WO2018082181A1 - 一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用 - Google Patents

一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用 Download PDF

Info

Publication number
WO2018082181A1
WO2018082181A1 PCT/CN2016/113017 CN2016113017W WO2018082181A1 WO 2018082181 A1 WO2018082181 A1 WO 2018082181A1 CN 2016113017 W CN2016113017 W CN 2016113017W WO 2018082181 A1 WO2018082181 A1 WO 2018082181A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
group
polymer binder
polar polymer
strong polar
Prior art date
Application number
PCT/CN2016/113017
Other languages
English (en)
French (fr)
Inventor
宴成林
刘杰
钱涛
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2018082181A1 publication Critical patent/WO2018082181A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3804Polyhydroxy compounds
    • C08G18/3806Polyhydroxy compounds having chlorine and/or bromine atoms
    • C08G18/3808Polyhydroxy compounds having chlorine and/or bromine atoms having chlorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3804Polyhydroxy compounds
    • C08G18/3812Polyhydroxy compounds having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3838Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing cyano groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/384Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6423Polyalkylene polyamines; polyethylenimines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of polymer materials, and relates to a polymer binder, in particular to a strong polar polymer binder, a synthesis method and the application thereof in an electrode of an energy device, especially in a lithium battery electrode. application.
  • Lithium-sulfur batteries usually use a simple sulfur or sulfur-based composite material as a positive electrode active material, an ether solvent in which a lithium salt is dissolved as an electrolyte, and metallic lithium as a negative electrode material, and the theoretical energy density is 2600 wh ⁇ kg -1 , which is an energy.
  • the secondary battery with high density, environmental friendliness and low price is considered to be an important development direction of future power energy, and has broad application prospects and commercial value.
  • lithium-sulfur batteries have great advantages in many aspects, they also expose many disadvantages during the charge-discharge cycle: First, the conductivity of the sulfur monolith and the final product of the discharge lithium sulfide are very poor, which greatly affects Second, the intermediate product of the cycle is a polysulfide that is soluble in the electrolyte, which will transfer with the electrolyte between the positive and negative electrodes, resulting in low utilization of sulfur and poor cycle stability of the lithium-sulfur battery. At the same time, the volume expansion of sulfur during charging and discharging will make the active material easily fall off from the current collector and destroy the physical structure of the electrode. These problems have severely restricted the electrochemical performance of conventional lithium-sulfur batteries, resulting in the disadvantages of poor electrochemical stability and low capacity retention, which is difficult to meet the needs of commercial applications.
  • the uniform distribution of nano-sized sulfur in a porous conductive material can better maintain the stability and conductivity of the positive electrode structure, and effectively solve the problem of sulfur conductivity and battery structure instability;
  • the dissolution of the intermediate product has yet to be resolved.
  • due to the polarity of polysulfide during the cycle it is possible to reduce the amount of polar adsorbed polysulfide on the surface of the electrode by adding a polar substance to the electrode material during the preparation of the electrode. The shuttle effect caused by the diffusion of sulfide into the electrolyte.
  • the battery material binder is an indispensable additive for providing the adhesive force between the active material, the conductive additive and the current collector in the electrode preparation process, and can keep the lithium ion battery stable during charging and discharging. Sex and integrity, so the binder has a very important impact on the electrochemical performance of lithium-ion batteries.
  • Existing lithium-sulfur battery used for sticking Most of the cement is PVDF, but for the surface area of the lithium-sulfur battery cathode material is large and porous, the PVDF binder will cause the active material to fall off during the preparation of the pole piece, resulting in low utilization rate of sulfur active material and poor cycle.
  • the battery binder in the usual sense can not play a very good role in limiting the polysulfide, and the lithium-sulfur battery still has the problem of poor cycle performance.
  • the technical scheme adopted by the present invention is: a strong polar polymer binder having a chemical structural formula of:
  • the R 2 and R 3 independently of each other contain at least one polar group, and n is a positive integer.
  • R 1 is an aryl group, an alkyl group, an arylalkyl group or a cycloalkyl group.
  • the polar group is one or more selected from the group consisting of -NH 2 , -OH, -SO 3 H, -NO 2 , -CN, -F, -Cl, -Br, and -I.
  • it has a weight average molecular weight of from 1 ⁇ 10 4 to 2.0 ⁇ 10 5 .
  • the amine compound of 2- NH 2 or the alcohol compound of the formula HO-R 3 -OH is subjected to a polymerization reaction.
  • the isocyanate compound is selected from the group consisting of 1,3-benzene diisocyanate, 4,4'-biphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2, 4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, benzene dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 1, 2 - propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene di
  • the amine compound is In the above formula: R 4 is hydrogen or a chain or cyclic group containing at least one carbon atom; m is a positive integer.
  • m is a positive integer.
  • the method for preparing the above strong polar polymer binder comprises the steps of: (a) dissolving the isocyanate compound in a solvent and heating to break the isocyanate group; (b) An amine compound or the alcohol compound The substance is dissolved in a solvent, and then the product obtained in the step (a) and an initiator (such as a substance such as cellulose) are added thereto, and the mixture is heated to a viscosity.
  • an initiator such as a substance such as cellulose
  • step (b) further comprises (c) cooling the product obtained in the step (b), transferring it to a closed brown sample vial, and storing it under stirring.
  • the energy device electrode is a lithium sulfur battery positive electrode.
  • the above application comprises the following steps:
  • the positive active material is a mixture of a supporting carbon material and a sulfur powder;
  • the positive electrode slurry is coated on an aluminum foil current collector and dried.
  • the present invention has the following advantages compared with the prior art: the strong polar polymer binder of the invention has the characteristics of strong polarity and high cohesiveness, and has strong electrochemical polarity. It is capable of adsorbing polar polysulfide which is generated during the circulation of a lithium sulfur battery, and the battery of the pole piece prepared by using the binder has the characteristics of excellent cycle performance and high coulombic efficiency; the binder is environmentally friendly, and is resistant to lithium. A variety of positive active materials of sulfur batteries have good adhesion. Experiments have shown that the lithium-sulfur battery using the binder has a capacity retention rate of up to 91% after circulating 200 times at a current density of 0.5C.
  • Figure 1 is a NMR spectrum of the polymer binder of Example 1;
  • Example 2 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 1 and a lithium-sulfur battery fabricated using an existing binder;
  • FIG. 3 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 2 and a lithium-sulfur battery fabricated using an existing binder;
  • Example 4 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 3 and a lithium-sulfur battery fabricated using the existing binder;
  • Figure 5 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 4 and a lithium-sulfur battery fabricated using the existing binder;
  • Example 6 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 5 and a lithium-sulfur battery fabricated using the existing binder;
  • Figure 7 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 6 and a lithium-sulfur battery fabricated using an existing binder.
  • Figure 8 is a comparison diagram of electrochemical tests of a lithium-sulfur battery fabricated using the polymer binder of Example 7 and a lithium-sulfur battery fabricated using an existing binder.
  • the strong polar polymer binder of the invention has the chemical structure of the formula: n is a positive integer; the R 2 and R 3 independently contain at least one polar group; thus, the polymer binder has the characteristics of strong polarity, high adhesion, and strong electricity
  • the chemical polarity is capable of adsorbing polar polysulfides generated during the circulation of lithium-sulfur batteries, and the cells of the pole pieces prepared using the binder have excellent cycle performance and high coulombic efficiency.
  • the alcohol compound of the formula HO-R 3 -OH may be subjected to a polymerization reaction so that the active hydrogen contained in the amino group (amine compound) or the hydroxyl group (alcohol compound) is bonded to the N atom of the isocyanate compound isocyanate group. Further, an amine compound or other portion of the alcohol compound is bonded to the C atom of the isocyanate compound isocyanate group to form a polymer.
  • R 1 is can be selected from the existing groups, such as aryl, alkyl, aralkyl or cycloalkyl.
  • the alkyl group contains 3 to 12 carbon atoms (which may be branched or branched alkyl groups) such as trimethylene, tetramethylene, pentamethylene, hexamethylene, 1,2-propylene a group such as a group, a 2,3-butylene group, a dodecamethylene group, a 2,4,4-trimethylhexamethylene group;
  • At least one polar group independently contained in R 2 and R 3 is selected from the group consisting of -NH 2 , -OH, -SO 3 H, -NO 2 , -CN, -F, -Cl, -Br, and -I One or more of them.
  • R 2 and R 3 may independently of each other be an aromatic group, an alkyl group, an arylalkyl group or a cycloalkyl group having at least one polar group, such that the amine compound of H 2 NR 2 —NH 2 may be And other conventional materials (m is a positive integer of 1 to 10, R 5 is a polar group, it can be prepared by a substitution reaction on the two amines), or may be A more complex substance, R 4 is hydrogen or a chain or cyclic group containing at least one carbon atom.
  • the alcohol compound of the formula HO-R 3 -OH can be referred to the structural formula of the above conventional amine compound, or More complex substances.
  • the weight average molecular weight of the strongly polar polymer binder can be selected according to actual needs, or adjusted according to the reaction time of the above reaction, the reaction temperature, and the like.
  • the strongly polar polymer binder is usually used by dispersing in an organic solvent to form an emulsion (similar to the existing PVDF emulsion), so that it can be dispersed in an organic solvent to form a uniform emulsion and finally can be used for the electrode material. It is sufficient to bond; the weight average molecular weight of the strongly polar polymer binder is preferably from 1 ⁇ 10 4 to 2.0 ⁇ 10 5 .
  • the method for preparing the above-mentioned strong polar polymer binder comprises the steps of: (a) dissolving the isocyanate compound in a solvent and heating to break the isocyanate group; (b) The amine compound or the alcohol compound is dissolved in a solvent, and then the product obtained in the step (a) and the initiator (such as cellulose) are added thereto, and the temperature is raised (usually 90 to 150 ° C) to be thick.
  • the solvent is an organic solvent capable of dissolving the above reactants such as dimethylacetamide (DMAc) or N,N-dimethylformamide (DMF), and is preferably DMF.
  • an appropriate amount of a dispersing agent may be added to the dispersion system, and the amount and type of the dispersing agent are not particularly required, and it is intended to improve the dispersibility of the monomer without subsequent polymerization.
  • the reaction or the formed polymer has an adverse effect; in order to improve the stability of the monomer dispersion, a stabilizer may be added in an appropriate amount (the stabilizer is an epoxide), and the amount of addition is not particularly limited, and the dispersion can be stabilized. It also includes (c) cooling the product obtained in step (b), transferring it to a closed brown vial and storing it under agitation.
  • the energy device electrode is a lithium sulfur battery positive electrode.
  • the above application comprises the following steps: (1) a mixture of a positive electrode active material and a conductive agent (such as acetylene black, ketjen black, ultrafine carbon powder, conductive graphite, etc.). a solvent (a solvent such as dimethylacetamide (DMAc) or N,N-dimethylformamide (DMF)) is added thereto, and the strongly polar polymer dispersed by the solvent is added under constant stirring.
  • a solvent a solvent such as dimethylacetamide (DMAc) or N,N-dimethylformamide (DMF)
  • the positive active material is a mixture of a supporting carbon material (such as mesocarbon microbeads MCMB, artificial graphite or multi-walled carbon nanotubes MWCNT) and sulfur powder (2)
  • the positive electrode slurry is coated on an aluminum foil current collector and dried.
  • the above-mentioned strongly polar polymer binder is 5 to 20% by weight based on the electrode material (the total mass of the active material, the conductive agent and the binder).
  • the positive electrode active material and the conductive agent are added to the organic solvent, and stirred at a rate of 1000 to 2000 rpm for 0.5 to 2 hours at room temperature, and then the binder is added, and then at a rate of 500 to 2000 rpm.
  • the prepared positive electrode slurry was obtained after stirring for 2 hours.
  • the slurry is uniformly coated on a current collector (such as aluminum foil, copper foil, nickel foam, etc.), and dried at 50 to 80 ° C (5 to 24 hours), and cut into a certain size.
  • the pole piece (such as ⁇ 12mm) is dried in a vacuum environment of 70 ⁇ 100 ° C (5 ⁇ 24 hours).
  • This embodiment provides a strong polar polymer binder which is composed of (HDI, hexamethylene diisocyanate) and polymer (PEI, Aladdin reagent, CAS: 25987-06-8) hydrothermal polymerization at high temperature;
  • Figure 1 is a NMR spectrum of a synthetic polymer binder.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (C 6 H 8 O 3 N 2 S) hydrothermally polymerized at a high temperature, and the obtained polymer binder was a pale yellow mucilage.
  • the polymer molecule has a weight average molecular weight of about 87,000 as measured by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (C 6 H 7 N 3 O 2 ) hydrothermally polymerized at a high temperature; the resulting polymer binder was gray mucilage.
  • the polymer molecule had a weight average molecular weight of about 73,000 as measured by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (C 4 N 4 H 4 ) hydrothermally polymerized at high temperature; the resulting polymer binder is gray mucilage.
  • the polymer molecule was found to have a weight average molecular weight of about 57,000 by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (C 10 H 6 F 16 O 2 ) hydrothermally polymerized at a high temperature; the resulting polymer binder was a pale yellow mucus.
  • the polymer molecule has a weight average molecular weight of about 13,000 as measured by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (C 2 H 3 O 2 Cl 3 ) is hydrothermally polymerized at a high temperature; the resulting polymer binder is a milky white mucilage.
  • the polymer molecule had a weight average molecular weight of about 26,000 as measured by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is composed of HDI monomer and (Amylopectin) is hydrothermally polymerized at a high temperature; the resulting polymer binder is a milky white mucilage.
  • the polymer molecule has a weight average molecular weight of about 132,000 as measured by gel permeation chromatography (GPC).
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that it is formed by hydrothermal polymerization of trimethylene diisocyanate and PEI molecules at high temperature.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is tetramethylene diisocyanate.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is dodecyl diisocyanate.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is 2,3-butylene diisocyanate.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is 1,3-benzene diisocyanate.
  • the present invention provides a strong polar polymer binder, which is prepared in substantially the same manner as in Example 1, except that the reaction raw material is 4,4'-biphenyl diisocyanate.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is ⁇ , ⁇ '-diisocyanate-1,3-dimethyl group. benzene.
  • the embodiment of the invention provides a strong polar polymer binder, and the preparation method thereof is basically the same as that in the embodiment 1, except that the reaction raw material is 1,3-cyclopentane diisocyanate.
  • the polymers synthesized in Examples 1 to 15 were used as binders to prepare corresponding lithium-sulfur battery positive electrodes and lithium-sulfur batteries, respectively.
  • the specific implementation steps are as follows:
  • the 15 batteries prepared above were tested for constant current charge and discharge at room temperature on a Land battery tester with a cut-off voltage of 1.5 to 3.0 V, a test current of 0.5 C (837 mA/g), and a cycle number of 200 times.
  • the cycle performance map corresponds to Figures 2 to 7, respectively. 2 to 7, the novel polymer binder prepared by the method of the invention can greatly improve the cycle performance of the lithium-sulfur battery, and the corresponding lithium-sulfur battery is cycled 200 times at a current density of 0.5C.
  • the subsequent capacity retention ratios are listed in the table, which are higher than the 49% capacity retention ratio of the comparative lithium sulfur battery (PVDF binder), indicating the performance of the binder of the present invention in improving the cycle performance of the lithium sulfur battery. Very prominent, the specific data is shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用,它的化学结构通式为:本发明强极性聚合物粘结剂具有较强极性、高粘结性的特点,同时存在很强的电化学极性,能够吸附产生于锂硫电池循环过程中的极性的多硫化物,使用该粘结剂制备的极片的电池具有循环性能优异和库伦效率高的特点;该粘结剂绿色环保,对锂硫电池的多种正极活性物质具有良好的粘结性。实验表明,使用该粘结剂的锂硫电池在0.5C电流密度下循环200次后的容量保持率最高可达91%。

Description

一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用 技术领域
本发明属于高分子材料领域,涉及一种聚合物粘结剂,具体涉及一种强极性聚合物粘结剂、合成方法及其在能源器件电极中的应用,尤其是在锂电池电极中的应用。
背景技术
随着现代科技的蓬勃发展,人们对电子消费市场的关注越来越高,消费者对轻薄型电子产品诸如手机、平板电脑等移动电子设备的使用越来越频繁,使得这些电子产品的功耗不断增加;特别是近年来,电动汽车等电动交通工具的发展也对锂离子电池的能量密度提出了更高的要求。而传统的锂离子电池在能量密度方面已经难有大幅度的提高,在这种情况下,具有高理论容量和高能量密度的锂硫电池引起了人们的广泛关注。
锂硫电池通常以单质硫或硫基复合材料为正极活性材料、溶解有锂盐的醚类溶剂为电解液、金属锂作为负极材料,其理论能量密度为2600wh·kg-1,是一种能量密度高、环境友好而且价格低廉的二次电池,被认为是未来动力能源的重要发展方向,具有很广阔的应用前景和商业价值。虽然锂硫电池在许多方面都具有很大的优势,但其也在充放电循环过程中暴露了不少缺点:首先,硫单质和放电最终产物硫化锂的导电性都很差,大大的影响了电子的导出;其次,循环的中间产物是可溶于电解液的多硫化物,会随着电解液在正负极之间转移,导致了锂硫电池硫的利用率低和循环稳定性差等问题;同时,硫在充放电过程中的体积膨胀会使得活性材料容易从集流体上脱落,破坏了电极的物理结构。这些问题都严重制约了常规锂硫电池的电化学性能,导致电化学稳定性差和容量保持率低的缺点,难以满足商业化应用的需求。
目前,将纳米尺寸的硫均匀的分布于导电性好的多孔材料中已可以较好保持正极结构的稳定性和导电性,比较有效的解决了硫的导电性和电池结构的不稳定性问题;但是中间产物的溶出问题有待解决。事实上,由于循环过程中的多硫化物存在极性,所以可以在电极的制备过程中,通过在电极材料上添加极性物质达到极性吸附多硫化物在电极表面的形式,从而减少因多硫化物向电解液中的扩散而导致的穿梭效应。
另一方面,电池材料粘结剂是电极制备过程中提供活性物质、导电添加剂以及集流体之间的粘合力的必不可少的添加剂,可以使锂离子电池在充放电过程中保持电极的稳定性和完整性,所以粘结剂对锂离子电池电化学性能具有非常重要的影响。现有的锂硫电池使用的粘 结剂大多数为PVDF,但对于锂硫电池正极材料表面积大且多孔的特点,PVDF粘结剂会导致极片制备程中活性物质脱落,导致硫活性物质利用率低,循环差。同时,通常意义下的电池粘结剂不能对多硫化物起到很好的限制作用,锂硫电池依然存在循环性能差的问题。
发明内容
本发明目的是为了克服现有技术的不足而提供一种强极性聚合物粘结剂。
为达到上述目的,本发明采用的技术方案是:一种强极性聚合物粘结剂,它的化学结构通式为:
Figure PCTCN2016113017-appb-000001
所述R2和R3相互独立地含有至少一个极性基团,n为正整数。
优化地,所述R1为芳香基、烷基、芳烷基或环烷基。
优化地,所述极性基团为选自-NH2、-OH、-SO3H、-NO2、-CN、-F、-Cl、-Br和-I中的一种或多种。
优化地,它的重均分子量为1×104~2.0×105
本发明的又一目的在于提供一种上述强极性聚合物粘结剂的制备方法,通过将通式为O=C=N-R1-N=C=O的异氰酸酯化合物与通式为H2N-R2-NH2的胺类化合物或者通式为HO-R3-OH的醇类化合物进行聚合反应。
优化地,所述异氰酸酯化合物为选自1,3-苯二异氰酸酯、4,4’-联苯二异氰酸酯、1,4-苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4’-甲苯胺二异氰酸酯、2,4,6-三异氰酸酯甲苯、1,3,5-三异氰酸酯苯、联茴香胺二异氰酸酯、4,4’-二苯基醚二异氰酸酯、苯二亚甲基二异氰酸酯、三亚甲基二异氰酸酯、四亚甲基二异氰酸酯、五亚甲基二异氰酸酯、六亚甲基二异氰酸酯、1,2-亚丙基二异氰酸酯、2,3-亚丁基二异氰酸酯、1,3-亚丁基二异氰酸酯、十二亚甲基二异氰酸酯、2,4,4-三甲基六亚甲基二异氰酸酯、ω,ω’-二异氰酸酯-1,3-二甲基苯、ω,ω’-二异氰酸酯-1,4-二甲基苯、ω,ω’-二异氰酸酯-1,4-二乙苯、1,4-四甲基苯二亚甲基二异氰酸酯、1,3-四甲基苯二亚甲基二异氰酸酯、1,3-环戊烷二异氰酸酯、1,3-环己烷二异氰酸酯、1,4-环戊烷二异氰酸酯、甲基-2,4-环戊烷二异氰酸酯、甲基-2,6-环戊烷二异氰酸酯、4,4’-亚甲基双环己基异氰酸酯,1,4-双异氰酸酯甲基环己烷中的一种或多种组成的混合物。
优化地,所述胺类化合物为
Figure PCTCN2016113017-appb-000002
Figure PCTCN2016113017-appb-000003
Figure PCTCN2016113017-appb-000004
上述化学式中:R4为氢,或包含有至少一个碳原子的链状或环状基团;m为正整数。
优化地,所述醇类化合物为
Figure PCTCN2016113017-appb-000005
Figure PCTCN2016113017-appb-000006
上述化学式中:m为正整数。
优化地,上述强极性聚合物粘结剂的制备方法,包括以下步骤:(a)将所述异氰酸酯化合物溶于溶剂中,加热使其异腈酸基团发生断键;(b)将所述胺类化合物或者所述醇类化合 物溶于溶剂中,随后向其中加入步骤(a)得到的产物以及引发剂(如纤维素等物质),升温反应至粘稠。
进一步地,它还包括(c)将步骤(b)得到的产物降温后转移至密闭的棕色样品瓶,在搅拌条件下保存。
本发明的又一目的在于提供一种上述强极性聚合物粘结剂作为粘结剂在能源器件电极中的应用。
所述能源器件电极为锂硫电池正极,优选地,上述应用包括以下步骤:
(1)向正极活性材料和导电剂的混合物中加入溶剂,在不断搅拌的条件下加入用所述溶剂分散的所述强极性聚合物粘结剂,搅匀后形成正极浆料;所述正极活性材料为支撑碳材料与硫粉的混合物;(2)将所述正极浆料涂布在铝箔集流体上,烘干即可。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明强极性聚合物粘结剂具有较强极性、高粘结性的特点,同时存在很强的电化学极性,能够吸附产生于锂硫电池循环过程中的极性的多硫化物,使用该粘结剂制备的极片的电池具有循环性能优异和库伦效率高的特点;该粘结剂绿色环保,对锂硫电池的多种正极活性物质具有良好的粘结性。实验表明,使用该粘结剂的锂硫电池在0.5C电流密度下循环200次后的容量保持率最高可达91%。
附图说明
附图1为实施例1中聚合物粘结剂的核磁谱图;
附图2为用实施例1中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图;
附图3为用实施例2中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图;
附图4为用实施例3中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图;
附图5为用实施例4中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图;
附图6为用实施例5中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图;
附图7为用实施例6中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图。
附图8为用实施例7中聚合物粘结剂制作的锂硫电池与利用现有粘结剂制作的锂硫电池电化学测试对比图。
具体实施方式
本发明强极性聚合物粘结剂,它的化学结构通式为:
Figure PCTCN2016113017-appb-000007
Figure PCTCN2016113017-appb-000008
n为正整数;所述R2和R3相互独立地含有至少一个极性基团;这样使得该聚合物粘结剂具有较强极性、高粘结性的特点,同时存在很强的电化学极性,能够吸附产生于锂硫电池循环过程中的极性的多硫化物,使用该粘结剂制备的极片的电池具有循环性能优异和库伦效率高的特点。
上述的强极性聚合物粘结剂的制备方法:通过将通式为O=C=N-R1-N=C=O的异氰酸酯化合物与通式为H2N-R2-NH2的胺类化合物或者通式为HO-R3-OH的醇类化合物进行聚合反应即可,使得氨基(胺类化合物的)或羟基(醇类化合物的)含有的活泼氢接到异氰酸酯化合物异氰酸基的N原子上,而胺类化合物或醇类化合物的其它部分接到异氰酸酯化合物异氰酸基的C原子上形成高分子聚合物。
上述通式中,R1可以从现有的基团中选取,如芳香基、烷基、芳烷基或环烷基。烷基中包含3~12个碳原子(可以是支链或者具有支链的烷基),如三亚甲基、四亚甲基、五亚甲基、六亚甲基、1,2-亚丙基、2,3-亚丁基、十二亚甲基、2,4,4-三甲基六亚甲基等基团;芳香基包含
Figure PCTCN2016113017-appb-000009
等;芳烷基包含
Figure PCTCN2016113017-appb-000010
等;即通式为O=C=N-R1-N=C=O的异氰酸酯化合物可选自芳香族多异氰酸酯(例如1,3-苯二异氰酸酯、4,4’-联苯二异氰酸酯、1,4-苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4’-甲苯胺二异氰酸酯、2,4,6-三异氰酸酯甲苯、1,3,5-三异氰酸酯苯、联茴香胺二异氰酸酯、4,4’-二苯基醚二异氰酸酯、苯二亚甲基二异氰酸酯等)、脂肪族多异氰酸酯(例如三亚甲基二异氰酸酯、四亚甲基二异氰酸酯、五亚甲基二异氰酸酯、六亚甲基二异氰酸酯、1,2-亚丙基二异氰酸酯、2,3-亚丁基二异氰酸酯、1,3-亚丁基二异氰酸酯、十二亚甲基二异氰酸酯、2,4,4-三甲基六亚甲基二异氰酸酯等)、芳香脂肪族多异氰酸酯(例如 ω,ω’-二异氰酸酯-1,3-二甲基苯、ω,ω’-二异氰酸酯-1,4-二甲基苯、ω,ω’-二异氰酸酯-1,4-二乙苯、1,4-四甲基苯二亚甲基二异氰酸酯、1,3-四甲基苯二亚甲基二异氰酸酯、4,4-亚甲基二(2,6-二乙基苯基异氰酸酯)等)和脂环族多异氰酸酯(例如1,3-环戊烷二异氰酸酯、1,3-环己烷二异氰酸酯、1,4-环戊烷二异氰酸酯、甲基-2,4-环戊烷二异氰酸酯、甲基-2,6-环戊烷二异氰酸酯、4,4’-亚甲基双环己基异氰酸酯,1,4-双异氰酸酯甲基环己烷等)中的一种或多种组成的混合物。
而R2和R3中相互独立含有的至少一个极性基团为选自-NH2、-OH、-SO3H、-NO2、-CN、-F、-Cl、-Br和-I中的一种或多种。R2和R3可以相互独立地为含有至少一个极性基团的芳香基、烷基、芳烷基或环烷基,这样H2N-R2-NH2的胺类化合物可以为
Figure PCTCN2016113017-appb-000011
Figure PCTCN2016113017-appb-000012
等常规的物质(m为1~10的正整数,R5为极性基团,它可以通过在二胺类化合物上进行取代反应制得),也可以为
Figure PCTCN2016113017-appb-000013
Figure PCTCN2016113017-appb-000014
等较为复杂的物质,R4为氢或包含有至少一个碳原子的链状或环状基团。通式为HO-R3-OH的醇类化合物可以参考上述常规胺类化合物的结 构式,也可以为
Figure PCTCN2016113017-appb-000015
Figure PCTCN2016113017-appb-000016
Figure PCTCN2016113017-appb-000017
等较为复杂的物质。
该强极性聚合物粘结剂的重均分子量可以根据实际需要进行选择,或者根据上述反应的反应时间长短、反应温度等进行调节。该强极性聚合物粘结剂通常被分散在有机溶剂中形成乳液而使用(类似于现有的PVDF乳液),因此只要能够被分散在有机溶剂中形成均一的乳液并最终能对电极材料进行粘结即可;该强极性聚合物粘结剂的重均分子量优选为1×104~2.0×105
优选地,上述强极性聚合物粘结剂的制备方法,包括以下步骤:(a)将所述异氰酸酯化合物溶于溶剂中,加热使其异腈酸基团发生断键;(b)将所述胺类化合物或者所述醇类化合物溶于溶剂中,随后向其中加入步骤(a)得到的产物以及引发剂(如纤维素等物质),升温反应(通常是90~150℃)至粘稠。所述溶剂为二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)等能够溶解上述反应物的有机溶剂,优选为DMF。为了提高各单体在溶剂中的分散性,可向分散体系加入适量的分散剂,分散剂的加入量和类型均无特别要求,旨在能提高单体的分散性且不会对随后的聚合反应或者形成的聚合物产生不利的影响;为了提高单体分散液的稳定性,可以适量加入稳定剂(稳定剂为环氧化物),加入量无特别限制,能稳定分散液即可。它还包括(c)将步骤(b)得到的产物降温后转移至密闭的棕色样品瓶,在搅拌条件下保存。
本发明的又一目的在于提供一种上述强极性聚合物粘结剂作为粘结剂在能源器件电极中 的应用。所述能源器件电极为锂硫电池正极,优选地,上述应用包括以下步骤:(1)向正极活性材料和导电剂(如乙炔黑、科琴黑、超细碳粉、导电石墨等)的混合物中加入溶剂(二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)等溶剂),在不断搅拌的条件下加入用所述溶剂分散的所述强极性聚合物粘结剂,搅匀后形成正极浆料;所述正极活性材料为支撑碳材料(如中间相碳微球MCMB、人造石墨或多壁碳纳米管MWCNT等任一种碳材料)与硫粉的混合物;(2)将所述正极浆料涂布在铝箔集流体上,烘干即可。上述强极性聚合物粘结剂在电极材料(为活性物质、导电剂和粘结剂的总质量)中的重量百分比为5~20%。步骤(1)中,将正极活性物质和导电剂加入有机溶剂中,在室温下以1000~2000r/min的速度搅拌0.5~2小时后,加入粘结剂,再以500~2000r/min的速度搅拌2小时后得到制备好的正极浆料。步骤(2)中,将所述浆料均匀涂布于集流体(如铝箔、铜箔、泡沫镍等)上,在50~80℃下烘干后(5~24小时),剪裁成一定尺寸的极片(如□12mm),在70~100℃真空环境下烘干(5~24小时)。
下面将结合附图实施例对本发明进行进一步说明。
实施例1
本实施例提供一种强极性聚合物粘结剂,它由
Figure PCTCN2016113017-appb-000018
(HDI,六亚甲基二异氰酸酯)和高分子
Figure PCTCN2016113017-appb-000019
(PEI,阿拉丁试剂、CAS:25987-06-8)在高温下水热聚合;
具体实施步骤如下:
(a)取5g的HDI单体,充分分散于40ml DMF中,并加入0.1g环氧乙烷作为稳定剂,加热至120℃冷凝回流,反应1小时,使得HDI单体上的C=N断键;
(b)将分散有5g PEI的40ml DMF溶液移入100ml反应釜中,并随即加入步骤(a)中的上述溶液;再加入0.1g纤维素,混合均匀,加热至120℃高温反应2小时;
(c)降至室温,转移至100ml棕色样品瓶中,密封后,不停匀速搅拌保存;所得聚合物粘结剂为呈乳白的粘液;通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为41000。
图1是合成的聚合物粘结剂核磁谱图,在δ=163.58ppm和159.45ppm处的共振信号分别为N-CH=O和N=C-OH,表明氨基和异氰酸酯基发生聚合。
实施例2
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000020
(C6H8O3N2S)在高温下水热聚合,所得聚合物粘结剂呈淡黄色粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约87000。
实施例3
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000021
(C6H7N3O2)在高温下水热聚合;所得聚合物粘结剂呈灰色粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为73000。
实施例4
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000022
(C4N4H4)在高温下水热聚合;所得聚合物粘结剂呈灰色粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为57000。
实施例5
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000023
(C10H6F16O2)在高温下水热聚合;所得聚合物粘结剂呈淡黄粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为13000。
实施例6
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000024
(C2H3O2Cl3)在高温下水热聚合而成;所得聚合物粘结剂呈乳白粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为26000。
实施例7
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由HDI单体和
Figure PCTCN2016113017-appb-000025
(支链淀粉)在高温下水热聚合而成;所得聚合物粘结剂呈乳白粘液。通过凝胶渗透色谱法(GPC),测得聚合物分子的重均分子量约为132000。
实施例8
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是:它由三亚甲基二异氰酸酯和PEI分子在高温下水热聚合而成。
实施例9
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为四亚甲基二异氰酸酯。
实施例10
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为十二亚甲基二异氰酸酯。
实施例11
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为2,3-亚丁基二异氰酸酯。
实施例12
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为1,3-苯二异氰酸酯。
实施例13
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为4,4’-联苯二异氰酸酯。
实施例14
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为ω,ω’-二异氰酸酯-1,3-二甲基苯。
实施例15
本发明实施例提供一种强极性聚合物粘结剂,其制备方法与实施例1中的基本一致,不同的是其反应原料为1,3-环戊烷二异氰酸酯。
实验例16
将实施例1至实施例15中合成的聚合物作为粘结剂分别制作对应的锂硫电池正极和锂硫电池,具体实施步骤如下:
(1)将7g的中间相碳微球(MCBC)与商业硫粉的球磨混合物(其中,MCBC与硫粉的质量比为3∶7)和2g的乙炔黑加入0.1ml的DMF中,在室温下以1500r/min的速度搅拌1小时;随后分别加入1g的实施例1至实施例15中的粘结剂、现有的PVDF粘结剂,再以1000r/min的速度搅拌2小时后得到制备好的浆料(即制得对应于实施例1至实施例15的15份样品以及PVDF对比试样,合计16份样品);
(2)将所述浆料均匀涂布于铝箔上,60℃下烘干12小时后,剪裁成
Figure PCTCN2016113017-appb-000026
的极片,在80℃真空环境下烘干12小时;
(3)将制备得到的正极、金属锂负极、隔膜(celgard 2400)以及电解液(含有1mol/L的LiTFSI的DOL(1,3二氧戊环)与DME(乙二醇二甲醚)混合溶液,DOL与DME的体积比为1∶1)在水含量小于1ppm的氩气手套箱中组装成扣式电池(共20个电池,对应于步骤(1)中的20份样品)。
将上述制得的15个电池在Land电池测试仪上进行室温下的恒电流充放电测试,截止电压为1.5~3.0V,测试电流为0.5C(837mA/g),循环次数为200次,其循环性能图分别对应图2至图7。由图2~图7可知,采用本发明所述方法制备的新型聚合物粘结剂可使得锂硫电池的循环性能有大幅度的提高,对应的锂硫电池在0.5C电流密度下循环200次后的容量保持率在表格中列出,均高于对比例锂硫电池(PVDF粘结剂)49%的容量保持率,表明本发明所述粘结剂在改善锂硫电池循环性能方面的性能非常突出,具体数据见表1。
表1实施例1至实施例15中合成的聚合物作为粘结剂的锂硫电池的测试数据
Figure PCTCN2016113017-appb-000027
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (14)

  1. 一种强极性聚合物粘结剂,其特征在于,所述强极性聚合物粘结剂的通式为:
    Figure PCTCN2016113017-appb-100001
    其中,R1为芳香基、烷基、芳烷基或环烷基;
    R2和R3相互独立地含有至少一个极性基团;
    n为正整数。
  2. 根据权利要求1所述的强极性聚合物粘结剂,其特征在于:所述极性基团为选自-NH2、-OH、-SO3H、-NO2、-CN、-F、-Cl、-Br和-I中的一种或多种的组合。
  3. 根据权利要求1所述的强极性聚合物粘结剂,其特征在于:所述强极性聚合物粘结剂的重均分子量为1×104~2.0×105
  4. 一种强极性聚合物粘结剂的制备方法,其特征在于,包括如下步骤:将通式为O=C=N-R1-N=C=O的异氰酸酯化合物与通式为H2N-R2-NH2的胺类化合物进行聚合反应,制得通式为
    Figure PCTCN2016113017-appb-100002
    的所述强极性聚合物粘结剂;
    其中,R1为芳香基、烷基、芳烷基或环烷基;
    R2和R3相互独立地含有至少一个极性基团;
    n为正整数。
  5. 根据权利要求4所述的强极性聚合物粘结剂的制备方法,其特征在于:所述胺类化合物为
    Figure PCTCN2016113017-appb-100003
    Figure PCTCN2016113017-appb-100004
    Figure PCTCN2016113017-appb-100005
    其中,R4为氢或包含有至少一个碳原子的链状或环状基团;
    m为正整数。
  6. 根据权利要求4所述的强极性聚合物粘结剂的制备方法,其特征在于,依次包括如下步骤:
    (a)将所述异氰酸酯化合物溶于溶剂中,加热使其异腈酸基团发生断键;
    (b)将所述胺类化合物溶于溶剂中,随后向其中加入步骤(a)所得的溶液、引发剂,升温反应至粘稠。
  7. 根据权利要求6所述的强极性聚合物粘结剂的制备方法,其特征在于,还包括如下步骤:
    (c)将步骤(b)得到的产物降温后转移至密闭的棕色样品瓶,在搅拌条件下保存。
  8. 一种强极性聚合物粘结剂的制备方法,其特征在于,包括如下步骤:将通式为O=C=N-R1-N=C=O的异氰酸酯化合物与通式为HO-R3-OH的醇类化合物进行聚合反应,制得通式为
    Figure PCTCN2016113017-appb-100006
    的所述强极性聚合物粘结剂;
    其中,R1为芳香基、烷基、芳烷基或环烷基;
    R2和R3相互独立地含有至少一个极性基团;
    n为正整数。。
  9. 根据权利要求8所述的强极性聚合物粘结剂的制备方法,其特征在于:所述醇类化合物为
    Figure PCTCN2016113017-appb-100007
    Figure PCTCN2016113017-appb-100008
    其中,m为正整数。
  10. 根据权利要求8所述的强极性聚合物粘结剂的制备方法,其特征在于,依次包括以下步骤:
    (a)将所述异氰酸酯化合物溶于溶剂中,加热使其异腈酸基团发生断键;
    (b)将所述醇类化合物溶于溶剂中,随后向其中加入步骤(a)所得的溶剂、引发剂,升温反应至粘稠。
  11. 根据权利要求10所述强极性聚合物粘结剂的制备方法,其特征在于,还包括如下步骤:
    (c)将步骤(b)得到的产物降温后转移至密闭的棕色样品瓶,在搅拌条件下保存。
  12. 根据权利要求4或8所述的强极性聚合物粘结剂的制备方法,其特征在于:所述异氰酸酯化合物为选自1,3-苯二异氰酸酯、4,4’-联苯二异氰酸酯、1,4-苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4’-甲苯胺二异氰酸酯、2,4,6-三异氰酸酯甲苯、1,3,5-三异氰酸酯苯、联茴香胺二异氰酸酯、4,4’-二苯基醚二异氰酸酯、苯二亚甲基二异氰酸酯、三亚甲基二异氰酸酯、四亚甲基二异氰酸酯、五亚甲基二异氰酸酯、六亚甲基二异氰酸酯、1,2-亚丙基二异氰酸酯、2,3-亚丁基二异氰酸酯、1,3-亚丁基二异氰酸酯、十二亚甲基二异氰酸酯、2,4,4-三甲基六亚甲基二异氰酸酯、ω,ω’-二异氰酸酯-1,3-二甲基苯、ω,ω’-二异氰酸酯-1,4-二甲基苯、ω,ω’-二异氰酸酯-1,4-二乙苯、1,4-四甲基苯二亚甲基二异氰酸酯、1,3-四甲基苯二亚甲基二异氰酸酯、1,3-环戊烷二异氰酸酯、1,3-环己烷二异氰酸酯、1,4-环戊烷二异氰酸酯、甲基-2,4-环戊烷二异氰酸酯、甲基-2,6-环戊烷二异氰酸酯、4,4’-亚甲基双环己基异氰酸酯和1,4-双异氰酸酯甲基环己烷中的一种或多种组成的混合物。
  13. 权利要求1至3中任一所述的强极性聚合物粘结剂作为粘结剂在能源器件电极中的应用。
  14. 根据权利要求13所述的强极性聚合物粘结剂的应用,所述能源器件电极为锂硫电池正极,其特征在于,包括以下步骤:
    (1)向正极活性材料和导电剂的混合物中加入溶剂,在不断搅拌的条件下加入用所述溶剂分散的所述强极性聚合物粘结剂,搅匀后形成正极浆料;所述正极活性材料为支撑碳材料与硫粉的混合物;
    (2)将所述正极浆料涂布在铝箔集流体上,烘干即可。
PCT/CN2016/113017 2016-11-07 2016-12-29 一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用 WO2018082181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610971296.0A CN106700013B (zh) 2016-11-07 2016-11-07 一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用
CN201610971296.0 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018082181A1 true WO2018082181A1 (zh) 2018-05-11

Family

ID=58940723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113017 WO2018082181A1 (zh) 2016-11-07 2016-12-29 一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用

Country Status (2)

Country Link
CN (1) CN106700013B (zh)
WO (1) WO2018082181A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828520A (zh) * 2019-11-15 2020-02-21 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板和显示装置
CN114300682A (zh) * 2021-11-29 2022-04-08 浙江清华柔性电子技术研究院 一种自修复阻燃粘结剂及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863534A (zh) * 2017-10-20 2018-03-30 电子科技大学 一种应用于锂硫电池的极性粘接剂及其制备方法
CN110144033A (zh) * 2019-04-25 2019-08-20 合肥国轩高科动力能源有限公司 水性聚氨酯粘结剂的制备方法及包括该粘结剂的锂离子电池正极浆料
CN113130897B (zh) * 2020-01-14 2022-10-21 深圳市优宝新材料科技有限公司 水系粘结剂及其制备方法和应用
CN111704708B (zh) * 2020-06-08 2022-06-03 广州市乐基智能科技有限公司 一种交联型聚氨酯粘结剂的制备方法及其在锂电池领域的应用
CN113889622B (zh) * 2020-07-01 2023-07-11 比亚迪股份有限公司 粘结剂、负极和锂离子电池
CN112011026B (zh) * 2020-08-21 2021-05-07 华南农业大学 一种桐油基锂硫电池正极粘结剂、锂硫电池正极及其制备方法
CN117996078A (zh) * 2022-10-27 2024-05-07 深圳市研一新材料有限责任公司 一种电池粘结剂及其制备方法和锂离子电池
CN116589649B (zh) * 2023-07-14 2023-12-22 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271757A (zh) * 1999-04-26 2000-11-01 日本聚氨酯工业株式会社 层压用粘合剂
US20060149020A1 (en) * 2003-04-21 2006-07-06 Eduard Mayer Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness
CN101007933A (zh) * 2006-01-27 2007-08-01 三星Sdi株式会社 聚氨酯粘合剂及包含它的电极以及采用该电极的锂电池
CN103305176A (zh) * 2013-06-20 2013-09-18 江苏华大新材料有限公司 Eva泡沫材料和pu薄膜贴合用粘合剂及其制备方法和用途
CN105161720A (zh) * 2015-09-22 2015-12-16 安徽大学 一种基于水性聚氨酯粘结剂的锂离子电池正极浆料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698613A (en) * 1995-02-21 1997-12-16 Mancuso Chemicals Limited Chemical binder
CN104293158B (zh) * 2014-10-17 2017-06-16 上海理工大学 制备含氟聚氨酯涂料的方法以及含氟聚氨酯防腐涂料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271757A (zh) * 1999-04-26 2000-11-01 日本聚氨酯工业株式会社 层压用粘合剂
US20060149020A1 (en) * 2003-04-21 2006-07-06 Eduard Mayer Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness
CN101007933A (zh) * 2006-01-27 2007-08-01 三星Sdi株式会社 聚氨酯粘合剂及包含它的电极以及采用该电极的锂电池
CN103305176A (zh) * 2013-06-20 2013-09-18 江苏华大新材料有限公司 Eva泡沫材料和pu薄膜贴合用粘合剂及其制备方法和用途
CN105161720A (zh) * 2015-09-22 2015-12-16 安徽大学 一种基于水性聚氨酯粘结剂的锂离子电池正极浆料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828520A (zh) * 2019-11-15 2020-02-21 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板和显示装置
CN114300682A (zh) * 2021-11-29 2022-04-08 浙江清华柔性电子技术研究院 一种自修复阻燃粘结剂及其制备方法和应用
CN114300682B (zh) * 2021-11-29 2024-03-08 浙江清华柔性电子技术研究院 一种自修复阻燃粘结剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106700013A (zh) 2017-05-24
CN106700013B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2018082181A1 (zh) 一种强极性聚合物粘结剂、合成方法及其在锂电池中的应用
CN109888380B (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
CN101577323B (zh) 一种二次锂硫电池硫基正极及其制备方法
Shetti et al. Nanostructured organic and inorganic materials for Li-ion batteries: A review
US11201331B2 (en) Positive electrode material for lithium-sulfur battery, preparation method therefor, and applications thereof
CN110071289B (zh) 一种锂离子电池硅基负极复合粘结剂及其制备方法和应用
Li et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries
US20190140255A1 (en) Silicon Based Electrode Formulations for Lithium-ion Batteries and Method for Obtaining It
WO2021012423A1 (zh) 一种有机无机复合固态电解质及其制备方法和应用
Chu et al. A robust polymeric binder based on complementary multiple hydrogen bonds in lithium-sulfur batteries
CN110336037B (zh) 一种用于锂离子电池负极材料的水系粘结剂及其制备方法
CN108461729B (zh) 一种碲硫复合碳材料及其制备方法与应用
CN103682295B (zh) 一种锂离子电池负极材料及其制备方法、锂离子电池负极片和锂离子电池
CN101162773A (zh) 电池正极片的制作方法及制作的正极片以及锂离子电池
WO2018232863A1 (zh) 一种锂硫电池电解液及其制备方法
CN111554889A (zh) 一种聚酰亚胺/MXene复合材料及其制备和应用
CN110627997A (zh) 锂离子电池用热塑性聚氨酯粘结剂及其制备方法和应用
CN114695974A (zh) 低温水系离子电池电解液及其在水系离子电池中的应用
CN117546310A (zh) 全固态电池用正极和包含其的全固态电池
CN111647345A (zh) 一种锂离子电池负极聚合物保护涂层及其制备方法、应用
Zhang et al. Poly (arylamine-imide) s Cathode Materials for Lithium-Ion Batteries with High Average Voltage and Long Cycle Life
CN111518279B (zh) 一种基于芳香族二硫键的聚硅氧烷及其应用
CN101794884A (zh) 用于组成锂离子电池负极的部分水解聚丙烯酰胺粘结剂
CN106684379B (zh) 合成具有超高大倍率充放电性能的超薄纳米片状LiFePO4的方法
CN108666532A (zh) 锂离子电池阳极的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920817

Country of ref document: EP

Kind code of ref document: A1