as an average value of the values measured for 50 or more core-shell type electrode active materials.
  • the effect of reducing the internal resistance of the battery is obtained by covering the surface of the core portion with the shell portion.
  • the positive electrode active material layer 13 is not the core-shell type positive electrode material described above (for example, the same as the conventional one).
  • a positive electrode active material may be included.
  • binder examples include solvent-based binders such as polyvinylidene fluoride (PVdF) and water-based binders.
  • solvent-based binders such as polyvinylidene fluoride (PVdF) and water-based binders.
  • the electrode active material layer preferably contains at least an aqueous binder.
  • a water-based binder has a high binding power.
  • it is easy to procure water as a raw material and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced.
  • water is used as a solvent for preparing an active material slurry to be prepared at the time of coating the active material layer.
  • Even if the shell-type electrode material is further added to the active material slurry, there is little possibility that the gel-forming material constituting the electrode material is dissolved in water as a preparation solvent. For this reason, there is also an advantage that a gel-forming polymer that can stably use the electrode material and can form a physical cross-linked gel can be employed in the production of the electrode material.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder containing water as a dispersion medium includes all polymers expressed as latex or emulsion, and refers to a polymer that is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a self-emulsifying system.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytyren
  • the aqueous binder preferably contains at least one rubber-based binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber and methyl methacrylate rubber from the viewpoint of binding properties. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and salts thereof), and polyvinylpyrrolidone. , Polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder.
  • Conductive aid refers to an additive blended to improve the conductivity of the electrode active material layer.
  • the conductive assistant include carbon materials such as ketjen black and acetylene black, carbon materials such as graphite, and carbon fiber, similar to the second conductive material described above.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • the compounding ratio of the components contained in the positive electrode active material layer 13 and the negative electrode active material layer 15 described later is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be referred to as appropriate. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the electrode active material layer is in a form that does not substantially contain a crystallized binder.
  • the content of the crystallized binder with respect to 100% by mass of the total solid content contained in the electrode active material layer is: 1% by mass or less.
  • the crystallized binder is included, if the electrode active material layer is thickened, cracks (breaks) occur in the electrode active material layer. As a result, the internal resistance of the battery increases or the cycle durability decreases.
  • the content of the binder in a crystallized state is 0.5% by mass or less, more preferably 0.2% by mass or less, with respect to 100% by mass of the total solid content contained in the electrode active material layer. More preferably, it is 0.1% by mass or less, and most preferably 0% by mass.
  • the electrode active material layer preferably does not substantially contain a binder added to bind the electrode active material particles and other members and maintain the structure of the electrode active material layer.
  • the binder content is preferably 10% by mass or less, more preferably 1% by mass or less, and still more preferably, with respect to 100% by mass of the total solid content contained in the electrode active material layer. It is 0.5% by mass or less, still more preferably 0.2% by mass or less, particularly preferably 0.1% by mass or less, and most preferably 0% by mass.
  • the binder in a non-crystallized state is preferably in an amount of 0.5 to 3.3% by volume, more preferably 1.0 to 2.3% with respect to the total volume of the electrode active material layer. Included in an amount of 5% by volume.
  • the “liquid quantity coefficient” is the ratio of the volume of the electrolyte injected into the battery to the volume of the electrolyte that can be absorbed by the power generation element. Therefore, it can contribute to the improvement of the capacity characteristics of the battery.
  • the battery volume coefficient of a battery produced by injecting an electrolyte solution that can be absorbed by the power generation element is 1, and the volume of the injected electrolyte solution is just absorbed by the power generation element.
  • the larger the volume of the electrolytic solution that can be obtained the larger the value of the liquid coefficient.
  • the liquid volume coefficient can be increased while maintaining the shape of the electrode active material layer as described above. Therefore, the value of the liquid quantity coefficient is preferably 1.1 or more, more preferably 1.4 or more.
  • the upper limit value of the liquid volume coefficient it is usually only about 2 or less.
  • the binder that can be contained in the electrode active material layer that does not substantially contain the crystallized binder is not particularly limited, but binders other than the aqueous binder used by being dispersed in an aqueous solvent are preferable.
  • a binder made of a semicrystalline polymer or an amorphous polymer can be used, but is not particularly limited.
  • a semi-crystalline polymer is a polymer that includes both a crystalline region and an amorphous region, and exhibits multiple melting behavior as measured by thermal analysis. As such a binder, any binder can be used as long as it can function as a binder.
  • the polymer In order for the polymer to function as a binder, it is first necessary to be an insulating material that does not cause a side reaction (oxidation-reduction reaction) during charge and discharge. It is more preferable to satisfy the following three points: (1) Keep the slurry used for the production of the active material layer in a stable state (having a dispersing action and a thickening action); (2) Electrode activity Particles such as substances and conductive assistants are fixed to each other to maintain the mechanical strength as an electrode and to keep the electrical contact between the particles; (3) Adhesive force (binding force) to the current collector.
  • the polymer constituting the binder includes polyvinylidene fluoride (PVdF), a copolymer of tetrafluoroethylene (TFE) and PVdF, polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoro.
  • PVdF polyvinylidene fluoride
  • TFE tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene / hexafluoro tetrafluoroethylene
  • FEP Propylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE copolymer
  • PVF polyvinyl fluoride
  • VdF-HFP fluorine rubber vinylidene fluoride-hexafluoropropylene fluorine rubber
  • VdF-HFP-TFE fluorine rubber vinylidene fluoride-hexafluoropropylene -Tetrafluoroethylene fluorine rubber
  • VdF-HFP-TFE fluorine rubber vinylidene fluoride-pentafluoropropylene fluorine rubber
  • VdF-PFP fluorine rubber vinylidene fluoride-pentafluoropropylene fluorine rubber
  • VdF-PFP fluorine rubber vinylidene
  • At least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polyethylene, polypropylene, polymethylpentene, and polybutene, or a hydrogen atom of polyvinylidene fluoride (PVdF) is another halogen element.
  • a compound substituted with can be used. Binders made of these polymers are excellent in heat resistance, have a very wide potential window, and are stable at both the positive electrode potential and the negative electrode potential, and thus can be suitably used for the electrode active material layer.
  • the weight average molecular weight (Mw) of the polymer constituting the binder is preferably 5000 to 10,000, and more preferably 7000 to 8,000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the crystallization temperature (Tc) of the polymer constituting the binder is determined according to the type of polymer, but the specific value is not particularly limited. From the viewpoint of water removal and easy temperature control during drying, the crystallization temperature of the polymer constituting the binder is preferably 100 ° C. or higher, more preferably 100 to 150 ° C., and even more preferably 110 ° C. ⁇ 130 ° C.
  • the crystallization temperature (Tc) of polyvinylidene fluoride (PVdF) which is a preferable example of the polymer constituting the binder is 130 ° C.
  • the melting point (Tm) of the polymer constituting the binder is determined according to the type of polymer, but since the temperature control during drying is easy, the melting point of the polymer constituting the binder is preferably 110 ° C. or higher, more preferably 120 to 300 ° C., and still more preferably 140 to 260 ° C.
  • Tm melting point
  • a phenomenon in which a crystalline region is broken by heating and becomes fluid is “melting”, and this temperature is defined as a “melting point (Tm)” of the polymer.
  • Tm melting point
  • polymers since polymers generally have a characteristic property indicating a variety of melting points (Tm), it is difficult to specify a specific value for the melting point of each polymer.
  • the melting point (Tm) of polyvinylidene fluoride (PVdF), which is a preferred example of the polymer constituting the binder, is 170 ° C. (having a melting point band of 160 ° C. to 180 ° C.).
  • polybutylene terephthalate Tm 228 ° C.
  • polyethylene terephthalate Tm 260 ° C.
  • polyethylene Tm 140 ° C.
  • polypropylene Tm 165 ° C.
  • polymethylpentene Tm 235 ° C.
  • polybutene Tm 165 ° C.
  • the glass transition temperature (Tg) of the polymer constituting the binder is also determined according to the type of polymer. From the viewpoint of the production environment, a semicrystalline polymer having a glass transition temperature in the range of ⁇ 50 to 50 ° C. Is preferably used.
  • the glass transition temperature (Tg) of polyvinylidene fluoride (PVdF), which is a preferred example of the polymer constituting the binder is 70 to 81 ° C.
  • the crystallization temperature (Tc), melting point (Tm) and glass transition temperature (Tg) of the polymer constituting the binder can all be determined by DSC (differential scanning calorimetry).
  • DSC differential scanning calorimetry
  • the glass transition occurs as the amorphous structure increases. Such a transition appears as a step in the baseline of the DSC curve. This is due to the change in heat capacity in the sample.
  • the viscosity of the amorphous structure decreases, and at a certain point, the temperature is sufficient to cause the molecule to spontaneously crystallize, which is the crystallization temperature (Tc).
  • Tc crystallization temperature
  • the melting point Tm
  • an endotherm valley peak
  • the temperature is raised at 30 ° C./min
  • the melting point peak is measured (melting temperature)
  • the temperature is lowered at 30 ° C./min
  • the recrystallization point Crystallization temperature
  • FIG. 4 is a scanning electron microscope (SEM) photograph showing a state where PVdF in an uncrystallized state as a binder binds the constituent components of the electrode active material layer in a fibrous form.
  • the electrode active material layer includes LiNi 0.8 Co 0.15 Al 0.05 O 2 as the positive electrode active material, acetylene black and carbon fiber (carbon nanofiber) as the conductive auxiliary agent, and polyvinylidene fluoride (PVdF) as the binder.
  • PVdF 101 in an uncrystallized state has a fibrous shape, and electrode active material layer constituent components such as the positive electrode active material 102 are bound in a fibrous shape.
  • the binder “binding the electrode active material layer component in a fibrous form” means that the binder having a fibrous shape binds the components of the active material layer as shown in FIG. Means that.
  • the crystallized PVdF forms spherulites as shown in FIG. When the binder forms spherulites by crystallization, the constituent components of the electrode active material layer cannot be “bound into a fiber”.
  • the binder of the state which is not crystallized when contained in an electrode active material layer, it is preferable that the binder consists of material with little flexibility from a viewpoint of maintaining the structure of an electrode active material layer.
  • the tensile elongation at break in the saturated liquid absorption state of the binder is preferably less than 10%, more preferably 7% or less, further preferably 5% or less, and 3% or less. Particularly preferred is 1% or less.
  • the thickness of the electrode active material layer substantially free of the binder in the crystallized state is not particularly limited, but from the viewpoint of obtaining a high capacity density battery, for the positive electrode active material layer,
  • the thickness is preferably 100 to 500 ⁇ m, more preferably 150 to 450 ⁇ m, and still more preferably 200 to 400 ⁇ m.
  • the negative electrode active material layer is preferably 100 to 500 ⁇ m, more preferably 150 to 450 ⁇ m, and further preferably 200 to 400 ⁇ m. If the thickness of the electrode active material layer is a value equal to or greater than the lower limit value described above, the energy density of the battery can be sufficiently increased. On the other hand, if the thickness of the electrode active material layer is not more than the above-described upper limit value, the structure of the electrode active material layer can be sufficiently maintained.
  • the negative electrode active material layer 15 includes negative electrode active material particles. Moreover, the negative electrode active material layer 15 may contain a binder, a conductive additive, an ion conductive polymer, a lithium salt, and the like in addition to the negative electrode active material. Except for the type of the negative electrode active material, the contents are basically the same as those described in the section “Positive electrode active material layer”, and thus the description thereof is omitted here. That is, the case where the positive electrode active material layer 13 includes a core-shell type electrode material (positive electrode material) has been described as an example, but the present invention can also be applied to a negative electrode. That is, the negative electrode active material included in the negative electrode active material layer 15 may be a core-shell type electrode material (negative electrode material).
  • the negative electrode active material examples include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Is mentioned. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Of course, negative electrode active materials other than those described above may be used.
  • the base material (gel-forming polymer) constituting the shell part in the core-shell type electrode material has a property that it is particularly easy to adhere to the carbon material. Therefore, when the core-shell type electrode material is applied to the negative electrode, it is preferable to use a carbon material as the negative electrode active material from the viewpoint of providing a structurally stable electrode material. With such a configuration, the base material (gel-forming polymer) is likely to adhere to the surface of the negative electrode active material that is not covered with the first conductive material, so that a more structurally stable electrode material is provided. .
  • the average particle diameter of the negative electrode active material (in the case of the core-shell type electrode material, the portion of the core portion excluding the first conductive material) is not particularly limited, but from the viewpoint of increasing the output Is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the electrode active material layer substantially not containing the crystallized binder is not particularly limited, and can be produced by appropriately referring to a conventionally known method. However, as described above, from the viewpoint of improving the energy density of the battery, it is preferable to reduce the content of a member that does not contribute much to the progress of the charge / discharge reaction in the electrode active material layer as much as possible. Therefore, hereinafter, as a preferable embodiment of the manufacturing method, a method in which the binder is not substantially included in the electrode active material layer will be described.
  • the method for producing the electrode active material layer includes forming a coating film by preparing an electrode active material slurry and applying the electrode active material slurry to the surface of the conductive layer.
  • an electrode active material slurry When preparing an electrode active material slurry, first, an electrode active material and a solvent are mixed. Thereby, a dispersion liquid is prepared.
  • an electrode active material and a solvent are mixed.
  • a dispersion liquid is prepared.
  • the solvent preferably includes a solvent constituting an electrolytic solution (liquid electrolyte) used for a lithium ion secondary battery to which the electrode is applied, and more preferably the same as this solvent.
  • the solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), a mixed solvent thereof, and the like, and more preferably, a mixture of EC and PC.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • It is a solvent or a mixed solvent of EC and DEC.
  • the mixing ratio (volume ratio) of EC and PC or DEC is preferably 3: 7 to 7: 3, more preferably 2: 3 to 3: 2, and further preferably about 1: 1. It is.
  • the amount of the solvent used is not particularly limited, it is preferable to use the solvent in such an amount that the solid content constituting the electrode active material layer can be just retained. With such a configuration, it is possible to increase the production efficiency particularly when the solvent contained in the battery electrolyte is used as it is.
  • the amount of the solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass with respect to 100% by mass of the solid content contained in the dispersion to be prepared.
  • the electrode active material slurry may contain other components.
  • the above-described components conductive aid, ion conductive polymer, lithium salt, etc.
  • they can be included simultaneously with the preparation of the dispersion in this step. Since the specific configuration of these components is as described above, detailed description thereof is omitted here.
  • composition of the dispersion obtained by mixing the above-mentioned components is not particularly limited, but the dispersion is a composition that makes the composition similar to the composition of the electrode active material layer when the solvent is removed. It is preferable to have.
  • the mixing order and mixing method of the components for obtaining the dispersion are not particularly limited. However, in consideration of battery performance, it is preferable to strictly exclude the mixing of moisture in the dispersion liquid (and electrode active material slurry described later) preparation step.
  • the method for preparing the dispersion is not particularly limited, and conventionally known knowledge such as the order of adding the members, the mixing method, and the like can be appropriately referred to.
  • a mixer capable of imparting high shear as a mixer for mixing the materials.
  • blade type agitators such as a planetary mixer, a kneader, a homogenizer, an ultrasonic homogenizer, and a disperser are preferable, and a planetary mixer is particularly preferable from the viewpoint of kneading.
  • the specific method of mixing is not particularly limited.
  • a solvent component preferably the above-mentioned solvent, more preferably an electrolyte containing a lithium salt
  • the mixing time is not particularly limited as long as uniform mixing is achieved.
  • kneading and subsequent mixing may be performed for about 10 to 60 minutes, and each step may be performed at once or may be performed in several times.
  • the preferable form at the time of preparing a dispersion liquid is demonstrated.
  • the solvent contains a solvent that constitutes an electrolytic solution (liquid electrolyte) used in a lithium ion secondary battery to which the electrode is applied
  • an electrolytic solution that is a mixture of the solvent and a lithium salt is prepared in advance. It is preferable to add this during the preparation of the electrode active material slurry.
  • the lithium salt concentration in the electrolytic solution is preferably 1 to 3 mol / L.
  • LiPF 6 and Li [(FSO 2) 2 N ] (LiFSI) Gayori Li [(FSO 2 ) 2 N] (LiFSI) is particularly preferable.
  • Such an electrolytic solution can be prepared by referring to a conventionally known method.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • these additives only 1 type may be used independently and 2 or more types may be used together.
  • the dispersion obtained in the above step is stirred and mixed. At this time, a part of the solvent may be removed from the dispersion. Thereby, an electrode active material slurry is prepared.
  • the step of stirring and mixing the dispersion may be performed after a certain period of time after the preparation of the dispersion described above, or may be continuously performed during or immediately after the preparation of the dispersion.
  • the specific method for stirring and mixing the dispersion is not particularly limited.
  • the dispersion obtained above may be continuously stirred for a certain period of time using a known stirring means such as a mixing defoaming machine.
  • the stirring speed is not particularly limited, but is preferably 1000 to 5000 rpm. If the stirring time is too short, the material cannot be sufficiently dispersed. If the stirring time is too long, the lithium salt contained in the electrolytic solution may be decomposed due to heat generation. About minutes.
  • the solid content concentration of the electrode active material slurry is preferably 60% by mass or more when the electrode active material slurry is used for forming the positive electrode active material layer (that is, the positive electrode active material slurry).
  • it is 66 mass% or more, More preferably, it is 70 mass% or more, Especially preferably, it is 72 mass% or more, Most preferably, it is 74 mass% or more.
  • the said electrode active material slurry is used for formation of a negative electrode active material layer (namely, when it is a negative electrode active material slurry), Preferably it is 41 mass% or more, More preferably, it is 43 mass% or more.
  • the upper limit value of the solid content concentration of the coating solution of the electrode active material slurry is not particularly limited, but when the electrode active material slurry is used for forming the positive electrode active material layer (that is, the positive electrode active material layer slurry). In the case), it is preferably 80% by mass or less. Moreover, when the said electrode active material slurry is used for formation of a negative electrode active material layer (namely, when it is a slurry for negative electrode active material layers), Preferably it is 55 mass% or less. When the concentration is within the above range, an electrode active material layer having a sufficient thickness can be easily formed in the coating step described later. Moreover, it becomes easy to adjust a porosity and a density by the press process implemented as needed.
  • the electrode active material slurry obtained above is coated on the surface of the conductive layer to form a coating film.
  • This coating film finally constitutes the electrode active material layer.
  • the coating means is not particularly limited, and conventionally known coating means can be appropriately used.
  • an electrode active material slurry having a high solid content concentration By applying an electrode active material slurry having a high solid content concentration, a coating film having a highly flat surface can be obtained, so that an electrode active material slurry is applied at such a coating speed that a relatively high shear stress is applied during coating.
  • a coating means that can perform the coating.
  • the coating method by the slit die coater that coats and applies the electrode active material slurry from the slit is an example of a suitable coating means because it is excellent in the uniformity of the coating of the thin film and the coating thickness. . It does not specifically limit about the thickness of the coating film obtained by coating, What is necessary is just to set suitably so that the thickness of the electrode active material layer mentioned above may be achieved finally.
  • the battery can be manufactured without drying the electrode active material slurry. Therefore, it is difficult to cut out the electrode to a desired area after applying the electrode active material slurry. Therefore, in this step, it is necessary to apply the electrode active material slurry to the surface of the conductive layer so as to have a desired area.
  • a masking process or the like may be applied to the surface of the current collector other than the coated portion in advance.
  • a press treatment may be applied to the coating film obtained by applying the electrode active material slurry.
  • the porous sheet is used for the purpose of preventing the slurry from adhering to the pressing device when the coating film is pressed, and for the purpose of absorbing excess electrolyte solution that exudes during pressing. Therefore, the material and form of the porous sheet are not particularly limited as long as the object can be achieved.
  • a porous sheet similar to a microporous film or a nonwoven fabric used as a separator in this technical field can be used.
  • the microporous film include a microporous film made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like.
  • a nonwoven fabric cotton, rayon, acetate, nylon, polyester; Polyolefins, such as PP and PE; Polyimide, Aramid, etc .;
  • the porous sheet may be removed after pressing, or may be used as it is as a battery separator.
  • an electrolyte layer may be formed using only the porous sheet as a separator, or a combination of the porous sheet and another separator (that is, two or more separators). As an electrolyte layer may be formed.
  • the press apparatus for performing the press treatment is preferably an apparatus that can apply pressure uniformly to the entire surface of the coating film, and specifically, a high pressure jack J-1 (manufactured by ASONE CORPORATION) can be used.
  • the pressure at the time of pressing is not particularly limited, but is preferably 2 to 40 MPa, more preferably 5 to 35 MPa, and further preferably 5 to 30 MPa. When the pressure is in the above range, the porosity and density of the electrode active material layer according to a preferred embodiment can be easily realized.
  • the electrode active material layer may include a binder that is not crystallized.
  • the method for introducing the binder into the electrode active material layer without being crystallized is not particularly limited.
  • a dispersion is prepared by mixing an electrode active material, a binder, a first solvent in which the binder does not dissolve, and a second solvent in which the binder can dissolve, and the dispersion is prepared from the dispersion.
  • the electrode active material slurry is prepared by removing the solvent of No. 2.
  • a method including forming a coating film by applying the electrode active material slurry to the surface of the conductive layer is exemplified.
  • the step of preparing the dispersion liquid by mixing an electrode active material, a binder, a first solvent in which the binder does not dissolve, and a second solvent in which the binder can dissolve. Prepare a dispersion.
  • the first solvent is a solvent in which the binder does not dissolve.
  • the phrase “does not dissolve” in a solvent with a certain solid content means that the solubility of the solid content in the solvent (25 ° C.) is less than 0.1 g / 100 g solvent.
  • the specific type of the first solvent cannot be uniquely determined because the solvent that can be the first solvent changes if the type of the binder as the solid content differs in physical properties such as molecular weight. For this reason, what is necessary is just to determine a 1st solvent according to the form of a binder.
  • examples of the first solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and the like.
  • the first solvent is a low volatility solvent.
  • the first solvent preferably has a vapor pressure at 25 ° C. of 3200 Pa or less, more preferably 1000 Pa or less, and further preferably 100 Pa or less.
  • the first solvent preferably includes a solvent constituting an electrolytic solution (liquid electrolyte) used in a battery to which the battery electrode is applied, and is the same as this solvent. More preferred.
  • the preferable form of the solvent constituting the electrolytic solution (liquid electrolyte) is the same as described above.
  • the amount of the first solvent used is not particularly limited, it is preferable to use the first solvent in such an amount that the solid content constituting the electrode active material layer can be just retained. By adopting such a configuration, it is possible to increase the production efficiency particularly when the solvent contained in the battery electrolyte is used as it is as the first solvent.
  • the amount of the first solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass with respect to 100% by mass of the solid content contained in the dispersion to be prepared. .
  • the second solvent is a solvent in which the binder can be dissolved.
  • the phrase “can be dissolved” in a solvent with a certain solid content means that the solubility (25 ° C.) of the solid content in the solvent is 0.1 g / 100 g solvent or more.
  • the specific type of the second solvent cannot be uniquely determined because the solvent that can be the second solvent changes if the type of the binder as the solid content differs in physical properties such as molecular weight. For this reason, what is necessary is just to determine a 2nd solvent according to the form of a binder.
  • examples of the second solvent include dimethyl carbonate (DMC), acetone, ethanol, and the like.
  • DMC dimethyl carbonate
  • acetone ethanol
  • ethanol ethanol
  • dimethyl carbonate is particularly preferable from the viewpoint of low water content in the solvent.
  • the second solvent is a more volatile solvent than the first solvent.
  • the second solvent preferably has a vapor pressure of more than 3200 Pa at 25 ° C., more preferably 6000 Pa or less.
  • the amount of the second solvent used is not particularly limited as long as the binder can be sufficiently dissolved in the obtained dispersion. In addition, since it is assumed that the second solvent is removed as described later, if the amount of the second solvent used is excessive, energy and time for removing the second solvent are excessively consumed. There is also a problem.
  • the amount of the second solvent used is preferably 100 to 20000% by mass, more preferably 900 to 9900% by mass with respect to 100% by mass of the binder contained in the dispersion to be prepared. It is preferable to finally adjust the binder concentration in the dispersion to 1 to 10% by mass.
  • a solution in which the binder is dissolved in the second solvent is prepared in advance by mixing the binder and the second solvent in which the binder can be dissolved in advance. This may be used by adding at the time of preparing the second electrode active material slurry.
  • concentration of the binder solution is not particularly limited, but is preferably about 0.5 to 10% by mass from the viewpoint of improving the dispersed state of the binder, and is about 2 to 8% by mass. It is more preferable.
  • the binder and the second solvent may be mixed, heated to about 40 to 80 ° C., and mixed for about 0.5 to 5 minutes. About other conditions, it can carry out similarly to preparation of said dispersion liquid.
  • the second solvent is removed from the dispersion obtained in the above step.
  • an electrode active material slurry is prepared.
  • the step of removing the second solvent may be performed after a certain period of time after the preparation of the dispersion described above, or may be performed continuously during the preparation of the dispersion or immediately thereafter.
  • the specific method for removing the second solvent is not particularly limited as long as the second solvent is substantially removed from the dispersion obtained above.
  • the second solvent can be gradually removed by continuously stirring the dispersion obtained above using a known stirring means such as a mixing defoaming machine.
  • the stirring speed is not particularly limited, but is preferably 100 to 5000 rpm.
  • the stirring time is not particularly limited, and is preferably about 10 seconds to 240 minutes.
  • the second solvent may be removed by heating the dispersion obtained above at a temperature lower than the crystallization temperature of the binder.
  • an electrode active material slurry is obtained.
  • content of the 2nd solvent in the obtained electrode active material slurry Preferably it is 1 mass part or less with respect to 100 mass parts of solid content of an electrode active material slurry, More preferably Is 0.1 part by mass or less, more preferably 0 part by mass.
  • the electrode active material slurry thus obtained contains a solid content constituting the electrode active material layer, a first solvent, and in some cases a trace amount of the second solvent.
  • the solid content concentration of the electrode active material slurry is the same as that when the binder described in the preparation of the electrode active material slurry is not used.
  • the electrode active material slurry thus produced can be subjected to a coating step and, if necessary, a pressing step to form an electrode active material layer in the same manner as in the case where the binder described above is not used. .
  • the electrolyte used for the electrolyte layer 17 is not particularly limited, and a liquid electrolyte, a gel polymer electrolyte, or an ionic liquid electrolyte can be used.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt is dissolved in an organic solvent.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the lithium salt Li (C 2 F 5 SO 2) 2 N, and LiPF 6, LiBF 4, LiClO 4 , LiAsF 6, LiCF 3 SO 3 , etc. of compounds which can be added to the active material layer of the electrode Similarly, it can be employed.
  • the liquid electrolyte may further contain additives other than the components described above.
  • Such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block the ion conductivity between the layers.
  • ion conductive polymer used as the matrix polymer examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), polymethyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA polymethyl methacrylate
  • the matrix polymer of the gel polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the ionic liquid electrolyte is a ionic liquid in which a lithium salt is dissolved.
  • an ionic liquid is a salt comprised only from a cation and an anion, and means a series of compounds which are liquid at normal temperature.
  • the cation component constituting the ionic liquid is substituted or unsubstituted imidazolium ion, substituted or unsubstituted pyridinium ion, substituted or unsubstituted pyrrolium ion, substituted or unsubstituted Pyrazolium ion, substituted or unsubstituted pyrrolinium ion, substituted or unsubstituted pyrrolidinium ion, substituted or unsubstituted piperidinium ion, substituted or unsubstituted tria It is preferably at least one selected from the group consisting of dinium ions and substituted or unsubstituted ammonium ions.
  • anion component constituting the ionic liquid include halide ions such as fluoride ion, chloride ion, bromide ion and iodide ion, nitrate ion (NO 3 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), Hexafluorophosphate ion (PF 6 ⁇ ), (FSO 2 ) 2 N ⁇ , AlCl 3 ⁇ , lactate ion, acetate ion (CH 3 COO ⁇ ), trifluoroacetate ion (CF 3 COO ⁇ ), methanesulfone Acid ion (CH 3 SO 3 ⁇ ), trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), bis (trifluoromethanesulfonyl) imide ion ((CF 3 SO 2 ) 2 N ⁇ ), bis (pentafluoroethylsulfonyl
  • preferable ionic liquids include 1-methyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide and N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide. As for these ionic liquids, only 1 type may be used independently and 2 or more types may be used together.
  • the lithium salt used for the ionic liquid electrolyte is the same as the lithium salt used for the liquid electrolyte described above. Note that the concentration of the lithium salt is preferably 0.1 to 2.0 mol / L, and more preferably 0.8 to 1.2 mol / L.
  • the following additives may be added to the ionic liquid.
  • charge / discharge characteristics and cycle characteristics at a high rate can be further improved.
  • Specific examples of the additive include, for example, vinylene carbonate, ethylene carbonate, propylene carbonate, ⁇ -butyl lactone, ⁇ -valerolactone, methyl diglyme, sulfolane, trimethyl phosphate, triethyl phosphate, methoxymethyl ethyl carbonate, Examples thereof include fluorinated ethylene carbonate. These may be used alone or in combination of two or more.
  • the amount of the additive used is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on the ionic liquid.
  • a separator may be used for the electrolyte layer.
  • the separator has a function of holding an electrolyte to ensure lithium ion conductivity between the positive electrode and the negative electrode and a function as a partition wall between the positive electrode and the negative electrode.
  • a separator it is preferable to use a separator.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it may be 4 to 60 ⁇ m in a single layer or multiple layers. desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles to each other or between the inorganic particles and the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • SBR styrene-butadiene rubber
  • VDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate it is preferable to use carboxymethylcellulose (CMC), methyl acrylate, or polyvinylidene fluoride (PVDF).
  • CMC carboxymethylcellulose
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat-resistant insulating layer is preferably 2 to 20% by mass.
  • the binder content is 2% by mass or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by mass or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • the material which comprises a current collector plate (25, 27) is not specifically limited,
  • the well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used.
  • As a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • the seal portion 29 has a function of preventing contact between current collectors and a short circuit at the end of the single cell layer.
  • acrylic resin, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber (ethylene-propylene-diene rubber: EPDM), and the like can be used.
  • an isocyanate-based adhesive an acrylic resin-based adhesive, a cyanoacrylate-based adhesive, or the like may be used, and a hot-melt adhesive (urethane resin, polyamide resin, polyolefin resin) or the like may be used.
  • a hot-melt adhesive urethane resin, polyamide resin, polyolefin resin
  • polyethylene resin and polypropylene resin are preferably used as the constituent material of the insulating layer, and the amorphous polypropylene resin is the main component. It is preferable to use a resin obtained by copolymerizing ethylene, propylene and butene.
  • the exterior body 31 As the exterior body 31, what was formed with the laminate film containing aluminum, for example can be used. Specifically, as the laminate film containing aluminum, for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but the invention is not limited thereto. . Moreover, what was formed with the well-known metal can can also be used as an exterior body. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV. Moreover, since the group pressure to the electric power generation element applied from the outside can be adjusted easily and it is easy to adjust to the desired electrolyte layer thickness, the exterior body is more preferably an aluminate laminate.
  • Example 1 4 parts by mass of liquid epoxy as resin raw material and 16 parts by mass of polyfunctional epoxy resin, 47 parts by mass of nickel particles having an average particle diameter of 5 ⁇ m as conductive particles, 0.05 part by mass of curing agent and 33 parts by mass of methyl ethyl ketone The mixture was stirred and mixed with a high-speed shearing disperser to prepare a coating ink. The obtained coating ink was coated on a resin current collector with a micro bar coater at a speed of 5 m / min to form a conductive layer.
  • the average height of the unevenness in the uneven shape of the conductive layer was 6 ⁇ m, and the average inclination angle of the unevenness was 40 °.
  • 90 parts by mass of hard carbon having an average particle size of 16 ⁇ m and 10 parts by mass of acrylic resin were placed in a universal mixer and stirred at room temperature (25 ° C.) and 150 rpm. Thereafter, it was dried under reduced pressure at 120 ° C. for 16 hours to produce a powder material from which the contained moisture was removed.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • PC propyl carbonate
  • 47 parts by mass of the obtained electrolytic solution was added to prepare a mixture.
  • the obtained mixture was mixed for 120 seconds at a rotational speed of 2000 rpm with a mixing defoaming machine (ARE250, manufactured by Shinky Co., Ltd.) to prepare a negative electrode slurry.
  • the obtained negative electrode slurry was applied onto a resin current collector on which a conductive layer was formed while controlling the amount of slurry applied by using a mask and applicator in which an electrode pattern was punched. Formed.
  • the excess electrolyte solution of the obtained negative electrode active material layer is blotted with a paper wiper, and further a resin current collector on which a conductive layer is formed is placed, and consists of three layers of current collector / negative electrode active material layer / current collector. A dummy negative electrode was produced.
  • Example 2 A resin current collector on which a conductive layer similar to that obtained in Example 1 was formed was used. 88.4 parts by mass of lithium nickel cobalt aluminum composite oxide having an average particle size of 8 ⁇ m, 10 parts by mass of acrylic resin, and 1.6 parts by mass of acetylene black were placed in a universal mixer and stirred at room temperature (25 ° C.) at 150 rpm. Thereafter, it was dried under reduced pressure at 120 ° C. for 16 hours to produce a powder material from which the contained moisture was removed.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • PC propyl carbonate
  • 47 parts by mass of the obtained electrolytic solution was added to prepare a mixture.
  • the obtained mixture was mixed for 120 seconds at a rotation speed of 2000 rpm with a mixing defoaming machine (ARE250, manufactured by Shinki Co., Ltd.) to prepare a positive electrode slurry.
  • the obtained positive electrode slurry was applied onto a resin current collector on which a conductive layer was formed while controlling the amount of slurry applied by using a mask and applicator in which an electrode pattern was punched.
  • the excess electrolyte solution of the obtained positive electrode active material layer is blotted with a paper wiper, and further a resin current collector on which a conductive layer is formed is mounted, and consists of three layers of current collector / positive electrode active material layer / current collector. A dummy positive electrode was produced.
  • the obtained mixture was mixed for 120 seconds at a rotational speed of 2000 rpm with a mixing defoaming machine (ARE250, manufactured by Shinky Co., Ltd.) to prepare a negative electrode slurry.
  • the obtained negative electrode slurry was applied onto a flat nickel current collector while controlling the amount of slurry applied by using a mask with an electrode pattern punched out and an applicator to form a negative electrode active material layer. Absorb the excess electrolyte solution of the obtained negative electrode active material layer with a paper wiper, and place a flat nickel current collector to produce a dummy negative electrode consisting of three layers of current collector / negative electrode active material layer / current collector did.
  • Comparative Example 2 A flat nickel current collector similar to that used in Comparative Example 1 was used. 88.4 parts by mass of lithium nickel cobalt aluminum composite oxide having an average particle size of 8 ⁇ m, 10 parts by mass of acrylic resin, and 1.6 parts by mass of acetylene black were placed in a universal mixer and stirred at room temperature (25 ° C.) at 150 rpm. Thereafter, it was dried under reduced pressure at 120 ° C. for 16 hours to produce a powder material from which the contained moisture was removed.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • PC propyl carbonate
  • 47 parts by mass of the obtained electrolytic solution was added to prepare a mixture.
  • the obtained mixture was mixed for 120 seconds at a rotation speed of 2000 rpm with a mixing defoaming machine (ARE250, manufactured by Shinki Co., Ltd.) to prepare a positive electrode slurry.
  • the obtained positive electrode slurry was applied onto a flat nickel current collector while controlling the amount of slurry applied by using a mask and an applicator in which an electrode pattern was punched to form a positive electrode active material layer.
  • the excess electrolyte solution of the obtained positive electrode active material layer is sucked with a paper wiper, and a flat nickel current collector is placed thereon to produce a dummy positive electrode comprising three layers of current collector / positive electrode active material layer / current collector. did.
  • Table 1 A part of the specification of each example is shown in Table 1.
  • the contact resistance between the current collector and the electrode layer was measured and calculated. Specifically, it was measured and calculated as follows. First, a dummy electrode of each of the above examples was sandwiched between measurement parts having a diameter of 17 mm using an electrical resistance measurement device (Advanced Riko Co., Ltd., TER-200SA). And the load of 0.4 MPa was applied and the resistance value was read. The contact resistance between the current collector and the electrode active material layer was calculated by subtracting the bulk resistance of the current collector, the bulk resistance of the electrode active material layer, and the contact resistance between the measurement part and the current collector from the resistance value. . The obtained results are also shown in Table 1.
  • Example 1 and Example 2 belonging to the scope of the present invention with Comparative Example 1 and Comparative Example 2 outside the present invention, the uneven shape satisfying the relationship represented by h / tan ⁇ ⁇ D is obtained. It can be seen that in Example 1 and Example 2 in which the conductive layer having the contact layer was formed, the contact resistance between the resin current collector and the electrode active material layer was reduced.
  • the contact resistance of Example 1 and Example 2 is lower than the contact resistance of Comparative Example 1 and Comparative Example 2, in particular, substantially including the binder in a state where the electrode active material layer is crystallized.
  • it is considered to have a conductive layer having an uneven shape that satisfies a predetermined relationship. That is, the electrode active material layer that substantially does not contain the crystallized binder usually has a reduced adhesion to the resin current collector.
  • Example 1 and Example 2 having the electrode active material layer substantially free of the binder in the crystallized state, the contact resistance is reduced because the electrode active material layer side of the resin current collector.
  • Example 1 and Example 2 where the average height (h) of the unevenness is 0.1 ⁇ m or more and 20 ⁇ m or less, the contact resistance between the resin current collector and the electrode active material layer is more It can be seen that there is a reduction.
  • Example 1 and Example 2 in which the conductive particles contained in the conductive layer satisfy the relationship represented by A ⁇ D, the contact between the resin current collector and the electrode active material layer It can be seen that the resistance is reduced.
  • Example 1 and Example 2 in which the average particle diameter (A) of the conductive particles is 0.01 ⁇ m or more and 20 ⁇ m or less, the contact resistance between the resin current collector and the electrode active material layer It can be seen that is further reduced.
  • a bipolar lithium ion secondary battery has been described as an example.
  • the type of battery to which the present invention can be applied is not particularly limited, and a single battery layer is included in a power generation element.
  • the present invention can be applied to any conventionally known non-aqueous electrolyte secondary battery such as a so-called parallel stacked lithium ion secondary battery of the type connected in parallel, and further to any conventionally known aqueous electrolyte secondary battery.
  • the secondary battery has been described as an example.
  • the usage form of the battery to which the present invention is applicable is not particularly limited, and can be applied to any conventionally known primary battery. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)

Abstract

電池用電極は、樹脂と導電性フィラーとを含有する平面状の樹脂集電体と、樹脂集電体の少なくとも一方の面側に配置され、電極活物質粒子を含有する電極活物質層と、を具備する。樹脂集電体は、電極活物質層の面側に凹凸形状を有する導電層を備える。凹凸形状は、式(1):h/tanθ<D(式中、hは凹凸の平均高さ、θは凹凸の平均傾斜角、Dは電極活物質粒子の平均粒子径を示す。)で表される関係を満足する。 電池は、上述した電池用電極を有する。

Description

電池用電極及び電池
 本発明は、電池用電極及び電池に関する。
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車やハイブリッド電気自動車等の導入による二酸化炭素排出量の低減に期待が集まっている。そして、これらの実用化の鍵となるモータ駆動用電池の開発が盛んに行われている。
 モータ駆動用電池としては、高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、電池をより高性能にするため、現在急速に開発が進められている。リチウムイオン二次電池は、一般に、正極と負極とこれらの間に位置する電解質とが電池ケースに収納された構成を有する。正極は、正極活物質を含む正極用スラリーを集電体の表面に塗布して形成され、負極は負極活物質を含む負極用スラリーを集電体の表面に塗布して形成される。
 従来、集電体に設けられた導電性樹脂層の表面と活物質層との密着性を改善した電極構造体が提案されている。この電極構造体は、導電性基材の少なくとも片面に導電性を有する樹脂層が形成され、導電性を有する樹脂層の表面粗度Raが0.1μm以上1.0μm以下であり、かつ、導電性を有する樹脂層の膜厚さをt[μm]、樹脂層表面の凹凸の平均傾斜角をθa[度]としたとき、(1/3)t+0.5≦θa≦(1/3)t+10となる範囲である集電体を用いたものであって、導電性を有する樹脂層上に形成されている活物質層を有する(特許文献1参照。)。
国際公開第2013/018686号
 しかしながら、特許文献1に記載された電極構造体にあっては、導電性を有する樹脂層と活物質層との間の接触抵抗の低減が十分なものとなっておらず、集電体全体を樹脂集電体とすることができないという問題点があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、樹脂集電体と電極活物質層との間の接触抵抗を低減し得る電池用電極及び電池を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた。その結果、樹脂集電体の電極活物質層の面側に、所定の関係を満足する凹凸形状を有する導電層を設けることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
 本発明によれば、樹脂集電体と電極活物質層との間の接触抵抗を低減し得る電池用電極及び電池を提供することができる。
図1は、本発明の一実施形態に係る電池の外観を模式的に示す斜視図である。 図2は、図1に示した電池のII-II線に沿った断面を模式的に示す断面図である。 図3は、図2に示した電池用電極のIII線で囲んだ部分を模式的に示す拡大図である。 図4は、結晶化していない状態のバインダー(PVdF)が電極活物質層の構成成分を繊維状に結着している様子を示す走査型電子顕微鏡(SEM)写真である。 図5は、バインダー(PVdF)が加熱処理等の外部刺激を受けて結晶化し、球晶を形成した状態で電極活物質層に含まれている様子を示す走査型電子顕微鏡(SEM)写真である。
 以下、本発明の一実施形態に係る電池用電極及び電池について詳細に説明する。
 まず、本実施形態の電池用電極は、樹脂と導電性フィラーとを含有する平面状の樹脂集電体と、樹脂集電体の少なくとも一方の面側に配置され、電極活物質粒子を含有する電極活物質層と、を具備するものである。そして、樹脂集電体は、電極活物質層の面側に凹凸形状を有する導電層を備える。また、凹凸形状は、式(1):h/tanθ<D(式中、hは凹凸の平均高さ、θは凹凸の平均傾斜角、Dは電極活物質粒子の平均粒子径を示す。)で表される関係を満足する。
 ここで、本発明において「凹凸の平均高さ(h)」とは、JIS B 0601で規定される輪郭曲線の一例である断面曲線の基準長さにおける断面曲線要素の高さの和を断面曲線要素の数で割って得られる算出平均高さである。なお、電池用電極の断面の走査型電子顕微鏡像を実際に観察することによって、断面曲線を規定して、平均値を算出することも可能である。このような平均値を算出するに際しては、例えば、数~数十視野中に観察される凹凸について測定すればよい。
 また、本発明において「凹凸の平均傾斜角(θ)」とは、電池用電極の断面の走査型電子顕微鏡像において、導電層の凹凸形状を構成する各谷における底辺と山における稜線(例えば、谷の底と山の頂とを結ぶ線分などでもよい。)とのなす角を計測し、その平均値を算出することにより、得られるものである。このような平均値を算出するに際しては、例えば、数~数十視野中に観察される凹凸について測定すればよい。
 さらに、本発明において「電極活物質粒子の平均粒子径(D)」とは、例えば、電極活物質粉末自体や電池用電極の断面の走査型電子顕微鏡像において、電極活物質粒子の輪郭線上の任意の2点間の距離のうち最大の距離を測定し、その平均値を算出することにより、得られるものである。このような平均値を算出するに際しては、例えば、数~数十視野中に観察される粒子について測定すればよい。
 このような電池用電極は、導電層と電極活物質層中の電極活物質粒子との接触部位を効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗を低減することができる。
 そして、本実施形態の電池用電極は、電極活物質層が、結晶化した状態のバインダーを実質的に含まないことが好適である。このような電池用電極は、導電層と電極活物質層中の電極活物質粒子との接触部位をより効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗をより低減することができる。
 ここで、「結晶化した状態のバインダー」とは、電極活物質粒子と電極活物質粒子や、電極活物質粒子と他の部材を結着せず、電極活物質層の構造の維持に寄与しないバインダーをいう。例えば、電極活物質粒子とバインダーと含むスラリーを集電体に塗布し、次いで、塗膜を結晶化温度以上融点未満の温度で熱処理し、しかる後、冷却すると、バインダーの結晶化によって、球晶が形成されることがある。このような球晶は、電極活物質粒子と電極活物質粒子や、電極活物質粒子と他の部材を結着せず、バインダーとしての機能を発揮しない。なお、上記塗布工程と熱処理工程との間には、必要に応じて、溶媒を除去する乾燥工程、塗膜を加圧する加圧工程を行ってもよい。ここでの乾燥工程においても、バインダーの結晶化によって、上記した球晶が形成されることがある。また、上記他の部材としては、例えば、導電層や、詳しくは後述する導電助剤、イオン伝導性ポリマーなどを挙げることができる。
 電極活物質層を結晶化した状態のバインダーを実質的に含まない層とする場合、例えば、電極活物質層におけるバインダーの含有割合を少なくしたり、塗膜を結晶化温度以上融点未満の温度で熱処理したりすることを控えることが好適である。その結果、電極活物質層と樹脂集電体との密着性が低減してしまうことがある。しかしながら、樹脂集電体の電極活物質層の面側に、所定の関係を満足する凹凸形状を有する導電層を設けることによって、結晶化した状態のバインダーを実質的に含まない電極活物質層と導電層との密着性が向上する。これによって、導電層と電極活物質層中の電極活物質粒子との接触部位をより効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗をより低減することができる。
 また、本実施形態の電池用電極は、凹凸の平均高さ(h)が、0.1μm以上20μm以下であることが好適である。このような電池用電極は、導電層と電極活物質層中の電極活物質粒子との接触部位をより効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗をより低減することができる。
 つまり、凹凸の平均高さ(h)を0.1μm以上20μm以下とすることにより、粒子径が0.1~100μmの活物質との接触部位を効率的に増加させることができるため好ましく、凹凸の平均高さ(h)を1μm以上10μm以下とすることにより、粒子径が1~20μmの活物質との接触部位を効率的に増加させることができるためより好ましい。
 さらに、本実施形態の電池用電極は、導電層が、導電性粒子を含有し、導電性粒子が、式(2):A<D(式中、Aは導電性粒子の平均粒子径、Dは電極活物質粒子の平均粒子径を示す。)で表される関係を満足することが好適である。
 ここで、本発明において「導電性粒子の平均粒子径(A)」とは、例えば、導電性粉末自体や電池用電極の断面の走査型電子顕微鏡像において、導電性粒子の輪郭線上の任意の2点間の距離のうち最大の距離を測定し、その平均値を算出することにより、得られるものである。このような平均値を算出するに際しては、例えば、数~数十視野中に観察される粒子について測定すればよい。
 このような電池用電極は、導電層の凹凸形状がより適切に形成され、導電層と電極活物質層中の電極活物質粒子との接触部位をより効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗をより低減することができる。
 また、本実施形態の電池用電極は、導電性粒子の平均粒子径(A)が、20μm以下であることが好適である。導電性粒子の平均粒子径(A)の下限は特に規定されないが、取り扱いやすさ等から0.01μm以上であることが好ましい。このような電池用電極は、導電層の凹凸形状がより適切に形成され、導電層と電極活物質層中の電極活物質粒子との接触部位をより効果的に増加させることができる。その結果、樹脂集電体と電極活物質層との間の接触抵抗をより低減することができる。
 つまり、導電性粒子の平均粒子径(A)を20μm以下とすることにより、凹凸の平均高さ(h)を20μm以下にできるため好ましく、導電性粒子の平均粒子径(A)を10μm以下とすることにより、凹凸の平均高さ(h)を10μm以下にできるためより好ましい。
 そして、本実施形態の電池は、上述した本発明の一実施形態に係る電池用電極を有するものである。
 このような電池は、導電層と電極活物質層中の電極活物質粒子との接触部位を効果的に増加させることができ、樹脂集電体と電極活物質層との間の接触抵抗を低減することができる。その結果、電池の内部抵抗を低減することができる。
 以下、本発明の一実施形態に係る電池用電極及び電池について双極型リチウムイオン二次電池を一例に挙げて図面を参照しながら詳細に説明する。なお、以下で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、本発明の一実施形態に係る電池の一例である双極型リチウムイオン二次電池の外観を模式的に示す斜視図である。また、図2は、図1に示した双極型リチウムイオン二次電池のII-II線に沿った断面を模式的に示す断面図である。さらに、図3は、図2に示した双極型リチウムイオン二次電池用電極のIII線で囲んだ部分を模式的に示す拡大図である。
 図1~図3に示すように、本実施形態の双極型リチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、ラミネートフィルムで形成された外装体31の内部に封止された構造を有する。
 そして、双極型リチウムイオン二次電池10の発電要素21は、集電体11の一方の面側に電気的に結合した正極活物質層13が形成され、集電体11の他方の面側に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。なお、正極活物質層や負極活物質層は電極活物質層の具体例である。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面内方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23及び電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
 また、双極型電極23は、平面状の樹脂集電体111と、樹脂集電体111の一方の面側に配置された正極活物質層13と、樹脂集電体111の他方の面側に配置された負極活物質層15とを具備している。そして、樹脂集電体111は、正極活物質層13及び負極活物質層15の面側に凹凸形状を有する導電層113を備えている。また、負極活物質層15は、負極活物質粒子151を含有している。なお、負極活物質粒子は電極活物質粒子の一例であり、電極活物質粒子は、正極活物質粒子であってもよい。つまり、図中では負極活物質層側を示しているが、これに限定されるものでないことは言うまでもない。さらに言えば、正極活物質層側に同様の構成を有していてもよい。また、図示しないが、樹脂集電体は、樹脂と導電性フィラーとを含有している。
 さらに、導電層113における凹凸形状は、式(1):h/tanθ<D(式中、hは凹凸の平均高さ、θは凹凸の平均傾斜角、Dは負極活物質粒子の平均粒子径を示す。)で表される関係を満足する。なお、図中では凹凸の高さ、凹凸の傾斜角及び負極活物質粒子の粒子径がそれぞれ同じ場合を示しているが、これに限定されるものでないことは言うまでもない。つまり、凹凸の高さ、凹凸の傾斜角及び負極活物質の粒子径がそれぞれ異なる構成を有していてもよい。なお、図示例において、凹凸の平均高さ(h)は、(h+h+h+h)/4より算出することができる。また、図示例において、凹凸の平均傾斜角(θ)は、(θ+θ1’+θ+θ2’+θ+θ3’+θ+θ4’)/8より算出することができる。
 また、隣接する正極活物質層13、電解質層17及び負極活物質層15は、一つの単電池層19を構成する。したがって、双極型リチウムイオン二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、単電池層19の外周部にはシール部(絶縁層)29が配置されている。これにより、電解質層17からの電解液の漏れによる液絡を防止し、電池内で隣り合う集電体11同士が接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりすることを防止している。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。
 さらに、双極型リチウムイオン二次電池10では、正極側の最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されてラミネートフィルムで形成された外装体31から導出されている。一方、負極側の最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されて外装体31から導出されている。
 なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型リチウムイオン二次電池10では、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型リチウムイオン二次電池10でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21をラミネートフィルムで形成された外装体31に減圧封入し、正極集電板25及び負極集電板27を外装体の外部に取り出した構造とするのがよい。
 以下、本実施形態の双極型リチウムイオン二次電池の主な構成要素について説明する。
<集電体>
 集電体11は、樹脂と導電性フィラーとを含有する平面状の樹脂集電体111と、正極活物質層13(又は負極活物質層15)の面側に凹凸形状を有し、好ましくは導電性粒子を含有する導電層113を備える。そして、凹凸形状が、式(1):h/tanθ<D(式中、hは凹凸の平均高さ、θは凹凸の平均傾斜角、Dは正極(又は負極)活物質層における正極(又は負極)活物質粒子の平均粒子径を示す。)で表される関係を満足する。また、凹凸の平均高さ(h)は、0.1μm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。
 樹脂集電体111に含有される樹脂としては、導電性高分子材料又は非導電性高分子材料が挙げられる。そして、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリオキサジアゾールなどが挙げられる。また、非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などが挙げられる。
 また、樹脂集電体111に含有される導電性フィラーとしては、導電性を有する物質であれば特に限定されることなく用いることができる。例えば、導電性や耐電位性、リチウムイオン遮断性に優れた材料として、金属、導電性カーボンなどが挙げられる。金属としては、特に限定されるものではないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In及びSbからなる群から選ばれる少なくとも1種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に限定されるものではない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン及びカーボンナノバルーンからなる群より選ばれる少なくとも1種を含むものである。なお、導電性フィラーの含有量は、集電体に十分な導電性を付与できる量であれば特に限定されるものではなく、一般的には、5~35質量%程度である。
 さらに、導電層113としては、上述した凹凸形状を形成して接触抵抗を低減し得るものであれば、特に限定されるものではない。例えば、導電層113は導電性粒子を含有することが好ましい。また、導電性粒子を固定するものとして、例えば、エポキシ樹脂などを用いることができる。導電性粒子としては、導電性を有する物質であれば特に限定されることなく用いることができる。例えば、導電性や耐電位性に優れた材料として、金属、導電性カーボンなどが挙げられる。金属としては、特に限定されるものではないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In及びSbからなる群から選ばれる少なくとも1種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に限定されるものではない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン及びカーボンナノバルーンからなる群より選ばれる少なくとも1種を含むものである。そして、導電性粒子は、式(2):A<D(式中、Aは導電性粒子の平均粒子径、Dは正極(又は負極)活物質粒子の平均粒子径を示す。)で表される関係を満足することが好ましい。また、特に導電性粒子の平均粒子径(A)が20μm以下であることが好ましく、10μm以下であることがより好ましい。また、上述したエポキシ樹脂に限定されるものではなく、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリオキサジアゾールなどの導電性高分子材料を用いることができる。また、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などの非導電性高分子材料を用いることもできる。
 上述した導電層の凹凸形状は、例えば、平面状の樹脂集電体上にD>Aの関係を満足する平均粒子径(A)の導電性粒子を含む塗布用インクを塗布し、乾燥することによって形成することができるが、これに限定されるものではない。例えば、凹凸の平均高さ(h)を小さくするためには、導電性粒子の平均粒子径(A)を小さくしたり、含有割合を少なくしたり、塗布用インクの粘度を低くしたり、乾燥時間を長くすることが好ましく、凹凸の平均高さ(h)を大きくするためには、導電性粒子の平均粒子径(A)を大きくしたり、含有割合を多くしたり、塗布用インクの粘度を高くしたり、乾燥時間を短くすることが好ましい。また、上述した導電層の凹凸形状は、例えば、上述した凹凸形状を形成する導電層を基材上に形成し、平面状の樹脂集電体上に転写することによって形成してもよい。さらに、上述した導電層の凹凸形状は、例えば、平面状の樹脂集電体上に導電性粒子を含む塗布用インクを塗布し、乾燥した後、上述した凹凸形状を形成する金型で熱プレスすることによって形成してもよい。これらのうち、少ない工程数で凹凸形状を有する導電層を形成できるという作業の簡便性の観点から、平面状の樹脂集電体上にD>Aの関係を満足する平均粒子径(A)の導電性粒子を含む塗布用インクを塗布し、乾燥することによって導電層の凹凸形状を形成することが好ましい。
<正極活物質層>
 正極活物質層13は、正極活物質粒子を含み、必要に応じて、バインダー、導電助剤、イオン伝導性ポリマー、リチウム塩などを含む。正極活物質としては、例えば、金属酸化物を用いると好ましい。一般的に、正極活物質を金属酸化物とすると電池特性(容量)の観点から実用的である。しかしながら、活物質として金属酸化物を使用すると、金属酸化物は、詳しくは後述する好適形態であるコア-シェル型電極材料のシェル部を構成するゲル形成性ポリマーとの親和性が高くなく、接着力が十分に得られないことがある。これに対し、詳しくは後述する第一の導電性材料によって正極活物質表面を被覆することにより、正極活物質に対するゲル形成性ポリマーの接着性を向上させることができる。したがって、第一の導電性材料を用いることによる効果が顕著に発現し得るという点で、正極活物質として金属酸化物を用いることは好ましい。
 正極活物質として用いられる好ましい金属酸化物としては、例えば、LiMn、LiCoO、LiNiO、LiFeO、LiTi12、Li(Ni-Mn-Co)O及びこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、LiFePO等のリチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物及びリチウム-遷移金属リン酸化合物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられ、さらに好ましくはLi(Ni-Mn-Co)O及びこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)が用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、Ni及びCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。
 NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
 NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
 一般に、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)は、材料の純度向上及び電子伝導性向上という観点から、容量及び出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。
 より好ましい形態としては、一般式(1)において、b、c及びdが、0.49≦b≦0.51、0.29≦c≦0.31、0.19≦d≦0.21であることが、容量と寿命特性とのバランスを向上させるという観点からは好ましい。例えば、LiNi0.5Mn0.3Co0.2は、一般的な民生電池で実績のあるLiCoO、LiMn、LiNi1/3Mn1/3Co1/3などと比較して、単位質量あたりの容量が大きく、エネルギー密度の向上が可能となることでコンパクトかつ高容量の電池を作製できるという利点を有しており、航続距離の観点からも好ましい。なお、より容量が大きいという点ではLiNi0.8Co0.1Al0.1がより有利であるが、寿命特性に難がある。これに対し、LiNi0.5Mn0.3Co0.2はLiNi1/3Mn1/3Co1/3並みに優れた寿命特性を有しているのである。
 なお、上記以外の正極活物質が用いられてもよいことはもちろんである。また、正極活物質層に含まれる正極活物質(後述するコア-シェル型電極材料の場合にはコア部のうち、第一の導電性材料を除いた部分)の平均粒子径は特に限定されるものではないが、高出力化の観点からは、好ましくは0.1~100μm、より好ましくは1~20μmである。
 また、正極活物質は、コア-シェル型電極材料(コア-シェル型正極材料)の形態で、正極活物質層13に含まれていることが好適である。
 コア-シェル型正極材料は、正極活物質の表面の少なくとも一部が第一の導電性材料により被覆されてなるコア部と、コア部の表面を被覆したシェル部とから構成されている。
 そして、このコア部は、正極活物質である金属酸化物(例えば、LoCoO)が、第一の導電性材料の一例である炭素材料により被覆されてなる構成を有している。なお、正極活物質の表面の全体が第一の導電性材料で被覆されていてもよく、正極活物質の表面の一部が露出し、直接基材(詳細は後述)に接していてもよい。
 また、シェル部は、ゲル形成性ポリマーからなる基材中に、第二の導電性材料の一例であるアセチレンブラックが含まれてなる構成を有している。なお、コア部の表面の全体がシェル部で被覆されていてもよく、コア部の表面の一部が露出していてもよい。
 また、コア部に対するシェル部の質量比は特に限定されないが、コア部100質量部に対して、シェル部は、0.1~20質量部であると好ましく、0.5~5質量部であるとより好ましい。
 以下では、コア-シェル型電極材料が正極材料である場合を例に挙げて、コア部及びシェル部の詳細について説明する。ただし、後述するように、コア-シェル型電極材料は負極材料としても適用可能なものである。
 コア部は正極活物質及び第一の導電性材料を含む。また、正極活物質は、その表面が第一の導電性材料により被覆(担持)されている。
 なお、本明細書において「被覆」又は「担持」とは、第一の導電性材料が電極活物質表面の少なくとも一部に化学的又は物理的に結合していることを意味する。また、電極活物質の表面が第一の導電性材料により被覆されていることは、製造した電極活物質又は電極から採取(分離)した電極活物質を、走査型電子顕微鏡等の公知の手段により観察することによって確認できる。すなわち、走査型電子顕微鏡像等において、第一の導電性材料が活物質粒子に付着した状態で観察されることによって確認できる。
 ここで、正極活物質の第一の導電性材料による被覆率(担持率)は、特に限定されない。電池特性及び導電性の向上効果などを考慮すると、正極活物質の第一の導電性材料による被覆率(担持率)は、好ましくは20面積%以上であり、より好ましくは50面積%以上であり、さらにより好ましくは75面積%以上である(上限:100面積%)。
 本明細書において「活物質の導電性材料による被覆率(担持率)」は、オージェ電子分光法により測定・算出した値を採用する。
 以下、コア部を形成する、正極活物質及び第一の導電性材料についてそれぞれ説明する。
 正極活物質に被覆される第一の導電性材料は、正極活物質表面の少なくとも一部を被覆でき、かつ、導電性を有するものであればいかなる材料でもよい。すなわち、第一の導電性材料は、コア部と電極材料の表面(シェル部の外表面)との導電パスを形成できるようなものであればよい。
 第一の導電性材料として、例えば、炭素材料、導電性金属酸化物、金属、導電性セラミックス、導電性高分子などが挙げられる。
 上記材料の中でも、第一の導電性材料は、炭素材料が好ましい。シェル部を構成するゲル形成性ポリマーと炭素材料との親和性により、炭素材料を介して、正極活物質がゲル形成性ポリマーからなる基材を強固に保持することができる。すなわち、コア部とシェル部とが強固に接着される。したがって、構造的に安定した電極材料を提供することができる。また、正極活物質自体の導電性が低い場合であっても、正極活物質を炭素材料により被覆することで、炭素材料の導電性に起因して、コア部の導電性を向上させることができる。
 以下、炭素材料について説明する。
 第一の導電性材料としての炭素材料は、特に限定されず、正極活物質の表面の少なくとも一部を被覆できるものであればいかなるものでもよい。例えば、炭素材料は、導電助剤(電極活物質層の導電性を向上させるために配合される添加物)として使用されるものと同じであってもよい。
 具体的には、アセチレンブラック、ファーネスブラック、カーボンブラック、チャンネルブラック、グラファイトなどが挙げられる。これらのうち、Liイオンの挿入脱離を抑制することによって、炭素材料の被覆を維持するという観点から、炭素材料は低結晶性を有することが好ましく、アセチレンブラックを使用することがより好ましい。
 炭素材料の形状(活物質に被覆された状態における形状)もまた、特に限定されず、粒子形態でも繊維形態でもよい。被覆のしやすさの点から、粒子形態が好ましく、導電性の点からは、繊維形態が好ましい。炭素材料の大きさもまた、特に限定されない。例えば、炭素材料が粒子形態の場合には、平均粒子径(2次粒子径)が、好ましくは10~200nmであり、より好ましくは20~150nmである。また、炭素材料が繊維形態の場合には、直径が、好ましくは20~500nmであり、より好ましくは50~300nmであり、長さが、好ましくは5~20μmであり、より好ましくは8~15μmである。このような大きさであれば、炭素材料が容易に活物質表面に被覆される。また、このような大きさであれば、炭素材料が活物質表面に均一に被覆される。
 シェル部は、上述したようにゲル形成性ポリマーからなる基材中に、第二の導電性材料(ここではアセチレンブラック)が含まれてなる構成を有している。なお、後述する電解質層に含まれる電解質が電解液を含む場合(つまり、電解質が液体電解質又はゲル電解質である場合)、正極活物質層13には通常、電解質層に含まれる電解質由来の電解液が浸透している。このため、シェル部を構成する基材(ゲル形成性ポリマー)は電解液を吸収して膨潤し、ゲル状態になっている。
 基材の構成材料は、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート樹脂などを用いることができる。これらは1種を単独で又は2種以上を混合して用いることができる。また、ビニル樹脂としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートを必須構成単量体とするいわゆるアクリル樹脂が好ましい。さらに、ゲル状態での引っ張り破断伸び率が10%以上のゲル形成性ポリマーであることが好ましい。
 また、ビニル樹脂は、ビニルモノマーを必須構成単量体とする重合体を含んでなることが望ましい。
 ビニルモノマーを必須構成単量体とする重合体は柔軟性を有するため、電極活物質を重合体で被覆することにより電極の体積変化を緩和し、電極の膨脹を抑制することができる。
 特に、ビニルモノマーとしてカルボキシル基を有するビニルモノマー及び一般式(2):CH=C(R)COOR(式中、Rは水素原子又はメチル基であり、Rは炭素数4~36の分岐アルキル基である。)で表されるビニルモノマーを含むことが望ましい。
 カルボキシル基を有するビニルモノマーとしては、(メタ)アクリル酸、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価又はそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸が好ましく、メタクリル酸が特に好ましい。
 上記一般式(2)で表されるビニルモノマーにおいて、Rは水素原子又はメチル基を表す。Rはメチル基であることが好ましい。
 Rは炭素数4~36の分岐アルキル基であり、Rの具体例としては、1-アルキルアルキル基(1-メチルプロピル基(sec-ブチル基)、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1-メチルペンチル基、1-エチルブチル基、1-メチルヘキシル基、1-エチルペンチル基、1-メチルヘプチル基、1-エチルヘキシル基、1-メチルオクチル基、1-エチルヘプチル基、1-メチルノニル基、1-エチルオクチル基、1-メチルデシル基、1-エチルノニル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等)、2-アルキルアルキル基(2-メチルプロピル基(iso-ブチル基)、2-メチルブチル基、2-エチルプロピル基、2,2-ジメチルプロピル基、2-メチルペンチル基、2-エチルブチル基、2-メチルヘキシル基、2-エチルペンチル基、2-メチルヘプチル基、2-エチルヘキシル基、2-メチルオクチル基、2-エチルヘプチル基、2-メチルノニル基、2-エチルオクチル基、2-メチルデシル基、2-エチルノニル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等)、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基及び34-アルキルアルキル基等)、並びに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)及びα-オレフィン(炭素数5~20)オリゴマー(4~8量体)等に対応するオキソアルコールのアルキル残基のような1又はそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
 これらのうち、電解液の吸液の観点から好ましいのは2-アルキルアルキル基であり、さらに好ましいのは2-エチルヘキシル基及び2-デシルテトラデシル基である。
 また、重合体を構成する単量体には、ビニルモノマー及び上記一般式(2)で表されるビニルモノマーの他に、活性水素を含有しない共重合性ビニルモノマーが含まれていてもよい。
 活性水素を含有しない共重合性ビニルモノマーとしては、下記の(1)~(5)が挙げられる。
 (1)炭素数1~20のモノオールと(メタ)アクリル酸から形成されるカルビル(メタ)アクリレート
 上記モノオールとしては、(i)脂肪族モノオール[メタノール、エタノール、n-及びi-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、n-オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等]、(ii)脂環式モノオール[シクロヘキシルアルコール等]、(iii)芳香脂肪族モノオール[ベンジルアルコール等]及びこれらの2種以上の混合物が挙げられる。
 (2)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキシド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキシド(以下POと略記)10モル付加物(メタ)アクリレートなど]
 (3)窒素含有ビニル化合物
 (3-1)アミド基含有ビニル化合物
(i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)もしくはジアラルキル(炭素数7~15)(メタ)アクリルアミド[N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミドなど]、ジアセトンアクリルアミド
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド(ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドンなど))
 (3-2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレートなど]
(ii)4級アンモニウム基含有(メタ)アクリレート〔3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートなど]の4級化物(前記の4級化剤を用いて4級化したもの)など〕
 (3-3)複素環含有ビニル化合物
 ピリジン化合物(炭素数7~14、例えば2-及び4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
 (3-4)ニトリル基含有ビニル化合物
 炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
 (3-5)その他ビニル化合物
 ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)など
 (4)ビニル炭化水素
 (4-1)脂肪族ビニル炭化水素
 炭素数2~18又はそれ以上のオレフィン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセンなど]、炭素数4~10又はそれ以上のジエン[ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエンなど]など
 (4-2)脂環式ビニル炭化水素
 炭素数4~18又はそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン、リモネン及びインデン)
 (4-3)芳香族ビニル炭化水素
 炭素数8~20又はそれ以上の芳香族不飽和化合物及びそれらの誘導体、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、スチレンスルホン酸リチウム
 (5)ビニルエステル、ビニルエーテル、ビニルケトン、不飽和ジカルボン酸ジエステル
 (5-1)ビニルエステル
 脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-及びジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]
 芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-及びジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
 (5-2)ビニルエーテル
 脂肪族ビニルエーテル〔炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル[ビニルメチルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテルなど]、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル[ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテルなど]、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタンなど]〕
 芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)
 (5-3)ビニルケトン
 脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)
 芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)
 (5-4)不飽和ジカルボン酸ジエステル
 炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分枝鎖もしくは脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分枝鎖もしくは脂環式の基)
 上記(3)として例示したもののうち電解液の吸液及び耐電圧の観点から好ましいのは、(3-1)、(3-2)、(3-3)及び(3-4)であり、さらに好ましいのは、(3-1)のうちのメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(3-4)のうちのスチレンスルホン酸リチウムである。
 重合体において、カルボキシル基を有するビニルモノマー、上記一般式(2)で表されるビニルモノマー及び活性水素を含有しない共重合性ビニルモノマーの含有量は、カルボキシル基を有するビニルモノマーが0.1~80質量%、上記一般式(2)で表されるビニルモノマーが0.1~99.9質量%、活性水素を含有しない共重合性ビニルモノマーが0~99.8質量%であることが望ましい。
 モノマーの含有量が上記範囲内であると、電解液への吸液性が良好となる。
 より望ましい含有量は、カルボキシル基を有するビニルモノマーが30~60質量%、上記一般式(2)で表されるビニルモノマーが5~60質量%、活性水素を含有しない共重合性ビニルモノマーが5~80質量%であり、さらに望ましい含有量は、カルボキシル基を有するビニルモノマーが35~50質量%、上記一般式(2)で表されるビニルモノマーが15~45質量%、活性水素を含有しない共重合性ビニルモノマーが20~60質量%である。
 重合体の数平均分子量の好ましい下限は3,000、さらに好ましくは50,000、とくに好ましくは100,000、最も好ましくは200,000であり、好ましい上限は2,000,000、さらに好ましくは1,500,000、とくに好ましくは1,000,000、最も好ましくは800,000である。
 重合体の数平均分子量は、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
 重合体の溶解度パラメータ(SP値)は9.0~20.0(cal/cm1/2であることが望ましい。重合体(B)のSP値は9.5~18.0(cal/cm1/2であることがより望ましく、9.5~14.0(cal/cm1/2であることがさらに望ましい。重合体(B)のSP値が9.0~20.0(cal/cm1/2であると、電解液の吸液の点で好ましい。
 また、重合体のガラス転移点[以下Tgと略記、測定法:DSC(走査型示差熱分析)法]は、電池の耐熱性の観点から好ましくは80~200℃、さらに好ましくは90~180℃、とくに好ましくは100~150℃である。
 本明細書において「引っ張り破断伸び率」とは、基材の構成材料であるゲル形成性ポリマーの柔軟性を示す指標であり、例えば、厚さ500μmのシート状の樹脂をダンベル状に打ち抜き、電解液(1mol/L LiPF、エチレンカーボネート(EC)/プロピレンカーボネート(PC)=50/50(質量比))に50℃にて3日間浸した後、ASTM D683(試験片形状TypeII)に準拠した測定方法により得られる値である。ゲル形成性ポリマーの引っ張り破断伸び率の値は、10%以上であればよいが、好ましくは20%以上であり、より好ましくは30%以上であり、特に好ましくは40%以上であり、最も好ましくは50%以上である。ゲル形成性ポリマーの引っ張り破断伸び率の値は、大きいほど好ましい。
 シェル部において基材中に含まれる第二の導電性材料の具体的な種類やその含有形態について特に限定されるものではなく、コア部と電極材料の表面(シェル部の外表面)との導電パスを形成できるような形態であればよい。また、第一の導電性材料と、第二の導電性材料とは、同じ材料を用いてもよいが、これらは、コア-シェル型正極材料において明確に区別される。すなわち、正極活物質表面上に直接被覆されるものが第一の導電性材料であり、シェル部内に分散されているものが第二の導電性材料である。本形態においては、第一の導電性材料によって正極活物質表面を被覆することで、予めコア部を製造し、次いで、当該コア部表面に第二の導電性材料を含むシェル部を形成する。このように、コア-シェル型正極材料の製造工程において、どの時点で添加されたかという観点において、第一の導電性材料と、第二の導電性材料とは区別される。
 第二の導電性材料の種類としては、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維(例えば、気相成長炭素繊維(VGCF))などの炭素材料;種々のカーボンナノチューブ(CNT)、その他の導電化繊維が挙げられる。導電性材料の含有形態については、第二の導電性材料がアセチレンブラックや炭素繊維などの繊維状構造を取り得る材料である場合には、コア部を構成する電極活物質又は第一の導電性材料の表面と電極材料の表面(シェル部の外表面)とが第二の導電性材料を介して電気的に導通していることが好ましい。
 シェル部に含まれる基材及び第二の導電性材料の含有量の比率についても特に限定されるものではないが、一例として、基材100質量部に対して、第二の導電性材料の含有量が好ましくは10~400質量部であり、より好ましくは25~150質量部である。
 導電性材料の含有量が10質量部以上であれば、十分な導電パスを形成することが可能となり、電池の内部抵抗の低減(上昇の抑制)が可能となる。一方、導電性材料の含有量が400質量部以下であれば、シェル層の安定性という観点から好ましい。なお、これらの含有量の比率の値は、50個以上のコア-シェル型電極活物質について測定した値の平均値として算出するものとする。
 上述したように、コア部の表面がシェル部で被覆されていることで、電池の内部抵抗の低減(上昇の抑制)効果が得られる。
 以上、正極活物質層13に含まれるコア-シェル型正極材料の具体的な形態について説明したが、正極活物質層13は、上述したコア-シェル型正極材料以外の(例えば、従来と同様の)正極活物質を含んでもよい。
 バインダーとしては、ポリフッ化ビニリデン(PVdF)などの溶剤系バインダーや、水系バインダーが挙げられる。
 電極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。さらに、本形態において活物質層に含ませるバインダーとして水系バインダーを用いると、活物質層の塗工の際に調製する活物質スラリーの調製用溶媒として水が用いられるが、この場合にはコア-シェル型電極材料をさらに活物質スラリーに添加しても、当該電極材料を構成するゲル形成性材料が調製用溶媒としての水に溶解する虞は小さい。このため、電極材料を安定的に利用することができ、しかも物理架橋ゲルを形成し得るゲル形成性ポリマーを電極材料の製造の際に採用することができるという利点もある。
 水系バインダーとは水を溶媒若しくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、又はこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックス又はエマルジョンと表現される全てを含み、水と乳化又は水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80mol%以上、より好適には90mol%以上)及びその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80mol%ケン化物、ポリビニルアルコールの1~50mol%部分アセタール化物等)、デンプン及びその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース及びこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミド及び/又は(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂等)、ポリアミドポリアミン若しくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム及びメタクリル酸メチルゴムからなる群から選ばれる少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコール及びその変性体、デンプン及びその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース及びこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、又はポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有質量比は、特に限定されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.1~10であることが好ましく、0.5~2であることがより好ましい。
 導電助剤とは、電極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、上述した第二の導電性材料と同様の、ケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与し得る。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系及びポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 正極活物質層13及び後述の負極活物質層15中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整することができる。各活物質層の厚さについても特に限定されるものではなく、電池についての従来公知の知見が適宜参照することができる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。
 以下、電極活物質層が、結晶化した状態のバインダーを実質的に含まない形態の場合について説明する。
 電極活物質層が、結晶化した状態のバインダーを実質的に含まない場合には、電極活物質層に含まれる全固形分量100質量%に対して、結晶化した状態のバインダーの含有量は、1質量%以下である。結晶化した状態のバインダーが含まれている場合、電極活物質層を厚くすると、電極活物質層にクラック(割れ)が生じてしまう。その結果、電池の内部抵抗が増大したり、サイクル耐久性が低下してしまう。好ましくは、電極活物質層に含まれる全固形分量100質量%に対して、結晶化した状態のバインダーの含有量は0.5質量%以下であり、より好ましくは0.2質量%以下であり、更に好ましくは0.1質量%以下であり、最も好ましくは0質量%である。
 なお、電池のエネルギー密度を向上させるという観点からは、充放電反応の進行にあまり寄与しない部材を電極活物質層に含有させないことが好ましい。したがって、電極活物質層は、電極活物質粒子と他の部材とを結着させ、電極活物質層の構造を維持するために添加されるバインダーを実質的に含まないことが好ましい。具体的には、バインダーの含有量は、電極活物質層に含まれる全固形分量100質量%に対して、好ましくは10質量%以下であり、より好ましくは1質量%以下であり、更に好ましくは0.5質量%以下であり、更により好ましくは0.2質量%以下であり、特に好ましくは0.1質量%以下であり、最も好ましくは0質量%である。
 ただし、結晶化していない状態のバインダー含むことは、電池のサイクル耐久性の向上という観点からは好ましい。電極活物質層は、結晶していない状態のバインダーを、電極活物質層の総体積に対して、好ましくは0.5~3.3体積%の量で、より好ましくは1.0~2.5体積%の量で含む。このような構成とすると、バインダーをほとんど又はまったく含まない場合と比較して、電池の液量係数の値を大きくした場合に、電極活物質層が崩壊するのを効果的に抑制することができるという利点がある。ここで、「液量係数」とは、電池に注入される電解液の体積の、発電要素が吸液し得る電解液の体積に対する比率であり、この値が大きいほど液枯れが生じにくくなることから電池の容量特性などの向上に寄与し得る。例えば、発電要素がちょうど吸液し得るだけの電解液を注液することにより作製された電池の液量係数は1であり、注液される電解液の体積が、発電要素がちょうど吸液し得るだけの電解液の体積よりも多くなるほど、液量係数の値は大きくなる。結晶化していない状態のバインダーを含むと、上述したように電極活物質層の形状を保持しつつ、液量係数を大きくすることが可能である。したがって、液量係数の値は、好ましくは1.1以上であり、より好ましくは1.4以上である。一方、液量係数の値の上限値について特に限定されないが、通常は2以下程度であればよい。
 結晶化した状態のバインダーを実質的に含まない電極活物質層に含まれ得るバインダーとしては、特に限定されないが、水系溶媒に分散させて用いる水系バインダー以外のバインダーが好ましい。例えば、半結晶性ポリマー又は非晶性ポリマーからなるバインダーが用いられ得るが、特に限定されない。半結晶性ポリマーは、結晶領域及び非晶(アモルファス)領域の双方を含むポリマーであり、熱分析測定で多重融解挙動を示す。このようなバインダーとしては、バインダーとして機能し得るのであれば任意のバインダーが用いられ得る。なお、ポリマーがバインダーとして機能するためには、まず、絶縁性材料であって充放電時に副反応(酸化還元反応)を起こさない材料であることが必要である。また、以下の3つの点を満たすものがより好ましい(1)活物質層の作製に用いられるスラリーを安定な状態に保つ(分散作用や増粘作用を有している);(2)電極活物質、導電助剤等の粒子同士を固着させ電極としての機械的強度を維持させ、かつ粒子同士の電気的接触を保つ;(3)集電体に対して接着力(結着力)を有する。
 このような観点から、バインダーを構成するポリマーとしては、ポリフッ化ビニリデン(PVdF)、テトラフルオロエチレン(TFE)とPVdFとの共重合体、ポリテトラフロオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素系樹脂、フッ化ビニリデン-ヘキサフルオロプロピレン系フッ素ゴム(VdF-HFP系フッ素ゴム)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VdF-HFP-TFE系フッ素ゴム)、フッ化ビニリデン-ペンタフルオロプロピレン系フッ素ゴム(VdF-PFP系フッ素ゴム)、フッ化ビニリデン-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VdF-PFP-TFE系フッ素ゴム)、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VdF-PFMVE-TFE系フッ素ゴム)、フッ化ビニリデン-クロロトリフルオロエチレン系フッ素ゴム(VdF-CTFE系フッ素ゴム)等のフッ化ビニリデン系フッ素ゴム等のフッ素系樹脂やゴムを用いることができる。この他にも、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリメチルペンテン、及びポリブテンからなる群から選択される少なくとも1種、又はポリフッ化ビニリデン(PVdF)の水素原子が他のハロゲン元素にて置換された化合物を用いることができる。これらのポリマーからなるバインダーは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であるため、電極活物質層に好適に使用が可能である。
 さらに、例えば、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性ポリマー、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いられてもよいし、2種以上が併用されてもよい。
 バインダーを構成するポリマーの重量平均分子量(Mw)は、5000~10000であることが好ましく、7000~8000であることが好ましい。なお、本明細書において、バインダーを構成するポリマーのMwの値は、ゲル浸透クロマトグラフィー(GPC)により測定した値を採用するものとする。
 バインダーを構成するポリマーの結晶化温度(Tc)は、ポリマーの種類に応じて決まるものであるが、その具体的な値について特に限定されるものではない。水分除去の観点や乾燥時の温度制御が容易であることから、バインダーを構成するポリマーの結晶化温度は、好ましくは100℃以上であり、より好ましくは100~150℃であり、さらに好ましくは110~130℃である。例えば、バインダーを構成するポリマーの好ましい一例であるポリフッ化ビニリデン(PVdF)の結晶化温度(Tc)は、130℃である。
 また、バインダーを構成するポリマーの融点(Tm)についても、ポリマーの種類に応じて決まるものであるが、乾燥時の温度制御が容易であることから、バインダーを構成するポリマーの融点は、好ましくは110℃以上であり、より好ましくは120~300℃であり、さらに好ましくは140~260℃である。一般に、バインダーを構成するポリマーにおいて、加熱により結晶領域が壊れて流動性を示すようになる現象が「融解」であり、この温度をポリマーの「融点(Tm)」としている。また、ポリマーは一般に融点(Tm)の多様性を示す特徴的性質を持っていることから、それぞれのポリマーの融点の具体的な値を特定することは難しい。例えば、バインダーを構成するポリマーの好ましい一例であるポリフッ化ビニリデン(PVdF)の融点(Tm)は、170℃(160℃~180℃の融点帯を備えている)である。同様に、ポリブチレンテレフタレートのTm=228℃、ポリエチレンテレフタレートのTm=260℃、ポリエチレンのTm=140℃、ポリプロピレンのTm=165℃、ポリメチルペンテンのTm=235℃、ポリブテンのTm=165℃であり、Tm近傍に融点帯を備えている。
 バインダーを構成するポリマーのガラス転移温度(Tg)もまた、ポリマーの種類に応じて決まるものであるが、生産環境の観点から、-50~50℃の範囲のガラス転移温度を有する半結晶性ポリマーを使用することが好ましい。例えば、バインダーを構成するポリマーの好ましい一例であるポリフッ化ビニリデン(PVdF)のガラス転移温度(Tg)は、70~81℃である。
 なお、本明細書において、バインダーを構成するポリマーの結晶化温度(Tc)、融点(Tm)及びガラス転移温度(Tg)は、いずれもDSC(示差走査熱量測定)により求めることができる。通常、ガラス転移は非晶質構造が増加する際に起こる。このような転移はDSC曲線のベースラインに段となって現れる。これは、試料中の熱容量の変化による。温度の上昇に伴い、非晶質構造の粘度が低下し、ある点で分子が自発的に結晶化するのに十分な温度となるが、これが結晶化温度(Tc)である。非晶質固体から結晶性固体に転移する際は発熱反応となり、Tcは山のピークとして現れる。さらに温度が上昇すると最終的に融点(Tm)となり、吸熱(谷のピーク)として現れる。DSCの熱分析は、30℃/分で昇温し、融点ピークを測定(融解温度)後、30℃/分で降温して、再結晶化点(結晶化温度)を測定すればよい。
 バインダーが結晶化した状態であるかどうかは、例えば電極活物質層の断面を走査型電子顕微鏡(SEM)で観察することで確認することができる。また、IRを用いて熱処理前後のバインダーのピークシフトを観測することでも確認することができる。図4は、バインダーとして結晶化していない状態のPVdFが電極活物質層の構成成分を繊維状に結着している様子を示す走査型電子顕微鏡(SEM)写真である。電極活物質層は、正極活物質としてLiNi0.8Co0.15Al0.05、導電助剤としてのアセチレンブラック及び炭素繊維(カーボンナノファイバー)を含み、バインダーとしてポリフッ化ビニリデン(PVdF)を結晶化していない状態で含んでいる。図4に示すように、結晶化していない状態のPVdF101は繊維状の形状を有し、正極活物質102などの電極活物質層構成成分を繊維状に結着している。ここで、バインダーが電極活物質層構成成分を「繊維状に結着する」とは、図4に示すように繊維状の形状を有するバインダーが活物質層の構成成分同士を結着していることを意味する。一方、結晶化した状態のPVdFは、図5に示すように球晶を形成する。バインダーが結晶化によって球晶を形成すると、電極活物質層構成成分を「繊維状に結着する」ことはできなくなる。
 なお、結晶化していない状態のバインダーが電極活物質層に含まれる場合、そのバインダーは、電極活物質層の構造を維持する観点から、柔軟性が小さい材料からなることが好ましい。具体的には、バインダーの飽和吸液状態での引張破断伸び率は10%未満であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましく、3%以下であることが特に好ましく、1%以下であることが最も好ましい。
 結晶化した状態のバインダーを実質的に含まない電極活物質層の厚さは、特に限定されるものではないが、高容量密度の電池が得られるという観点からは、正極活物質層については、100~500μmであることが好ましく、より好ましくは150~450μmであり、さらに好ましくは200~400μmである。また、負極活物質層については、100~500μmであることが好ましく、より好ましくは150~450μmであり、さらに好ましくは200~400μmである。電極活物質層の厚さが上述した下限値以上の値であれば、電池のエネルギー密度を十分に高めることができる。一方、電極活物質層の厚さが上述した上限値以下の値であれば、電極活物質層の構造を十分に維持することができる。
<負極活物質層>
 負極活物質層15は、負極活物質粒子を含む。また、負極活物質層15は、負極活物質に加えて、バインダー、導電助剤、イオン伝導性ポリマー、リチウム塩等を含み得る。負極活物質の種類以外は、基本的に「正極活物質層」の項で記載した内容と同様であるため、ここでは説明を省略する。すなわち、正極活物質層13がコア-シェル型電極材料(正極材料)を含む場合を例に挙げて説明したが、負極にも適用可能である。つまり、負極活物質層15に含まれる負極活物質がコア-シェル型電極材料(負極材料)であってもよい。
 負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料又はリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
 また、コア-シェル型電極材料においてシェル部を構成する基材(ゲル形成性ポリマー)は、特に炭素材料に対して付着しやすいという性質を有している。このため、コア-シェル型電極材料を負極に適用する場合、構造的に安定した電極材料を提供するという観点からも、負極活物質として炭素材料を用いることが好ましい。このような構成により、第一の導電性材料によって被覆されていない負極活物質表面に上記基材(ゲル形成性ポリマー)が付着しやすくなるため、より構造的に安定した電極材料が提供される。
 負極活物質(コア-シェル型電極材料の場合にはコア部のうち、第一の導電性材料を除いた部分)の平均粒子径は特に限定されるものではないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。
[結晶化した状態のバインダーを実質的に含まない電極活物質層の作製方法]
 結晶化した状態のバインダーを実質的に含まない電極活物質層は、特に限定されず、従来公知の手法を適宜参照することにより製造することができる。ただし、既に述べたように、電池のエネルギー密度を向上させる観点から、電極活物質層において、充放電反応の進行にあまり寄与しない部材の含有量をできるだけ小さくすることが好ましい。よって、以下では、製造方法の好ましい一形態として、電極活物質層にバインダーを実質的に含まない方法について説明する。
 電極活物質層の作製方法は、電極活物質スラリーを調製し、電極活物質スラリーを導電層の表面に塗工することにより塗膜を形成することを含むことが好ましい。
 電極活物質スラリーを調製する際には、まず、電極活物質と、溶媒と、を混合する。これにより、分散液を調製する。ここで、電極活物質の具体的な構成については上述した通りであるため、ここでは詳細な説明を省略する。
 溶媒は、電極が適用されるリチウムイオン二次電池に用いられる電解液(液体電解質)を構成する溶媒を含むことが好ましく、この溶媒と同じものであることがより好ましい。このような観点から、好ましい形態において、溶媒は、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、これらの混合溶媒などが挙げられ、より好ましくは、ECとPCとの混合溶媒、又はECとDECとの混合溶媒である。この際、ECとPC又はDECとの混合比(体積比)は、好ましくは3:7~7:3であり、より好ましくは2:3~3:2であり、さらに好ましくは約1:1である。
 溶媒の使用量について特に限定されるものではないが、電極活物質層を構成する固形分がちょうど保持し得る程度の量で溶媒を用いることが好ましい。このような構成とすると、特に電池の電解液に含まれる溶媒をそのまま溶媒として用いる場合の生産効率を高めることが可能である。一例として、溶媒の使用量は、調製しようとする分散液に含まれる固形分100質量%に対して、好ましくは10~80質量%であり、より好ましくは20~70質量%である。
 電極活物質スラリーは、その他の成分を含んでもよい。例えば、電極活物質層の構成成分として上述した成分(導電助剤、イオン伝導性ポリマー、リチウム塩など)を用いる場合には、本工程において分散液を調製する際に同時に含ませることができる。これらの成分の具体的な構成については上述した通りであるため、ここでは詳細な説明を省略する。
 上述した各成分の混合によって得られる分散液の組成について特に限定されるものではないが、当該分散液は、溶媒が除去されたときの組成が電極活物質層の組成と同様になるような組成を有することが好ましい。
 本工程において、分散液を得るための各成分の混合順序や混合方法などについても特に限定されるものではない。ただし、電池性能を考慮すると、分散液(及び後述する電極活物質スラリー)の調製工程においては、水分の混入を厳密に排除することが好ましい。
 分散液を調製する方法については特に限定されるものではなく、部材の添加順、混合方法等、従来公知の知見が適宜参照され得る。ただし、本工程における分散液の固形分濃度は比較的高い場合があることから、各材料を混合する混合機として、高せん断を付与できる混合機を用いることが好ましい。具体的には、プラネタリーミキサー、ニーダー、ホモホジナイザー、超音波ホモジナイザー、ディスパージャー等のブレード型撹拌機が好ましく、特に固練りをするという観点からはプラネタリーミキサーが特に好ましい。また、混合の具体的な方法についても特に限定されるものではない。例えば、得られる分散液の最終固形分濃度よりも高い固形分濃度で固練りを実施した後に溶媒成分(好ましくは上記の溶媒、より好ましくはさらにリチウム塩を含む電解液)を追加してさらに混合を行うことで分散液を調製することが好ましい。なお、混合時間は特に限定されず、均一な混合が達成されればよい。一例として、固練り及びその後の混合はそれぞれ10~60分程度行えばよく、各工程は一度に行ってもよいし数回に分けて行ってもよい。
 ここで、分散液を調製する際の好ましい形態について説明する。溶媒が、電極が適用されるリチウムイオン二次電池に用いられる電解液(液体電解質)を構成する溶媒を含む場合には、当該溶媒とリチウム塩との混合物である電解液を予め調製しておき、これを電極活物質スラリーの調製時に添加して用いることが好ましい。ここで、電解液中のリチウム塩濃度は、1~3mol/Lであることが好ましい。また、リチウム塩としては、上記の(電解質塩)の項で述べたものが好ましく、電池出力及び充放電サイクル特性の観点から、LiPFやLi[(FSON](LiFSI)がより好ましく、Li[(FSON](LiFSI)が特に好ましい。このような電解液の調製は、従来公知の手法を参照して行うことが可能である。また、電解液の調製時には、添加剤として、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどをさらに添加してもよい。中でも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの添加剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 続いて、上記工程において得られた分散液を撹拌、混合する。この際、当該分散液から溶媒の一部が除去されてもよい。これにより、電極活物質スラリーを調製する。なお、分散液を撹拌、混合する工程は、上述した分散液の調製の後、一定時間をおいた後に行ってもよいし、分散液の調製中又はその直後から連続的に行ってもよい。
 分散液を撹拌、混合するための具体的な方法について特に限定されるものではない。一例として、混合脱泡機など公知の撹拌手段を用いて上記で得られた分散液を一定時間撹拌し続けることが挙げられる。この際、撹拌速度は、特に限定されるものではないが、好ましくは1000~5000rpmである。また、撹拌時間は、短すぎると十分に材料を分散させることができず、長すぎるとその発熱により電解液中に含まれるリチウム塩の分解が起こる可能性があるため、好ましくは10秒~5分程度である。
 このようにして分散液を撹拌、混合することで、電極活物質スラリーが得られる。電極活物質スラリーの固形分濃度は、当該電極活物質スラリーが正極活物質層の形成に用いられる場合(すなわち、正極活物質スラリーである場合)には、好ましくは60質量%以上であり、より好ましくは66質量%以上であり、さらに好ましくは70質量%以上であり、特に好ましくは72質量%以上であり、最も好ましくは74質量%以上である。また、当該電極活物質スラリーが負極活物質層の形成に用いられる場合(すなわち、負極活物質スラリーである場合)には、好ましくは41質量%以上であり、より好ましくは43質量%以上であり、さらに好ましくは45質量%以上であり、特に好ましくは47質量%以上であり、最も好ましくは49質量%以上である。一方、電極活物質スラリーの塗布液の固形分濃度の上限値についても特に限定されないが、当該電極活物質スラリーが正極活物質層の形成に用いられる場合(すなわち、正極活物質層用スラリーである場合)には、好ましくは80質量%以下である。また、当該電極活物質スラリーが負極活物質層の形成に用いられる場合(すなわち、負極活物質層用スラリーである場合)には、好ましくは55質量%以下である。濃度が上記範囲内であると、後述する塗布工程において十分な厚さを有する電極活物質層を容易に形成することができる。また、必要に応じて実施されるプレス処理により空隙率や密度を調整することが容易となる。
 塗工工程では、上記で得られた電極活物質スラリーを導電層の表面に塗工して塗膜を形成する。この塗膜は、最終的に電極活物質層を構成することとなる。
 塗工手段について特に限定されるものではなく、従来公知の塗工手段が適宜用いられ得る。固形分濃度の高い電極活物質スラリーを塗工することにより平坦性の高い表面を有する塗膜が得られるため、塗工時に比較的高いせん断応力が加えられるような塗工速度で電極活物質スラリーの塗工を行うことができる塗工手段が用いられることが好ましい。中でも、スリットから電極活物質スラリーを塗出して塗工するスリットダイコーターによる塗工方式は薄膜の塗工及び塗工厚みの均一性に優れていることから、好適な塗工手段の一例である。塗工によって得られる塗膜の厚さについて特に限定されるものではなく、上述した電極活物質層の厚さが最終的に達成されるように適宜設定すればよい。
 この製造方法では、電極活物質スラリー塗布後、特に電極活物質スラリーを乾燥させることなく電池が製造され得る。そのため、電極活物質スラリー塗布後に所望の面積に電極を切り出すことが難しい。よって、本工程において、所望の面積となるように電極活物質スラリーを導電層の表面に塗布することが必要となる。そのためには、予め塗布部分以外の集電体の表面にマスキング処理等を施してもよい。
 さらに、電極活物質スラリーの塗工によって得られた塗膜に対してプレス処理を施してもよい。このプレス処理を施す際には、塗膜の表面に多孔質シートを配置した状態でプレスを行うことが好ましい。このようなプレス処理を施すことで、より表面の均一性の高い電極活物質層が得られる。なお、多孔質シートは、塗膜をプレスする際に、プレス装置にスラリーが付着するのを防ぐ目的、プレスの際に滲出する余分な電解液を吸収する目的などで使用される。そのため、多孔質シートの材料や形態は、上記目的を達成できるものであれば特に限定されるものではない。
 一例を挙げると、多孔質シートとして、本技術分野でセパレータとして使用される、微多孔膜、不織布などと同様のものを使用することができる。具体的には、微多孔膜としては、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔膜が挙げられる。また、不織布としては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなどを、単独又は混合して用いた不織布が挙げられる。
 なお、上記多孔質シートは、プレス後に取り除いてもよいし、そのまま電池のセパレータとして用いても構わない。プレス後に多孔質シートをそのままセパレータとして用いる場合は、当該多孔質シートのみをセパレータとして電解質層を形成してもよいし、当該多孔質シートと別のセパレータとを組み合わせて(すなわちセパレータを2枚以上として)電解質層を形成してもよい。
 プレス処理を施すためのプレス装置は、塗膜の全面に均一に圧力を加えられる装置であることが好ましく、具体的には、ハイプレッシャージャッキ J-1(アズワン株式会社製)が使用できる。プレスの際の圧力は、特に限定されるものではないが、好ましくは2~40MPaであり、より好ましくは5~35MPaであり、さらに好ましくは5~30MPaである。圧力が上記範囲であると、好ましい形態に係る電極活物質層の空隙率や密度を容易に実現することができる。
 なお、上述したように、電極活物質層は、結晶化していない状態のバインダーを含んでいてもよい。バインダーを結晶化していない状態で電極活物質層に導入する方法は特に限定されるものではない。例えば、電極活物質と、バインダーと、前記バインダーが溶解しない第1の溶媒と、前記バインダーが溶解し得る第2の溶媒と、を混合することにより分散液を調製し、前記分散液から前記第2の溶媒を除去することにより電極活物質スラリーを調製する。次いで前記電極活物質スラリーを導電層の表面に塗工することにより塗膜を形成することを含む方法が挙げられる。
 詳細には、上記の分散液の調製の工程において、電極活物質と、バインダーと、前記バインダーが溶解しない第1の溶媒と、前記バインダーが溶解し得る第2の溶媒と、を混合することにより分散液を調製する。
 第1の溶媒は、バインダーが溶解しない溶媒である。本明細書において、ある固形分がある溶媒に「溶解しない」とは、当該固形分の当該溶媒に対する溶解度(25℃)が0.1g/100g溶媒未満であることを意味する。
 第1の溶媒の具体的な種類について、固形分としてのバインダーの種類が分子量等の物性が異なれば第1の溶媒となり得る溶媒も変わるため、一義的には決定できない。このため、バインダーの形態に応じて、第1の溶媒を決定すればよい。
 一例として、バインダーがポリフッ化ビニリデン(PVdF)である場合、第1の溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)などが挙げられる。
 好ましい形態において、第1の溶媒は、揮発性の低い溶媒である。具体的には、第1の溶媒は、25℃における蒸気圧が3200Pa以下であることが好ましく、1000Pa以下であることがより好ましく、100Pa以下であることがさらに好ましい。
 また、他の好ましい形態において、第1の溶媒は、電池用電極が適用される電池に用いられる電解液(液体電解質)を構成する溶媒を含むことが好ましく、この溶媒と同じものであることがより好ましい。電解液(液体電解質)を構成する溶媒の好ましい形態は上述したものと同様である。
 第1の溶媒の使用量について特に限定されるものではないが、電極活物質層を構成する固形分がちょうど保持し得る程度の量で第1の溶媒を用いることが好ましい。このような構成とすることで、特に電池の電解液に含まれる溶媒をそのまま第1の溶媒として用いる場合の生産効率を高めることが可能である。一例として、第1の溶媒の使用量は、調製しようとする分散液に含まれる固形分100質量%に対して、好ましくは10~80質量%であり、より好ましくは20~70質量%である。
 第2の溶媒は、バインダーが溶解し得る溶媒である。本明細書において、ある固形分がある溶媒に「溶解し得る」とは、当該固形分の当該溶媒に対する溶解度(25℃)が0.1g/100g溶媒以上であることを意味する。
 第2の溶媒の具体的な種類についても、固形分としてのバインダーの種類が分子量等の物性が異なれば第2の溶媒となり得る溶媒も変わるため、一義的には決定できない。このため、バインダーの形態に応じて、第2の溶媒を決定すればよい。
 一例として、バインダーがポリフッ化ビニリデン(PVdF)である場合、第2の溶媒としては、例えば、ジメチルカーボネート(DMC)、アセトン、エタノールなどが挙げられる。中でも、溶媒中の含水量が少ないという観点から、ジメチルカーボネートが特に好ましい。
 好ましい形態において、第2の溶媒は、第1の溶媒よりも揮発性の高い溶媒である。具体的には、第2の溶媒は、25℃での蒸気圧が3200Pa超であることが好ましく、6000Pa以下であることがより好ましい。
 第2の溶媒の使用量についても特に限定されるものではなく、得られる分散液においてバインダーが十分に溶解できる量であればよい。また、第2の溶媒は後述するように除去されることが前提であるため、第2の溶媒の使用量が多すぎると第2の溶媒の除去のためのエネルギーや時間が過剰に消費されるという問題もある。一例として、第2の溶媒の使用量は、調製しようとする分散液に含まれるバインダー100質量%に対して、好ましくは100~20000質量%であり、より好ましくは900~9900質量%である。最終的に、分散液中のバインダー濃度が1~10質量%になるように調整することが好ましい。
 また、他の好ましい形態においては、バインダーと、これが溶解し得る第2の溶媒とを予め混合することにより、バインダーが第2の溶媒に溶解してなる溶液(バインダー溶液)を予め調製しておき、これを第2の電極活物質スラリーの調製時に添加して用いるとよい。このような方法を用いることで、バインダーの分散液中における分散状態をよりいっそう向上させることが可能となり、得られる電極活物質層の表面平滑性をさらに高めることができる。なお、バインダー溶液の濃度は特に限定されるものではないが、バインダーの分散状態を向上させるという観点からは、0.5~10質量%程度であることが好ましく、2~8質量%程度であることがより好ましい。また、バインダー溶液を調製する際には、バインダーと第2の溶媒とを混合した状態で40~80℃程度に加温し、0.5~5分間程度混合操作を行えばよい。その他の条件については上記の分散液の調製と同様にして行うことができる。
 続いて、上記工程において得られた分散液から第2の溶媒を除去する。これにより、電極活物質スラリーを調製する。なお、第2の溶媒を除去する工程は、上述した分散液の調製の後、一定時間をおいた後に行ってもよいし、分散液の調製中又はその直後から連続的に行ってもよい。
 第2の溶媒を除去するための具体的な方法について特に限定されるものではなく、上記で得られた分散液から第2の溶媒が実質的に除去される方法であればよい。一例として、混合脱泡機など公知の撹拌手段を用いて上記で得られた分散液を一定時間撹拌し続けることで、第2の溶媒を徐々に除去することができる。この際、撹拌速度は、特に限定されないが、好ましくは100~5000rpmである。また、撹拌時間についても特に限定されるものではなく、好ましくは10秒~240分程度である。さらに、上記で得られた分散液をバインダーの結晶化温度未満の温度で加熱することにより、第2の溶媒を除去してもよい。ここで、電極活物質層にバインダーが含まれる場合、上記の第2の溶媒は最終的に電池内部に残らないように、その全量を除去することが好ましい。
 このようにして第2の溶媒が除去されることで、電極活物質スラリーが得られる。得られた電極活物質スラリーにおける第2の溶媒の含有量について特に限定されるものではないが、電極活物質スラリーの固形分100質量部に対して、好ましくは1質量部以下であり、より好ましくは0.1質量部以下であり、さらに好ましくは0質量部である。
 また、このようにして得られた電極活物質スラリーは、電極活物質層を構成する固形分と、第1の溶媒と、場合によっては痕跡量の第2の溶媒と、を含有する。電極活物質スラリーの固形分濃度は、上記の電極活物質スラリーの調製で説明したバインダーを用いない場合と同様である。
 このようにして作製した電極活物質スラリーについて、上記で説明したバインダーを用いない場合と同様にして、塗工工程、及び必要に応じてプレス工程を行い、電極活物質層を形成することができる。
 このとき、電極活物質スラリーを塗工して塗膜を得た後に、得られた塗膜に含まれるバインダーを結晶化させる工程を含まないことが好ましい。言い換えれば、得られた塗膜に含まれるバインダーが結晶化する程度に当該塗膜に対して加熱処理を施す工程を含まないことが好ましい。また、得られた塗膜に対して加熱処理を施す工程を含まないことがより好ましい。このような加熱処理を施さない場合には、バインダーが結晶化していない状態で電極活物質層に含まれることになる。例えば、結晶化していない状態のPVdFは繊維状の形状を有することから、電極の製造時に塗膜に対して加熱処理を施さない場合には、図4に示すように、結晶化していない状態のPVdFが正極活物質等の活物質層構成成分を繊維状に結着することとなる。
<電解質層>
 電解質層17に使用される電解質は、特に限定されるものではなく、液体電解質、ゲルポリマー電解質、又はイオン液体電解質を用いることができる。
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等の電極の活物質層に添加することができる化合物を同様に採用することができる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。このような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。中でも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することが容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリメチルメタクリレート(PMMA)、これらの共重合体等が挙げられる。
 ゲルポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現し得る。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 イオン液体電解質は、イオン液体にリチウム塩が溶解したものである。なお、イオン液体とは、カチオン及びアニオンのみから構成される塩であり、常温で液体である一連の化合物をいう。
 イオン液体を構成するカチオン成分は、置換されているか又は非置換のイミダゾリウムイオン、置換されているか又は非置換のピリジニウムイオン、置換されているか又は非置換のピロリウムイオン、置換されているか又は非置換のピラゾリウムイオン、置換されているか又は非置換のピロリニウムイオン、置換されているか又は非置換のピロリジニウムイオン、置換されているか又は非置換のピペリジニウムイオン、置換されているか又は非置換のトリアジニウムイオン、及び置換されているか又は非置換のアンモニウムイオンからなる群よ8選ばれる少なくとも1種であることが好ましい。
 イオン液体を構成するアニオン成分の具体例としては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、硝酸イオン(NO )、テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、(FSO、AlCl 、乳酸イオン、酢酸イオン(CHCOO)、トリフルオロ酢酸イオン(CFCOO)、メタンスルホン酸イオン(CHSO )、トリフルオロメタンスルホン酸イオン(CFSO )、ビス(トリフルオロメタンスルホニル)イミドイオン((CFSO)、ビス(ペンタフルオロエチルスルホニル)イミドイオン((CSO)、トリス(トリフルオロメタンスルホニル)炭素酸イオン((CFSO)、過塩素酸イオン(ClO )、ジシアンアミドイオン((CN))、有機硫酸イオン、有機スルホン酸イオン、RCOO、HOOCRCOO、-OOCRCOO、NHCHRCOO(この際、Rは置換基であり、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、エーテル基、エステル基、又はアシル基であり、前記の置換基はフッ素原子を含んでいてもよい。)などが挙げられる。
 好ましいイオン液体の例としては、1-メチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、N-メチル-N-プロピルピロリジウムビス(トリフルオロメタンスルホニル)イミドが挙げられる。これらのイオン液体は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 イオン液体電解質に用いられるリチウム塩は、上述の液体電解質に使用されるリチウム塩と同様である。なお、当該リチウム塩の濃度は、0.1~2.0mol/Lであることが好ましく、0.8~1.2mol/Lであることがより好ましい。
 また、イオン液体に以下のような添加剤を加えてもよい。添加剤を含むことにより、高レートでの充放電特性及びサイクル特性がより向上し得る。添加剤の具体的な例としては、例えば、ビニレンカーボネート、エチレンカーボネート、プロピレンカーボネート、γ-ブチルラクトン、γ-バレロラクトン、メチルジグライム、スルホラン、トリメチルホスフェイト、トリエチルホスフェイト、メトキシメチルエチルカーボネート、フッ素化エチレンカーボネートなどが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。添加剤を使用する場合の使用量は、イオン液体に対して、好ましくは0.5~10質量%、より好ましくは0.5~5質量%である。
 双極型リチウムイオン二次電池では、電解質層にセパレータを用いてもよい。セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能及び正極と負極との間の隔壁としての機能を有する。特に電解質として液体電解質、イオン液体電解質を使用する場合には、セパレータを用いることが好ましい。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。一例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層又は多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独で又は混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に限定されるものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子及びバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点又は熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果を得ることができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果及び機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に限定されるものではない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、及び窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)又はアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダーは、無機粒子同士や、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層及び耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダーは、特に限定されるものではなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダーとして用いることができる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、又はポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダーの含有量は、2~20質量%であることが好ましい。バインダーの含有量が2質量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20質量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
<正極集電板及び負極集電板>
 集電板(25、27)を構成する材料は、特に限定されるものではなく、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料を用いることができる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
<シール部>
 シール部29は、集電体同士の接触や単電池層の端部における短絡を防止する機能を有する。シール部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム(エチレン-プロピレン-ジエンゴム:EPDM)、等を用いることができる。また、イソシアネート系接着剤や、アクリル樹脂系接着剤、シアノアクリレート系接着剤などを用いても良く、ホットメルト接着剤(ウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂)などを用いても良い。中でも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられ、非結晶性ポリプロピレン樹脂を主成分とするエチレン、プロピレン、ブテンを共重合した樹脂を用いることが、好ましい。
<外装体>
 外装体31としては、例えば、アルミニウムを含むラミネートフィルムで形成されたものを用いることができる。具体的には、アルミニウムを含むラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら限定されるものではない。また、外装体として、公知の金属缶で形成されたものを用いることもできる。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミネートラミネートがより好ましい。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 樹脂原料としての液状エポキシ4質量部及び多官能エポキシ樹脂16質量部、導電性粒子としての平均粒子径5μmのニッケル粒子47質量部、硬化剤0.05質量部並びにメチルエチルケトン33質量部を金属製容器に投入し、高速せん断型分散機にて撹拌混合し、塗布用インクを作製した。
 得られた塗布用インクをマイクロバーコーターで5m/分の速度で樹脂集電体上に塗布し、導電層を形成した。
 導電層が形成された樹脂集電体の断面を走査型電子顕微鏡で観察し、測定・算出したところ、導電層の凹凸形状における凹凸の平均高さは6μmであり、凹凸の平均傾斜角は40°であった。
 平均粒子径16μmのハードカーボン90質量部及びアクリル樹脂10質量部を万能混合器に入れ、室温(25℃)、150rpmで撹拌した。その後120℃で16時間減圧乾燥して、含有水分を除去した粉体材料を作製した。
 得られた粉体材料100質量部に、エチレンカーボネート(EC)50質量%とプロピルカーボネート(PC)50質量%の混合溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF)を溶解して得られた電解液47質量部を添加して、混合物を作製した。
 得られた混合物を混合脱泡機(株式会社シンキー製、ARE250)で2000rpmの回転数で120秒間混合して、負極スラリーを調製した。
 得られた負極スラリーを電極パターンが打ち抜かれているマスクとアプリケータを用いることでスラリー塗布量を制御しながら、導電層が形成された樹脂集電体上に塗布して、負極活物質層を形成した。
 得られた負極活物質層の余分な電解液を紙ワイパーで吸い取り、さらに導電層が形成された樹脂集電体を載せて、集電体/負極活物質層/集電体の3層からなるダミー負極を作製した。
(実施例2)
 実施例1で得られたものと同様の導電層が形成された樹脂集電体を用いた。
 平均粒子径8μmのリチウムニッケルコバルトアルミニウム複合酸化物88.4質量部、アクリル樹脂10質量部及びアセチレンブラック1.6質量部を万能混合器に入れ、室温(25℃)、150rpmで撹拌した。その後120℃で16時間減圧乾燥して、含有水分を除去した粉体材料を作製した。
 得られた粉体材料100質量部に、エチレンカーボネート(EC)50質量%とプロピルカーボネート(PC)50質量%の混合溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF)を溶解して得られた電解液47質量部を添加して、混合物を作製した。
 得られた混合物を混合脱泡機(株式会社シンキー製、ARE250)で2000rpmの回転数で120秒間混合して、正極スラリーを調製した。
 得られた正極スラリーを電極パターンが打ち抜かれているマスクとアプリケータを用いることでスラリー塗布量を制御しながら、導電層が形成された樹脂集電体上に塗布して、正極活物質層を形成した。
 得られた正極活物質層の余分な電解液を紙ワイパーで吸い取り、さらに導電層が形成された樹脂集電体を載せて、集電体/正極活物質層/集電体の3層からなるダミー正極を作製した。
(比較例1)
 集電体として平坦なニッケル集電体を用いた。
 平均粒子径16μmのハードカーボン90質量部及びアクリル樹脂10質量部を万能混合器に入れ、室温(25℃)、150rpmで撹拌した。その後120℃で16時間減圧乾燥して、含有水分を除去した粉体材料を作製した。
 得られた粉体材料100質量部に、エチレンカーボネート(EC)50質量%とプロピルカーボネート(PC)50質量%の混合溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF)を溶解して得られた電解液47質量部を添加して、混合物を作製した。
 得られた混合物を混合脱泡機(株式会社シンキー製、ARE250)で2000rpmの回転数で120秒間混合して、負極スラリーを調製した。
 得られた負極スラリーを電極パターンが打ち抜かれているマスクとアプリケータを用いることでスラリー塗布量を制御しながら、平坦なニッケル集電体上に塗布して、負極活物質層を形成した。
 得られた負極活物質層の余分な電解液を紙ワイパーで吸い取り、さらに平坦なニッケル集電体を載せて、集電体/負極活物質層/集電体の3層からなるダミー負極を作製した。
(比較例2)
 比較例1で用いたものと同様の平坦なニッケル集電体を用いた。
 平均粒子径8μmのリチウムニッケルコバルトアルミニウム複合酸化物88.4質量部、アクリル樹脂10質量部及びアセチレンブラック1.6質量部を万能混合器に入れ、室温(25℃)、150rpmで撹拌した。その後120℃で16時間減圧乾燥して、含有水分を除去した粉体材料を作製した。
 得られた粉体材料100質量部に、エチレンカーボネート(EC)50質量%とプロピルカーボネート(PC)50質量%の混合溶媒に1.0mol/Lの六フッ化リン酸リチウム(LiPF)を溶解して得られた電解液47質量部を添加して、混合物を作製した。
 得られた混合物を混合脱泡機(株式会社シンキー製、ARE250)で2000rpmの回転数で120秒間混合して、正極スラリーを調製した。
 得られた正極スラリーを電極パターンが打ち抜かれているマスクとアプリケータを用いることでスラリー塗布量を制御しながら、平坦なニッケル集電体上に塗布して、正極活物質層を形成した。
 得られた正極活物質層の余分な電解液を紙ワイパーで吸い取り、さらに平坦なニッケル集電体を載せて、集電体/正極活物質層/集電体の3層からなるダミー正極を作製した。各例の仕様の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[性能評価]
 上記各例のダミー電極について、集電体と電極層との間の接触抵抗を測定・算出した。具体的には、以下のように測定・算出した。まず、電気抵抗測定装置(アドバンス理工株式会社製、TER-200SA)を用い、直径17mmの測定部に上記各例のダミー電極を挟んだ。そして、0.4MPaの荷重を加え、抵抗値を読み取った。抵抗値から集電体のバルク抵抗、電極活物質層のバルク抵抗及び測定部と集電体との間の接触抵抗を差し引き、集電体と電極活物質層との間の接触抵抗を算出した。得られた結果を表1に併記する。
 表1より、本発明の範囲に属する実施例1及び実施例2と本発明外の比較例1及び比較例2とを比較すると、h/tanθ<Dで表される関係を満足する凹凸形状を有する導電層を形成した実施例1及び実施例2において、樹脂集電体と電極活物質層との間の接触抵抗が低減していることが分かる。
 また、比較例1及び比較例2の接触抵抗よりも実施例1及び実施例2の接触抵抗が低減しているのは、特に、電極活物質層が結晶化した状態のバインダーを実質的に含まない場合において、所定の関係を満足する凹凸形状を有する導電層を有するためと考えられる。つまり、結晶化した状態のバインダーを実質的に含まない電極活物質層は、通常、樹脂集電体との密着性が低減してしまう。しかしながら、結晶化した状態のバインダーを実質的に含まない電極活物質層を有する実施例1及び実施例2においても接触抵抗が低減しているは、樹脂集電体の電極活物質層の面側に、所定の関係を満足する凹凸形状を有する導電層を設けることによって、結晶化した状態のバインダーを実質的に含まない電極活物質層と導電層との密着性が向上するためと考えられる。
 そして、表1より、凹凸の平均高さ(h)が、0.1μm以上20μm以下である実施例1及び実施例2において、樹脂集電体と電極活物質層との間の接触抵抗がより低減していることが分かる。
 また、表1より、導電層に含有させた導電性粒子がA<Dで表される関係を満足する実施例1及び実施例2において、樹脂集電体と電極活物質層との間の接触抵抗が低減していることが分かる。
 さらに、表1より、導電性粒子の平均粒子径(A)が、0.01μm以上20μm以下である実施例1及び実施例2において、樹脂集電体と電極活物質層との間の接触抵抗がより低減していることが分かる。
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
 例えば、上述した実施形態においては、双極型リチウムイオン二次電池を例に挙げて説明したが、本発明が適用可能な電池の種類は特に限定されるものではなく、発電要素において単電池層が並列接続されてなる形式のいわゆる並列積層型リチウムイオン二次電池などの従来公知の任意の非水電解質二次電池、さらには従来公知の任意の水系電解質二次電池に適用可能である。
 また、上述した実施形態においては、二次電池を例に挙げて説明したが、本発明が適用可能な電池の使用形態は特に限定されるものではなく、従来公知の任意の一次電池に適用可能である。
 10 リチウムイオン二次電池
 11 集電体
 11a,11b 最外層集電体
 111 樹脂集電体
 113 導電層
 13 正極活物質層
 15 負極活物質層
 151 負極活物質粒子
 17 電解質層
 19 単電池層
 21 電池要素
 23 双極型電極
 25 正極集電板
 27 負極集電板
 29 シール部
 31 外装体
101 結晶化していない状態のPVdF
102 正極活物質

Claims (6)

  1.  樹脂と導電性フィラーとを含有する平面状の樹脂集電体と、
     上記樹脂集電体の少なくとも一方の面側に配置され、電極活物質粒子を含有する電極活物質層と、を具備し、
     上記樹脂集電体が、上記電極活物質層の面側に凹凸形状を有する導電層を備える
    電池用電極であって、
     上記凹凸形状が、下記の式(1)
          h/tanθ<D・・・(1)
    (式中、hは上記凹凸の平均高さ、θは上記凹凸の平均傾斜角、Dは上記電極活物質粒子の平均粒子径を示す。)で表される関係を満足する
    ことを特徴とする電池用電極。
  2.  上記電極活物質層が、結晶化した状態のバインダーを実質的に含まないことを特徴とする請求項1に記載の電池用電極。
  3.  上記凹凸の平均高さ(h)が、0.1μm以上20μm以下であることを特徴とする請求項1又は2に記載の電池用電極。
  4.  上記導電層が、導電性粒子を含有し、
     上記導電性粒子が、下記の式(2)
          A<D・・・(2)
    (式中、Aは上記導電性粒子の平均粒子径、Dは上記電極活物質粒子の平均粒子径を示す。)で表される関係を満足する
    ことを特徴とする請求項1~3のいずれか1つの項に記載の電池用電極。
  5.  上記導電性粒子の平均粒子径(A)が、0.01μm以上20μm以下であることを特徴とする請求項4に記載の電池用電極。
  6.  請求項1~5のいずれか1つの項に記載の電池用電極を有することを特徴とする電池。
PCT/JP2017/035005 2016-11-04 2017-09-27 電池用電極及び電池 WO2018083917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780067396.3A CN109923696B (zh) 2016-11-04 2017-11-02 电池用电极和电池
EP17866928.9A EP3537511B1 (en) 2016-11-04 2017-11-02 Electrode for cell, and cell
PCT/JP2017/039763 WO2018084252A1 (ja) 2016-11-04 2017-11-02 電池用電極及び電池
US16/346,597 US10601050B2 (en) 2016-11-04 2017-11-02 Electrode for cell, and cell
MYPI2019001787A MY177525A (en) 2016-11-04 2017-11-02 Electrode for cell, and cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-216310 2016-11-04
JP2016216310 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018083917A1 true WO2018083917A1 (ja) 2018-05-11

Family

ID=62076894

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/035005 WO2018083917A1 (ja) 2016-11-04 2017-09-27 電池用電極及び電池
PCT/JP2017/039763 WO2018084252A1 (ja) 2016-11-04 2017-11-02 電池用電極及び電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039763 WO2018084252A1 (ja) 2016-11-04 2017-11-02 電池用電極及び電池

Country Status (6)

Country Link
US (1) US10601050B2 (ja)
EP (1) EP3537511B1 (ja)
JP (1) JP6940374B2 (ja)
CN (1) CN109923696B (ja)
MY (1) MY177525A (ja)
WO (2) WO2018083917A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074029A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極
WO2019074030A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極
CN111162275A (zh) * 2020-01-02 2020-05-15 宁德新能源科技有限公司 一种负极和包含该负极的电化学装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307978B1 (ko) * 2018-12-20 2021-09-30 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2021106591A1 (ja) * 2019-11-29 2021-06-03 三洋電機株式会社 非水電解質二次電池用電極板及び非水電解質二次電池
KR102296660B1 (ko) * 2020-12-10 2021-09-02 김일도 이차전지 셀 구조 및 제조방법
CN115428196A (zh) * 2021-03-30 2022-12-02 Tdk株式会社 蓄电器件用电极和锂离子二次电池
CN113861558A (zh) * 2021-09-14 2021-12-31 江苏海宝电池科技有限公司 一种负极集流体用导电塑料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153224A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 電極およびその製造方法
JP2011060560A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池用集電体
WO2013018686A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
WO2016031688A1 (ja) * 2014-08-25 2016-03-03 日産自動車株式会社 積層型電池およびその製造方法
JP2016186917A (ja) * 2015-03-27 2016-10-27 日産自動車株式会社 リチウム電池用正極

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064291A1 (en) * 2003-09-18 2005-03-24 Matsushita Electric Industrial Co., Ltd. Battery and non-aqueous electrolyte secondary battery using the same
WO2008023733A1 (en) * 2006-08-25 2008-02-28 Panasonic Corporation Non-aqueous electrolyte secondary battery negative electrode, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2009016310A (ja) * 2007-07-09 2009-01-22 Panasonic Corp 集電体、電極および非水電解質二次電池
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
JP5293046B2 (ja) * 2008-09-24 2013-09-18 Tdk株式会社 電極
JP2011210450A (ja) * 2010-03-29 2011-10-20 Panasonic Corp 電池用電極板および電池
JP5825894B2 (ja) * 2011-07-15 2015-12-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用電極、二次電池用電極の製造方法並びに二次電池
EP2800178B1 (en) * 2012-04-16 2017-11-01 LG Chem, Ltd. Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
CN104428929B (zh) * 2012-07-13 2017-10-24 古河电气工业株式会社 集电体、电极结构体、非水电解质电池或蓄电部件
EP2980897A1 (en) * 2013-03-29 2016-02-03 UACJ Corporation Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
KR101458309B1 (ko) * 2013-05-14 2014-11-04 오씨아이 주식회사 부피 변화를 완화할 수 있는 Si-블록 공중합체 코어-쉘 나노 입자 및 이를 이용한 리튬 이차전지용 음극활물질
KR20170037629A (ko) * 2014-08-25 2017-04-04 닛산 지도우샤 가부시키가이샤 전극

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153224A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 電極およびその製造方法
JP2011060560A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池用集電体
WO2013018686A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
WO2016031688A1 (ja) * 2014-08-25 2016-03-03 日産自動車株式会社 積層型電池およびその製造方法
JP2016186917A (ja) * 2015-03-27 2016-10-27 日産自動車株式会社 リチウム電池用正極

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074029A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極
WO2019074030A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極
US11664502B2 (en) 2017-10-10 2023-05-30 Nissan Motor Co., Ltd. Electrode for non-aqueous electrolyte secondary battery
CN111162275A (zh) * 2020-01-02 2020-05-15 宁德新能源科技有限公司 一种负极和包含该负极的电化学装置

Also Published As

Publication number Publication date
CN109923696A (zh) 2019-06-21
EP3537511A4 (en) 2019-09-25
WO2018084252A1 (ja) 2018-05-11
US10601050B2 (en) 2020-03-24
MY177525A (en) 2020-09-17
JP2018081909A (ja) 2018-05-24
US20190288293A1 (en) 2019-09-19
JP6940374B2 (ja) 2021-09-29
EP3537511A1 (en) 2019-09-11
CN109923696B (zh) 2020-02-07
EP3537511B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018083917A1 (ja) 電池用電極及び電池
JP6346290B2 (ja) 積層型電池およびその製造方法
CN103636051B (zh) 新型聚合物电解质和包含其的锂二次电池
JP4616592B2 (ja) 非水電解液二次電池とその製造方法及び電解液二次電池用電極材料
EP3196963A1 (en) Electrode
JP6287022B2 (ja) 電気デバイス用電極およびその製造方法
JP6070822B2 (ja) 非水電解質二次電池
JPWO2014185344A1 (ja) 非水電解液系二次電池
JP5742561B2 (ja) 二次電池用電極
JP5418088B2 (ja) リチウムイオン二次電池用集電体
JP2019071224A (ja) 非水電解質二次電池用電極
KR20140072117A (ko) 전극 재료, 전극 재료의 제조 방법, 전극 및 이차 전지
JP2011159407A (ja) リチウム二次電池
JP2017021888A (ja) 非水電解質二次電池用負極の製造方法
WO2019074025A1 (ja) 非水電解質二次電池用電極の製造方法
JP2017220380A (ja) 非水電解質二次電池
JP2019071222A (ja) 電池用電極の製造方法
JP6209844B2 (ja) 非水電池用電極およびその製造方法
WO2019198454A1 (ja) 電池の製造方法
JP6958342B2 (ja) 積層型電極体の製造方法
JP6004088B2 (ja) 非水電解質二次電池
JP2019071226A (ja) 非水電解質二次電池用電極
JP2019071227A (ja) 非水電解質二次電池用電極
JP2005268045A (ja) 電池およびこの電池を搭載する車両
JP7285060B2 (ja) 非水電解質二次電池用正極活物質スラリーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866623

Country of ref document: EP

Kind code of ref document: A1