WO2018077177A1 - 一种定位方法及定位装置 - Google Patents

一种定位方法及定位装置 Download PDF

Info

Publication number
WO2018077177A1
WO2018077177A1 PCT/CN2017/107604 CN2017107604W WO2018077177A1 WO 2018077177 A1 WO2018077177 A1 WO 2018077177A1 CN 2017107604 W CN2017107604 W CN 2017107604W WO 2018077177 A1 WO2018077177 A1 WO 2018077177A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
time
information
nodes
located node
Prior art date
Application number
PCT/CN2017/107604
Other languages
English (en)
French (fr)
Inventor
杨晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17864084.3A priority Critical patent/EP3525528B1/en
Publication of WO2018077177A1 publication Critical patent/WO2018077177A1/zh
Priority to US16/397,996 priority patent/US11231497B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • H04L1/1678Details of the supervisory signal the supervisory signal being transmitted together with control information where the control information is for timing, e.g. time stamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of positioning technologies, and in particular, to a positioning method and a positioning device.
  • Indoor positioning technology refers to the technology of navigating and tracking indoor objects in an indoor environment.
  • One of the commonly used positioning technologies in indoor positioning technology is the ranging positioning technology.
  • the principle of the ranging positioning technology is: Distance measurement is performed between multiple anchor nodes to obtain multiple sets of distance information, and then multiple sets of distance information are used to locate the position of the node to be located by a positioning algorithm such as triangulation.
  • the cooperative positioning frame based on the AP (Access Point, anchor node) and the FTM (Fine Timing Measurement) communication between the nodes to be located as shown in FIG. 1 is located under the cooperative positioning framework shown in FIG.
  • the AP and the cooperating node S N around the node to be located (specifically, S 2 , S 3 or S 4 in FIG. 1 ) cooperate with the AP to locate the U that is regarded as the node to be located, and the positioning process is as follows:
  • the U initiates an FTM request to the AP. After receiving the FTM request, the AP initiates an FTM measurement, and the AP sends an FTM action frame.
  • the U sends an accurate time measurement response frame after receiving the FTM action frame, such as sending the precise time.
  • One possible way to measure the response frame is ACK (Acknowledgement).
  • ACK Acknowledgement
  • the AP acquires the sending time of the FTM action frame and the receiving time of the ACK
  • the U acquires the receiving time of the FTM action frame and the sending time of the ACK, and the same cooperative node S.
  • t 2 _S N also acquires t 2 _S N and t 3 _S N , respectively, where t 2 _S N is the reception time at which each of the cooperative nodes S N receives the FTM action frame, and t 3 _S N is the reception of each of the cooperative nodes S N receiving the ACK time.
  • each of the cooperation nodes S N sends the acquired time information (t 2 _S N and t 3 _S N ) and the respective location information to the AP, and the AP sets all the time information, the location information of the AP, and the respective S N .
  • the location information is sent to the U, and the U calculates the location information of the U according to the information.
  • the time information sent by the AP includes: the time information acquired by each S N , the transmission time of the FTM action frame acquired by the AP, and the ACK. The moment of reception.
  • an AP and at least two cooperative nodes S N of known locations are required in the wireless communication range of the node to be located, so that the node to be located can pass through with the AP.
  • the FTM handshake is used to calculate the location information of the FTM. If there are N nodes to be located in the coordinated positioning framework, at least N times of FTM handshake is required to obtain the location information of all the nodes to be located, and the signaling overhead in the network is increased, one of the FTMs.
  • the handshake is equivalent to one interaction of the two signalings FTM_K and ACK_K.
  • FTM_K indicates that the AP sends the FTM action frame at the Kth time
  • ACK_K indicates that the STA sends the ACK for the Kth time
  • the ACK is a feasible way to accurately measure the time response frame.
  • the present application provides a positioning method and a positioning device for obtaining location information of two nodes to be located in an FTM handshake to reduce signaling overhead in the network.
  • the technical solutions are as follows:
  • a first aspect of the present application provides a positioning method, where the positioning method includes: acquiring first time information of a first to-be-located node, where the first time information includes that the first to-be-targeted node sends a precise time measurement frame.
  • the second time information includes a second receiving time at which the second to-be-targeted node receives the accurate time measurement frame and a sending time at which the second to-be-targeted node sends a precise time measurement response frame; acquiring at least three known times Location information of the coordinated nodes of the location and third time information of the coordinated nodes of the at least three known locations, wherein the third time information comprises: receiving, by each of the at least three coordinated nodes, the accurate time measurement frame And the at least three cooperative nodes respectively receive the receiving time of the precise time measurement response frame; according to the first time information, the second time information, the third time information, and the at least three And determining location information of the first to-be-located node and location information of the second to-be-located node by determining location information of the coordinated node of the location.
  • the location information of the first to-be-located node and the location information of the second to-be-located node can be obtained by using one FTM handshake of the first to-be-located node and the second to-be-located node, and then, when there are N nodes to be located, If N is an even number, the N nodes to be located can obtain their respective position information through N/2 times FTM handshake. If N is an odd number, the N nodes to be located can pass (N/2)+1 times.
  • the FTM handshake obtains the respective location information.
  • the location information of the N to-be-located nodes is obtained by 2N FTM handshakes, and the number of FTM handshakes is reduced, thereby reducing the signaling overhead in the network.
  • a second aspect of the present application provides a positioning apparatus, where the positioning apparatus includes: an acquiring unit, configured to acquire first time information of a first to-be-located node, where the first time information includes the first to-be-located node to send And transmitting, by the first time to be located, the first receiving moment of the accurate time measurement response frame;
  • the acquiring unit is further configured to acquire second time information of the second to-be-located node, where the second time information includes a second receiving time that the second to-be-positioned node receives the accurate time measurement frame, and the The second to-be-located node sends the transmission time of the accurate time measurement response frame;
  • the acquiring unit is further configured to acquire respective location information of the collaboration nodes of the at least three known locations and third time information of the collaboration nodes of the at least three known locations, where the third time information includes: Receiving, by each of the three cooperative nodes, a reception time of the precise time measurement frame and a reception time of the at least three cooperative nodes each receiving the accurate time measurement response frame;
  • a determining unit configured to determine, according to the first time information, the second time information, the third time information, and the location information of the collaboration nodes of the at least three known locations acquired by the acquiring unit, Location information of the first to-be-located node and location information of the second to-be-located node.
  • the location information of the first to-be-located node and the location information of the second to-be-located node can be obtained by using one FTM handshake of the first to-be-located node and the second to-be-located node, and then, when there are N nodes to be located, If N is an even number, the N nodes to be located can obtain their respective position information through N/2 times FTM handshake. If N is an odd number, the N nodes to be located can pass (N/2)+1 times.
  • the FTM handshake obtains the respective location information.
  • the location information of the N to-be-located nodes is obtained by 2N FTM handshakes, and the number of FTM handshakes is reduced, thereby reducing the signaling overhead in the network.
  • the determining, according to the first time information, the second time information, the third time information, and location information of each of the at least three known locations include:
  • the positioning method is performed by the first to-be-located node, to determine, by the first to-be-located node, location information of the first to-be-located node and a location of the second to-be-located node. Information, thereby reducing the amount of calculation of the second node to be located;
  • the acquiring the first time information of the first to-be-located node includes:
  • the acquiring the second time information of the second to-be-located node includes:
  • the positioning method is performed by the second to-be-located node, to determine, by the second to-be-located node, location information of the first to-be-located node and a location of the second to-be-located node. Information, thereby reducing the amount of calculation of the first node to be located;
  • the acquiring the second time information of the second to-be-located node includes:
  • the acquiring the first time information of the first to-be-located node includes:
  • the acquiring the respective location information of the collaboration nodes of the at least three known locations and the third moment information of the collaboration nodes of the at least three known locations includes: receiving the at least three collaborations The respective location information and the third time information respectively sent by the nodes.
  • the positioning method is performed by any one of the cooperation nodes of the at least three known locations, to determine location information and location of the first to-be-targeted node by the any of the collaboration nodes. Determining the location information of the second to-be-located node, thereby reducing the calculation amount of the first to-be-located node and the second to-be-located node; and obtaining the first time information of the first to-be-located node, including: receiving the first to-be-positioned The first time information sent by the node;
  • the acquiring the second time information of the second to-be-located node includes: receiving the second time information sent by the second to-be-located node;
  • Obtaining respective location information of the collaboration nodes of the at least three known locations and respective third moment information of the collaboration nodes of the at least three known locations including:
  • the positioning method is performed by the management node, to determine, by the management node, location information of the first to-be-located node and location information of the second to-be-located node, thereby reducing the first to-be-positioned The calculation of the first time information of the node to be located, and the obtaining the first time information sent by the first to-be-located node;
  • the acquiring the second time information of the second to-be-located node includes: receiving the second time information sent by the second to-be-located node;
  • the positioning method is performed by the first to-be-located node, and the positioning method further includes: sending, to the second to-be-located node, location information of the second to-be-located node;
  • the positioning method is performed by the second to-be-located node, and the positioning method further includes: sending, to the first to-be-located node, location information of the first to-be-located node;
  • the locating method is performed by any one of the at least three cooperative nodes of the known location, and the locating method further includes: sending, by the first to-be-located node, the first to-be-located node Position information and sending location information of the second to-be-targeted node to the second to-be-located node.
  • the positioning method is performed by the first to-be-located node, and the positioning method further includes: determining the second to-be-targeted node that performs accurate time measurement with the first to-be-located node.
  • the determining, by the second to-be-targeted node that performs accurate time measurement with the first to-be-located node includes:
  • the determining, according to a flight time, the first time information, and the third time information between the first to-be-located node and the second to-be-located node, determining the at least three a flight time difference between a flight time between the cooperative node of the known location and the first to-be-targeted node and a flight time between the cooperation node of the at least three known locations and the second to-be-targeted node include:
  • TOF(U 1 -S N )-TOF(U 2 -S N ) t 2 _S N -t 3 _S N +(t 4 -t 1 )-TOF(U 1 -U 2 ), a difference between a flight time between the cooperation node S N and the first to-be-positioned node U 1 and a flight time between the S N and the second to-be-positioned node U 2 ;
  • the TOF (U 1 -U 2 ) is a flight time between the first to-be-positioned node and the second to-be-located node
  • the TOF(U 1 -S N ) is any of the cooperative nodes S N
  • the time of flight between the first to-be-located node U 1 , TOF(U 2 -S N ) is the flight time between any of the cooperative nodes S N and the second to-be-positioned node U 2
  • t 1 is Sending, by the first to-be-located node, a transmission time of the precise time measurement frame
  • t 4 is the first reception time
  • t 2 _S N is a reception time of the S N receiving the accurate time measurement frame
  • t 3 _S N is S N receives the reception time of the accurate time measurement response frame.
  • determining, according to the time difference of flight, respective location information of the cooperation nodes of the at least three known locations, and flight time between the first to-be-located node and the second to-be-targeted node include:
  • (x 1 , y 1 ) is the coordinates of the first node to be positioned to represent the position information of the first node to be positioned;
  • (x 2 , y 2 ) is the second to be positioned The coordinates of the node to represent the position information of the first node to be located;
  • (a N , b N ) is the coordinate of S N to represent the position information of any of the cooperative nodes S N ;
  • c is the speed of light, and c is equal to 3*10 ⁇ 8 ;
  • t 2 is the second receiving time, t 3 is the sending time of the second to-be-located node transmitting the accurate time measurement response frame, and the TOF (U 1 -U 2 ) is the first to-be-targeted node U The flight time between 1 and the second to-be-located node U 2 .
  • a third aspect of the present application provides a positioning apparatus, including: a memory, a processor, a receiver, and a transmitter, the processor being configured to perform the first aspect and the positioning method provided by all of the above implementations.
  • a fourth aspect of the present application provides a storage medium having recorded thereon program code for performing the first aspect and the positioning method provided by all of the above implementations.
  • Figure 1 is a schematic diagram of a collaborative positioning frame
  • FIG. 2 is a signaling interaction diagram of a positioning method according to an embodiment of the present disclosure
  • FIG. 3 is a signaling diagram of steps 203 to 205 in the positioning method shown in FIG. 2;
  • FIG. 4 is a signaling diagram of steps 206 to 208 in the positioning method shown in FIG. 2;
  • FIG. 5 is a signaling diagram of steps 209 to 210 in the positioning method shown in FIG. 2;
  • FIG. 6 is another signaling interaction diagram of a positioning method according to an embodiment of the present application.
  • FIG. 7 is still another signaling interaction diagram of a positioning method according to an embodiment of the present disclosure.
  • FIG. 8 is still another signaling interaction diagram of a positioning method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 11 is still another schematic structural diagram of a positioning device according to an embodiment of the present application.
  • FIG. 12 is still another schematic structural diagram of a positioning device according to an embodiment of the present application.
  • FIG. 13 is still another schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a positioning device according to an embodiment of the present disclosure.
  • Figure 1 shows the cooperative positioning frame where the node U to be located is located.
  • this cooperative positioning framework there is an AP and a plurality of cooperative nodes SN of known locations in the wireless communication range of U, such as the cooperative node S2 in FIG. S3 and S4, each of the cooperative nodes SN participates in an FTM handshake between the U and the AP, and each of the specific cooperative nodes SN obtains the reception time of receiving the FTM_K and the reception time of each receiving the ACK_K, so that the U is based on the reception time and the AP.
  • the time information, the location information of the AP, and the location information of each of the cooperation nodes SN are used to calculate their own location information.
  • at least N times of FTM handshakes are required to obtain location information of all Us, thereby improving signaling overhead in the network.
  • the embodiment of the present application provides a positioning method as shown in FIG. 2, where U1 is a first to-be-located node, U2 is a second to-be-located node, and SN is a cooperative node.
  • U1 is a first to-be-located node
  • U2 is a second to-be-located node
  • SN is a cooperative node.
  • the positioning method shown in Figure 2 is performed by U1 and includes the following steps:
  • U1 sends a signaling request to the AP, where the signaling request is used to request accurate time measurement.
  • the AP sends a response message to U1, where the response message is used to specify U1 and U2 to perform accurate time measurement, thereby determining U2.
  • the AP is a management node that manages the coordinated positioning of the U1 and the U2 by the respective cooperation node SN.
  • the AP may specify any two to-be-located nodes to perform accurate time measurement, where the AP specifies any two to be determined.
  • the criterion for accurate time measurement between the bit nodes U may be that two nodes U to be located can communicate with each other. For example, in the response message sent by the AP to U1 in the above step 202, U2 that can communicate with U1 is specified, so U1 determines U2 that performs accurate time measurement with itself through the above steps 201 and 202.
  • U1 can also use other methods to determine U2 for accurate time measurement with itself. As shown in step 301 and step 302 in FIG. 2, U1 sends a ranging measurement request in a broadcast manner, and U2 in the wireless communication range of U1 is receiving. After the ranging measurement request, a ranging measurement response message is sent to U1, and U1 can perform accurate time measurement with U2.
  • U1 sends FTM_K and acquires the transmission time t1 of FTM_K.
  • U2 acquires a second receiving time t2 of receiving FTM_K.
  • the cooperative nodes S1, S2, and S3 acquire the reception time t2_SN of each receiving FTM_K.
  • the respective reception times t2_SN are denoted as t2_S1, t2_S2 and t2_S3, respectively.
  • Steps 203 to 205 shown in FIG. 2 can be represented by the signaling diagram shown in FIG. 3.
  • the FTM_K sent by U1 is received by U2, the cooperative nodes S1, S2, and S3, and then U2 can acquire the second receiving time t2 of receiving FTM_K, the cooperative node.
  • S1, S2 and S3 will acquire the reception time t2_SN of each receiving FTM_K.
  • U2 sends ACK_K and acquires the transmission time t3 of ACK_K.
  • U1 acquires a first receiving time t4 of receiving ACK_K.
  • the cooperative nodes S1, S2, and S3 acquire the reception time t3_SN of each receiving the ACK_K.
  • the respective reception times t3_SN are denoted as t3_S1, t3_S2, and t3_S3, respectively.
  • the step 206 to the step 208 shown in FIG. 2 can be represented by the signaling diagram shown in FIG. 4.
  • the ACK_K sent by the U2 is received by the U1, the cooperative nodes S1, S2, and S3, and the U1 can acquire the first receiving time t4 of receiving the ACK_K, the cooperative node.
  • S1, S2, and S3 acquire the reception time t3_SN of each receiving ACK_K.
  • U2 sends a transmission time t3 of ACK_K and a second reception time t2 to U1.
  • U1 can obtain the first time information of U1 and the second time information of U2, where the first time information includes a sending time of U1 sending FTM_K and a first receiving time of U1 receiving ACK_K;
  • the information includes a second reception time at which U2 receives FTM_K and a transmission time at which U2 transmits ACK_K.
  • the cooperation nodes S1, S2, and S3 acquire respective coordinates, and coordinate the position information of the cooperation node.
  • the cooperative nodes S1, S2, and S3 transmit respective coordinates to U1, reception time t2_SN of each receiving FTM_K, and reception time t3_SN of each receiving ACK_K.
  • Step 209 and step 211 shown in FIG. 2 can be represented by the signaling diagram shown in FIG. 5.
  • U1 receives the transmission time t3 at which U2 transmits ACK_K and transmits the second reception time t2, and receives the transmissions of the respective cooperation nodes S1, S2, and S3.
  • the location information and the third time information of the cooperation nodes S1, S2, and S3 of the three known locations may be acquired, where the third time information includes: three collaboration nodes S1.
  • S2 and S3 each receive a reception time t2_SN of FTM_K and a reception time t3_SN at which each of the three cooperative nodes receives ACK_K.
  • TOF(U 1 -S N )-TOF(U 2 -S N ) t 2 _S N -t 3 _S N +(t 4 -t 1 )-TOF(U 1 -U 2 )(Formula 2), calculation The difference between the flight time between the cooperative nodes S N and U 1 and the flight time between S N and U 2 , where TOF(U 1 -S N ) is the flight time between S N and U 1 , TOF (U 2 -S N ) is the flight time between S N and U 2 .
  • Equation 2 The derivation process for Equation 2 is:
  • t 2 _S N t 1 +TOF(U 1 -S N )+ ⁇ (U 1 -S N )
  • t 2 t 1 +TOF(U 1 -U 2 )+ ⁇ (U 1 -U 2 )
  • t 3 _S N t 3 +TOF(U 2 -S N )+ ⁇ (U 2 -S N )
  • TOF(U 1 -S N )-TOF(U 2 -S N ) t 2 _S N -t 3 _S N +(t 4 -t 1 )-TOF(U 1 -U 2 ).
  • TOF(U 2 -U 1 ) and TOF(U 1 -U 2 ) both represent the flight time between U 1 and U 2 , and the difference is that TOF(U 1 -U 2 ) is initiated by U 1 and TOF( U 2 -U 1 ) is initiated by U 2 .
  • the coordinates of U 1 and the coordinates of U 2 are calculated.
  • the position information of U 1 is represented by the coordinates of U 1
  • the position information of U 2 is represented by the coordinates of U 2 .
  • Equation 1 Equation 1
  • Equation 2 Equation 3
  • Equation 4 Equation 2
  • U 1 sends the coordinates of U 2 to U 2 .
  • the positioning method provided by the embodiment of the present application can obtain the coordinates of U 1 and U 2 by one FTM handshake of U 1 and U 2 , and then, if there are N nodes to be located, if N is even Then, the N nodes to be located can obtain their respective coordinates by N/2 times FTM handshake. If N is an odd number, the N nodes to be located can obtain their respective (N/2)+1 FTM handshakes. Coordinates, compared with the prior art, the coordinates of the N nodes to be located are obtained by 2N FTM handshakes, and the number of FTM handshakes is reduced, thereby reducing signaling overhead in the network.
  • FIG. 6 another signaling interaction diagram of the positioning method provided by the embodiment of the present application is shown.
  • the positioning method illustrated in FIG. 6 is performed by the first to-be-located node U. 1 execution is performed by the second to-be-positioned node U 2 to calculate the coordinates of U 1 and the coordinates of U 2 by U 2 according to Equation 1, Equation 2, Equation 3, and Equation 4, and send U 1 to U 1 by U 2
  • the coordinates are as follows, step 612 to step 615.
  • step 609 transmits the transmission time FTM_K U 2, U 2 so obtaining a first time information
  • the cooperative nodes S 1 , S 2 and S 3 change the respective coordinates to U 1 , the reception time t 2 _S N of the respective reception FTM_K and the reception time t 3 _S N of the respective reception ACK_K instead of transmitting the respective coordinates to U 2 , Receiving the reception time t 2 _S N of the FTM_K and the reception time t 3 _S N of the respective reception ACK_K, as in step 611, so that U 2 acquires the respective positions of the cooperation nodes S 1 , S 2 and S 3 of the three known positions. Information and third-time information.
  • FIG. 7 another signaling interaction diagram of the positioning method provided by the embodiment of the present application is shown.
  • the positioning method shown in FIG. 7 is performed by the first to-be-located node U. 1
  • Execution is performed by any of the cooperating nodes S 1 , S 2 and S 3 of the three known locations, as performed by S 1 , by S 1 according to Equation 1, Equation 2, Equation 3, and Equation 4 calculating the coordinates of U 1 and U 2 of the coordinates, the coordinates transmitted by the S 1 U 1 to U 1 and U 2 to U transmits coordinates 2, as step 713 to step 717.
  • the S 1 no longer transmits its own coordinates to U 1 , receives the reception time t 2 _S N of FTM_K and the reception time t 3 _S N of the received ACK_K, and the cooperative nodes S 2 and S 3 transmit their respective coordinates to U 1 and receive each
  • the reception time t 2 _S N of FTM_K and the reception time t 3 _S N of the respective reception ACK_K are changed to transmit respective coordinates to S 1 , reception times t 2 _S N of respective reception FTM_Ks, and reception times t 3 _S N of reception ACK_Ks, respectively.
  • the S 1 acquires the location information and the third time information of the cooperation nodes S 1 , S 2 , and S 3 of the three known locations.
  • FIG. 8 another signaling interaction diagram of the positioning method provided by the embodiment of the present application is shown.
  • the positioning method illustrated in FIG. 8 is performed by the first to-be-located node U. 1 performed by the change management node, executing AP in FIG. 8, 2, equation 3 and equation 4 is calculated from the coordinates AP coordinates U 1 and U 2 according to the formula 1, formula, by the AP sends to U 1 U 1
  • the coordinates and the coordinates of U 2 are sent to U 2 as in steps 813 to 817.
  • the U 1 sends the sending time t 1 of the FTM_K and the first receiving time t 4 to the AP, as in step 809, so that the AP acquires the first time information;
  • the cooperative nodes S 1 , S 2 and S 3 change the respective coordinates to U 1 , the reception time t 2 _S N of the respective reception FTM_K and the reception time t 3 _S N of the respective reception ACK_K instead of transmitting respective coordinates to the AP, respectively Receiving the reception time t 2 _S N of the FTM_K and the reception time t 3 _S N of the respective reception ACK_K, as in step 812, so that the AP acquires the respective location information of the cooperation nodes S 1 , S 2 and S 3 of the three known locations and Third moment information.
  • the embodiment of the present application provides a positioning device as shown in FIG. 9 , which may include: an obtaining unit 11 and a determining unit 12 .
  • the obtaining unit 11 is configured to acquire first time information of the first to-be-located node, where the first time information includes a sending time of the first to-be-located node to send the accurate time measurement frame and a first to-be-positioned node to receive the accurate time measurement response frame. A receiving moment.
  • the acquiring unit 11 is further configured to acquire second time information of the second to-be-located node, where the second time information includes a second receiving time that the second to-be-positioned node receives the accurate time measurement frame, and the second to-be-targeted node sends the accurate time measurement response. The time at which the frame was sent.
  • the acquiring unit 11 is further configured to acquire respective location information of the collaboration nodes of the at least three known locations and third time information of the collaboration nodes of the at least three known locations, where the third time information includes: at least three collaboration nodes respectively The receiving moment of receiving the accurate time measurement frame and the receiving moment of each of the at least three cooperative nodes receiving the accurate time measurement response frame.
  • the determining unit 12 is configured to determine location information of the first to-be-located node according to the first time information, the second time information, the third time information, and the location information of the cooperation nodes of the at least three known locations acquired by the acquiring unit 11 And location information of the second node to be located.
  • the determining unit 12 includes: a first determining subunit 121, a second determining subunit 122, and a third determining subunit 123, as shown in FIG.
  • U 1 is the first to-be-located node U 1
  • U 2 is the second to-be-positioned node U 2
  • t 1 is the transmission time of the first to-be-positioned node to send the accurate time measurement frame
  • t 2 is the second reception time
  • t 3 is The second to-be-located node sends the transmission time of the accurate time measurement response frame
  • t 4 is the first reception time.
  • a second determining sub-unit 122 configured to determine, according to a flight time, a first time information, and a third time information between the first to-be-located node and the second to-be-located node, each of the cooperative nodes of the at least three known locations Flight time difference between flight time between a node to be located and flight time between at least three known nodes and a second node to be located, flight The time difference includes a difference between a flight time between any one of the cooperation nodes of the at least three known locations and the first to-be-positioned node and a flight time between any of the cooperation nodes and the second to-be-positioned node;
  • the second determining sub-unit 122 is according to Equation 2 below:
  • TOF(U 1 -S N )-TOF(U 2 -S N ) t 2 _S N -t 3 _S N +(t 4 -t 1 )-TOF(U 1 -U 2 )(Formula 2), a difference between a flight time between any of the cooperative nodes S N and the first to-be-positioned node U 1 and a flight time between the S N and the second to-be-located node U 2 ;
  • the TOF (U 1 -U 2 ) is the flight time between the first to-be-positioned node and the second to-be-located node
  • the TOF(U 1 -S N ) is any of the cooperative node S N and the first to-be-located node U 1
  • the flight time between time, TOF(U 2 -S N ) is the flight time between any of the cooperative nodes S N and the second to-be-positioned node U 2
  • t 2 _S N is the reception time of the S N reception accurate time measurement frame
  • t 3 _S N is the reception time at which the S N receives the accurate time measurement response frame.
  • a third determining subunit 123 configured to determine, according to a time difference of flight, respective location information of the coordinated nodes of the at least three known locations, and a time of flight between the first to-be-located node and the second to-be-located node, determining the first to-be-located node Location information and location information of the second node to be located.
  • the third determining subunit is according to Equation 3 and Equation 4:
  • the coordinates of U 1 and the coordinates of U 2 are calculated.
  • the position information of U 1 is represented by the coordinates of U 1
  • the position information of U 2 is represented by the coordinates of U 2 .
  • the determining unit may eliminate the cooperative node because the first to-be-positioned node, the second to-be-positioned node, and at least three known locations The internal clocks cannot be aligned to cause errors, which improves the calculation accuracy.
  • the location information of the first to-be-located node and the location information of the second to-be-located node may be obtained by using one FTM handshake of the first to-be-located node and the second to-be-located node, and then there are N to-be-located nodes. If N is an even number, the N nodes to be located can obtain their respective position information through N/2 times FTM handshake. If N is an odd number, the N nodes to be located can pass (N/2)+.
  • the FTM handshake is used to obtain the respective location information.
  • the location information of the N to-be-located nodes is obtained by 2N FTM handshakes, and the number of FTM handshakes is reduced, thereby reducing the signaling overhead in the network.
  • the positioning device shown in FIG. 9 is a first to-be-positioned node, and the positioning device further includes a node determining unit 13 on the basis of FIG. 9, and the obtaining unit 11 includes a sending unit 111, a receiving unit 112, and an acquiring unit.
  • Unit 113 is shown in FIG.
  • the node determining unit 13 is configured to determine a second to-be-positioned node that performs accurate time measurement with the first to-be-located node. In the embodiment of the present application, the node determining unit 13 determines that the implementation manner of the second to-be-located node includes, but is not limited to, the following two implementation manners:
  • An implementation manner is: a node determining unit 13 configured to enable the sending unit 111 to send a signaling request to the management node, and obtain a response message sent by the management node received by the receiving unit 112, where the signaling request is used to request accurate time measurement. And determining, by the response message, that the first to-be-located node and the second to-be-targeted node perform accurate time measurement, determining the second to-be-located node.
  • the node determining unit 13 is configured to enable the sending unit 111 to broadcast the ranging measurement request, and acquire the ranging measurement response message sent by the second to-be-located node received by the receiving unit 112, thereby determining the second to-be-positioned node.
  • An implementation manner of the acquiring unit 11 acquiring the first time information of the first to-be-located node is: the sending unit 111 sends the accurate The time measurement frame is obtained by the acquisition sub-unit 113, and the receiving unit 112 receives the accurate time measurement response frame sent by the second to-be-located node, and the acquisition sub-unit 113 acquires the first reception time.
  • the implementation unit 11 obtains the second time information of the second to-be-located node, and the receiving unit 112 receives the second time information sent by the second to-be-located node.
  • One implementation manner in which the obtaining unit 11 acquires the respective location information of the cooperation nodes of the at least three known locations and the third time information of the cooperation nodes of the at least three known locations is: the receiving unit 112 receives the at least three collaboration nodes and respectively sends the The respective location information and the third moment information.
  • the sending unit 111 is further configured to send, to the second to-be-located node, location information of the second to-be-located node.
  • the first to-be-positioned node can calculate the position information of the node to be located and the second to-be-positioned node, thereby reducing the calculation amount of the second to-be-located node.
  • the positioning device shown in FIG. 9 is a second to-be-located node, and the acquiring unit 11 in the positioning device includes a sending unit 114, a receiving unit 115, and an obtaining sub-unit 116, as shown in FIG.
  • An implementation manner in which the acquiring unit 11 acquires the second time information of the second to-be-located node is: the receiving unit 115 receives the accurate time measurement frame sent by the first to-be-located node, and acquires the second receiving time by the obtaining sub-unit 116, and The sending unit 114 sends a precise time measurement response frame, which is also used by the obtaining sub-unit 116 to acquire the transmission time of the accurate time measurement response frame.
  • the implementation unit 11 obtains the first time information of the first to-be-located node, and the receiving unit 115 receives the first time information sent by the first to-be-located node.
  • One implementation manner in which the obtaining unit 11 acquires the respective location information of the cooperation nodes of the at least three known locations and the third time information of the cooperation nodes of the at least three known locations is: the receiving unit 115 receives the at least three collaboration nodes respectively. The respective location information and the third moment information.
  • the sending unit 114 is further configured to send, to the first to-be-located node, location information of the first to-be-located node.
  • the second to-be-located node can calculate the position information of itself and the first to-be-positioned node, thereby reducing the calculation amount of the first to-be-located node.
  • the positioning device shown in FIG. 9 is any one of the cooperation nodes of at least three known locations, the positioning device further includes a sending unit 14, and the obtaining unit 11 includes a receiving unit 117 and an acquiring subunit. 118, as shown in FIG.
  • An implementation manner in which the acquiring unit 11 obtains the first time information of the first to-be-located node is: the receiving unit 117 receives the first time information sent by the first to-be-located node.
  • the implementation unit 11 obtains the second time information of the second to-be-located node, and the receiving unit 117 receives the second time information sent by the second to-be-located node.
  • the acquisition subunit 118 acquires the location of any of the cooperation nodes. information.
  • the receiving unit 117 receives the precise time measurement frame sent by the first to-be-located node, and the acquisition sub-unit 118 acquires the reception time at which any of the cooperative nodes receives the accurate time measurement frame.
  • the receiving unit 117 receives the precise time measurement response frame sent by the second to-be-located node, and the acquisition sub-unit acquires the reception time of any coordinated node receiving the accurate time measurement response frame, and the receiving unit 117 receives the other coordinated nodes of the at least three cooperation nodes.
  • the sending unit 14 is configured to send the location information of the first to-be-located node to the first to-be-located node and the location information of the second to-be-targeted node to the second to-be-located node.
  • any one of the cooperation nodes of the at least three known locations may calculate location information of the first to-be-located node and the second to-be-located node, and after calculating the location information, to the first to-be-located node. Transmitting the location information of the first to-be-located node and the location information of the second to-be-targeted node to the second to-be-located node, thereby reducing the calculation amount of the first to-be-located node and the second to-be-located node.
  • the positioning device shown in FIG. 9 is a management node, and the positioning device further includes: a sending unit 15, as shown in FIG.
  • the implementation unit 11 is configured to obtain the first time information of the first to-be-located node.
  • the acquiring unit 11 is configured to receive the first time information sent by the first to-be-located node.
  • the obtaining unit 11 is configured to obtain the second time information of the second to-be-located node.
  • the acquiring unit 11 is configured to receive the second time information sent by the second to-be-located node.
  • the obtaining unit 11 acquires the respective location information of the cooperation nodes of the at least three known locations and the third moment information of the collaboration nodes of the at least three known locations is: the obtaining unit 11 is configured to receive at least three collaborations The respective location information and the third time information respectively sent by the nodes.
  • the sending unit 15 is configured to send the location information of the first to-be-located node to the first to-be-located node and the location information of the second to-be-targeted node to the second to-be-located node.
  • the management node may calculate location information of the first to-be-located node and the second to-be-located node, and send the location information of the first to-be-located node to the first to-be-located node after calculating the location information.
  • the second to-be-located node sends the location information of the second to-be-located node, thereby reducing the calculation amount of the first to-be-located node and the second to-be-located node.
  • the embodiment of the present application further provides a positioning device as shown in FIG. 14 , where the positioning device includes a transmitter 21 , a receiver 22 , a memory 23 , and a processor 24 .
  • the processor 24 is configured to acquire first time information of the first to-be-located node, second time information of the second to-be-located node, location information of each of the cooperation nodes of the at least three known locations, and at least three known locations.
  • the third time information includes: a receiving moment at which the at least three cooperative nodes respectively receive the precise time measurement frame and a receiving moment at which the at least three cooperative nodes respectively receive the accurate time measurement response frame;
  • the first time information includes the first to be located node to transmit accurately a sending moment of the time measurement frame and a first receiving moment of the first to-be-positioned node receiving the accurate time measurement response frame;
  • the second time information includes a second receiving moment of the second to-be-positioned node receiving the accurate time measurement frame and the second to-be-located node Send the precise time to measure the transmission time of the response frame.
  • the memory 23 is configured to store first time information of the first to-be-located node, second time information of the second to-be-located node, location information of each of the cooperation nodes of the at least three known locations, and cooperation of at least three known locations The third moment information of the node.
  • the processor 24 determines the location of the first to-be-located node according to the acquired first time information, the second time information, the third time information, and the respective location information of the coordinated nodes of the at least three known locations.
  • One implementation of the information and the location information of the second node to be located is:
  • the processor 24 determines, according to the first time information and the second time information, a flight time between the first to-be-positioned node and the second to-be-located node; according to the flight time between the first to-be-positioned node and the second to-be-located node, First time information and third time information, determining a flight time between each of the cooperation nodes of the at least three known locations and the first to-be-positioned node and the cooperation node of the at least three known locations and the second node to be located Flight time difference between flight times, the flight time difference includes flight time between any of the cooperative nodes and the first to-be-positioned node of at least three known locations, and any of the cooperative nodes and the second standby Determining the difference in flight time between the nodes; and determining the first pending based on the time difference of the flight, the respective location information of the cooperation nodes of the at least three known locations, and the time of flight between the first to-be-located node and the second node to be located Location information of the
  • U 1 is the first to-be-located node U 1
  • U 2 is the second to-be-positioned node U 2
  • t 1 is the transmission time of the first to-be-positioned node to send the accurate time measurement frame
  • t 2 is the second reception time
  • t 3 is The second to-be-located node sends the transmission time of the accurate time measurement response frame
  • t 4 is the first reception time.
  • processor 24 is based on Equation 2 below:
  • TOF(U 1 -S N )-TOF(U 2 -S N ) t 2 _S N -t 3 _S N +(t 4 -t 1 )-TOF(U 1 -U 2 )(Formula 2), a difference between a flight time between any of the cooperative nodes S N and the first to-be-positioned node U 1 and a flight time between the S N and the second to-be-located node U 2 ;
  • TOF(U 1 -U 2 ) is the flight time between the first to-be-positioned node and the second to-be-located node
  • the TOF(U 1 -S N ) is the U of any of the cooperative nodes S N and the first to-be-located node
  • the flight time between 1 and TOF(U 2 -S N ) is the flight time between any of the cooperative nodes S N and the second to-be-positioned node U 2
  • t 2 _S N is the reception time of the S N reception accurate time measurement frame
  • t 3 _S N is the reception time at which the S N receives the accurate time measurement response frame.
  • processor 24 is based on Equation 3 and Equation 4:
  • the coordinates of U 1 and the coordinates of U 2 are calculated.
  • the position information of U 1 is represented by the coordinates of U 1
  • the position information of U 2 is represented by the coordinates of U 2 .
  • the processor 24 can eliminate the coordinates when calculating the coordinates of the first node to be located and the coordinates of the second node to be located.
  • the internal clocks of a to-be-positioned node, a second to-be-positioned node, and at least three known-positioned cooperative nodes cannot be aligned, thereby improving the calculation accuracy.
  • the location information of the first to-be-located node and the location information of the second to-be-located node may be obtained by using one FTM handshake of the first to-be-located node and the second to-be-located node, and then there are N to-be-located nodes. If N is an even number, the N nodes to be located can obtain their respective position information through N/2 times FTM handshake. If N is an odd number, the N nodes to be located can pass (N/2)+.
  • the FTM handshake is used to obtain the respective location information.
  • the location information of the N to-be-located nodes is obtained by 2N FTM handshakes, and the number of FTM handshakes is reduced, thereby reducing the signaling overhead in the network.
  • the foregoing positioning device is the first to-be-located node in FIG. 2, and the processor 24 acquires the first time information of the first to-be-located node, the second time information of the second to-be-located node, and at least One implementation of the respective location information of the cooperation nodes of the three known locations and the third moment information of the cooperation nodes of the at least three known locations is:
  • the processor 24 causes the transmitter 21 to transmit a precise time measurement frame, the processor 24 acquires the transmission time of the time measurement frame, and the processor 24 causes the receiver 22 to receive the precise time measurement response frame transmitted by the second to-be-located node, and the processor 24 acquires First receiving moment.
  • the processor 24 causes the receiver 22 to receive the second time information transmitted by the second to-be-located node.
  • the processor 24 causes the receiver 22 to receive respective location information and third time information transmitted by each of the at least three cooperating nodes.
  • the processor 24 is further configured to determine a second to-be-positioned node that performs accurate time measurement with the first to-be-located node.
  • the processor 24 determines an implementation package of the second to-be-targeted node that performs accurate time measurement with the first to-be-located node. This is not limited to the following two implementations:
  • An implementation manner is: the processor 24 causes the transmitter 21 to send a signaling request to the management node, and acquires a response message sent by the management node received by the receiver 22, where the signaling request is used to request accurate time measurement, in response message Determining, when the first to-be-positioned node and the second to-be-targeted node perform accurate time measurement, determining the second to-be-positioned node;
  • the processor 24 causes the transmitter 21 to broadcast the ranging measurement request, and acquires the ranging measurement response message sent by the second to-be-located node received by the receiver 22, thereby determining the second to-be-located node.
  • the transmitter 21 is configured to send, to the second to-be-located node, location information of the second to-be-located node.
  • the first to-be-positioned node can calculate the position information of the node to be located and the second to-be-positioned node, thereby reducing the calculation amount of the second to-be-located node.
  • the foregoing positioning device is the second to-be-located node in FIG. 2, and the processor 24 acquires the first time information of the first to-be-located node, the second time information of the second to-be-located node, and at least One implementation of the respective location information of the cooperation nodes of the three known locations and the third moment information of the cooperation nodes of the at least three known locations is:
  • the processor 24 causes the receiver 22 to receive the precise time measurement frame transmitted by the first node to be located, the processor 24 acquires the second reception time, and the processor 24 causes the transmitter 21 to transmit the accurate time measurement response frame, and the processor 24 obtains the precise time.
  • the transmission time of the response frame is measured.
  • the processor 24 causes the receiver 22 to receive the first time information transmitted by the first to-be-located node.
  • the processor 24 causes the receiver 22 to receive respective location information and third time information transmitted by each of the at least three cooperating nodes.
  • the transmitter 21 is further configured to send, to the first to-be-located node, location information of the first to-be-located node.
  • the second to-be-located node can calculate the position information of itself and the first to-be-positioned node, thereby reducing the calculation amount of the first to-be-located node.
  • the foregoing positioning device is any one of the cooperative nodes of the at least three known locations in the foregoing FIG. 2; the processor 24 acquires the first time information of the first to-be-located node, and the second to-be-positioned
  • One implementation of the second time information of the node, the respective location information of the cooperation nodes of the at least three known locations, and the third time information of the cooperation nodes of the at least three known locations is:
  • the processor 24 causes the receiver 22 to receive the first time information sent by the first to-be-located node, receive the second time information sent by the second to-be-located node, and receive the respective location information sent by each of the at least three coordinated nodes.
  • the other cooperative nodes each receive the receiving time of the precise time measurement frame and the receiving time of each of the other cooperative nodes receiving the accurate time measurement response frame.
  • the processor 24 acquires the location information of any of the cooperating nodes, and the processor 24 causes the receiver 22 to receive the precise time measurement frame sent by the first to-be-located node, and the processor 24 acquires the reception time of any of the cooperating nodes to receive the accurate time measurement frame.
  • the transmitter 21 is configured to send location information of the first to-be-located node to the first to-be-located node, and send location information of the second to-be-targeted node to the second to-be-located node.
  • any one of the cooperation nodes of the at least three known locations may calculate location information of the first to-be-located node and the second to-be-located node, and after calculating the location information, to the first to-be-located node. Transmitting the location information of the first to-be-located node and the location information of the second to-be-targeted node to the second to-be-located node, thereby reducing the calculation amount of the first to-be-located node and the second to-be-located node.
  • the foregoing positioning device may be the management node in FIG. 2, such as an AP, and the processor 24 acquires the first time information of the first to-be-located node, the second time information of the second to-be-located node,
  • the respective location information of the cooperation nodes of the at least three known locations and the third moment information of the cooperation nodes of the at least three known locations is:
  • the processor 24 causes the receiver 22 to receive the first time information sent by the first to-be-located node, the receiver 22 to receive the second time information sent by the second to-be-located node, and the processor 22 to receive the at least three coordinated nodes respectively. Their respective location information and third time information.
  • the transmitter 21 is configured to send location information of the first to-be-located node to the first to-be-located node, and send location information of the second to-be-targeted node to the second to-be-located node.
  • the management node may calculate location information of the first to-be-located node and the second to-be-located node, and send the location information of the first to-be-located node to the first to-be-located node after calculating the location information.
  • the second to-be-located node sends the location information of the second to-be-located node, thereby reducing the calculation amount of the first to-be-located node and the second to-be-located node.
  • the embodiment of the present application further provides a storage medium on which any one of the first to-be-located node, the second to-be-located node, and at least three cooperative nodes of the known location are recorded.
  • the program code of the positioning method executed by any of the nodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请提供一种定位方法及定位装置,包括:获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息,并根据第一时刻信息、第二时刻信息、第三时刻信息以及至少三个已知位置的协作节点各自的位置信息,确定第一待定位节点的位置信息和第二待定位节点的位置信息,实现一次FTM握手得到第一待定位节点的位置信息和第二待定位节点的位置信息,那么当存在N个待定位节点时,若N为偶数,则通过N/2次FTM握手得到各自的位置信息,若N为奇数,则通过(N/2)+1次FTM握手得到各自的位置信息,降低FTM握手的次数,从而降低网络中信令开销。

Description

一种定位方法及定位装置
本申请要求于2016年10月31日提交中国专利局、申请号为201610931502.5、申请名称为“一种定位方法及定位装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,更具体的说,尤其涉及一种定位方法及定位装置。
背景技术
室内定位技术是指在室内环境中对室内对象进行导航和跟踪的技术,其中室内定位技术中常用的一种定位技术是测距定位技术,所述测距定位技术的原理是:对待定位节点和多个锚节点之间进行距离测量,得到多组距离信息,再利用多组距离信息通过类似三角定位等定位算法来定位待定位节点的位置。
如图1所示的基于AP(Access Point,锚节点)和待定位节点之间进行FTM(Fine Timing Measurement,精确时间测量)通信的协作定位框架,在图1所示的协作定位框架下,位于AP和待定位节点周围的协作节点SN(具体来说可以是图1中的S2、S3或S4)协同AP对视为待定位节点的U进行定位,定位过程如下:
U向AP发起FTM请求,AP在接收到FTM请求后发起FTM测量,由AP发送FTM action frame(精确时间测量帧);U在接收到FTM action frame后发送精确时间测量响应帧,如发送精确时间测量响应帧的一种可行方式ACK(Acknowledgement,确认字符)。在AP发送FTM action frame和U发送ACK的过程中,AP会获取FTM action frame的发送时刻以及ACK的接收时刻,U会获取FTM action frame的接收时刻以及ACK的发送时刻,同样的各个协作节点SN也会各自获取t2_SN和t3_SN,其中t2_SN是各个协作节点SN各自接收FTM action frame的接收时刻,t3_SN是各个协作节点SN各自接收ACK的接收时刻。
之后各个协作节点SN会将各自获取的时刻信息(t2_SN和t3_SN)和各自的位置信息发送至AP,由AP将所有的时刻信息、AP的位置信息和各个SN各自的位置信息发送给U,由U根据这些信息来计算得到U的位置信息,其中AP发送的所有的时刻信息包括:各个SN各自获取的时刻信息、AP获取的FTM action frame的发送时刻以及ACK的接收时刻。
但是在图1所示的协作定位框架下,待定位节点的无线通信范围内需要有一个AP和至少两个已知位置的协作节点SN,这样待定位节点才能通过和一个AP之间的一次FTM握手来计算出自身的位置信息,如果协作定位框架下有N个待定位节点,则至少需要N次FTM握手才能够得到所有待定位节点的位置信息,提高网络中信令开销,其中一次FTM握手相当于FTM_K和ACK_K这两个信令的一次交互,FTM_K表示AP第K次发送FTM action frame,ACK_K表示STA第K次发送ACK,且ACK为精确测量时间响应帧的一种可行方式。
发明内容
本申请提供一种定位方法及定位装置,用于在一次FTM握手中得到两个待定位节点的位置信息,以降低网络中信令开销。技术方案如下:
本申请的第一方面提供一种定位方法,所述定位方法包括:获取第一待定位节点的第一时刻信息,所述第一时刻信息包括所述第一待定位节点发送精确时间测量帧的发送时刻和所述第一待定位节点接收所述精确时间测量应答帧的第一接收时刻;获取第二待定位节点的第二时刻信息, 所述第二时刻信息包括所述第二待定位节点接收所述精确时间测量帧的第二接收时刻和所述第二待定位节点发送精确时间测量应答帧的发送时刻;获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,其中所述第三时刻信息包括:至少三个协作节点各自接收所述精确时间测量帧的接收时刻和所述至少三个协作节点各自接收所述精确时间测量应答帧的接收时刻;根据所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
由此可知,通过第一待定位节点和第二待定位节点的一次FTM握手可以得到第一待定位节点的位置信息和第二待定位节点的位置信息,那么当存在N个待定位节点时,若N为偶数,则N个待定位节点之间可以通过N/2次FTM握手得到各自的位置信息,若N为奇数,则N个待定位节点之间可以通过(N/2)+1次FTM握手得到各自的位置信息,相对于现有技术通过2N次FTM握手得到N个待定位节点的位置信息来说,降低FTM握手的次数,从而降低网络中信令开销。
本申请的第二方面提供一种定位装置,所述定位装置包括:获取单元,用于获取第一待定位节点的第一时刻信息,所述第一时刻信息包括所述第一待定位节点发送精确时间测量帧的发送时刻和所述第一待定位节点接收所述精确时间测量应答帧的第一接收时刻;
所述获取单元,还用于获取第二待定位节点的第二时刻信息,所述第二时刻信息包括所述第二待定位节点接收所述精确时间测量帧的第二接收时刻和所述第二待定位节点发送精确时间测量应答帧的发送时刻;
所述获取单元,还用于获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,其中所述第三时刻信息包括:至少三个协作节点各自接收所述精确时间测量帧的接收时刻和所述至少三个协作节点各自接收所述精确时间测量应答帧的接收时刻;
确定单元,用于根据所述获取单元获取的所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
由此可知,通过第一待定位节点和第二待定位节点的一次FTM握手可以得到第一待定位节点的位置信息和第二待定位节点的位置信息,那么当存在N个待定位节点时,若N为偶数,则N个待定位节点之间可以通过N/2次FTM握手得到各自的位置信息,若N为奇数,则N个待定位节点之间可以通过(N/2)+1次FTM握手得到各自的位置信息,相对于现有技术通过2N次FTM握手得到N个待定位节点的位置信息来说,降低FTM握手的次数,从而降低网络中信令开销。
在一个实现方式中,所述根据所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息包括:
根据所述第一时刻信息和所述第二时刻信息,确定所述第一待定位节点和所述第二待定位节点之间的飞行时间;
根据所述第一待定位节点和所述第二待定位节点之间的飞行时间、所述第一时刻信息以及所述第三时刻信息,确定所述至少三个已知位置的协作节点各自和所述第一待定位节点之间的飞行时间与所述至少三个已知位置的协作节点各自和所述第二待定位节点之间的飞行时间的飞行时间差,所述飞行时间差包括所述至少三个已知位置的协作节点中任一协作节点和所述第一待定位节 点之间的飞行时间与所述任一协作节点和所述第二待定位节点之间的飞行时间的差;
根据所述飞行时间差、所述至少三个已知位置的协作节点各自的位置信息以及所述第一待定位节点和所述第二待定位节点之间的飞行时间,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
在一个实现方式中,所述定位方法由所述第一待定位节点执行,以由所述第一待定位节点确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息,从而减少第二待定位节点的计算量;
所述获取第一待定位节点的第一时刻信息,包括:
发送所述精确时间测量帧,并获取所述时间测量帧的发送时刻;
接收所述第二待定位节点发送的所述精确时间测量应答帧,并获取所述第二接收时刻;
所述获取第二待定位节点的第二时刻信息,包括:
接收所述第二待定位节点发送的所述第二时刻信息。
在一个实现方式中,所述定位方法由所述第二待定位节点执行,以由所述第二待定位节点确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息,从而减少第一待定位节点的计算量;
所述获取第二待定位节点的第二时刻信息,包括:
接收所述第一待定位节点发送的所述精确时间测量帧,并获取所述第一接收时刻;
发送所述精确时间测量应答帧,并获取所述精确时间测量应答帧的发送时刻;
所述获取第一待定位节点的第一时刻信息,包括:
接收所述第一待定位节点发送的所述第一时刻信息。
在一个实现方式中,所述获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:接收所述至少三个协作节点各自发送的各自的位置信息和所述第三时刻信息。
在一个实现方式中,所述定位方法由所述至少三个已知位置的协作节点中任一协作节点执行,以由所述任一协作节点确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量;所述获取第一待定位节点的第一时刻信息,包括:接收所述第一待定位节点发送的所述第一时刻信息;
所述获取第二待定位节点的第二时刻信息,包括:接收所述第二待定位节点发送的所述第二时刻信息;
获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:
获取所述任一协作节点的位置信息;
接收所述第一待定位节点发送的所述精确时间测量帧,并获取所述任一协作节点接收所述精确时间测量帧的接收时刻;
接收所述第二待定位节点发送的所述精确时间测量应答帧,并获取所述任一协作节点接收所述精确时间测量应答帧的接收时刻;
接收所述至少三个协作节点中其他协作节点各自发送的各自的位置信息、所述其他协作节点各自接收所述精确时间测量帧的接收时刻以及所述其他协作节点各自接收所述精确时间测量应答帧的接收时刻。
在一个实现方式中,所述定位方法由管理节点执行,以由所述管理节点确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量;所述获取第一待定位节点的第一时刻信息,包括:接收所述第一待定位节点发送的所述第一时刻信息;
所述获取第二待定位节点的第二时刻信息,包括:接收所述第二待定位节点发送的所述第二时刻信息;
所述获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:接收所述至少三个协作节点各自发送的各自的位置信息和所述第三时刻信息。
在一个实现方式中,所述定位方法由所述第一待定位节点执行,所述定位方法还包括:向所述第二待定位节点发送所述第二待定位节点的位置信息;
或者,
所述定位方法由所述第二待定位节点执行,所述定位方法还包括:向所述第一待定位节点发送所述第一待定位节点的位置信息;
或者,
所述定位方法由所述至少三个已知位置的协作节点中任一协作节点或管理节点执行,所述定位方法还包括:向所述第一待定位节点发送所述第一待定位节点的位置信息和向所述第二待定位节点发送所述第二待定位节点的位置信息。
在一个实现方式中,所述定位方法由所述第一待定位节点执行,所述定位方法还包括:确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点。
在一个实现方式中,所述确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点,包括:
向管理节点发送信令请求,所述信令请求用于请求进行精确时间测量;
接收所述管理节点发送的响应消息,所述响应消息用于指定所述第一待定位节点与所述第二待定位节点进行精确时间测量,从而确定所述第二待定位节点;
或者,
广播发送测距测量请求;
接收所述第二待定位节点发送的测距测量响应消息,从而确定所述第二待定位节点。
在一个实现方式中,所述根据所述第一待定位节点和所述第二待定位节点之间的飞行时间、所述第一时刻信息以及所述第三时刻信息,确定所述至少三个已知位置的协作节点各自和所述第一待定位节点之间的飞行时间与所述至少三个已知位置的协作节点各自和所述第二待定位节点之间的飞行时间的飞行时间差,包括:
根据如下公式
TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2),得到所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间与SN和所述第二待定位节点U2之间的飞行时间的差;
其中TOF(U1-U2)是所述第一待定位节点和所述第二待定位节点之间的飞行时间, TOF(U1-SN)是所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间,TOF(U2-SN)是所述任一协作节点SN和所述第二待定位节点U2之间的飞行时间,t1是所述第一待定位节点发送精确时间测量帧的发送时刻,t4是所述第一接收时刻,t2_SN是SN接收所述精确时间测量帧的接收时刻,t3_SN是SN接收所述精确时间测量应答帧的接收时刻。
在一个实现方式中,根据所述飞行时间差、所述至少三个已知位置的协作节点各自的位置信息以及所述第一待定位节点和所述第二待定位节点之间的飞行时间,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息,包括:
根据如下两个公式:
Figure PCTCN2017107604-appb-000001
Figure PCTCN2017107604-appb-000002
计算第一待定位节点的坐标和第二待定位节点的坐标,通过上述两个公式可以消除因为第一待定位节点、第二待定位节点和至少三个已知位置的协作节点各自内部时钟无法对齐引起的误差,从而提高计算精度;其中(x1,y1)为第一待定位节点的坐标,以表示第一待定位节点的位置信息;(x2,y2)为第二待定位节点的坐标,以表示第一待定位节点的位置信息;(aN,bN)为SN的坐标,以表示任一协作节点SN的位置信息;c是光速,且c等于3*10^8;t2是所述第二接收时刻,t3是所述第二待定位节点发送精确时间测量应答帧的发送时刻,TOF(U1-U2)是所述第一待定位节点U1和所述第二待定位节点U2之间的飞行时间。
本申请的第三方面提供一种定位设备,所述定位设备包括:存储器、处理器、接收器和发送器,所述处理器用于执行第一方面以及上述所有实现方式所提供的定位方法。
本申请的第四方面提供一种存储介质,所述存储介质上记录有用于执行第一方面以及上述所有实现方式所提供的定位方法的程序代码。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为协作定位框架的示意图;
图2为本申请实施例提供的定位方法的一种信令交互图;
图3为图2所示定位方法中步骤203至步骤205的信令图;
图4为图2所示定位方法中步骤206至步骤208的信令图;
图5为图2所示定位方法中步骤209至步骤210的信令图;
图6为本申请实施例提供的定位方法的另一种信令交互图;
图7为本申请实施例提供的定位方法的再一种信令交互图;
图8为本申请实施例提供的定位方法的再一种信令交互图;
图9为本申请实施例提供的定位装置的一种结构示意图;
图10为本申请实施例提供的定位装置的另一种结构示意图;
图11为本申请实施例提供的定位装置的再一种结构示意图;
图12为本申请实施例提供的定位装置的再一种结构示意图;
图13为本申请实施例提供的定位装置的再一种结构示意图;
图14为本申请实施例提供的定位设备的结构示意图。
具体实施方式
图1所示为待定位节点U所在的协作定位框架,在此协作定位框架下,U的无线通信范围内有一个AP和多个已知位置的协作节点SN,如图1中的协作节点S2、S3和S4,各个协作节点SN会参与U和AP之间的一次FTM握手,具体的各个协作节点SN各自获取接收FTM_K的接收时刻以及各自接收ACK_K的接收时刻,使得U基于这些接收时刻、AP的时刻信息、AP的位置信息和各个协作节点SN各自的位置信息来计算出自身的位置信息。但是当协作定位框架下有N个U,则至少需要N次FTM握手才能够得到所有U的位置信息,从而提高网络中信令开销。
结合图1所示协作定位框架,本申请实施例提供如图2所示的定位方法,其中在图2中U1为第一待定位节点,U2为第二待定位节点,SN为一个协作节点,且为能在一次FTM握手中得到U1的位置信息和U2的位置信息,至少需要三个已知位置的SN,在图2中以三个已知位置的SN,且三个已知位置的SN分别是S1、S2和S3例进行说明。图2所示定位方法由U1执行,包括以下步骤:
201:U1向AP发送信令请求,其中信令请求用于请求进行精确时间测量。
202:AP向U1发送响应消息,响应消息用于指定U1与U2进行精确时间测量,从而确定U2。
在本申请实施例中,AP为管理各个协作节点SN对U1和U2进行协作定位的管理节点,可以由AP指定任意两个待定位节点U之间进行精确时间测量,其中AP指定任意两个待定位节点U之间进行精确时间测量的标准可以是:两个待定位节点U之间可以通信。例如上述步骤202中AP向U1发送的响应消息中指定可与U1通信的U2,从而U1经过上述步骤201和步骤202确定与自身进行精确时间测量的U2。
当然U1还可以采用其他方式来确定与自身进行精确时间测量的U2,如图2中的步骤301和步骤302,U1以广播方式发送测距测量请求,位于U1的无线通信范围内的U2在接收到测距测量请求后,向U1发送测距测量响应消息,那么U1就可以与U2进行精确时间测量。
203:U1发送FTM_K,并获取FTM_K的发送时刻t1。
204:U2获取接收FTM_K的第二接收时刻t2。
205:协作节点S1、S2和S3获取各自接收FTM_K的接收时刻t2_SN。对于协作节点S1、S2和S3来说,各自的接收时刻t2_SN分别记为t2_S1、t2_S2和t2_S3。
图2所示步骤203至步骤205可由图3所示信令图表示,U1发送的FTM_K被U2、协作节点S1、S2和S3接收,则U2可以获取接收FTM_K的第二接收时刻t2,协作节点S1、S2和S3则会获取各自接收FTM_K的接收时刻t2_SN。
206:U2发送ACK_K,并获取ACK_K的发送时刻t3。
207:U1获取接收ACK_K的第一接收时刻t4。
208:协作节点S1、S2和S3获取各自接收ACK_K的接收时刻t3_SN。对于协作节点S1、 S2和S3来说,各自的接收时刻t3_SN分别记为t3_S1、t3_S2和t3_S3。
图2所示步骤206至步骤208可由图4所示信令图表示,U2发送的ACK_K被U1、协作节点S1、S2和S3接收,则U1可以获取接收ACK_K的第一接收时刻t4,协作节点S1、S2和S3则会获取各自接收ACK_K的接收时刻t3_SN。
209:U2向U1发送ACK_K的发送时刻t3和第二接收时刻t2。
经过上述步骤203至步骤209:U1可以获取U1的第一时刻信息和U2的第二时刻信息,其中第一时刻信息包括U1发送FTM_K的发送时刻和U1接收ACK_K的第一接收时刻;第二时刻信息包括U2接收FTM_K的第二接收时刻和U2发送ACK_K的发送时刻。
210:协作节点S1、S2和S3获取各自的坐标,以坐标表示协作节点的位置信息。
211:协作节点S1、S2和S3向U1发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN。
图2所示步骤209和步骤211可由图5所示信令图表示,U1接收到U2发送ACK_K的发送时刻t3和发送第二接收时刻t2,且接收到各个协作节点S1、S2和S3发送的各自的位置信息、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN。
并且经过步骤205、208、210和211:U1可以获取三个已知位置的协作节点S1、S2和S3各自的位置信息和第三时刻信息,其中第三时刻信息包括:三个协作节点S1、S2和S3各自接收FTM_K的接收时刻t2_SN和三个协作节点各自接收ACK_K的接收时刻t3_SN。
212:U1根据公式1:TOF(U1-U2)=((t4-t1)-(t3-t2))/2(公式1),计算U1和U2之间的飞行时间。
213:U1根据公式2:
TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2)(公式2),计算协作节点SN和U1之间的飞行时间与SN和U2之间的飞行时间的差,其中TOF(U1-SN)是SN和U1之间的飞行时间,TOF(U2-SN)是SN和U2之间的飞行时间。
对于公式2的推导过程为:
t2_SN=t1+TOF(U1-SN)+Δ(U1-SN)
t2=t1+TOF(U1-U2)+Δ(U1-U2)
t3_SN=t3+TOF(U2-SN)+Δ(U2-SN)
Figure PCTCN2017107604-appb-000003
其中
Figure PCTCN2017107604-appb-000004
Figure PCTCN2017107604-appb-000005
而在对称链路中TOF(U2-U1)=TOF(U1-U2),所以公式:
TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U2-U1)
=TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2)。其中TOF(U2-U1)和TOF(U1-U2)均表示U1和U2间的飞行时间,不同指出在于TOF(U1-U2)是由U1主动发起,TOF(U2-U1)是由U2主动发起。
214:U1根据公式3和公式4:
Figure PCTCN2017107604-appb-000006
Figure PCTCN2017107604-appb-000007
计算U1的坐标和U2的坐标,在本申请实施例中以U1的坐标表示U1的位置信息,以U2的坐标表示U2的位置信息。
其中(x1,y1)为U1的坐标,(x2,y2)为U2的坐标,(aN,bN)为SN的坐标,c是光速,且c等于3*10^8。从公式1、公式2、公式3和公式4可知,公式3和公式4的等式右侧可以根据上述各个时刻信息和光速相乘得到,且公式3和公式4中包括四个未知量,分别是x1、y1、x2和y2,因此至少需要四个方程式,即至少需要三个的SN各自的坐标、t2_SN和t3_SN才能够根据公式3和公式4来同时计算U1和U2的坐标。
215:U1向U2发送U2的坐标。
从上述技术方案可知,本申请实施例提供的定位方法通过U1和U2的一次FTM握手就可以得到U1和U2各自的坐标,那么当存在N个待定位节点时,若N为偶数,则N个待定位节点之间可以通过N/2次FTM握手得到各自的坐标,若N为奇数,则N个待定位节点之间可以通过(N/2)+1次FTM握手得到各自的坐标,相对于现有技术通过2N次FTM握手得到N个待定位节点的坐标来说,降低FTM握手的次数,从而降低网络中信令开销。
请参阅图6,其示出了本申请实施例提供的定位方法的另一种信令交互图,与图2所示定位方法相比,图6所示定位方法从由第一待定位节点U1执行改由第二待定位节点U2执行,以由U2根据公式1、公式2、公式3和公式4计算U1的坐标和U2的坐标,并由U2向U1发送U1的坐标,如步骤612至步骤615。
并且图6所示定位方法与图2所示定位方法相比,其他不同之处是:
U2不再向U1发送ACK_K的发送时刻t3和第二接收时刻t2
U1向U2发送FTM_K的发送时刻t1和第一接收时刻t4,如步骤609,以使U2获取第一时刻信息;
协作节点S1、S2和S3从向U1发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN改为向U2发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN,如步骤611,以使U2获取三个已知位置的协作节点S1、S2和S3各自的位置信息和第三时刻信息。
请参阅图7,其示出了本申请实施例提供的定位方法的再一种信令交互图,与图2所示定位方法相比,图7所示定位方法从由第一待定位节点U1执行改由三个已知位置的协作节点S1、S2和S3中的任一协作节点执行,如由S1执行,以由S1根据公式1、公式2、公式3和公式4计算U1的坐标和U2的坐标,并由S1向U1发送U1的坐标以及向U2发送U2的坐标,如步骤713至步骤717。
并且图7所示定位方法与图2所示定位方法相比,其他不同之处是:
U1向S1发送FTM_K的发送时刻t1和第一接收时刻t4,如步骤709,以使S1获取第一时刻信息;
U2向U1发送ACK_K的发送时刻t3和第二接收时刻t2改为U2向S1发送ACK_K的发送时刻t3和第二接收时刻t2,如步骤710,以使S1获取第二时刻信息;
S1不再向U1发送自身的坐标、接收FTM_K的接收时刻t2_SN和接收ACK_K的接收时刻t3_SN, 协作节点S2和S3从向U1发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN改为向S1发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN,如步骤712,以使S1获取三个已知位置的协作节点S1、S2、S3各自的位置信息和第三时刻信息。
请参阅图8,其示出了本申请实施例提供的定位方法的再一种信令交互图,与图2所示定位方法相比,图8所示定位方法从由第一待定位节点U1执行改由管理节点,如图8中的AP执行,以由AP根据公式1、公式2、公式3和公式4计算U1的坐标和U2的坐标,并由AP向U1发送U1的坐标以及向U2发送U2的坐标,如步骤813至步骤817。
并且图8所示定位方法与图2所示定位方法相比,其他不同之处是:
U1向AP发送FTM_K的发送时刻t1和第一接收时刻t4,如步骤809,以使AP获取第一时刻信息;
U2向U1发送ACK_K的发送时刻t3和第二接收时刻t2改为U2向AP发送ACK_K的发送时刻t3和第二接收时刻t2,如步骤810,以使AP获取第二时刻信息;
协作节点S1、S2和S3从向U1发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN改为向AP发送各自的坐标、各自接收FTM_K的接收时刻t2_SN和各自接收ACK_K的接收时刻t3_SN,如步骤812,以使AP获取三个已知位置的协作节点S1、S2和S3各自的位置信息和第三时刻信息。
结合图1所示协作定位框架,本申请实施例提供如图9所示的定位装置,可以包括:获取单元11和确定单元12。
获取单元11,用于获取第一待定位节点的第一时刻信息,第一时刻信息包括第一待定位节点发送精确时间测量帧的发送时刻和第一待定位节点接收精确时间测量应答帧的第一接收时刻。
获取单元11,还用于获取第二待定位节点的第二时刻信息,第二时刻信息包括第二待定位节点接收精确时间测量帧的第二接收时刻和第二待定位节点发送精确时间测量应答帧的发送时刻。
获取单元11,还用于获取至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息,其中第三时刻信息包括:至少三个协作节点各自接收精确时间测量帧的接收时刻和至少三个协作节点各自接收精确时间测量应答帧的接收时刻。
确定单元12,用于根据获取单元11获取的第一时刻信息、第二时刻信息、第三时刻信息以及至少三个已知位置的协作节点各自的位置信息,确定第一待定位节点的位置信息和第二待定位节点的位置信息。
在一种实现方式中,确定单元12包括:第一确定子单元121、第二确定子单元122和第三确定子单元123,如图9所示。
第一确定子单元121,用于根据第一时刻信息和第二时刻信息,确定第一待定位节点和第二待定位节点之间的飞行时间;在一种实现方式中第一确定子单元根据公式1:TOF(U1-U2)=((t4-t1)-(t3-t2))/2(公式1),计算U1和U2之间的飞行时间TOF(U1-U2)。U1为第一待定位节点U1,U2为第二待定位节点U2,t1是第一待定位节点发送精确时间测量帧的发送时刻,t2是第二接收时刻,t3是第二待定位节点发送精确时间测量应答帧的发送时刻,t4是第一接收时刻,
第二确定子单元122,用于根据第一待定位节点和第二待定位节点之间的飞行时间、第一时刻信息以及第三时刻信息,确定至少三个已知位置的协作节点各自和第一待定位节点之间的飞行时间与至少三个已知位置的协作节点各自和第二待定位节点之间的飞行时间的飞行时间差,飞行 时间差包括至少三个已知位置的协作节点中任一协作节点和第一待定位节点之间的飞行时间与任一协作节点和第二待定位节点之间的飞行时间的差;
在一种实现方式中,第二确定子单元122根据如下公式2:
TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2)(公式2),得到任一协作节点SN和第一待定位节点U1之间的飞行时间与SN和第二待定位节点U2之间的飞行时间的差;
其中TOF(U1-U2)是第一待定位节点和第二待定位节点之间的飞行时间,TOF(U1-SN)是任一协作节点SN和第一待定位节点U1之间的飞行时间,TOF(U2-SN)是任一协作节点SN和第二待定位节点U2之间的飞行时间,t2_SN是SN接收精确时间测量帧的接收时刻,t3_SN是SN接收精确时间测量应答帧的接收时刻。
第三确定子单元123,用于根据飞行时间差、至少三个已知位置的协作节点各自的位置信息以及第一待定位节点和第二待定位节点之间的飞行时间,确定第一待定位节点的位置信息和第二待定位节点的位置信息。
在一种实现方式中,第三确定子单元根据公式3和公式4:
Figure PCTCN2017107604-appb-000008
Figure PCTCN2017107604-appb-000009
计算U1的坐标和U2的坐标,在本申请实施例中以U1的坐标表示U1的位置信息,以U2的坐标表示U2的位置信息。
根据上述公式1、公式2、公式3和公式4计算U1的坐标和U2的坐标,确定单元可以消除因为第一待定位节点、第二待定位节点和至少三个已知位置的协作节点各自内部时钟无法对齐引起的误差,从而提高计算精度。
从上述技术方案可知,通过第一待定位节点和第二待定位节点的一次FTM握手可以得到第一待定位节点的位置信息和第二待定位节点的位置信息,那么当存在N个待定位节点时,若N为偶数,则N个待定位节点之间可以通过N/2次FTM握手得到各自的位置信息,若N为奇数,则N个待定位节点之间可以通过(N/2)+1次FTM握手得到各自的位置信息,相对于现有技术通过2N次FTM握手得到N个待定位节点的位置信息来说,降低FTM握手的次数,从而降低网络中信令开销。
在本申请实施例中,上述图9所示的定位装置为第一待定位节点,定位装置在图9基础上还包括节点确定单元13,获取单元11包括发送单元111、接收单元112和获取子单元113,如图10所示。
其中节点确定单元13,用于确定与第一待定位节点进行精确时间测量的第二待定位节点。在本申请实施例中,节点确定单元13确定第二待定位节点的实现方式包括但不限于下述两种实现方式:
一种实现方式是:节点确定单元13,用于使发送单元111向管理节点发送信令请求,并获取接收单元112接收到的管理节点发送的响应消息,信令请求用于请求进行精确时间测量,在响应消息用于指定第一待定位节点与第二待定位节点进行精确时间测量时,确定第二待定位节点。
另一种实现方式是:节点确定单元13,用于使发送单元111广播发送测距测量请求,获取接收单元112接收的第二待定位节点发送的测距测量响应消息,从而确定第二待定位节点。
获取单元11获取第一待定位节点的第一时刻信息的一种实现方式是:发送单元111发送精确 时间测量帧,由获取子单元113获取时间测量帧的发送时刻,以及接收单元112接收第二待定位节点发送的精确时间测量应答帧,由获取子单元113获取第一接收时刻。
获取单元11获取第二待定位节点的第二时刻信息的一种实现方式是:接收单元112接收第二待定位节点发送的第二时刻信息。
获取单元11获取至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:接收单元112接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
发送单元111,还用于向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,第一待定位节点可以计算自身和第二待定位节点的位置信息,从而减少第二待定位节点的计算量。
在本申请实施例中,上述图9所示的定位装置为第二待定位节点,定位装置中获取单元11包括发送单元114、接收单元115和获取子单元116,如图11所示。
其中获取单元11获取第二待定位节点的第二时刻信息的一种实现方式是:接收单元115接收第一待定位节点发送的精确时间测量帧,由获取子单元116获取第二接收时刻,以及发送单元114发送精确时间测量应答帧,由获取子单元116还用于获取精确时间测量应答帧的发送时刻。
获取单元11获取第一待定位节点的第一时刻信息的一种实现方式是:接收单元115接收第一待定位节点发送的第一时刻信息。
获取单元11获取至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:接收单元115接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
发送单元114,还用于向第一待定位节点发送第一待定位节点的位置信息。
从上述技术方案可知,第二待定位节点可以计算自身和第一待定位节点的位置信息,从而减少第一待定位节点的计算量。
在本申请实施例中,上述图9所示的定位装置为至少三个已知位置的协作节点中任一协作节点,定位装置还包括发送单元14,获取单元11包括接收单元117和获取子单元118,如图12所示。
其中述获取单元11获取第一待定位节点的第一时刻信息的一种实现方式是:接收单元117接收第一待定位节点发送的第一时刻信息。
获取单元11获取第二待定位节点的第二时刻信息的一种实现方式是:接收单元117接收第二待定位节点发送的第二时刻信息。
获取单元11获取至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:获取子单元118获取任一协作节点的位置信息。接收单元117接收第一待定位节点发送的精确时间测量帧,由获取子单元118获取任一协作节点接收精确时间测量帧的接收时刻。接收单元117接收第二待定位节点发送的精确时间测量应答帧,由获取子单元获取任一协作节点接收精确时间测量应答帧的接收时刻,以及接收单元117接收至少三个协作节点中其他协作节点各自发送的各自的位置信息、其他协作节点各自接收精确时间测量帧的接收时刻以及其他协作节点各自接收精确时间测量应答帧的接收时刻。
发送单元14,用于向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,至少三个已知位置的协作节点中任一协作节点可以计算第一待定位节点和第二待定位节点的位置信息,并在计算出位置信息后向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量。
在本申请实施例中,上述图9所示的定位装置为管理节点,定位装置还包括:发送单元15,如图13所示。
其中获取单元11获取第一待定位节点的第一时刻信息的一种实现方式是:获取单元11用于接收第一待定位节点发送的第一时刻信息。
获取单元11获取第二待定位节点的第二时刻信息的一种实现方式是:获取单元11用于接收第二待定位节点发送的第二时刻信息。
获取单元11获取至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点各自的第三时刻信息的一种实现方式是:获取单元11用于接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
发送单元15,用于向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,管理节点可以计算第一待定位节点和第二待定位节点的位置信息,并在计算出位置信息后向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量。
此外,结合图1所示协作定位框架,本申请实施例还提供一种如图14所示的定位设备,定位设备包括发送器21、接收器22、存储器23和处理器24。
其中处理器24,用于获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息,并根据获取的第一时刻信息、第二时刻信息、第三时刻信息以及至少三个已知位置的协作节点各自的位置信息,确定第一待定位节点的位置信息和第二待定位节点的位置信息。
其中第三时刻信息包括:至少三个协作节点各自接收精确时间测量帧的接收时刻和至少三个协作节点各自接收精确时间测量应答帧的接收时刻;第一时刻信息包括第一待定位节点发送精确时间测量帧的发送时刻和第一待定位节点接收精确时间测量应答帧的第一接收时刻;第二时刻信息包括第二待定位节点接收精确时间测量帧的第二接收时刻和第二待定位节点发送精确时间测量应答帧的发送时刻。
存储器23,用于存储第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息。
在本申请实施例中,处理器24根据获取的第一时刻信息、第二时刻信息、第三时刻信息以及至少三个已知位置的协作节点各自的位置信息,确定第一待定位节点的位置信息和第二待定位节点的位置信息的一种实现方式是:
处理器24根据第一时刻信息和第二时刻信息,确定第一待定位节点和第二待定位节点之间的飞行时间;根据第一待定位节点和第二待定位节点之间的飞行时间、第一时刻信息以及第三时刻信息,确定至少三个已知位置的协作节点各自和第一待定位节点之间的飞行时间与至少三个已知位置的协作节点各自和第二待定位节点之间的飞行时间的飞行时间差,飞行时间差包括至少三个已知位置的协作节点中任一协作节点和第一待定位节点之间的飞行时间与任一协作节点和第二待 定位节点之间的飞行时间的差;以及根据飞行时间差、至少三个已知位置的协作节点各自的位置信息以及第一待定位节点和第二待定位节点之间的飞行时间,确定第一待定位节点的位置信息和第二待定位节点的位置信息。
在一种实现方式中,处理器24根据公式1:TOF(U1-U2)=((t4-t1)-(t3-t2))/2(公式1),计算U1和U2之间的飞行时间TOF(U1-U2)。U1为第一待定位节点U1,U2为第二待定位节点U2,t1是第一待定位节点发送精确时间测量帧的发送时刻,t2是第二接收时刻,t3是第二待定位节点发送精确时间测量应答帧的发送时刻,t4是第一接收时刻,
在一种实现方式中,处理器24根据如下公式2:
TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2)(公式2),得到任一协作节点SN和第一待定位节点U1之间的飞行时间与SN和第二待定位节点U2之间的飞行时间的差;
其中TOF(U1-U2)是第一待定位节点和第二待定位节点之间的飞行时间,TOF(U1-SN)是任一协作节点SN和第一待定位节点之U1间的飞行时间,TOF(U2-SN)是任一协作节点SN和第二待定位节点U2之间的飞行时间,t2_SN是SN接收精确时间测量帧的接收时刻,t3_SN是SN接收精确时间测量应答帧的接收时刻。
在一种实现方式中,处理器24根据公式3和公式4:
Figure PCTCN2017107604-appb-000010
Figure PCTCN2017107604-appb-000011
计算U1的坐标和U2的坐标,在本申请实施例中以U1的坐标表示U1的位置信息,以U2的坐标表示U2的位置信息。
根据上述公式1、公式2、公式3和公式4计算U1的坐标和U2的坐标,处理器24在计算第一待定位节点的坐标和第二待定位节点的坐标时,可以消除因为第一待定位节点、第二待定位节点和至少三个已知位置的协作节点各自内部时钟无法对齐引起的误差,从而提高计算精度。
从上述技术方案可知,通过第一待定位节点和第二待定位节点的一次FTM握手可以得到第一待定位节点的位置信息和第二待定位节点的位置信息,那么当存在N个待定位节点时,若N为偶数,则N个待定位节点之间可以通过N/2次FTM握手得到各自的位置信息,若N为奇数,则N个待定位节点之间可以通过(N/2)+1次FTM握手得到各自的位置信息,相对于现有技术通过2N次FTM握手得到N个待定位节点的位置信息来说,降低FTM握手的次数,从而降低网络中信令开销。
在一种实现方式中,上述定位设备为上述图2中的第一待定位节点,则处理器24获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:
处理器24使发送器21发送精确时间测量帧,处理器24获取时间测量帧的发送时刻,以及处理器24使接收器22接收第二待定位节点发送的精确时间测量应答帧,处理器24获取第一接收时刻。
处理器24使接收器22接收第二待定位节点发送的第二时刻信息。
处理器24使接收器22接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
此外,处理器24还用于确定与第一待定位节点进行精确时间测量的第二待定位节点。在本申请实施例中,处理器24确定与第一待定位节点进行精确时间测量的第二待定位节点的实现方式包 括但不限于下述两种实现方式:
一种实现方式是:处理器24使发送器21向管理节点发送信令请求,并获取接收器22接收到的管理节点发送的响应消息,信令请求用于请求进行精确时间测量,在响应消息用于指定第一待定位节点与第二待定位节点进行精确时间测量时,确定第二待定位节点;
另一种实现方式是:处理器24使发送器21广播发送测距测量请求,获取接收器22接收的第二待定位节点发送的测距测量响应消息,从而确定第二待定位节点。
发送器21,用于向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,第一待定位节点可以计算自身和第二待定位节点的位置信息,从而减少第二待定位节点的计算量。
在一种实现方式中,上述定位设备为上述图2中的第二待定位节点,则处理器24获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:
处理器24使接收器22接收第一待定位节点发送的精确时间测量帧,处理器24获取第二接收时刻,以及处理器24使发送器21发送精确时间测量应答帧,处理器24获取精确时间测量应答帧的发送时刻。
处理器24使接收器22接收第一待定位节点发送的第一时刻信息。
处理器24使接收器22接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
发送器21,还用于向第一待定位节点发送第一待定位节点的位置信息。
从上述技术方案可知,第二待定位节点可以计算自身和第一待定位节点的位置信息,从而减少第一待定位节点的计算量。
在一种实现方式中,上述定位设备为上述图2中至少三个已知位置的协作节点中任一协作节点;则处理器24获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:
处理器24使接收器22接收第一待定位节点发送的第一时刻信息、接收第二待定位节点发送的第二时刻信息以及接收至少三个协作节点中其他协作节点各自发送的各自的位置信息、其他协作节点各自接收精确时间测量帧的接收时刻以及其他协作节点各自接收精确时间测量应答帧的接收时刻。
处理器24获取任一协作节点的位置信息,以及处理器24使接收器22接收第一待定位节点发送的精确时间测量帧,处理器24获取任一协作节点接收精确时间测量帧的接收时刻.
发送器21,用于向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,至少三个已知位置的协作节点中任一协作节点可以计算第一待定位节点和第二待定位节点的位置信息,并在计算出位置信息后向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量。
在一种实现方式中,上述定位设备可以是上述图2中的管理节点,如AP,则处理器24获取第一待定位节点的第一时刻信息、第二待定位节点的第二时刻信息、至少三个已知位置的协作节点各自的位置信息和至少三个已知位置的协作节点的第三时刻信息的一种实现方式是:
处理器24使接收器22接收第一待定位节点发送的第一时刻信息、使接收器22接收第二待定位节点发送的第二时刻信息以及使处理器22接收至少三个协作节点各自发送的各自的位置信息和第三时刻信息。
发送器21,用于向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息。
从上述技术方案可知,管理节点可以计算第一待定位节点和第二待定位节点的位置信息,并在计算出位置信息后向第一待定位节点发送第一待定位节点的位置信息和向第二待定位节点发送第二待定位节点的位置信息,从而减少第一待定位节点和第二待定位节点的计算量。
此外,本申请实施例还提供一种存储介质,所述存储介质上记录有上述第一待定位节点、第二待定位节点、至少三个已知位置的协作节点中任一协作节点和管理节点中任一节点执行定位方法的程序代码。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (25)

  1. 一种定位方法,其特征在于,所述定位方法包括:
    获取第一待定位节点的第一时刻信息,所述第一时刻信息包括所述第一待定位节点发送精确时间测量帧的发送时刻和所述第一待定位节点接收所述精确时间测量应答帧的第一接收时刻;
    获取第二待定位节点的第二时刻信息,所述第二时刻信息包括所述第二待定位节点接收所述精确时间测量帧的第二接收时刻和所述第二待定位节点发送精确时间测量应答帧的发送时刻;
    获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,其中所述第三时刻信息包括:至少三个协作节点各自接收所述精确时间测量帧的接收时刻和所述至少三个协作节点各自接收所述精确时间测量应答帧的接收时刻;
    根据所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
  2. 根据权利要求1所述的定位方法,其特征在于,所述根据所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息包括:
    根据所述第一时刻信息和所述第二时刻信息,确定所述第一待定位节点和所述第二待定位节点之间的飞行时间;
    根据所述第一待定位节点和所述第二待定位节点之间的飞行时间、所述第一时刻信息以及所述第三时刻信息,确定所述至少三个已知位置的协作节点各自和所述第一待定位节点之间的飞行时间与所述至少三个已知位置的协作节点各自和所述第二待定位节点之间的飞行时间的飞行时间差,所述飞行时间差包括所述至少三个已知位置的协作节点中任一协作节点和所述第一待定位节点之间的飞行时间与所述任一协作节点和所述第二待定位节点之间的飞行时间的差;
    根据所述飞行时间差、所述至少三个已知位置的协作节点各自的位置信息以及所述第一待定位节点和所述第二待定位节点之间的飞行时间,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
  3. 根据权利要求1或2所述的定位方法,其特征在于,所述定位方法由所述第一待定位节点执行;
    所述获取第一待定位节点的第一时刻信息,包括:
    发送所述精确时间测量帧,并获取所述时间测量帧的发送时刻;
    接收所述第二待定位节点发送的所述精确时间测量应答帧,并获取所述第二接收时刻;
    所述获取第二待定位节点的第二时刻信息,包括:
    接收所述第二待定位节点发送的所述第二时刻信息。
  4. 根据权利要求1或2所述的定位方法,其特征在于,所述定位方法由所述第二待定位节点执行;所述获取第二待定位节点的第二时刻信息,包括:
    接收所述第一待定位节点发送的所述精确时间测量帧,并获取所述第一接收时刻;
    发送所述精确时间测量应答帧,并获取所述精确时间测量应答帧的发送时刻;
    所述获取第一待定位节点的第一时刻信息,包括:
    接收所述第一待定位节点发送的所述第一时刻信息。
  5. 根据权利要求3或4所述的定位方法,其特征在于,所述获取至少三个已知位置的协作节 点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:接收所述至少三个协作节点各自发送的各自的位置信息和所述第三时刻信息。
  6. 根据权利要求1或2所述的定位方法,其特征在于,所述定位方法由所述至少三个已知位置的协作节点中任一协作节点执行;所述获取第一待定位节点的第一时刻信息,包括:接收所述第一待定位节点发送的所述第一时刻信息;
    所述获取第二待定位节点的第二时刻信息,包括:接收所述第二待定位节点发送的所述第二时刻信息;
    获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:
    获取所述任一协作节点的位置信息;
    接收所述第一待定位节点发送的所述精确时间测量帧,并获取所述任一协作节点接收所述精确时间测量帧的接收时刻;
    接收所述第二待定位节点发送的所述精确时间测量应答帧,并获取所述任一协作节点接收所述精确时间测量应答帧的接收时刻;
    接收所述至少三个协作节点中其他协作节点各自发送的各自的位置信息、所述其他协作节点各自接收所述精确时间测量帧的接收时刻以及所述其他协作节点各自接收所述精确时间测量应答帧的接收时刻。
  7. 根据权利要求1或2所述的定位方法,其特征在于,所述定位方法由管理节点执行;所述获取第一待定位节点的第一时刻信息,包括:接收所述第一待定位节点发送的所述第一时刻信息;
    所述获取第二待定位节点的第二时刻信息,包括:接收所述第二待定位节点发送的所述第二时刻信息;
    所述获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:接收所述至少三个协作节点各自发送的各自的位置信息和所述第三时刻信息。
  8. 根据权利要求1或2所述的定位方法,其特征在于,所述定位方法由所述第一待定位节点执行,所述定位方法还包括:向所述第二待定位节点发送所述第二待定位节点的位置信息;
    或者,
    所述定位方法由所述第二待定位节点执行,所述定位方法还包括:向所述第一待定位节点发送所述第一待定位节点的位置信息;
    或者,
    所述定位方法由所述至少三个已知位置的协作节点中任一协作节点或管理节点执行,所述定位方法还包括:向所述第一待定位节点发送所述第一待定位节点的位置信息和向所述第二待定位节点发送所述第二待定位节点的位置信息。
  9. 根据权利要求1至3任一项所述的定位方法,其特征在于,所述定位方法由所述第一待定位节点执行,所述定位方法还包括:确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点。
  10. 根据权利要求9所述的定位方法,其特征在于,所述确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点,包括:
    向管理节点发送信令请求,所述信令请求用于请求进行精确时间测量;
    接收所述管理节点发送的响应消息,所述响应消息用于指定所述第一待定位节点与所述第二待定位节点进行精确时间测量,从而确定所述第二待定位节点;
    或者,
    广播发送测距测量请求;
    接收所述第二待定位节点发送的测距测量响应消息,从而确定所述第二待定位节点。
  11. 根据权利要求2所述的定位方法,所述根据所述第一待定位节点和所述第二待定位节点之间的飞行时间、所述第一时刻信息以及所述第三时刻信息,确定所述至少三个已知位置的协作节点各自和所述第一待定位节点之间的飞行时间与所述至少三个已知位置的协作节点各自和所述第二待定位节点之间的飞行时间的飞行时间差,包括:
    根据如下公式
    TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2),得到所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间与SN和所述第二待定位节点U2之间的飞行时间的差;
    其中TOF(U1-U2)是所述第一待定位节点和所述第二待定位节点之间的飞行时间,TOF(U1-SN)是所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间,TOF(U2-SN)是所述任一协作节点SN和所述第二待定位节点U2之间的飞行时间,t1是所述第一待定位节点发送精确时间测量帧的发送时刻,t4是所述第一接收时刻,t2_SN是SN接收所述精确时间测量帧的接收时刻,t3_SN是SN接收所述精确时间测量应答帧的接收时刻。
  12. 一种定位装置,其特征在于,所述定位装置包括:
    获取单元,用于获取第一待定位节点的第一时刻信息,所述第一时刻信息包括所述第一待定位节点发送精确时间测量帧的发送时刻和所述第一待定位节点接收所述精确时间测量应答帧的第一接收时刻;
    所述获取单元,还用于获取第二待定位节点的第二时刻信息,所述第二时刻信息包括所述第二待定位节点接收所述精确时间测量帧的第二接收时刻和所述第二待定位节点发送精确时间测量应答帧的发送时刻;
    所述获取单元,还用于获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,其中所述第三时刻信息包括:至少三个协作节点各自接收所述精确时间测量帧的接收时刻和所述至少三个协作节点各自接收所述精确时间测量应答帧的接收时刻;
    确定单元,用于根据所述获取单元获取的所述第一时刻信息、所述第二时刻信息、所述第三时刻信息以及所述至少三个已知位置的协作节点各自的位置信息,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
  13. 根据权利要求12所述的定位装置,其特征在于,所述确定单元,包括:
    第一确定子单元,用于根据所述第一时刻信息和所述第二时刻信息,确定所述第一待定位节点和所述第二待定位节点之间的飞行时间;
    第二确定子单元,用于根据所述第一待定位节点和所述第二待定位节点之间的飞行时间、所述第一时刻信息以及所述第三时刻信息,确定所述至少三个已知位置的协作节点各自和所述第一待定位节点之间的飞行时间与所述至少三个已知位置的协作节点各自和所述第二待定位节点之间的飞行时间的飞行时间差,所述飞行时间差包括所述至少三个已知位置的协作节点中任一协作节 点和所述第一待定位节点之间的飞行时间与所述任一协作节点和所述第二待定位节点之间的飞行时间的差;
    第三确定子单元,用于根据所述飞行时间差、所述至少三个已知位置的协作节点各自的位置信息以及所述第一待定位节点和所述第二待定位节点之间的飞行时间,确定所述第一待定位节点的位置信息和所述第二待定位节点的位置信息。
  14. 根据权利要求12或13所述的定位装置,其特征在于,所述定位装置为所述第一待定位节点;
    所述获取单元包括:发送单元、接收单元和获取子单元,所述获取单元用于获取第一待定位节点的第一时刻信息,包括:所述发送单元用于发送所述精确时间测量帧,所述获取子单元,用于获取所述时间测量帧的发送时刻,以及所述接收单元用于接收所述第二待定位节点发送的所述精确时间测量应答帧,所述获取子单元还用于获取所述第一接收时刻;
    所述获取单元用于获取第二待定位节点的第二时刻信息,包括:所述接收单元具体还用于接收所述第二待定位节点发送的所述第二时刻信息。
  15. 根据权利要求14所述的定位装置,其特征在于,所述发送单元,还用于向所述第二待定位节点发送所述第二待定位节点的位置信息。
  16. 根据权利要求14或15所述的定位装置,其特征在于,所述定位装置还包括:节点确定单元,用于确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点。
  17. 根据权利要求16所述的定位装置,其特征在于,所述节点确定单元用于确定与所述第一待定位节点进行精确时间测量的所述第二待定位节点,包括:
    所述节点确定单元,用于使所述发送单元向管理节点发送信令请求,并获取所述接收单元接收到的所述管理节点发送的响应消息,所述信令请求用于请求进行精确时间测量,在所述响应消息用于指定所述第一待定位节点与所述第二待定位节点进行精确时间测量时,确定所述第二待定位节点;
    或者,
    所述节点确定单元,用于使所述发送单元广播发送测距测量请求,获取所述接收单元接收的所述第二待定位节点发送的测距测量响应消息,从而确定所述第二待定位节点。
  18. 根据权利要求12或13所述的定位装置,其特征在于,所述定位装置为所述第二待定位节点;
    所述获取单元包括:发送单元、接收单元和获取子单元,所述获取单元用于获取第二待定位节点的第二时刻信息,包括:所述接收单元用于接收所述第一待定位节点发送的所述精确时间测量帧,所述获取子单元获取所述第二接收时刻,以及所述发送单元用于发送所述精确时间测量应答帧,所述获取子单元还用于获取所述精确时间测量应答帧的发送时刻;
    所述获取单元用于获取第一待定位节点的第一时刻信息,包括:所述接收单元还用于接收所述第一待定位节点发送的所述第一时刻信息。
  19. 根据权利要求18所述的定位装置,其特征在于,所述发送单元,还用于向所述第一待定位节点发送所述第一待定位节点的位置信息。
  20. 根据权利要求14至19任一项所述的定位装置,其特征在于,所述获取单元用于获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,包括:所述接收单元还用于接收所述至少三个协作节点各自发送的各自的位置信息和所述第 三时刻信息。
  21. 根据权利要求12或13所述的定位装置,其特征在于,所述定位装置为所述至少三个已知位置的协作节点中任一协作节点;
    所述获取单元包括:接收单元和获取子单元;所述获取单元用于获取第一待定位节点的第一时刻信息,包括:所述接收单元用于接收所述第一待定位节点发送的所述第一时刻信息;
    所述获取单元用于获取第二待定位节点的第二时刻信息,包括:所述接收单元还用于接收所述第二待定位节点发送的所述第二时刻信息;
    所述获取单元用于获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点的第三时刻信息,包括:
    所述获取子单元,用于获取所述任一协作节点的位置信息;
    所述接收单元,用于接收所述第一待定位节点发送的所述精确时间测量帧,所述获取子单元还用于获取所述任一协作节点接收所述精确时间测量帧的接收时刻;
    所述接收单元,还用于接收所述第二待定位节点发送的所述精确时间测量应答帧,所述获取子单元还用于获取所述任一协作节点接收所述精确时间测量应答帧的接收时刻;
    所述接收单元,还用于接收所述至少三个协作节点中其他协作节点各自发送的各自的位置信息、所述其他协作节点各自接收所述精确时间测量帧的接收时刻以及所述其他协作节点各自接收所述精确时间测量应答帧的接收时刻。
  22. 根据权利要求21所述的定位装置,其特征在于,所述定位装置还包括:发送单元,用于向所述第一待定位节点发送所述第一待定位节点的位置信息和向所述第二待定位节点发送所述第二待定位节点的位置信息。
  23. 根据权利要求12或13所述的定位装置,其特征在于,所述定位装置为所述管理节点;
    所述获取单元用于获取第一待定位节点的第一时刻信息,包括:所述获取单元用于接收所述第一待定位节点发送的所述第一时刻信息;
    所述获取单元用于获取第二待定位节点的第二时刻信息,包括:所述获取单元用于接收所述第二待定位节点发送的所述第二时刻信息;
    所述获取单元用于获取至少三个已知位置的协作节点各自的位置信息和所述至少三个已知位置的协作节点各自的第三时刻信息,包括:所述获取单元用于接收所述至少三个协作节点各自发送的各自的位置信息和所述第三时刻信息。
  24. 根据权利要求23所述的定位装置,其特征在于,所述定位装置还包括:发送单元,用于向所述第一待定位节点发送所述第一待定位节点的位置信息和向所述第二待定位节点发送所述第二待定位节点的位置信息。
  25. 根据权利要求13所述的定位装置,所述第二确定子单元用于:
    根据如下公式
    TOF(U1-SN)-TOF(U2-SN)=t2_SN-t3_SN+(t4-t1)-TOF(U1-U2),得到所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间与SN和所述第二待定位节点U2之间的飞行时间的差;
    其中TOF(U1-U2)是所述第一待定位节点和所述第二待定位节点之间的飞行时间,TOF(U1-SN)是所述任一协作节点SN和所述第一待定位节点U1之间的飞行时间,TOF(U2-SN)是所述任一协作节点SN和所述第二待定位节点U2之间的飞行时间,t1是所述第一待定位节点发送 精确时间测量帧的发送时刻,t4是所述第一接收时刻,t2_SN是SN接收所述精确时间测量帧的接收时刻,t3_SN是SN接收所述精确时间测量应答帧的接收时刻。
PCT/CN2017/107604 2016-10-31 2017-10-25 一种定位方法及定位装置 WO2018077177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17864084.3A EP3525528B1 (en) 2016-10-31 2017-10-25 Positioning method and positioning apparatus
US16/397,996 US11231497B2 (en) 2016-10-31 2019-04-29 Positioning method and positioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610931502.5 2016-10-31
CN201610931502.5A CN108023682B (zh) 2016-10-31 2016-10-31 一种定位方法及定位装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/397,996 Continuation US11231497B2 (en) 2016-10-31 2019-04-29 Positioning method and positioning apparatus

Publications (1)

Publication Number Publication Date
WO2018077177A1 true WO2018077177A1 (zh) 2018-05-03

Family

ID=62024390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107604 WO2018077177A1 (zh) 2016-10-31 2017-10-25 一种定位方法及定位装置

Country Status (4)

Country Link
US (1) US11231497B2 (zh)
EP (1) EP3525528B1 (zh)
CN (1) CN108023682B (zh)
WO (1) WO2018077177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139211A (zh) * 2019-05-21 2019-08-16 北京邮电大学 一种协同定位方法及***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156658B (zh) * 2016-12-06 2021-05-14 华为技术有限公司 基于协作节点的定位方法、待定位节点及协作节点
US10670709B2 (en) * 2018-01-08 2020-06-02 Intel Corporation Drone localization
CN113064414A (zh) * 2019-12-31 2021-07-02 青岛海高设计制造有限公司 一种用于送货装置的控制方法、装置及送货装置
CN112205008B (zh) * 2020-09-03 2023-06-20 北京小米移动软件有限公司 测距的方法、通信节点、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179662A (zh) * 2013-03-29 2013-06-26 北京邮电大学 定位方法、基站和用户设备
CN105025443A (zh) * 2014-07-14 2015-11-04 魅族科技(中国)有限公司 一种基于无线局域网的定位方法、相关设备及***
US20160080960A1 (en) * 2014-09-12 2016-03-17 Qualcomm Incorporated Methods and systems for ranging protocol
CN105980882A (zh) * 2014-03-12 2016-09-28 英特尔Ip公司 接入点发起的飞行时间定位

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933776B2 (en) * 2012-07-20 2015-01-13 Qualcomm Incorporated Relative positioning applications in wireless devices
US10018704B2 (en) * 2013-10-17 2018-07-10 Mediatek Singapore Pte. Ltd. Snooping sensor STA or neighbor AP ranging and positioning in wireless local area networks
CN104301868A (zh) * 2014-10-10 2015-01-21 西北工业大学 基于帧往返和到达时间测距技术的高精度室内定位方法
CN104378823B (zh) * 2014-12-06 2017-08-01 广东机电职业技术学院 一种单边同步双向测距方法
US9935756B2 (en) * 2015-02-17 2018-04-03 Qualcomm Incorporated Methods and systems for ranging protocol
US9866993B2 (en) * 2015-02-27 2018-01-09 Qualcomm Incorporated Distribution and utilization of antenna information for location determination operations
US9723631B2 (en) * 2015-10-26 2017-08-01 Microsoft Technology Licensing, Llc Bulk fine timing measurement allocation message
US10989789B2 (en) * 2016-06-08 2021-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Method system and device for obtaining location information using neighbor awareness networking, NAN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179662A (zh) * 2013-03-29 2013-06-26 北京邮电大学 定位方法、基站和用户设备
CN105980882A (zh) * 2014-03-12 2016-09-28 英特尔Ip公司 接入点发起的飞行时间定位
CN105025443A (zh) * 2014-07-14 2015-11-04 魅族科技(中国)有限公司 一种基于无线局域网的定位方法、相关设备及***
US20160080960A1 (en) * 2014-09-12 2016-03-17 Qualcomm Incorporated Methods and systems for ranging protocol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139211A (zh) * 2019-05-21 2019-08-16 北京邮电大学 一种协同定位方法及***

Also Published As

Publication number Publication date
EP3525528A1 (en) 2019-08-14
EP3525528B1 (en) 2020-12-02
EP3525528A4 (en) 2019-11-20
US20190257938A1 (en) 2019-08-22
CN108023682B (zh) 2021-02-12
US11231497B2 (en) 2022-01-25
CN108023682A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018077177A1 (zh) 一种定位方法及定位装置
EP4061022A1 (en) Method for positioning, terminal, and network-side device
US10505653B1 (en) Methods and apparatus for fine timing measurement with frequency domain processing
US9954669B2 (en) Method and apparatus for over-the-air anchor-anchor synchronization
EP2727392B1 (en) Distributed positioning mechanism for wireless communication devices
US8335173B2 (en) Inserting time of departure information in frames to support multi-channel location techniques
US8848565B2 (en) Method for performing measurements and positioning in a network based WLAN positioning system
US11259144B2 (en) Media access control (MAC) frame structure and data communication method in a real-time localization system
CN110167135B (zh) 一种免时钟同步的tdoa无线定位方法及***
CN107105498B (zh) 定位方法和装置
CN108370551A (zh) 基于到达时间差定位方法、用户设备及网络设备
CN107113762A (zh) 一种定位方法、定位服务器及定位***
CN105959914A (zh) 基于时间差测量的传感网时间同步和定位联合处理方法
US20160277882A1 (en) Assisted passive geo-location of a wireless local area network device
CN108235427A (zh) 一种测量Tof和Toda的方法
KR20140126790A (ko) 무선 센서 네트워크 기반의 위치 추정방법
WO2020006123A1 (en) Method and apparatus for determining a position of a terminal
CN104618922B (zh) 一种rtt测量定位***中的测量结果匹配方法和装置
EP2988146A1 (en) System and method for locating a radio tag
CN105933976B (zh) 一维场景下的心跳定位方法、装置和***
CN112887906B (zh) 一种无线网络联合定位方法及***
WO2018103546A1 (zh) 基于协作节点的定位方法、待定位节点及协作节点
CN115004794A (zh) 一种用于参考信号时间同步与校准的方法
CN104039010A (zh) 一种无时间同步的环路辅助水下定位方法
US11765678B2 (en) System and method for distributed sensor system for object locationing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017864084

Country of ref document: EP

Effective date: 20190509