WO2018079398A1 - 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法 - Google Patents

高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018079398A1
WO2018079398A1 PCT/JP2017/037824 JP2017037824W WO2018079398A1 WO 2018079398 A1 WO2018079398 A1 WO 2018079398A1 JP 2017037824 W JP2017037824 W JP 2017037824W WO 2018079398 A1 WO2018079398 A1 WO 2018079398A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
rolling
hot
electric
Prior art date
Application number
PCT/JP2017/037824
Other languages
English (en)
French (fr)
Inventor
昌利 荒谷
信作 小久保
弘道 堀
河端 良和
亮二 松井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018504958A priority Critical patent/JP6465249B2/ja
Priority to US16/326,420 priority patent/US11332812B2/en
Priority to EP17865860.5A priority patent/EP3476953B1/en
Priority to MX2019002073A priority patent/MX2019002073A/es
Priority to KR1020197004861A priority patent/KR102232097B1/ko
Priority to CN201780051092.8A priority patent/CN109642264A/zh
Publication of WO2018079398A1 publication Critical patent/WO2018079398A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the present invention relates to an electric resistance steel pipe suitable for use in an automobile stabilizer, and more particularly, to an electric resistance steel pipe for high strength thin hollow stabilizer for improving the fatigue resistance of an electric resistance steel pipe for high strength thin hollow stabilizer and a method for manufacturing the same.
  • the term “thin wall” as used herein refers to a case where the thickness t is 6 mm or less, the ratio of the thickness t (mm) to the outer diameter D (mm), and t / D is 0.2 or less. To do.
  • Such a hollow stabilizer is usually made of a seamless steel pipe or an electric resistance welded steel pipe (hereinafter also referred to as an electric resistance welded steel pipe) and formed into a desired shape in a cold state, and then subjected to tempering such as quenching or quenching and tempering.
  • tempering such as quenching or quenching and tempering.
  • the product is processed.
  • ERW steel pipes are widely used as a material for hollow stabilizers because they are relatively inexpensive and have excellent dimensional accuracy.
  • Patent Document 1 describes a method for manufacturing a hollow stabilizer having excellent fatigue resistance.
  • the rolling temperature is 600 to 850 ° C and the cumulative reduction ratio is 40% or more.
  • a hollow stabilizer is formed by sequentially performing a forming step of forming into a stabilizer shape by cold bending and a heat treatment step of quenching and tempering. According to the technique described in Patent Document 1, fatigue resistance characteristics can be improved by an inexpensive method.
  • Patent Document 2 describes a steel pipe for a high-strength hollow stabilizer.
  • the steel pipe described in Patent Document 2 is in mass%, C: 0.20 to 0.38%, Si: 0.10 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, W: 0.01 to 1.50%, B And 0.0005 to 0.0050%, and further containing Ti and N in a range of Ti: 0.001 to 0.04%, N: 0.0010 to 0.0100% and satisfying N / 14 ⁇ Ti / 47.9,
  • This is an ERW steel pipe for high-strength hollow stabilizers that has an excellent balance between strength and toughness after quenching or quenching and tempering.
  • a hollow stabilizer having a high hardness exceeding 400 HV and an excellent balance between strength and toughness that could not be obtained can be easily manufactured.
  • Patent Document 3 by mass, C: 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, Ti: 0.001 to 0.04%, B: 0.0005 -0.0050%, N: 0.0010-0.0100%, and Ti and N are contained so as to satisfy (N / 14) ⁇ (Ti / 47.9).
  • An electric resistance welded steel pipe for heat treatment having an excellent flatness of 25 ⁇ m or less is described.
  • a steel pipe material having the above composition is formed into a substantially cylindrical open pipe, and then the ends of the open pipe are brought into contact with each other so that the bond width becomes 30 to 65 ⁇ m by high frequency resistance welding.
  • a method of manufacturing an electric resistance welded steel pipe for heat treatment excellent in flatness is described in which diameter reduction rolling of a bond width before rolling ( ⁇ m) ⁇ 100% or more is performed and a bond width is 25 ⁇ m or less.
  • the electric resistance welded steel pipe obtained by the manufacturing method described in Patent Document 3 is said to be suitable for a use in which quenching treatment such as a hollow stabilizer is performed.
  • the ERW welded steel pipe described in Patent Document 3 has a narrow decarburized layer width in the ERW welded portion, it can suppress a decrease in the quenching hardness of the ERW welded portion even when subjected to quenching treatment by rapid heating for a short time. It is said that it can be a hollow stabilizer with excellent durability.
  • Patent Document 4 preferably in terms of mass%, C: 0.15 to 0.5%, Si: 0.1 to 0.4%, Mn: 0.3 to 2.0%, Ti: 0.005 to 0.05%, Al: 0.005 to 0.05%, B : 0.0005 to 0.0050%, N: 0.001 to 0.006% of the composition containing 1 to 20% by weight of alkali metal carbonate in the steel tube, the balance being one of charcoal, graphite, coal, coke or two or more and unavoidable impurities consisting of solid carburizing agent, insert surface area 1 mm 2 per 0.05 ⁇ g or more tube surface, attach the plug at both ends, reducing the diameter rolling between induction heating and heat, excellent fatigue strength A method of manufacturing a steel pipe is described.
  • a solid carburizing agent is adhered to the inner surface of the pipe, and by performing hot diameter reduction rolling, formation of a decarburized layer on the inner surface can be prevented, fatigue strength is increased, and hollowness is increased.
  • the steel pipe is suitable as a material for stabilizers and the like, and has excellent fatigue strength.
  • hollow stabilizers In response to the recent demand for further weight reduction of automobile bodies, hollow stabilizers, one of the automobile body members, are also being rapidly increased in strength and thickness. Therefore, there is a need for thin-walled electric-welded steel pipes that can retain excellent fatigue resistance after being molded into a stabilizer shape and subjected to heat treatment, for hollow stabilizers.
  • the “thin” ERW steel pipe here means an ERW steel pipe having a thickness t: 6 mm or less, a ratio of the thickness t (mm) to the outer diameter D (mm), and t / D being 0.2 or less. .
  • An object of the present invention is to provide an electric resistance welded steel pipe having excellent fatigue resistance after being formed into a stabilizer shape and subjected to heat treatment, and a method for producing the same.
  • high strength refers to the average hardness in the thickness direction after being molded into a stabilizer shape and subjected to quenching and tempering treatment, and the case where the Vickers hardness is 450 HV or more.
  • Quenching and tempering is a quenching heating temperature of 850 to 1000 ° C, and after quenching by quenching by immersing in a coolant such as water or quenching oil, the above-mentioned high strength (Vickers hardness HV) Is tempered within the range of the tempering temperature and holding time at which the product is obtained, and is air-cooled.
  • excellent in fatigue resistance refers to a case where a double-side torsional fatigue test is conducted in accordance with the provisions of JIS Z 2273 and the fatigue strength after 10 6 times is 450 MPa or more. To do.
  • the present inventors diligently examined various factors affecting the fatigue resistance characteristics of thin-walled steel pipes. As a result, it came to mind that it is most important to improve the quality of the pipe inner surface.
  • the present inventors have found that the quality of the inner surface of the tube, such as the decarburized layer on the inner surface of the tube, the surface roughness of the inner surface of the tube, and the flatness of the bent portion, is that of a thin hollow stabilizer (thin steel tube). It came to mind that it greatly affects the fatigue resistance. If a decarburized layer is present on the inner surface of the pipe, the vicinity of the inner surface is not sufficiently hardened even if quenching is performed, and plastic deformation tends to occur, which tends to be the starting point for fatigue cracks. For this reason, in order to improve fatigue resistance, it is preferable to reduce the decarburized layer on the inner surface of the pipe as much as possible.
  • the present inventors have found that if the decarburized layer is 120 ⁇ m or less from the inner surface of the pipe, fatigue crack generation can be suppressed.
  • the decarburized layer is limited to 120 ⁇ m or less in the thickness direction from the inner surface of the pipe. It was decided to.
  • the decarburized layer is desirably 50 ⁇ m or less from the inner surface of the tube, and more desirably 30 ⁇ m or less from the inner surface of the tube.
  • the surface roughness of the inner surface of the tube becomes rough and wrinkles are present on the inner surface of the tube, the number of recesses that cause stress concentration increases, which may be the starting point for fatigue cracks. For this reason, it is preferable to reduce the surface roughness in order to improve the fatigue resistance. It has been found that if the surface roughness Ra of the inner surface of the tube is 0.01 to 5.0 ⁇ m, the occurrence of fatigue cracks from the inner surface of the tube can be suppressed. In the present invention, the surface roughness Ra of the inner surface of the tube is set to 0.01 to 5.0 ⁇ m. I decided to limit it.
  • the surface roughness Ra of the tube inner surface is desirably 2.0 ⁇ m or less. Desirably, it is 0.07 ⁇ m or more.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) A heating process, a hot rolling process, and a skin pass rolling process are sequentially performed on a steel material to form a hot-rolled sheet, and the hot-rolled sheet is used as a steel pipe material. A method for producing an electric-welded steel pipe for a thin-walled hollow stabilizer, comprising a step of forming an electric-welded steel pipe, and subjecting the electric-welded steel pipe to a hot-reducing and hot-reducing rolling process to obtain a product pipe.
  • the steel material is, in mass%, C: 0.20 to 0.40%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.10%, Cr: 0.01 to 1.0%, Ti: 0.01 to 0.05%, B: 0.0005 to 0.0050%, Ca: 0.0001 to 0.0050%, N: 0.010% or less, and having a composition comprising the balance Fe and inevitable impurities,
  • the heating step of the steel material is a step of heating the steel material to a temperature in the range of heating temperature: 1000 to 1300 ° C., and the hot rolling step is performed with the rolling end temperature: 750 Finish the hot rolling at 950 ° C, cool it down and wind it in a coil shape at a coiling temperature of 500-650 ° C.
  • the skin pass rolling step is a step of performing skin pass rolling at a rolling reduction of 0.3% or more.
  • the hot reduction rolling process after the ERW steel pipe is reheated to a heating temperature of 800 to 1100 ° C., the hot reduction rolling is finished at a rolling end temperature of 850 ° C. or less, and the cumulative reduction ratio:
  • the rolling process is 75% or less
  • the product pipe has a decarburized layer on the inner surface side of the tube that is 120 ⁇ m or less in the thickness direction from the surface, and the surface roughness Ra of the inner surface of the tube is 0.01 to 5.0 ⁇ m.
  • Ratio 65% or more
  • the hardness after being molded into a stabilizer shape and subjected to quenching and tempering treatment is Vickers hardness of 450HV or more
  • the fatigue resistance after being molded into a stabilizer shape and subjected to quenching and tempering treatment Excellent wall thickness t: 6 mm or less, and ratio of wall thickness t (mm) to outer diameter D (mm), t / There strength method for manufacturing a thin hollow stabilizer for electric resistance welded steel pipe is 0.2 or less.
  • the composition further comprises one or two kinds selected from Cu: 1% or less and Ni: 1% or less in mass%.
  • ERW steel pipe made by hot-rolling hot-rolled steel pipe and further hot-reducing rolling, in mass%, C: 0.20-0.40%, Si: 0.1-1.0%, Mn: 0.1 ⁇ 2.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01-0.10%, Cr: 0.01-1.0%, Ti: 0.01-0.05%, B: 0.0005-0.0050%, Ca: 0.0001-0.0050% , N: 0.010% or less, having a composition comprising the balance Fe and inevitable impurities, the decarburized layer on the tube inner surface side being 120 ⁇ m or less in the thickness direction from the surface, and the surface roughness Ra of the tube inner surface being 0.01 to 5.0 ⁇ m, yield ratio: 65% or more, hardness after molding into a stabilizer shape and quenching and tempering treatment is less than 450 HV in Vickers hardness, molding into a stabilizer shape and quenching and tempering treatment High-strength, thin-walled hollow stabilizer with excellent
  • the composition further comprises one or two selected from Cu: 1% or less and Ni: 1% or less in mass%.
  • the hardness after being molded into a stabilizer shape and subjected to quenching and tempering treatment is Vickers hardness of 450 HV or more and less than 550 HV, and the fatigue resistance characteristics after being molded into a stabilizer shape and subjected to quenching and tempering treatment
  • High-strength, thin-walled hollow stabilizer ERW steel pipe with excellent wall thickness t: 6 mm or less, ratio of wall thickness t (mm) to outer diameter D (mm), and t / D of 0.2 or less can be easily manufactured. It has a remarkable industrial effect.
  • according to this invention there also exists an effect that the weight reduction of a motor vehicle body can be accelerated
  • the ERW steel pipe for high strength thin hollow stabilizer of the present invention is obtained by subjecting an ERW steel pipe obtained by electroforming a hot-rolled steel sheet, that is, hot-reducing rolling to a hot-rolled steel ERW steel pipe.
  • ERW steel pipe obtained by electroforming a hot-rolled steel sheet, that is, hot-reducing rolling to a hot-rolled steel ERW steel pipe.
  • the electric resistance steel pipe formed by hot shrinking rolling here means the electric resistance welding steel pipe in the state where hot diameter reduction rolling was performed.
  • a heating process, a hot rolling process, and a skin pass rolling process are sequentially performed on the steel material to obtain a hot rolled sheet (hot rolled sheet steel).
  • the steel materials used are mass%, C: 0.20 to 0.40%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.10%, Cr: 0.01-1.0%, Ti: 0.01-0.05%, B: 0.0005-0.0050%, Ca: 0.0001-0.0050%, N: 0.010% or less, or Cu: 1% or less, Ni: 1% or less 1 or 2 types selected from among these, and / or Nb: 0.05% or less, W: 0.05% or less, V: 0.5% or less, and / or REM: A steel material containing 0.02% or less and having a composition composed of the balance Fe and inevitable impurities.
  • C 0.20 ⁇ 0.40%
  • C promotes the formation of martensite through the improvement of hardenability and has the effect of increasing the strength (hardness) of the steel by solid solution, which is important for increasing the strength of the hollow stabilizer. It is an element.
  • the C content needs to be 0.20% or more.
  • C is limited to the range of 0.20 to 0.40%.
  • C is 0.22% or more and 0.38% or less. More preferably, C is 0.24% or more and 0.37% or less.
  • Si acts as a deoxidizer and also acts as a solid solution strengthening element. In order to acquire such an effect, Si needs to contain 0.1% or more. On the other hand, if Si exceeds 1.0%, the hardenability decreases. For this reason, Si was limited to the range of 0.1 to 1.0%. Preferably, Si is 0.12% or more and 0.5% or less. More preferably, Si is 0.15% or more and 0.3% or less.
  • Mn 0.1-2.0%
  • Mn is an element that improves the hardenability of steel while at the same time contributing to an increase in the strength of the steel.
  • Mn needs to be contained in an amount of 0.1% or more in order to ensure a desired high strength (high hardness).
  • Mn is contained in excess of 2.0%, the amount of retained austenite is excessively increased and the toughness after tempering is lowered. Therefore, Mn is limited to the range of 0.1 to 2.0%.
  • Mn is 0.3% or more and 1.7% or less. More preferably, Mn is 0.4% or more.
  • P 0.1% or less
  • P is an element that exists as an impurity, segregates at grain boundaries, and adversely affects weld cracking and toughness.
  • P For a hollow stabilizer, P must be reduced to 0.1% or less.
  • P is 0.05% or less.
  • reducing P more than necessary may cause a decrease in strength and an increase in manufacturing cost. Therefore, preferably, P is 0.001% or more.
  • S 0.01% or less S is an element that exists as sulfide inclusions in steel and lowers hot workability, toughness, and fatigue resistance.
  • S must be reduced to 0.01% or less.
  • S is 0.005% or less.
  • S is 0.0001% or more.
  • Al acts as a deoxidizer and combines with N to have an effect of securing a solid solution B amount effective for improving hardenability. Moreover, Al precipitates as AlN and has an action of preventing coarsening of austenite grains during quenching heating. In order to acquire such an effect, Al needs to contain 0.01% or more. On the other hand, when Al is contained in a large amount exceeding 0.10%, the amount of oxide inclusions increases and the fatigue life may be reduced. Therefore, Al is limited to the range of 0.01 to 0.10%. Preferably, Al is 0.015% or more and 0.05% or less. More preferably, Al is 0.02% or more and 0.045% or less.
  • Cr 0.01-1.0% Cr is an element that improves the hardenability of steel and contributes to the improvement of corrosion resistance. In order to acquire such an effect, Cr needs to contain 0.01% or more. On the other hand, even if Cr is contained in excess of 1.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous and the electroweldability is lowered. For this reason, Cr is limited to a range of 0.01 to 1.0%. In addition, Preferably, Cr is 0.10% or more and 0.8% or less. More preferably, Cr is 0.12% or more and 0.5% or less.
  • Ti 0.01-0.05% Ti combines with N and has an effect of securing a solid solution B amount effective for improving hardenability. Further, Ti precipitates as fine carbides and contributes to the refinement of austenite grains during heat treatment such as quenching and contributes to the improvement of fatigue resistance. In order to acquire such an effect, Ti needs to contain 0.01% or more. On the other hand, when Ti exceeds 0.05%, inclusions increase and toughness decreases. Therefore, Ti is limited to the range of 0.01 to 0.05%. Preferably, Ti is 0.011% or more and 0.04% or less. More preferably, Ti is 0.012% or more and 0.038% or less.
  • B 0.0005-0.0050%
  • B is an effective element that improves the hardenability of the steel in a small amount. Moreover, B has the effect
  • Ca 0.0001 to 0.0050%
  • Ca is an element having an action of controlling the form of sulfide inclusions to fine, substantially spherical inclusions. In order to acquire such an effect, Ca needs to contain 0.0001% or more. On the other hand, when Ca is contained in a large amount exceeding 0.0050%, the amount of inclusions is excessively increased, and the fatigue resistance is deteriorated. For this reason, Ca was limited to the range of 0.0001 to 0.0050%. Preferably, Ca is 0.0005% or more and 0.0030% or less.
  • N 0.010% or less
  • N is an element inevitably contained in steel, but it combines with nitride-forming elements in steel to suppress grain coarsening and to increase strength after tempering. Contribute. However, if N exceeds 0.010%, the toughness of the ERW weld is reduced. For this reason, N was limited to 0.010% or less. Note that N is preferably 0.0050% or less. More preferably, N is 0.0005% or more and 0.0040% or less.
  • the above-mentioned components are basic components.
  • Cu 1% or less and Ni 1% or less are selected as necessary.
  • Cu 1% or less
  • Ni 1 or 2 types selected from 1% or less
  • Cu and Ni are elements that improve hardenability and corrosion resistance, and are selected as necessary. Can be contained. In order to obtain such an effect, it is necessary to contain Cu: 0.01% or more and Ni: 0.01% or more, respectively.
  • Cu and Ni are both expensive elements. If Cu and Ni are contained in excess of 1% and Ni, respectively, the material cost increases. For this reason, when it contains, it is preferable to limit to Cu: 1% or less and Ni: 1% or less, respectively. More preferably, Cu is 0.1 to 0.5% and Ni is 0.1 to 0.5%, respectively.
  • Nb 0.05% or less
  • W 0.05% or less
  • V 0.5% or less
  • Nb, W, and V all form fine carbides to give strength (hardness) It is an element that contributes to an increase in the amount, and can be selected and contained as necessary.
  • Nb 0.001% or more
  • W 0.01% or more
  • V 0.01% or more
  • the effect is saturated, an effect commensurate with the content cannot be expected, it is economically disadvantageous, and the carbide is coarse It becomes easy to make, and adversely affects toughness.
  • Nb 0.05% or less
  • W 0.05% or less
  • V 0.5% or less
  • Nb 0.001 to 0.03%
  • W 0.01 to 0.03%
  • V 0.01 to 0.3%
  • REM 0.02% or less REM, like Ca, is an element that has the effect of controlling the form of sulfide inclusions to fine, substantially spherical inclusions.
  • REM is desirably contained in an amount of 0.0005% or more.
  • the content of REM exceeds 0.02%, the amount of inclusions becomes too large, and the ductility and toughness deteriorate. For this reason, when it contains, it is preferable to limit REM to 0.02% or less. More preferably, REM is 0.001 to 0.01%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • an inevitable impurity it is preferable to adjust to O (oxygen): 0.005% or less.
  • O (oxygen) is present in the steel as oxide inclusions, and is preferably adjusted to 0.005% or less in order to reduce workability, toughness, fatigue resistance, and the like. More preferably, it is 0.002% or less.
  • the manufacturing method of the steel material is not particularly limited, and any conventional method can be applied.
  • the molten steel having the above composition is melted in a conventional melting furnace such as a converter or an electric furnace, and a slab or the like slab (steel material) is obtained by a conventional casting method such as a continuous casting method. It is preferable from the viewpoint of productivity. In addition, there is no problem even if it is a steel piece (steel material) by ingot-bundling rolling.
  • the obtained steel material is subjected to a heating process.
  • the steel material is heated to a temperature ranging from 1000 to 1300 ° C.
  • the heating temperature is less than 1000 ° C.
  • precipitates such as carbides precipitated in the casting stage cannot be completely dissolved, and a desired high strength (high hardness) cannot be ensured.
  • the heating temperature is higher than 1300 ° C.
  • the crystal grains become extremely coarse and desired fatigue resistance characteristics cannot be ensured.
  • the heating temperature in the heating process is limited to a temperature in the range of 1000 to 1300 ° C.
  • the heating temperature is preferably 1100 to 1250 ° C.
  • the heated steel material is then subjected to a hot rolling process.
  • hot rolling is performed at a rolling end temperature in the range of 750 to 950 ° C. to obtain a hot rolled sheet having a predetermined dimension.
  • Rolling end temperature 750 °C ⁇ 950 °C
  • the rolling end temperature in the hot rolling process is limited to the range of 750 to 950 ° C.
  • the rolling end temperature is 800 to 880 ° C.
  • the hot-rolled sheet is cooled and wound into a coil at a winding temperature of 500 to 650 ° C.
  • a coiling temperature remove deviates from the above-mentioned temperature range to a low temperature side
  • a hot-rolled sheet will become hard and workability will fall.
  • the coiling temperature is set in the range of 500 to 650 ° C.
  • the winding temperature is preferably 500 to 620 ° C.
  • the obtained hot-rolled sheet is subjected to a skin pass rolling process.
  • the obtained hot-rolled sheet may be subjected to a plate pickling process to remove the oxidized scale formed on the surface, and then subjected to a skin pass rolling process. If oxide scale remains on the plate surface, a decarburized layer may be formed in the subsequent heating / rolling step.
  • the pickling solution is preferably a common pickling solution such as hydrochloric acid, sulfuric acid, or a mixture thereof.
  • the hot rolled sheet after the plate pickling process is subjected to skin pass rolling at a reduction ratio of 0.3% or more.
  • skin pass rolling By skin pass rolling, the decarburized layer generated on the surface of the hot rolled sheet is crushed and thinned, and the surface roughness of the sheet surface is reduced.
  • Reduction ratio If it is less than 0.3%, the thickness of the decarburized layer is insufficient, and the surface roughness Ra cannot be 5.0 ⁇ m or less. For this reason, the rolling reduction of the skin pass rolling is set to 0.3% or more.
  • the rolling reduction of skin pass rolling exceeds 1.5%, the rolling load increases. For this reason, the rolling reduction of skin pass rolling is preferably 1.5% or less.
  • the rolling reduction of skin pass rolling is 0.3 to 1.0%.
  • the hot-rolled steel sheet (hot-rolled sheet) obtained in the above-described process is used as a steel pipe material, and the steel pipe material is subjected to an electric-welding pipe process to obtain an electric-welded steel pipe.
  • the electric sewing pipe process is not particularly limited, but a hot rolled steel sheet (steel pipe material) is continuously formed into a substantially cylindrical open pipe in a cold manner using a plurality of rolls, and the circumference of the open pipe is It is preferable to set it as the process of press-welding direction end parts and carrying out the electro-welding welding.
  • the obtained ERW steel pipe is further subjected to a hot reduction rolling process.
  • the ERW pipe is reheated to a heating temperature of 800 to 1100 ° C, and then subjected to reduction rolling at a rolling end temperature of 850 ° C or less and a cumulative reduction ratio of 75% or less. Let it be a process.
  • the hot reduction rolling process in the present invention is performed to obtain a steel pipe having a desired product size and to ensure high workability and uniform hardenability.
  • the width of the welded portion having a lower carbon content than that of the mother pipe can be narrowed, and a steel pipe having uniform hardenability can be obtained. Therefore, the reheating temperature is set to a temperature in the range of 800 to 1100 ° C., and the rolling end temperature of the reduced diameter rolling is set to a temperature of 850 ° C. or lower.
  • the reheating temperature is out of the above-mentioned reheating temperature range and is less than 800 ° C., the coal recovery of the weld becomes insufficient and the hardenability decreases. On the other hand, when the reheating temperature is higher than 1100 ° C., surface decarburization becomes remarkable, and the surface hardness after the quenching process decreases.
  • the reheating temperature is preferably 900 ° C. or higher and 1050 ° C. or lower.
  • the rolling end temperature of reduced diameter rolling exceeds 850 ° C and becomes high, the passage time in the two-phase temperature range of ⁇ and ⁇ becomes longer, ferrite decarburization proceeds, and the yield ratio: 65% The above cannot be ensured, the cross-sectional flatness of the bent portion is increased, and the fatigue resistance is reduced.
  • the rolling end temperature of the reduced diameter rolling is set to a temperature of 850 ° C. or less, heat removal due to contact with the rolling roll can be used, the transit time in the two-phase temperature range can be shortened, and ferrite decarburization can be performed. Progress can be suppressed. From such a viewpoint, the rolling end temperature of the reduced diameter rolling is limited to 850 ° C. or less.
  • the rolling completion temperature of diameter reduction rolling is 845 degrees C or less.
  • the rolling end temperature of the reduced diameter rolling is 600 ° C. or higher. More preferably, the rolling end temperature of the reduced diameter rolling is 700 ° C. or higher.
  • the cumulative diameter reduction rate is limited to 75% or less.
  • the cumulative diameter reduction is preferably 35 to 72%. More preferably, the cumulative diameter reduction is 45% or more and 71% or less.
  • a tube pickling process may be further performed after the hot reduction rolling process.
  • the pickling solution is preferably hydrochloric acid, sulfuric acid, or a mixture thereof, which is a commonly used pickling solution.
  • the ERW steel pipe obtained through the above steps has the above-described composition, the decarburized layer on the tube inner surface side is 120 ⁇ m or less in the thickness direction from the surface, and the surface roughness in the circumferential direction of the tube inner surface.
  • Ra 0.01 to 5.0 ⁇ m, wrinkles on the inner surface are reduced, and an ERW steel pipe having a yield ratio of 65% or more is obtained.
  • the yield ratio is less than 65%, when the ERW steel pipe is bent into a stabilizer shape in the cold, the cross-sectional flatness of the bent portion increases, and the durability when used as a hollow stabilizer decreases.
  • the ERW steel pipe of the present invention having a yield ratio of 65% or more, the cross-sectional flatness of the bent portion is small, and no deterioration in durability when used as a hollow stabilizer is observed.
  • the yield ratio is preferably 66% or more.
  • the yield ratio is 90% or more, workability is inferior, which may hinder the processing of the stabilizer. For this reason, the yield ratio is preferably 90% or less.
  • the yield ratio is more preferably 85% or less, and still more preferably 80% or less.
  • the ERW steel pipe of the present invention has a decarburized layer on the inner surface of the pipe that is 120 ⁇ m or less in the thickness direction from the surface, and the surface roughness Ra in the circumferential direction of the inner surface of the pipe is 0.01 to 5.0 ⁇ m.
  • This is a thin-walled electric-welded steel pipe that can suppress the occurrence of cracks from the inner surface of the pipe and has improved fatigue resistance after being formed into a stabilizer shape and subjected to quenching and tempering treatment.
  • shot blasting is performed on the outer surface side of the pipe so that the outer surface is hardened and compressive residual stress is applied.
  • the electric resistance welded steel pipe having the above-described composition is a high strength thin walled steel having a Vickers hardness of 450 HV or more and less than 550 HV after being formed into a stabilizer shape and subjected to quenching and tempering treatment, and having excellent fatigue resistance.
  • the quenching and tempering treatment is a quenching heating temperature of 850 to 1000 ° C., and after quenching by quenching by immersing in a coolant such as water or quenching oil, the above-described high strength (Vickers hardness) HV) is tempering within the range of tempering temperature and holding time to obtain HV), and air cooling.
  • the quenching heating temperature is less than 850 ° C., uniform quenching may not be applied to the entire thick stabilizer. On the other hand, when the quenching heating temperature exceeds 1000 ° C., surface decarburization tends to occur, and the quenching hardness intended in the present invention may not be obtained.
  • the quenching heating temperature is 860 ° C or higher and 980 ° C or lower.
  • the tempering temperature is a temperature at which the above-described high strength (Vickers hardness HV) can be obtained, but if the tempering temperature is less than 200 ° C., the material may become brittle. On the other hand, if it exceeds 420 ° C., the target hardness in the present invention may not be obtained.
  • the tempering temperature is 200 to 420 ° C.
  • the holding time at the tempering temperature is the holding time at which the above-mentioned high strength (Vickers hardness HV) is obtained. However, if the holding time at the tempering temperature is less than 5 minutes, uniform hardness may not be obtained. . On the other hand, if it exceeds 60 minutes, productivity may be reduced. More preferably, the holding time at the tempering temperature is 10 min or more and 30 min or less.
  • the upper limit of the Vickers hardness is preferably less than 550 HV. If the Vickers hardness exceeds 550 HV, delayed fracture may occur easily. In addition, the material may be easily embrittled.
  • the molten steel having the composition shown in Table 1 was melted in a converter and made into a steel material as a slab by a continuous casting method.
  • a heating step of heating to the heating temperature shown in Table 2 a hot rolling step of rolling end temperature shown in Table 2, a hot rolling step of winding at the winding temperature shown in Table 2, and Table 2
  • the plate pickling step shown in Table 2 and the skin pass rolling step with the rolling reduction shown in Table 2 were applied to obtain a hot-rolled steel plate having the plate thickness shown in Table 2. In some cases, the plate pickling process was not performed.
  • the pickling solution was hydrochloric acid.
  • the obtained hot-rolled steel sheet was continuously formed with a plurality of rolls as a steel pipe material in a cold state to obtain a substantially cylindrical open pipe.
  • the circumferential ends of the open pipe were pressed together and electro-welded using a high-frequency electric resistance welding method to obtain an electric-welded steel pipe having the dimensions shown in Table 3.
  • the obtained electric resistance welded steel pipe is reheated to the heating temperature shown in Table 3, and then hot-reduced rolling step of reducing the diameter at a reduction rate shown in Table 3 with a hot-reducing mill.
  • the pipe pickling process shown in FIG. 3 was performed to obtain a product pipe (an electric resistance steel pipe) having the dimensions shown in Table 3. In some cases, a pipe pickling process was performed.
  • the pickling solution was sulfuric acid.
  • a specimen for measuring the surface roughness of the inner surface of the tube was taken from the product tube, and the surface roughness in the circumferential direction of the inner surface of the tube was measured using a surface roughness meter.
  • the surface roughness measurement measured surface roughness Ra (micrometer) of the pipe inner surface circumference direction based on the prescription
  • test material pipe material
  • heat treatment quenching and tempering treatment
  • the quenching process was set as the process immersed in a water tank, after energizing and heating so that the outer surface of a steel pipe may become the quenching heating temperature shown in Table 3.
  • a tempering treatment was performed at the temperature shown in Table 3 for 20 minutes.
  • a test piece for hardness measurement was collected from the test piece (tube material) after the heat treatment, and the surface perpendicular to the tube axis direction (C cross section) was polished to measure the hardness.
  • Vickers hardness was measured in accordance with JIS Z2244 at a pitch of 0.1 mm in the thickness direction starting from the pipe inner surface. The hardness was measured by measuring the Vickers hardness HV0.5 using a Vickers hardness meter (load: 500 gf (4.9 N). The obtained hardness was arithmetically averaged and the hardness (average hardness after heat treatment) of the steel pipe. ).
  • fatigue test specimens were collected from the test specimens (tube materials) after heat treatment, and subjected to a torsional fatigue test in accordance with JIS Z 2273 to obtain a fatigue strength (MPa) of 10 6 times. .
  • the hardness after quenching and tempering treatment is 450 HV or more, high strength (high hardness), and the fatigue strength of the double-twist torsion fatigue test is 450 MPa or more, which is excellent in fatigue resistance characteristics.
  • This is an electric resistance welded steel pipe suitable for a thin hollow stabilizer.
  • the comparative example out of the scope of the present invention is that the hardness after quenching and tempering treatment is less than 450 HV and the desired high strength (high hardness) cannot be secured, or the fatigue resistance is reduced to less than 450 MPa. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

高強度薄肉中空スタビライザー用電縫鋼管の製造方法を提供する。質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、Al:0.01~0.10%、Cr:0.01~1.0%、Ti:0.01~0.05%、B:0.0005~0.0050%、Ca:0.0001~0.0050%、N:0.010%以下を含む組成の鋼素材を、1000~1300℃の温度に加熱したのち、750~950℃で熱間圧延を終了し、冷却して、500~650℃でコイル状に巻き取り、ついで圧下率:0.3%以上のスキンパス圧延を施した熱延板を電縫造管して電縫鋼管とし、ついで800~1100℃の温度に再加熱したのち、圧延終了温度:850℃以下、累積縮径率:75%以下の熱間縮径圧延を施す。これにより、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の表面粗さRaが0.01~5.0μmで、YR65%以上の薄肉電縫鋼管となり、焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上で、耐疲労特性に優れた薄肉の製品管となる。

Description

高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法
 本発明は、自動車のスタビライザー用として好適な電縫鋼管に係り、とくに高強度薄肉中空スタビライザー用電縫鋼管の耐疲労特性の向上する高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法に関する。なお、ここでいう「薄肉」とは、肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下である場合をいうものとする。
 従来から、自動車のほとんどに、コーナリング時の車体のローリングを緩和したり、高速走行時の走行安定性を保持するために、スタビライザーが装着されている。しかも、最近では、地球環境の保全という観点から、自動車の燃費向上が要望され、自動車車体の軽量化が進められている。自動車車体の軽量化のために、自動車部材のひとつであるスタビライザーにおいても、鋼管を用いた中空スタビライザーが一般的となっている。
 このような中空スタビライザーは、通常、継目無鋼管や電縫溶接鋼管(以下、電縫鋼管ともいう)を素材として、冷間で所望の形状に成形したのち、焼入れまたは焼入れ焼戻等の調質処理を施されて製品とされる。なかでも、電縫鋼管は、比較的安価でしかも寸法精度に優れることから、中空スタビライザー用素材として、広く利用されている。
 例えば、特許文献1には、耐疲労特性に優れた中空スタビライザーの製造方法が記載されている。特許文献1に記載された技術では、質量%で、C:0.2~0.38%、Si:0.35%以下、Mn:0.3~1.5%、Al:0.1%以下、Ti:0.005~0.1%、B:0.0005~0.005%を含む組成の溶接鋼管に、好ましくは800~1000℃の範囲の温度に加熱する加熱処理を施したのち圧延温度:600~850℃で累積縮径率:40%以上の絞り圧延を施し、さらに冷間曲げ加工によりスタビライザー形状に成形する成形工程と、焼入れ処理および焼戻処理を施す熱処理工程とを順次施し、中空スタビライザーとするとしている。特許文献1に記載された技術によれば、安価な方法で耐疲労特性を向上させることができるとしている。
 また、特許文献2には、高強度中空スタビライザー用鋼管が記載されている。特許文献2に記載された鋼管は、質量%で、C:0.20~0.38%、Si:0.10~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、W:0.01~1.50%、B:0.0005~0.0050%を含みさらにTi、Nを、Ti:0.001~0.04%、N:0.0010~0.0100%の範囲で、かつN/14<Ti/47.9を満足するように含有する組成を有し、焼入れ処理後、あるいは焼入れ焼戻処理後の強度-靭性バランスに優れる、高強度中空スタビライザー用電縫鋼管である。特許文献2に記載された技術によれば、従来得られなかったような400HVを超える高硬度で、強度-靭性バランスに優れた、中空スタビライザーを容易に製造できるとしている。
 また、特許文献3には、質量%で、C:0.15~0.40%、Si:0.05~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、Ti:0.001~0.04%、B:0.0005~0.0050%、N:0.0010~0.0100%を含み、かつTi、Nが、(N/14)<(Ti/47.9)を満足するように含有する組成を有し、電縫溶接部のボンド幅が25μm以下である偏平性に優れた熱処理用電縫溶接鋼管が記載されている。そして、その製造方法として、上記した組成を有する鋼管素材を成形し略円筒状のオープン管としたのち、該オープン管の端部同士を突き合わせて高周波抵抗溶接によりボンド幅が30~65μmとなるように入熱を調整して電縫溶接し電縫溶接鋼管とし、ついで、該電縫溶接鋼管に、Ac3変態点以上の温度に加熱し、外径比で圧下率:(1-25/縮径圧延前ボンド幅(μm))×100%以上の縮径圧延を施し、ボンド幅を25μm以下とする、偏平性に優れた熱処理用電縫溶接鋼管の製造方法が記載されている。特許文献3に記載された製造方法で得られた電縫溶接鋼管は、中空スタビライザー等の焼入れ処理を施される使途に好適であるとしている。特許文献3に記載された電縫溶接鋼管は、電縫溶接部の減炭層幅が狭いため、急速短時間加熱による焼入れ処理を施しても、電縫溶接部の焼入れ硬さの低下を抑制でき、耐久性に優れた中空スタビライザーとすることができるとしている。
 また、特許文献4には、好ましくは質量%で、C:0.15~0.5%、Si:0.1~0.4%、Mn:0.3~2.0%、Ti:0.005~0.05%、Al:0.005~0.05%、B:0.0005~0.0050%、N:0.001~0.006%を含有する組成の、鋼管の管内に、1~20質量%のアルカリ金属炭酸塩を含有し、残部が木炭、黒鉛、石炭、コークスの1種または2種以上と不可避的不純物とからなる固体浸炭処理剤を、管内面の表面積1mmあたり0.05μg以上挿入し、両端に栓を取り付け、誘導加熱し熱間で縮径圧延する、疲労強度に優れる鋼管の製造方法が記載されている。特許文献4に記載された技術では、管内面に固体浸炭処理剤を付着させて、熱間で縮径圧延を施すことにより、内面の脱炭層の形成を防止でき、疲労強度が増加し、中空スタビライザーなどの素材として好適な、疲労強度に優れる鋼管となるとしている。
特開2005-076047号公報 特開2006-206999号公報 特開2008-208417号公報 特開2010-189758号公報
 最近の自動車車体の更なる軽量化の要望にともない、自動車車体部材の一つである中空スタビライザーにおいても、高強度化、さらには薄肉化が急速に進められている。そのため、中空スタビライザー用として、スタビライザー形状に成形され熱処理を施されたのちに優れた耐疲労特性を保持できる薄肉の電縫鋼管が求められている。ここでいう「薄肉」電縫鋼管とは、肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下の電縫鋼管をいう。
 しかしながら、特許文献1~4のいずれにも、本発明でいう「薄肉」の鋼管について、さらには「薄肉」鋼管の耐疲労特性についての言及はなく、特許文献1~4に記載された各技術によっては、優れた耐疲労特性(耐ねじり疲労特性)を有する薄肉鋼管を得ることは難しいという問題があった。
 本発明は、このような従来技術の問題を解決し、高強度薄肉中空スタビライザー用として、鋼管の外径をDとしたとき、肉厚t:6mm以下で、かつt/Dが0.2以下の薄肉で、スタビライザー形状に成形され熱処理を施されたのちに耐疲労特性に優れた電縫鋼管およびその製造方法を提供することを目的とする。
 なお、ここでいう「高強度」とは、スタビライザー形状に成形し焼入れ焼戻処理を施した後の肉厚方向の平均硬さで、ビッカース硬さで450HV以上である場合をいうものとする。なお、「焼入れ焼戻処理」は、焼入れ加熱温度:850~1000℃で、水、焼入れ油等の冷媒に浸漬して急冷する焼入れ処理を施したのち、上記した高強度(ビッカース硬さHV)が得られる焼戻温度、保持時間の範囲内で焼き戻し、空冷する処理とする。
 また、ここでいう「耐疲労特性に優れた」とは、JIS Z 2273の規定に準拠して両振りのねじり疲労試験を実施し106回の疲労強度が450MPa以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するため、薄肉鋼管の耐疲労特性に及ぼす各種要因について鋭意検討した。その結果、管内面の品質を向上させることが最も重要であることに思い至った。
 というのは、薄肉の中空スタビライザー(薄肉鋼管)では、使用時には、管内面に発生する応力と管外面に発生する応力とが近い応力を示すことになる。そのような状況では、外面にショットブラストが施され、外面側が硬化しさらに圧縮の残留応力が存在するように管外面のみが強化されると、使用時に管内面からのき裂発生が懸念される。このような管内面からのき裂発生を防止し、耐疲労特性を向上させるためには、管内面の品質を向上させることが重要となる。
 管内面の品質を向上させる手段としては、冷間引抜加工が有効であると考えられるが、工程が複雑となり、製造コストが高騰するという問題がある。
 そこで、本発明者らは、更なる検討を行った結果、管内面の脱炭層、管内面の表面粗さおよび曲げ加工部の偏平率など管内面の品質が、薄肉中空スタビライザー(薄肉鋼管)の耐疲労特性に大きく影響することに思い至った。管内面に脱炭層が存在すると、焼入れ処理を行っても内面近傍が十分に高硬度化せず、塑性変形が生じやすくなり、疲労き裂発生の起点となりやすい。このため、耐疲労特性の向上のためには、管内面の脱炭層を可能な限り低減することが好ましい。本発明者らは、脱炭層が管内表面から120μm以下であれば、疲労き裂発生を抑制することができることを見出し、本発明では、脱炭層は、管内表面から肉厚方向に120μm以下に限定することとした。なお、脱炭層は、望ましくは管内表面から50μm以下、さらに望ましくは管内表面から30μm以下であることがよい。
 また、管内面の表面粗さが粗くなり管内面にしわが存在するようになると、応力集中の原因となる凹部が増加し、疲労き裂発生の起点となる場合がある。このため、耐疲労特性の向上のためには、表面粗さを低減することが好ましい。管内面の表面粗さRaが0.01~5.0μmであれば、管内面からの疲労き裂発生を抑制することができることを見出し、本発明では、管内面の表面粗さRaを0.01~5.0μmに限定することとした。なお、管内面の表面粗さRaは、望ましくは2.0μm以下であることがよい。また、望ましくは0.07μm以上であることがよい。
 また、中空スタビライザー形状の曲げ加工部の偏平率が大きくなると、中空スタビライザー使用時に発生する繰返し荷重の負荷により、曲率半径が小さい部位に応力が集中し、耐久性が低下する懸念がある。そのため、曲げ加工部の偏平率が大きくならないように、降伏比を高める必要があることを知見した。本発明者らは、更なる検討により、電縫鋼管の降伏比が65%以上であれば、耐久性が低下することが懸念されるほどに、曲げ加工部の偏平率が大きくなることはないことを見出した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1) 鋼素材に、加熱工程と、熱間圧延工程と、スキンパス圧延工程と、を順次施し熱延板とし、さらに、該熱延板を鋼管素材として、該鋼管素材に、電縫造管工程を施し電縫鋼管とし、該電縫鋼管に、再加熱し熱間縮径圧延を施す熱間縮径圧延工程を施して製品管とする薄肉中空スタビライザー用電縫鋼管の製造方法であって、前記鋼素材が、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~1.0%、Ti:0.01~0.05%、B:0.0005~0.0050%、Ca:0.0001~0.0050%、N:0.010%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、前記鋼素材の前記加熱工程が、前記鋼素材を加熱温度:1000~1300℃の範囲の温度に加熱する工程であり、前記熱間圧延工程を、圧延終了温度:750~950℃で熱間圧延を終了し、冷却して、巻取温度:500~650℃でコイル状に巻き取る工程とし、前記スキンパス圧延工程を、圧下率:0.3%以上でスキンパス圧延を施す工程とし、前記熱間縮径圧延工程が、前記電縫鋼管を加熱温度:800~1100℃の温度に再加熱したのち、前記熱間縮径圧延を圧延終了温度:850℃以下、累積縮径率:75%以下である圧延とする工程であり、前記製品管が、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の表面粗さRaが0.01~5.0μmであり、降伏比:65%以上を有し、スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上で、スタビライザー形状に成形し焼入れ焼戻処理を施した後の耐疲労特性に優れる肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下である高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
(2) (1)において、前記スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで550HV未満である高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
(3) (1)または(2)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種を含有する組成とする高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
(4) (1)ないし(3)において、前記組成に加えてさらに、質量%で、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とする高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
(5) (1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
(6)熱延鋼板製電縫鋼管にさらに、熱間縮径圧延を施してなる電縫鋼管であって、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~1.0%、Ti:0.01~0.05%、B:0.0005~0.0050%、Ca:0.0001~0.0050%、N:0.010%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の表面粗さRaが0.01~5.0μmであり、降伏比:65%以上を有し、スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上未満で、スタビライザー形状に成形し焼入れ焼戻処理を施した後の耐疲労特性に優れる肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下である高強度薄肉中空スタビライザー用電縫鋼管。
(7) (6)において、前記スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで550HV未満である高強度薄肉中空スタビライザー用電縫鋼管。
(8) (6)または(7)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種を含有する組成とする高強度薄肉中空スタビライザー用電縫鋼管。
(9) (6)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とする高強度薄肉中空スタビライザー用電縫鋼管。
(10) (6)ないし(9)のいずれかにおいて、前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する高強度薄肉中空スタビライザー用電縫鋼管。
 本発明によれば、スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上550HV未満で、スタビライザー形状に成形し焼入れ焼戻処理を施した後の耐疲労特性に優れる、肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)の比、t/Dが0.2以下の高強度薄肉中空スタビライザー用電縫鋼管を、容易に製造でき、産業上格段の効果を奏する。なお、本発明によれば、自動車車体の軽量化をさらに促進できるという効果もある。
 本発明高強度薄肉中空スタビライザー用電縫鋼管は、熱延鋼板を電縫造管して得られた電縫鋼管、すなわち熱延鋼板製電縫鋼管にさらに、熱間縮径圧延を施してなる電縫鋼管である。なお、ここでいう「熱間縮径圧延を施してなる電縫鋼管」とは、熱間縮径圧延を施された状態の電縫鋼管を意味する。ここでは、熱間縮径圧延後の電縫鋼管を特性・構造で表現するためには多大な労力を要し、実際的でないため、熱間縮径圧延を施された状態の電縫鋼管として表す。
 まず、本発明で使用する熱延鋼板の製造方法について説明する。
 鋼素材に、加熱工程と、熱間圧延工程と、スキンパス圧延工程と、を順次施し熱延板(熱延鋼板)とする。
 使用する鋼素材は、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~1.0%、Ti:0.01~0.05%、B:0.0005~0.0050%、Ca:0.0001~0.0050%、N:0.010%以下を含み、あるいはさらに、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とする。
 つぎに、鋼素材の組成の限定理由について説明する。以下、組成における質量%は、とくに断りのない限り、単に%で記す。
 C:0.20~0.40%
 Cは、焼入れ性の向上を介して、マルテンサイトの生成を促進するとともに、固溶して鋼の強度(硬さ)を増加させる作用を有し、中空スタビライザーの高強度化のために重要な元素である。本発明では、高強度(高硬さ)を確保するためには、Cは0.20%以上の含有を必要とする。一方、Cは0.40%を超えて多量に含有すると、焼入れ処理後の靭性が低下する。このため、Cは0.20~0.40%の範囲に限定した。なお、好ましくは、Cは、0.22%以上であり0.38%以下である。より好ましくは、Cは、0.24%以上であり、0.37%以下である。
 Si:0.1~1.0%
 Siは、脱酸剤として作用するとともに、固溶強化元素としても作用する。このような効果を得るためには、Siは0.1%以上の含有を必要とする。一方、Siは1.0%を超えて含有すると、焼入れ性が低下する。このため、Siは0.1~1.0%の範囲に限定した。なお、好ましくは、Siは、0.12%以上であり、0.5%以下である。より好ましくは、Siは、0.15%以上であり、0.3%以下である。
 Mn:0.1~2.0%
 Mnは、固溶して鋼の強度増加に寄与するとともに、鋼の焼入れ性を向上させる元素である。本発明では、所望の高強度(高硬さ)を確保するために、Mnは0.1%以上の含有を必要とする。一方、Mnは2.0%を超えて含有すると、残留オーステナイト量が増加しすぎて、焼戻処理後の靭性が低下する。このため、Mnは0.1~2.0%の範囲に限定した。なお、好ましくは、Mnは、0.3%以上であり、1.7%以下である。より好ましくは、Mnは、0.4%以上である。
 P:0.1%以下
 Pは、不純物として存在し、粒界等に偏析し、溶接割れ性、靭性に悪影響を及ぼす元素である。中空スタビライザー用としては、Pは0.1%以下に低減することが必要となる。なお、好ましくは、Pは0.05%以下である。一方、Pを必要以上に低減することは、強度の低下、および製造コストの上昇を招く恐れがある。よって、好ましくは、Pは、0.001%以上である。
 S:0.01%以下
 Sは、鋼中では硫化物系介在物として存在し、熱間加工性、靭性、耐疲労特性を低下させる元素である。中空スタビライザー用としては、Sは0.01%以下に低減することが必要となる。なお、好ましくは、Sは0.005%以下である。一方、Sを必要以上に低減することは、製造コストの上昇を招く恐れがある。よって、好ましくは、Sは0.0001%以上である。
 Al:0.01~0.10%
 Alは、脱酸剤として作用するとともに、Nと結合し、焼入れ性向上に有効な固溶B量を確保する効果を有する。また、Alは、AlNとして析出し、焼入れ加熱時のオーステナイト粒の粗大化を防止する作用を有する。このような効果を得るためには、Alは0.01%以上の含有を必要とする。一方、Alは0.10%を超えて多量に含有すると、酸化物系介在物量が増加し、疲労寿命を低下させる場合がある。このため、Alは0.01~0.10%の範囲に限定した。なお、好ましくは、Alは、0.015%以上であり、0.05%以下である。より好ましくは、Alは、0.02%以上であり、0.045%以下である。
 Cr:0.01~1.0%
 Crは、鋼の焼入れ性を向上させるとともに、耐食性の向上に寄与する元素である。このような効果を得るためには、Crは0.01%以上の含有を必要とする。一方、Crは1.0%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、電縫溶接性が低下する。このため、Crは0.01~1.0%の範囲に限定した。なお、好ましくは、Crは、0.10%以上であり、0.8%以下である。より好ましくは、Crは、0.12%以上であり、0.5%以下である。
 Ti:0.01~0.05%
 Tiは、Nと結合し、焼入れ性向上に有効な固溶B量を確保する効果を有する。また、Tiは、微細な炭化物として析出し、焼入れ等の熱処理時に、オーステナイト粒の微細化に寄与し、耐疲労特性の向上に寄与する。このような効果を得るためには、Tiは0.01%以上の含有を必要とする。一方、Tiが0.05%を超える含有は、介在物が増加し靭性が低下する。このため、Tiは0.01~0.05%の範囲に限定した。なお、好ましくは、Tiは、0.011%以上であり、0.04%以下である。より好ましくは、Tiは、0.012%以上であり0.038%以下である。
 B:0.0005~0.0050%
 Bは、微量で鋼の焼入れ性を向上させる有効な元素である。また、Bは、粒界を強化する作用を有し、P偏析による粒界脆化を抑制する。このような効果を得るために、Bは0.0005%以上の含有を必要とする。一方、Bは0.0050%を超えて含有しても、効果が飽和し経済的に不利となる。このため、Bは0.0005~0.0050%の範囲に限定した。なお、好ましくは、Bは、0.0008%以上であり、0.0030%以下である。より好ましくは、Bは、0.0010%以上であり、0.0025%以下である。
 Ca:0.0001~0.0050%
 Caは、硫化物系介在物の形態を微細な、略球形の微細な介在物に制御する作用を有する元素である。このような効果を得るためには、Caは0.0001%以上の含有を必要とする。一方、Caは0.0050%を超えて多量に含有すると、介在物量が多くなりすぎて、かえって耐疲労特性が低下する。このため、Caは0.0001~0.0050%の範囲に限定した。なお、好ましくは、Caは、0.0005%以上であり、0.0030%以下である。
 N:0.010%以下
 Nは、鋼中に不可避的に含有される元素であるが、鋼中の窒化物形成元素と結合し、結晶粒の粗大化の抑制、さらには焼戻後の強度増加に寄与する。しかし、Nが0.010%を超える含有は、電縫溶接部の靭性を低下させる。このため、Nは0.010%以下に限定した。なお、好ましくは、Nは0.0050%以下である。より好ましくは、Nは、0.0005%以上であり、0.0040%以下である。
 上記した成分が基本の成分であり、本発明では、この基本の組成に加えてさらに、選択元素として、必要に応じて、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有できる。
 Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種
 Cu、Niはいずれも、焼入れ性を向上させるとともに、耐食性を向上させる元素であり、必要に応じて選択して含有できる。このような効果を得るためには、それぞれCu:0.01%以上、Ni:0.01%以上の含有を必要とする。一方、Cu、Niはいずれも高価な元素であり、Cu:1%、Ni:1%をそれぞれ超えて含有すると、材料コストの高騰を招く。このため、含有する場合には、それぞれCu:1%以下、Ni:1%以下に限定することが好ましい。なお、より好ましくは、それぞれCu:0.1~0.5%、Ni:0.1~0.5%である。
 Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上
 Nb、W、Vはいずれも、微細な炭化物を形成して強度(硬さ)の増加に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Nb:0.001%以上、W:0.01%以上、V:0.01%以上、それぞれ含有することが望ましい。一方、Nb:0.05%、W:0.05%、V:0.5%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず、経済的に不利となるうえ、炭化物が粗大化しやすくなり、靭性に悪影響を及ぼす。このため、含有する場合には、Nb:0.05%以下、W:0.05%以下、V:0.5%以下にそれぞれ限定することが好ましい。なお、より好ましくは、それぞれNb:0.001~0.03%、W:0.01~0.03%、V:0.01~0.3%である。
 REM:0.02%以下
 REMは、Caと同様に、硫化物系介在物の形態を微細な略球形の介在物に制御する作用を有する元素である。本発明では、Caの作用を補完する観点から、REMは0.0005%以上含有することが望ましい。一方、REMは0.02%を超えて含有すると、介在物量が多くなりすぎて、延性、靭性が低下する。このため、含有する場合には、REMは0.02%以下に限定することが好ましい。なお、より好ましくは、REMは0.001~0.01%である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物として、O(酸素):0.005%以下に調整することが好ましい。O(酸素)は、鋼中では酸化物系介在物として存在し、加工性、靭性、耐疲労性等を低下させるため、0.005%以下に調整することが好ましい。なお、より好ましくは0.002%以下である。
 本発明では、鋼素材の製造方法はとくに限定する必要はなく、常用の方法がいずれも適用できる。なお、上記した組成の溶鋼を、転炉、電気炉等の常用の溶製炉で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片(鋼素材)とすることが、生産性の観点から好ましい。なお、造塊-分塊圧延により鋼片(鋼素材)としてもなんら問題はない。
 得られた鋼素材に、まず、加熱工程を施す。
 加熱工程では、鋼素材を加熱温度:1000~1300℃の範囲の温度に加熱する。
 加熱温度が、1000℃未満では、鋳造段階で析出した炭化物等の析出物を完全に固溶することができず、所望の高強度(高硬さ)を確保することができない。一方、加熱温度が1300℃を超えて高温となると、結晶粒の粗大化が著しくなり、所望の耐疲労特性を確保できなくなる。このため、加熱工程における加熱温度は1000~1300℃の範囲の温度に限定した。なお、好ましくは、加熱温度は1100~1250℃である。
 加熱された鋼素材には、ついで、熱間圧延工程を施す。
 熱間圧延工程では、圧延終了温度を750~950℃の範囲の温度とする熱間圧延を施し、所定寸法の熱延板とする。
 圧延終了温度:750℃~950℃
 圧延終了温度が、750℃未満では、熱延板が硬質化し加工性が低下する。一方、圧延終了温度が950℃を超える高温では、表面肌が粗くなり、同時に表面脱炭が著しい。このため、熱間圧延工程の圧延終了温度は750~950℃の範囲に限定した。なお、好ましくは、圧延終了温度は800~880℃である。圧延終了温度を上記した温度範囲内に調整することにより、本発明が対象とする薄肉鋼板では、圧延後の冷却中にパーライト変態が完了し、巻き取り後にパーライト変態が生じることはない。巻き取り後にパーライト変態が生じると、パーライト変態が発熱反応であるため、熱延板は高温域で長時間保持されることになり、板表面での脱炭が進行する。このため、パーライト変態を極力、巻き取り前の、ランアウトテーブル上で進行させておくことが、電縫鋼管内面の脱炭層厚さを小さくすることに繋がる。
 熱間圧延工程では、圧延終了後、熱延板を冷却し、巻取温度:500~650℃でコイル状に巻き取る。なお、巻取温度が、上記した温度範囲を低温側に外れると、熱延板が硬質化し加工性が低下する。一方、上記した温度範囲を高温側に外れると、表面脱炭が著しくなり、耐疲労特性が低下する。このため、巻取温度は500~650℃の範囲の温度とした。なお、好ましくは、巻取温度は500~620℃である。
 得られた熱延板に、スキンパス圧延工程を施す。
 なお、本発明では、得られた熱延板に、板酸洗工程を施し、表面に生成した酸化スケールを除去し、しかるのちにスキンパス圧延工程を施してもよい。板表面に酸化スケールが残存していると、その後の加熱・圧延工程で脱炭層が形成される恐れがある。なお、酸洗液は、常用の酸洗液である塩酸、硫酸、あるいはそれらの混合したものとすることが好ましい。
 スキンパス圧延工程では、好ましくは板酸洗工程後の熱延板に、圧下率:0.3%以上でスキンパス圧延を施す。スキンパス圧延により、熱延板表面に生成した脱炭層を潰して薄肉化するとともに、板表面の表面粗さを低減する。圧下率:0.3%未満では、脱炭層の薄肉化が不十分となるうえ、表面粗さRaを5.0μm以下とすることができない。このため、スキンパス圧延の圧下率は0.3%以上とした。一方、スキンパス圧延の圧下率は1.5%を超えると、圧延の負荷が大きくなる。このため、スキンパス圧延の圧下率は1.5%以下が好ましい。なお、好ましくは、スキンパス圧延の圧下率は0.3~1.0%である。
 上記した工程で得られた熱延鋼板(熱延板)を鋼管素材として、該鋼管素材に電縫造管工程を施し電縫鋼管とする。電縫造管工程は、とくに限定する必要はないが、熱延鋼板(鋼管素材)を複数のロールを用い冷間で連続的に略円筒状のオープン管に成形し、該オープン管の円周方向端部同士を圧接し、電縫溶接する工程とすることが好ましい。
 本発明では、得られた電縫鋼管にさらに、熱間縮径圧延工程を施す。
 熱間縮径圧延工程は、電縫鋼管を加熱温度:800~1100℃の温度に再加熱したのち、圧延終了温度:850℃以下、累積縮径率:75%以下である縮径圧延を施す工程とする。
 本発明における熱間縮径圧延工程は、所望の製品サイズの鋼管とするとともに、高い加工性と均一な焼入れ性を確保するために行う。熱間縮径圧延を行うことにより母管とくらべ炭素量が低い溶接部の幅を狭くでき、均一な焼入れ性を有する鋼管となる。そのため、再加熱温度を800~1100℃の範囲の温度とし、縮径圧延の圧延終了温度を850℃以下の温度とする。
 再加熱温度が、上記した再加熱温度範囲から外れ、800℃未満では、溶接部の復炭が不十分となり、焼入れ性が低下する。一方、再加熱温度が1100℃を超えて高温では、表面脱炭が著しくなり、焼入れ処理後の表面硬さが低下する。なお、好ましくは、再加熱温度は、900℃以上であり、1050℃以下である。
 また、縮径圧延の圧延終了温度が850℃を超えて高温となると、αとγとの二相温度域の通過時間が長時間側となり、フェライト脱炭が進行するとともに、降伏比:65%以上を確保することができず、曲げ加工部の断面偏平率が高くなり、耐疲労特性が低下する。また、縮径圧延の圧延終了温度を850℃以下の温度とすることにより、圧延ロールとの接触による抜熱を利用でき、二相温度域の通過時間を短くすることができ、フェライト脱炭の進行を抑制することができる。このような観点から、縮径圧延の圧延終了温度は、850℃以下に限定した。なお、好ましくは、縮径圧延の圧延終了温度は845℃以下である。一方、縮径圧延の圧延終了温度が600℃未満では材料が硬くなり、加工性が低下する。このため、縮径圧延の圧延終了温度は600℃以上とすることが好ましい。より好ましくは、縮径圧延の圧延終了温度は700℃以上である。
 また、累積縮径率が75%を超えて縮径率が大きくなると、管内面のしわ発生が顕著となり、耐疲労特性の低下を招く。このため、累積縮径率は75%以下に限定した。一方、累積縮径率は35%未満では本発明で目的とする強度が得られない。このため、累積縮径率は35%以上が好ましい。なお、好ましくは、累積縮径率は35~72%である。より好ましくは、累積縮径率は、45%以上であり、71%以下である
 熱間縮径圧延工程後に、本発明ではさらに管酸洗工程を施してもよい。管酸洗工程により、管表面、とくに管内面に形成されたスケールを除去する。なお、酸洗液は、常用の酸洗液である塩酸、硫酸、あるいはそれらを混合したものとすることが好ましい。
 なお、上記した工程を経て、得られた電縫鋼管は、上記した組成を有し、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の円周方向の表面粗さRaが0.01~5.0μmで、内面のしわが減少し、降伏比:65%以上を有する電縫鋼管となる。
 降伏比が65%未満では、電縫鋼管を冷間でスタビライザー形状に曲げ加工した際に、曲げ加工部の断面偏平率が大きくなり、中空スタビライザーとして使用した時の耐久性が低下する。降伏比:65%以上を有する本発明電縫鋼管であれば、曲げ加工部の断面偏平率が小さく、中空スタビライザーとして使用した時の耐久性の低下も認められない。なお、好ましくは、降伏比は66%以上である。一方、降伏比が90%以上では、加工性が劣るためスタビライザーへの加工に支障がでる場合がある。このため、好ましくは、降伏比は90%以下である。降伏比は、より好ましくは85%以下であり、さらに好ましくは80%以下である。
 また、本発明電縫鋼管は、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の円周方向の表面粗さRaが0.01~5.0μmで、管内面のしわが減少した鋼管であり、スタビライザー形状に成形し焼入れ焼戻処理を施した後において、管内面からのき裂発生を抑制でき、耐疲労特性が向上した薄肉電縫鋼管である。なお、本発明電縫鋼管においても、管外面側には、ショットブラスト処理を施し、外面の硬質化および圧縮残留応力の付与を図っておくことはいうまでもない。
 また、上記した組成を有する本発明電縫鋼管は、スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上550HV未満でかつ耐疲労特性に優れた高強度薄肉電縫鋼管である。
 なお、本発明において、焼入れ焼戻処理とは、焼入れ加熱温度:850~1000℃で、水、焼入れ油等の冷媒に浸漬して急冷する焼入れ処理を施したのち、上記した高強度(ビッカース硬さHV)が得られる焼戻温度、保持時間の範囲内で焼き戻し、空冷する処理とする。
 焼入れ加熱温度が850℃未満では、肉厚の厚いスタビライザーの場合、全体に均一な焼き入れが施されない場合がある。一方、焼入れ加熱温度が1000℃超えでは、表面脱炭が生じやすくなり、本発明で目的とする焼き入れ硬さが得られないことがある。好ましくは、焼入れ加熱温度は、860℃以上であり、980℃以下である。
また、焼戻温度は上記した高強度(ビッカース硬さHV)が得られる温度とするが、焼戻温度が200℃未満では材料が脆化する場合がある。一方、420℃超えでは、本発明で目的とする硬さが得られない場合がある。より好ましくは、焼戻温度は200~420℃である。焼戻温度での保持時間は、上記した高強度(ビッカース硬さHV)が得られる保持時間とするが、焼戻温度での保持時間が5min未満では均一な硬さが得られない場合がある。一方、60min超えでは生産性の低下を招く場合がある。より好ましくは、焼戻温度での保持時間は、10min以上であり、30min以下である。
 なお、本発明では、上記したビッカース硬さの上限は550HV未満とすることが好ましい。ビッカース硬さが550HVを超えると、遅れ破壊を発生しやすくなる恐れがある。また、材料が脆化しやすくなる恐れがある。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法で鋳片として、鋼素材とした。得られた鋼素材に、表2に示す加熱温度に加熱する加熱工程と、表2に示す圧延終了温度の熱間圧延と表2に示す巻取温度で巻き取る熱間圧延工程と、表2に示す板酸洗工程と、さらに、表2に示す圧下率のスキンパス圧延工程と、を施し、表2に示す板厚の熱延鋼板とした。なお、一部では板酸洗工程は行わなかった。酸洗液は塩酸とした。
 ついで、得られた熱延鋼板を鋼管素材として、冷間で、複数のロールで連続的に成形し、略円筒状のオープン管とした。ついで、該オープン管の円周方向端部同士を圧接し、高周波電気抵抗溶接法を用いて電縫溶接して、表3に示す寸法形状の電縫鋼管とした。
 そしてさらに、得られた電縫鋼管に、表3に示す加熱温度に再加熱したのち、熱間縮径圧延機で表3に示す縮径率で縮径圧延する熱間縮径圧延工程と表3に示す管酸洗工程を施して、表3に示す寸法の製品管(電縫鋼管)とした。なお、一部では管酸洗工程を実施した。酸洗液は硫酸とした。
 得られた製品管(電縫鋼管)から、組織観察用試験片(観察面が管軸方向に直交する断面)を採取し、研磨し、管内面近傍の炭素量をEPMAを用いて測定した。炭素量は、管内面表面基点として、肉厚方向に1mmの位置まで測定した。そして、製品管の平均C量を基準として、平均C量の90%以下となった領域を脱炭層とし、脱炭層の肉厚方向の深さを脱炭層深さ(μm)とした。
 また、製品管から、管内面の表面粗さ測定用試験片を採取し、表面粗さ計を用い、管内面円周方向の表面粗さを測定した。なお、表面粗さ測定は、JIS B 0601-2001の規定に準拠して、管内面円周方向の表面粗さRa(μm)を測定した。
 また、製品管から、管軸方向が引張方向となるように、JIS 11号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏比(YR:YR=YS/TS×100(%)、YS:降伏強さ、TS:引張強さ))を求めた。
 また、製品管から、試験材(管材)を採取し、スタビライザー形状への加工を模擬した成形を加えたのち、表3に示す条件で熱処理(焼入れ焼戻処理)を施した。
 なお、焼入れ処理は、鋼管外表面が表3に示す焼入加熱温度となるように、通電加熱したのち、水槽に浸漬する処理とした。焼入れ処理後、表3に示す温度で20min間保持する焼戻処理を施した。
 熱処理後の試験片(管材)から、硬さ測定用試験片を採取し、管軸方向に垂直な面(C断面)を研磨して、硬さ測定を行った。管内面を起点とし肉厚方向に0.1mmピッチで、JIS Z 2244に準拠してビッカース硬さ測定を行った。硬さ測定は、ビッカース硬度計(荷重:500gf(4.9N)を用いてビッカース硬さHV0.5を測定した。得られた硬さを算術平均して当該鋼管の熱処理後硬さ(平均硬さ)とした。
 また、熱処理後の試験片(管材)から、疲労試験片を採取し、JIS Z 2273の規定に準拠して両振りのねじれ疲労試験を実施し、106回の疲労強度(MPa)を求めた。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明例はいずれも、焼入れ焼戻処理後の硬さが450HV以上であり高強度(高硬さ)でしかも、両振りねじり疲労試験の疲労強度が450MPa以上と耐疲労特性に優れており、薄肉の中空スタビライザー用として好適な電縫鋼管となっている。
 一方、本発明の範囲を外れる比較例は、焼入れ焼戻処理後の硬さが450HV未満であり所望の高強度(高硬さ)を確保できていないか、耐疲労特性が450MPa未満と低下している。

Claims (10)

  1.  鋼素材に、加熱工程と、熱間圧延工程と、スキンパス圧延工程と、を順次施し熱延板とし、さらに、該熱延板を鋼管素材として、該鋼管素材に、電縫造管工程を施し電縫鋼管とし、該電縫鋼管に、再加熱し熱間縮径圧延を施す熱間縮径圧延工程を施して製品管とする薄肉中空スタビライザー用電縫鋼管の製造方法であって、
    前記鋼素材が、質量%で、
     C:0.20~0.40%、         Si:0.1~1.0%、
     Mn:0.1~2.0%、          P:0.1%以下、
     S:0.01%以下、          Al:0.01~0.10%、
     Cr:0.01~1.0%、          Ti:0.01~0.05%、
     B:0.0005~0.0050%、       Ca:0.0001~0.0050%、
     N:0.010%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有し、
    前記鋼素材の前記加熱工程が、前記鋼素材を加熱温度:1000~1300℃の範囲の温度に加熱する工程であり、
    前記熱間圧延工程を、圧延終了温度:750~950℃で熱間圧延を終了し、冷却して、巻取温度:500~650℃でコイル状に巻き取る工程とし、
    前記スキンパス圧延工程を、圧下率:0.3%以上でスキンパス圧延を施す工程とし、
    前記熱間縮径圧延工程が、前記電縫鋼管を加熱温度:800~1100℃の温度に再加熱したのち、前記熱間縮径圧延を圧延終了温度:850℃以下、累積縮径率:75%以下である圧延とする工程であり、
    前記製品管が、管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の表面粗さRaが0.01~5.0μmであり、
    降伏比:65%以上を有し、
    スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上で、
    スタビライザー形状に成形し焼入れ焼戻処理を施した後の耐疲労特性に優れる肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下である高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
  2.  上記スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで550HV未満である請求項1に記載の高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
  3.  前記組成に加えてさらに、質量%で、
     Cu:1%以下、             Ni:1%以下
    のうちから選ばれた1種または2種を含有する組成とする請求項1または2に記載の高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
  4.  前記組成に加えてさらに、質量%で、
     Nb:0.05%以下、            W:0.05%以下、
     V:0.5%以下
    のうちから選ばれた1種または2種以上を含有する組成とする請求項1ないし3のいずれかに記載の高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
  5.  前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する請求項1ないし4のいずれかに記載の高強度薄肉中空スタビライザー用電縫鋼管の製造方法。
  6.  熱延鋼板製電縫鋼管にさらに、熱間縮径圧延を施してなる電縫鋼管であって、質量%で、
     C:0.20~0.40%、         Si:0.1~1.0%、
     Mn:0.1~2.0%、          P:0.1%以下、
     S:0.01%以下、          Al:0.01~0.10%、
     Cr:0.01~1.0%、          Ti:0.01~0.05%、
     B:0.0005~0.0050%、       Ca:0.0001~0.0050%、
     N:0.010%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有し、
    管内面側の脱炭層が表面から肉厚方向に120μm以下で、管内面の表面粗さRaが0.01~5.0μmであり、
    降伏比:65%以上を有し、
    スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで450HV以上で、スタビライザー形状に成形し焼入れ焼戻処理を施した後の耐疲労特性に優れる肉厚t:6mm以下で、かつ肉厚t(mm)と外径D(mm)との比、t/Dが0.2以下である高強度薄肉中空スタビライザー用電縫鋼管。
  7.  上記スタビライザー形状に成形し焼入れ焼戻処理を施した後の硬さがビッカース硬さで550HV未満である請求項6に記載の高強度薄肉中空スタビライザー用電縫鋼管。
  8.  前記組成に加えてさらに、質量%で、
     Cu:1%以下、              Ni:1%以下
    のうちから選ばれた1種または2種を含有する組成とする請求項6または7に記載の高強度薄肉中空スタビライザー用電縫鋼管。
  9.  前記組成に加えてさらに、質量%で、
     Nb:0.05%以下、             W:0.05%以下、
     V:0.5%以下
    のうちから選ばれた1種または2種以上を含有する組成とする請求項6ないし8のいずれかに記載の高強度薄肉中空スタビライザー用電縫鋼管。
  10.  前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する請求項6ないし9のいずれかに記載の高強度薄肉中空スタビライザー用電縫鋼管。
PCT/JP2017/037824 2016-10-24 2017-10-19 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法 WO2018079398A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018504958A JP6465249B2 (ja) 2016-10-24 2017-10-19 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法
US16/326,420 US11332812B2 (en) 2016-10-24 2017-10-19 Electric resistance welded steel tubes for high-strength thin hollow stabilizers, and methods for manufacturing the same
EP17865860.5A EP3476953B1 (en) 2016-10-24 2017-10-19 Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor
MX2019002073A MX2019002073A (es) 2016-10-24 2017-10-19 Tubos de acero soldados por resistencia electrica para estabilizadores huecos delgados de alta resistencia, y metodos para fabricar los mismos.
KR1020197004861A KR102232097B1 (ko) 2016-10-24 2017-10-19 고강도 박육 중공 스태빌라이저용 전봉 강관 및 그 제조 방법
CN201780051092.8A CN109642264A (zh) 2016-10-24 2017-10-19 高强度薄壁中空稳定器用电焊钢管及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-207518 2016-10-24
JP2016207518 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079398A1 true WO2018079398A1 (ja) 2018-05-03

Family

ID=62024865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037824 WO2018079398A1 (ja) 2016-10-24 2017-10-19 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法

Country Status (7)

Country Link
US (1) US11332812B2 (ja)
EP (1) EP3476953B1 (ja)
JP (1) JP6465249B2 (ja)
KR (1) KR102232097B1 (ja)
CN (1) CN109642264A (ja)
MX (1) MX2019002073A (ja)
WO (1) WO2018079398A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095899A (ja) * 2016-12-09 2018-06-21 日新製鋼株式会社 中空部材及びその製造方法
WO2020129337A1 (ja) * 2018-12-19 2020-06-25 Jfeスチール株式会社 電縫鋼管
WO2020230795A1 (ja) 2019-05-13 2020-11-19 Jfeスチール株式会社 中空スタビライザー用電縫鋼管
KR20210006977A (ko) * 2018-06-27 2021-01-19 제이에프이 스틸 가부시키가이샤 중공 스태빌라이저 제조용의 전봉 강관, 중공 스태빌라이저, 및 그것들의 제조 방법
EP3940102A4 (en) * 2019-03-15 2022-04-27 JFE Steel Corporation ELECTRICAL RESISTANCE WELDING STEEL TUBE FOR HOLLOW STABILIZER AND PROCESS FOR ITS MANUFACTURE
WO2023157297A1 (ja) * 2022-02-21 2023-08-24 日本製鉄株式会社 鋼管、車両用部品、及び、鋼管及び車両用部品の製造方法
EP3950973A4 (en) * 2019-03-29 2023-10-25 Nippon Steel Corporation ELECTRO-WELDED STEEL PIPE FOR HOLLOW STABILIZER, HOLLOW STABILIZER AND ASSOCIATED MANUFACTURING METHODS
US12037655B2 (en) 2018-12-19 2024-07-16 Jfe Steel Corporation Electric resistance welded steel pipe or tube

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649531B2 (ja) * 2017-12-27 2020-02-19 Jfeスチール株式会社 電縫溶接鋼管および電縫溶接鋼管の製造方法
CN110648421B (zh) * 2019-09-12 2020-12-29 北京科技大学 一种脱碳弹簧钢表面脱碳层厚度的计算方法
WO2021187408A1 (ja) * 2020-03-18 2021-09-23 Jfeスチール株式会社 電縫鋼管、その製造方法および自動車用構造部材
CN111763883A (zh) * 2020-06-29 2020-10-13 马鞍山钢铁股份有限公司 一种空心稳定杆用钢及其生产方法
WO2022075026A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
CN112322974A (zh) * 2020-10-26 2021-02-05 首钢集团有限公司 一种高疲劳寿命带钢及其制备方法、应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201543A (ja) * 2001-10-25 2003-07-18 Jfe Steel Kk 加工性に優れた鋼管およびその製造方法
JP2005076047A (ja) 2003-08-28 2005-03-24 Jfe Steel Kk 耐疲労特性に優れた中空スタビライザの製造方法
JP2006206999A (ja) 2005-01-31 2006-08-10 Jfe Steel Kk 高強度中空スタビライザ用電縫鋼管および高強度中空スタビライザの製造方法
JP2006312773A (ja) * 2005-05-09 2006-11-16 Jfe Steel Kk 成形性、低温靭性に優れかつ断面成形加工後の耐捻り疲労特性に優れた自動車構造部材用非調質高張力溶接鋼管およびその製造方法
JP2007217736A (ja) * 2006-02-15 2007-08-30 Jfe Steel Kk 自動車構造部材用高張力溶接鋼管およびその製造方法
JP2007270349A (ja) * 2006-03-09 2007-10-18 Nippon Steel Corp 中空部品用鋼管及びその製造方法
JP2008208417A (ja) 2007-02-26 2008-09-11 Jfe Steel Kk 熱処理用電縫溶接鋼管およびその製造方法
JP2009249650A (ja) * 2008-04-01 2009-10-29 Nisshin Steel Co Ltd 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
JP2010189758A (ja) 2009-01-20 2010-09-02 Nippon Steel Corp 疲労強度に優れる鋼管の製造方法
WO2013175821A1 (ja) * 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法
WO2017056384A1 (ja) * 2015-09-29 2017-04-06 Jfeスチール株式会社 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126917A (en) 1981-01-30 1982-08-06 Nisshin Steel Co Ltd Production of hollow stabilizer
EP1923477B1 (en) * 2005-08-22 2019-07-24 Nippon Steel Corporation Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP4466619B2 (ja) 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
JP5287164B2 (ja) * 2008-11-18 2013-09-11 Jfeスチール株式会社 耐腐食疲労特性に優れた高強度中空部材用電縫溶接鋼管
KR101315568B1 (ko) * 2010-03-24 2013-10-08 제이에프이 스틸 가부시키가이샤 고강도 전봉 강관 및 그 제조 방법
JP5849438B2 (ja) * 2011-05-30 2016-01-27 Jfeスチール株式会社 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201543A (ja) * 2001-10-25 2003-07-18 Jfe Steel Kk 加工性に優れた鋼管およびその製造方法
JP2005076047A (ja) 2003-08-28 2005-03-24 Jfe Steel Kk 耐疲労特性に優れた中空スタビライザの製造方法
JP2006206999A (ja) 2005-01-31 2006-08-10 Jfe Steel Kk 高強度中空スタビライザ用電縫鋼管および高強度中空スタビライザの製造方法
JP2006312773A (ja) * 2005-05-09 2006-11-16 Jfe Steel Kk 成形性、低温靭性に優れかつ断面成形加工後の耐捻り疲労特性に優れた自動車構造部材用非調質高張力溶接鋼管およびその製造方法
JP2007217736A (ja) * 2006-02-15 2007-08-30 Jfe Steel Kk 自動車構造部材用高張力溶接鋼管およびその製造方法
JP2007270349A (ja) * 2006-03-09 2007-10-18 Nippon Steel Corp 中空部品用鋼管及びその製造方法
JP2008208417A (ja) 2007-02-26 2008-09-11 Jfe Steel Kk 熱処理用電縫溶接鋼管およびその製造方法
JP2009249650A (ja) * 2008-04-01 2009-10-29 Nisshin Steel Co Ltd 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
JP2010189758A (ja) 2009-01-20 2010-09-02 Nippon Steel Corp 疲労強度に優れる鋼管の製造方法
WO2013175821A1 (ja) * 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法
WO2017056384A1 (ja) * 2015-09-29 2017-04-06 Jfeスチール株式会社 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476953A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095899A (ja) * 2016-12-09 2018-06-21 日新製鋼株式会社 中空部材及びその製造方法
KR20210006977A (ko) * 2018-06-27 2021-01-19 제이에프이 스틸 가부시키가이샤 중공 스태빌라이저 제조용의 전봉 강관, 중공 스태빌라이저, 및 그것들의 제조 방법
KR102437796B1 (ko) * 2018-06-27 2022-08-29 제이에프이 스틸 가부시키가이샤 중공 스태빌라이저 제조용의 전봉 강관, 중공 스태빌라이저, 및 그것들의 제조 방법
EP3816313A4 (en) * 2018-06-27 2021-05-05 JFE Steel Corporation ELECTRIC RESISTANCE WELDED STEEL PIPE TO PRODUCE A HOLLOW STABILIZER, HOLLOW STABILIZER AND ITS PRODUCTION PROCESS
KR102526496B1 (ko) 2018-12-19 2023-04-26 제이에프이 스틸 가부시키가이샤 전봉 강관
KR20210091282A (ko) * 2018-12-19 2021-07-21 제이에프이 스틸 가부시키가이샤 전봉 강관
CN113227423A (zh) * 2018-12-19 2021-08-06 杰富意钢铁株式会社 电阻焊钢管
EP3901301A4 (en) * 2018-12-19 2022-01-19 JFE Steel Corporation ELECTRICAL RESISTANCE WELDED STEEL PIPE
JP6747623B1 (ja) * 2018-12-19 2020-08-26 Jfeスチール株式会社 電縫鋼管
WO2020129337A1 (ja) * 2018-12-19 2020-06-25 Jfeスチール株式会社 電縫鋼管
US12037655B2 (en) 2018-12-19 2024-07-16 Jfe Steel Corporation Electric resistance welded steel pipe or tube
EP3940102A4 (en) * 2019-03-15 2022-04-27 JFE Steel Corporation ELECTRICAL RESISTANCE WELDING STEEL TUBE FOR HOLLOW STABILIZER AND PROCESS FOR ITS MANUFACTURE
EP3950973A4 (en) * 2019-03-29 2023-10-25 Nippon Steel Corporation ELECTRO-WELDED STEEL PIPE FOR HOLLOW STABILIZER, HOLLOW STABILIZER AND ASSOCIATED MANUFACTURING METHODS
WO2020230795A1 (ja) 2019-05-13 2020-11-19 Jfeスチール株式会社 中空スタビライザー用電縫鋼管
KR20220004758A (ko) 2019-05-13 2022-01-11 제이에프이 스틸 가부시키가이샤 중공 스태빌라이저용 전봉 강관
WO2023157297A1 (ja) * 2022-02-21 2023-08-24 日本製鉄株式会社 鋼管、車両用部品、及び、鋼管及び車両用部品の製造方法
WO2023157975A1 (ja) * 2022-02-21 2023-08-24 日本製鉄株式会社 鋼管、車両用部品、鋼管の製造方法及び車両用部品の製造方法

Also Published As

Publication number Publication date
EP3476953A4 (en) 2019-06-19
EP3476953B1 (en) 2022-01-05
KR102232097B1 (ko) 2021-03-24
US11332812B2 (en) 2022-05-17
CN109642264A (zh) 2019-04-16
EP3476953A1 (en) 2019-05-01
US20210277507A1 (en) 2021-09-09
KR20190031294A (ko) 2019-03-25
JP6465249B2 (ja) 2019-02-06
JPWO2018079398A1 (ja) 2018-11-01
MX2019002073A (es) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6465249B2 (ja) 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法
JP5463715B2 (ja) 自動車構造部材用高強度溶接鋼管の製造方法
CN108138279B (zh) 高强度中空稳定器用电阻焊接钢管、高强度中空稳定器用电阻焊接钢管的制造方法、高强度中空稳定器及高强度中空稳定器的制造方法
JP4837601B2 (ja) 中空部品用鋼管及びその製造方法
JP5040475B2 (ja) 加工性に優れ、かつ熱処理後の強度靭性に優れた厚肉熱延鋼板およびその製造方法
WO2011108675A1 (ja) 高強度中空ばね用シームレス鋼管
JP5196934B2 (ja) 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
JP5005543B2 (ja) 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法
JP6816738B2 (ja) 鋼線材の製造方法
JP4635708B2 (ja) 成形性、低温靭性に優れかつ断面成形加工後の耐捻り疲労特性に優れた自動車構造部材用非調質高張力溶接鋼管およびその製造方法
JP5499559B2 (ja) 成形性と耐ねじり疲労特性に優れた自動車足回り部材用高張力鋼材及びその製造方法
JP4859618B2 (ja) 耐遅れ破壊性に優れた中空スタビライザの製造方法
JP6796472B2 (ja) 中空部材及びその製造方法
JP5125601B2 (ja) 自動車構造部材用高張力溶接鋼管およびその製造方法
JP2009191330A (ja) 電縫鋼管
JP5142792B2 (ja) 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
EP2835439B1 (en) Hollow seamless pipe for high-strength spring
JP2009235499A (ja) 中空スタビライザーの製造方法
JP5499560B2 (ja) 成形性と耐ねじり疲労特性に優れた自動車足回り部材用高張力鋼材及びその製造方法
JP2007056283A (ja) 焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管およびその製造方法
CN113631735B (zh) 中空稳定器用电焊钢管和中空稳定器、以及其制造方法
JP6747623B1 (ja) 電縫鋼管
US20220307117A1 (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer
JP2007107032A (ja) 中空スタビライザ用鋼管の製造方法及び中空スタビライザの製造方法
JP7472826B2 (ja) 電縫溶接鋼管およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504958

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017865860

Country of ref document: EP

Effective date: 20190128

ENP Entry into the national phase

Ref document number: 20197004861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE