WO2018083839A1 - 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム - Google Patents

垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム Download PDF

Info

Publication number
WO2018083839A1
WO2018083839A1 PCT/JP2017/024917 JP2017024917W WO2018083839A1 WO 2018083839 A1 WO2018083839 A1 WO 2018083839A1 JP 2017024917 W JP2017024917 W JP 2017024917W WO 2018083839 A1 WO2018083839 A1 WO 2018083839A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
quadrant
lift
propellers
rotation
Prior art date
Application number
PCT/JP2017/024917
Other languages
English (en)
French (fr)
Inventor
英男 鈴木
幸博 鈴木
孝太郎 松下
真樹 花田
篠原 徹
典子 新島
維男 中村
Original Assignee
英男 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英男 鈴木 filed Critical 英男 鈴木
Priority to PCT/JP2017/039804 priority Critical patent/WO2018084261A1/ja
Priority to JP2018527263A priority patent/JP6487607B2/ja
Publication of WO2018083839A1 publication Critical patent/WO2018083839A1/ja
Priority to US16/398,344 priority patent/US10526066B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/06Adjustable control surfaces or members, e.g. rudders with two or more independent movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C17/00Aircraft stabilisation not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0072Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements to counteract a motor failure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present invention relates to a vertical take-off and landing vehicle, a controller, a control method, and a control program for a vertical take-off and landing vehicle.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a vertical take-off and landing vehicle capable of reducing the possibility of a crash, a controller, a control method, and a control program for a vertical take-off and landing vehicle.
  • the first aspect of the present invention defines a fuselage main part and a quadrant center inside the fuselage main part in a plane pattern, and lift in the same direction independent of each of the first to fourth quadrants around the quadrant center.
  • the first propeller disposed in each of the first to fourth quadrants by a rotation shaft provided in the frame, and the first quadrant provided in the frame.
  • the first quadrant and the third quadrant rotate in the second quadrant and the second quadrant, and the second propeller has the same rotation direction as the first propeller. It is the direction opposite to the rotation direction of 4 quadrants.
  • a quadrant center is defined in the main part of the fuselage in a plane pattern, and lifts in the same direction independent of each of the first to fourth quadrants around the quadrant center are generated.
  • the gist of the present invention is a controller for a vertical take-off and landing vehicle that includes a line control unit that is arranged by a rotation shaft provided in a frame and rotates a second propeller in the same rotation direction as the first propeller. To do.
  • a quadrant center is defined in the main part of the fuselage in a plane pattern, and independent lifts in the same direction are generated in each of the first to fourth quadrants around the quadrant center.
  • a step of rotating a first propeller arranged by a rotation shaft provided in the frame in each of the first to fourth quadrants of the frame supporting the main part of the fuselage, and when lift in the first quadrant is insufficient is a method for controlling a vertically take-off and landing vehicle that includes a step of rotating a second propeller in the same rotational direction as that of the first propeller, which is arranged in a quadrant with a rotating shaft provided on the frame.
  • a program for realizing the method of controlling a vertical takeoff and landing vehicle described in the third aspect of the present invention is stored in a computer-readable recording medium, and the recording medium is read by a computer system, thereby allowing the present invention to be executed.
  • the control method for the vertical take-off and landing vehicle can be executed. That is, according to the fourth aspect of the present invention, a quadrant center is defined inside the main part of the airframe in a plane pattern, and lifts in the same direction independent of each of the first to fourth quadrants around the quadrant center are generated.
  • a vertical take-off and landing vehicle capable of causing a computer to execute a process according to a series of instructions including an instruction to rotate a second propeller in the same rotational direction as the first propeller, which is arranged by a rotation shaft provided in the frame This is a control program.
  • a vertical take-off and landing vehicle that can reduce the possibility of a crash, a controller for the vertical take-off and landing vehicle, a control method, and a control program.
  • the vertical takeoff and landing capable vehicle includes a main body 10 and a frame (11, 12, 13, 14) that supports the main body 10 in the center.
  • the octocopter includes eight propellers (rotors) 31, 32,..., 38 arranged on the frames (11 to 14).
  • the frames (11 to 14) define a quadrant center G inside the airframe main part 10 in the plane pattern, and the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 around the quadrant center G.
  • the main body 10 is supported so as to generate lift in the same direction independent of each other.
  • the propellers 31 to 38 each have a rotation direction that generates upward lift.
  • the propellers 31 to 38 are schematically shown as respective rotation surfaces.
  • the propellers 31 to 38 are classified into two sets of propellers, for example, a first propeller 31 to 34 located in the upper layer and a second propeller 35 to 38 located in the lower layer of each of the first propellers 31 to 34.
  • the first propellers 31 to 34 are arranged in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 by rotating shafts provided in the frames (11 to 14).
  • the second propellers 35 to 38 are arranged in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 by rotation shafts provided on the frames (11 to 14).
  • the second propellers 35 to 38 have the same rotational direction as the first propellers 31 to 34.
  • first propeller 31 and the second propeller 35 arranged in the first quadrant Q1 and the first propeller 33 and the second propeller 37 arranged in the third quadrant Q3 are arranged in the frame (11 to 14). Each has a clockwise (CW) rotation direction as viewed from above.
  • first propeller 32 and the second propeller 36 arranged in the second quadrant Q2 and the first propeller 34 and the second propeller 38 arranged in the fourth quadrant Q4 have a counterclockwise (CCW) rotation direction.
  • CCW counterclockwise
  • each of the first propeller 31 and the second propeller 35, the first propeller 32 and the second propeller 36, the first propeller 33 and the second propeller 37, and the first propeller 34 and the second propeller 38 are understood.
  • the rotation axis and the rotation surface which are different from each other are schematically displayed.
  • the rotating shafts are arranged so as to be concentric with each other and have a two-layer structure.
  • two propellers having the same rotation axis and rotation direction are arranged, and the rotation direction in each quadrant is opposite to the adjacent quadrant.
  • the blades of the first propeller 32 and the second propeller 36 are respectively viewed from above the frame (11-14).
  • the pitch angle is adjusted so as to generate upward lift of the frames (11-14) when rotating in CCW.
  • the blades of the first propeller 34 and the second propeller 38 are respectively CCWs of the first propeller 34 and the second propeller 38.
  • the pitch angle is adjusted so as to generate upward lift of the frames (11 to 14) when rotating to the right.
  • the blades of the first propeller 31 and the second propeller 35 in the first quadrant Q1 and the first propeller 33 and the second propeller 37 in the third quadrant Q3 are the first propeller 31 and the second propeller 35,
  • the pitch angle is adjusted so as to generate upward lift of the frames (11 to 14) when each of the propeller 33 and the second propeller 37 rotates to CW.
  • the first propeller 32 and the second propeller 36 each have, for example, two blades, but the number of blades included in the propellers 31 to 38 may be three or more. By increasing the number of blades, the lift generated by the rotation can be increased. Further, each of the first propellers 31 to 34 and the second propellers 35 to 38 may have a different number of blades between the upper and lower layers. Moreover, you may have the propeller from which a diameter differs between upper and lower two layers.
  • the frame (11 to 14) includes a plurality of beam portions 11, 12 extending radially outward from the quadrant center G side in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. , 13 and 14. Therefore, the frames (11 to 14) may have a structure formed integrally with the main body 10 of the machine body.
  • the main body 10 functions as a housing that houses electronic components such as a power source and a processing circuit, for example.
  • Each of the beam portions 11 to 14 has a cylindrical shape, for example, and accommodates wiring and the like.
  • Each of the beam portions 11 to 14 is arranged such that, for example, the center line in the longitudinal direction coincides with a radial line passing through the center of gravity of the frame (11 to 14) as a planar pattern.
  • the center of gravity of the frames (11 to 14) in the plane pattern is, for example, the quadrant center G.
  • the frames (11-14) may have two or four rotational symmetry with respect to a central axis perpendicular to the frames (11-14) passing through the center of gravity.
  • the vertical take-off and landing vehicle further includes a plurality of motors 21 to 28 that rotate the propellers 31 to 38, respectively.
  • the motors 21 to 28 include two sets of first motors 21 to 24 that rotate the first propellers 31 to 34 and second motors 25 to 28 that rotate the second propellers 35 to 38, respectively. Classified as motor.
  • the first motor 21, the second motor 25, the first motor 22, the second motor 26, the first motor 23 and the second motor 27, and the first motor 24 and the second motor 28 are arranged such that the shafts are concentric with each other.
  • the propellers 31 to 38 can be rotated independently of each other by corresponding motors 21 to 28, respectively. That is, each of the propellers 31 to 38 is rotated by a drive power system independent of each other.
  • the motors 21 to 28 for example, brushless DC motors, brushed DC motors, AC or DC servo motors or the like that have high output efficiency with respect to input power can be employed.
  • the upper first motor 22 and the first propeller 32 are attached to the upper side at the tip of the beam portion 12, and the lower second motor 26 and the second propeller 36 are attached to the lower side.
  • the first motor 21 and the first propeller 31 in the upper layer are attached to the upper side at the distal end portion of the beam portion 11, and the second motor 25 and the second propeller 35 are attached to the lower side.
  • the upper first motor 23 and the first propeller 33 are attached to the upper side at the tip of the beam portion 13, and the lower second motor 27 and the second propeller 37 are attached to the lower side.
  • the upper first motor 24 and the first propeller 34 are attached to the upper side at the tip of the beam portion 14, and the lower second motor 28 and the second propeller 38 are attached to the lower side.
  • the vertical takeoff and landing vehicle further includes a command unit 4, a flight controller (FC) 5, and a plurality of electronic speed controllers (ESC) 61, 62,. .
  • the command unit 4, FC5, and ESCs 61 to 68 are accommodated inside the machine main unit 10, for example.
  • the command unit 4 is a circuit that outputs a command signal indicating the flight operation of the vertically take-off and landing capable vehicle according to the first embodiment to the FC 5.
  • the flight operation includes ascending, descending, moving forward, moving backward, moving left, moving right, turning left, turning right, and the like.
  • the command unit 4 can be, for example, a receiver that receives a command signal from a transmitter that wirelessly transmits a command signal in accordance with a user operation.
  • the command unit 4 or the FC 5 may include a global navigation positioning system (GNSS) receiver that acquires position information indicating latitude, longitude, and altitude based on signals received from a plurality of navigation satellites.
  • GNSS global navigation positioning system
  • the command unit 4 may automatically generate a command signal for flying on a preset flight route based on the position information acquired by the GNSS receiver. Alternatively, the command unit 4 may accept a crew member's operation by using a maneuverable vehicle that can take off and land vertically and output a command signal corresponding to the operation to the FC 5.
  • FC5 includes a sensor unit 51 and a control circuit 56 as shown in FIG.
  • the sensor unit 51 includes, for example, an acceleration sensor 52, an angular velocity sensor 53, an orientation sensor 54, and an altitude sensor 55.
  • the acceleration sensor 52 detects acceleration in three axis directions orthogonal to each other, that is, in the roll axis, pitch axis, and yaw axis directions.
  • the angular velocity sensor 53 detects the posture of the frames (11 to 14) with respect to the ground surface by detecting angular velocities around three axes orthogonal to each other.
  • the direction sensor 54 detects the direction of the frames (11 to 14) by detecting the geomagnetism.
  • the altitude sensor 55 detects altitude by detecting atmospheric pressure.
  • the sensor unit 51 detects a flight state such as speed, posture, azimuth, altitude, and the like of the vertically take-off and landing-capable aircraft according to the first embodiment by using the acceleration sensor 52, the angular velocity sensor 53, the azimuth sensor 54, and the altitude sensor 55.
  • the control circuit 56 is constituted by a computer such as a microcontroller having a processor, a memory, and an input / output interface, for example.
  • the processor of the control circuit 56 is, for example, a central processing unit (CPU).
  • the processor may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the processor may include a programmable logic device (PLD) such as a field programmable gate array (FPGA).
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the control circuit 56 controls the flight control unit 561 and the line control unit 562 that control the ESCs 61 to 68 in accordance with the command signal input from the command unit 4 and the flight state detected by the sensor unit 51. Prepare as a hardware resource.
  • the flight control unit 561 sets the target state of the frames (11 to 14) from the command signal input from the command unit 4 and achieves the target state from the difference from the flight state detected by the sensor unit 51. This is a logic circuit that generates control signals indicating the respective rotational speeds 31-38.
  • the flight control unit 561 outputs the generated control signal to the ESCs 61 to 68.
  • the line control unit 562 is a logic circuit that sets the output destination of the control signal from the ESCs 61 to 68 by switching the line of the control signal for the ESCs 61 to 68, for example. For example, the line control unit 562 outputs a control signal to any one of the plurality of ESCs in each of the first mode in which the same control signal is output to the plurality of ESCs in each of the four quadrants and each of the four quadrants. And a second mode.
  • the line control unit 562 includes the first ESC 61 and the second ESC 65 for the first quadrant Q1, the first ESC 62 and the second ESC 66 for the second quadrant Q2, the first ESC 63 and the second ESC 67 for the third quadrant Q3, The same control signal is output for each of the first ESC 64 and the second ESC 68 for the four quadrant Q4.
  • the line control unit 562 is one of the first ESC 61 and the second ESC 65, one of the first ESC 62 and the second ESC 66, one of the first ESC 63 and the second ESC 67, and one of the first ESC 64 and the second ESC 68.
  • Control signals are output respectively.
  • the FC 5 generates control signals for the ESCs 61 to 68 so that the eight motors 21 to 28 can be driven independently. Therefore, the FC5 and each of the ESCs 61 to 68 are connected to each other by independent wiring.
  • Each of the ESCs 61 to 68 is a motor drive circuit that receives a control signal from the FC 5, generates a drive signal for driving the motors 21 to 28 at the rotation speed indicated by the control signal, and outputs the drive signals to the motors 21 to 28. That is, the FC 5 controls the rotation of the propellers 31 to 38 via the ESCs 61 to 68, respectively.
  • the ESCs 61 to 68 are classified into two groups: first ESCs 61 to 64 that drive the upper first motors 21 to 24 and second ESCs 65 to 68 that drive the lower second motors 25 to 28.
  • the center state (a) is hovering where the vertical take-off and landing capable vehicle stops in the air.
  • the numbers and signs such as “1.0 CW” shown in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 mean the lift force and the rotation direction by the upper and lower propellers.
  • Each lift is expressed as a ratio in which the lift of one propeller in the state (a) is set to 1.0, which means an indication of the control state by FC, and may differ from the actual lift.
  • the FC controls the lift in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 to be equal to each other.
  • the lift by the upper and lower propellers in each quadrant is, for example, 1.0. Since the sum of lift in each quadrant is 2.0, the roll axis and the pitch axis are stable. Further, the sum of lifts by the CW propellers is 4, which is equal to the sum of lifts 4 by the CCW propellers. For this reason, the aircraft is stable about the yaw axis and the aircraft is hovered.
  • State (b) is forward.
  • the lift force of the upper and lower propellers in the first first quadrant Q1 and the second quadrant Q2 is 0.8, and the upper and lower layers in the rear third quadrant Q3 and the fourth quadrant Q4, respectively.
  • Each propeller has a lift of 1.2.
  • the front lift is relatively small, the front of the aircraft is relatively lowered, and the aircraft is pitched downward.
  • the airframe is stable about the roll axis and the yaw axis, and as a result, moves forward.
  • State (c) is left movement.
  • the sum of the lift in the first quadrant Q1 and the second quadrant Q2 in the front, the lift in the third quadrant Q3 and the fourth quadrant Q4 in the rear, the lift by the CW propeller, and the lift by the CCW propeller are all 4. .
  • the aircraft is stable about the pitch axis and the yaw axis, and as a result, moves to the left.
  • State (d) is right movement.
  • the right movement is substantially equivalent to the state of 180 ° rotation about the yaw axis from the left movement state (c), and thus detailed description is omitted.
  • State (e) is retreat. Since the backward movement is substantially equivalent to the state of 180 ° inversion around the yaw axis from the forward movement state, detailed description of the backward movement is also omitted.
  • State (f) is a left turn.
  • State (g) is right turn.
  • the total height of each lift is 8.0, so the altitude of the aircraft is constant.
  • the aircraft can be raised and lowered by increasing / decreasing the total lift while maintaining the lift ratio in each quadrant.
  • the vertical take-off and landing capable vehicle according to the first embodiment can fly indefinitely and horizontally.
  • FIG. 6 is a diagram illustrating a state in which the aircraft is hovering in each failure mode.
  • “propeller failure” means a state where lift due to the rotation of the propeller is no longer generated for some reason.
  • mode (A) is a normal mode without a failed propeller.
  • the aircraft in the mode (A), the aircraft can fly freely without any problem.
  • the first condition is that the lift forces in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 are equal to each other, thereby balancing the roll axis and the pitch axis.
  • the second condition is that the lift forces of the CW and CCW propellers are equal to each other, thereby balancing the yaw axis.
  • Mode (B) is a mode in which one of the two CW propellers in the first quadrant Q1 has failed.
  • the FC increases the rotation speed of the other propeller so as to increase the lift in the first quadrant Q1.
  • FC control signals are output to the two propellers in the first quadrant Q1.
  • “2.0 CW” with a cancellation line in the first quadrant Q1 means a virtual lift that the failed propeller should generate in response to the FC control signal, but in reality the propeller has failed. Therefore, the lift is 0.
  • the lift of the other propeller of the first quadrant Q1 is 2.0, the first condition and the second condition are satisfied, and the aircraft is balanced.
  • Mode (C) is a mode in which one of the two CCW propellers in the second quadrant Q2 has failed and a total of two propellers have failed since mode (B). Also in the mode (C), the FC increases the rotational speed of the other propeller in order to increase the lift of the second quadrant Q2 where the lift is insufficient. When the lift of the other propeller of the second quadrant Q2 is 2.0, the first condition and the second condition are satisfied, and the aircraft is balanced.
  • Mode (D) is a mode in which one of the two CCW propellers in the fourth quadrant Q4 has failed and a total of three propellers have failed since mode (C). Also in the mode (D), the FC increases the rotational speed of the other propeller in order to increase the lift of the fourth quadrant Q4 where the lift is insufficient. When the lift of the other propeller in the fourth quadrant Q4 is 2.0, the first condition and the second condition are satisfied, and the aircraft is balanced.
  • Each of the modes (E1) and (E2) is a mode in which one of the two CW propellers in the third quadrant Q3 has failed and a total of four propellers have failed since the mode (D). Also in these modes (E1) and (E2), the FC increases the rotational speed of the other propeller in order to increase the lift of the third quadrant Q3 where the lift is insufficient. When the lift of the other propeller of the third quadrant Q3 is 2.0, the first condition and the second condition are satisfied, and the aircraft is balanced.
  • the vertically take-off and landing capable vehicle according to the first embodiment it is possible to tolerate the failure of a maximum of four propellers. That is, it can be confirmed that the vertical takeoff and landing capable vehicle according to the first embodiment can continue stable flight in 100% time from takeoff to landing when a maximum of four propellers have failed.
  • the state (d) is substantially the same as the state in which the aircraft is rotated by 180 ° around the yaw axis from the state (c), and thus detailed description thereof is omitted.
  • the state (e) is substantially equivalent to a state in which the airframe is inverted 180 ° around the yaw axis from the forward state, and therefore detailed description of the backward movement is also omitted.
  • the state (g) is: CW propeller lift is 3.6, CCW propeller lift is 4.4. For this reason, the aircraft yaws to CW and turns right. Since the lift is balanced in the front-rear direction and the left-right direction, the aircraft is stable about the roll axis and the pitch axis.
  • mode (A) is a normal mode without a failed propeller. Since all the propellers have the same lift, the lifts in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 having the center of the airframe as the center of the quadrant are equal to each other. For this reason, the roll axis and the pitch axis are stabilized. Further, since the sum of the lift by the CW propeller and the lift by the CCW propeller is 4, the aircraft is stable about the yaw axis and the aircraft is balanced.
  • Mode (B) is a mode in which the CW propeller out of the two propellers in the first quadrant Q1 has failed.
  • the CW propeller malfunctions and the lift is insufficient, so the lift of the CCW propeller is increased.
  • FC does not detect a propeller failure
  • the lift in each quadrant is adjusted so that the aircraft is stable with respect to the roll axis and the pitch axis, and the CW and CCW of the CW and CCW are adjusted so that the aircraft is stable with respect to the yaw axis. Adjust the lift by the propeller.
  • the mode (C1) is a mode in which the CCW propeller in the second quadrant Q2 further fails from the mode (B), and a total of two propellers fail. Also in the mode (C1), the FC increases the lift of the CW propeller in the second quadrant Q2 in order to recover the lift in the second quadrant Q2. Thereby, the balance between the lift in each quadrant and the lift by the propellers of CW and CCW is possible. Even in the mode (C1), there are many flight operations in which CCW / CW adjustment is always necessary to stabilize the yaw axis. For this reason, during manned flight, there is a problem that riding comfort deteriorates due to instability about the yaw axis.
  • Mode (C2) is a mode in which the propeller of the CW in the second quadrant Q2 further fails from the mode (B), and a total of two propellers have failed.
  • mode (C2) there is no CW propeller in the front first quadrant Q1 and second quadrant Q2, and one CCW propeller is located in each.
  • the mode (C2) when the aircraft is pitched upward and moves backward, the lift in the first quadrant Q1 and the second quadrant Q2 needs to be larger than the third quadrant Q3 and the fourth quadrant Q4 in the rear. Then, the sum of the lift of CCW is always larger than the sum of the lift of CW, and the aircraft yaws to CW. Since the CW propeller is insufficient, yawing of the aircraft cannot be stopped, and as a result, the aircraft crashes. The fact that the backward movement is impossible means that it is impossible to shift to the hovering state after the forward movement, which is a problem.
  • the mode (D1) is a mode in which the CCW propeller in the fourth quadrant Q4 has further failed from the mode (C1), and a total of three propellers have failed.
  • the mode (E1) is a mode in which the propeller of the CW in the third quadrant Q3 has failed and a total of four propellers have failed since the mode (D1).
  • the propeller arrangement is the same as that of a general quadcopter (quad copter). That is, in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4, the rotation direction of the propeller is opposite to the adjacent quadrant. For this reason, in the mode (E1), it is clear that there is no hindrance to infinite flight of the aircraft.
  • this mode (E1) is a rare case where the CW in the first quadrant Q1, the CCW in the second quadrant Q2, and the CCW in the fourth quadrant Q4 are broken, and the probability of occurrence is very small.
  • Mode (E2) is a mode in which the CCW propellers in the third quadrant Q3 have further failed from the mode (D1), and a total of four propellers have failed.
  • the mode (E2) only the first quadrant Q1 has the CCW propeller disposed in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. Therefore, it is clear that the flight operation cannot be performed in a stable state, and the aircraft crashes.
  • CCW and Q4 can be considered as a combination of CW propeller groups, so if a failure can be detected, if a propeller belonging to one group fails, the four If you stop all the propellers, you can fly stably.
  • mode (D1) since three propellers in the same group have failed, it is possible to fly stably if a failure is detected, but the probability that only the same group of propellers will break down is very low. Not right.
  • modes (B) and (C1) it is possible to fly without crashing, but there remains a problem of instability around the yaw axis as described above. Furthermore, if the target lift is excessive, there is a possibility of failure of the ESC and the motor.
  • the CW and CCW propellers are biased in the left-right direction, so yawing occurs when moving left or right, resulting in a crash. Similarly, it is impossible to turn left or right in a stable state. As described above, if the CW and CCW propellers are biased in the front-rear direction and the left-right direction, flight in a stable state becomes difficult.
  • the rotation direction is opposite to the adjacent quadrant in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. Since the first propellers 31 to 34 and the second propellers 35 to 38 in the same rotation direction as the first propeller are arranged, the redundancy against the failure of the propeller can be improved and the possibility of the crash can be reduced.
  • the vertical takeoff and landing vehicle according to the first embodiment may generate a total of four control signals for each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • the processing load of the control circuit 56 can be reduced and the power consumption can be reduced.
  • the flight control unit 561 generates a control signal for achieving the target state and outputs the control signal to the ESCs 61 to 68. At this time, the flight control unit 561 generates a total of four control signals for each of the first ESC 61 and the second ESC 65, the first ESC 62 and the second ESC 66, the first ESC 63 and the second ESC 67, and the first ESC 64 and the second ESC 68. Therefore, FC5 has a lower processing load than the case where eight control signals are generated according to the number of propellers 31 to 38, so that the calculation time can be shortened and the possibility of failure can be reduced. .
  • each of the ESCs 61 and 65, ESCs 62 and 66, ESCs 63 and 67, and ESCs 64 and 68 does not affect the input of the other control signal even when one of them fails. For this reason, the vertical takeoff and landing capable vehicle according to the first embodiment has improved reliability against a propeller failure and can continue stable flight.
  • each of the first ESC 61 and the second ESC 65, the first ESC 62 and the second ESC 66, the first ESC 63 and the second ESC 67, and the first ESC 64 and the second ESC 68 You may connect to FC5 so that the same control signal may be input. Therefore, if the second mode is unnecessary, the FC5 of the vertically takeoff and landing vehicle according to the first embodiment has four systems for the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. Since a control signal only needs to be generated, a general-purpose FC for a quadcopter having four propellers can be used.
  • the line control unit 562 sets the second ESCs 65 to 68 as output destinations of control signals so that, for example, the lower second propellers 35 to 38 are selectively used to fly.
  • the lower second propellers 35 to 38 can efficiently generate lift because there are no obstructions such as the beam portions 11 to 18 and the propeller below the first propellers 31 to 34 in the upper layer.
  • step S11 the flight control unit 561 determines whether the lift by the second propeller 35 in the first quadrant Q1 is insufficient from the difference between the target state of the frames (11 to 14) and the flight state detected by the sensor unit 51. Determine whether or not.
  • the flight control unit 561 has a posture in which the beam unit 11 side of the first quadrant Q1 is lowered with respect to the target posture and the frames (11 to 14) are inclined, and the posture remains even if the rotation speed of the second propeller 35 is increased. If not recovered, it is determined that the lift is insufficient.
  • step S11 when the CW anti-torque is insufficient due to a failure of the second propeller 35 of the CW and the frames (11 to 14) are yawing with respect to the target posture, it may be determined that the lift is insufficient. . If it is determined that the lift is insufficient, the process proceeds to step S12. If it is determined that the lift is not insufficient, the process of step S11 is repeated.
  • step S12 the line control unit 562 changes the output destination of the control signal generated in the flight control unit 561 from the second ESC 65 to the first ESC 61, and switches the output line of the control signal. Therefore, the control signal input to the second ESC 65 is input to the first ESC 61, the drive of the second motor 25 is turned off, and the drive of the first motor 21 is turned on. Therefore, the lift force by the second propeller 35 rotating in the CW is recovered by the first propeller 31 rotating in the CW which is the same rotation direction.
  • the series of processes shown in the flowchart of FIG. 11 may be performed in parallel for each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • the first quadrant Q1, the second quadrant It may be repeatedly executed in the order of quadrant Q2, third quadrant Q3, and fourth quadrant Q4.
  • the propellers to be rotated may be the first propellers 31 to 34. That is, in the initial state, the output destination of the control signal may be the first ESC 61 to 64, and the quadrant using the first propellers 31 to 34 and the quadrant using the second propellers 35 to 38 may be mixed. .
  • the vertically take-off and landing vehicle in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4, they fly by rotating one propeller, and lift Is insufficient, the other propeller that has not been rotated is rotated.
  • the vertical takeoff and landing capable vehicle in each quadrant, one propeller of two overlapping propellers is selectively rotated, so that lift can be generated efficiently, and a plurality of motors are installed. Power consumption due to driving can be reduced.
  • the vertical takeoff and landing capable vehicle according to the first modification of the first embodiment includes a main body 10A and a frame (11A, 12A,...) That supports the main body 10A at the center. .., 18A,) and eight propellers 31 to 38 arranged in the frames (11A to 18A), which is the same as the first embodiment described above.
  • the frame (11A to 18A) has eight beam portions 11A, 12A,..., 18A extending radially from the quadrant center defined inside the airframe main portion 10A in the plane pattern.
  • the point different from the first embodiment is that the propellers 31 to 38 are arranged at the tip portions of 18A to 18A. Configurations, operations, and effects that are not described in the first modification are the same as those in the first embodiment described above, and are not described because they overlap.
  • the propellers 31 to 38 are arranged, for example, on a plane pattern so that the rotation axis coincides with each vertex of a regular octagon centered on the quadrant center.
  • the first propeller 31 and the second propeller 35 arranged in the first quadrant Q1 and the first propeller 33 and the second propeller 37 arranged in the third quadrant Q3 have a CW rotation direction, respectively.
  • the first propeller 32 and the second propeller 36 arranged in the second quadrant Q2 and the first propeller 34 and the second propeller 38 arranged in the fourth quadrant Q4 have a CCW rotation direction, respectively.
  • the propellers 31 to 38 may be attached to the upper side or the lower side of the tip portions of the beam parts 11A to 18A, respectively. Alternatively, a propeller attached to the upper side of the beam portions 11A to 18A and a propeller attached to the lower side may be mixed.
  • the propellers 31 to 38 are arranged so that the rotation surfaces do not overlap each other in the plane pattern. In the planar pattern, the quadrant center can be defined as the center of gravity of the frame (11A to 18A).
  • the dimension L 2 of the planar pattern of a vertical takeoff and landing flyable body according to the first modification of the first embodiment the dimension of the vertical take-off and landing flyable body according to the first embodiment L
  • the propellers 31 to 38 are arranged so as not to overlap each other on the plane pattern, the lift force by the propellers 31 to 38 works efficiently, while the number of frames is doubled, and the length of the frame There is also a side surface in which the weight of the frame member increases due to the long length.
  • the vertical take-off and landing aircraft according to the first embodiment can be reduced in size and weight when the propeller is superimposed.
  • a general octocopter having a radial frame has two CWs and CCWs in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • Two propellers are arranged, and the rotation directions of adjacent propellers are opposite to each other. For this reason, the flow analysis of the coaxial inversion type octocopter described with reference to FIG. 8 can be applied to a general octocopter having a radial frame, and has the above-described problems.
  • the vertical takeoff and landing vehicle according to the first modification of the first embodiment is similar to the first embodiment in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • the redundancy against the failure of the propeller is improved and the possibility of the crash is reduced. it can.
  • the vertical takeoff and landing capable vehicle according to the second modification of the first embodiment has the above-described first shape in that it includes an H-shaped frame (11B, 12B) in a plane pattern. It differs from the first modification of the embodiment and the first embodiment.
  • the configurations, operations, and effects that are not described in the second modification are the same as those in the first embodiment and the first modification described above, and are omitted because they are redundant.
  • the frames (11B, 12B) have a first beam portion 11B extending from the first quadrant Q1 to the fourth quadrant Q4, and a second beam quadrant Q2 extending from the second quadrant Q2 to the third quadrant Q3 parallel to the first beam portion 11B. And two beam portions 12B.
  • the main body 10B is supported by the frames (11B, 12B) between the first beam portion 11B and the second beam portion 12B.
  • the 1st propeller 31, the 2nd propeller 35, the 2nd propeller 38, and the 1st propeller 34 are arranged along with the longitudinal direction of the 1st beam part 11B.
  • the 1st propeller 32, the 2nd propeller 36, the 2nd propeller 37, and the 1st propeller 33 are arranged along with the longitudinal direction of the 2nd beam part 12B.
  • the propellers 31 to 38 are arranged so that the rotation surfaces do not overlap each other in the plane pattern.
  • a general octocopter having an H-shaped frame has CW and CCW in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4, respectively.
  • These two propellers are arranged, and the rotation directions of adjacent propellers are opposite to each other.
  • the vertical takeoff and landing vehicle according to the first modification of the first embodiment includes the first propeller 31 in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. 34 and the second propellers 35 to 38 in the same direction as the first propeller are arranged, the redundancy for the propeller failure is improved, and the possibility of the crash can be reduced.
  • the vertical takeoff and landing vehicle according to the third modification of the first embodiment has the V-shaped frame (11 ⁇ / b> C, 12 ⁇ / b> C) as a schematic in the plane pattern. It is different from the first and second modifications of the embodiment. Configurations, operations, and effects that are not described in the third modification are the same as those in the first and second modifications of the first embodiment described above, and are omitted because they overlap.
  • the frame (11C, 12C) includes a linear first beam portion 11C extending from the first quadrant Q1 to the fourth quadrant Q4, and a linear second beam portion 12C extending from the second quadrant Q2 to the third quadrant Q3. And have.
  • the first beam portion 11C and the second beam portion 12C are arranged so as to approach each other from the front to the rear.
  • the main body 10C is supported by the frames (11C, 12C) between the first beam portion 11C and the second beam portion 12C.
  • the first propeller 31, the second propeller 35, the second propeller 38, and the first propeller 34 are arranged side by side in the longitudinal direction of the first beam portion 11C.
  • the first propeller 32, the second propeller 36, the second propeller 37, and the first propeller 33 are arranged side by side in the longitudinal direction of the second beam portion 12C.
  • the propellers 31 to 38 are arranged so that the rotation surfaces do not overlap each other in the plane pattern.
  • a general octocopter having a V-shaped frame has CW and CCW in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4, respectively.
  • These two propellers are arranged, and the rotation directions of adjacent propellers are opposite to each other.
  • the vertical takeoff and landing vehicle according to the first modification of the first embodiment includes the first propeller 31 in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. 34 and the second propellers 35 to 38 in the same direction as the first propeller are arranged, the redundancy for the propeller failure is improved, and the possibility of the crash can be reduced.
  • the vertical take-off and landing vehicle has a first propeller 31 arranged in the first quadrant Q1 and a first propeller 32 arranged in the second quadrant Q2, as shown in FIG.
  • the hexacopter includes a total of six propellers 31 to 36 including a first propeller 33 and a second propeller 35 arranged in the third quadrant Q3, and a first propeller 34 and a second propeller 36 arranged in the fourth quadrant Q4. . Since configurations, operations, and effects that are not described in the second embodiment are the same as those in the first embodiment, descriptions thereof are omitted.
  • the frame (11D, 12D,..., 16D) of the vertical takeoff and landing vehicle includes six beam portions 11D, 12D,..., 16D corresponding to the six propellers 31 to 36, respectively.
  • the frames (11D to 16D) support the main body 10D at the center. In the plane pattern, a quadrant center G is defined inside the main body 10D.
  • the beam portions 11D to 16D extend radially outward from the quadrant center G side.
  • Motors 21 to 26 for rotating the six propellers 31 to 36 are attached to the tip portions of the beam portions 11D to 16D, respectively.
  • the propellers 31 to 36 may be attached to the upper side or the lower side of the tip portions of the beam parts 11D to 16D, respectively. Alternatively, a propeller attached to the upper side of the beam portions 11D to 16D and a propeller attached to the lower side may be mixed.
  • the first propeller 31 disposed in the first quadrant Q1 has a CW rotation direction.
  • the first propeller 32 disposed in the second quadrant Q2 has a CCW rotation direction.
  • the first propeller 33 and the second propeller 35 arranged in the third quadrant Q3 have a CW rotation direction.
  • the first propeller 34 and the second propeller 36 arranged in the fourth quadrant Q4 have a CCW rotation direction. In this way, since the propeller having the same rotation direction is arranged in each of the third quadrant Q3 and the fourth quadrant Q4, one of the propellers in each of the third quadrant Q3 and the fourth quadrant Q4 has failed. However, the lift can be recovered by the other propeller.
  • General propellers of hexacopters are arranged so as to coincide with the vertices of a regular hexagon, and are arranged alternately in the circumferential direction so that the rotation direction of each propeller is opposite to the adjacent propeller.
  • the general hexacopter realizes each flight operation by arranging the CW and CCW propellers at equal intervals in each area divided into three equal parts around the center of the aircraft in the plane pattern. Composed.
  • a mode in which one CCW propeller has failed will be described as an example.
  • the lift force of the right propeller facing the failed left propeller is adjusted to 0, and the lift force of the remaining four propellers is uniformly adjusted, so that the roll axis, the pitch axis, and the yaw axis
  • the aircraft can be stabilized in a balanced state with respect to the surroundings. Since the number of CW and CCW propellers is balanced in the front-rear direction, the forward state (b) and the rearward are adjusted by adjusting the ratio of the front and rear lifts with the CW and CCW lifts being equal to each other in the front-rear direction. State (e) is realized.
  • the right CW propeller lift is 0.6
  • the left front and left rear CW propeller lift is 1.2
  • the right front and right rear CCW propeller lift is 1.5. It is.
  • the airframe balances with respect to the pitch axis and the yaw axis, and moves to the left by rolling in the left direction.
  • State (g) is a right turn yawing to CW, but the CCW propeller of the left side is broken, so CCW cannot be made larger than CW in a balanced state around the roll axis and pitch axis. . Therefore, yawing to CW is impossible.
  • the rotation direction is opposite to the adjacent quadrant in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • the first propellers 31 to 34 are arranged, and the second propellers 35 and 36 in the same rotation direction as the first propellers 33 and 34 are arranged in the third quadrant Q3 and the fourth quadrant Q4, respectively. For this reason, the redundancy with respect to the failure of the propellers in the third quadrant Q3 and the fourth quadrant Q4 is improved, and the possibility of the crash can be reduced.
  • the propellers 33 to 36 are arranged so that the rotation surfaces do not overlap each other on the plane pattern, but are arranged so as to overlap each other. Also good.
  • the propellers in the third quadrant Q3 and the fourth quadrant Q4 may be concentric propellers in the same rotational direction as shown in FIG.
  • the quadrant where the plurality of propellers in the same rotational direction are arranged is not limited to the third quadrant Q3 and the fourth quadrant Q4 adjacent to each other, but as shown in FIG. 19, the first quadrant Q1 and the first quadrant facing each other. Three quadrants Q3 may be used.
  • the vertical takeoff and landing vehicle according to the third embodiment of the present invention includes a first propeller 31 in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4.
  • To 34 and the second propellers 35 to 38 are different from the first embodiment in that they further include third propellers 301 to 304 having the same rotation direction.
  • the vertical takeoff and landing vehicle according to the third embodiment includes a dodeca equipped with a total of twelve propellers 31 to 38 and 301 to 304 including the first propellers 31 to 34, the second propellers 35 to 38, and the third propellers 301 to 304.
  • a copter. Configurations, operations, and effects that are not described in the third embodiment are the same as those in the first and second embodiments, and are omitted because they overlap.
  • the third propellers 301 to 304 are, for example, rotations provided on the frame (11E to 14E) between the first propellers 31 to 34 located in the upper layer and the second propellers 35 to 38 located in the lower layer. Arranged by axis.
  • each of the third propellers 301 to 304 is arranged so that a part of the rotation surface thereof overlaps with each of the first propellers 31 to 34 and the second propellers 35 to 38 in a plane pattern.
  • the blades of the third propeller 302 are arranged on the frame (11E-14E) when the third propeller 302 rotates CCW as viewed from above the frame (11E-14E).
  • the pitch angle is adjusted to generate upward lift.
  • the pitch angle of the blades of the third propeller 304 in the fourth quadrant Q4 is adjusted so as to generate upward lift of the frames (11E to 14E) when the third propeller 304 rotates in the CCW direction.
  • the blades of the third propeller 301 in the first quadrant Q1 and the third propeller 303 in the third quadrant Q3 face upward on the frames (11E to 14E) when the third propellers 301 and 303 rotate to CW.
  • the pitch angle is adjusted so as to generate the lift force.
  • the vertical takeoff and landing capable vehicle further includes third motors 201 to 204 that rotate the third propellers 301 to 304, respectively.
  • the third motor 201 and the third propeller 301 are attached to the upper side of the beam unit 12E, for example.
  • the third motor 201 and the third propeller 301 in the first quadrant Q1 are mounted on the upper side of the beam unit 11E
  • the third motor 203 and the third propeller 303 in the third quadrant Q3 are mounted on the upper side of the beam unit 13E. It is attached.
  • the third motor 204 and the third propeller 304 in the fourth quadrant Q4 are attached to the upper side of the beam portion 14E.
  • the third propellers 301 to 304 are positioned as close to the tip of the beam portions 11E to 14E as possible for the stability of the frames (11E to 14E).
  • the third propellers 301 to 304 are arranged so that each blade does not interfere with the first propellers 31 to 34 and the first motors 21 to 24. Further, each of the third propellers 301 to 304 may be attached to the lower side of the beam portions 11E to 14E.
  • the FC5A provided in the vertical takeoff and landing vehicle has ESCs 61 to 68, 601 so that each of the twelve motors 21 to 28, 201 to 204 can be driven independently.
  • a control signal for each of ⁇ 604 can be generated.
  • the FC 5A and each of the ESCs 61 to 68 and 601 to 604 are connected to each other by independent wirings.
  • FC5A is a first mode that outputs the same control signal to three ESCs in each of the four quadrants, and a second mode that outputs a control signal to at least one of the three ESCs in each of the four quadrants. Can have.
  • the FC5A sets the second ESC 65 to 68 as the output destination of the control signal so that the second propeller 35 to 38 is selectively used as the initial setting in the second mode.
  • the FC 5B outputs a control signal to each of the second ESCs 65 to 68 so that the frames (11E to 14E) achieve the target state according to the command signal from the command unit 4, and each lift of the second propellers 35 to 38 is output. Control.
  • the FC 5A determines whether there is a quadrant where the lift is insufficient from the difference between the target state and the flight state detected by the sensor unit 51, as in step S11 of the flowchart of FIG.
  • the FC 5A switches the output line of the control signal by changing the output destination of the control signal to, for example, the first ESCs 61 to 64 for the quadrant where the lift is insufficient.
  • the drive of the second motors 25 to 28 is turned off, the drive of the first motors 21 to 24 is turned on, and the lift is recovered by the first propellers 31 to 34.
  • the FC 5A may change the output destination of the control signal to the third ESC 601 to 604 for the quadrant where the lift is insufficient.
  • the drive of the first motors 21 to 24 is turned off, the drive of the third motors 201 to 204 is turned on, and the lift is recovered by the third propellers 301 to 304.
  • the vertical take-off and landing vehicle in each of the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4, it flies by rotating one propeller, and lift force In the case where is insufficient, the other propeller that has not been rotated is rotated. Further, in the vertical takeoff and landing capable vehicle according to the third embodiment, any one of the two propellers to be superimposed is selectively rotated in each quadrant, so that lift can be generated efficiently, Power consumption by driving a plurality of motors can be reduced.
  • FC5 of the vertical takeoff and landing capable vehicle has four systems for the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4. Since a control signal only needs to be generated, a general-purpose FC for a quadcopter having four propellers can be used.
  • the propeller to be rotated may be the first propeller 31 to 34 or the third propeller 301 to 304.
  • quadrants using the first propellers 31 to 34, quadrants using the second propellers 35 to 38, and quadrants using 301 to 304 may be mixed.
  • the vertical takeoff and landing vehicle according to the fourth embodiment of the present invention has a configuration for switching the ESCs 61 to 68, 601 to 604, and the motors 21 to 28, 201 to 204 to be used.
  • the third embodiment is different from the third embodiment in that the redundancy is improved.
  • the FC 5B and each of the ESCs 61 to 68 and 601 to 604 are connected to each other by independent wirings. Since the configuration, operation, and effects not described in the fifth embodiment are the same as those in the fourth embodiment, the description thereof is omitted.
  • the vertical take-off and landing vehicle includes first current sensors A1a to A4a that detect first currents (drive signals) input to the first motors 21 to 24, and first motors 21 to 24, respectively.
  • First switches SW1a to SW4a that open and close the lines through which the first current flows, and second current sensors A1b to A4b that detect second currents (drive signals) input to the second motors 25 to 28, respectively.
  • second switches SW1b to SW4b for opening and closing the wirings through which the second currents of the second motors 25 to 28 respectively flow.
  • Each of the first current sensors A1a to A4a and the second current sensors A1b to A4b may detect current by current detection using a clamp sensor or a shunt resistor. If each of the first motors 21 to 24 and the second motors 25 to 28 is a motor with a brush, two input wires are connected to one motor, and if it is a brushless motor, three input wires to one motor. Is connected.
  • the first current sensors A1a to A4a and the second current sensors A1b to A4b are respectively two or three ammeters depending on the types of the first motors 21 to 24 and the second motors 25 to 28.
  • the ESC switch SW1v is connected between the first switch SW1a and the second switch SW1b and the first ESC 61 and the second ESC 65.
  • the ESC switch SW1v is a switch for switching the first ESC 61 or the second ESC 65 that outputs a drive signal to the first motor 21 and the second motor 25 side.
  • the first switch SW1a and the second switch SW1b receive the same drive signal from the first ESC 61 or the second ESC 65 selected according to the position of the ESC switch SW1v.
  • the ESC switch SW2v is connected between the first switch SW2a and the second switch SW2b and the first ESC 62 and the second ESC 66.
  • the ESC switch SW2v is a switch that switches between the first ESC 62 and the second ESC 66 that output drive signals to the first motor 22 and the second motor 26 side.
  • the first switch SW2a and the second switch SW2b receive the same drive signal from the first ESC 62 or the second ESC 66 selected according to the position of the ESC switch SW2v.
  • the ESC switch SW3v is connected between the first switch SW3a and the second switch SW3b and the first ESC 63 and the second ESC 67.
  • the ESC switch SW3v is a switch for switching the first ESC 63 or the second ESC 67 that outputs a drive signal to the first motor 23 and the second motor 27 side.
  • the first switch SW3a and the second switch SW3b receive the same drive signal from the first ESC 63 or the second ESC 67 selected according to the position of the ESC switch SW3v.
  • the ESC switch SW4v is connected between the first switch SW4a and the second switch SW4b and the first ESC 64 and the second ESC 68.
  • the ESC switch SW4v is a switch for switching the first ESC 64 or the second ESC 68 that outputs a drive signal to the first motor 24 and the second motor 28 side.
  • the first switch SW4a and the second switch SW4b receive the same drive signal from the first ESC 64 or the second ESC 68 selected according to the position of the ESC switch SW4v.
  • the vertical takeoff and landing capable vehicle has the first rotation sensors P1a to P4a that detect the rotation states of the first propellers 31 to 34 and the rotation states of the second propellers 35 to 38, respectively.
  • Second rotation sensors P1b to P4b to be detected are provided.
  • the first rotation sensors P1a to P4a and the second rotation sensors P1b to P4b are optical sensors that optically read the rotation states of the blades of the first propellers 31 to 34 and the second propellers 35 to 38, for example.
  • the control circuit 56B of the FC 5B includes a failure determination unit 563 as a functional or physical hardware resource in addition to the flight control unit 561 and the line control unit 562.
  • the line controller 562 switches the control signal lines of the propellers 31 to 38 and 301 to 304 by controlling the first switches SW1a to SW4a, the second switches SW1b to SW4b, and the ESC switches SW1v to SW4v.
  • the failure determination unit 563 is a logic circuit that determines the failure of the ESCs 61 to 68 or the motors 21 to 28 based on the currents detected by the first current sensors A1a to A4a and the second current sensors A1b to A4b.
  • the failure determination unit 563 detects the rotation state detected by the first rotation sensors P1a to P4a and the second rotation sensors P1b to P4b, and detects the first current sensors A1a to A4a and the second current sensors A1b to A4b.
  • the failure of the propellers 31 to 38 is determined based on the current.
  • the line control unit 562 switches all the ESC switches SW1v to SW4v to the first ESC 61 to 64 side.
  • the first switches SW1a to SW4a and the second switches SW1b to SW4b By turning on (closed) the first switches SW1a to SW4a and the second switches SW1b to SW4b, the first motors 21 to 24 and the second motors 25 to 28 are turned on.
  • four control signals of the first ESC 61 and the third ESC 601, the first ESC 62 and the third ESC 602, the first ESC 63 and the third ESC 603, and the first ESC 64 and the third ESC 604 are generated.
  • all the propellers 31 to 38 and 301 to 304 are rotated.
  • step S21 the flight control unit 561 determines the difference between the target state of the frames (11E to 14E) and the flight state detected by the sensor unit 51, as in step S11 of the flowchart of FIG. 11 described in the second embodiment. From this, it is determined whether the lift in the first quadrant Q1 is insufficient. If it is determined that the lift is insufficient, the process proceeds to step S22. If it is determined that the lift is not insufficient, the process of step S21 is repeated.
  • step S22 the failure determination unit 563 determines whether or not the first ESC 61 has failed based on the first current detected by the first current sensor A1a and the second current detected by the second current sensor A1b. Determine. Specifically, the failure determination unit 563 determines that the first ESC 61 has failed when both the first current input to the first motor 21 and the second current input to the second motor 25 are not properly detected. judge. The determination of whether or not the current is appropriate is performed by comparing the detected current with a predetermined waveform. If it is determined that the first ESC 61 has failed, the process proceeds to step S23. If it is determined that the first ESC 61 has not failed, the process proceeds to step S24.
  • step S23 the line control unit 562 switches the ESC switch SW1v to the second ESC 65 side so that the same control signal is input from the second ESC 65 to the first motor 21 and the second motor 25.
  • the failure determination unit 563 includes the first current detected by the first current sensor A1a, the second current detected by the second current sensor A1b, and the first rotation sensor P1a and the second rotation sensor P1b. It is determined whether each of the 1st propeller 31 and the 2nd propeller 35 is out of order based on the rotation state detected by. Specifically, the failure determination unit 563 determines whether the first ESC 61 or the second ESC 65, the first motor 21 and the rotation of the first propeller 31 are detected even though the first current is properly detected. Is not broken, it is determined that the first propeller 31 is broken due to the cause of the first propeller 31.
  • the failure determination unit 563 causes the first ESC 61 or the second ESC 65 and the second motor 25 to fail. Therefore, it is determined that the second propeller 35 has failed due to the cause of the second propeller 35.
  • a process is advanced to step S25, and when determining with not having failed, a process is advanced to step S26.
  • step S25 the line control unit 562 switches off the first switch SW1a on the first propeller 31 side or the second switch SW1b on the second propeller 35 side determined to have failed in step S24 (open state). . Thereby, the electric power supply to the side in which the propeller has failed among the 1st motor 21 and the 2nd motor 25 is stopped.
  • step S26 the failure determination unit 563 determines each of the first motor 21 and the second motor 25 based on the first current detected by the first current sensor A1a and the second current detected by the second current sensor A1b. It is determined whether or not the device is out of order. Specifically, the failure determination unit 563 determines that the first motor 21 has failed when the first current is not properly detected and the second current is properly detected. Alternatively, the failure determination unit 563 determines that the second motor 25 has failed when the second current is not properly detected even though the first current is properly detected. When it determines with the 1st motor 21 or the 2nd motor 25 having failed, a process is advanced to step S27, and when determining with not having failed, a process is complete
  • step S27 the line control unit 562 switches the first switch SW1a on the first motor 21 side or the second switch SW1b on the second motor 25 side determined to have failed in step S26 to an open state, and performs processing. finish. As a result, power supply to the first motor 21 or the second motor 25 determined to have failed is stopped.
  • the current flowing through the motors 21 to 28 and the rotation state of the propellers 31 to 38 are detected. It is possible to switch the ESC or cut off the power supply to a motor that is not used. As a result, the reliability of the aircraft capable of vertical takeoff and landing is improved, and the possibility of excessive power consumption at the time of failure can be reduced.
  • the line control unit 562 switches all the ESC switches SW1v to SW4v to the first ESC 61 to 64 side so that, for example, the lowermost second propellers 35 to 38 are selectively used for flight.
  • the first switches SW1a to SW4a are turned off, and the second switches SW1b to SW4b are turned on.
  • the line control unit 562 outputs a control signal to each of the first ESCs 61 to 64.
  • the second propellers 35 to 38 are selectively rotated.
  • step S301 the flight control unit 561 determines the first quadrant Q1 based on the difference between the target state of the frames (11E to 14E) and the flight state detected by the sensor unit 51, as in step S11 of the flowchart of FIG. Determine whether the lift is insufficient. If the flight control unit 561 determines that the lift is insufficient, the process proceeds to step S302. If it is determined that there is no lift, the process of step S301 is repeated.
  • step S302 the failure determination unit 563 determines whether or not the second current detected by the second current sensor A1b is appropriate. If the second current is appropriate, the process proceeds to step S303, and if not, the process proceeds to step S304.
  • step S303 the line control unit 562 turns on the first switch SW1a, connects the first ESC 61 and the first motor 21, and advances the process to step S306.
  • step S304 the failure determination unit 563 determines whether or not the second propeller 35 has failed based on the rotation state detected by the second rotation sensor P1b. If the rotation state of the second propeller 35 is appropriate, the failure determination unit 563 terminates the process because the second propeller 35 has no problem. If not, the failure determination unit 563 causes the second propeller 35 to fail due to the cause of the second propeller 35. It is determined that the process has been performed, and the process proceeds to step S305.
  • step S305 the line control unit 562 switches the first switch SW1a on and the second switch SW1b off to connect the first ESC 61 and the first motor 21 because the second propeller 35 has failed.
  • step S306 the failure determination unit 563 issues a problem to the first propeller 31 based on the first current detected by the first current sensor A1a and the rotation state of the first propeller 31 detected by the first rotation sensor P1a. Judge whether or not there is. If both the first current and the rotation state of the first propeller 31 are appropriate, the failure determination unit 563 proceeds the process to step S307 without any problem. If at least one of the first current and the rotation state of the first propeller 31 is not appropriate, it is determined that the first propeller 31 has failed, and the process proceeds to step S308.
  • step S307 the line control unit 562 switches the second switch SW1b to OFF because there is no problem with the first ESC 61 and the second motor 25 has failed, and disconnects the first ESC 61 and the second motor 25 from each other. Exit.
  • step S308 the line control unit 562 switches the ESC switch SW1v to the second ESC 65 side, and changes the output destination of the control signal from the first ESC 61 to the second ESC 65.
  • step S309 the failure determination unit 563 determines whether or not the second current detected by the second current sensor A1b is appropriate. If the second current is appropriate, failure determination unit 563 determines that second ESC 65 has no problem, and proceeds to step S310. If the second current is not appropriate, failure determination unit 563 determines that second motor 25 has failed, and proceeds to step S311.
  • step S310 the failure determination unit 563 determines whether or not the rotation state of the second propeller 35 detected by the second rotation sensor P1b is appropriate. The failure determination unit 563 terminates the process when the rotation state of the second propeller 35 is appropriate, and the second propeller 35 fails due to the cause of the second propeller 35 when the rotation state of the second propeller 35 is not appropriate. The process proceeds to step S311.
  • step S311 the line control unit 562 switches off the second switch SW1b and disconnects the second ESC 65 and the second motor 25 from each other.
  • step S312 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a is appropriate. If the first current is appropriate, the failure determination unit 563 proceeds to step S313. If not, the failure determination unit 563 determines that the second ESC 65 has failed, and proceeds to step S314.
  • step S313 the failure determination unit 563 determines whether or not the rotation state of the first propeller 31 detected by the first rotation sensor P1a is appropriate. The failure determination unit 563 terminates the process when the rotation state of the first propeller 31 is appropriate, and determines that the first propeller 31 has failed when the rotation state of the first propeller 31 is not appropriate. The process proceeds to S314.
  • step S314 the line control unit 562 changes the output destination of the control signal from the second ESC 65 to the third ESC 601. Thereby, the 3rd propeller 301 is rotated and processing is ended.
  • the first current sensors A1a to A4a and the second current sensors A1b to A4b for detecting the currents flowing through the first motors 21 to 24 and the second motors 25 to 28 are provided.
  • the flight control unit 561 can synchronize between the first motors 21 to 24 and the second motors 25 to 28 according to the first current and the second current. This makes it possible to switch between the first ESCs 61 to 64 and the second ESCs 65 to 68.
  • the vertical takeoff and landing vehicle includes a first motor 21, a second motor 25, a first motor 22, a second motor 26, a first motor 23, and a second motor.
  • the rotation shafts SH1, SH2, SH3, SH4 shared by the motor 27, the first motor 24 and the second motor 28, respectively, and the rotations of the rotation shafts SH1-SH4 are transmitted to the first propellers 31-34, respectively. It differs from the third and fourth embodiments in that it includes one clutch C1a to C4a and second clutches C1b to C4b that transmit the rotations of the rotation shafts SH1 to SH4 to the second propellers 35 to 38, respectively. Since configurations, operations, and effects not described in the fifth embodiment are the same as those in the third and fourth embodiments, descriptions thereof are omitted.
  • the first motor 22 and the second motor 26 are arranged so as to share a rotating shaft not shown in FIG. That is, at the distal end portion of the beam portion 12E, the rotating shaft is disposed through the beam portion 12E from the first motor 22 disposed on the upper side to the second motor 26 disposed on the lower side.
  • the third motor 202 disposed on the center side of the beam portion 12E also shares a rotating shaft with the first motor 22 and the second motor 26, and a third propeller is connected by a third clutch (not shown).
  • the transmission of rotation to 302 may be switched. That is, the first propeller 32, the second propeller 36, and the third propeller 302 may be arranged so as to be concentric.
  • the first propeller 32 rotates when the rotation of the rotating shaft is transmitted by the first clutch C2a.
  • the second propeller 36 rotates when the rotation of the rotating shaft is transmitted by the second clutch C2b. Therefore, when either the first motor 22 or the second motor 26 is driven, at least one of the first propeller 32 and the second propeller 36 is rotated according to the control of the first clutch C2a and the second clutch C2b. Can be made.
  • the control circuit 56C of the FC5C includes a clutch control unit 564 as a functional or physical hardware resource in addition to the flight control unit 561, the line control unit 562, and the failure determination unit 563, as shown in FIG.
  • the clutch control unit 564 controls each of the first clutch C1a to C4a and the second clutch C1b to C4b, so that the rotation shafts SH1 to SH4 and the first propellers 31 to 34 and the second propellers 35 to 38 are controlled.
  • This is a logic circuit that connects and disconnects and selectively rotates the first propellers 31 to 34 and the second propellers 35 to 38.
  • the line control unit 562 switches all the ESC switches SW1v to SW4v to the first ESC 61 to 64 side.
  • the first motors 21 to 24 are selectively turned on.
  • the clutch control unit 564 brings all of the first clutches C1a to C4a and the second clutches C1b to C4b into a connected state.
  • the flight control unit 561 generates four control signals of the first ESC 61 and the third ESC 601, the first ESC 62 and the third ESC 602, the first ESC 63 and the third ESC 603, and the first ESC 64 and the third ESC 604.
  • all the propellers 31 to 38 and 301 to 304 are rotated.
  • step S401 the flight control unit 561 determines the first quadrant Q1 based on the difference between the target state of the frames (11E to 14E) and the flight state detected by the sensor unit 51, as in step S11 of the flowchart of FIG. Determine whether the lift is insufficient. If it is determined that the lift is insufficient, the process proceeds to step S402. If it is determined that the lift is not insufficient, the process of step S401 is repeated.
  • the failure determination unit 563 detects the first current detected by the first current sensor A1a, the rotation state of the first propeller 31 detected by the first rotation sensor P1a, and the second rotation sensor P1b. Based on the rotation state of the second propeller 35, it is determined whether or not each of the first propeller 31 and the second propeller 35 has failed. Specifically, the failure determination unit 563 determines that the second clutch C1b is detected when the rotation of the second propeller 35 is not detected although the first current and the rotation of the first propeller 31 are properly detected. Alternatively, it is determined that the second propeller 35 has failed due to the cause of the second propeller 35.
  • the failure determination unit 563 determines that the first clutch C1a or the second clutch It is determined that the first propeller 31 has failed due to the cause of the first propeller 31.
  • a process is advanced to step S403 and when determining with not having failed, a process is advanced to step S404.
  • step S403 the clutch control unit 564 switches off the first clutch C1a on the first propeller 31 side or the second clutch C1b on the second propeller 35 side determined to have failed in step S402 (disconnected state).
  • step S404 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a is appropriate. If the first current is not appropriate, the process proceeds to step S405. If it is determined that the first current is appropriate, the process proceeds to step S406.
  • step S405 the line control unit 562 switches the first switch SW1a off and switches the second switch SW1b on. As a result, the first ESC 61 and the second motor 25 are connected, and the motor to be used is switched to the second motor 25.
  • step S406 the failure determination unit 563 detects the second current detected by the second current sensor A1b, the rotation state of the first propeller 31 detected by the first rotation sensor P1a, and the second rotation sensor P1b. Based on the rotation state of the second propeller 35, it is determined whether or not each of the first propeller 31 and the second propeller 35 has failed. When the second current and the rotation of the first propeller 31 are properly detected, but the rotation of the second propeller 35 is not detected, the failure determination unit 563 detects the second clutch C1b or the second propeller 35. Therefore, it is determined that the second propeller 35 has failed.
  • the failure determination unit 563 determines whether the second clutch C1b or the second propeller 35 is rotated. It is determined that the second propeller 35 has failed due to the cause of the two propellers 35. When it determines with the 1st propeller 31 or the 2nd propeller 35 having failed, a process is advanced to step S407, and when determining with not having failed, a process is advanced to step S408.
  • step S407 the clutch control unit 564 switches off the first clutch C1a on the first propeller 31 side or the second clutch C1b on the second propeller 35 side determined to have failed in step S406.
  • step S408 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a and the second current detected by the second current sensor A1b are appropriate. That is, if the failure determination unit 563 determines that the first current is not appropriate in step S404 and then determines that the second current is also not appropriate in step S408, the failure determination unit 563 determines that the first ESC 61 has failed, and proceeds to step S409. Proceed with the process. If the second current is appropriate, the process proceeds to step S410.
  • step S409 the line control unit 562 switches the ESC switch SW1v to the second ESC 65 side, and changes the output destination of the control signal from the first ESC 61 to the second ESC 65.
  • step S410 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a and the second current detected by the second current sensor A1b are appropriate. That is, if the failure determination unit 563 determines that the first current is not appropriate in step S404 and switches to the second ESC 65 in step S409 and then determines that the second current is not appropriate before, the first ESC 61 and the second ESC 65 are both It is determined that a failure has occurred, and the process proceeds to step S411. If the second current is appropriate, the process ends.
  • step S411 the line control unit 562 turns off both the first switch SW1a and the second switch SW1b, and stops outputting the control signal to the second ESC 65. Therefore, the lift of the first quadrant Q1 is recovered by the third propeller 601.
  • the current flowing through the motors 21 to 28 and the rotation state of the propellers 31 to 38 are detected. It is possible to switch the ESC or cut off the power supply to a motor that is not used. As a result, the reliability of the aircraft capable of vertical takeoff and landing is improved, and the possibility of excessive power consumption at the time of failure can be reduced.
  • the line control unit 562 switches all the ESC switches SW1v to SW4v to the first ESC 61 to 64 side so that, for example, the lowermost second propellers 35 to 38 are selectively used for flight.
  • the first switches SW1a to SW4a are turned on, and the second switches SW1b to SW4b are turned off.
  • the first clutches C1a to C4a are switched off and the second clutches C1b to C4b are switched on.
  • the line control unit 562 outputs a control signal to each of the first ESCs 61 to 64.
  • the second propellers 35 to 38 are selectively rotated.
  • step S501 the flight control unit 561 determines the first quadrant Q1 based on the difference between the target state of the frames (11E to 14E) and the flight state detected by the sensor unit 51, as in step S11 of the flowchart of FIG. Determine whether the lift is insufficient. If it is determined that the lift is insufficient, the process proceeds to step S502. If it is determined that the lift is not insufficient, the process of step S501 is repeated.
  • step S502 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a is appropriate. If the first current is appropriate, the process proceeds to step S309; otherwise, the process proceeds to step S503.
  • step S503 the line control unit 562 turns on the second switch SW1b to connect the first ESC 61 to the first motor 21 and the second motor 25.
  • step S504 the failure determination unit 563 determines whether or not the second current detected by the second current sensor A1b is appropriate. If the second current is appropriate, it is determined that the first ESC 61 has not failed and the first motor 21 has failed, and the process proceeds to step S505. If the second current is not appropriate, failure determination unit 563 determines that first ESC 61 has failed, and proceeds to step S506.
  • step S505 the line control unit 562 switches the first switch SW1a off and the second switch SW1b on, and connects the first ESC 61 and the second motor 25. Thereby, the line control unit 562 switches the motor to be used from the first motor 21 to the second motor 25, and advances the process to step S509.
  • step S506 the line control unit 562 switches the ESC switch SW1v to the second ESC 65 side, and changes the ESC to be used from the first ESC 61 to the second ESC 65.
  • step S507 the failure determination unit 563 determines whether or not the first current detected by the first current sensor A1a is appropriate. If the first current is appropriate, failure determination unit 563 advances the process to step S509, and if not, advances the process to step S508.
  • step S508 the failure determination unit 563 determines whether or not the second current detected by the second current sensor A1b is appropriate. If the second current is appropriate, the failure determination unit 563 proceeds to step S509. If the second current is not appropriate, the failure determination unit 563 determines that both the first propeller 31 and the second propeller 35 have failed, and performs the process in step S512. Proceed.
  • step S509 the failure determination unit 563 determines whether or not the rotation state of the second propeller 35 detected by the second rotation sensor P1b is appropriate. If the rotation state of the second propeller 35 is appropriate, the failure determination unit 563 determines that the second propeller 35 has no problem and ends the process. If the rotation state of the second propeller 35 is not appropriate, the failure determination unit 563 determines that the second propeller 35 has failed, and proceeds to step S510.
  • step S510 the clutch control unit 564 turns off the second clutch C1b on the second propeller 35 side determined to have failed in step S509, and switches on the first clutch C1a on the first propeller 31 side.
  • step S511 the failure determination unit 563 determines whether or not the rotation state of the first propeller 31 detected by the first rotation sensor P1a is appropriate. If the rotation state of the first propeller 31 is appropriate, the failure determination unit 563 determines that there is no problem with the first propeller 31 and ends the process. If the rotation state of the first propeller 31 is not appropriate, the failure determination unit 563 determines that the first propeller 31 has failed, and proceeds to step S512.
  • step S512 the line control unit 562 stops the output of the control signal to the first ESC 61 and the second ESC 65, and sets the output destination of the control signal to the third ESC 601. Thereby, the 3rd propeller 601 is rotated and processing is ended.
  • the vertical takeoff and landing vehicle according to the fifth embodiment includes a rotating shaft shared by the first motors 21 to 24 and the second motors 25 to 28 that share the same, and a first clutch C1a provided on the rotating shaft.
  • a first clutch C1a provided on the rotating shaft.
  • the motor 7 includes a cylindrical stator 71, a rotor 72 that is disposed inside the stator 71 and rotates around the rotation shaft SH2, and three core portions 73u provided on the inner surface of the stator 71. 73v, 73w. Further, each of the three core portions 73u, 73v, 73w includes first coils 74u, 74v, 74w corresponding to the system of the first motor 22 and second coils 75u, 75v corresponding to the system of the second motor 26. , 75w.
  • One terminal n2 of each of the first coils 74u, 74v, 74w corresponds to a neutral point of the first motor 22.
  • the other terminals u2, v2, and w2 of the first coils 74u, 74v, and 74w correspond to u, v, and w terminals, respectively.
  • One terminal n6 of each of the second coils 75u, 75v, and 75w corresponds to the neutral point of the second motor 26.
  • the other terminals u6, v6, w6 of the second coils 75u, 75v, 75w correspond to u, v, w terminals, respectively.
  • each of the first motor 21 and the second motor 25, the first motor 23 and the second motor 27, and the first motor 24 and the second motor 28 has the same configuration as the motor 7 having two systems. May be.
  • the rotation directions in the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, and the fourth quadrant Q4 do not necessarily have to be the same.
  • the rotation direction of the propeller that becomes the majority in each quadrant may be the opposite direction to the rotation direction that becomes the majority in each adjacent quadrant.
  • the number of blades of each propeller may be adjusted as appropriate, and the diameter of the propeller may be adjusted as appropriate.
  • the propeller that is not used for the flight may be folded so as not to reduce the efficiency of the lift generated by the rotating propeller.
  • the phases in the rotation of the propeller can also be set so as not to overlap each other.
  • the vertical take-off and landing vehicle is not limited to a rotary wing machine such as a multi-copter that generates lift and propulsion by a plurality of propellers, and includes other power sources such as a gas turbine engine and a jet engine as propulsion. It may be a flying object.
  • the present invention includes various embodiments and the like that are not described here, such as a configuration in which the above-described configurations are mutually applied. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
  • Flight controller (controller) 10, 10A, 10B, 10C, 10D Airframe main part 11-14, 11A-18A, 11B-12B, 11D-16D, 11E-14E Frame 21-28, 201-204 Motor 31-38, 301-304 Propeller 561 Flight Control unit 562 Line control unit Q1 to Q4 First to fourth quadrants

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Wind Motors (AREA)

Abstract

機体主部と、平面パターンにおいて機体主部の内部に象限中心を定義し、該象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、機体主部を支持するフレームと、第1~第4象限のそれぞれに、フレームに設けられた回転軸によって配置された第1プロペラと、第1象限において、フレームに設けられた回転軸によって配置され、第1プロペラと同一回転方向の第2プロペラとを備え、第1象限及び第3象限の回転方向は、第2象限及び第4象限の回転方向と反対方向である。

Description

垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム
 本発明は、垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムに関する。
 無人マルチコプターとしてのドローンの開発が進み、各国政府が許可基準の策定等の方針を進めている。しかしながら、マルチコプターが急速に普及する一方、マルチコプター等の垂直離着陸可能飛行体の墜落事故も増加している。このため、墜落の可能性を最大限低減する飛行体が望まれている。
 本発明は、上記問題点を鑑み、墜落の可能性を低減することができる垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを提供することを目的とする。
 本発明の第1の態様は、機体主部と、平面パターンにおいて機体主部の内部に象限中心を定義し、その象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、機体主部を支持するフレームと、第1~第4象限のそれぞれに、フレームに設けられた回転軸によって配置された第1プロペラと、第1象限において、フレームに設けられた回転軸によって配置され、第1プロペラと同一回転方向の第2プロペラとを備える垂直離着陸可能飛行体であることを要旨とし、第1象限及び第3象限の回転方向は、第2象限及び第4象限の回転方向と反対方向であることを特徴とする。
 本発明の第2の態様は、平面パターンにおいて機体主部の内部に象限中心を定義し、その象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、機体主部を支持するフレームの第1~第4象限のそれぞれに、フレームに設けられた回転軸によって配置された第1プロペラを回転させる飛行制御部と、第1象限における揚力が不足した場合、第1象限において、フレームに設けられた回転軸によって配置され、第1プロペラと同一回転方向の第2プロペラを回転させるライン制御部とを備える垂直離着陸可能飛行体のコントローラであることを要旨とする。
 本発明の第3の態様は、平面パターンにおいて機体主部の内部に象限中心を定義し、その象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、機体主部を支持するフレームの第1~第4象限のそれぞれに、フレームに設けられた回転軸によって配置された第1プロペラを回転させるステップと、第1象限における揚力が不足した場合、第1象限において、フレームに設けられた回転軸によって配置され、第1プロペラと同一回転方向の第2プロペラを回転させるステップとを含む垂直離着陸可能飛行体の制御方法であることを要旨とする。
 本発明の第3の態様で述べた垂直離着陸可能飛行体の制御方法を実現するためのプログラムは、コンピュータ読取り可能な記録媒体に保存し、この記録媒体をコンピュータシステムによって読み込ませることにより、本発明の垂直離着陸可能飛行体の制御方法を実行することができる。すなわち、本発明の第4の態様は、平面パターンにおいて機体主部の内部に象限中心を定義し、その象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、機体主部を支持するフレームの第1~第4象限のそれぞれに、フレームに設けられた回転軸によって配置された第1プロペラを回転させる命令と、第1象限における揚力が不足した場合、第1象限において、フレームに設けられた回転軸によって配置され、第1プロペラと同一回転方向の第2プロペラを回転させる命令とを含む一連の命令による処理をコンピュータに実行させる垂直離着陸可能飛行体の制御プログラムであることを要旨とする。
 本発明の一態様によれば、墜落の可能性を低減することができる垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを提供することができる。
第1実施形態に係る垂直離着陸可能飛行体の基本的な構成を説明する模式的な上面図である。 第1実施形態に係る垂直離着陸可能飛行体が備えるプロペラの一例を説明する拡大斜視図である。 第1実施形態に係る垂直離着陸可能飛行体の制御系の一例を説明するブロック図である。 第1実施形態に係る垂直離着陸可能飛行体のフライトコントローラを説明するブロック図である。 第1実施形態に係る垂直離着陸可能飛行体の各飛行動作の状態を説明するモデルである。 第1実施形態に係る垂直離着陸可能飛行体の故障モードに対するフロー解析を説明するモデルである。 第1実施形態に係る垂直離着陸可能飛行体のプラペラ故障時における飛行動作を説明するモデルである。 一般的な同軸反転式のオクトコプターの故障モードに対するフロー解析を説明するモデルである。 不適切なプロペラ配置のX字型のクアッドコプターの各飛行動作の状態を説明するモデルである。 第1実施形態に係る垂直離着陸可能飛行体の制御系の他の例を説明するブロック図である。 第1実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法の一例を説明するフローチャートである。 第1実施形態の第1変形例に係る垂直離着陸可能飛行体を説明する模式的な上面図である。 第1実施形態及び第1実施形態の第1変形例に係る垂直離着陸可能飛行体の平面パターンにおける寸法を比較する図である。 第1実施形態の第2変形例に係る垂直離着陸可能飛行体を説明する模式的な上面図である。 第1実施形態の第3変形例に係る垂直離着陸可能飛行体を説明する模式的な上面図である。 第2実施形態に係る垂直離着陸可能飛行体の基本的な構成を説明する模式的な上面図である。 一般的な同軸反転式のヘキサコプターのプラペラ故障時における飛行動作を説明するモデルである。 第2実施形態に係る垂直離着陸可能飛行体のプロペラ配置の他の例を説明するモデルである。 第2実施形態に係る垂直離着陸可能飛行体のプロペラ配置の他の例を説明するモデルである。 第3実施形態に係る垂直離着陸可能飛行体の基本的な構成を説明する模式的な上面図である。 第3実施形態に係る垂直離着陸可能飛行体が備えるプロペラの一例を説明する拡大斜視図である。 第3実施形態に係る垂直離着陸可能飛行体の制御系を説明するブロック図である。 第3実施形態に係る垂直離着陸可能飛行体の制御系の他の例を説明するブロック図である。 第3実施形態に係る垂直離着陸可能飛行体の制御系を説明するブロック図である。 第4実施形態に係る垂直離着陸可能飛行体のフライトコントローラを説明するブロック図である。 第4実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法の一例を説明するフローチャートである。 第4実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法の一例を説明するフローチャートである。 第5実施形態に係る垂直離着陸可能飛行体の制御系を説明するブロック図である。 第5実施形態に係る垂直離着陸可能飛行体が備えるプロペラの一例を説明する拡大斜視図である。 第5実施形態に係る垂直離着陸可能飛行体のフライトコントローラを説明するブロック図である。 第5実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法の一例を説明するフローチャートである。 第5実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法の一例を説明するフローチャートである。 第5実施形態の変形例に係る垂直離着陸可能飛行体が備えるモータの構造を説明する図である。
 以下、図面を参照して、本発明の第1乃至第5実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、各寸法の関係や比率などは実際のものとは異なる場合がある。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ得る。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。
(第1実施形態)
 本発明の第1実施形態に係る垂直離着陸可能飛行体は、図1に示すように、機体主部10と、中央部において機体主部10を支持するフレーム(11,12,13,14)と、フレーム(11~14)に配置された8つのプロペラ(ローター)31,32,……,38とを備えるオクトコプターである。フレーム(11~14)は、平面パターンにおいて機体主部10の内部に象限中心Gを定義し、象限中心Gの周りの第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに独立した同一方向の揚力を発生するように、機体主部10を支持する。プロペラ31~38は、上向きの揚力を発生する回転方向をそれぞれ有する。なお、図1において、プロペラ31~38を、それぞれの回転面として模式的に図示する。
 プロペラ31~38は、例えば、上層に位置する第1プロペラ31~34と、第1プロペラ31~34のそれぞれの下層に位置する第2プロペラ35~38との2組のプロペラに分類される。第1プロペラ31~34は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに、フレーム(11~14)に設けられた回転軸によって配置されている。第2プロペラ35~38は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに、フレーム(11~14)に設けられた回転軸によって配置されている。第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、第2プロペラ35~38は、第1プロペラ31~34と同一回転方向を有する。
 具体的には、第1象限Q1に配置された第1プロペラ31及び第2プロペラ35と、第3象限Q3に配置された第1プロペラ33及び第2プロペラ37は、フレーム(11~14)の上方から見て時計回り(CW)の回転方向をそれぞれ有する。一方、第2象限Q2に配置された第1プロペラ32及び第2プロペラ36と、第4象限Q4に配置された第1プロペラ34及び第2プロペラ38は、反時計回り(CCW)の回転方向をそれぞれ有する。即ち、第1象限Q1及び第3象限Q3の回転方向は、第2象限Q2及び第4象限Q4の回転方向と反対方向である。
 図1において、第1プロペラ31及び第2プロペラ35、第1プロペラ32及び第2プロペラ36、第1プロペラ33及び第2プロペラ37、並びに、第1プロペラ34及び第2プロペラ38のそれぞれは、理解を容易にするために、互いに異なる回転軸及び回転面を有するように模式的に表示される。しかしながら実際には、第1プロペラ31及び第2プロペラ35、第1プロペラ32及び第2プロペラ36、第1プロペラ33及び第2プロペラ37、並びに、第1プロペラ34及び第2プロペラ38のそれぞれは、回転軸が互いに同心となるように配置され、2層構造を有している。このように、4象限のそれぞれにおいて、互いに同一の回転軸及び回転方向を有する2つのプロペラが配置され、各象限における回転方向は、それぞれ隣接する象限と反対方向である。
 例えば第2象限Q2について図2に示すように、第1プロペラ32及び第2プロペラ36の各ブレードは、第1プロペラ32及び第2プロペラ36のそれぞれがフレーム(11~14)の上方から見てCCWに回転するときにフレーム(11~14)の上向きの揚力を発生するように、ピッチ角が調整されている。同様に、象限中心Gに関して第2象限Q2の反対側に位置する第4象限Q4について、第1プロペラ34及び第2プロペラ38の各ブレードは、第1プロペラ34及び第2プロペラ38のそれぞれがCCWに回転するときにフレーム(11~14)の上向きの揚力を発生するように、ピッチ角が調整されている。
 一方、第1象限Q1の第1プロペラ31及び第2プロペラ35と、第3象限Q3の第1プロペラ33及び第2プロペラ37の各ブレードは、第1プロペラ31及び第2プロペラ35と、第1プロペラ33及び第2プロペラ37とのそれぞれがCWに回転するときにフレーム(11~14)の上向きの揚力を発生するように、ピッチ角が調整されている。
 図2に示す例において、第1プロペラ32及び第2プロペラ36は、例えばそれぞれ2枚のブレードを有するが、プロペラ31~38が有するブレードの枚数は、3以上であってもよい。ブレードの枚数を増加させることにより、回転により発生する揚力を増加させることができる。また、第1プロペラ31~34と、第2プロペラ35~38とのそれぞれは、上下2層の間で異なる枚数のブレードを有していてもよい。また、上下2層の間で直径の異なるプロペラを有していてもよい。
 フレーム(11~14)は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、象限中心G側から外側方向に放射状に延伸する複数のビーム部11,12,13,14を有するエアフレームである。このため、フレーム(11~14)は、機体主部10と一体に形成された構成を有していてもよい。機体主部10は、例えば、電源及び処理回路等の電子部品を収容する筐体として機能する。ビーム部11~14のそれぞれは、例えば筒状であり、配線等を収容する。ビーム部11~14のそれぞれは、例えば、平面パターンとしてフレーム(11~14)の重心を通る放射状の線に長手方向の中心線が一致するように配置される。平面パターンにおいてフレーム(11~14)の重心は、例えば象限中心Gである。フレーム(11~14)は、重心を通るフレーム(11~14)に垂直な中心軸に関して2回又は4回の回転対称性を有し得る。
 第1実施形態に係る垂直離着陸可能飛行体は、プロペラ31~38のそれぞれを回転させる複数のモータ21~28を更に備える。具体的には、モータ21~28は、第1プロペラ31~34をそれぞれ回転させる第1モータ21~24と、第2プロペラ35~38をそれぞれ回転させる第2モータ25~28との2組のモータに分類される。プロペラ31~38のそれぞれがモータ21~28の各シャフト(回転軸)に直接的に接続される場合、第1モータ21及び第2モータ25、第1モータ22及び第2モータ26、第1モータ23及び第2モータ27、並びに第1モータ24及び第2モータ28のそれぞれは、シャフトが互いに同心となるように配置される。
 プロペラ31~38は、それぞれ対応するモータ21~28により互いに独立して回転することが可能である。即ち、プロペラ31~38のそれぞれは、互いに独立した駆動動力系により回転する。モータ21~28としては、例えば、入力電力に対する出力効率が高いブラシレスDCモータ、ブラシ付きDCモータ、AC又はDCサーボモータ等を採用可能である。
 図2に示すように、上層の第1モータ22及び第1プロペラ32は、ビーム部12の先端部における上側に取り付けられ、下層の第2モータ26及び第2プロペラ36は、下側に取り付けられる。同様に、第1象限Q1について、上層の第1モータ21及び第1プロペラ31は、ビーム部11の先端部における上側に取り付けられ、第2モータ25及び第2プロペラ35は、下側に取り付けられる。第3象限Q3について、上層の第1モータ23及び第1プロペラ33は、ビーム部13の先端部における上側に取り付けられ、下層の第2モータ27及び第2プロペラ37は、下側に取り付けられる。第4象限Q4について、上層の第1モータ24及び第1プロペラ34は、ビーム部14の先端部における上側に取り付けられ、下層の第2モータ28及び第2プロペラ38は、下側に取り付けられる。
 第1実施形態に係る垂直離着陸可能飛行体は、図3に示すように、指令部4、フライトコントローラ(FC)5及び複数のエレクトロニックスピードコントローラ(ESC)61,62,……,68を更に備える。指令部4、FC5及びESC61~68は、例えば機体主部10の内側に収容される。
 指令部4は、第1実施形態に係る垂直離着陸可能飛行体の飛行動作を示す指令信号をFC5に出力する回路である。飛行動作は、上昇、降下、前進、後退、左移動、右移動、左旋回、右旋回等を含む。指令部4は、例えば、ユーザの操作に応じて指令信号を無線送信する送信機から指令信号を受信する受信機であり得る。指令部4又はFC5は、複数の航法衛星から受信した信号に基づいて、緯度、経度及び高度を示す位置情報を取得する全地球航法測位システム(GNSS)受信機を備えてもよい。指令部4は、GNSS受信機により取得された位置情報に基づいて、予め設定された飛行経路を飛行する指令信号を自動的に生成するようにしてもよい。或いは、指令部4は、垂直離着陸可能飛行体を有人の飛行体として、乗員の操作を受け付け、操作に応じた指令信号をFC5に出力するようにしてもよい。
 FC5は、例えば図4に示すように、センサ部51及び制御回路56を備える。センサ部51は、例えば、加速度センサ52、角速度センサ53、方位センサ54及び高度センサ55を備える。加速度センサ52は、互いに直交する3軸方向、即ちロール軸、ピッチ軸及びヨー軸方向の加速度を検出する。角速度センサ53は、互いに直交する3軸周りの角速度を検出することにより地表面に対するフレーム(11~14)の姿勢を検出する。方位センサ54は、地磁気を検出することによりフレーム(11~14)の方位を検出する。高度センサ55は、気圧を検出することにより高度を検出する。センサ部51は、加速度センサ52、角速度センサ53、方位センサ54及び高度センサ55により、第1実施形態に係る垂直離着陸可能飛行体の速度、姿勢、方位、高度等の飛行状態を検出する。
 制御回路56は、例えば、プロセッサ、メモリ及び入出力インターフェースを備える、マイクロコントローラ等のコンピュータから構成される。制御回路56のプロセッサは、例えば、例えば中央演算処理装置(CPU)である。プロセッサは、汎用の半導体集積回路中に設定される機能的な論理回路により実現されてもよい。例えば、プロセッサは、フィールド・プログラマブル・ゲート・アレイ(FPGA)等のプログラマブル・ロジック・デバイス(PLD)等を有していてもよい。
 制御回路56は、指令部4から入力された指令信号及びセンサ部51により検出された飛行状態に応じて、ESC61~68を制御する飛行制御部561及びライン制御部562を機能的又は物理的なハードウェア資源として備える。飛行制御部561は、指令部4から入力された指令信号からフレーム(11~14)の目標状態を設定し、センサ部51により検出される飛行状態との差分から目標状態を達成するようなプロペラ31~38の各回転数を示す制御信号を生成する論理回路である。飛行制御部561は、生成した制御信号をESC61~68に出力する。
 ライン制御部562は、例えばESC61~68に対する制御信号のラインを切り替えることにより、ESC61~68から制御信号の出力先を設定する論理回路である。ライン制御部562は、例えば、4象限のそれぞれにおける複数のESCに対して同一の制御信号を出力する第1モードと、4象限のそれぞれにおいて、複数のESCの何れかに対して制御信号を出力する第2モードとを有することができる。
 ライン制御部562は、第1モードにおいて、第1象限Q1用の第1ESC61及び第2ESC65、第2象限Q2用の第1ESC62及び第2ESC66、第3象限Q3用の第1ESC63及び第2ESC67、並びに、第4象限Q4用の第1ESC64及び第2ESC68毎に同一の制御信号を出力する。
 ライン制御部562は、第2モードにおいて、第1ESC61及び第2ESC65の何れか、第1ESC62及び第2ESC66の何れか、第1ESC63及び第2ESC67の何れか、並びに、第1ESC64及び第2ESC68の何れかに、制御信号をそれぞれ出力する。このように、FC5は、8つのモータ21~28のそれぞれが独立して駆動可能なように、ESC61~68のそれぞれに対する制御信号を生成する。このため、FC5とESC61~68のそれぞれとの間は、互いに独立した配線により接続されている。
 ESC61~68のそれぞれは、FC5から制御信号を入力し、制御信号が示す回転数で各モータ21~28を駆動させる駆動信号を生成し、各モータ21~28に出力するモータ駆動回路である。即ち、FC5は、ESC61~68をそれぞれ介して、プロペラ31~38の回転を制御する。ESC61~68は、上層の第1モータ21~24を駆動する第1ESC61~64と、下層の第2モータ25~28を駆動する第2ESC65~68との2組に分類される。
―飛行動作―
 以下、図5に示すモデルを参照して、第1実施形態に係る垂直離着陸可能飛行体の各飛行動作時の状態を説明する。中央の状態(a)は、垂直離着陸可能飛行体が空中で停止するホバリングである。第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに示される「1.0 CW」等の数字及び符号は、上層及び下層のプロペラによる揚力と回転方向を意味する。各揚力は、状態(a)における1つのプロペラの揚力を1.0とする比として表され、FCによる制御状態の目安を意味し、実際の揚力とは異なる場合がある。
 図5の状態(a)では、FCは、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおける揚力を互いに等しくなるように制御する。このときの各象限における上層及び下層のプロペラによる揚力は、例えばそれぞれ1.0とする。各象限における揚力の和は2.0であるため、ロール軸及びピッチ軸周りが安定する。また、CWのプロペラによる揚力の和は4であり、CCWのプロペラによる揚力の和4と等しい。このため、機体はヨー軸周りに関して安定し、機体はホバリングする。
 状態(b)は前進である。状態(b)では、前方の第1象限Q1及び第2象限Q2のそれぞれにおける上層及び下層の各プロペラの揚力が0.8、後方の第3象限Q3及び第4象限Q4のそれぞれにおける上層及び下層の各プロペラの揚力が1.2である。このため、前方の揚力が相対的に小さくなり、機体の前方が相対的に下がり、機体は下向きにピッチングする。左方の第1象限Q1及び第4象限Q4の揚力、右方の第2象限Q2及び第3象限Q3の揚力、CWのプロペラによる揚力、並びにCCWのプロペラによる揚力のそれぞれの和は、全て4(=0.8+0.8+1.2+1.2)である。このため、機体はロール軸及びヨー軸周りに関して安定し、結果として前進する。
 状態(c)は左移動である。左方の第1象限Q1及び第4象限Q4の各揚力の和は3.2(=0.8+0.8+0.8+0.8)、右方の第2象限Q2及び第3象限Q3の各揚力の和は4.8(=1.2+1.2+1.2+1.2)である。このため、機体の左方が相対的に下がり、機体は左向きにローリングする。前方の第1象限Q1及び第2象限Q2の揚力、後方の第3象限Q3及び第4象限Q4の揚力、CWのプロペラによる揚力、並びにCCWのプロペラによる揚力のそれぞれの和は、全て4である。このため、機体はピッチ軸及びヨー軸周りに関して安定し、結果として左移動する。
 状態(d)は右移動である。右移動は、左移動の状態(c)からヨー軸周りに180°回転した状態に実質的に等しいため、詳細な説明を省略する。状態(e)は後退である。後退は、前進の状態からヨー軸周りに180°反転した状態に実質的に等しいため、後退についても詳細な説明を省略する。
 状態(f)は左旋回である。CWのプロペラが配置される第1象限Q1及び第3象限Q3の各揚力の和は、4.4(=1.1+1.1+1.1+1.1)である。CCWのプロペラが配置される第2象限Q2及び第4象限Q4の各揚力の和は、3.6(=0.9+0.9+0.9+0.9)である。揚力は回転数に応じた値となるため、機体はプロペラの反トルクによりCCWにヨーイングし、左旋回する。なお、前後方向及び左右方向において揚力はバランスしているため、機体はロール軸及びピッチ軸周りに関して安定している。
 状態(g)は右旋回である。CWのプロペラが配置される第1象限Q1及び第3象限Q3の各揚力の和は、3.6(=0.9+0.9+0.9+0.9)である。CCWのプロペラが配置される第2象限Q2及び第4象限Q4の各揚力の和は、4.4(=1.1+1.1+1.1+1.1)である。このため、機体はCWにヨーイングし、右旋回する。前後方向及び左右方向において揚力はバランスしているため、機体はロール軸及びピッチ軸周りに関して安定している。
 状態(a)~(g)において、各揚力の総和は全て8.0であるため機体の高度は一定となる。各象限における揚力の比を維持した状態で揚力の総和を増減することにより、機体は上昇及び下降することができる。以上のように、第1実施形態に係る垂直離着陸可能飛行体は、縦横無尽に飛行することが可能である。
―故障フロー解析―
 以下、図6に示すモデルを参照して、第1実施形態に係る垂直離着陸可能飛行体のプロペラの故障に関するフロー解析について説明する。図6は、各故障モードにおいて、機体がホバリングしている状態を説明する図である。なお、以下において、「プロペラの故障」は、何らかの原因によってプロペラの回転による揚力が発生されなくなった状態を意味する。
 先ず、モード(A)は、故障したプロペラがない通常のモードである。上述のように、モード(A)では、機体は問題なく自在に飛行することが可能である。機体がバランスして飛行するための条件は2つある。第1条件は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおける揚力が互いに等しいことであり、これによりロール軸及びピッチ軸周りに関してバランスする。第2条件は、CW及びCCWのそれぞれのプロペラによる揚力が互いに等しいことであり、これによりヨー軸周りに関してバランスする。
 モード(B)は、第1象限Q1の2つのCWのプロペラのうち一方が故障したモードである。第1象限Q1において、一方のプロペラが故障して揚力が不足するため、FCは、第1象限Q1の揚力を増大させるように他方のプロペラの回転数を増加させる。このとき、FCの制御信号は、第1象限Q1の2つプロペラに対して出力される。第1象限Q1において打ち消し線が付された「2.0 CW」は、故障したプロペラがFCの制御信号に応じて発生すべき仮想の揚力を意味しているが、実際にはプロペラは故障しているため揚力は0となる。第1象限Q1の他方のプロペラの揚力が2.0となることにより、第1条件及び第2条件が満たされ、機体はバランスする。
 モード(C)は、モード(B)から更に、第2象限Q2の2つのCCWのプロペラのうち一方が故障し、合計2つのプロペラが故障したモードである。モード(C)においても、FCは、揚力が不足した第2象限Q2の揚力を増大させるため、他方のプロペラの回転数を増加させる。第2象限Q2の他方のプロペラの揚力が2.0となることにより、第1条件及び第2条件が満たされ、機体はバランスする。
 モード(D)は、モード(C)から更に、第4象限Q4の2つのCCWのプロペラのうち一方が故障し、合計3つのプロペラが故障したモードである。モード(D)においても、FCは、揚力が不足した第4象限Q4の揚力を増大させるため、他方のプロペラの回転数を増加させる。第4象限Q4の他方のプロペラの揚力が2.0となることにより、第1条件及び第2条件が満たされ、機体はバランスする。
 モード(E1)及び(E2)のそれぞれは、モード(D)から更に、第3象限Q3の2つのCWのプロペラのうち一方が故障し、合計4つのプロペラが故障したモードである。これらのモード(E1)及び(E2)においても、FCは、揚力が不足した第3象限Q3の揚力を増大させるため、他方のプロペラの回転数を増加させる。第3象限Q3の他方のプロペラの揚力が2.0となることにより、第1条件及び第2条件が満たされ、機体はバランスする。
 なお、モード(E1)から更に1つのプロペラが故障したモード(F1)、及び、モード(E2)から更に1つのプロペラが故障したモード(F2)では、それぞれ第1条件が満たされなくなるため機体は墜落してしまう。
 以上のように、第1実施形態に係る垂直離着陸可能飛行体によれば、最大4つのプロペラの故障を許容することができる。即ち、第1実施形態に係る垂直離着陸可能飛行体は、最大4つのプロペラが故障した場合であって、離陸から着陸までの100%の時間で安定した飛行を継続することができることが確認できる。
―故障モードにおける飛行動作―
 以下、図7に示すモデルを参照しながら、例として上述の3つのプロペラが故障したモード(D)において、第1実施形態に係る垂直離着陸可能飛行体が各飛行動作を可能なことを説明する。
 状態(a)において、第1象限Q1、第2象限Q2及び第4象限Q4のそれぞれにおいて一方のプロペラが故障しており、故障していない他方のプロペラによって、揚力が回復されている。各象限における揚力の和が互いに等しく、CW及びCCWのそれぞれのプロペラによる揚力の和が互いに等しいため、上述の第1条件及び第2条件が満たされている。
 状態(b)では、前方の第1象限Q1及び第2象限Q2のそれぞれにおける揚力が1.6、後方の第3象限Q3及び第4象限Q4のそれぞれにおける揚力の和が2.4である。このため機体は下向きにピッチングする。また、CW及びCCWのそれぞれのプロペラによる揚力の和は、共に4であるため、機体はロール軸及びヨー軸周りに関して安定し、結果として前進する。
 状態(c)では、左方の第1象限Q1及び第4象限Q4のそれぞれの揚力は1.6、右方の第2象限Q2及び第3象限Q3のそれぞれの揚力は2.4である。このため、機体の左方が相対的に下がり、機体は左向きにローリングする。CW及びCCWのそれぞれのプロペラによる揚力の和は、共に4であるため、機体はピッチ軸及びヨー軸周りに関して安定し、結果として左移動する。
 状態(d)については、状態(c)から機体がヨー軸周りに180°回転した状態に実質的に等しいため、詳細な説明を省略する。状態(e)については、機体が前進の状態からヨー軸周りに180°反転した状態に実質的に等しいため、後退についても詳細な説明を省略する。
 状態(f)では、CWのプロペラによる揚力が4.4、CCWのプロペラによる揚力が3.6である。揚力は回転数に応じた値となるため、機体はプロペラの反トルクによりCCWにヨーイングし、左旋回する。なお、前後方向及び左右方向において揚力はバランスしているため、機体はロール軸及びピッチ軸周りに関して安定している。
 状態(g)はで、CWのプロペラによる揚力が3.6、CCWのプロペラによる揚力が4.4である。このため、機体はCWにヨーイングし、右旋回する。前後方向及び左右方向において揚力はバランスしているため、機体はロール軸及びピッチ軸周りに関して安定している。
 以上の結果は、実際に作製された第1実施形態に係る垂直離着陸可能飛行体と同様の構成を有するマルチコプターを用いて発明者らにより既に実証されている。以上から、第1実施形態に係る垂直離着陸可能飛行体は、3つの象限のそれぞれにおいて一方のプロペラが故障した場合であっても、縦横無尽に飛行することが可能なことが確認された。
-比較例-
 以下、図8に示すモデルを参照して、X字型の機体を有する一般的な同軸反転式のオクトコプターのプロペラの故障に関するフロー解析について説明する。同軸反転式のオクトコプターは、第1実施形態に係る垂直離着陸可能飛行体と異なり、各象限においてCW及びCCWの2つのプロペラが配置される。
 先ず、モード(A)は、故障したプロペラがない通常のモードである。全てのプロペラの揚力が等しいため、機体の中央を象限中心とする第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおける揚力が互いに等しい。このため、ロール軸及びピッチ軸周りが安定する。また、CWのプロペラによる揚力及びCCWのプロペラによる揚力の和は4であるため、機体はヨー軸周りに関して安定し、機体はバランスする。
 モード(B)は、第1象限Q1の2つのプロペラのうちCWのプロペラが故障したモードである。第1象限Q1において、CWのプロペラが故障して揚力が不足するため、CCWのプロペラの揚力が増大される。具体的には、FCは、プロペラの故障の検知しないため、ロール軸及びピッチ軸に関して機体が安定するように、各象限における揚力を調整し、ヨー軸に関して機体が安定するようにCW及びCCWのプロペラによる揚力を調整する。結果として、第1象限Q1のCCWの揚力2.0のとき、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおけるCCWの揚力は0.66、CWの揚力は1.33のとき、機体は安定する。第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、CCWに対するCWの揚力の比であるCCW/CWは1/2であるが、FCは、何れのプロペラが故障しているか認識しないため、全象限においてCCW/CW=1/2となるように制御する。よって、故障のため実現されないが、第1象限Q1のCWのプロペラに関して、揚力が4.0となるような制御信号がFCから出力されている。
 なお、モード(B)では、ヨー軸周りに関して安定させるために常にCCW/CWの調整を行う必要がある飛行動作が多い。このため、有人飛行の際にはヨー軸周りに関する不安定さのために乗り心地が悪化するという問題がある。また、各飛行動作時において、第1象限Q1のCWのプロペラ用のモータに過大な電流が流れる可能性があり、バッテリーの消耗により予定の航続距離を達成できない可能性が高くなってしまう。
 モード(C1)は、モード(B)から更に、第2象限Q2のCCWのプロペラが故障し、合計2つのプロペラが故障したモードである。モード(C1)においても、FCは、第2象限Q2の揚力を回復するため、第2象限Q2のCWのプロペラの揚力を増大させる。これにより、各象限における揚力と、CW及びCCWのプロペラによる揚力とのバランスが可能である。モード(C1)においても、ヨー軸周りに関して安定させるために常にCCW/CWの調整を行う必要がある飛行動作が多い。このため、有人飛行の際にはヨー軸周りに関する不安定さのために乗り心地が悪化するという問題がある。
 モード(C2)は、モード(B)から更に、第2象限Q2のCWのプロペラが故障し、合計2つのプロペラが故障したモードである。モード(C2)では、前方の第1象限Q1及び第2象限Q2において、CWのプロペラが存在せず、それぞれ1つのCCWのプロペラが位置する。モード(C2)において、機体が上方にピッチングして後退する場合、前方の第1象限Q1及び第2象限Q2の揚力が後方の第3象限Q3及び第4象限Q4よりも大きい必要がある。すると、必ずCCWの揚力の和がCWの揚力の和より大きくなり、機体はCWにヨーイングしてしまう。CWのプロペラが不足するため機体のヨーイングを停止させることができず、結果として機体は墜落してしまう。後退動作ができないということは、前進の後にホバリング状態に移行することができないことを意味し、問題である。
 更に、前方の2象限にCWのプロペラがないため、安定した状態で機体をCCW方向にヨーイングすることが不可能である。ここで、CCW/CWが0又は無限大(∞)のとき、理論上電流が∞となるモータが必ず存在する。モード(C2)では、CCW/CW=0となる飛行動作が多いため、CWのプロペラ用のモータに異常な高電流が流れることが多くなる。これにより、バッテリーの消耗が促進され、予定の航続距離を達成できない可能性がある。
 モード(D1)は、モード(C1)から更に、第4象限Q4のCCWのプロペラが故障し、合計3つのプロペラが故障したモードである。モード(D1)では、CWにヨーイングする場合、機体が傾いてしまうため、安定した状態でCWにヨーイングすることが不可能である。また、CCW/CW=∞となる飛行動作が多いため、CCWのプロペラ用のモータに異常な高電流が流れることが多くなる。これにより、バッテリーの消耗が促進され、予定の航続距離を達成できない可能性が高くなってしまう。
 モード(E1)は、モード(D1)から更に、第3象限Q3のCWのプロペラが故障し、合計4つのプロペラが故障したモードである。モード(E1)では、一般的なクアッドコプター(クワッドコプター)と同一のプロペラ配置である。即ち、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいてプロペラの回転方向が、隣接する象限と反対方向である。このため、モード(E1)では、機体の縦横無尽な飛行に支障がないことが明らかである。しかしながら、このモード(E1)は第1象限Q1のCW、第2象限Q2のCCW、第4象限Q4のCCWが壊れる場合で、発生する確率は非常に小さい稀なケースである。
 モード(E2)は、モード(D1)から更に、第3象限Q3のCCWのプロペラが故障し、合計4つのプロペラが故障したモードである。モード(E2)では、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のうち、CCWのプロペラが配置されるのが第1象限Q1のみである。よって、安定した状態で飛行動作を行うことができず、墜落することが明らかである。
 以上から、CCW/CWが0または∞となるモード(C2)、(D1)及び(D2)は容易に墜落する。安定して飛行できるモード(E1)となる確率は非常に小さい。すなわち、故障したプロペラを検出しない同軸反転式のオクトコプターでは、ほとんどの場合1つ又は2つのプロペラの故障を許容できるのみである。同軸反転式のオクトコプターは、第1象限Q1でCW、第2象限Q2でCCW、第3象限Q3でCW及び第4象限Q4でCCWのプロペラのグループと、Q1でCCW、Q2でCW、Q3でCCW及びQ4でCWのプロペラのグループを足し合わせたものと考えることができるので、もし故障を検出できる場合には、1つのグループに属するプロペラが故障したときは、そのグループに属する4枚のプロペラ全てを止めてしまえば安定した飛行ができることになる。モード(D1)では都合よく同じグループのプロペラが3枚故障した場合なので、故障を検出していれば安定して飛行させることはできるが、同じグループのプロペラだけ都合よく壊れる確率は非常に低く現実的ではない。モード(B)及び(C1)であれば、墜落せずに飛行を行うことが可能であるが、上述の通りヨー軸周りに関して不安定となる問題は残る。更に、目標とする揚力が過大となる場合、ESC及びモータの故障の可能性がある。
-プロペラ配置の検討-
 次に、図9に示すモデルを用いて、X字型のクアッドコプターにおける不適切なプロペラ配置を説明する。図9に示すモデルにおいて、互いに隣接する第1象限Q1及び第4象限Q4のそれぞれにCWのプロペラが配置され、互いに隣接する第2象限Q2及び第3象限Q3のそれぞれにCCWのプロペラが配置される。
 図9に示すモデルでは、左右方向においてCW及びCCWのプロペラが偏って配置されるため、左又は右移動の際にヨーイングしてしまい、結果として墜落してしまう。同様に、安定した状態で左又は右旋回が不可能である。このように、前後方向及び左右方向においてCW及びCCWのプロペラが偏って配置されると安定した状態での飛行が困難となる。
 このため、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、隣接する象限と回転方向が反対方向となるようにプロペラが配置されることが必要である。但し、上述の同軸反転式のオクトコプターのように、プロペラの故障を検知する手段がない場合、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに、CW及びCCWの各プロペラが配置されることにより、飛行が不安定となる可能性がある。
 これに対して、第1実施形態に係る垂直離着陸可能飛行体では、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、隣接する象限と回転方向が反対方向の第1プロペラ31~34と、第1プロペラと同一回転方向の第2プロペラ35~38が配置されるため、プロペラの故障に対する冗長性が向上され、墜落の可能性を低減することができる。
 更に、第1実施形態に係る垂直離着陸可能飛行体では、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4毎に合計4系統の制御信号を生成すればよい。同軸反転式のオクトコプターでは、上層及び下層のプロペラを独立して制御する必要があるため、合計8系統の制御信号を生成する必要がある。よって、第1実施形態に係る垂直離着陸可能飛行体によれば、制御回路56の処理負荷を低減し、消費電力を低減することができる。
―第1モードの制御方法―
 上述のように、飛行制御部561は、目標状態を達成するような制御信号を生成し、ESC61~68に出力する。このとき、飛行制御部561は、第1ESC61及び第2ESC65、第1ESC62及び第2ESC66、第1ESC63及び第2ESC67、並びに、第1ESC64及び第2ESC68のそれぞれに合計4系統の制御信号を生成する。よって、FC5は、プロペラ31~38の数に応じて8系統の制御信号を生成する場合と比べて、処理負荷が低いため、計算時間を短縮できる他、故障の可能性を低減することができる。
 ESC61,65、ESC62,66、ESC63,67及びESC64,68のそれぞれは、一方が故障した場合であっても、他方の制御信号の入力に影響しない。このため、第1実施形態に係る垂直離着陸可能飛行体は、プロペラの故障に対する信頼性が向上され、安定した飛行を継続することができる。
 なお、第1モードの制御方法を実現するには、図10に示すように、第1ESC61及び第2ESC65、第1ESC62及び第2ESC66、第1ESC63及び第2ESC67、並びに、第1ESC64及び第2ESC68のそれぞれは、同一の制御信号が入力されるようにFC5に接続されてもよい。したがって、第2モードが不要であれば、第1実施形態に係る垂直離着陸可能飛行体のFC5は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4用の4系統の制御信号を生成すればよいため、4つのプロペラを有するクアッドコプター用の汎用のFCを使用可能である。
―第2モードの制御方法―
 以下、図11のフローチャートを参照して、第1実施形態に係る垂直離着陸可能飛行体のFC5による、第2モードにおける制御方法の一例を説明する。以下の説明では、第1象限Q1に主として例示的に説明するが、他の第2象限Q2、第3象限Q3及び第4象限Q4に関しても同様の処理であるため説明を省略する。
 先ず、初期設定として、ライン制御部562は、例えば、下層の第2プロペラ35~38を選択的に使用して飛行するように、制御信号の出力先として、第2ESC65~68を設定する。下層の第2プロペラ35~38は、上層の第1プロペラ31~34に比べて、下方にビーム部11~18やプロペラ等の阻害物がないため効率的に揚力を発生することができる。
 ステップS11において、飛行制御部561は、フレーム(11~14)の目標状態とセンサ部51により検出された飛行状態との差分から、第1象限Q1の第2プロペラ35による揚力が不足しているか否かを判定する。飛行制御部561は、例えば、目標姿勢に対して第1象限Q1のビーム部11側が下がってフレーム(11~14)が傾いた姿勢となり、第2プロペラ35の回転数を増加しても姿勢が回復されない場合に、揚力が不足していると判定する。或いは、CWの第2プロペラ35の故障によりCWの反トルクが不足し、フレーム(11~14)が目標姿勢に対してヨーイングしている場合に、揚力が不足していると判定されてもよい。揚力が不足すると判定される場合、ステップS12に処理を進め、揚力が不足していないと判定される場合、ステップS11の処理を繰り返す。
 ステップS12において、ライン制御部562は、飛行制御部561において生成された制御信号の出力先を第2ESC65から第1ESC61に変更し、制御信号の出力ラインを切り替える。よって、第2ESC65に入力されていた制御信号は、第1ESC61に入力されるようになり、第2モータ25の駆動がオフにされ、第1モータ21の駆動がオンになる。よって、CWに回転する第2プロペラ35による揚力は、同一の回転方向であるCWに回転する第1プロペラ31により回復される。
 図11のフローチャートに示す一連の処理は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれに関して並列に処理されてもよく、例えば、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4の順に繰り返し実行されてもよい。また、初期設定として、第2プロペラ35~38を使用する例を説明したが、回転されるプロペラは第1プロペラ31~34であっても構わない。即ち、初期状態において、制御信号の出力先は第1ESC61~64であってもよく、第1プロペラ31~34を使用する象限と第2プロペラ35~38を使用する象限とが混在してもよい。
 第1実施形態に係る垂直離着陸可能飛行体によれば、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、一方のプロペラを回転させることにより飛行し、揚力が不足する場合において、それまで回転させていなかった他方のプロペラを回転させる。第1実施形態に係る垂直離着陸可能飛行体では、各象限において、重畳する2層のプロペラの一方のプロペラを選択的に回転させるので、効率的に揚力を発生することができ、複数のモータを駆動することによる消費電力を節減することができる。
-第1変形例-
 第1実施形態の第1変形例に係る垂直離着陸可能飛行体は、図12の右側に示すように、機体主部10Aと、中央部において機体主部10Aを支持するフレーム(11A,12A,……,18A,)と、フレーム(11A~18A)に配置された8つのプロペラ31~38とを備えるオクトコプターである点で上述の第1実施形態と同様である。但し、フレーム(11A~18A)は、平面パターンにおいて機体主部10Aの内部に定義された象限中心から放射状に延伸する8本のビーム部11A,12A,……,18Aを有し、ビーム部11A~18Aの各先端部においてプロペラ31~38が配置される点で第1実施形態と異なる。第1変形例において説明しない構成、作用及び効果は、上述の第1実施形態と同様であり、重複するため省略する。
 プロペラ31~38は、例えば平面パターン上、象限中心を中心とする正八角形の各頂点に回転軸が一致するように配置される。具体的には、第1象限Q1に配置された第1プロペラ31及び第2プロペラ35と、第3象限Q3に配置された第1プロペラ33及び第2プロペラ37は、CWの回転方向をそれぞれ有する。第2象限Q2に配置された第1プロペラ32及び第2プロペラ36と、第4象限Q4に配置された第1プロペラ34及び第2プロペラ38は、CCWの回転方向をそれぞれ有する。
 プロペラ31~38は、それぞれビーム部11A~18Aの先端部における上側に取り付けられてもよく、下側に取り付けられてもよい。或いは、ビーム部11A~18Aの上側に取り付けられたプロペラと下側に取り付けられたプロペラが混在してもよい。プロペラ31~38は、平面パターンにおいて互いに回転面が重畳しないように配置される。平面パターンにおいて象限中心は、フレーム(11A~18A)の重心に定義され得る。
 このため、図13に示すように、第1実施形態の第1変形例に係る垂直離着陸可能飛行体の平面パターン上の寸法Lは、第1実施形態に係る垂直離着陸可能飛行体の寸法Lと比べて最大2倍程度、面積において最大4倍程度大きくなってしまう可能性がある。平面パターン上、各プロペラ31~38が重畳しないように配置されるため、各プロペラ31~38による揚力が効率良く作用する一方、フレームの本数が倍の8本であることと、フレームの長さが長いことからフレーム部材の重量が増加する側面もある。反対に第1実施形態に係る垂直離着陸可能飛行体は、プロペラが重畳することにより、機体を小型化し、重量を低減することができる。
 放射状のフレームを有する一般的なオクトコプターは、図12の左側に示されるように、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、CW及びCCWの2つのプロペラが配置され、また、隣接するプロペラの回転方向は互いに反対方向である。このため、放射状のフレームを有する一般的なオクトコプターは、図8を用いて説明した同軸反転式のオクトコプターのフロー解析が適用可能であり、上述のような問題点を有する。
 これに対して、第1実施形態の第1変形例に係る垂直離着陸可能飛行体は、第1実施形態と同様に、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、第1プロペラ31~34と、第1プロペラと同一方向の第2プロペラ35~38が配置されるため、プロペラの故障に対する冗長性が向上され、墜落の可能性を低減することができる。
-第2変形例-
 第1実施形態の第2変形例に係る垂直離着陸可能飛行体は、図14の右側に示すように、平面パターンにおいて概略としてH字型のフレーム(11B,12B)を備える点で上述の第1実施形態及び第1実施形態の第1変形例と異なる。第2変形例において説明しない構成、作用及び効果は、上述の第1実施形態及び第1変形例と同様であり、重複するため省略する。
 フレーム(11B,12B)は、第1象限Q1から第4象限Q4に延伸する第1ビーム部11Bと、第1ビーム部11Bに対して平行に第2象限Q2から第3象限Q3に延伸する第2ビーム部12Bとを有する。機体主部10Bは、第1ビーム部11B及び第2ビーム部12Bの間においてフレーム(11B,12B)に支持される。第1プロペラ31、第2プロペラ35、第2プロペラ38及び第1プロペラ34は、第1ビーム部11Bの長手方向に並んで配置される。第1プロペラ32、第2プロペラ36、第2プロペラ37及び第1プロペラ33は、第2ビーム部12Bの長手方向に並んで配置される。プロペラ31~38は、平面パターンにおいて互いに回転面が重畳しないように配置される。
 H字型のフレームを有する一般的なオクトコプターは、図14の左側に示されるように、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、CW及びCCWの2つプロペラが配置され、隣接するプロペラの回転方向は互いに反対方向である。これに対して、第1実施形態の第1変形例に係る垂直離着陸可能飛行体は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、第1プロペラ31~34と、第1プロペラと同一方向の第2プロペラ35~38が配置されるため、プロペラの故障に対する冗長性が向上され、墜落の可能性を低減することができる。
-第3変形例-
 第1実施形態の第3変形例に係る垂直離着陸可能飛行体は、図15の右側に示すように、平面パターンにおいて概略としてV字型のフレーム(11C,12C)を備える点で上述の第1実施形態の第1及び第2変形例と異なる。第3変形例において説明しない構成、作用及び効果は、上述の第1実施形態の第1及び第2変形例と同様であり、重複するため省略する。
 フレーム(11C,12C)は、第1象限Q1から第4象限Q4に延伸する直線状の第1ビーム部11Cと、第2象限Q2から第3象限Q3に延伸する直線状の第2ビーム部12Cとを有する。第1ビーム部11C及び第2ビーム部12Cは、前方から後方に向かうに連れて互いに近づくように配置される。機体主部10Cは、第1ビーム部11C及び第2ビーム部12Cの間においてフレーム(11C,12C)に支持される。第1プロペラ31、第2プロペラ35、第2プロペラ38及び第1プロペラ34は、第1ビーム部11Cの長手方向に並んで配置される。第1プロペラ32、第2プロペラ36、第2プロペラ37及び第1プロペラ33は、第2ビーム部12Cの長手方向に並んで配置される。プロペラ31~38は、平面パターンにおいて互いに回転面が重畳しないように配置される。
 V字型のフレームを有する一般的なオクトコプターは、図15の左側に示されるように、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、CW及びCCWの2つプロペラが配置され、隣接するプロペラの回転方向は互いに反対方向である。これに対して、第1実施形態の第1変形例に係る垂直離着陸可能飛行体は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、第1プロペラ31~34と、第1プロペラと同一方向の第2プロペラ35~38が配置されるため、プロペラの故障に対する冗長性が向上され、墜落の可能性を低減することができる。
(第2実施形態)
 第1実施形態において、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて2つのプロペラが配置される例を説明したが、全ての象限に2つのプロペラが配置される必要はない。即ち、本発明の第2実施形態に係る垂直離着陸可能飛行体は、図16に示すように、第1象限Q1に配置された第1プロペラ31、第2象限Q2に配置された第1プロペラ32、第3象限Q3に配置された第1プロペラ33及び第2プロペラ35、第4象限Q4に配置された第1プロペラ34及び第2プロペラ36の合計6つのプロペラ31~36を備えるヘキサコプターである。第2実施形態において説明しない構成、作用及び効果は第1実施形態と同様であるため省略する。
 第2実施形態に係る垂直離着陸可能飛行体のフレーム(11D,12D,……,16D)は、6つのプロペラ31~36のそれぞれに対応する6本のビーム部11D,12D,……,16Dを有する。フレーム(11D~16D)は、中央部において機体主部10Dを支持する。平面パターンにおいて、機体主部10Dの内部に象限中心Gが定義される。ビーム部11D~16Dは、象限中心G側から外側方向に放射状に延伸する。ビーム部11D~16Dの各先端部には、6つのプロペラ31~36のそれぞれを回転させるモータ21~26が取り付けられている。プロペラ31~36は、それぞれビーム部11D~16Dの先端部における上側に取り付けられてもよく、下側に取り付けられてもよい。或いは、ビーム部11D~16Dの上側に取り付けられたプロペラと下側に取り付けられたプロペラが混在してもよい。
 第1象限Q1に配置された第1プロペラ31はCWの回転方向を有する。第2象限Q2に配置された第1プロペラ32はCCWの回転方向を有する。第3象限Q3に配置された第1プロペラ33及び第2プロペラ35はCWの回転方向を有する。第4象限Q4に配置された第1プロペラ34及び第2プロペラ36はCCWの回転方向を有する。このように、第3象限Q3及び第4象限Q4のそれぞれにおいて同一の回転方向を有するプロペラが配置されるため、第3象限Q3及び第4象限Q4のそれぞれにおいて一方のプロペラが故障した場合であっても、他方のプロペラにより揚力を回復することができる。
-比較例-
 以下、図17に示すモデルを参照して、一般的なヘキサコプターの1つのプロペラが故障したモードにおける各飛行動作について説明する。図17の状態(a)~(g)は、図5及び図7の状態(a)~(g)に対応する。
 一般的なヘキサコプターのプロペラは、正六角形の頂点に一致するように配置され、各プロペラの回転方向が隣接するプロペラと反対方向となるように、周方向において互い違いに配置される。このように、一般的なヘキサコプターは、平面パターンにおいて機体の中心の周りに3等分した各領域において、CW及びCCWの各プロペラを等間隔に配置することにより各飛行動作を実現するように構成される。以下では、1つのCCWのプロペラが故障したモードを例として説明する。
 状態(a)において、故障した左方のプロペラと対向する右方のプロペラの揚力が0に調整され、残り4つのプロペラの揚力が均一に調整されることにより、ロール軸、ピッチ軸及びヨー軸周りに関してバランスした状態で機体が安定することができる。前後方向においてCW及びCCWのプロペラの数がバランスしているため、前後それぞれにおいてCW及びCCWの揚力が互いに等しい状態で、前後の揚力の比を調整することにより、前進の状態(b)及び後退の状態(e)が実現される。
 状態(c)において、右方のCWのプロペラの揚力が0.6、左前方及び左後方のCWのプロペラの揚力が1.2、右前方及び右後方のCCWのプロペラの揚力が1.5である。このとき、機体は、ピッチ軸及びヨー軸周りに関してバランスし、左方向にローリングすることにより左移動する。
 状態(d)は、右移動であるが、左方のプロペラが故障しているため右方のCWのプロペラの揚力が0となる。右方向にローリングするために、左前方及び左後方のCWのプロペラの揚力を1.8、右前方及び右後方のCCWのプロペラの揚力を2.2とすると、機体はCWへのヨーイングを停止させることができず、結果として墜落してしまう。
 状態(f)において、右方のCWのプロペラの揚力が0.6、左前方及び左後方のCWのプロペラの揚力が1.5、右前方及び右後方のCCWのプロペラの揚力が1.2である。このとき、機体は、ロール軸及びピッチ軸周りに関してバランスし、CCWにヨーイングすることにより左旋回する。
 状態(g)は、CWにヨーイングする右旋回であるが、左方のCCWのプロペラが故障しているため、ロール軸及びピッチ軸周りに関してバランスした状態でCCWをCWより大きくすることができない。よって、CWへのヨーイングは不可能である。
 以上から、一般的なヘキサコプターでは、1つのプロペラが故障すると、対向するプロペラの揚力が0となる動作が多く、対向するプロペラの方向に移動しようとすると墜落してしまう。また、ヨーイングも一方向に限られる。右方のプロペラも推力を失った場合、図9を用いて説明した不適切なプロペラ配置と同様のプロペラ配置となり、更に墜落の可能性は高くなってしまう。
 これに対して、第2実施形態に係る垂直離着陸可能飛行体では、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、隣接する象限と回転方向が反対方向の第1プロペラ31~34が配置され、第3象限Q3及び第4象限Q4のそれぞれにおいて、第1プロペラ33,34と同一回転方向の第2プロペラ35,36が配置される。このため、第3象限Q3及び第4象限Q4のプロペラの故障に対する冗長性が向上され、墜落の可能性を低減することができる。
 図16に示す例では、第3象限Q3及び第4象限Q4のそれぞれにおいて、プロペラ33~36は平面パターン上、互いに回転面が重畳しないように配置されるが、互いに重畳するように配置されてもよい。例えば、第3象限Q3及び第4象限Q4におけるプロペラは、図18に示すように、同心且つ同一回転方向のプロペラであってもよい。
 更に、同一回転方向の複数のプロペラが配置される象限は、互いに隣接する第3象限Q3及び第4象限Q4に限るものでもなく、図19に示すように、互いに対向する第1象限Q1及び第3象限Q3であってもよい。また、回転面が重畳するプロペラが配置される象限と、重畳しないプロペラが配置される象限とが混在してもよい。
(第3実施形態)
 本発明の第3実施形態に係る垂直離着陸可能飛行体は、図20に示すように、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、第1プロペラ31~34及び第2プロペラ35~38と回転方向の等しい第3プロペラ301~304を更に備える点で第1実施形態と異なる。即ち、第3実施形態に係る垂直離着陸可能飛行体は、第1プロペラ31~34、第2プロペラ35~38及び第3プロペラ301~304の合計12のプロペラ31~38,301~304を備えるドデカコプターである。第3実施形態において説明しない構成、作用及び効果は第1及び第2実施形態と同様であり、重複するため省略する。
 第3プロペラ301~304は、例えば、上層に位置する第1プロペラ31~34と、下層に位置する第2プロペラ35~38とのそれぞれの間に、フレーム(11E~14E)に設けられた回転軸によって配置される。第3プロペラ301~304のそれぞれは、例えば、平面パターンにおいて、第1プロペラ31~34及び第2プロペラ35~38のそれぞれにその回転面の一部が重畳するように配置される。
 例えば第2象限Q2について図21に示すように、第3プロペラ302のブレードは、第3プロペラ302がフレーム(11E~14E)の上方から見てCCWに回転するときにフレーム(11E~14E)の上向きの揚力を発生するように、ピッチ角が調整されている。第4象限Q4の第3プロペラ304のブレードは、第3プロペラ304がCCWに回転するときにフレーム(11E~14E)の上向きの揚力を発生するように、ピッチ角が調整されている。一方、第1象限Q1の第3プロペラ301と、第3象限Q3の第3プロペラ303の各ブレードは、第3プロペラ301,303のそれぞれがCWに回転するときにフレーム(11E~14E)の上向きの揚力を発生するように、ピッチ角が調整されている。
 第3実施形態に係る垂直離着陸可能飛行体は、第3プロペラ301~304のそれぞれを回転させる第3モータ201~204を更に備える。図20に示すように、第3モータ201及び第3プロペラ301は、例えばビーム部12Eの上側に取り付けられる。同様に、第1象限Q1の第3モータ201及び第3プロペラ301は、ビーム部11Eの上側に取り付けられ、第3象限Q3の第3モータ203及び第3プロペラ303は、ビーム部13Eの上側に取り付けられる。第4象限Q4の第3モータ204及び第3プロペラ304は、ビーム部14Eの上側に取り付けられる。
 第3プロペラ301~304は、フレーム(11E~14E)の安定のために可能な限りビーム部11E~14Eの先端側に位置することが好ましい。第3プロペラ301~304は、各ブレードが第1プロペラ31~34及び第1モータ21~24に干渉しないように配置される。また、第3プロペラ301~304のそれぞれは、ビーム部11E~14Eの下側に取り付けられてもよい。
 図22に示すように、第3実施形態に係る垂直離着陸可能飛行体が備えるFC5Aは、12のモータ21~28,201~204のそれぞれが独立して駆動可能なように、ESC61~68,601~604のそれぞれに対する制御信号を生成可能である。このため、FC5Aと、ESC61~68,601~604のそれぞれとの間は互いに独立した配線により接続されている。
 FC5Aは、4象限のそれぞれにおける3つのESCに対して同一の制御信号を出力する第1モードと、4象限のそれぞれにおいて、3つのESCの少なくとも何れかに対して制御信号を出力する第2モードとを有することができる。
 例えば、FC5Aは第2モードにおいて、初期設定として、第2プロペラ35~38選択的に使用して飛行するように、制御信号の出力先として、第2ESC65~68を設定する。FC5Bは、指令部4からの指令信号に応じてフレーム(11E~14E)が目標状態を達成するように第2ESC65~68のそれぞれに制御信号を出力し、第2プロペラ35~38の各揚力を制御する。
 次いで、FC5Aは、図11のフローチャートのステップS11と同様に、目標状態とセンサ部51により検出された飛行状態との差分から、揚力が不足する象限があるか否かを判定する。揚力が不足する場合、FC5Aは、揚力が不足する象限に関して制御信号の出力先を、例えば第1ESC61~64に変更することにより、制御信号の出力ラインを切り替える。これにより、揚力が不足する象限において、第2モータ25~28の駆動がオフにされ、第1モータ21~24の駆動がオンになり、揚力は第1プロペラ31~34により回復される。
 第1ESC61~64を制御信号の出力先とする象限において揚力の不足が検知された場合、FC5Aは、揚力が不足する象限に関して、制御信号の出力先を第3ESC601~604に変更すればよい。これにより、揚力が不足する象限において、第1モータ21~24の駆動がオフにされ、第3モータ201~204の駆動がオンになり、揚力は第3プロペラ301~304により回復される。
 第3実施形態に係る垂直離着陸可能飛行体によれば、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、1つのプロペラを回転させることにより飛行し、揚力が不足する場合において、それまで回転させていなかった他のプロペラを回転させる。また、第3実施形態に係る垂直離着陸可能飛行体では、各象限において、重畳する2層のプロペラの何れか一方のプロペラを選択的に回転させるので、効率的に揚力を発生することができ、複数のモータを駆動することによる消費電力を節減することができる。
 なお、第1モードの制御方法を実現するには、図23に示すように、ESC61~68,601~604は、各象限のそれぞれにおいて同一の制御信号が入力されるようにFC5に接続されてもよい。したがって、第2モードが不要であれば、第3実施形態に係る垂直離着陸可能飛行体のFC5は、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4用の4系統の制御信号を生成すればよいため、4つのプロペラを有するクアッドコプター用の汎用のFCを使用可能である。
 また、初期設定として、第2プロペラ35~38を使用する例を説明したが、回転されるプロペラは第1プロペラ31~34であっても第3プロペラ301~304であっても構わない。更に、初期設定として、第1プロペラ31~34を使用する象限と第2プロペラ35~38を使用する象限と、301~304を使用する象限とが混在してもよい。
(第4実施形態)
 本発明の第4実施形態に係る垂直離着陸可能飛行体は、図24に示すように、使用するESC61~68,601~604、モータ21~28,201~204を切り替えるための構成を有することにより冗長性が向上されている点で第3実施形態と異なる。第4実施形態において、FC5Bと、ESC61~68,601~604のそれぞれとの間は互いに独立した配線により接続されている。第5実施形態において説明しない構成、作用及び効果は第4実施形態と同様であるため省略する。
 第4実施形態に係る垂直離着陸可能飛行体は、第1モータ21~24のそれぞれに入力される第1電流(駆動信号)を検出する第1電流センサA1a~A4aと、第1モータ21~24のそれぞれの第1電流が流れる配線を開閉する第1スイッチSW1a~SW4aと、第2モータ25~28のそれぞれに入力される第2電流(駆動信号)を検出する第2電流センサA1b~A4bと、第2モータ25~28のそれぞれの第2電流が流れる配線を開閉する第2スイッチSW1b~SW4bとを備える。
 第1電流センサA1a~A4a及び第2電流センサA1b~A4bのそれぞれは、クランプセンサやシャント抵抗を用いた電流検出等により電流を検出すればよい。第1モータ21~24及び第2モータ25~28のそれぞれがブラシ付きモータであれば、1つのモータに2本の入力配線が接続され、ブラシレスモータであれば1つのモータに3本の入力配線が接続される。第1電流センサA1a~A4a及び第2電流センサA1b~A4bのそれぞれは、第1モータ21~24及び第2モータ25~28の種類に応じて、2連又は3連の電流計である。
 第1スイッチSW1a及び第2スイッチSW1bと、第1ESC61及び第2ESC65との間には、ESCスイッチSW1vが接続されている。ESCスイッチSW1vは、第1モータ21及び第2モータ25側に駆動信号を出力する第1ESC61又は第2ESC65を切り替えるスイッチである。第1スイッチSW1a及び第2スイッチSW1bは、ESCスイッチSW1vのポジションにより選択された第1ESC61又は第2ESC65から、互いに同一の駆動信号が入力される。
 第1スイッチSW2a及び第2スイッチSW2bと、第1ESC62及び第2ESC66との間には、ESCスイッチSW2vが接続されている。ESCスイッチSW2vは、第1モータ22及び第2モータ26側に駆動信号を出力する第1ESC62又は第2ESC66を切り替えるスイッチである。第1スイッチSW2a及び第2スイッチSW2bは、ESCスイッチSW2vのポジションにより選択された第1ESC62又は第2ESC66から、互いに同一の駆動信号が入力される。
 第1スイッチSW3a及び第2スイッチSW3bと、第1ESC63及び第2ESC67との間には、ESCスイッチSW3vが接続されている。ESCスイッチSW3vは、第1モータ23及び第2モータ27側に駆動信号を出力する第1ESC63又は第2ESC67を切り替えるスイッチである。第1スイッチSW3a及び第2スイッチSW3bは、ESCスイッチSW3vのポジションにより選択された第1ESC63又は第2ESC67から、互いに同一の駆動信号が入力される。
 第1スイッチSW4a及び第2スイッチSW4bと、第1ESC64及び第2ESC68との間には、ESCスイッチSW4vが接続されている。ESCスイッチSW4vは、第1モータ24及び第2モータ28側に駆動信号を出力する第1ESC64又は第2ESC68を切り替えるスイッチである。第1スイッチSW4a及び第2スイッチSW4bは、ESCスイッチSW4vのポジションにより選択された第1ESC64又は第2ESC68から、互いに同一の駆動信号が入力される。
 更に、第4実施形態に係る垂直離着陸可能飛行体は、第1プロペラ31~34のそれぞれの回転状態を検出する第1回転センサP1a~P4aと、第2プロペラ35~38のそれぞれの回転状態を検出する第2回転センサP1b~P4bとを備える。第1回転センサP1a~P4a及び第2回転センサP1b~P4bのそれぞれは、例えば、第1プロペラ31~34及び第2プロペラ35~38の各ブレードの回転状態を光学的に読み取る光センサである。
 FC5Bの制御回路56Bは、図25に示すように、飛行制御部561及びライン制御部562に加えて、故障判定部563を機能的又は物理的なハードウェア資源として備える。ライン制御部562は、第1スイッチSW1a~SW4a、第2スイッチSW1b~SW4b及びESCスイッチSW1v~SW4vを制御することにより、プロペラ31~38,301~304の制御信号のラインを切り替える。故障判定部563は、第1電流センサA1a~A4a及び第2電流センサA1b~A4bにより検出された電流に基づいて、ESC61~68又はモータ21~28の故障を判定する論理回路である。また、故障判定部563は、第1回転センサP1a~P4a及び第2回転センサP1b~P4bにより検出された回転状態と、第1電流センサA1a~A4a及び第2電流センサA1b~A4bにより検出された電流とに基づいて、プロペラ31~38の故障を判定する。
-第1モードの制御方法-
 以下、図26のフローチャートを参照して、第4実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法の一例を説明する。以下の説明では、第1象限Q1を主として例示的に説明するが、他の第2象限Q2、第3象限Q3及び第4象限Q4に関しても同様の処理であるため説明を省略する。
 先ず、初期設定として、ライン制御部562は、例えば、全てのESCスイッチSW1v~SW4vを第1ESC61~64側に切り替える。第1スイッチSW1a~SW4a及び第2スイッチSW1b~SW4bをオン(閉状態)にすることにより、第1モータ21~24及び第2モータ25~28がオンにされる。そして、第1ESC61及び第3ESC601、第1ESC62及び第3ESC602、第1ESC63及び第3ESC603、並びに第1ESC64及び第3ESC604の4系統の制御信号を生成する。これにより、全てのプロペラ31~38,301~304が回転される。
 ステップS21において、飛行制御部561は、第2実施形態において説明した図11のフローチャートのステップS11と同様に、フレーム(11E~14E)の目標状態とセンサ部51により検出された飛行状態との差分から、第1象限Q1の揚力が不足しているか否かを判定する。揚力が不足すると判定される場合、ステップS22に処理を進め、揚力が不足していないと判定される場合、ステップS21の処理を繰り返す。
 ステップS22において、故障判定部563は、第1電流センサA1aにより検出された第1電流及び第2電流センサA1bにより検出された第2電流のそれぞれに基づいて、第1ESC61が故障しているか否かを判定する。具体的には、故障判定部563は、第1モータ21に入力される第1電流及び第2モータ25に入力される第2電流が共に適正に検出されない場合、第1ESC61が故障していると判定する。適正な電流か否かの判定は、検出された電流と予め決定された波形との比較により行われる。第1ESC61が故障していると判定する場合、ステップS23に処理を進め、故障していないと判定する場合、ステップS24に処理を進める。
 ステップS23において、ライン制御部562は、第2ESC65から第1モータ21及び第2モータ25に同一の制御信号が入力されるように、ESCスイッチSW1vを第2ESC65側に切り替える。
 ステップS24において、故障判定部563は、第1電流センサA1aにより検出された第1電流及び第2電流センサA1bにより検出された第2電流と、第1回転センサP1a及び第2回転センサP1bのそれぞれにより検出された回転状態とに基づいて、第1プロペラ31及び第2プロペラ35のそれぞれが故障しているか否かを判定する。具体的には、故障判定部563は、第1電流が適正に検出されているにも関わらず第1プロペラ31の回転が検出されていない場合、第1ESC61又は第2ESC65と、第1モータ21とは故障していないため、第1プロペラ31の原因により第1プロペラ31が故障していると判定する。同様に、故障判定部563は、第2電流が適正に検出されているにも関わらず第2プロペラ35の回転が検出されていない場合、第1ESC61又は第2ESC65と、第2モータ25とは故障していないため、第2プロペラ35の原因により第2プロペラ35が故障していると判定する。第1プロペラ31又は第2プロペラ35が故障していると判定する場合、ステップS25に処理を進め、故障していないと判定する場合、ステップS26に処理を進める。
 ステップS25において、ライン制御部562は、ステップS24で故障していると判定された第1プロペラ31側の第1スイッチSW1a又は第2プロペラ35側の第2スイッチSW1bをオフ(開状態)に切り替える。これにより第1モータ21及び第2モータ25のうち、プロペラが故障している側への電力供給が停止される。
 ステップS26において、故障判定部563は、第1電流センサA1aにより検出された第1電流及び第2電流センサA1bにより検出された第2電流に基づいて、第1モータ21及び第2モータ25のそれぞれが故障しているか否かを判定する。具体的には、故障判定部563は、第1電流が適正に検出されず、第2電流が適正に検出される場合、第1モータ21が故障していると判定する。或いは、故障判定部563は、第1電流が適正に検出されているにも関わらず、第2電流が適正に検出されない場合、第2モータ25が故障していると判定する。第1モータ21又は第2モータ25が故障していると判定する場合、ステップS27に処理を進め、故障していないと判定する場合、処理を終了する。
 ステップS27において、ライン制御部562は、ステップS26で故障していると判定された第1モータ21側の第1スイッチSW1a又は第2モータ25側の第2スイッチSW1bを開状態に切り替え、処理を終了する。これにより故障していると判定された第1モータ21又は第2モータ25への電力供給が停止される。
 以上のように、第4実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法によれば、モータ21~28に流れる電流及びプロペラ31~38の回転状態を検知することにより、使用するESCを切り替えたり、使用しないモータへの電力供給を遮断したりすることができる。これにより、垂直離着陸可能飛行体の信頼性が向上するとともに、故障時に消費電力が過大となる可能性を低減することができる。
-第2モードの制御方法-
 以下、図27のフローチャートを参照して、第4実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法の一例を説明する。以下の説明では、第1象限Q1に関して例示的に説明するが、他の第2象限Q2、第3象限Q3及び第4象限Q4に関しても同様の処理であるため説明を省略する。
 先ず、初期設定として、ライン制御部562は 例えば、最下層の第2プロペラ35~38を選択的に使用して飛行するように、全てのESCスイッチSW1v~SW4vを第1ESC61~64側に切り替え、第1スイッチSW1a~SW4aをオフ、第2スイッチSW1b~SW4bをオンに切り替える。そして、ライン制御部562は、第1ESC61~64のそれぞれに制御信号を出力する。これにより、第2プロペラ35~38が選択的に回転する。
 ステップS301において、飛行制御部561は、図11のフローチャートのステップS11と同様に、フレーム(11E~14E)の目標状態とセンサ部51により検出された飛行状態との差分から、第1象限Q1の揚力が不足しているか否かを判定する。飛行制御部561が揚力が不足すると判定される場合、ステップS302に処理を進め、揚力の不足がないと判定される場合、ステップS301の処理を繰り返す。
 ステップS302において、故障判定部563は、第2電流センサA1bにより検出された第2電流が適正か否かを判定する。第2電流が適正である場合、ステップS303に処理を進め、適正でない場合、ステップS304に処理を進める。
 ステップS303において、ライン制御部562は、第1スイッチSW1aをオンにし、第1ESC61と第1モータ21との間を接続し、ステップS306に処理を進める。
 ステップS304において、故障判定部563は、第2回転センサP1bにより検出された回転状態に基づいて、第2プロペラ35が故障しているか否かを判定する。故障判定部563は、第2プロペラ35の回転状態が適正である場合、第2プロペラ35は問題ないため、処理を終了し、適正でない場合、第2プロペラ35の原因により第2プロペラ35が故障していると判定し、ステップS305に処理を進める。
 ステップS305において、ライン制御部562は、第2プロペラ35が故障しているため、第1スイッチSW1aをオン、第2スイッチSW1bをオフに切り替え、第1ESC61と第1モータ21との間を接続する。
 ステップS306において、故障判定部563は、第1電流センサA1aにより検出された第1電流と第1回転センサP1aにより検出された第1プロペラ31の回転状態とに基づいて、第1プロペラ31に問題ないか否かを判定する。故障判定部563は、第1電流及び第1プロペラ31の回転状態が共に適正である場合、第1プロペラ31は問題なく、ステップS307に処理を進める。第1電流及び第1プロペラ31の回転状態の少なくとも何れかが適正でない場合、第1プロペラ31が故障していると判定し、ステップS308に処理を進める。
 ステップS307において、ライン制御部562は、第1ESC61に問題がなく第2モータ25に故障があったため、第2スイッチSW1bをオフに切り替え、第1ESC61と第2モータ25との間を切断し、処理を終了する。
 ステップS308において、ライン制御部562は、ESCスイッチSW1vを第2ESC65側に切り替え、制御信号の出力先を第1ESC61から第2ESC65に変更する。
 ステップS309において、故障判定部563は、第2電流センサA1bにより検出された第2電流が適正か否かを判定する。故障判定部563は、第2電流が適正である場合、第2ESC65は問題ないと判定し、ステップS310に処理を進める。故障判定部563は、第2電流が適正でない場合、第2モータ25が故障していると判定し、ステップS311に処理を進める。
 ステップS310において、故障判定部563は、第2回転センサP1bにより検出された第2プロペラ35の回転状態が適正か否かを判定する。故障判定部563は、第2プロペラ35の回転状態が適正である場合、処理を終了し、第2プロペラ35の回転状態が適正でない場合、第2プロペラ35の原因により第2プロペラ35が故障していると判定し、ステップS311に処理を進める。
 ステップS311において、ライン制御部562は、第2スイッチSW1bをオフに切り替え、第2ESC65と第2モータ25との間を切断する。
 ステップS312において、故障判定部563は、第1電流センサA1aにより検出された第1電流が適正か否かを判定する。故障判定部563は、第1電流が適正である場合、ステップS313に処理を進め、適正でない場合、第2ESC65が故障していると判定し、ステップS314に処理を進める。
 ステップS313において、故障判定部563は、第1回転センサP1aにより検出された第1プロペラ31の回転状態が適正か否かを判定する。故障判定部563は、第1プロペラ31の回転状態が適正である場合、処理を終了し、第1プロペラ31の回転状態が適正でない場合、第1プロペラ31が故障していると判定し、ステップS314に処理を進める。
 ステップS314において、ライン制御部562は、制御信号の出力先を第2ESC65から第3ESC601に変更する。これにより、第3プロペラ301が回転され、処理を終了する。
 以上のように、第4実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法によれば、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、1つのプロペラを回転させることにより飛行する。そして、揚力が不足する場合において、それまで回転させていなかった他のプロペラを回転させることにより効率的に揚力を発生することができ、複数のモータを駆動することによる消費電力を節減することができる。
 更に、第4実施形態に係る垂直離着陸可能飛行体では、第1モータ21~24及び第2モータ25~28に流れる電流を検出する第1電流センサA1a~A4a及び第2電流センサA1b~A4bを備えることにより、飛行制御部561は、第1電流及び第2電流に応じて、第1モータ21~24及び第2モータ25~28の間で同期することが可能となる。これにより、第1ESC61~64及び第2ESC65~68の間で互いに切り替えることが可能となる。
(第5実施形態)
 本発明の第5実施形態に係る垂直離着陸可能飛行体は、図28に示すように、第1モータ21及び第2モータ25、第1モータ22及び第2モータ26、第1モータ23及び第2モータ27、並びに第1モータ24及び第2モータ28のそれぞれに共有される回転シャフトSH1,SH2,SH3,SH4と、回転シャフトSH1~SH4の回転を第1プロペラ31~34のそれぞれに伝達する第1クラッチC1a~C4aと、回転シャフトSH1~SH4の回転を第2プロペラ35~38のそれぞれに伝達する第2クラッチC1b~C4bとを備える点で第3及び第4実施形態と異なる。第5実施形態において説明しない構成、作用及び効果は第3及び第4実施形態と同様であるため省略する。
 例えば第2象限Q2について図29に示すように、第1モータ22及び第2モータ26は、図29において図示されない回転シャフトを共有するように配置される。即ち、ビーム部12Eの先端部において、回転シャフトは、上側に配置された第1モータ22から下側に配置された第2モータ26にかけてビーム部12Eを貫通して配置される。
 なお、図29に示す例においてビーム部12Eの中央側に配置される第3モータ202についても、第1モータ22及び第2モータ26と共に回転シャフトを共有し、図示しない第3クラッチにより第3プロペラ302に対する回転の伝達の切り替えを行うようにしてもよい。即ち、第1プロペラ32、第2プロペラ36及び第3プロペラ302は、同心となるように配置されてもよい。
 第1プロペラ32は、第1クラッチC2aにより回転シャフトの回転を伝達されることにより回転する。第2プロペラ36は、第2クラッチC2bにより回転シャフトの回転を伝達されることにより回転する。よって、第1モータ22及び第2モータ26の何れかが駆動されるとき、第1クラッチC2a及び第2クラッチC2bの制御に応じて、第1プロペラ32及び第2プロペラ36の少なくとも何れかを回転させることができる。
 FC5Cの制御回路56Cは、図30に示すように、飛行制御部561、ライン制御部562及び故障判定部563に加えて、クラッチ制御部564を機能的又は物理的なハードウェア資源として備える。クラッチ制御部564は、第1クラッチC1a~C4a及び第2クラッチC1b~C4bのそれぞれを制御することにより、回転シャフトSH1~SH4と第1プロペラ31~34及び第2プロペラ35~38との間の接続及び切断を行い、第1プロペラ31~34及び第2プロペラ35~38を選択的に回転させる論理回路である。
-第1モードの制御方法-
 以下、図31のフローチャートを参照して、第5実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法の一例を説明する。以下の説明では、第1象限Q1を主として例示的に説明するが、他の第2象限Q2、第3象限Q3及び第4象限Q4に関しても同様の処理であるため説明を省略する。
 先ず、初期設定として、ライン制御部562は、例えば、全てのESCスイッチSW1v~SW4vを第1ESC61~64側に切り替える。第1スイッチSW1a~SW4aをオン、第2スイッチSW1b~SW4bをオフにすることにより、第1モータ21~24が選択的にオンにされる。また、クラッチ制御部564は、第1クラッチC1a~C4a及び第2クラッチC1b~C4bを全て接続状態にする。そして、飛行制御部561は、第1ESC61及び第3ESC601、第1ESC62及び第3ESC602、第1ESC63及び第3ESC603、並びに第1ESC64及び第3ESC604の4系統の制御信号を生成する。これにより、全てのプロペラ31~38,301~304が回転される。
 ステップS401において、飛行制御部561は、図11のフローチャートのステップS11と同様に、フレーム(11E~14E)の目標状態とセンサ部51により検出された飛行状態との差分から、第1象限Q1の揚力が不足しているか否かを判定する。揚力が不足すると判定される場合、ステップS402に処理を進め、揚力が不足していないと判定される場合、ステップS401の処理を繰り返す。
 ステップS402において、故障判定部563は、第1電流センサA1aにより検出された第1電流と、第1回転センサP1aにより検出された第1プロペラ31の回転状態及び第2回転センサP1bにより検出された第2プロペラ35の回転状態とに基づいて、第1プロペラ31及び第2プロペラ35のそれぞれが故障しているか否かを判定する。具体的には、故障判定部563は、第1電流及び第1プロペラ31の回転が適正に検出されているにも関わらず、第2プロペラ35の回転が検出されていない場合、第2クラッチC1b又は第2プロペラ35の原因により、第2プロペラ35が故障していると判定する。同様に、故障判定部563は、第1電流及び第2プロペラ35の回転が適正に検出されているにも関わらず、第1プロペラ31の回転が検出されていない場合、第1クラッチC1a又は第1プロペラ31の原因により、第1プロペラ31が故障していると判定する。第1プロペラ31又は第2プロペラ35が故障していると判定する場合、ステップS403に処理を進め、故障していないと判定する場合、ステップS404に処理を進める。
 ステップS403において、クラッチ制御部564は、ステップS402で故障していると判定された第1プロペラ31側の第1クラッチC1a又は第2プロペラ35側の第2クラッチC1bをオフ(切断状態)に切り替える。
 ステップS404において、故障判定部563は、第1電流センサA1aにより検出された第1電流が適正か否かを判定する。第1電流が適正でない場合、ステップS405に処理を進め、適正と判定する場合、ステップS406に処理を進める。
 ステップS405において、ライン制御部562は、第1スイッチSW1aをオフに切り替え、第2スイッチSW1bをオンに切り替える。これにより第1ESC61と第2モータ25との間が接続され、使用するモータが第2モータ25に切り替えられる。
 ステップS406において、故障判定部563は、第2電流センサA1bにより検出された第2電流と、第1回転センサP1aにより検出された第1プロペラ31の回転状態及び第2回転センサP1bにより検出された第2プロペラ35の回転状態とに基づいて、第1プロペラ31及び第2プロペラ35のそれぞれが故障しているか否かを判定する。故障判定部563は、第2電流及び第1プロペラ31の回転が適正に検出されているにも関わらず、第2プロペラ35の回転が検出されていない場合、第2クラッチC1b又は第2プロペラ35の原因により、第2プロペラ35が故障していると判定する。同様に、故障判定部563は、第2電流及び第2プロペラ35の回転が適正に検出されているにも関わらず、第1プロペラ31の回転が検出されていない場合、第2クラッチC1b又は第2プロペラ35の原因により、第2プロペラ35が故障していると判定する。第1プロペラ31又は第2プロペラ35が故障していると判定する場合、ステップS407に処理を進め、故障していないと判定する場合、ステップS408に処理を進める。
 ステップS407において、クラッチ制御部564は、ステップS406で故障していると判定された第1プロペラ31側の第1クラッチC1a又は第2プロペラ35側の第2クラッチC1bをオフに切り替える。
 ステップS408において、故障判定部563は、第1電流センサA1aにより検出された第1電流及び第2電流センサA1bにより検出された第2電流が適正か否かを判定する。即ち、故障判定部563は、ステップS404で第1電流が適正でないと判定した後、ステップS408で第2電流も適正でないと判定する場合、第1ESC61が故障していると判定し、ステップS409に処理を進める。第2電流が適正である場合、ステップS410に処理を進める。
 ステップS409において、ライン制御部562は、ESCスイッチSW1vを第2ESC65側に切り替え、制御信号の出力先を第1ESC61から第2ESC65に変更する。
 ステップS410において、故障判定部563は、第1電流センサA1aにより検出された第1電流及び第2電流センサA1bにより検出された第2電流が適正か否かを判定する。即ち、故障判定部563は、ステップS404で第1電流が適正でないと判定し、ステップS409で第2ESC65に切り替えた後、以前第2電流を適正でないと判定する場合、第1ESC61及び第2ESC65が共に故障していると判定し、ステップS411に処理を進める。第2電流が適正である場合、処理を終了する。
 ステップS411において、ライン制御部562は、第1スイッチSW1a及び第2スイッチSW1bを共にオフにし、第2ESC65への制御信号の出力を停止する。よって、第3プロペラ601によって第1象限Q1の揚力が回復される。
 以上のように、第6実施形態に係る垂直離着陸可能飛行体の第1モードにおける制御方法によれば、モータ21~28に流れる電流及びプロペラ31~38の回転状態を検知することにより、使用するESCを切り替えたり、使用しないモータへの電力供給を遮断したりすることができる。これにより、垂直離着陸可能飛行体の信頼性が向上するとともに、故障時に消費電力が過大となる可能性を低減することができる。
 -第2モードの制御方法-
 以下、図32のフローチャートを参照して、第5実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法の一例を説明する。以下の説明では、第1象限Q1に関して例示的に説明するが、他の第2象限Q2、第3象限Q3及び第4象限Q4に関しても同様の処理であるため説明を省略する。
 先ず、初期設定として、ライン制御部562は 例えば、最下層の第2プロペラ35~38を選択的に使用して飛行するように、全てのESCスイッチSW1v~SW4vを第1ESC61~64側に切り替え、第1スイッチSW1a~SW4aをオン、第2スイッチSW1b~SW4bをオフに切り替える。また、第1クラッチC1a~C4aをオフ、第2クラッチC1b~C4bをオンに切り替える。そして、ライン制御部562は、第1ESC61~64のそれぞれに制御信号を出力する。これにより、第2プロペラ35~38が選択的に回転する。
 ステップS501において、飛行制御部561は、図11のフローチャートのステップS11と同様に、フレーム(11E~14E)の目標状態とセンサ部51により検出された飛行状態との差分から、第1象限Q1の揚力が不足しているか否かを判定する。揚力が不足すると判定される場合、ステップS502に処理を進め、揚力が不足していないと判定される場合、ステップS501の処理を繰り返す。
 ステップS502において、故障判定部563は、第1電流センサA1aにより検出された第1電流が適正か否かを判定する。第1電流が適正である場合、ステップS309に処理を進め、適正でない場合、ステップS503に処理を進める。
 ステップS503において、ライン制御部562は、第2スイッチSW1bをオンにし、第1ESC61と第1モータ21及び第2モータ25との間を接続する。
 ステップS504において、故障判定部563は、第2電流センサA1bにより検出された第2電流が適正か否かを判定する。第2電流が適正である場合、第1ESC61は故障しておらず、第1モータ21が故障していると判定し、ステップS505に処理を進める。故障判定部563は、第2電流が適正でない場合、第1ESC61が故障していると判定し、ステップS506に処理を進める。
 ステップS505において、ライン制御部562は、第1スイッチSW1aをオフ、第2スイッチSW1bをオンに切り替え、第1ESC61と第2モータ25との間を接続する。これにより、ライン制御部562は、使用するモータを第1モータ21から第2モータ25に切り替え、ステップS509に処理を進める。
 ステップS506において、ライン制御部562は、ESCスイッチSW1vを第2ESC65側に切り替え、使用するESCを第1ESC61から第2ESC65に変更する。
 ステップS507において、故障判定部563は、第1電流センサA1aにより検出された第1電流が適正か否かを判定する。故障判定部563は、第1電流が適正である場合、ステップS509に処理を進め、適正でない場合、ステップS508に処理を進める。
 ステップS508において、故障判定部563は、第2電流センサA1bにより検出された第2電流が適正か否かを判定する。故障判定部563は、第2電流が適正である場合、ステップS509に処理を進め、適正でない場合、第1プロペラ31及び第2プロペラ35が共に故障していると判定し、ステップS512に処理を進める。
 ステップS509において、故障判定部563は、第2回転センサP1bにより検出される第2プロペラ35の回転状態が適正か否かを判定する。故障判定部563は、第2プロペラ35の回転状態が適正である場合、第2プロペラ35は問題ないとして、処理を終了する。故障判定部563は、第2プロペラ35の回転状態が適正でない場合、第2プロペラ35が故障していると判定し、ステップS510に処理を進める。
 ステップS510において、クラッチ制御部564は、ステップS509で故障していると判定された第2プロペラ35側の第2クラッチC1bをオフにし、第1プロペラ31側の第1クラッチC1aをオンに切り替える。
 ステップS511において、故障判定部563は、第1回転センサP1aにより検出される第1プロペラ31の回転状態が適正か否かを判定する。故障判定部563は、第1プロペラ31の回転状態が適正である場合、第1プロペラ31は問題ないとして、処理を終了する。故障判定部563は、第1プロペラ31の回転状態が適正でない場合、第1プロペラ31が故障していると判定し、ステップS512に処理を進める。
 ステップS512において、ライン制御部562は、第1ESC61及び第2ESC65に対する制御信号の出力を停止し、制御信号の出力先を第3ESC601に設定する。これにより、第3プロペラ601が回転され、処理を終了する。
 以上のように、第5実施形態に係る垂直離着陸可能飛行体の第2モードにおける制御方法によれば、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおいて、1つのプロペラを回転させることにより飛行する。そして、揚力が不足する場合において、それまで回転させていなかった他のプロペラを回転させることにより効率的に揚力を発生することができ、複数のモータを駆動することによる消費電力を節減することができる。
 更に、第5実施形態に係る垂直離着陸可能飛行体は、をそれぞれ共有する第1モータ21~24及び第2モータ25~28に共有される回転シャフトと、回転シャフトに設けられた第1クラッチC1a~C4a及び第2クラッチC1b~C4bとを備えるため、故障したプロペラ31~38の回転を容易に停止させることができる。2枚ブレードをもつプロペラにおいて1つのブレードが破損すると回転が滑らかでなくなる。3枚以上のブレードをもつプロペラにおいても1つ以上のブレードが破損すると回転が滑らかでなくなる。第5実施形態に係る垂直離着陸可能飛行体は、このような回転異常による非円滑な回転を避けるのに貢献する。
-変形例-
 図29に示す例では、ビーム部12Eを上下方向に挟み込むように配置された第1モータ22及び第2モータ26を説明したが、図33に示すように、第1モータ22及び第2モータ26の代わりに、2系統のコイルを有するモータ7を採用してもよい。
 モータ7は、円筒状の固定子71と、固定子71の内側に配置され、回転シャフトSH2を回転軸として回転する回転子72と、固定子71の内面に設けられた3つのコア部73u,73v,73wとを備える。更に、3つコア部73u,73v,73wのそれぞれには、第1モータ22の系統に相当する第1コイル74u,74v,74wと、第2モータ26の系統に相当する第2コイル75u,75v,75wとが巻回されている。
 第1コイル74u,74v,74wのそれぞれの一方の端子n2は、第1モータ22の中性点に相当する。第1コイル74u,74v,74wのそれぞれの他方の端子u2,v2,w2は、それぞれu,v,w端子に相当する。第2コイル75u,75v,75wのそれぞれの一方の端子n6は、第2モータ26の中性点に相当する。第2コイル75u,75v,75wのそれぞれの他方の端子u6,v6,w6は、それぞれu,v,w端子に相当する。
 第1モータ21及び第2モータ25、第1モータ23及び第2モータ27、並びに第1モータ24及び第2モータ28のそれぞれについても同様に、それぞれ2系統を有するモータ7と同様の構成を採用してもよい。
(その他の実施形態)
 上記のように、本発明を上記の第1~第5実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、第1~第5実施形態において、第1象限Q1、第2象限Q2、第3象限Q3及び第4象限Q4のそれぞれにおける回転方向は、必ずしも同一でなくても構わない。各象限において多数派となるプロペラの回転方向は、それぞれ隣接する象限において多数派となる回転方向と反対方向であればよい。各プロペラのブレードの枚数は、適宜調整されてもよく、プロペラの径も適宜調整され得る。
 また、第1~第5実施形態における第2モードにおいて、飛行に用いられないプロペラは、回転するプロペラが発生する揚力の効率を低下させないように、折りたたまれてもよい。更に、各象限において、プロペラの回転における位相も互いに重畳しないように設定されることができる。
 また、垂直離着陸可能飛行体は、揚力及び推進力を複数のプロペラにより発生させるマルチコプター等の回転翼機に限るものでなく、推進力としてガスタービンエンジン、ジェットエンジン等の他の動力源を備える飛行体であってもよい。
 その他、上記の各構成を相互に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 5,5A,5B,5C フライトコントローラ(コントローラ)
 10,10A,10B,10C,10D 機体主部
 11~14,11A~18A,11B~12B,11D~16D,11E~14E フレーム
 21~28,201~204 モータ
 31~38,301~304 プロペラ
 561 飛行制御部
 562 ライン制御部
 Q1~Q4 第1~第4象限
 

Claims (13)

  1.  機体主部と、
     平面パターンにおいて前記機体主部の内部に象限中心を定義し、該象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、前記機体主部を支持するフレームと、
     前記第1~第4象限のそれぞれに、前記フレームに設けられた回転軸によって配置された第1プロペラと、
     前記第1象限において、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラと
     を備え、前記第1象限及び前記第3象限の回転方向は、前記第2象限及び前記第4象限の回転方向と反対方向であることを特徴とする垂直離着陸可能飛行体。
  2.  前記第2象限又は前記第3象限において、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラを更に備えることを特徴とする、請求項1に記載の垂直離着陸可能飛行体。
  3.  前記第2~第4象限のそれぞれにおいて、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラを更に備えることを特徴とする、請求項1に記載の垂直離着陸可能飛行体。
  4.  前記第1~第4象限のそれぞれにおいて、前記第1プロペラと前記第2プロペラの回転軸が同心であることを特徴とする、請求項3に記載の垂直離着陸可能飛行体。
  5.  前記第1プロペラと前記第2プロペラの回転を、前記第1~第4象限毎に独立に制御するコントローラを前記機体主部に備えることを特徴とする請求項3又は4に記載の垂直離着陸可能飛行体。
  6.  前記コントローラは、前記第1~第4象限のそれぞれにおいて、前記第1プロペラと前記第2プロペラの回転を互いに独立に制御することを特徴とする請求項5に記載の垂直離着陸可能飛行体。
  7.  前記コントローラは、前記機体主部の姿勢に基づいて、前記第1~第4象限のそれぞれにおける前記第1プロペラと前記第2プロペラの回転の制御及び切り替えを行うことを特徴とする請求項5又は6に記載の垂直離着陸可能飛行体。
  8.  前記第1~第4象限のそれぞれにおいて、前記第1プロペラの駆動動力系と前記第2プロペラの駆動動力系が互いに独立していることを特徴とする請求項5~7のいずれか1項に記載の垂直離着陸可能飛行体。
  9.  前記第1~第4象限のそれぞれにおいて、前記第1プロペラと前記第2プロペラが、互いに重畳しない位相で回転することを特徴とする請求項3~8のいずれか1項に記載の垂直離着陸可能飛行体。
  10.  前記第1~第4象限のそれぞれにおいて、前記第1プロペラと前記第2プロペラの間に、前記第1プロペラと回転方向の等しい第3プロペラを更に備えることを特徴とする請求項3~8のいずれか1項に記載の垂直離着陸可能飛行体。
  11.  平面パターンにおいて機体主部の内部に象限中心を定義し、該象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、前記機体主部を支持するフレームの前記第1~第4象限のそれぞれに、前記フレームに設けられた回転軸によって配置された第1プロペラを回転させるステップと、
     前記第1象限における揚力が不足した場合、前記第1象限において、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラを回転させるステップと
     を含むことを特徴とする垂直離着陸可能飛行体の制御方法。
  12.  平面パターンにおいて機体主部の内部に象限中心を定義し、該象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、前記機体主部を支持するフレームの前記第1~第4象限のそれぞれに、前記フレームに設けられた回転軸によって配置された第1プロペラを回転させる飛行制御部と、
     前記第1象限における揚力が不足した場合、前記第1象限において、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラを回転させるライン制御部と
     を備えることを特徴とする垂直離着陸可能飛行体のコントローラ。
  13.  平面パターンにおいて機体主部の内部に象限中心を定義し、該象限中心の周りの第1~第4象限のそれぞれに独立した同一方向の揚力を発生するように、前記機体主部を支持するフレームの前記第1~第4象限のそれぞれに、前記フレームに設けられた回転軸によって配置された第1プロペラを回転させる命令と、
     前記第1象限における揚力が不足した場合、前記第1象限において、前記フレームに設けられた回転軸によって配置され、前記第1プロペラと同一回転方向の第2プロペラを回転させる命令と
     を含む一連の命令による処理をコンピュータに実行させることを特徴とする垂直離着陸可能飛行体の制御プログラム。
PCT/JP2017/024917 2016-11-04 2017-07-07 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム WO2018083839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/039804 WO2018084261A1 (ja) 2016-11-04 2017-11-02 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体
JP2018527263A JP6487607B2 (ja) 2016-11-04 2017-11-02 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体
US16/398,344 US10526066B2 (en) 2016-11-04 2019-04-30 Aircraft, controller and control method of aircraft, and recording medium storing computer software program for controlling aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226317 2016-11-04
JP2016226317 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018083839A1 true WO2018083839A1 (ja) 2018-05-11

Family

ID=62075941

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/024917 WO2018083839A1 (ja) 2016-11-04 2017-07-07 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム
PCT/JP2017/039804 WO2018084261A1 (ja) 2016-11-04 2017-11-02 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039804 WO2018084261A1 (ja) 2016-11-04 2017-11-02 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体

Country Status (3)

Country Link
US (1) US10526066B2 (ja)
JP (1) JP6487607B2 (ja)
WO (2) WO2018083839A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963027A (zh) * 2018-10-01 2020-04-07 丰田自动车株式会社 异常检测装置及控制装置
CN111634412A (zh) * 2020-05-27 2020-09-08 西安爱生技术集团公司 十六旋翼飞行器姿态双级容错控制方法
WO2022269309A1 (en) * 2021-06-20 2022-12-29 Norouzi Ramin Reconfiguring vertical takeoff and landing aircraft

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848623B (zh) 2015-05-29 2021-02-09 维里蒂工作室股份公司 飞行器
US10377483B2 (en) * 2016-03-01 2019-08-13 Amazon Technologies, Inc. Six degree of freedom aerial vehicle with offset propulsion mechanisms
CN106688175B (zh) * 2016-03-01 2020-08-04 深圳市大疆创新科技有限公司 电机的控制方法、装置及***
US10737798B2 (en) * 2016-09-12 2020-08-11 Ansel Misfeldt Integrated feedback to flight controller
EP3354559B1 (en) 2017-01-26 2019-04-03 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A thrust producing unit with at least two rotor assemblies and a shrouding
EP3661845B1 (en) * 2017-08-04 2024-04-10 Ideaforge Technology Pvt. Ltd. Single arm failure redundancy in a multi-rotor aerial vehicle with least rotors/propellers
ES2941535T3 (es) * 2017-09-19 2023-05-23 Ideaforge Tech Pvt Ltd Vehículo aéreo no tripulado de rotores reversibles coaxiales
US10513341B2 (en) * 2018-04-27 2019-12-24 Wing Aviation Llc Thrust allocation for aerial vehicle
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
KR20210006972A (ko) 2018-05-31 2021-01-19 조비 에어로, 인크. 전력 시스템 아키텍처 및 이를 이용한 내고장성 vtol 항공기
JP6653942B2 (ja) * 2018-06-25 2020-02-26 株式会社エアロネクスト 飛行体
WO2020021650A1 (ja) * 2018-07-25 2020-01-30 株式会社エアロネクスト プロペラ、モータ部品及びこれを備えた飛行体
CN109018328A (zh) * 2018-08-03 2018-12-18 广东电网有限责任公司 一种四轴八旋翼无人机及飞行装置
US11136118B2 (en) * 2018-08-30 2021-10-05 Amazon Technologies, Inc. Six degree of freedom aerial vehicle control methods responsive to motor out situations
US11565790B2 (en) * 2018-10-09 2023-01-31 United States Of America As Represented By The Administrator Of Nasa Low-noise multi-propeller system
JP6676846B1 (ja) * 2018-10-12 2020-04-08 株式会社プロドローン 無人航空機
US20200122832A1 (en) * 2018-10-18 2020-04-23 Stephen Morris Multicopter with improved cruising performance
JP2020093724A (ja) * 2018-12-14 2020-06-18 サイトテック株式会社 航空機
JP7273546B2 (ja) * 2019-03-12 2023-05-15 株式会社Subaru 航空機
WO2020191489A1 (en) * 2019-03-28 2020-10-01 10270725 Canada Corp. Multicopter helicopter and method of manufacture thereof
JP7137222B2 (ja) * 2019-12-19 2022-09-14 株式会社エアロネクスト プロペラ、モータ部品及びこれを備えた飛行体
US20210234448A1 (en) * 2020-01-27 2021-07-29 Honeywell International Inc. Two degree-of-freedom high tilt torque motor, system, and aerial vehicle incorporating the same
US11738862B2 (en) * 2020-01-28 2023-08-29 Overair, Inc. Fail-operational vtol aircraft
JP7226376B2 (ja) * 2020-03-10 2023-02-21 株式会社デンソー 異常診断システム
US11643219B1 (en) * 2020-06-29 2023-05-09 Amazon Technologies, Inc. Reconfigurable propulsion mechanisms of a multirotor aerial vehicle
KR102187063B1 (ko) * 2020-07-13 2020-12-04 김인헌 서브 로터가 구비되는 드론
CN112208759A (zh) * 2020-11-11 2021-01-12 福州大学 一种抗风扰可倾斜转子的八旋翼飞行器及控制方法
US11840351B2 (en) * 2021-04-05 2023-12-12 Beta Air, Llc Aircraft for self-neutralizing flight
US11299287B1 (en) 2021-06-29 2022-04-12 Beta Air, Llc Methods and systems for orienting a thrust propulsor in response to a failure event of a vertical take-off and landing aircraft
JP6990477B1 (ja) * 2021-09-14 2022-01-12 株式会社石川エナジーリサーチ 飛行装置
JP2023146695A (ja) * 2022-03-29 2023-10-12 株式会社石川エナジーリサーチ 飛行装置
DE102022110556A1 (de) 2022-04-29 2023-11-02 Rolls-Royce Deutschland Ltd & Co Kg Antriebssystem für ein Luftfahrzeug
JP7115800B1 (ja) * 2022-05-16 2022-08-09 アラセ・アイザワ・アエロスパシアル合同会社 無人航空機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062754A1 (en) * 2011-10-26 2014-03-06 Farrokh Mohamadi Remote detection, confirmation and detonation of buried improvised explosive devices
WO2015199535A1 (en) * 2014-06-23 2015-12-30 Kales Jolanda Jacoba Maria Drone, method and systems for airborne visualization
JP2016147565A (ja) * 2015-02-12 2016-08-18 株式会社amuse oneself 飛行体
JP2016524567A (ja) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ エフェクタに影響を与える故障を受けるマルチコプタの制御された飛行

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002712A (en) * 1957-02-01 1961-10-03 Beckwith Sterling Polycopter
JP2006051841A (ja) * 2004-08-09 2006-02-23 Ishikawajima Harima Heavy Ind Co Ltd 小型飛行装置
US7699260B2 (en) * 2005-01-14 2010-04-20 Hughey Electricopter Corporation Vertical takeoff and landing aircraft using a redundant array of independent rotors
WO2008147484A2 (en) * 2007-02-16 2008-12-04 Donald Orval Shaw Modular flying vehicle
US8646720B2 (en) * 2010-05-10 2014-02-11 Donald Orval Shaw Modular flight vehicle with wings
JP2010075568A (ja) * 2008-09-26 2010-04-08 Nikko:Kk ヘリコプタ玩具
JP2011046355A (ja) * 2009-08-28 2011-03-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 飛行体
US9388794B2 (en) * 2011-05-23 2016-07-12 Sky Windpower Corporation Flying electric generators with clean air rotors
JP2013189036A (ja) * 2012-03-12 2013-09-26 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 測定用飛行体
CN103921933A (zh) * 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
US9623967B2 (en) * 2014-02-01 2017-04-18 Aero Machining, LLC Tiltrotor unmanned aerial vehicle
JP2016032971A (ja) * 2014-07-31 2016-03-10 三菱重工業株式会社 垂直離着陸機
JP6229184B2 (ja) * 2014-09-22 2017-11-15 学校法人大阪産業大学 飛行体および飛行体の制御方法
JP6409503B2 (ja) 2014-10-29 2018-10-24 株式会社Soken 観測装置
JP6425969B2 (ja) * 2014-10-29 2018-11-21 ヤンマー株式会社 ヘリコプター
US10933996B2 (en) * 2015-08-03 2021-03-02 Lockheed Martin Corporation Release and capture of a fixed-wing aircraft
ES2925005T3 (es) * 2015-12-09 2022-10-13 Ideaforge Tech Pvt Ltd Vehículo aéreo multirrotor con redundancia para fallo de un solo brazo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062754A1 (en) * 2011-10-26 2014-03-06 Farrokh Mohamadi Remote detection, confirmation and detonation of buried improvised explosive devices
JP2016524567A (ja) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ エフェクタに影響を与える故障を受けるマルチコプタの制御された飛行
WO2015199535A1 (en) * 2014-06-23 2015-12-30 Kales Jolanda Jacoba Maria Drone, method and systems for airborne visualization
JP2016147565A (ja) * 2015-02-12 2016-08-18 株式会社amuse oneself 飛行体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963027A (zh) * 2018-10-01 2020-04-07 丰田自动车株式会社 异常检测装置及控制装置
CN110963027B (zh) * 2018-10-01 2023-10-13 丰田自动车株式会社 异常检测装置及控制装置
CN111634412A (zh) * 2020-05-27 2020-09-08 西安爱生技术集团公司 十六旋翼飞行器姿态双级容错控制方法
WO2022269309A1 (en) * 2021-06-20 2022-12-29 Norouzi Ramin Reconfiguring vertical takeoff and landing aircraft
GB2623016A (en) * 2021-06-20 2024-04-03 Norouzi Ramin Reconfiguring vertical takeoff and landing aircraft

Also Published As

Publication number Publication date
US10526066B2 (en) 2020-01-07
JP6487607B2 (ja) 2019-03-20
JPWO2018084261A1 (ja) 2018-11-01
US20190256191A1 (en) 2019-08-22
WO2018084261A1 (ja) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018083839A1 (ja) 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム
CN112041229B (zh) 飞行器和推进飞行器的方法
EP3424820B1 (en) Controlled flight of a multicopter experiencing a failure affecting an effector
JP2019084893A (ja) 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体
JP6557883B2 (ja) 飛行装置
JP6637698B2 (ja) 無人回転翼機及びプログラム
JP2014227155A (ja) 垂直離着陸飛行体の制御方法
JP6508331B2 (ja) 移動体
JP6536043B2 (ja) 飛行体
JPWO2015049798A1 (ja) 軽量小型飛行体
WO2017031945A1 (zh) 多轴载人飞行器
JP2017056934A (ja) 飛行装置
KR102245397B1 (ko) 다중회전익 무인비행체
KR102260716B1 (ko) 멀티콥터의 요잉 제어시스템
KR101835621B1 (ko) 교차 회전 블레이드를 장착한 멀티콥터
JP2020111076A (ja) スラスタ制御装置および姿勢制御装置
JP2022126563A (ja) ドローン
RU2021125658A (ru) Беспилотный летательный аппарат с движительной установкой и контроллером, способными выдержать столкновения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP