WO2018083873A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2018083873A1
WO2018083873A1 PCT/JP2017/031142 JP2017031142W WO2018083873A1 WO 2018083873 A1 WO2018083873 A1 WO 2018083873A1 JP 2017031142 W JP2017031142 W JP 2017031142W WO 2018083873 A1 WO2018083873 A1 WO 2018083873A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
interval
voltage
ecu
engine
Prior art date
Application number
PCT/JP2017/031142
Other languages
English (en)
French (fr)
Inventor
山田 哲也
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to EP17867927.0A priority Critical patent/EP3537529B1/en
Priority to JP2018548574A priority patent/JP6850811B2/ja
Publication of WO2018083873A1 publication Critical patent/WO2018083873A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control device, and is suitable for application to a control device capable of determining deterioration of a secondary battery, for example.
  • the internal resistance value of the battery increases and the flow of electricity becomes worse.
  • the CCA Cold Cranking Amps
  • the specific gravity of dilute sulfuric acid, or the charge / discharge current is measured with a dedicated sensor.
  • the configuration of newly providing a dedicated sensor in this way is simple as a means of solving the problem, but in a vehicle where there are numerous restrictions on the installation space of parts, the addition of new parts is not realistic, There is also a problem that the unit price of the product is increased due to the addition of the inspection process.
  • the battery voltage has already been measured by an ECU (Engine Control Unit) or the like, and it is not necessary to newly provide a dedicated sensor. Therefore, currently, battery deterioration is determined based on the battery voltage at steady state. Most of them.
  • the sampling interval of the battery voltage used in the system is sufficiently satisfactory, for example, 10 to 20 ms.
  • a shorter sampling interval of, for example, several ms is used. Need.
  • constantly sampling at this speed has the problem of placing unnecessary computational load on the CPU (Central Processing Unit).
  • the present invention has been made in consideration of the above points, and without degrading the secondary battery with high accuracy without adding a new sensor and without shortening the interval for extracting the voltage value from the existing interval.
  • a control device that can be determined is proposed.
  • the control device that measures the voltage of the secondary battery at the first interval and extracts the measured voltage value at the second interval longer than the first interval, At each interval, the extraction process for extracting a plurality of voltage values measured at the first interval is repeated at the start of the internal combustion engine, and the lowest point of the secondary battery is identified based on the extracted voltage values. The deterioration of the secondary battery is determined based on whether or not the battery voltage is below the threshold value.
  • control device of the present invention when the extraction process is performed at every second interval, a plurality of voltage values measured at the first interval are acquired and evaluated, so that the battery voltage at the start of the engine can be estimated. Since the lowest point is measured with high accuracy, the deterioration of the secondary battery can be determined with high accuracy.
  • a control device capable of determining deterioration of a secondary battery with high accuracy without adding a new sensor and without shortening an interval for extracting a voltage value from an existing interval. Can do.
  • FIG. 1 It is a block diagram which shows schematic structure of a vehicle system. It is a figure which shows schematic structure of sampling in ECU. It is a figure which shows the flowchart of the process which ECU performs. It is a figure which shows the flowchart of the process which ECU performs. It is a figure which shows the detection result of the lowest point.
  • FIG. 1 shows a schematic configuration of a vehicle system 1 according to this embodiment.
  • the vehicle system 1 includes an ignition switch 2, a starter motor 3, an alternator 4, a battery 5, an indicator lamp / warning lamp panel 6, and an ECU 10.
  • the ignition switch 2 when the ignition switch 2 is turned on and the internal combustion engine start signal (starter signal 2a) is turned on, the power of the battery 5 that is a secondary battery (for example, a lead battery) is used to rotate the starter motor 3.
  • an engine (not shown) that is an internal combustion engine is started.
  • the ECU 10 determines whether or not the battery 5 has deteriorated (battery deterioration determination process). If the battery 5 has deteriorated, the battery 5 is displayed on the indicator / warning lamp panel 6. It is also possible to have a function of notifying the driver of the abnormality of the battery 5 by a warning lamp display indicating that the battery has deteriorated.
  • the ECU 10 is a control device mounted on an automobile or the like, and includes a CPU 11, an engine off timer 19, and an engine on timer 20, and performs control of electrical components, battery deterioration determination processing, and the like.
  • the CPU 11 includes an I / O port 12, an ADC (10bit-Analog to Digital Converter) 13, an ADC register 14, a RAM (Random Access Memory) 15, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 16, a low-side driver 17, and the like.
  • the above-described hardware configuration is an example. Further, part or all of the control (processing) performed by the ECU 10 may be executed by hardware (circuit or the like), or the software 18 (for example, the CPU 11 reads out a program stored in a ROM (not shown)). ).
  • the ADC 13 reads a sensor signal (sensor signal) for measuring a voltage (battery voltage) in the battery 5 every 1 ms and stores it in the ADC register 14 as digital data (voltage value).
  • a sensor signal sensor signal
  • the sampling interval of the CPU 11 the interval at which the CPU 11 extracts the voltage value from the ADC register 14
  • the sampling interval of the CPU 11 is set to 10 ms in order to specify the lowest point of the battery voltage at the time of starting the engine, it is conventionally stored in the ADC register 14
  • the most recent one used is used, and nine out of ten are not used. In this regard, it is possible to extract more accurate data (the lowest point of the battery voltage) by advancing the sampling interval of the CPU 11 to 2 ms.
  • the processing rate (measurement interval) “1 ms” of the ADC 13 and the processing rate (sampling interval) “10 ms” of the CPU 11 are not changed, and the CPU 11 outputs from the ADC 13 at every sampling interval of the CPU 11.
  • a configuration is adopted in which the lowest point (minimum value) based on the 10 pieces of data in the ADC register 14 is determined and stored in the RAM 15.
  • the CPU 11 may use the lowest voltage value among the 10 data in the ADC register 14 as the lowest point, but averages two consecutive data and averages the five data. The smallest average value among the data (average values) is selected as the lowest point. By selecting the lowest point from the average value in this way, noise in the sensor signal can be removed.
  • battery deterioration determination processing executed by the ECU 10 every 10 ms will be described based on the flowcharts shown in FIGS. 3A and 3B.
  • the battery deterioration determination process is repeated in response to an appropriate user operation before starting the engine, such as accessory position ON and key ON, and idling is stabilized and the starter motor 3 stops rotating. If the condition is met, it is terminated.
  • step S11 the ECU 10 determines whether or not the vehicle has been left for a long period of time, more specifically, whether or not the engine off timer 19 has reached a predetermined time (S11).
  • the battery 5 may be over-discharged, so in the current driving cycle, without specifying (detecting) the lowest point, Normal power generation is performed (S12), and the battery deterioration determination process is terminated.
  • the process proceeds to step S13.
  • step S13 the ECU 10 determines whether or not idling is stable, more specifically, whether or not the idling delay timer has passed a predetermined time (S13).
  • the ECU 10 clears the determination permission flag so as to end the battery deterioration determination process (S14), and moves the process to step S15.
  • the lowest point of the battery voltage becomes prominent at the start of the engine, but when the engine speed becomes stable and the power of the alternator 4 can be used, the lowest point of the battery voltage cannot be detected.
  • the battery deterioration determination process is stopped when the engine speed is stable.
  • the ECU 10 determines that idling is not stable, the process proceeds to step S15, and the battery deterioration determination process is continued until a predetermined time elapses in S13.
  • step S15 the ECU 10 determines whether or not the determination permission flag is “TURE”, that is, whether or not to detect the lowest point of the battery voltage (S15). If it is determined that the lowest point of the battery voltage is to be detected, the ECU 10 moves the process to step S16, and if it is determined not to detect the lowest point of the battery voltage, the ECU 10 ends the battery deterioration determination process.
  • the determination permission flag the initial value “TURE” is set in the initialization process (not shown) of the battery deterioration determination process.
  • step S16 the ECU 10 determines whether or not the starter motor 3 has been started (S16). Since the value (RAM value) of the RAM 15 indicating the lowest point of the battery voltage is “0” when the starter motor 3 is started for the first time, the ECU 10 determines the initial value of the lowest point of the battery voltage when it is determined that the starter motor 3 is started. (For example, 12V) is stored in the RAM 15 (S17), and the process proceeds to step S18. If it is determined that the engine has not been started, the process proceeds to step S18.
  • step S18 the ECU 10 determines whether or not the starter motor 3 is rotating (S18). If the ECU 10 determines that the starter motor 3 is rotating, the ECU 10 moves the process to step S19. If the ECU 10 determines that the starter motor 3 is not rotating, the ECU 10 ends the battery deterioration determination process.
  • step S19 the ECU 10 performs an averaging process on the voltage value of the ADC register 14 (S19). More specifically, the ECU 10 calculates the average of the two consecutive voltage values for the ten voltage values stored in the ADC register 14 (average value (0-1), average value). (2-3), average value (4-5), average value (6-7), average value (8-9)) are generated.
  • step S20 the ECU 10 performs a minimum process on the averaged data (S20). More specifically, the ECU 10 specifies the minimum average value in the averaged data.
  • step S21 the ECU 10 updates the lowest point of the battery voltage (S21). More specifically, the ECU 10 compares the minimum average value (current lowest point) identified in step S20 with the value stored in the RAM 15 (the previous lowest point), and determines the lowest value of the current time. If the point is smaller than the previous lowest point, the value in the RAM 15 is updated to the current lowest point.
  • step S22 the ECU 10 determines whether or not the lowest point of the battery voltage is below a predetermined threshold value (for example, whether or not it is 7.2 V or less) (S22).
  • a predetermined threshold value for example, whether or not it is 7.2 V or less
  • the ECU 10 proceeds to step S25 and determines that the lowest point of the battery voltage is not lower than the predetermined threshold. If so, the process proceeds to step S23.
  • step S23 the ECU 10 clears the battery deterioration flag indicating that the battery 5 is deteriorated (abnormal) (S23), and then in step S24, the battery 5 is deteriorated (abnormal) in the current driving cycle. Is cleared from the EEPROM 16 (S24), and the battery deterioration determination process is terminated.
  • step S25 the ECU 10 sets the battery deterioration flag to “TURE” (S25), and proceeds to step S26.
  • step S26 the ECU 10 determines whether or not the number of times the engine is turned on and off per unit period is less than a predetermined number, more specifically, whether or not the engine on timer 20 exceeds a specified time. (S26). If the ECU 10 determines that the predetermined number of times has been exceeded (determined that the specified time has been exceeded), the ECU 10 proceeds to step S27 and determines that the predetermined number has not been exceeded (determines that the specified time has not been exceeded). If so, the battery deterioration determination process is terminated.
  • the value of the engine-on timer 20 is stored in the EEPROM 16 in the previous driving cycle, and if the value of the engine-on timer 20 is small, it is not normal use, so that the battery 5 is largely discharged. Not counted as battery degradation. More specifically, in a vehicle used for courier service or the like, if the vehicle is repeatedly moved and stopped in a short period of time, the value of the engine on timer 20 may be small, and battery deterioration may not be correctly determined. Skip the determination of deterioration. Further, when the battery 5 is not used for courier service or the like but uses a lot of power (energy) of the battery 5, the value of the engine on timer 20 is not sufficiently increased as will be described later, and the battery deteriorates.
  • step S27 the ECU 10 refers to the previous deterioration history stored in the EEPROM 16, and determines whether or not it is determined that the battery 5 has deteriorated in the previous driving cycle (S27).
  • the ECU 10 determines that the battery 5 is deteriorated (for example, when it is determined that the battery 5 is deteriorated twice consecutively)
  • the ECU 10 proceeds to step S29 and determines that the battery 5 is not deteriorated. If so, the process proceeds to step S28.
  • an ON signal of a device that consumes a lot of power is measured by the ECU 10 or the like, and the engine on timer A value of 20 (engine ON time) is also measured.
  • the engine ON time is not added. From this, when the engine ON time is not sufficient, the ECU 10 does not determine that the battery 5 has deteriorated even if continuous battery deterioration is detected.
  • step S28 the ECU 10 sets the deterioration history in the EEPROM 16 (S28), and ends the battery deterioration determination process.
  • step S29 since the battery deterioration is confirmed, the ECU 10 sets a warning lamp flag for lighting the warning lamp indicating the battery deterioration on the indicator / warning lamp panel 6 in the EEPROM 16 (S29), and ends the battery deterioration determination process. To do.
  • FIG. 4 is a diagram showing the measurement result of the lowest point.
  • the measurement result 31 shows the result when one voltage value is extracted and plotted every 10 ms
  • the measurement result 32 shows the result when the averaging process and the minimum process are plotted every 10 ms. Indicates. As shown in FIG. 4, it can be seen that the lowest point can be captured more accurately when the averaging process and the minimum process are performed.
  • the addition of a new sensor does not cause an increase in necessary space, and the engine start without shortening the load on the CPU 11 (voltage value sampling interval). It is possible to realize the ECU 10 that can accurately measure the lowest point of the battery voltage at the time. Further, according to the ECU 10, it is possible to quickly detect deterioration and overdischarge of the battery 5 and prevent troubles caused by running out of the battery.
  • the present invention is suitable for application to a control device mounted on a vehicle that makes heavy use of a battery, such as an automobile having a deceleration energy regeneration system, an automobile having an alternator with a C terminal (adjustment voltage switching function), and a hybrid vehicle.
  • a control device mounted on a vehicle that makes heavy use of a battery such as an automobile having a deceleration energy regeneration system, an automobile having an alternator with a C terminal (adjustment voltage switching function), and a hybrid vehicle.
  • a control device mounted on a vehicle that makes heavy use of a battery such as an automobile having a deceleration energy regeneration system, an automobile having an alternator with a C terminal (adjustment voltage switching function), and a hybrid vehicle.
  • the alternator with a C terminal when it is determined that the charge amount of the battery 5 is sufficient, the power generation is minimized or not generated, and the power of the battery 5 is used first. Therefore, it is preferable to apply to an automobile having an alternator with a C terminal.
  • the present invention is not limited to this, and an engine stall occurs when the engine is started. Therefore, the lowest point of the battery voltage may be detected a plurality of times in one driving cycle. For example, a configuration in which an optional function can be selected (a re-determination permission flag is set) is adopted to enable redetection of the lowest point of the battery voltage.
  • the stop condition of the starter motor 3 is exemplified as the condition for ending the battery deterioration determination process.
  • the present invention is not limited to this, and the starter motor 3 is stopped.
  • the end condition may be set so that the battery deterioration determination process is repeated at any time.
  • the gear of the starter motor 3 is separated from the gear of the engine, there is a case where a lot of electric power of the battery 5 is used. According to this termination condition, a voltage drop due to the internal resistance at that time can be captured. Become.
  • step S22 when the determination in step S22 is Yes, the case where the process in step S25 is performed has been described.
  • the present invention is not limited to this, and the lowest battery voltage before the process in step S25 is described. It may be determined whether or not the point is 0V. If the point is 0V, the battery deterioration determination process may be continued.
  • the present invention is not limited to this, and the sampling interval of the ECU 10 is set to 10 ms, and other processes (averaging process, minimum process, minimum process) Processing, determination of whether the lowest point of the battery voltage has fallen below a predetermined threshold, etc.) may be performed at an appropriate timing.
  • SYMBOLS 1 Vehicle system, 2 ... Ignition switch, 3 ... Starter motor, 4 ... Alternator, 5 ... Battery, 6 ... Indicator light and warning light panel, 10 ... ECU, 11 ... CPU, 12 ... ... I / O port, 13 ... ADC, 14 ... ADC register, 15 ... RAM, 16 ... EEPROM, 17 ... Low side driver, 18 ... Software, 19 ... Engine off timer, 20 ... Engine on Timer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

新たなセンサを追加することなく、かつ電圧値を抽出する間隔を既存の間隔より短くすることなく、二次電池の劣化を高精度に判定可能な制御装置を提供する。 二次電池(5)の電圧を第1の間隔で測定し、測定した電圧値を第1の間隔よりも長い第2の間隔で抽出する制御装置(10)において、第2の間隔ごとに、第1の間隔で測定した複数の電圧値を抽出する抽出処理を内燃機関の始動時に繰り返し、抽出した電圧値に基づいて二次電池(5)の最下点を特定し、最下点がしきい値を下回るか否かに基づいて二次電池(5)の劣化を判定する制御部(11,18)を設けるようにした。

Description

制御装置
 本発明は制御装置に関し、例えば二次電池の劣化を判定可能な制御装置に適用して好適なものである。
 従来、自動車では、エンジンの回転を動力源としてオルタネータが常時発電しているため、バッテリが満充電となった後も、エンジンに負荷がかかり、燃料を消費している。
 近年、燃費向上のためにエンジンとオルタネータとを直接駆動させず(常時発電せず)、極力バッテリに蓄えられた電力を先に使い(放電させ)、バッテリが過放電レベルになる前に、オルタネータを回転させてバッテリの充電を行うシステムが一般化しつつある。これは、バッテリにとっては以前より過酷な使用環境であり、バッテリ劣化の発生のおそれが以前に比べて増し、バッテリ劣化の把握が以前に比べてより重要になっている。しかしながら、エンドユーザーは、始動性が悪い、ヘッドライトが暗いなど、バッテリに不調を感じた際、自ら補充電や新品への交換時期を感覚で判断している。このようなことから、自動車に搭載されているバッテリについて、その劣化をシステム的に判断したいという要望が高まっている。
 一般にバッテリが劣化した際は、バッテリの内部抵抗値が増加し、電気の流れが悪くなる。例えば車両用の鉛バッテリでは、CCA(Cold Cranking Amps)値(液温-18℃で30秒後に7.2Vとなる放電電流)、希硫酸の比重、または充放電電流を専用のセンサで計測することでバッテリ劣化をより正確に判断できる。このように専用のセンサを新たに設ける構成は、問題解決の手段として簡潔であるが、部品の設置スペースについて数々の制約がある車両にあっては、新たな部品の追加は現実的ではなく、また検査工程の追加による製品単価の上昇を招くという問題がある。この点、バッテリ電圧については、既にECU(Engine Control Unit)等で測定されており、専用のセンサを新たに設ける必要がないため、現状は、バッテリ劣化については、定常時におけるバッテリ電圧で判断することが大半である。
 ここで、バッテリが劣化した場合、内部抵抗が増加する場合が多く(例えば鉛バッテリでは明確に現れる)、またエンジンの始動時は、スタータモータで瞬間的に大電流を要求されるので、エンジンの始動時には、この増加した内部抵抗による電圧降下が顕著に現れる。このような特徴を踏まえ、エンジンの始動時におけるバッテリ電圧の最下点を測定し、バッテリ劣化を判定することが開示されている(特許文献1参照)。
特開2010-208539号公報
 バッテリ電圧の最下点を精度良くモニタするには、サンプリング間隔を短くする必要性が出てくる。一般に、システムで使用するバッテリ電圧のサンプリング間隔は、例えば10~20msで十分に満足できるが、エンジンの始動時の最下点を十分な精度でモニタするには、より短い例えば数msのサンプリング間隔を必要とする。しかしながら、常時この速度でサンプリングし続けることはCPU(Central Processing Unit)に無用な計算負荷を掛けてしまう問題がある。
 本発明は以上の点を考慮してなされたもので、新たなセンサを追加することなく、かつ電圧値を抽出する間隔を既存の間隔より短くすることなく、二次電池の劣化を高精度に判定可能な制御装置を提案しようとするものである。
 かかる課題を解決するため本発明においては、二次電池の電圧を第1の間隔で測定し、測定した電圧値を第1の間隔よりも長い第2の間隔で抽出する制御装置において、第2の間隔ごとに、第1の間隔で測定した複数の電圧値を抽出する抽出処理を内燃機関の始動時に繰り返し、抽出した電圧値に基づいて二次電池の最下点を特定し、最下点がしきい値を下回るか否かに基づいて二次電池の劣化を判定するようにした。
 本発明の制御装置によれば、第2の間隔ごとに抽出処理する際に、第1の間隔で測定された複数の電圧値を取得して評価することで、エンジンの始動時におけるバッテリ電圧の最下点を精度良く測定するので、二次電池の劣化を高精度に判定することができる。
 本発明によれば、新たなセンサを追加することなく、かつ電圧値を抽出する間隔を既存の間隔より短くすることなく、二次電池の劣化を高精度に判定可能な制御装置を実現することができる。
車両システムの概略構成を示すブロック図である。 ECUにおけるサンプリングの概略構成を示す図である。 ECUが実行する処理のフローチャートを示す図である。 ECUが実行する処理のフローチャートを示す図である。 最下点の検出結果を示す図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)実施の形態
 図1は、本実施の形態による車両システム1の概略構成を示す。この車両システム1は、イグニッションスイッチ2、スタータモータ3、オルタネータ4、バッテリ5、表示灯・警告灯パネル6、およびECU10を備えて構成される。この車両システム1では、イグニッションスイッチ2がオンでさらに内燃機関始動信号(スターター信号2a)がオンになると、二次電池(例えば鉛電池)であるバッテリ5の電力が用いられてスタータモータ3が回転し、内燃機関であるエンジン(図示せず。)が始動される。エンジンの始動の際、ECU10では、バッテリ5が劣化しているか否かの判定(バッテリ劣化判定処理)が行われ、バッテリ5が劣化している場合、表示灯・警告灯パネル6にてバッテリ5が劣化していることを示す警告灯表示で運転者にバッテリ5の異常を知らせる機能を持たすこともできる。
 ここで、ECU10は、自動車等に搭載される制御装置であり、CPU11、エンジンオフタイマ19、エンジンオンタイマ20を備え、電装部品の制御、バッテリ劣化判定処理などを行う。またCPU11は、I/Oポート12、ADC(10bit-Analog to Digital Converter)13、ADCレジスタ14、RAM(Random Access Memory)15、EEPROM(Electrically Erasable Programmable Read-Only Memory)16、ローサイドドライバ17などを備える。なお上述のハードウェア構成は一例である。またECU10が行う制御(処理)の一部または全部は、ハードウェア(回路等)により実行されてもよいし、ソフトウェア18(例えばCPU11がROM(図示せず。)に記憶されたプログラムを読み出すこと)により実行されてもよい。
 図2に示すように、ADC13は、バッテリ5内の電圧(バッテリ電圧)を測定するセンサのシグナル(センサ信号)を1ms毎に読み込んでデジタルデータ(電圧値)としてADCレジスタ14に蓄える。例えば、エンジンの始動時にバッテリ電圧の最下点を特定するために、CPU11のサンプリング間隔(CPU11がADCレジスタ14から電圧値を抽出する間隔)を10msとする場合、従来は、ADCレジスタ14に保存された直近の1個が使用され、10個のうち9個が使用されなくなってしまう。この点、CPU11のサンプリング間隔を2msに早めることによって、より正確なデータ(バッテリ電圧の最下点)を抽出することが可能である。しかしながら、2ms等の短いサンプリング間隔は、CPU11に計算負荷を与えることになるので、CPU11のサンプリング間隔は、通常の10~20msが適切なサンプリング間隔となる。そこで本実施の形態のECU10では、ADC13の処理レート(測定間隔)「1ms」およびCPU11の処理レート(サンプリング間隔)「10ms」は変更せずに、CPU11のサンプリング間隔毎に、CPU11がADC13から出力されたADCレジスタ14内の10個のデータに基づく最下点(最小値)を決定し、RAM15に保存する構成を採用する。最下点については、CPU11は、ADCレジスタ14内の10個のデータのうち、最も小さい電圧値を最下点としてもよいが、連続する2個のデータを平均化し、平均化した5個のデータ(平均値)のうちの最小の平均値を最下点として選択する。このように平均値から最下点を選択することで、センサ信号におけるノイズを除去できるようになる。
 次にECU10によって10ms毎に実行されるバッテリ劣化判定処理を図3Aおよび図3Bに示すフローチャートに基づいて説明する。バッテリ劣化判定処理の繰り返しは、アクセサリポジションON、キーONなど、エンジンの始動前の適宜のユーザ操作に応じて開始され、アイドリングが安定する、スタータモータ3の回転が停止するなどの予め設定した終了条件が満たされると、終了される。
 まずステップS11では、ECU10は、車両が長期間放置されているか否か、より具体的にはエンジンオフタイマ19が所定時間以上となっているか否かを判定する(S11)。ECU10は、車両が長期間放置されていると判定した場合、バッテリ5が過放電となっている可能性があるので、今回のドライビングサイクルでは最下点の特定(検出)を実施することなく、通常発電を行い(S12)、バッテリ劣化判定処理を終了する。他方、車両が長期間放置されていないと判定した場合、ステップS13に処理を移す。
 ここで、現在の車両システムでは、キーOFF時であっても、微弱な電流が流れ続けていて(暗電流)、車両が放置される(エンジンを掛けない)時間が長い程、放電ぎみな状態になるが、これはバッテリ劣化ではなく単なるバッテリ上がり(空に近い)である。しかしながら、たとえ専用のセンサを新たに取り付けたとしても暗電流によって放電したバッテリ上がりを検出することは困難である。そのため、長期間放置による過放電のバッテリ5についてバッテリ電圧の最下点を同様に判定すると誤検知につながるため、長時間放置後の最初のドライビングでは診断をスキップする。なお過放電となっているか否かは車両システムで使用される電流量から推測可能である。
 次いでステップS13では、ECU10は、アイドリングが安定しているか否か、より具体的にはアイドリングディレイタイマが所定時間を経過したか否かを判定する(S13)。ECU10は、アイドリングが安定していると判定した場合、バッテリ劣化判定処理を終了するように判定許可フラグをクリアし(S14)、ステップS15に処理を移す。つまり、バッテリ電圧の最下点は、エンジンの始動時に顕著になるが、エンジンの回転数が安定してオルタネータ4の電力が使用できるようになると、バッテリ電圧の最下点が検出できなくなるので、バッテリ劣化判定処理は、エンジンの回転数が安定したら止められる。他方、ECU10は、アイドリングが安定していないと判定した場合、ステップS15に処理を移し、S13の所定時間経過までバッテリ劣化判定処理は継続されることになる。
 次いでステップS15では、ECU10は、判定許可フラグが「TURE」であるか否か、すなわちバッテリ電圧の最下点の検出を行うか否かを判定する(S15)。ECU10は、バッテリ電圧の最下点の検出を行うと判定した場合、ステップS16に処理を移し、バッテリ電圧の最下点の検出を行わないと判定した場合、バッテリ劣化判定処理を終了する。なお判定許可フラグについてはバッテリ劣化判定処理の初期化処理(図示せず。)で初期値「TURE」がセットされている。
 次いでステップS16では、ECU10は、スタータモータ3が始動したか否かを判定する(S16)。スタータモータ3の初回起動時はバッテリ電圧の最下点を示すRAM15の値(RAM値)が「0」であるので、ECU10は、始動したと判定した場合、バッテリ電圧の最下点の初期値(例えば12V)をRAM15に保存し(S17)、ステップS18に処理を移し、始動していないと判定した場合、ステップS18に処理を移す。
 次いでステップS18では、ECU10は、スタータモータ3が回転しているか否かを判定する(S18)。ECU10は、スタータモータ3が回転していると判定した場合、ステップS19に処理を移し、スタータモータ3が回転していないと判定した場合、バッテリ劣化判定処理を終了する。
 次いでステップS19では、ECU10は、ADCレジスタ14の電圧値について平均化処理を行う(S19)。より具体的には、ECU10は、ADCレジスタ14に保存された10個の電圧値について、連続する2個の電圧値の平均を算出して平均化データ(平均値(0-1)、平均値(2-3)、平均値(4-5)、平均値(6-7)、平均値(8-9))を生成する。
 次いでステップS20では、ECU10は、平均化データについてミニマム処理を行う(S20)。より具体的には、ECU10は、平均化データにおいて最小の平均値を特定する。
 次いでステップS21では、ECU10は、バッテリ電圧の最下点を更新する(S21)。より具体的には、ECU10は、ステップS20で特定した最小の平均値(今回の最下点)とRAM15に保存している値(以前までの最下点)とを比較し、今回の最下点の方が以前までの最下点より小さい場合、RAM15の値を今回の最下点に更新する。
 次いでステップS22では、ECU10は、バッテリ電圧の最下点が所定のしきい値を下回っているか否か(例えば7.2V以下であるか否か)を判定する(S22)。ECU10は、バッテリ電圧の最下点が所定のしきい値を下回っていると判定した場合、ステップS25に処理を移し、バッテリ電圧の最下点が所定のしきい値を下回っていないと判定した場合、ステップS23に処理を移す。
 次いでステップS23では、ECU10は、バッテリ5の劣化(異常)があることを示すバッテリ劣化フラグをクリアし(S23)、次いでステップS24では、今回のドライビングサイクルにおいてバッテリ5の劣化(異常)があることを示す履歴(劣化履歴)をEEPROM16からクリアし(S24)、バッテリ劣化判定処理を終了する。
 次いでステップS25では、ECU10は、バッテリ劣化フラグを「TURE」にセットし(S25)、ステップS26に処理を移す。
 次いでステップS26では、ECU10は、単位期間あたりのエンジンのONおよびOFFの回数が所定回数を下回っているか否か、より具体的にはエンジンオンタイマ20が規定時間を超えているか否かを判定する(S26)。ECU10は、所定回数を下回っていると判定(規定時間を超えていると判定)した場合、ステップS27に処理を移し、所定回数を下回っていないと判定(規定時間を超えていないと判定)した場合、バッテリ劣化判定処理を終了する。ここで、エンジンオンタイマ20の値は、前回のドライビングサイクルでEEPROM16に保存されていて、エンジンオンタイマ20の値が小さいと、通常使用ではないので、バッテリ5が多く放電していることを示し、バッテリ劣化としてカウントされない。より具体的には、宅配便等の用に供される車両において、短期間に移動および停止を繰り返した場合、エンジンオンタイマ20の値が小さく、バッテリ劣化を正しく判定できないおそれがあるので、バッテリ劣化の判定をスキップする。また宅配便等の用に供される車両ではなく、バッテリ5の電力(エネルギー)を多く使っているときは、後述するようにエンジンオンタイマ20の値は十分に上がっておらず、バッテリ劣化を正しく判定できないおそれがあるので、バッテリ劣化の判定をスキップする。また宅配便等の用に供される車両ではなく、バッテリ5の電力を多く使っていないときは、エンジンオンタイマ20の値は十分に上がっているので、バッテリ劣化の判定を実施する。
 次いでステップS27では、ECU10は、EEPROM16に保存されている前回の劣化履歴を参照し、前回のドライビングサイクルでバッテリ5が劣化していると判定したか否かを判定する(S27)。ECU10は、バッテリ5が劣化していると判定した場合(例えば2回連続でバッテリ5が劣化していると判定した場合)、ステップS29に処理を移し、バッテリ5が劣化してないと判定した場合、ステップS28に処理を移す。
 ここで、本実施の形態の車両システム1では、電力を多く消費するもの(例えば、ヘッドライト、グロープラグ、PTC(Positive Temperature Coefficient)ヒータ等)のON信号がECU10等で測定され、エンジンオンタイマ20の値(エンジンON時間)も計測されている。ただしバッテリ5が多くのエネルギーを使用しているときは、バッテリ5が十分に充電されていない可能性があるので、エンジンON時間は加算されない。このことから、ECU10は、エンジンON時間が十分でないとき、例え連続したバッテリ劣化の検出がある場合でも、バッテリ5は劣化していると判定されない。
 次いでステップS28では、ECU10は、劣化履歴をEEPROM16にセットし(S28)、バッテリ劣化判定処理を終了する。
 次いでステップS29ではバッテリ劣化が確定したため、ECU10は、バッテリ劣化を示す警告ランプを表示灯・警告灯パネル6で点灯させるための警告ランプフラグをEEPROM16にセットし(S29)、バッテリ劣化判定処理を終了する。
 図4は、最下点の計測結果を示す図である。図4において、計測結果31は、10msごとに電圧値を1つ抽出してプロットしたときの結果を示し、計測結果32は、10msごとに平均化処理およびミニマム処理を行ってプロットしたときの結果を示す。図4に示すように、平均化処理およびミニマム処理を行ったときの方が最下点をより正確に捉えられることがわかる。
 以上のように、本実施の形態によれば、新たなセンサを追加することによって必要スペースの増加等を招くことなく、CPU11の負荷(電圧値のサンプリング間隔)を短くすることなく、エンジンの始動時におけるバッテリ電圧の最下点を精度良く測定できるECU10を実現することができる。またECU10によれば、バッテリ5の劣化および過放電をいち早く検出し、バッテリ上がりによるトラブルを未然に防ぐことができるようになる。
(2)他の実施の形態
 なお上述の実施の形態においては、本発明を自動車等に搭載されるECU10に適用するようにした場合について述べたが、本発明はこれに限らず、この他種々の制御装置に広く適用することができる。特に、減速エネルギー回生システム備える自動車、C端子(調整電圧切替機能)付きオルタネータを備える自動車、ハイブリッド車などバッテリを酷使する車両に搭載される制御装置に適用して好適なものである。例えば、C端子付きのオルタネータでは、バッテリ5の充電量が十分と判断される場合、発電を最小限にするまたは発電しないようにし、バッテリ5の電力を先に使うため、バッテリ劣化が増すおそれがあるので、C端子付きのオルタネータを備える自動車に適用することは好適である。
 また上述の実施の形態においては、一のドライビングサイクルでバッテリ電圧の最下点の検出を1回だけ行う場合について述べたが、本発明はこれに限らず、エンジンの始動時にエンストなどが発生することもあるので、一のドライビングサイクルでバッテリ電圧の最下点の検出を複数回行うようにしてもよい。例えば、オプション機能を選択(再判定許可フラグを設定)できる構成を採用し、バッテリ電圧の最下点の再検出を可能とする。
 また上述の実施の形態においては、バッテリ劣化判定処理の繰り返しの終了条件として、スタータモータ3の回転が停止することを例示して述べたが、本発明はこれに限らず、スタータモータ3が停止時もバッテリ劣化判定処理の繰り返しが行われるように終了条件を設定するようにしてもよい。スタータモータ3のギアがエンジンのギアから離されるときにバッテリ5の電力が多く使用される場合があるが、この終了条件によれば、その際の内部抵抗による電圧降下を捉えることができるようになる。
 また上述の実施の形態においては、ステップS22の判定でYesの場合はステップS25の処理を行う場合について述べたが、本発明はこれに限らず、ステップS25の処理の前にバッテリ電圧の最下点が0Vであるか否かの判定を行い、0Vの場合はバッテリ劣化判定処理を継続するようにしてもよい。
 また上述の実施の形態においては、10ms毎にバッテリ劣化判定処理を繰り返す場合について述べたが、本発明はこれに限らず、ECU10のサンプリング間隔は、10msとし、その他の処理(平均化処理、ミニマム処理、バッテリ電圧の最下点が所定のしきい値を下回ったかの判定等)は、適宜のタイミングで行うようにしてもよい。
 1……車両システム、2……イグニッションスイッチ、3……スタータモータ、4……オルタネータ、5……バッテリ、6……表示灯・警告灯パネル、10……ECU、11……CPU、12……I/Oポート、13……ADC、14……ADCレジスタ、15……RAM、16……EEPROM、17……ローサイドドライバ、18……ソフトウェア、19……エンジンオフタイマ、20……エンジンオンタイマ。

Claims (5)

  1.  二次電池(5)の電圧を第1の間隔で測定し、測定した電圧値を前記第1の間隔よりも長い第2の間隔で抽出する制御装置(10)において、
     前記第2の間隔ごとに、前記第1の間隔で測定した複数の電圧値を抽出する抽出処理を内燃機関の始動時に繰り返し、抽出した電圧値に基づいて前記二次電池(5)の最下点を特定し、前記最下点がしきい値を下回るか否かに基づいて前記二次電池(5)の劣化を判定する制御部(11,18)
     を備えることを特徴とする制御装置。
  2.  前記制御部(11,18)は、前記第2の間隔ごとに、前記第1の間隔で測定した複数の電圧値において連続する複数個の電圧値の平均を算出して最小の平均値を特定し、特定した最小の平均値の中から最小の平均値を前記最下点として特定する
     ことを特徴とする請求項1に記載の制御装置。
  3.  前記制御部(11,18)は、前記内燃機関の始動時に、エンジンオフタイマ(17)の時間が所定時間以上であると判定した場合、前記抽出処理を行わない
     ことを特徴とする請求項1に記載の制御装置。
  4.  前記制御部(11,18)は、アイドリングが安定すると、前記抽出処理を行わない
     ことを特徴とする請求項1に記載の制御装置。
  5.  前記制御部(11,18)は、エンジンオンタイマ(20)が規定時間を超えると判定した場合、前記二次電池(5)の劣化を判定する
     ことを特徴とする請求項1に記載の制御装置。
PCT/JP2017/031142 2016-11-02 2017-08-30 制御装置 WO2018083873A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17867927.0A EP3537529B1 (en) 2016-11-02 2017-08-30 Control device
JP2018548574A JP6850811B2 (ja) 2016-11-02 2017-08-30 制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-214833 2016-11-02
JP2016214833 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018083873A1 true WO2018083873A1 (ja) 2018-05-11

Family

ID=62075638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031142 WO2018083873A1 (ja) 2016-11-02 2017-08-30 制御装置

Country Status (3)

Country Link
EP (1) EP3537529B1 (ja)
JP (1) JP6850811B2 (ja)
WO (1) WO2018083873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796016A1 (en) * 2019-09-09 2021-03-24 General Electric Company System and method for detecting battery faults in a pitch system of a wind turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509670A (ja) * 2002-10-28 2006-03-23 ビーピーパワー インコーポレイティッド 自動車の電力をモニターする装置及びその方法
JP2006188130A (ja) * 2005-01-05 2006-07-20 Shin Kobe Electric Mach Co Ltd 電池状態検出装置
JP2007280776A (ja) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd 電池状態判定装置
JP2010064538A (ja) * 2008-09-09 2010-03-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の劣化状態判定方法及び装置
JP2010230654A (ja) * 2009-03-03 2010-10-14 Denso Corp バッテリの状態検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639522B (zh) * 2008-08-01 2014-06-04 株式会社杰士汤浅国际 二次电池的劣化状态诊断装置
JP5391749B2 (ja) * 2009-03-11 2014-01-15 新神戸電機株式会社 電池診断装置
JP5321184B2 (ja) * 2009-03-25 2013-10-23 新神戸電機株式会社 電池診断装置および電池
JP5538333B2 (ja) * 2011-08-30 2014-07-02 日立ビークルエナジー株式会社 蓄電池監視装置
JP2013140055A (ja) * 2011-12-29 2013-07-18 Toyota Central R&D Labs Inc 電池監視システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509670A (ja) * 2002-10-28 2006-03-23 ビーピーパワー インコーポレイティッド 自動車の電力をモニターする装置及びその方法
JP2006188130A (ja) * 2005-01-05 2006-07-20 Shin Kobe Electric Mach Co Ltd 電池状態検出装置
JP2007280776A (ja) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd 電池状態判定装置
JP2010064538A (ja) * 2008-09-09 2010-03-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の劣化状態判定方法及び装置
JP2010230654A (ja) * 2009-03-03 2010-10-14 Denso Corp バッテリの状態検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537529A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796016A1 (en) * 2019-09-09 2021-03-24 General Electric Company System and method for detecting battery faults in a pitch system of a wind turbine
US11476685B2 (en) 2019-09-09 2022-10-18 General Electric Company System and method for detecting battery faults in a pitch system of a wind turbine

Also Published As

Publication number Publication date
JP6850811B2 (ja) 2021-03-31
EP3537529A4 (en) 2019-10-23
JPWO2018083873A1 (ja) 2019-09-19
EP3537529B1 (en) 2022-02-16
EP3537529A1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP4919120B2 (ja) バッテリの状態検出装置
US7880442B2 (en) Charging control device for a storage battery
JP6670999B2 (ja) 二次電池の状態推定装置および状態推定方法
RU2017127714A (ru) Электрическая система транспортного средства
US8949007B2 (en) Start-up possibility determining apparatus and start-up possibility determining method
JP4457781B2 (ja) 劣化度推定方法及び劣化度推定装置
US9977086B2 (en) Battery monitoring apparatus
JP2017032569A (ja) 車両バッテリーの充電を決定する方法
KR20120004670A (ko) 차량용 배터리 센서
WO2018083873A1 (ja) 制御装置
US10377239B2 (en) Auxiliary battery status determination device and auxiliary battery status determination method
RU2621203C2 (ru) Способ и устройство сохранения работоспособности транспортного средства
JP6045984B2 (ja) 二次電池状態検知装置
CN105493335A (zh) 电池控制装置
KR20150061751A (ko) 배터리 방전 방지를 위한 전류 자동차단 장치 및 그 방법
JP6167886B2 (ja) エンジン制御装置
JP2006188130A (ja) 電池状態検出装置
JP7156150B2 (ja) 駆動システムの制御装置
EP2998754B1 (en) Secondary battery status detection device and secondary battery status detection method
JP2004124846A (ja) エンジン始動装置
JP2016162728A (ja) バッテリ種別判定装置およびバッテリ種別判定方法
CN116587866A (zh) 一种电池监控方法、控制器和电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867927

Country of ref document: EP

Effective date: 20190603