WO2018079494A1 - Fluid treatment method and fluid treatment device - Google Patents

Fluid treatment method and fluid treatment device Download PDF

Info

Publication number
WO2018079494A1
WO2018079494A1 PCT/JP2017/038207 JP2017038207W WO2018079494A1 WO 2018079494 A1 WO2018079494 A1 WO 2018079494A1 JP 2017038207 W JP2017038207 W JP 2017038207W WO 2018079494 A1 WO2018079494 A1 WO 2018079494A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
etching
film
wafer
Prior art date
Application number
PCT/JP2017/038207
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 藤本
一樹 小佐井
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2018547659A priority Critical patent/JP6755962B2/en
Publication of WO2018079494A1 publication Critical patent/WO2018079494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a liquid processing method and a liquid processing apparatus for flattening a film formed on a substrate.
  • a thin film such as an oxide film or a nitride film is formed as an insulating film on the surface of a semiconductor wafer to be processed (hereinafter simply referred to as “wafer”).
  • Chemical vapor deposition (CVD) or the like is widely used as a method for forming this thin film.
  • the thickness of the thin film at the peripheral edge of the wafer may be larger than the thickness of the thin film at the central portion, and the thin film may be formed in a bowl shape as a whole.
  • Such a thin film having a non-uniform film thickness causes various problems. For example, when a contact hole is formed in the thin film, the diameter of the contact hole varies and the product yield may decrease.
  • Patent Document 1 discloses a technique of supplying a treatment liquid to a bowl-shaped film and etching the film flatly.
  • Patent Document 1 it is not easy to etch the outer peripheral portion of the mortar-shaped film by a desired amount with the treatment liquid and flatten the entire film with high accuracy. Thus, further improvement has been required in order to accurately form a flat film over the entire substrate.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a liquid processing method and a liquid processing apparatus capable of forming a flat film on a substrate with high accuracy.
  • One embodiment of the present invention is a liquid processing method for etching an etchant by supplying an etchant to a substrate having a thicker outer peripheral film than the central film, and is formed on the outer peripheral part while rotating the substrate.
  • the etching solution is supplied to a film thicker than the central portion, and an etching inhibitor solution that inhibits etching of the film by the etching solution is supplied to the center side of the substrate from the position where the etching solution is supplied to etch the outer peripheral portion film.
  • the present invention relates to a liquid processing method comprising: a first step; and a second step of supplying an etching solution to a rotating substrate and etching to a preset film thickness after the first step.
  • Another aspect of the present invention is a liquid processing apparatus that etches a film by supplying an etching liquid to a substrate having a thicker outer peripheral film than the central film, and a substrate holding unit that rotatably holds the substrate
  • a rotation mechanism that rotates the substrate holding unit, a liquid supply mechanism that supplies a liquid to a film formed on the substrate held by the substrate holding unit, and a controller that controls at least the liquid supply mechanism.
  • a first step of etching the film after the first step, a second step of etching a rotating substrate to a thickness that is set in advance by supplying an etching liquid to a liquid processing apparatus for performing.
  • a flat film can be accurately formed on a substrate.
  • FIG. 1 is a conceptual diagram showing an outline of a configuration of a liquid processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a graph conceptually showing an example of the relationship between the horizontal position and the thickness of the wafer to be processed.
  • FIG. 3 is a flowchart showing an example of the liquid processing method.
  • FIG. 4 is a conceptual diagram showing an example of the arrangement relationship when the first liquid discharge nozzle and the wafer are viewed from the side.
  • FIG. 5 is a conceptual diagram showing an example of the arrangement relationship when the first liquid discharge nozzle and the wafer are viewed from above.
  • FIG. 1 is a conceptual diagram showing an outline of a configuration of a liquid processing apparatus 100 according to an embodiment of the present invention.
  • the liquid processing apparatus 100 includes a substrate holding unit 1 that horizontally and rotatably holds a wafer W on which an oxide film 50 is formed, a rotation mechanism 2 that includes a motor that rotates the substrate holding unit 1, and a substrate.
  • a cup 3 provided so as to surround.
  • the substrate holding unit 1 is connected to a rotating shaft 2a of the rotating mechanism 2 and rotates together with the rotating shaft 2a, three support pins 12a and three holding pins 12b attached to the peripheral portion of the rotating plate 11, and Have Each holding pin 12b has a retracted position outside the rotating plate 11 and a holding position for holding the wafer W so as not to hinder delivery of the wafer W between the transfer arm (not shown) and the substrate holding unit 1. It is possible to rotate between. After each support pin 12b receives the wafer W with each holding pin 12b placed in the retracted position, the holding pin 12b is rotated and placed in the holding position, so that the wafer W is placed in the holding position. It is held by the holding pin 12b.
  • maintenance part 1 is raised / lowered by the raising / lowering mechanism which is not shown in figure.
  • the liquid supply mechanism 4 has a first liquid discharge nozzle 21 and a second liquid discharge nozzle 22 that are movable in the horizontal direction.
  • the first liquid discharge nozzle 21 can discharge a processing liquid (for example, dilute hydrofluoric acid (DHF)) for dissolving the oxide film 50 and performing an etching process.
  • the second liquid discharge nozzle 22 can selectively discharge a treatment liquid (for example, dilute hydrofluoric acid) and a rinse liquid (for example, pure water (DIW)).
  • a processing liquid for example, dilute hydrofluoric acid (DHF)
  • DIW pure water
  • a first liquid supply line 23 is connected to the first liquid discharge nozzle 21, and a second liquid supply line 28 is connected to the second liquid discharge nozzle 22.
  • a processing liquid supply line 26 is connected to the first liquid supply line 23 via a valve 24.
  • a treatment liquid supply line 31 is connected to the second liquid supply line 28 via a valve 29, and a rinse liquid supply line 32 is connected via a valve 30.
  • each of the processing liquid supply line 26, the processing liquid supply line 31, and the rinsing liquid supply line 32 is provided with a pump, a flow rate control device, and the like for sending out the liquid.
  • the first liquid discharge nozzle 21 provided in this way discharges the processing liquid toward the oxide film 50 on the outer peripheral portion of the wafer W in a first process (see reference numeral “S1” in FIG. 3) described later.
  • a first processing liquid discharge nozzle Used as a first processing liquid discharge nozzle.
  • the second liquid discharge nozzle 22 is used as a rinse liquid discharge nozzle that discharges a rinsing liquid toward the oxide film 50 at the center of the wafer W in the first process described later.
  • 3 is used as a second processing liquid discharge nozzle that discharges the processing liquid toward the oxide film 50 at the center of the wafer W.
  • the first liquid discharge nozzle 21 is relatively disposed on the outer peripheral side of the wafer W, while the second liquid discharge nozzle 22 is relatively disposed on the inner side of the wafer W.
  • the inside here refers to the rotation axis side of the wafer W, and means the side close to the rotation axis 2a in the liquid processing apparatus 100 shown in FIG.
  • the outer peripheral side means a side away from the rotation axis of the wafer W.
  • the first liquid discharge nozzle 21 has a smaller diameter than the second liquid discharge nozzle 22 and is designed to have a relatively small discharge flow rate.
  • the diameter of the second liquid discharge nozzle 22 is set to about 1/4 inch
  • the diameter of the first liquid discharge nozzle 21 is set to 1 ⁇ 2 of the diameter of the second liquid discharge nozzle 22 (that is, 1 / It can also be set to about 8 inches. Since the first liquid discharge nozzle 21 having a small diameter discharges a small flow rate of the processing liquid, it is possible to accurately supply a desired amount of the processing liquid to the oxide film 50 of the wafer W and to consume the processing liquid. Can be suppressed.
  • the first liquid discharge nozzle 21 is provided to be inclined with respect to the extending direction of the wafer W.
  • the processing liquid discharged from the first liquid discharge nozzle 21 is discharged toward the outer peripheral side of the wafer W. Thereby, when the processing liquid lands on the oxide film 50 of the wafer W, the rebound of the processing liquid to the inner side of the wafer W can be suppressed.
  • the processing liquid discharged from the first liquid discharge nozzle 21 is discharged in a direction that is non-perpendicular to the rotation direction of the wafer W and is the same as the rotation direction of the wafer W with respect to the rotation direction of the wafer W.
  • the second liquid discharge nozzle 22 is arranged perpendicularly to the extending direction of the wafer W, and the processing liquid and the rinse liquid discharged from the second liquid discharge nozzle 22 are the oxide film 50 of the wafer W. Fly vertically toward However, the second liquid discharge nozzle 22 may be provided to be inclined with respect to the extending direction of the wafer W, and even if the processing liquid and the rinse liquid are discharged from the second liquid discharge nozzle 22 in the non-vertical direction. Good.
  • the first liquid discharge nozzle 21 is held by the first nozzle holder 21a, and the second liquid discharge nozzle 22 is held by the second nozzle holder 22a.
  • a driving mechanism 48 is connected to the first nozzle holder 21a, and a driving mechanism 52 is connected to the second nozzle holder 22a.
  • the first liquid discharge nozzle 21 and the first nozzle holder 21 a are moved by the drive mechanism 48, and the second liquid discharge nozzle 22 and the second nozzle holder 22 a are moved by the drive mechanism 52.
  • the liquid supply mechanism 4 described above is merely an example.
  • the liquid discharge nozzle 22 described above is commonly used as a rinse liquid discharge nozzle and a treatment liquid discharge nozzle, but instead of the second liquid discharge nozzle 22, a process connected to the process liquid supply line 31 via a valve 29.
  • the liquid discharge nozzle and the rinse liquid discharge nozzle connected to the rinse liquid supply line 32 via the valve 30 may be provided separately.
  • the cup 3 receives the processing liquid and the rinsing liquid flying from the rotating wafer W under the influence of the centrifugal force and discharges it to the outside.
  • An exhaust passage 3a and drain pipes 3b and 3c are provided at the bottom of the cup 3, and the exhaust passage 3a communicates with a suction side of an exhaust pump (not shown).
  • Each component of the liquid processing apparatus 100 is connected to a controller 101 including a computer (computer) such as a CPU and a memory, and is controlled by the controller 101.
  • a computer such as a CPU and a memory
  • the valve 24, the valve 29, the valve 30, the drive mechanism 48, the drive mechanism 52, and the rotation mechanism 2 are controlled by the controller 101.
  • the controller 101 is also connected with a user interface 102 and a storage unit 103.
  • the user interface 102 includes a keyboard for an administrator to input a command to manage each component of the liquid processing apparatus 100, a display for displaying the operating status of each component of the liquid processing apparatus 100, and the like. Is included.
  • the storage unit 103 is configured by an arbitrary non-transitory recording medium readable by a computer, and can be configured by, for example, a CD-ROM, a hard disk, a flexible disk, or a nonvolatile memory.
  • This storage unit 103 is necessary for control of each component and a recipe in which a control program and processing condition data for realizing various processes executed by the liquid processing apparatus 100 are realized by the control of the controller 101. Other information is stored. Accordingly, for example, the controller 101 can call and execute a corresponding recipe from the storage unit 103 in response to an instruction from the administrator via the user interface 102.
  • the storage unit 103 of the present embodiment also stores a program for causing the controller 101 to execute various procedures of the liquid processing method described later.
  • FIG. 2 is a graph conceptually showing an example of the relationship between the horizontal position and thickness of the wafer W to be processed.
  • FIG. 2 is based on a cross section of the wafer W, the horizontal axis indicates the “horizontal position” indicating the distance in the horizontal direction from the rotation axis of the wafer W, and the vertical axis indicates the height from the reference horizontal plane. “Wafer thickness” representing the distance in the direction is shown. Therefore, the position of the wafer W on the rotation axis is indicated by “0” on the horizontal axis of FIG.
  • the thickness of the wafer W is linearly changed, but FIG. 2 is only a simplified graph for ease of understanding, and the actual thickness of the wafer W is Can change more irregularly.
  • the wafer W to be processed by the liquid processing method and the liquid processing apparatus 100 of the present embodiment has a relatively larger thickness at the outer peripheral portion than at the central portion. More specifically, the thickness of the oxide film 50 formed on the wafer W is larger at the outer peripheral portion than at the central portion. Therefore, as shown in FIG. 2, the wafer W has substantially the same thickness within a certain range in the horizontal direction from the position (see “0” on the horizontal axis in FIG. 2) through which the rotation axis that is the center of the wafer W passes. On the other hand, at the position near the outermost peripheral portion of the wafer W (see the vicinity of the left and right end portions of the horizontal axis in FIG. 2), the thickness of the wafer W increases rapidly.
  • the oxide film 50 of the wafer W In order to flatten the oxide film 50 of the wafer W, in the liquid processing method described below, first, a portion of the outer peripheral portion of the oxide film 50 that rises from the inner side (see reference sign “Q” in FIG. 2). ) Is etched by the treatment liquid, and the difference in thickness between the outer peripheral portion and the central portion of the oxide film 50 is reduced. Thereafter, the entire oxide film 50 including the inner portion and the outer peripheral portion is etched by the processing liquid, and an etching process is performed so that the entire oxide film 50 has a desired thickness. By performing the etching process in two stages as described above, the thickness difference between the outer peripheral portion and the central portion can be effectively reduced, and the entire oxide film 50 can be flattened with high accuracy.
  • the liquid processing method including the following first step and second step is performed by the controller 101 controlling each part as appropriate.
  • the controller 101 acquires data related to the surface profile of the oxide film 50 of the wafer W (hereinafter also referred to as “surface profile data”), and controls the opening / closing of the valve 24, the valve 29, and the valve 30 based on the data.
  • the controller 101 can acquire surface profile data by an arbitrary method.
  • the controller 101 may acquire from the external device the surface profile data acquired by measuring the surface profile of the oxide film 50 before the wafer W is loaded into the liquid processing apparatus 100.
  • the controller 101 may acquire the surface profile data from the measurement device by measuring the surface profile of the oxide film 50 of the wafer W held on the substrate holding unit 1 using a measurement device (not shown).
  • FIG. 3 is a flowchart showing an example of a liquid processing method.
  • the processing liquid is supplied to a substrate in which the thickness of the oxide film 50 formed in the outer peripheral portion is larger than the thickness of the oxide film 50 formed in the central portion. Etching is performed.
  • a first step S ⁇ b> 1 for adjusting the thickness of the oxide film 50 on the outer peripheral portion of the wafer W is performed, and thereafter, the first thickness for adjusting the entire thickness of the oxide film 50 on the wafer W is adjusted.
  • Step S2 of 2 is performed.
  • the processing liquid is supplied to the oxide film 50 thicker than the central portion formed on the outer peripheral portion, and the center of the wafer W is more than the position where the processing liquid is supplied.
  • the rinsing liquid that inhibits the etching of the oxide film 50 by the treatment liquid is supplied to etch the outer peripheral oxide film 50.
  • the processing liquid is supplied to the rotating wafer W, and etching is performed to a preset film thickness.
  • the rinsing liquid is supplied from the second liquid discharge nozzle 22.
  • the first liquid discharge nozzle 21 is positioned at a position on the oxide film 50 on the center side of the wafer W, rather than on the oxide film 50 on the outer peripheral side of the wafer W to which the processing liquid discharged from the first liquid discharge nozzle 21 is supplied.
  • the rinse liquid discharged from the second liquid discharge nozzle 22 is supplied. That is, in the first step S1, the landing position of the rinse liquid is closer to the center side of the wafer W than the landing position of the processing liquid.
  • the etching of the oxide film 50 on the outer peripheral side of the wafer W can be advanced by the processing liquid.
  • the first step S1 only the oxide film 50 on the outer peripheral side of the wafer W is intensively etched.
  • the oxide film 50 inside the wafer W can be protected by the rinse liquid. That is, when supplying the processing liquid to the outer peripheral portion of the wafer W (particularly the position in the vicinity of the outermost peripheral portion), if the rinsing liquid is not supplied to the center side of the processing liquid supply position on the wafer W, it will land on the wafer W.
  • the processed liquid spreads to the center side, and the center side portion of the wafer W which is not originally desired to be etched may be etched.
  • the central side portion of the wafer W is covered with the rinsing liquid and protected from the processing liquid. be able to.
  • the first step S1 is performed by starting the supply of the treatment liquid to the oxide film 50 after the supply of the rinse liquid to the oxide film 50 is started. That is, when the liquid processing method shown in FIG. 3 starts, the supply of the rinsing liquid from the second liquid discharge nozzle 22 to the oxide film 50 is started (see S11 in FIG. 3), and then the first liquid discharge nozzle 21 is started. The supply of the processing liquid from is started (S12). Specifically, before the above-described step S11, all of the valve 24, the valve 29, and the valve 30 shown in FIG. 1 are closed.
  • step S ⁇ b> 11 is started, and the rinse liquid is discharged from the second liquid discharge nozzle 22 toward the oxide film 50 at the center of the wafer W.
  • the rinse liquid supplied onto the oxide film 50 spreads on the outer peripheral side as the wafer W rotates, and covers the entire surface of the oxide film 50.
  • step S12 is started by opening the valve 24 under the control of the controller 101, and the processing liquid is discharged from the first liquid discharge nozzle 21 toward the oxide film 50 on the outer peripheral side of the wafer W.
  • the supply of the processing liquid in step S12 is started after the rinse liquid discharged from the second liquid discharge nozzle 22 covers a sufficient range on the oxide film 50 (more preferably, at least from the first liquid discharge nozzle 21). It is preferably performed after the rinsing liquid covers the area inside the landing point of the discharged processing liquid. Thereby, since the processing liquid is supplied in a state where the oxide film 50 inside the wafer W is protected by the rinse liquid, it is possible to suppress the influence of the rebound of the processing liquid.
  • the treatment liquid supplied to the oxide film 50 in the first step S1 is discharged from the first liquid discharge nozzle 21 so as to satisfy the following conditions 1 and 2.
  • FIG. 4 is a conceptual diagram showing an example of an arrangement relationship when the first liquid discharge nozzle 21 and the wafer W are viewed from the side.
  • the processing liquid discharged from the first liquid discharge nozzle 21 in the first step S1 flies toward the outer peripheral side of the wafer W along the discharge direction indicated by the reference numeral “D1”, and in the outer peripheral portion of the wafer W. Land on the oxide film 50 (condition 1).
  • the acute angle ⁇ formed by the discharge direction D1 of the processing liquid from the first liquid discharge nozzle 21 in the first step S1 with respect to the direction D2 in which the wafer W extends is “20 ° ⁇ ⁇ ⁇ 70. It is preferable to satisfy “°”. When the angle ⁇ is within the range, it is possible to suppress the splash of the processing liquid to the inside of the wafer W particularly effectively.
  • FIG. 5 is a conceptual diagram showing an arrangement relation example when the first liquid discharge nozzle 21 and the wafer W are viewed from above.
  • the processing liquid supplied from the first liquid discharge nozzle 21 to the oxide film 50 in the first step S ⁇ b> 1 flies in the same direction as the rotation direction R of the wafer W with respect to the rotation direction R of the wafer W, and the oxide film 50. Land on top (condition 2).
  • the direction of the projection traveling path P formed by projecting the path of the processing liquid onto the wafer W and the intersection of the extension line PE of the projection traveling path P and the outermost peripheral portion of the wafer W.
  • the acute angle ⁇ formed by the tangential direction T of the wafer W in C preferably satisfies “40 ° ⁇ ⁇ ⁇ 80 °”.
  • the angle ⁇ is within the range, it is possible to particularly effectively suppress the rebound of the treatment liquid on the oxide film 50 and the spread of the treatment liquid on the oxide film 50 in an unintended direction.
  • the supply of the processing liquid and the rinsing liquid in the first step S1 shown in FIG. 3 is continued until the thickness of the oxide film 50 on the outer peripheral portion of the wafer W becomes the same as that of the central portion. Then, when the thickness of the oxide film 50 on the outer peripheral portion of the wafer W reaches the same thickness as the central portion, the supply of the processing liquid from the first liquid discharge nozzle 21 is stopped (S13), and then the second liquid The supply of the rinse liquid from the discharge nozzle 22 is stopped (S14). Specifically, the valve 24 and the valve 30 are closed under the control of the controller 101, whereby the treatment liquid is discharged from the first liquid discharge nozzle 21 and the rinse liquid is discharged from the second liquid discharge nozzle 22. It can be stopped.
  • the processing liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50 of the rotating wafer W. That is, immediately after the above-described step S14, the valve 29 is opened under the control of the controller 101, and supply of the processing liquid from the second liquid discharge nozzle 22 to the oxide film 50 is started (S15). Then, the supply of the processing liquid from the second liquid discharge nozzle 22 is continued until the thickness of the oxide film 50 over the entire surface side F1 of the wafer W reaches a preset thickness.
  • the etching of the oxide film 50 is performed over the entire wafer W, so that the processing liquid covers the entire surface of the oxide film 50 from the second liquid discharge nozzle 22 onto the oxide film 50.
  • Treatment liquid is supplied. Therefore, the second liquid discharge nozzle 22 and the second nozzle holder 22a are disposed on or near the rotation axis A of the wafer W with respect to the horizontal direction, and the process discharged from the second liquid discharge nozzle 22 is performed. The liquid is landed at a position on the rotation axis A or in the vicinity of the rotation axis A in the oxide film 50.
  • the second liquid discharge nozzle 22 is positioned at a position on the oxide film 50 slightly away from the rotation axis A in consideration of the spread when the processing liquid is landed. It is preferable to land the treatment liquid. Note that when the processing liquid from the second liquid discharge nozzle 22 is landed on the center of the wafer W through which the rotation axis A passes, fresh processing liquid is always supplied to a place where the centrifugal force does not act, and at the center of the wafer W. Since this etching advances more than the etching of other portions, it is not preferable from the viewpoint of uniformly etching the entire oxide film 50.
  • the processing liquid is not supplied to the position of the wafer W where the processing liquid is supplied in the first step S1, and the processing liquid is supplied in the first step S1.
  • the processing liquid is supplied to the center side of the wafer W from the above position.
  • the supply amount per unit time of the processing liquid from the second liquid discharge nozzle 22 in the second step S2 to the oxide film 50 is the amount of the processing liquid from the first liquid discharge nozzle 21 in the first step S1. It is larger than the supply amount per unit time to the oxide film 50. Further, the rotational speed of the wafer W in the second step S2 is faster than the rotational speed of the wafer W in the first step S1.
  • the first supply amount that is relatively large with respect to the wafer W that rotates at a relatively low first rotation speed for example, 200 rpm (revolution per minute)
  • a relatively low first rotation speed for example, 200 rpm (revolution per minute)
  • a relatively small second supply amount for example, 500 ml / min
  • a relatively low second rotation speed for example, 200 rpm
  • the rinsing liquid can be supplied from the second liquid discharge nozzle 22, and a relatively small third supply amount (for example, 400 ml / min) can be supplied from the first liquid discharge nozzle 21. .
  • a relatively large amount of the fourth supply is supplied to the wafer W rotating at a third rotation speed (for example, 750 rpm) which is higher than the above-described second rotation speed.
  • the specific rotation speed of the wafer W between the above-described steps S12 to S13 is preferably set according to the profile of the oxide film 50 on the outer peripheral portion of the wafer W. That is, in step S12 to step S13, the rinsing liquid supplied onto the wafer W receives a centrifugal force and spreads toward the outer peripheral portion of the wafer W. The magnitude of the centrifugal force acting on the rinsing liquid is the rotation of the wafer W. Varies with speed.
  • the state of the boundary between the rinsing liquid and the processing liquid on the wafer W changes depending on the magnitude of the centrifugal force received by the rinsing liquid, and as the rinsing liquid receives a larger centrifugal force, the boundary liquid is supplied to the outer peripheral portion of the wafer W.
  • the etching action of the treatment liquid is hindered by the rinse liquid. Therefore, as the rotational speed of the wafer W increases, the influence of the rinsing liquid on the outer periphery of the wafer W increases, and the change in the etching amount in the vicinity of the boundary between the processing liquid and the rinsing liquid becomes gradual.
  • the etching profile for forms a gentle angle.
  • the slower the rotation speed of the wafer W the smaller the influence of the rinsing liquid on the outer periphery of the wafer W, and the change in the etching amount in the vicinity of the boundary between the processing liquid and the rinsing liquid becomes abrupt.
  • the etching profile for forms a steep angle. Therefore, in the process between step S12 and step S13, considering such etching characteristics, a rotation speed suitable for etching the oxide film 50 on the outer peripheral portion of the wafer W to the same thickness as the oxide film 50 in the central portion. Thus, it is preferable that the wafer W is rotated.
  • step S14 and step S15 described above almost simultaneously, the liquid discharged from the second liquid discharge nozzle 22 can be switched from the rinse liquid to the processing liquid without interruption.
  • steps S15 to S16 the rotational speed of the wafer W is gradually decreased from the third speed to the fourth speed (for example, 500 rpm), and the fifth supply amount (for example, a relatively large amount) (for example, By supplying a processing liquid of 1500 ml / min) from the second liquid discharge nozzle 22 to the wafer W, the entire surface of the oxide film 50 can be covered with the processing liquid.
  • the valve 29 is closed under the control of the controller 101, and the supply of the processing liquid from the second liquid discharge nozzle 22 is stopped ( S16). Thereafter, the valve 30 is opened under the control of the controller 101, and the rinse liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50 (S17). Then, after the processing liquid remaining on the oxide film 50 is washed away by the rinse liquid, the valve 30 is closed under the control of the controller 101, and the rinse liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50. Stopped (S18).
  • the sixth supply amount (relatively large amount) is supplied to the wafer W rotating at the fifth speed (for example, 1500 rpm) higher than the fourth speed.
  • the entire surface of the oxide film 50 can be covered with the rinse liquid by supplying the rinse liquid of 1500 ml / min) from the second liquid discharge nozzle 22.
  • the wafer W is rotated at a relatively high speed (for example, 1500 ml / min) in a state where the liquid discharge from the first liquid discharge nozzle 21 and the second liquid discharge nozzle 22 is stopped.
  • a relatively high speed for example, 1500 ml / min
  • the spin drying of the wafer W is performed.
  • the oxide film 50 of the wafer W is planarized.
  • the flat oxide film 50 is formed on the wafer W by sequentially performing the first step S1 and the second step S2 described above. It can be formed with high accuracy.
  • the oxide film 50 is etched at an unintended location. Can be effectively prevented, and the rebound and spread of the processing liquid can be suppressed.
  • the inventor measures the etching amount of the oxide film 50 in association with the horizontal position while changing the discharge angle of the processing liquid from the first liquid discharge nozzle 21, and determines the etching amount of the oxide film 50 and the horizontal position.
  • the relationship was evaluated. Specifically, verification 1 in which measurement is performed a plurality of times while changing the discharge angle of the processing liquid within a range that satisfies the above-described condition 1 and condition 2, and a process that does not satisfy the above-described condition 1 and / or condition 2 Verification 2 was performed in which the liquid discharge angle was changed and measurement was performed a plurality of times.
  • processing liquid shift amount The difference from the “position where the liquid landed on the oxide film 50” (hereinafter referred to as “processing liquid shift amount”) was generally within a range of 10 mm (millimeters).
  • the amount of displacement of the processing liquid exceeds 10 mm. In many cases, the displacement of the processing liquid exceeded 20 mm.
  • the surface of the wafer W etched with the processing liquid is hydrophobized.
  • a large amount of processing liquid is supplied, or the rotation speed of the wafer W is set to a high speed. Difficult to do. Therefore, the method of first performing the second step S2 and then performing the first step S1 is not preferable because the etching process in the first step S1 becomes unstable.
  • the method shown in FIG. 3 in which the first step S1 is performed prior to the second step S2 is preferable because the first step S1 and the second step S2 can be performed stably.
  • the wafer W is supplied together with the supply of the processing liquid and / or the rinsing liquid to the front surface side F1 of the wafer W.
  • the processing liquid and / or the rinsing liquid may be supplied to the back surface side F2.
  • the supply of the liquid to the rear surface side F2 of the wafer W is performed in a state where the liquid is already supplied to the front surface side F1 of the wafer W. Thereby, it can prevent effectively that the liquid supplied to the back surface side F2 of the wafer W wraps around to the surface side F1.
  • the rinsing liquid and the processing liquid are supplied to the oxide film 50 on the front surface side F1 of the wafer W, and in the second process, the processing liquid is supplied to the oxide film 50 on the front surface side F1 of the wafer W.
  • the processing liquid and / or the rinsing liquid may be supplied also to the back surface side F2 of the wafer W. In this case, in the state in which the processing liquid in at least one of the first process S1 and the second process S2 is supplied to the front surface side F1 of the wafer W, and / or The supply of the rinse liquid is started.
  • a relatively large amount (for example, 1000 ml / min) of rinsing liquid may be supplied to the back surface side F2 of the wafer W in the first step S1, and a relatively large amount (for example, 1000 ml / min) in the second step S2. ) May be supplied to the oxide film formed on the back surface side F2 of the wafer W.
  • the supply of the processing liquid and / or the rinsing liquid to the back surface side F2 of the wafer W is performed using the nozzles and valves having the same configuration as the nozzles 21 and 22 and the valves 24, 29, and 30 provided on the front surface side F1. And the processing liquid and / or the rinsing liquid can be discharged from the nozzle toward the back surface side F2 of the wafer W.
  • the specific composition of the processing liquid and the rinsing liquid described above is not particularly limited, and a liquid that can remove the film such as the oxide film 50 formed on the substrate such as the wafer W is used as the processing liquid. It is possible to use as the rinsing liquid a liquid that can properly wash away such a processing liquid.
  • the processing liquid discharged from the first liquid discharge nozzle 21 and the processing liquid discharged from the second liquid discharge nozzle 22 may be liquids having the same composition, or liquids having different compositions. It may be.
  • the processing liquid supplied to the back surface side of the wafer W may have the same composition as the processing liquid discharged from the first liquid discharge nozzle 21 and / or the second liquid discharge nozzle 22, or a different composition. There may be.
  • the rinsing liquid supplied to the back side of the wafer W may have the same composition as the rinsing liquid discharged from the second liquid discharge nozzle 22 or a different composition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Provided are a fluid treatment method and a fluid treatment device with which it is possible to form a flat film on a substrate with good precision. The fluid treatment method includes a first step S1 and a second step S2. In the first step S1, while a substrate (wafer) is rotated, an etching fluid is supplied to a film that is formed at the outer peripheral section and is thicker than at the center part. In the first step S1, an etching prevention fluid for preventing etching of the film by the etching fluid is supplied nearer to the center side of the substrate than the position at which the etching fluid is supplied, and the film in the outer peripheral section is etched. The second step S2 is performed after the first step S1, and in the second step S2, the etching fluid is supplied to the rotating substrate and etching is performed to a preset film thickness.

Description

液処理方法及び液処理装置Liquid processing method and liquid processing apparatus
 本発明は、基板に形成された膜を平坦化する液処理方法及び液処理装置に関する。 The present invention relates to a liquid processing method and a liquid processing apparatus for flattening a film formed on a substrate.
 一般に、半導体デバイスの製造工程では、処理対象の半導体ウエハ(以下、単に「ウエハ」と称する)の表面において酸化膜や窒化膜等の薄膜が絶縁膜として形成されている。この薄膜を形成する方法として化学蒸着法(CVD)等が広く用いられている。ウエハの周縁部における薄膜の厚さが中心部における薄膜の厚さよりも大きくなって、薄膜が全体として擂り鉢状に形成されることがある。このような不均一な膜厚を有する薄膜は種々の不具合を招き、例えば薄膜にコンタクトホールを形成する場合には、コンタクトホールの径がばらついて製品歩留まりが低下することがある。 Generally, in a semiconductor device manufacturing process, a thin film such as an oxide film or a nitride film is formed as an insulating film on the surface of a semiconductor wafer to be processed (hereinafter simply referred to as “wafer”). Chemical vapor deposition (CVD) or the like is widely used as a method for forming this thin film. The thickness of the thin film at the peripheral edge of the wafer may be larger than the thickness of the thin film at the central portion, and the thin film may be formed in a bowl shape as a whole. Such a thin film having a non-uniform film thickness causes various problems. For example, when a contact hole is formed in the thin film, the diameter of the contact hole varies and the product yield may decrease.
 特許文献1は、擂り鉢状の膜に対して処理液を供給し、当該膜を平坦にエッチングする技術を開示する。 Patent Document 1 discloses a technique of supplying a treatment liquid to a bowl-shaped film and etching the film flatly.
 しかしながら特許文献1に開示された技術では、擂り鉢状の膜の外周部を処理液により所望量だけエッチングして、膜全体を精度良く平坦にすることは容易ではなかった。このように、基板の全体にわたって平坦な膜を精度良く形成するためには更なる改善が求められていた。 However, with the technique disclosed in Patent Document 1, it is not easy to etch the outer peripheral portion of the mortar-shaped film by a desired amount with the treatment liquid and flatten the entire film with high accuracy. Thus, further improvement has been required in order to accurately form a flat film over the entire substrate.
特開2007-266302号公報JP 2007-266302 A
 本発明は上述の事情に鑑みてなされたものであり、平坦な膜を基板に精度良く形成することができる液処理方法及び液処理装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a liquid processing method and a liquid processing apparatus capable of forming a flat film on a substrate with high accuracy.
 本発明の一態様は、中心部の膜より外周部の膜が厚い基板に対してエッチング液を供給して当該膜をエッチングする液処理方法であって、基板を回転させながら外周部に形成された中心部より厚い膜にエッチング液を供給するとともにエッチング液が供給される位置よりも基板の中心側にエッチング液による膜のエッチングを阻害するエッチング阻害液を供給して外周部の膜をエッチングする第1の工程と、第1の工程の後に、回転する基板にエッチング液を供給して予め設定された膜厚までエッチングする第2の工程と、を備える液処理方法に関する。 One embodiment of the present invention is a liquid processing method for etching an etchant by supplying an etchant to a substrate having a thicker outer peripheral film than the central film, and is formed on the outer peripheral part while rotating the substrate. The etching solution is supplied to a film thicker than the central portion, and an etching inhibitor solution that inhibits etching of the film by the etching solution is supplied to the center side of the substrate from the position where the etching solution is supplied to etch the outer peripheral portion film. The present invention relates to a liquid processing method comprising: a first step; and a second step of supplying an etching solution to a rotating substrate and etching to a preset film thickness after the first step.
 本発明の他の態様は、中心部の膜より外周部の膜が厚い基板に対してエッチング液を供給して膜をエッチングする液処理装置であって、基板を回転可能に保持する基板保持部と、基板保持部を回転させる回転機構と、基板保持部に保持される基板に形成された膜に液を供給する液供給機構と、少なくとも液供給機構を制御するコントローラと、を備え、コントローラは、基板保持部により保持されて回転する基板の膜に対して液供給機構からエッチング液及びエッチング阻害液を供給する第1の工程であって、基板を回転させながら外周部に形成された中心部より厚い膜にエッチング液を供給するとともにエッチング液が供給される位置よりも基板の中心側にエッチング液による膜のエッチングを阻害するエッチング阻害液を供給して外周部の膜をエッチングする第1の工程と、第1の工程の後に、回転する基板にエッチング液を供給して予め設定された膜厚までエッチングする第2の工程と、を行う液処理装置に関する。 Another aspect of the present invention is a liquid processing apparatus that etches a film by supplying an etching liquid to a substrate having a thicker outer peripheral film than the central film, and a substrate holding unit that rotatably holds the substrate A rotation mechanism that rotates the substrate holding unit, a liquid supply mechanism that supplies a liquid to a film formed on the substrate held by the substrate holding unit, and a controller that controls at least the liquid supply mechanism. A first step of supplying an etching solution and an etching inhibiting solution from a liquid supply mechanism to a film of the substrate held and rotated by the substrate holding unit, and a central portion formed on the outer peripheral portion while rotating the substrate Etching solution is supplied to a thicker film, and an etching inhibitor solution that inhibits etching of the film by the etching solution is supplied to the center side of the substrate from the position where the etching solution is supplied. A first step of etching the film, after the first step, a second step of etching a rotating substrate to a thickness that is set in advance by supplying an etching liquid to a liquid processing apparatus for performing.
 本発明によれば、平坦な膜を基板に精度良く形成することができる。 According to the present invention, a flat film can be accurately formed on a substrate.
図1は、本発明の一実施形態に係る液処理装置の構成の概略を示す概念図である。FIG. 1 is a conceptual diagram showing an outline of a configuration of a liquid processing apparatus according to an embodiment of the present invention. 図2は、処理対象のウエハの水平方向位置と厚みとの関係例を概念的に示すグラフである。FIG. 2 is a graph conceptually showing an example of the relationship between the horizontal position and the thickness of the wafer to be processed. 図3は、液処理方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the liquid processing method. 図4は、第1の液吐出ノズル及びウエハを側方から見た場合の配置関係例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of the arrangement relationship when the first liquid discharge nozzle and the wafer are viewed from the side. 図5は、第1の液吐出ノズル及びウエハを上方から見た場合の配置関係例を示す概念図である。FIG. 5 is a conceptual diagram showing an example of the arrangement relationship when the first liquid discharge nozzle and the wafer are viewed from above.
 図面を参照して本発明の実施形態について説明する。 Embodiments of the present invention will be described with reference to the drawings.
 以下では、基板としてウエハを使用し、ウエハに形成された酸化膜を処理液により平坦化する液処理方法及び液処理装置に対して本発明を適用する場合を例示する。 Hereinafter, a case where the present invention is applied to a liquid processing method and a liquid processing apparatus in which a wafer is used as a substrate and an oxide film formed on the wafer is planarized with a processing liquid will be exemplified.
[液処理装置の構成]
 図1は、本発明の一実施形態に係る液処理装置100の構成の概略を示す概念図である。液処理装置100は、表面に酸化膜50が形成されたウエハWを水平に且つ回転可能に保持する基板保持部1と、基板保持部1を回転させるモータによって構成される回転機構2と、基板保持部1に保持されるウエハWの酸化膜50に処理液(特にエッチング液)及びリンス液(すなわちエッチング阻害液)を供給する液供給機構4と、基板保持部1に保持されたウエハWを囲繞するように設けられたカップ3とを備える。
[Configuration of liquid processing equipment]
FIG. 1 is a conceptual diagram showing an outline of a configuration of a liquid processing apparatus 100 according to an embodiment of the present invention. The liquid processing apparatus 100 includes a substrate holding unit 1 that horizontally and rotatably holds a wafer W on which an oxide film 50 is formed, a rotation mechanism 2 that includes a motor that rotates the substrate holding unit 1, and a substrate. A liquid supply mechanism 4 for supplying a processing liquid (particularly an etching liquid) and a rinsing liquid (that is, an etching inhibitor) to the oxide film 50 of the wafer W held by the holding unit 1, and the wafer W held by the substrate holding unit 1 And a cup 3 provided so as to surround.
 基板保持部1は、回転機構2の回転軸2aに連結されて回転軸2aとともに回転する回転プレート11と、回転プレート11の周縁部に取り付けられた3つの支持ピン12a及び3つの保持ピン12bとを有する。各保持ピン12bは、搬送アーム(図示せず)と基板保持部1との間でのウエハWの受け渡しを妨げないように、回転プレート11の外側の退避位置とウエハWを保持する保持位置との間で回動可能となっている。各保持ピン12bを退避位置に配置した状態で各支持ピン12aがウエハWを受け取った後、各保持ピン12bを回動させて保持位置に配置することで、ウエハWが各支持ピン12a及び各保持ピン12bによって保持される。なお、基板保持部1は図示しない昇降機構によって昇降させられる。 The substrate holding unit 1 is connected to a rotating shaft 2a of the rotating mechanism 2 and rotates together with the rotating shaft 2a, three support pins 12a and three holding pins 12b attached to the peripheral portion of the rotating plate 11, and Have Each holding pin 12b has a retracted position outside the rotating plate 11 and a holding position for holding the wafer W so as not to hinder delivery of the wafer W between the transfer arm (not shown) and the substrate holding unit 1. It is possible to rotate between. After each support pin 12b receives the wafer W with each holding pin 12b placed in the retracted position, the holding pin 12b is rotated and placed in the holding position, so that the wafer W is placed in the holding position. It is held by the holding pin 12b. In addition, the board | substrate holding | maintenance part 1 is raised / lowered by the raising / lowering mechanism which is not shown in figure.
 液供給機構4は、水平方向へ移動可能な第1の液吐出ノズル21及び第2の液吐出ノズル22を有する。第1の液吐出ノズル21は、酸化膜50を溶解してエッチング処理を行うための処理液(例えば希フッ酸(DHF))を吐出することができる。第2の液吐出ノズル22は、処理液(例えば希フッ酸)及びリンス液(例えば純水(DIW))を選択的に吐出することができる。 The liquid supply mechanism 4 has a first liquid discharge nozzle 21 and a second liquid discharge nozzle 22 that are movable in the horizontal direction. The first liquid discharge nozzle 21 can discharge a processing liquid (for example, dilute hydrofluoric acid (DHF)) for dissolving the oxide film 50 and performing an etching process. The second liquid discharge nozzle 22 can selectively discharge a treatment liquid (for example, dilute hydrofluoric acid) and a rinse liquid (for example, pure water (DIW)).
 第1の液吐出ノズル21には第1の液供給ライン23が接続され、第2の液吐出ノズル22には第2の液供給ライン28が接続されている。第1の液供給ライン23には、バルブ24を介して処理液供給ライン26が接続されている。第2の液供給ライン28には、バルブ29を介して処理液供給ライン31が接続されるとともに、バルブ30を介してリンス液供給ライン32が接続されている。バルブ24の開閉を切り換えることで、処理液供給ライン26から第1の液供給ライン23への処理液の供給の有無、及び第1の液吐出ノズル21からの処理液の吐出の有無を切り換えることができる。同様に、バルブ29及びバルブ30の開閉を切り換えることで、処理液供給ライン31から第2の液供給ライン28への処理液の供給の有無、リンス液供給ライン32から第2の液供給ライン28へのリンス液の供給の有無、及び第2の液吐出ノズル22からの処理液又はリンス液の吐出の有無を切り換えることができる。なお、液供給機構4に含まれるこれらのバルブ24、バルブ29及びバルブ30は、コントローラ101によって制御される。また図示は省略しているが、処理液供給ライン26、処理液供給ライン31及びリンス液供給ライン32の各々には、液を送り出すためのポンプ及び流量制御装置等が設けられている。 A first liquid supply line 23 is connected to the first liquid discharge nozzle 21, and a second liquid supply line 28 is connected to the second liquid discharge nozzle 22. A processing liquid supply line 26 is connected to the first liquid supply line 23 via a valve 24. A treatment liquid supply line 31 is connected to the second liquid supply line 28 via a valve 29, and a rinse liquid supply line 32 is connected via a valve 30. By switching the opening / closing of the valve 24, the presence / absence of supply of the treatment liquid from the treatment liquid supply line 26 to the first liquid supply line 23 and the presence / absence of discharge of the treatment liquid from the first liquid discharge nozzle 21 are switched. Can do. Similarly, by switching between opening and closing of the valve 29 and the valve 30, whether or not the processing liquid is supplied from the processing liquid supply line 31 to the second liquid supply line 28, and whether the rinsing liquid supply line 32 is connected to the second liquid supply line 28. The presence or absence of the supply of the rinsing liquid to the liquid and the presence or absence of the discharge of the treatment liquid or the rinsing liquid from the second liquid discharge nozzle 22 can be switched. Note that the valve 24, the valve 29, and the valve 30 included in the liquid supply mechanism 4 are controlled by the controller 101. Although not shown, each of the processing liquid supply line 26, the processing liquid supply line 31, and the rinsing liquid supply line 32 is provided with a pump, a flow rate control device, and the like for sending out the liquid.
 このようにして設けられる第1の液吐出ノズル21は、後述の第1の工程(図3の符合「S1」参照)において、ウエハWの外周部の酸化膜50に向けて処理液を吐出する第1処理液吐出ノズルとして使われる。一方、第2の液吐出ノズル22は、後述の第1の工程ではウエハWの中央部の酸化膜50に向けてリンス液を吐出するリンス液吐出ノズルとして使われ、後述の第2の工程(図3の符合「S2」参照)ではウエハWの中央部の酸化膜50に向けて処理液を吐出する第2処理液吐出ノズルとして使われる。したがって、第1の液吐出ノズル21は相対的にウエハWの外周側に配置される一方で、第2の液吐出ノズル22は相対的にウエハWの内側に配置される。ここでいう内側とは、ウエハWの回転軸線側を指し、図1に示す液処理装置100では回転軸2aに近い側を意味する。また外周側とは、ウエハWの回転軸線から遠ざかる側を意味する。 The first liquid discharge nozzle 21 provided in this way discharges the processing liquid toward the oxide film 50 on the outer peripheral portion of the wafer W in a first process (see reference numeral “S1” in FIG. 3) described later. Used as a first processing liquid discharge nozzle. On the other hand, the second liquid discharge nozzle 22 is used as a rinse liquid discharge nozzle that discharges a rinsing liquid toward the oxide film 50 at the center of the wafer W in the first process described later. 3 is used as a second processing liquid discharge nozzle that discharges the processing liquid toward the oxide film 50 at the center of the wafer W. Accordingly, the first liquid discharge nozzle 21 is relatively disposed on the outer peripheral side of the wafer W, while the second liquid discharge nozzle 22 is relatively disposed on the inner side of the wafer W. The inside here refers to the rotation axis side of the wafer W, and means the side close to the rotation axis 2a in the liquid processing apparatus 100 shown in FIG. The outer peripheral side means a side away from the rotation axis of the wafer W.
 第1の液吐出ノズル21は、第2の液吐出ノズル22よりも小径で相対的に吐出流量が少なくなるように設計されている。例えば、第2の液吐出ノズル22の径を1/4インチ程度に設定する一方で、第1の液吐出ノズル21の径を第2の液吐出ノズル22の径の1/2(すなわち1/8インチ)程度に設定することも可能である。小径の第1の液吐出ノズル21は、小流量の処理液を吐出するため、ウエハWの酸化膜50に対して所望量の処理液を精度良く供給することができるとともに、処理液の消費量を抑えることができる。 The first liquid discharge nozzle 21 has a smaller diameter than the second liquid discharge nozzle 22 and is designed to have a relatively small discharge flow rate. For example, while the diameter of the second liquid discharge nozzle 22 is set to about 1/4 inch, the diameter of the first liquid discharge nozzle 21 is set to ½ of the diameter of the second liquid discharge nozzle 22 (that is, 1 / It can also be set to about 8 inches. Since the first liquid discharge nozzle 21 having a small diameter discharges a small flow rate of the processing liquid, it is possible to accurately supply a desired amount of the processing liquid to the oxide film 50 of the wafer W and to consume the processing liquid. Can be suppressed.
 また第1の液吐出ノズル21は、ウエハWの延在方向に対して傾斜して設けられている。第1の液吐出ノズル21から吐出される処理液は、ウエハWの外周側に向かって吐出される。これにより、処理液がウエハWの酸化膜50上に着地した際の、ウエハWの内側への処理液の跳ね返りを抑えることができる。また第1の液吐出ノズル21から吐出される処理液は、ウエハWの回転方向に対して非垂直な方向であって、ウエハWの回転方向に関してはウエハWの回転方向と同方向に吐出される。これにより、第1の液吐出ノズル21からの処理液のウエハWに対する相対速度が小さくなり、酸化膜50上における処理液の跳ね返りや、酸化膜50上での処理液の意図しない方向への広がりを抑えることができる。なお、第1の液吐出ノズル21からの処理液の吐出方向の詳細については、後述する(図4及び図5参照)。 Further, the first liquid discharge nozzle 21 is provided to be inclined with respect to the extending direction of the wafer W. The processing liquid discharged from the first liquid discharge nozzle 21 is discharged toward the outer peripheral side of the wafer W. Thereby, when the processing liquid lands on the oxide film 50 of the wafer W, the rebound of the processing liquid to the inner side of the wafer W can be suppressed. The processing liquid discharged from the first liquid discharge nozzle 21 is discharged in a direction that is non-perpendicular to the rotation direction of the wafer W and is the same as the rotation direction of the wafer W with respect to the rotation direction of the wafer W. The As a result, the relative speed of the processing liquid from the first liquid discharge nozzle 21 with respect to the wafer W decreases, and the processing liquid rebounds on the oxide film 50 and spreads in an unintended direction on the oxide film 50. Can be suppressed. Details of the discharge direction of the processing liquid from the first liquid discharge nozzle 21 will be described later (see FIGS. 4 and 5).
 一方、第2の液吐出ノズル22はウエハWの延在方向に対して垂直に配置されており、第2の液吐出ノズル22から吐出された処理液及びリンス液は、ウエハWの酸化膜50に向かって鉛直方向に飛翔する。ただし、第2の液吐出ノズル22はウエハWの延在方向に対して傾斜して設けられてもよく、第2の液吐出ノズル22から非鉛直方向へ処理液及びリンス液が吐出されてもよい。 On the other hand, the second liquid discharge nozzle 22 is arranged perpendicularly to the extending direction of the wafer W, and the processing liquid and the rinse liquid discharged from the second liquid discharge nozzle 22 are the oxide film 50 of the wafer W. Fly vertically toward However, the second liquid discharge nozzle 22 may be provided to be inclined with respect to the extending direction of the wafer W, and even if the processing liquid and the rinse liquid are discharged from the second liquid discharge nozzle 22 in the non-vertical direction. Good.
 第1の液吐出ノズル21は第1のノズルホルダー21aに保持され、第2の液吐出ノズル22は第2のノズルホルダー22aにより保持されている。第1のノズルホルダー21aには駆動機構48が接続され、第2のノズルホルダー22aには駆動機構52が接続されている。第1の液吐出ノズル21及び第1のノズルホルダー21aは駆動機構48によって移動させられ、第2の液吐出ノズル22及び第2のノズルホルダー22aは駆動機構52によって移動させられる。 The first liquid discharge nozzle 21 is held by the first nozzle holder 21a, and the second liquid discharge nozzle 22 is held by the second nozzle holder 22a. A driving mechanism 48 is connected to the first nozzle holder 21a, and a driving mechanism 52 is connected to the second nozzle holder 22a. The first liquid discharge nozzle 21 and the first nozzle holder 21 a are moved by the drive mechanism 48, and the second liquid discharge nozzle 22 and the second nozzle holder 22 a are moved by the drive mechanism 52.
 なお、上述の液供給機構4は一例にすぎない。例えば、上述の液吐出ノズル22はリンス液吐出ノズル及び処理液吐出ノズルとして共用されるが、第2の液吐出ノズル22の代わりに、バルブ29を介して処理液供給ライン31に接続される処理液吐出ノズルと、バルブ30を介してリンス液供給ライン32に接続されるリンス液吐出ノズルとが別個に設けられてもよい。 The liquid supply mechanism 4 described above is merely an example. For example, the liquid discharge nozzle 22 described above is commonly used as a rinse liquid discharge nozzle and a treatment liquid discharge nozzle, but instead of the second liquid discharge nozzle 22, a process connected to the process liquid supply line 31 via a valve 29. The liquid discharge nozzle and the rinse liquid discharge nozzle connected to the rinse liquid supply line 32 via the valve 30 may be provided separately.
 カップ3は、遠心力の影響を受けて回転するウエハWから飛翔する処理液やリンス液を受け止め、外部へ排出する。カップ3の底部には排気通路3a及びドレイン管3b、3cが設けられており、排気通路3aは排気ポンプ(図示せず)の吸い込み側に連通する。 The cup 3 receives the processing liquid and the rinsing liquid flying from the rotating wafer W under the influence of the centrifugal force and discharges it to the outside. An exhaust passage 3a and drain pipes 3b and 3c are provided at the bottom of the cup 3, and the exhaust passage 3a communicates with a suction side of an exhaust pump (not shown).
 液処理装置100の各構成部は、CPU等の計算機(コンピュータ)及びメモリを含むコントローラ101に接続され、当該コントローラ101によって制御される。図1に示す液処理装置100では、バルブ24、バルブ29、バルブ30、駆動機構48、駆動機構52及び回転機構2が、コントローラ101によって制御される。またコントローラ101には、ユーザインターフェース102及び記憶部103も接続されている。ユーザインターフェース102には、液処理装置100の各構成部を管理するために管理者がコマンドの入力操作等を行うためのキーボード、及び液処理装置100の各構成部の稼働状況を表示するディスプレイ等が含まれる。記憶部103は、コンピュータによって読み取り可能な任意の非一時的な記録媒体によって構成され、例えばCD-ROM、ハードディスク、フレキシブルディスク、或いは不揮発性メモリなどによって構成可能である。この記憶部103には、液処理装置100で実行される各種処理をコントローラ101の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピ、及び各構成部の制御に必要な他の情報が格納されている。したがってコントローラ101は、例えば、ユーザインターフェース102を介して管理者からの指示等を受けて、対応のレシピを記憶部103から呼び出して実行することができる。本実施形態の記憶部103には、後述の液処理方法の各種手順をコントローラ101に実行させるためのプログラムも記録されている。 Each component of the liquid processing apparatus 100 is connected to a controller 101 including a computer (computer) such as a CPU and a memory, and is controlled by the controller 101. In the liquid processing apparatus 100 illustrated in FIG. 1, the valve 24, the valve 29, the valve 30, the drive mechanism 48, the drive mechanism 52, and the rotation mechanism 2 are controlled by the controller 101. The controller 101 is also connected with a user interface 102 and a storage unit 103. The user interface 102 includes a keyboard for an administrator to input a command to manage each component of the liquid processing apparatus 100, a display for displaying the operating status of each component of the liquid processing apparatus 100, and the like. Is included. The storage unit 103 is configured by an arbitrary non-transitory recording medium readable by a computer, and can be configured by, for example, a CD-ROM, a hard disk, a flexible disk, or a nonvolatile memory. This storage unit 103 is necessary for control of each component and a recipe in which a control program and processing condition data for realizing various processes executed by the liquid processing apparatus 100 are realized by the control of the controller 101. Other information is stored. Accordingly, for example, the controller 101 can call and execute a corresponding recipe from the storage unit 103 in response to an instruction from the administrator via the user interface 102. The storage unit 103 of the present embodiment also stores a program for causing the controller 101 to execute various procedures of the liquid processing method described later.
[基板の表面プロファイル]
 図2は、処理対象のウエハWの水平方向位置と厚みとの関係例を概念的に示すグラフである。図2は、ウエハWのある断面を基準としており、横軸は、ウエハWの回転軸線からの水平方向への距離を表す「水平方向位置」を示し、縦軸は、基準水平面からの高さ方向への距離を表す「ウエハの厚み」を示す。したがってウエハWの回転軸線上の位置は、図2の横軸の「0」によって示される。なお、図2ではウエハWの厚さが線形的に変化しているが、図2は理解を容易にするために簡略的に示されたグラフに過ぎず、実際のウエハWの厚さは、より不規則的に変化しうる。
[Surface profile of substrate]
FIG. 2 is a graph conceptually showing an example of the relationship between the horizontal position and thickness of the wafer W to be processed. FIG. 2 is based on a cross section of the wafer W, the horizontal axis indicates the “horizontal position” indicating the distance in the horizontal direction from the rotation axis of the wafer W, and the vertical axis indicates the height from the reference horizontal plane. “Wafer thickness” representing the distance in the direction is shown. Therefore, the position of the wafer W on the rotation axis is indicated by “0” on the horizontal axis of FIG. In FIG. 2, the thickness of the wafer W is linearly changed, but FIG. 2 is only a simplified graph for ease of understanding, and the actual thickness of the wafer W is Can change more irregularly.
 本実施形態の液処理方法及び液処理装置100の処理対象のウエハWは、中心部よりも外周部の方が相対的に大きな厚みを有する。より具体的には、ウエハWに形成された酸化膜50の厚みが、中心部よりも外周部の方が大きい。したがって図2に示すように、ウエハWの中心部である回転軸線が通過する位置(図2の横軸の「0」参照)から水平方向に一定の範囲ではウエハWはほぼ同じ厚みを有するのに対し、ウエハWの最外周部近傍の位置(図2の横軸の左右両端部近傍参照)ではウエハWの厚みが急激に増大している。 The wafer W to be processed by the liquid processing method and the liquid processing apparatus 100 of the present embodiment has a relatively larger thickness at the outer peripheral portion than at the central portion. More specifically, the thickness of the oxide film 50 formed on the wafer W is larger at the outer peripheral portion than at the central portion. Therefore, as shown in FIG. 2, the wafer W has substantially the same thickness within a certain range in the horizontal direction from the position (see “0” on the horizontal axis in FIG. 2) through which the rotation axis that is the center of the wafer W passes. On the other hand, at the position near the outermost peripheral portion of the wafer W (see the vicinity of the left and right end portions of the horizontal axis in FIG. 2), the thickness of the wafer W increases rapidly.
 このようなウエハWの酸化膜50を平坦にするため、以下に説明する液処理方法では、まず、酸化膜50の外周部のうち内側部から盛り上がっている部分(図2の符合「Q」参照)が処理液によりエッチングされ、酸化膜50の外周部と中心部との厚み差が低減される。その後、内側部及び外周部を含む酸化膜50の全体が処理液によりエッチングされ、酸化膜50の全体が所望の厚さになるようにエッチング処理が行われる。このように2段階に分けてエッチング処理を行うことによって、外周部と中心部との厚み差を効果的に低減して、酸化膜50の全体を精度良く平坦化することができる。 In order to flatten the oxide film 50 of the wafer W, in the liquid processing method described below, first, a portion of the outer peripheral portion of the oxide film 50 that rises from the inner side (see reference sign “Q” in FIG. 2). ) Is etched by the treatment liquid, and the difference in thickness between the outer peripheral portion and the central portion of the oxide film 50 is reduced. Thereafter, the entire oxide film 50 including the inner portion and the outer peripheral portion is etched by the processing liquid, and an etching process is performed so that the entire oxide film 50 has a desired thickness. By performing the etching process in two stages as described above, the thickness difference between the outer peripheral portion and the central portion can be effectively reduced, and the entire oxide film 50 can be flattened with high accuracy.
[液処理方法のフロー]
 次に、上述の液処理装置100を使って行われる液処理方法について説明する。
[Flow of liquid processing method]
Next, a liquid processing method performed using the above-described liquid processing apparatus 100 will be described.
 以下の第1の工程及び第2の工程を含む液処理方法は、コントローラ101が各部を適宜制御することによって行われる。コントローラ101は、ウエハWの酸化膜50の表面プロファイルに関するデータ(以下、「表面プロファイルデータ」とも称する)を取得し、当該データに基づいてバルブ24、バルブ29及びバルブ30の開閉を制御する。コントローラ101は、表面プロファイルデータを任意の方法で取得することができる。例えば、ウエハWが液処理装置100に搬入される前に酸化膜50の表面プロファイルが測定されることにより取得された表面プロファイルデータを、コントローラ101は外部装置から取得してもよい。またコントローラ101は、基板保持部1に保持されたウエハWの酸化膜50の表面プロファイルを図示しない計測装置により測定させて、当該計測装置から表面プロファイルデータを取得してもよい。 The liquid processing method including the following first step and second step is performed by the controller 101 controlling each part as appropriate. The controller 101 acquires data related to the surface profile of the oxide film 50 of the wafer W (hereinafter also referred to as “surface profile data”), and controls the opening / closing of the valve 24, the valve 29, and the valve 30 based on the data. The controller 101 can acquire surface profile data by an arbitrary method. For example, the controller 101 may acquire from the external device the surface profile data acquired by measuring the surface profile of the oxide film 50 before the wafer W is loaded into the liquid processing apparatus 100. The controller 101 may acquire the surface profile data from the measurement device by measuring the surface profile of the oxide film 50 of the wafer W held on the substrate holding unit 1 using a measurement device (not shown).
 図3は、液処理方法の一例を示すフローチャートである。以下に説明する液処理方法では、中心部に形成された酸化膜50の厚みよりも外周部に形成された酸化膜50の厚みの方が大きい基板に対して処理液が供給され、酸化膜50のエッチングが行われる。 FIG. 3 is a flowchart showing an example of a liquid processing method. In the liquid processing method described below, the processing liquid is supplied to a substrate in which the thickness of the oxide film 50 formed in the outer peripheral portion is larger than the thickness of the oxide film 50 formed in the central portion. Etching is performed.
 図3に示す液処理方法では、まず、ウエハWの外周部における酸化膜50の厚みを調整する第1の工程S1が行われ、その後、ウエハWの酸化膜50の全体の厚みを調整する第2の工程S2が行われる。第1の工程S1では、ウエハWを回転させながら、外周部に形成された中心部より厚い酸化膜50に処理液が供給されるとともに、当該処理液が供給される位置よりもウエハWの中心側に、処理液による酸化膜50のエッチングを阻害するリンス液を供給して外周部の酸化膜50のエッチングが行われる。そして、第1の工程S1の後に行われる第2の工程S2では、回転するウエハWに処理液を供給し、予め設定された膜厚までエッチングが行われる。 In the liquid processing method shown in FIG. 3, first, a first step S <b> 1 for adjusting the thickness of the oxide film 50 on the outer peripheral portion of the wafer W is performed, and thereafter, the first thickness for adjusting the entire thickness of the oxide film 50 on the wafer W is adjusted. Step S2 of 2 is performed. In the first step S1, while the wafer W is rotated, the processing liquid is supplied to the oxide film 50 thicker than the central portion formed on the outer peripheral portion, and the center of the wafer W is more than the position where the processing liquid is supplied. On the side, the rinsing liquid that inhibits the etching of the oxide film 50 by the treatment liquid is supplied to etch the outer peripheral oxide film 50. Then, in the second step S2 performed after the first step S1, the processing liquid is supplied to the rotating wafer W, and etching is performed to a preset film thickness.
 すなわち第1の工程S1では、回転するウエハWに形成された酸化膜50に対し、第1の液吐出ノズル21から処理液を供給する一方で、第2の液吐出ノズル22からリンス液を供給する。この際、第1の液吐出ノズル21から吐出された処理液が供給されるウエハWの外周側の酸化膜50上の位置よりも、ウエハWの中心側の酸化膜50上の位置に、第2の液吐出ノズル22から吐出されたリンス液が供給される。すなわち第1の工程S1では、処理液の着地位置よりもリンス液の着地位置の方がウエハWの中心側となる。これにより、処理液によってウエハWの外周側の酸化膜50のエッチングを進行させることができる。このように第1の工程S1では、ウエハWの外周側の酸化膜50のみが重点的にエッチングされる。さらに、ウエハWの内側の酸化膜50をリンス液によって保護することができる。すなわち、ウエハWの外周部(特に最外周部近傍の位置)に処理液を供給する場合に、ウエハW上において処理液の供給位置よりも中心側にリンス液を供給しないと、ウエハWに着地した処理液が中心側にも広がって、本来であればエッチングが望まれていないウエハWの中心側部分もエッチングされる可能性がある。一方、本実施形態のように、中心側にリンス液を供給した状態でウエハWの外周部に処理液を供給することで、ウエハWの中心側部分をリンス液で覆って処理液から保護することができる。 That is, in the first step S1, while supplying the processing liquid from the first liquid discharge nozzle 21 to the oxide film 50 formed on the rotating wafer W, the rinsing liquid is supplied from the second liquid discharge nozzle 22. To do. At this time, the first liquid discharge nozzle 21 is positioned at a position on the oxide film 50 on the center side of the wafer W, rather than on the oxide film 50 on the outer peripheral side of the wafer W to which the processing liquid discharged from the first liquid discharge nozzle 21 is supplied. The rinse liquid discharged from the second liquid discharge nozzle 22 is supplied. That is, in the first step S1, the landing position of the rinse liquid is closer to the center side of the wafer W than the landing position of the processing liquid. Thereby, the etching of the oxide film 50 on the outer peripheral side of the wafer W can be advanced by the processing liquid. Thus, in the first step S1, only the oxide film 50 on the outer peripheral side of the wafer W is intensively etched. Furthermore, the oxide film 50 inside the wafer W can be protected by the rinse liquid. That is, when supplying the processing liquid to the outer peripheral portion of the wafer W (particularly the position in the vicinity of the outermost peripheral portion), if the rinsing liquid is not supplied to the center side of the processing liquid supply position on the wafer W, it will land on the wafer W. The processed liquid spreads to the center side, and the center side portion of the wafer W which is not originally desired to be etched may be etched. On the other hand, as in this embodiment, by supplying the processing liquid to the outer peripheral portion of the wafer W with the rinsing liquid supplied to the center side, the central side portion of the wafer W is covered with the rinsing liquid and protected from the processing liquid. be able to.
 なお第1の工程S1は、酸化膜50に対するリンス液の供給が開始された後に、酸化膜50に対する処理液の供給が開始されることで行われる。すなわち、図3に示す液処理方法がスタートすると、第2の液吐出ノズル22から酸化膜50へのリンス液の供給が開始され(図3のS11参照)、その後、第1の液吐出ノズル21からの処理液の供給が開始される(S12)。具体的には、上述のステップS11の前は、図1に示すバルブ24、バルブ29及びバルブ30の全てが閉状態である。そして、コントローラ101の制御下でバルブ30が開かれることによってステップS11が開始され、ウエハWの中央部の酸化膜50に向けて第2の液吐出ノズル22からリンス液が吐出される。酸化膜50上に供給されたリンス液は、ウエハWの回転に伴って外周側に広がり、酸化膜50の表面全体を被覆する。続いて、コントローラ101の制御下でバルブ24が開かれることによってステップS12が開始され、ウエハWの外周側の酸化膜50に向けて第1の液吐出ノズル21から処理液が吐出される。 The first step S1 is performed by starting the supply of the treatment liquid to the oxide film 50 after the supply of the rinse liquid to the oxide film 50 is started. That is, when the liquid processing method shown in FIG. 3 starts, the supply of the rinsing liquid from the second liquid discharge nozzle 22 to the oxide film 50 is started (see S11 in FIG. 3), and then the first liquid discharge nozzle 21 is started. The supply of the processing liquid from is started (S12). Specifically, before the above-described step S11, all of the valve 24, the valve 29, and the valve 30 shown in FIG. 1 are closed. Then, when the valve 30 is opened under the control of the controller 101, step S <b> 11 is started, and the rinse liquid is discharged from the second liquid discharge nozzle 22 toward the oxide film 50 at the center of the wafer W. The rinse liquid supplied onto the oxide film 50 spreads on the outer peripheral side as the wafer W rotates, and covers the entire surface of the oxide film 50. Subsequently, step S12 is started by opening the valve 24 under the control of the controller 101, and the processing liquid is discharged from the first liquid discharge nozzle 21 toward the oxide film 50 on the outer peripheral side of the wafer W.
 ステップS12における処理液の供給開始は、第2の液吐出ノズル22から吐出されたリンス液が酸化膜50上の十分な範囲を被覆した後(より好ましくは、少なくとも第1の液吐出ノズル21から吐出される処理液の着地地点よりも内側の範囲をリンス液が被覆した後)に行われることが好ましい。これにより、ウエハWの内側における酸化膜50がリンス液によって保護された状態で処理液が供給されるため、処理液の跳ね返りの影響を抑制することができる。 The supply of the processing liquid in step S12 is started after the rinse liquid discharged from the second liquid discharge nozzle 22 covers a sufficient range on the oxide film 50 (more preferably, at least from the first liquid discharge nozzle 21). It is preferably performed after the rinsing liquid covers the area inside the landing point of the discharged processing liquid. Thereby, since the processing liquid is supplied in a state where the oxide film 50 inside the wafer W is protected by the rinse liquid, it is possible to suppress the influence of the rebound of the processing liquid.
 また特に、第1の工程S1において酸化膜50に供給される処理液は、以下の条件1及び条件2を満たすように、第1の液吐出ノズル21から吐出される。 In particular, the treatment liquid supplied to the oxide film 50 in the first step S1 is discharged from the first liquid discharge nozzle 21 so as to satisfy the following conditions 1 and 2.
 図4は、第1の液吐出ノズル21及びウエハWを側方から見た場合の配置関係例を示す概念図である。第1の工程S1において第1の液吐出ノズル21から吐出された処理液は、符合「D1」によって示される吐出方向に沿ってウエハWの外周側に向かって飛翔し、ウエハWの外周部における酸化膜50上に着地する(条件1)。とりわけ、第1の工程S1における第1の液吐出ノズル21からの処理液の吐出方向D1が、ウエハWが延在する方向D2に対して成す鋭角の角度αは、「20°≦α≦70°」を満たすことが好ましい。この角度αが当該範囲にある場合、特に効果的に、ウエハWの内側への処理液の跳ね返りを抑えることができる。 FIG. 4 is a conceptual diagram showing an example of an arrangement relationship when the first liquid discharge nozzle 21 and the wafer W are viewed from the side. The processing liquid discharged from the first liquid discharge nozzle 21 in the first step S1 flies toward the outer peripheral side of the wafer W along the discharge direction indicated by the reference numeral “D1”, and in the outer peripheral portion of the wafer W. Land on the oxide film 50 (condition 1). In particular, the acute angle α formed by the discharge direction D1 of the processing liquid from the first liquid discharge nozzle 21 in the first step S1 with respect to the direction D2 in which the wafer W extends is “20 ° ≦ α ≦ 70. It is preferable to satisfy “°”. When the angle α is within the range, it is possible to suppress the splash of the processing liquid to the inside of the wafer W particularly effectively.
 図5は、第1の液吐出ノズル21及びウエハWを上方から見た場合の配置関係例を示す概念図である。第1の工程S1において第1の液吐出ノズル21から酸化膜50に供給される処理液は、ウエハWの回転方向Rに関しては、ウエハWの回転方向Rと同じ方向へ飛翔して酸化膜50上に着地する(条件2)。とりわけ、第1の工程S1において、処理液の進路がウエハWに投影されて形成される投影進行路Pの方向と、当該投影進行路Pの延長線PEとウエハWの最外周部との交点CにおけるウエハWの接線の方向Tとによって形成される鋭角の角度βは、「40°≦β≦80°」を満たすことが好ましい。この角度βが当該範囲にある場合、酸化膜50上における処理液の跳ね返りや、酸化膜50上での処理液の意図しない方向への広がりを、特に効果的に抑えることができる。 FIG. 5 is a conceptual diagram showing an arrangement relation example when the first liquid discharge nozzle 21 and the wafer W are viewed from above. The processing liquid supplied from the first liquid discharge nozzle 21 to the oxide film 50 in the first step S <b> 1 flies in the same direction as the rotation direction R of the wafer W with respect to the rotation direction R of the wafer W, and the oxide film 50. Land on top (condition 2). In particular, in the first step S1, the direction of the projection traveling path P formed by projecting the path of the processing liquid onto the wafer W and the intersection of the extension line PE of the projection traveling path P and the outermost peripheral portion of the wafer W. The acute angle β formed by the tangential direction T of the wafer W in C preferably satisfies “40 ° ≦ β ≦ 80 °”. When the angle β is within the range, it is possible to particularly effectively suppress the rebound of the treatment liquid on the oxide film 50 and the spread of the treatment liquid on the oxide film 50 in an unintended direction.
 そして、図3に示す第1の工程S1における処理液及びリンス液の供給は、ウエハWの外周部における酸化膜50の厚みが中心部と同じ厚さになるまで続けられる。そして、ウエハWの外周部における酸化膜50の厚みが中心部と同じ厚さに達したら、第1の液吐出ノズル21からの処理液の供給が停止され(S13)、その後、第2の液吐出ノズル22からのリンス液の供給が停止される(S14)。具体的には、コントローラ101の制御下でバルブ24及びバルブ30が閉じられることで、第1の液吐出ノズル21からの処理液の吐出及び第2の液吐出ノズル22からのリンス液の吐出が止められる。 Then, the supply of the processing liquid and the rinsing liquid in the first step S1 shown in FIG. 3 is continued until the thickness of the oxide film 50 on the outer peripheral portion of the wafer W becomes the same as that of the central portion. Then, when the thickness of the oxide film 50 on the outer peripheral portion of the wafer W reaches the same thickness as the central portion, the supply of the processing liquid from the first liquid discharge nozzle 21 is stopped (S13), and then the second liquid The supply of the rinse liquid from the discharge nozzle 22 is stopped (S14). Specifically, the valve 24 and the valve 30 are closed under the control of the controller 101, whereby the treatment liquid is discharged from the first liquid discharge nozzle 21 and the rinse liquid is discharged from the second liquid discharge nozzle 22. It can be stopped.
 そして、この第1の工程S1の後に行われる第2の工程S2では、回転するウエハWの酸化膜50に対し、第2の液吐出ノズル22から処理液が供給される。すなわち、上述のステップS14の直後に、コントローラ101の制御下でバルブ29が開かれ、第2の液吐出ノズル22から酸化膜50に対する処理液の供給が開始される(S15)。そして、ウエハWの表面側F1の全体にわたる酸化膜50の厚みが予め設定された厚さになるまで、第2の液吐出ノズル22からの処理液の供給は続けられる。 In the second step S2 performed after the first step S1, the processing liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50 of the rotating wafer W. That is, immediately after the above-described step S14, the valve 29 is opened under the control of the controller 101, and supply of the processing liquid from the second liquid discharge nozzle 22 to the oxide film 50 is started (S15). Then, the supply of the processing liquid from the second liquid discharge nozzle 22 is continued until the thickness of the oxide film 50 over the entire surface side F1 of the wafer W reaches a preset thickness.
 なお第2の工程S2では、酸化膜50のエッチングをウエハWの全体にわたって行うため、処理液が酸化膜50の表面の全体を覆うように、第2の液吐出ノズル22から酸化膜50上に処理液が供給される。そのため、第2の液吐出ノズル22及び第2のノズルホルダー22aは水平方向に関してウエハWの回転軸線A上に又は回転軸線Aの近傍に配置され、第2の液吐出ノズル22から吐出された処理液は、酸化膜50のうちの回転軸線A上の位置又は回転軸線Aの近傍位置に着地させられる。特に、酸化膜50の全体を均一にエッチングするには、処理液の着地した際の広がりを考慮し、回転軸線Aから少し離れた酸化膜50上の位置に、第2の液吐出ノズル22からの処理液を着地させることが好ましい。なお、回転軸線Aが通過するウエハWの中心に第2の液吐出ノズル22からの処理液を着地させると、遠心力が作用しない場所に常に新鮮な処理液が供給され、ウエハWの中心でのエッチングが他の部分のエッチングよりも進んでしまうため、酸化膜50の全体を均一にエッチングする観点からは好ましくない。このように第2の工程S2では、ウエハWのうち、第1の工程S1で処理液が供給されていた位置には処理液は供給されず、第1の工程S1で処理液が供給されていた位置よりもウエハWの中心側に処理液が供給される。 In the second step S2, the etching of the oxide film 50 is performed over the entire wafer W, so that the processing liquid covers the entire surface of the oxide film 50 from the second liquid discharge nozzle 22 onto the oxide film 50. Treatment liquid is supplied. Therefore, the second liquid discharge nozzle 22 and the second nozzle holder 22a are disposed on or near the rotation axis A of the wafer W with respect to the horizontal direction, and the process discharged from the second liquid discharge nozzle 22 is performed. The liquid is landed at a position on the rotation axis A or in the vicinity of the rotation axis A in the oxide film 50. In particular, in order to uniformly etch the entire oxide film 50, the second liquid discharge nozzle 22 is positioned at a position on the oxide film 50 slightly away from the rotation axis A in consideration of the spread when the processing liquid is landed. It is preferable to land the treatment liquid. Note that when the processing liquid from the second liquid discharge nozzle 22 is landed on the center of the wafer W through which the rotation axis A passes, fresh processing liquid is always supplied to a place where the centrifugal force does not act, and at the center of the wafer W. Since this etching advances more than the etching of other portions, it is not preferable from the viewpoint of uniformly etching the entire oxide film 50. Thus, in the second step S2, the processing liquid is not supplied to the position of the wafer W where the processing liquid is supplied in the first step S1, and the processing liquid is supplied in the first step S1. The processing liquid is supplied to the center side of the wafer W from the above position.
 また酸化膜50の十分な範囲を処理液によって覆うためには、第2の液吐出ノズル22からの処理液の吐出量を十分に大きくするとともに、ウエハWの回転数を十分に大きくすることが好ましい。したがって、第2の工程S2における第2の液吐出ノズル22からの処理液の酸化膜50に対する単位時間当たりの供給量は、第1の工程S1における第1の液吐出ノズル21からの処理液の酸化膜50に対する単位時間当たりの供給量よりも大きい。また、第2の工程S2におけるウエハWの回転数は、第1の工程S1におけるウエハWの回転数よりも速い。 Further, in order to cover a sufficient range of the oxide film 50 with the processing liquid, it is necessary to sufficiently increase the discharge amount of the processing liquid from the second liquid discharge nozzle 22 and sufficiently increase the rotation speed of the wafer W. preferable. Therefore, the supply amount per unit time of the processing liquid from the second liquid discharge nozzle 22 in the second step S2 to the oxide film 50 is the amount of the processing liquid from the first liquid discharge nozzle 21 in the first step S1. It is larger than the supply amount per unit time to the oxide film 50. Further, the rotational speed of the wafer W in the second step S2 is faster than the rotational speed of the wafer W in the first step S1.
 例えば、上述のステップS11~ステップS12の間は、比較的低速である第1の回転速度(例えば200rpm(revolution per minute))で回転するウエハWに対し、比較的多量である第1の供給量(例えば1500ml/min(ミリリットル/分))のリンス液を第2の液吐出ノズル22から供給することで、酸化膜50の表面全体をリンス液で覆うことができる。そして上述のステップS12~ステップS13の間は、比較的低速である第2の回転速度(例えば200rpm)で回転するウエハWに対し、比較的少量である第2の供給量(例えば500ml/min)のリンス液を第2の液吐出ノズル22から供給し、且つ、比較的少量である第3の供給量(例えば400ml/min)の処理液を第1の液吐出ノズル21から供給することができる。そして上述のステップS13~ステップS14の間は、上述の第2の回転速度よりも高速である第3の回転速度(例えば750rpm)で回転するウエハWに対し、比較的多量である第4の供給量(例えば1500ml/min)のリンス液を第2の液吐出ノズル22から供給することで、酸化膜50の表面全体をリンス液で覆うことができる。 For example, during the above-described steps S11 to S12, the first supply amount that is relatively large with respect to the wafer W that rotates at a relatively low first rotation speed (for example, 200 rpm (revolution per minute)). By supplying a rinse liquid (for example, 1500 ml / min (milliliter / min)) from the second liquid discharge nozzle 22, the entire surface of the oxide film 50 can be covered with the rinse liquid. Then, during the above-described steps S12 to S13, a relatively small second supply amount (for example, 500 ml / min) is applied to the wafer W rotating at a relatively low second rotation speed (for example, 200 rpm). The rinsing liquid can be supplied from the second liquid discharge nozzle 22, and a relatively small third supply amount (for example, 400 ml / min) can be supplied from the first liquid discharge nozzle 21. . During the above-described step S13 to step S14, a relatively large amount of the fourth supply is supplied to the wafer W rotating at a third rotation speed (for example, 750 rpm) which is higher than the above-described second rotation speed. By supplying an amount of rinse liquid (for example, 1500 ml / min) from the second liquid discharge nozzle 22, the entire surface of the oxide film 50 can be covered with the rinse liquid.
 なお、上述のステップS12~ステップS13の間におけるウエハWの具体的な回転速度は、ウエハWの外周部の酸化膜50のプロファイルに応じて設定されることが好ましい。すなわちステップS12~ステップS13において、ウエハW上に供給されたリンス液は、遠心力を受けてウエハWの外周部に向かって広がるが、リンス液に作用する遠心力の大きさはウエハWの回転速度に応じて変わる。その一方で、ウエハW上におけるリンス液と処理液との境界の状態は、リンス液が受ける遠心力の大きさによって変わり、リンス液が大きな遠心力を受けるほど、ウエハWの外周部に供給される処理液のエッチング作用がリンス液によって阻害される。そのため、ウエハWの回転速度が速くなるほど、ウエハWの外周部におけるリンス液の影響が大きくなり、処理液とリンス液との境界近傍におけるエッチング量の変化が緩やかになって、ウエハWの径方向に関するエッチングプロファイルは緩やかな角度を形成する。一方、ウエハWの回転速度が遅くなるほど、ウエハWの外周部におけるリンス液の影響が小さくなり、処理液とリンス液との境界近傍におけるエッチング量の変化が急激になって、ウエハWの径方向に関するエッチングプロファイルは急な角度を形成する。したがってステップS12~ステップS13の間の工程は、このようなエッチング特性を考慮し、ウエハWの外周部における酸化膜50を中心部の酸化膜50と同じ厚さにエッチングするのに適した回転速度で、ウエハWが回転されることが好ましい。 Note that the specific rotation speed of the wafer W between the above-described steps S12 to S13 is preferably set according to the profile of the oxide film 50 on the outer peripheral portion of the wafer W. That is, in step S12 to step S13, the rinsing liquid supplied onto the wafer W receives a centrifugal force and spreads toward the outer peripheral portion of the wafer W. The magnitude of the centrifugal force acting on the rinsing liquid is the rotation of the wafer W. Varies with speed. On the other hand, the state of the boundary between the rinsing liquid and the processing liquid on the wafer W changes depending on the magnitude of the centrifugal force received by the rinsing liquid, and as the rinsing liquid receives a larger centrifugal force, the boundary liquid is supplied to the outer peripheral portion of the wafer W. The etching action of the treatment liquid is hindered by the rinse liquid. Therefore, as the rotational speed of the wafer W increases, the influence of the rinsing liquid on the outer periphery of the wafer W increases, and the change in the etching amount in the vicinity of the boundary between the processing liquid and the rinsing liquid becomes gradual. The etching profile for forms a gentle angle. On the other hand, the slower the rotation speed of the wafer W, the smaller the influence of the rinsing liquid on the outer periphery of the wafer W, and the change in the etching amount in the vicinity of the boundary between the processing liquid and the rinsing liquid becomes abrupt. The etching profile for forms a steep angle. Therefore, in the process between step S12 and step S13, considering such etching characteristics, a rotation speed suitable for etching the oxide film 50 on the outer peripheral portion of the wafer W to the same thickness as the oxide film 50 in the central portion. Thus, it is preferable that the wafer W is rotated.
 そして上述のステップS14とステップS15とをほぼ同時に行うことで、第2の液吐出ノズル22から吐出される液体を、間断なく、リンス液から処理液に切り換えることができる。そしてステップS15~ステップS16の間は、ウエハWの回転速度を上記の第3の速度から第4の速度(例えば500rpm)に徐々に低下させつつ、比較的多量である第5の供給量(例えば1500ml/min)の処理液を第2の液吐出ノズル22からウエハWに供給することで、酸化膜50の表面全体を処理液で覆うことができる。 And by performing step S14 and step S15 described above almost simultaneously, the liquid discharged from the second liquid discharge nozzle 22 can be switched from the rinse liquid to the processing liquid without interruption. During steps S15 to S16, the rotational speed of the wafer W is gradually decreased from the third speed to the fourth speed (for example, 500 rpm), and the fifth supply amount (for example, a relatively large amount) (for example, By supplying a processing liquid of 1500 ml / min) from the second liquid discharge nozzle 22 to the wafer W, the entire surface of the oxide film 50 can be covered with the processing liquid.
 そして、ウエハWの全体にわたる酸化膜50の厚みが所望厚に達したら、コントローラ101の制御下でバルブ29が閉じられて、第2の液吐出ノズル22からの処理液の供給が停止される(S16)。その後、コントローラ101の制御下でバルブ30が開かれて、第2の液吐出ノズル22から酸化膜50にリンス液が供給される(S17)。そして、酸化膜50上に残存する処理液がリンス液によって洗い流された後に、コントローラ101の制御下でバルブ30が閉じられて、第2の液吐出ノズル22から酸化膜50に対するリンス液の供給が停止される(S18)。なお、上述のステップS17~ステップS18の間は、上述の第4の速度よりも高速な第5の速度(例えば1500rpm)で回転するウエハWに対し、比較的多量である第6の供給量(例えば1500ml/min)のリンス液を第2の液吐出ノズル22から供給することで、酸化膜50の表面全体をリンス液で覆うことができる。 When the thickness of the oxide film 50 over the entire wafer W reaches a desired thickness, the valve 29 is closed under the control of the controller 101, and the supply of the processing liquid from the second liquid discharge nozzle 22 is stopped ( S16). Thereafter, the valve 30 is opened under the control of the controller 101, and the rinse liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50 (S17). Then, after the processing liquid remaining on the oxide film 50 is washed away by the rinse liquid, the valve 30 is closed under the control of the controller 101, and the rinse liquid is supplied from the second liquid discharge nozzle 22 to the oxide film 50. Stopped (S18). Note that, during the above-described steps S17 to S18, the sixth supply amount (relatively large amount) is supplied to the wafer W rotating at the fifth speed (for example, 1500 rpm) higher than the fourth speed. For example, the entire surface of the oxide film 50 can be covered with the rinse liquid by supplying the rinse liquid of 1500 ml / min) from the second liquid discharge nozzle 22.
 そして上述のステップS18の後は、第1の液吐出ノズル21及び第2の液吐出ノズル22からの液体の吐出を停止させた状態で比較的高速(例えば1500ml/min)でウエハWを回転させることで、ウエハWのスピンドライが行われる。上述の一連の処理ステップを経ることによって、ウエハWの酸化膜50は平坦化される。 After step S18 described above, the wafer W is rotated at a relatively high speed (for example, 1500 ml / min) in a state where the liquid discharge from the first liquid discharge nozzle 21 and the second liquid discharge nozzle 22 is stopped. Thus, the spin drying of the wafer W is performed. Through the above-described series of processing steps, the oxide film 50 of the wafer W is planarized.
 以上説明したように本実施形態の液処理装置100及び液処理方法によれば、上述の第1の工程S1及び第2の工程S2が順次行われることによって、平坦な酸化膜50をウエハWに精度良く形成することができる。 As described above, according to the liquid processing apparatus 100 and the liquid processing method of the present embodiment, the flat oxide film 50 is formed on the wafer W by sequentially performing the first step S1 and the second step S2 described above. It can be formed with high accuracy.
 特に、上述の条件1(図4参照)及び条件2(図5参照)を満たすように第1の液吐出ノズル21から処理液を吐出させることによって、意図しない箇所で酸化膜50がエッチングされてしまうことを効果的に防ぐことができるとともに処理液の跳ね返りや広がりを抑えることができる。 In particular, by discharging the processing liquid from the first liquid discharge nozzle 21 so as to satisfy the above-described condition 1 (see FIG. 4) and condition 2 (see FIG. 5), the oxide film 50 is etched at an unintended location. Can be effectively prevented, and the rebound and spread of the processing liquid can be suppressed.
 本件発明者は、第1の液吐出ノズル21からの処理液の吐出角度を変えながら酸化膜50のエッチング量を水平方向位置と関連づけて測定し、酸化膜50のエッチング量と水平方向位置との関係を評価した。具体的には、上述の条件1及び条件2を満たす範囲で処理液の吐出角度を変えて複数回の測定を行った検証1と、上述の条件1及び/又は条件2を満たさない範囲で処理液の吐出角度を変えて複数回の測定を行った検証2とを行った。その結果、上述の条件1及び条件2が満たされる検証1では、いずれの場合においても、「処理液によって酸化膜50の除去が観察された酸化膜50上の最も内側の位置」と「当該処理液が酸化膜50上に着地した位置」との差(以下、「処理液ずれ量」と称する)は、概ね10mm(ミリメートル)以内の範囲に収まっていた。一方、上述の条件1及び条件2以外の条件は上記の検証1とほぼ同じにして且つ上述の条件1及び条件2が満たされない検証2では、殆どの場合で処理液ずれ量が10mmを超えており、多くの場合で処理液ずれ量が20mmを超えていた。これらの検証1及び検証2の結果からも、上述の条件1及び条件2を満たすように第1の液吐出ノズル21から処理液を吐出させることによって、処理液の跳ね返りや広がりを抑えることができ、酸化膜50のうち狙った箇所を精度良くエッチングすることができることが分かる。 The inventor measures the etching amount of the oxide film 50 in association with the horizontal position while changing the discharge angle of the processing liquid from the first liquid discharge nozzle 21, and determines the etching amount of the oxide film 50 and the horizontal position. The relationship was evaluated. Specifically, verification 1 in which measurement is performed a plurality of times while changing the discharge angle of the processing liquid within a range that satisfies the above-described condition 1 and condition 2, and a process that does not satisfy the above-described condition 1 and / or condition 2 Verification 2 was performed in which the liquid discharge angle was changed and measurement was performed a plurality of times. As a result, in the verification 1 in which the above condition 1 and condition 2 are satisfied, in any case, “the innermost position on the oxide film 50 where the removal of the oxide film 50 was observed by the treatment liquid” and “the process concerned” The difference from the “position where the liquid landed on the oxide film 50” (hereinafter referred to as “processing liquid shift amount”) was generally within a range of 10 mm (millimeters). On the other hand, in the verification 2 in which the conditions other than the above-described conditions 1 and 2 are substantially the same as the above-described verification 1 and the above-described conditions 1 and 2 are not satisfied, in most cases, the amount of displacement of the processing liquid exceeds 10 mm. In many cases, the displacement of the processing liquid exceeded 20 mm. From the results of these verifications 1 and 2, it is possible to suppress the rebound and spread of the processing liquid by discharging the processing liquid from the first liquid discharge nozzle 21 so as to satisfy the above conditions 1 and 2. It can be seen that the targeted portion of the oxide film 50 can be etched with high accuracy.
 なお、処理液によりエッチングされたウエハWの面は疎水化される。疎水化された面上に処理液膜を適切に形成するには、多量の処理液を供給したり、ウエハWを高速に回転させたりすることが必要である。その一方で、上述の第1の工程S1では、ウエハWの内側への処理液の液跳ねを防止する観点から、多量の処理液を供給したり、ウエハWの回転速度を高速に設定したりすることが難しい。したがって、まず上述の第2の工程S2を行って、その後に上述の第1の工程S1を行う手法は、第1の工程S1のエッチング処理が不安定になるため、好ましくない。一方、第2の工程S2に先立って第1の工程S1が行われる図3に示す手法は、第1の工程S1及び第2の工程S2を安定的に行うことができるため、好ましい。 Note that the surface of the wafer W etched with the processing liquid is hydrophobized. In order to appropriately form the processing liquid film on the hydrophobic surface, it is necessary to supply a large amount of processing liquid or to rotate the wafer W at a high speed. On the other hand, in the first step S1 described above, from the viewpoint of preventing the processing liquid from splashing inside the wafer W, a large amount of processing liquid is supplied, or the rotation speed of the wafer W is set to a high speed. Difficult to do. Therefore, the method of first performing the second step S2 and then performing the first step S1 is not preferable because the etching process in the first step S1 becomes unstable. On the other hand, the method shown in FIG. 3 in which the first step S1 is performed prior to the second step S2 is preferable because the first step S1 and the second step S2 can be performed stably.
[変形例]
 本発明は、上述の実施形態及び変形例に限定されるものではなく、当業者が想到しうる種々の変形が加えられた各種態様も含みうるものであり、本発明によって奏される効果も上述の事項に限定されない。したがって、本発明の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲及び明細書に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。
[Modification]
The present invention is not limited to the above-described embodiments and modifications, and can include various aspects to which various modifications that can be conceived by those skilled in the art can be included. The effects achieved by the present invention are also described above. It is not limited to the matter of. Therefore, various additions, modifications, and partial deletions can be made to each element described in the claims and the specification without departing from the technical idea and spirit of the present invention.
 例えば、上述の実施形態ではウエハWの表面側F1の酸化膜50のみが処理液によるエッチングの対象となっていたが、ウエハWの表面側F1に対する処理液及び/又はリンス液の供給とともにウエハWの裏面側F2に対する処理液及び/又はリンス液の供給が行われてもよい。この場合、ウエハWの裏面側F2に対する液の供給開始は、ウエハWの表面側F1に対して液が既に供給されている状態で行われることが好ましい。これにより、ウエハWの裏面側F2に供給された液が、表面側F1に回り込んでしまうことを、効果的に防ぐことができる。 For example, in the above-described embodiment, only the oxide film 50 on the front surface side F1 of the wafer W is an object to be etched by the processing liquid, but the wafer W is supplied together with the supply of the processing liquid and / or the rinsing liquid to the front surface side F1 of the wafer W. The processing liquid and / or the rinsing liquid may be supplied to the back surface side F2. In this case, it is preferable that the supply of the liquid to the rear surface side F2 of the wafer W is performed in a state where the liquid is already supplied to the front surface side F1 of the wafer W. Thereby, it can prevent effectively that the liquid supplied to the back surface side F2 of the wafer W wraps around to the surface side F1.
 例えば上述の第1の工程S1ではリンス液及び処理液がウエハWの表面側F1の酸化膜50に供給され、第2の工程では処理液がウエハWの表面側F1の酸化膜50に供給される。これらの第1の工程S1及び第2の工程S2のうち少なくともいずれか一方において、ウエハWの裏面側F2にも処理液及び/又はリンス液が供給されてもよい。この場合、第1の工程S1及び第2の工程S2のうち少なくともいずれか一方における処理液がウエハWの表面側F1に供給されている状態で、ウエハWの裏面側F2に対する処理液及び/又はリンス液の供給が開始される。一例として、第1の工程S1では比較的多量(例えば1000ml/min)のリンス液をウエハWの裏面側F2に供給してもよく、また第2の工程S2では比較的多量(例えば1000ml/min)の処理液をウエハWの裏面側F2に形成された酸化膜に供給してもよい。なおウエハWの裏面側F2に対する処理液及び/又はリンス液の供給は、表面側F1に設けられたノズル21、22及びバルブ24、29、30と同様の構成を有するノズル及びバルブを裏面側F2に設けて、当該ノズルからウエハWの裏面側F2に向けて処理液及び/又はリンス液を吐出させることで行うことができる。 For example, in the first step S1, the rinsing liquid and the processing liquid are supplied to the oxide film 50 on the front surface side F1 of the wafer W, and in the second process, the processing liquid is supplied to the oxide film 50 on the front surface side F1 of the wafer W. The In at least one of the first step S1 and the second step S2, the processing liquid and / or the rinsing liquid may be supplied also to the back surface side F2 of the wafer W. In this case, in the state in which the processing liquid in at least one of the first process S1 and the second process S2 is supplied to the front surface side F1 of the wafer W, and / or The supply of the rinse liquid is started. As an example, a relatively large amount (for example, 1000 ml / min) of rinsing liquid may be supplied to the back surface side F2 of the wafer W in the first step S1, and a relatively large amount (for example, 1000 ml / min) in the second step S2. ) May be supplied to the oxide film formed on the back surface side F2 of the wafer W. The supply of the processing liquid and / or the rinsing liquid to the back surface side F2 of the wafer W is performed using the nozzles and valves having the same configuration as the nozzles 21 and 22 and the valves 24, 29, and 30 provided on the front surface side F1. And the processing liquid and / or the rinsing liquid can be discharged from the nozzle toward the back surface side F2 of the wafer W.
 また、上述の処理液及びリンス液の具体的な組成も特に限定されず、ウエハW等の基板に形成された酸化膜50等の膜を除去することができる液体を処理液として使用することが可能であり、そのような処理液を適切に洗い流すことができる液体をリンス液として使用することが可能である。また第1の液吐出ノズル21から吐出される処理液と第2の液吐出ノズル22から吐出される処理液とは、相互に同じ組成の液体であってもよいし、相互に異なる組成の液体であってもよい。またウエハWの裏面側に供給される処理液は、第1の液吐出ノズル21及び/又は第2の液吐出ノズル22から吐出される処理液と同じ組成であってもよいし、異なる組成であってもよい。またウエハWの裏面側に供給されるリンス液は、第2の液吐出ノズル22から吐出されるリンス液と同じ組成であってもよいし、異なる組成であってもよい。 In addition, the specific composition of the processing liquid and the rinsing liquid described above is not particularly limited, and a liquid that can remove the film such as the oxide film 50 formed on the substrate such as the wafer W is used as the processing liquid. It is possible to use as the rinsing liquid a liquid that can properly wash away such a processing liquid. Further, the processing liquid discharged from the first liquid discharge nozzle 21 and the processing liquid discharged from the second liquid discharge nozzle 22 may be liquids having the same composition, or liquids having different compositions. It may be. Further, the processing liquid supplied to the back surface side of the wafer W may have the same composition as the processing liquid discharged from the first liquid discharge nozzle 21 and / or the second liquid discharge nozzle 22, or a different composition. There may be. Further, the rinsing liquid supplied to the back side of the wafer W may have the same composition as the rinsing liquid discharged from the second liquid discharge nozzle 22 or a different composition.
1 基板保持部
2 回転機構
4 液供給機構
50 酸化膜
100 液処理装置
101 コントローラ
W ウエハ
S1 第1の工程
S2 第2の工程
DESCRIPTION OF SYMBOLS 1 Substrate holding | maintenance part 2 Rotation mechanism 4 Liquid supply mechanism 50 Oxide film 100 Liquid processing apparatus 101 Controller W Wafer S1 1st process S2 2nd process

Claims (10)

  1.  中心部の膜より外周部の膜が厚い基板に対してエッチング液を供給して当該膜をエッチングする液処理方法であって、
     基板を回転させながら外周部に形成された中心部より厚い膜にエッチング液を供給するとともに前記エッチング液が供給される位置よりも前記基板の中心側に前記エッチング液による前記膜のエッチングを阻害するエッチング阻害液を供給して前記外周部の膜をエッチングする第1の工程と、
     前記第1の工程の後に、回転する前記基板にエッチング液を供給して予め設定された膜厚までエッチングする第2の工程と、を備える液処理方法。
    A liquid processing method for etching a film by supplying an etchant to a substrate having a thicker outer peripheral film than a central film,
    While rotating the substrate, the etching solution is supplied to a film thicker than the central portion formed on the outer peripheral portion, and the etching of the film by the etching solution is hindered toward the center side of the substrate from the position where the etching solution is supplied. A first step of supplying an etching inhibitor to etch the outer peripheral film;
    And a second step of supplying an etching solution to the rotating substrate and etching to a preset film thickness after the first step.
  2.  前記第2の工程では、前記基板のうち、前記第1の工程で前記エッチング液が供給されていた位置には前記エッチング液を供給せず、前記第1の工程で前記エッチング液が供給されていた位置よりも前記基板の中心側に前記エッチング液を供給する請求項1に記載の液処理方法。 In the second step, the etching solution is not supplied to the position of the substrate where the etching solution is supplied in the first step, and the etching solution is supplied in the first step. The liquid processing method according to claim 1, wherein the etching liquid is supplied to a center side of the substrate with respect to a position.
  3.  前記第1の工程において、前記エッチング液の第1処理液吐出ノズルからの吐出方向が、前記基板が延在する方向に対して成す鋭角の角度αは、20°≦α≦70°を満たす請求項1又は2に記載の液処理方法。 In the first step, an acute angle α formed by a discharge direction of the etching liquid from the first treatment liquid discharge nozzle with respect to a direction in which the substrate extends satisfies 20 ° ≦ α ≦ 70 °. Item 3. The liquid treatment method according to Item 1 or 2.
  4.  前記第1の工程において、前記エッチング液の進路が前記基板上に投影されて形成される投影進行路の方向と、当該投影進行路の延長線と前記基板の最外周部との交点における前記基板の接線の方向とによって形成される鋭角の角度βは、40°≦β≦80°を満たす請求項1~3のいずれか一項に記載の液処理方法。 In the first step, the substrate at the intersection of the direction of the projection path formed by projecting the path of the etching solution onto the substrate, and the extension line of the projection path and the outermost periphery of the substrate The liquid processing method according to any one of claims 1 to 3, wherein an acute angle β formed by the direction of the tangent line satisfies 40 ° ≦ β ≦ 80 °.
  5.  前記第1の工程は、前記エッチング阻害液の供給が開始された後に、前記エッチング液の供給が開始される請求項1~4のいずれか一項に記載の液処理方法。 The liquid processing method according to any one of claims 1 to 4, wherein in the first step, the supply of the etching solution is started after the supply of the etching inhibitor is started.
  6.  前記第1の工程において、前記エッチング阻害液及び前記エッチング液は、前記基板の表面側に供給され、
     前記第2の工程において、前記エッチング液は、前記基板の前記表面側に供給され、
     前記第1の工程及び前記第2の工程のうち少なくともいずれか一方において、前記基板の裏面側に第2の液が供給され、
     前記第2の液は、前記第1の工程及び前記第2の工程のうち少なくともいずれか一方における前記エッチング液が前記基板の前記表面側に供給されている状態で、前記基板の前記裏面側に供給される請求項1~5のいずれか一項に記載の液処理方法。
    In the first step, the etching inhibitor and the etchant are supplied to the surface side of the substrate,
    In the second step, the etching solution is supplied to the surface side of the substrate,
    In at least one of the first step and the second step, a second liquid is supplied to the back side of the substrate,
    The second liquid is applied to the back surface side of the substrate in a state where the etching liquid in at least one of the first step and the second step is supplied to the front surface side of the substrate. The liquid treatment method according to any one of claims 1 to 5, which is supplied.
  7.  前記第2の工程における前記エッチング液の単位時間当たりの供給量は、前記第1の工程における前記エッチング液の単位時間当たりの供給量よりも大きい請求項1~6のいずれか一項に記載の液処理方法。 The supply amount of the etching solution per unit time in the second step is larger than the supply amount of the etching solution per unit time in the first step. Liquid processing method.
  8.  前記第2の工程における前記基板の回転数は、前記第1の工程における前記基板の回転数よりも速い請求項1~7のいずれか一項に記載の液処理方法。 The liquid processing method according to any one of claims 1 to 7, wherein the number of rotations of the substrate in the second step is faster than the number of rotations of the substrate in the first step.
  9.  前記エッチング阻害液は純水である請求項1~8のいずれか一項に記載の液処理方法。 The liquid processing method according to any one of claims 1 to 8, wherein the etching inhibitor is pure water.
  10.  中心部の膜より外周部の膜が厚い基板に対してエッチング液を供給して膜をエッチングする液処理装置であって、
     基板を回転可能に保持する基板保持部と、
     前記基板保持部を回転させる回転機構と、
     前記基板保持部に保持される前記基板に形成された膜に液を供給する液供給機構と、
     少なくとも前記液供給機構を制御するコントローラと、を備え、
     前記コントローラは、
     前記基板保持部により保持されて回転する前記基板の前記膜に対して前記液供給機構からエッチング液及びエッチング阻害液を供給する第1の工程であって、前記基板を回転させながら外周部に形成された中心部より厚い膜にエッチング液を供給するとともに前記エッチング液が供給される位置よりも前記基板の中心側に前記エッチング液による前記膜のエッチングを阻害するエッチング阻害液を供給して前記外周部の膜をエッチングする第1の工程と、
     前記第1の工程の後に、回転する前記基板にエッチング液を供給して予め設定された膜厚までエッチングする第2の工程と、を行う液処理装置。
    A liquid processing apparatus that etches a film by supplying an etchant to a substrate having a thicker outer peripheral film than a central film,
    A substrate holder for rotatably holding the substrate;
    A rotation mechanism for rotating the substrate holder;
    A liquid supply mechanism for supplying a liquid to a film formed on the substrate held by the substrate holding unit;
    A controller for controlling at least the liquid supply mechanism,
    The controller is
    A first step of supplying an etchant and an etch inhibitor from the liquid supply mechanism to the film of the substrate that is held and rotated by the substrate holder, and is formed on the outer periphery while rotating the substrate. Supplying an etchant to a film thicker than the central portion and supplying an etchant inhibiting the etching of the film by the etchant toward the center of the substrate from the position where the etchant is supplied. A first step of etching part of the film;
    A liquid processing apparatus for performing, after the first step, a second step of supplying an etching liquid to the rotating substrate and etching to a preset film thickness.
PCT/JP2017/038207 2016-10-26 2017-10-23 Fluid treatment method and fluid treatment device WO2018079494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547659A JP6755962B2 (en) 2016-10-26 2017-10-23 Liquid treatment method and liquid treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209840 2016-10-26
JP2016-209840 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079494A1 true WO2018079494A1 (en) 2018-05-03

Family

ID=62024976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038207 WO2018079494A1 (en) 2016-10-26 2017-10-23 Fluid treatment method and fluid treatment device

Country Status (3)

Country Link
JP (1) JP6755962B2 (en)
TW (1) TW201828356A (en)
WO (1) WO2018079494A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038888A (en) * 2018-09-03 2020-03-12 株式会社プレテック Etching device and etching method
WO2020158210A1 (en) * 2019-01-30 2020-08-06 信越半導体株式会社 Etching method
JP2021012915A (en) * 2019-07-04 2021-02-04 東京エレクトロン株式会社 Etching apparatus and etching method
JPWO2021124900A1 (en) * 2019-12-16 2021-06-24
JP2021106237A (en) * 2019-12-27 2021-07-26 株式会社Screenホールディングス Substrate processing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2002170808A (en) * 2000-12-04 2002-06-14 Dainippon Screen Mfg Co Ltd Bevel etching apparatus
JP2003318154A (en) * 2002-04-25 2003-11-07 Dainippon Screen Mfg Co Ltd Method and device for etching substrate
JP2004335923A (en) * 2003-05-12 2004-11-25 Sony Corp Etching method and etching device
JP2007266302A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Liquid processing apparatus, and liquid processing method, as well as computer-readable storage medium
JP2010010679A (en) * 2008-06-24 2010-01-14 Semes Co Ltd Substrate processing device and method for selectively etching substrate surface
JP2010040729A (en) * 2008-08-05 2010-02-18 Sumco Corp Method for manufacturing soi wafer
JP2016066740A (en) * 2014-09-25 2016-04-28 東京エレクトロン株式会社 Substrate liquid processing method, substrate liquid processing apparatus, and storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2002170808A (en) * 2000-12-04 2002-06-14 Dainippon Screen Mfg Co Ltd Bevel etching apparatus
JP2003318154A (en) * 2002-04-25 2003-11-07 Dainippon Screen Mfg Co Ltd Method and device for etching substrate
JP2004335923A (en) * 2003-05-12 2004-11-25 Sony Corp Etching method and etching device
JP2007266302A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Liquid processing apparatus, and liquid processing method, as well as computer-readable storage medium
JP2010010679A (en) * 2008-06-24 2010-01-14 Semes Co Ltd Substrate processing device and method for selectively etching substrate surface
JP2010040729A (en) * 2008-08-05 2010-02-18 Sumco Corp Method for manufacturing soi wafer
JP2016066740A (en) * 2014-09-25 2016-04-28 東京エレクトロン株式会社 Substrate liquid processing method, substrate liquid processing apparatus, and storage medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038888A (en) * 2018-09-03 2020-03-12 株式会社プレテック Etching device and etching method
JP7141892B2 (en) 2018-09-03 2022-09-26 株式会社プレテック Etching apparatus and etching method
WO2020158210A1 (en) * 2019-01-30 2020-08-06 信越半導体株式会社 Etching method
JP2021012915A (en) * 2019-07-04 2021-02-04 東京エレクトロン株式会社 Etching apparatus and etching method
JP7309485B2 (en) 2019-07-04 2023-07-18 東京エレクトロン株式会社 Etching apparatus and etching method
JPWO2021124900A1 (en) * 2019-12-16 2021-06-24
WO2021124900A1 (en) * 2019-12-16 2021-06-24 東京エレクトロン株式会社 Substrate processing method
KR20220115980A (en) 2019-12-16 2022-08-19 도쿄엘렉트론가부시키가이샤 Substrate processing method
JP7357693B2 (en) 2019-12-16 2023-10-06 東京エレクトロン株式会社 Substrate processing method
JP2021106237A (en) * 2019-12-27 2021-07-26 株式会社Screenホールディングス Substrate processing method
JP7386700B2 (en) 2019-12-27 2023-11-27 株式会社Screenホールディングス Substrate processing method

Also Published As

Publication number Publication date
JP6755962B2 (en) 2020-09-16
JPWO2018079494A1 (en) 2019-07-25
TW201828356A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2018079494A1 (en) Fluid treatment method and fluid treatment device
JP4708286B2 (en) Substrate processing apparatus and substrate processing method
JP6246749B2 (en) Wet etching method, substrate liquid processing apparatus, and storage medium
JP4708243B2 (en) Liquid processing apparatus, liquid processing method, and computer-readable storage medium
JP6183705B2 (en) Substrate processing method and substrate processing apparatus
KR101371118B1 (en) Chemical processing apparatus and chemical processing method
JP5270607B2 (en) Substrate processing equipment
TWI706700B (en) Substrate processing method and substrate processing apparatus
KR102369452B1 (en) Substrate processing method and substrate processing apparatus
KR20150034644A (en) Substrate treatment method and substrate treatment apparatus
JP5184476B2 (en) Substrate liquid processing method, substrate liquid processing apparatus, and storage medium
JP3874261B2 (en) Substrate processing equipment
JP2007258565A (en) Substrate processing method and substrate processing apparatus
US11508589B2 (en) Substrate processing method, substrate processing apparatus and recording medium
JP2020077735A (en) Substrate treatment method and substrate treatment apparatus
TWI769416B (en) Substrate processing method and substrate processing apparatus
JP2009295910A (en) Substrate processing method
JP4679479B2 (en) Substrate processing apparatus and substrate processing method
US8815112B2 (en) Liquid processing method, recording medium having recorded program for executing liquid processing method therein and liquid processing apparatus
JP2009147038A (en) Substrate treating method
JP3884700B2 (en) Substrate processing apparatus and substrate processing method
JP2006351805A (en) Substrate processing method and device
JP2018006647A (en) Substrate liquid processing method and substrate liquid processing device
KR20030089928A (en) Method for etching an edge face of a substrate
JP2017191849A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865747

Country of ref document: EP

Kind code of ref document: A1