WO2018076702A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2018076702A1
WO2018076702A1 PCT/CN2017/087436 CN2017087436W WO2018076702A1 WO 2018076702 A1 WO2018076702 A1 WO 2018076702A1 CN 2017087436 W CN2017087436 W CN 2017087436W WO 2018076702 A1 WO2018076702 A1 WO 2018076702A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reflective
electrode
display panel
cavity
Prior art date
Application number
PCT/CN2017/087436
Other languages
English (en)
French (fr)
Inventor
梁蓬霞
谷新
郭康
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/567,263 priority Critical patent/US10437043B2/en
Publication of WO2018076702A1 publication Critical patent/WO2018076702A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/195Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169 by using frustrated reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements

Definitions

  • At least one embodiment of the present disclosure is directed to a display panel, a method of fabricating the same, and a display device.
  • the reflective product with the full emission technology as the core is structured as a reflective film and charged particles behind the film.
  • the principle is to change the total reflection intensity of the reflective film by adjusting the position of the charged particles, thereby changing the brightness of the film display.
  • At least one embodiment of the present disclosure relates to a display panel, a method of fabricating the same, and a display device for obtaining a mechanically deformable reflective display device that is simple in structure and easy to manufacture.
  • At least one embodiment of the present disclosure provides a display panel including a plurality of display units, each of which includes a first substrate and a second substrate disposed opposite to each other, wherein
  • the first substrate includes a first substrate substrate and a first electrode, an electrostrictive layer, and a reflective groove disposed thereon;
  • the second substrate includes a second substrate substrate and a second electrode and a reflective cavity disposed thereon;
  • the reflective groove has a concave portion, and the reflective cavity has a convex portion, and a surface of the concave portion of the reflective groove matches a surface of the convex portion of the reflective cavity;
  • the first electrode and the second electrode are configured to form an electric field, and the electrostrictive layer is deformable in a direction perpendicular to the first substrate by the electric field, such that the The thickness of the electrostrictive layer is increased or decreased such that the recessed portion of the reflective groove and the raised portion of the reflective cavity are formed with a gap therebetween and a surface of the both surfaces is closely fitted Make the conversion.
  • At least one embodiment of the present disclosure provides a method of fabricating a display panel, including:
  • first electrode Forming a first electrode, an electrostrictive layer, and a reflective groove on the first base substrate to form a first base board
  • first substrate and the second substrate Opposing the first substrate and the second substrate oppositely, forming a support between the first substrate and the second substrate, such that the first substrate and the second The distance between the substrate substrates remains unchanged;
  • the reflective groove has a concave portion, and the reflective cavity has a convex portion, and a surface of the concave portion of the reflective groove matches a surface of the convex portion of the reflective cavity;
  • the first electrode and the second electrode are configured to form an electric field such that the electrostrictive layer is deformed in a direction perpendicular to the first substrate by the electric field, such that the electricity
  • the thickness of the stretchable layer is increased or decreased such that the recessed portion of the reflective groove and the raised portion of the reflective cavity can be formed between a gap formed therebetween and a close contact between the surfaces thereof Conversion.
  • 1 is a schematic view of a total reflection display device
  • FIG. 2 is a schematic view of a display panel according to Embodiment 1 of the present disclosure (a gap is formed between a recessed portion of a reflective groove and a convex portion of a reflective cavity);
  • FIG 3 is a schematic view of a display panel according to Embodiment 1 of the present disclosure (the recessed portion of the reflective groove and the surface of the convex portion of the reflective cavity are closely adhered);
  • FIG. 4 is a schematic diagram of another display panel according to Embodiment 1 of the present disclosure.
  • FIG. 5 is a schematic diagram of another display panel according to Embodiment 1 of the present disclosure.
  • Figure 1 shows a total reflection display device comprising a backing plate 01, a reflective film 03 and an electronic ink 02 disposed therebetween.
  • the electronic ink 02 contains charged particles. Electrodes may also be provided on the surfaces of the back sheet 01 and the reflective film, respectively.
  • the total reflection intensity of the reflective film 03 is changed by adjusting the position of the charged particles, thereby changing the brightness of the display. In the case of no power application, the charged particles are uniformly dispersed in the electronic ink 02, and the light passing through the light-reflecting film 03 is totally reflected.
  • the charged particles contained in the electronic ink 02 can be concentrated on the side of the light-reflecting film 03 by an electric field, so that the light passing through the light-reflecting film 03 is refracted into the collected charged particles.
  • the control particle motion will appear uneven and light leakage, and the need to make a retaining wall to reduce particle agglomeration, the structure is more complicated.
  • the reflection efficiency of this product structure depends on the difference in refractive index between the reflective film 03 and the electronic ink 02, and the refractive index of the material is required to be high.
  • At least one embodiment of the present disclosure provides a display panel including a plurality of display units, each of which includes a first substrate and a second substrate disposed opposite to each other.
  • the first substrate includes a first substrate and a first electrode, an electrostrictive layer, and a reflective groove disposed thereon.
  • the second substrate includes a second liner a base substrate and a second electrode and a reflective cavity disposed thereon.
  • a support is disposed between the first base substrate and the second substrate to maintain a constant distance between the first substrate and the second substrate.
  • the reflective groove has a recessed portion, and the reflective cavity has a convex portion, and a surface of the concave portion of the reflective groove matches a surface of the convex portion of the reflective cavity.
  • the first electrode and the second electrode are configured to form an electric field such that the electrostrictive layer is deformed in a direction perpendicular to the first substrate by an electric field, such that the thickness of the electrostrictive layer is increased or decreased, thereby
  • the recessed portion of the reflective groove and the raised portion of the reflective cavity may be converted between a gap formed therebetween and a close contact between the surfaces thereof.
  • the display panel of at least one embodiment of the present disclosure has a simple structure and is easy to manufacture, and performs light adjustment by means of mechanical deformation for display.
  • the display panel includes a plurality of display units 1.
  • Each of the display units 1 includes a first substrate 10 and a second substrate 20 that are disposed opposite to each other.
  • the first substrate 10 includes a first substrate 101 and a first electrode 102, an electrostrictive layer 103, and a reflective groove 104 disposed thereon.
  • the first electrode 102, the electrostrictive layer 103, and the reflective groove 104 may be sequentially disposed on the first base substrate 101.
  • the second substrate 20 includes a second substrate substrate 201 and a second electrode 202 and a reflective cavity 203 disposed thereon.
  • the support 30 is disposed between the first base substrate 101 and the second base substrate 201 such that the distance between the first base substrate 101 and the second base substrate 201 remains unchanged.
  • the reflective recess 104 has a recessed portion 1041
  • the reflective cavity 203 has a raised portion 2031 whose surface matches the surface of the raised portion 2031 of the reflective cavity 203.
  • the first electrode 102 and the second electrode 202 are insulated from each other and configured to form an electric field such that the electrostrictive layer 103 can be deformed (deformation, strain) in a direction perpendicular to the first substrate 101 under the action of an electric field.
  • the thickness of the electrostrictive layer 103 is increased or decreased, so that the depressed portion 1041 of the reflective recess 104 and the raised portion 2031 of the reflective cavity 203 may be formed with a gap 431 therebetween and a close contact between the surfaces thereof Make the conversion.
  • different voltages may be applied to the first electrode 102 and the second electrode 202, respectively, to form a voltage difference, thereby forming an electric field.
  • the matching of the surface of the recessed portion 1041 of the reflective recess 104 with the surface of the raised portion 2031 of the reflective cavity 203 means, for example, that the recessed portion 1041 and the raised portion 2031 are complementary in structure, and the surfaces of the two can be closely fitted together.
  • a schematic view of a gap 431 is formed between the recessed portion 1041 of the reflective recess 104 and the raised portion 2031 of the reflective cavity 203.
  • the concave portion 1041 of the reflective groove 104 and the surface of the convex portion 2031 of the reflective cavity 203 are closely attached to each other.
  • the gap 431 may be an air layer, but is not limited thereto.
  • the gap 431 may be filled with other gases, for example, filled with nitrogen gas or an inert gas or the like. If the filling gas uses a gas other than air, the periphery of the device needs to be packaged so that the entire device is in the gas atmosphere.
  • the gap 431 is taken as an air layer as an example.
  • the display panel provided in this embodiment can replace the low refractive index filling material with air to increase the reflection efficiency. It can be supported by all solid materials, which can effectively reduce product cost and increase yield.
  • the display panel provided in this embodiment is a reflective display panel.
  • the electrostrictive layer is stretched in the electric field, the air in the gap between the depressed portion 1041 of the reflective groove 104 and the raised portion 2031 of the reflective cavity 203 is squeezed away, and the depressed portion 1041 and reflection of the reflective groove 104 are reflected.
  • the convex portion 2031 of the cavity 203 is in direct contact, the total reflection disappears, and the light can pass through the reflective groove 104 and the reflective cavity 203.
  • the amount of deformation of the electrostrictive layer 103 can be regulated by applying an electric field to form an electric field.
  • the display panel may further include a light absorbing layer 105, and the light absorbing layer 105 may be disposed between the electrostrictive layer 103 and the reflective recess 104 in order to obtain a better display effect.
  • the light absorbing layer 105 can include a color filter layer or a black array, so that the sub-pixels can be colored or black to realize color display.
  • Reflective color display mode the basic principle is total reflection adjustment display technology.
  • the electrostrictive material is used to adjust the size of the total reflection gap between the depressed portion 1041 and the raised portion 2031, thereby achieving the effect of reflective color display. Using the principle of reflection, the ambient light is used for color display, and the reading effect is better under strong light.
  • the installation position of the light absorbing layer 105 is not limited thereto, as long as it can function as light absorption to realize color or black display.
  • the reflective recess 104 and the reflective cavity 203 employ a high refractive index light transmissive material having a refractive index greater than the refractive index of the air layer. If the gap is filled with other gases, the refractive index of the reflective recess 104 and the reflective cavity 203 is greater than the refractive index of the material at the gap.
  • the refractive index of the reflective recess 104 is the same or substantially the same (closer) as the refractive index of the reflective cavity 203.
  • the reflective groove In the case where the recessed portion 1041 of the 104 and the surface of the convex portion 2031 of the reflective cavity 203 are closely fitted, light can pass through the reflective recess 104 and the reflective cavity 203.
  • substantially the same means that the refractive index of the reflective groove 104 is not much different from the refractive index of the reflective cavity 203, and the surface of the concave portion 1041 of the reflective groove 104 and the convex portion 2031 of the reflective cavity 203 may be closely adhered to each other. Most of the light enters the reflective recess 104 from the reflective cavity 203.
  • substantially the same means that the refractive index of the reflective groove 104 is within ⁇ 0.2 of the refractive index of the reflective cavity 203.
  • the refractive index of the reflective groove 104 is different from the refractive index of the reflective cavity 203 by less than the reflective cavity 203.
  • the refractive index of the reflective recess 104 and the reflective cavity 203 is in the range of 1.6-1.8.
  • the high refractive index material and the air interface are used as the total reflection interface. Due to the low refractive index of the air, the reflection efficiency can be greatly improved, and the requirement for the high refractive index material can be reduced, thereby making the material preparation and processing process simple.
  • the reflective cavity and the reflective groove can be made of the same high refractive index material, and the thickness of the air layer between the reflective groove and the reflective cavity is controlled by the electrostrictive layer in the middle, which is highly applicable to the material.
  • the refractive index of air is 1, and the refractive index of a typical electronic ink is 1.3, which greatly improves the reflection efficiency.
  • the difference between the refractive index of the reflective recess 104 and the refractive index of the reflective cavity 203 can affect the reflectivity.
  • the material of the reflective recess 104 and the reflective cavity 203 may include a resin.
  • the material of the reflective recess 104 and the reflective cavity 203 is not limited in this embodiment.
  • the convex portion 2031 of the reflective cavity 203 may be hemispherical, but is not limited thereto.
  • the convex portion 2031 may also be a prismatic shape, a conical shape, a tetrahedral shape, or the like. This embodiment does not limit it, as long as total reflection can occur at the interface between the reflective cavity 203 and the air layer. Since the recessed portion 1041 of the reflective recess 104 matches the structure of the raised portion 2031 of the reflective cavity 203, the recessed portion 1041 of the reflective recess 104 may be hemispherical, prismatic, conical, tetrahedral, etc. The shape of the portion 2031 corresponds to the shape.
  • the thickness of the electrostrictive layer 103 is increased, so that the surface of the depressed portion 1041 of the reflective groove 104 and the convex portion of the reflective cavity 203 are made.
  • the surface of the 2031 is in close contact with each other.
  • a gap 431 is formed between the depressed portion 1041 of the reflective recess 104 and the raised portion 2031 of the reflective cavity 203.
  • the thickness of the electrostrictive layer 103 is reduced, so that the depressed portion 1041 of the reflective groove 104 and the convex portion 2031 of the reflective cavity 203 are formed.
  • a gap 431 is formed between the first electrode 102 and the second electrode 202.
  • the surface of the depressed portion 1041 of the reflective recess 104 and the surface of the raised portion 2031 of the reflective cavity 203 are in close contact.
  • the first electrode 102 and the second electrode 202 may be made of a transparent conductive material.
  • the first electrode 102 and the second electrode 202 may be metal electrodes or transparent oxide electrodes or the like, wherein the metal electrodes are capable of reflecting light entering the inside of the display panel to increase reflectance.
  • the electrostrictive layer 103 may employ a material having electrostrictive properties.
  • the electrostrictive property means, for example, that the electrostrictive material can be deformed by an electric field, for example, the thickness of the electrostrictive material increases or decreases under the action of an electric field.
  • an electrostrictive material can produce a strain proportional to the square of the field strength under the action of an electric field.
  • the electrostrictive layer 103 may be one or a combination of the following materials: nano-barium titanate, polyurethane composite or ceramic.
  • the material of the electrostrictive layer 103 is not limited to the enumerated case.
  • the electrostrictive layer 103 can be produced by a nanoimprint method, but is not limited thereto, and may be produced by other methods.
  • each of the independent display units (sub-pixels) of the display panel can control the thickness of the intermediate gap (for example, the air interlayer) to achieve the conversion of the total reflection state and the light transmission state of the reflection cavity 203.
  • the intermediate gap for example, the air interlayer
  • each display unit 1 is provided with a support 30 corresponding thereto, or as shown in FIG. 4, a plurality of display units 1 are disposed between two adjacent supports 30.
  • the support 30 is disposed between the first base substrate 101 and the second base substrate 201. Of course, it may be disposed between the first electrode 102 and the second electrode 202.
  • the manner of disposing the support 30 is not limited as long as the distance between the first base substrate 101 and the second base substrate 201 can be kept constant.
  • the support 30 may be a photoresist material, but is not limited thereto.
  • the light absorbing layer 105 is shown in FIG.
  • the color filter layer includes, for example, three primary colors of red (R), green (G), and blue (B).
  • One pixel includes a plurality of sub-pixels, and FIG. 4 shows a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel, and one display unit 1 corresponds to one sub-pixel, but is not limited thereto.
  • one display unit 1 may correspond to a plurality of sub-pixels, or a plurality of display units 1 correspond to one sub-pixel.
  • a sealant 40 may be disposed on the first substrate substrate 101 and the second substrate substrate 201.
  • the substrate 10 and the second substrate 20 are sealed.
  • the box thickness can be greater than or equal to 15 microns.
  • the sealant 40 contains nanospheres or nanorods for box thickness support.
  • the material of the nanosphere or the nanorod includes, for example, silicon oxide or a resin, but is not limited thereto.
  • the material of the nanosphere or the nanorod is not limited as long as it can serve as a support for the thickness of the cell.
  • the sealant 40 may be used as the support 30, that is, the support 30 may be provided only on the periphery of all the display units 1.
  • a plurality of display units 1 may be arranged in an array.
  • a block-shaped first electrode 102 is disposed, and the first electrodes 102 of the plurality of display units 1 form a plurality of independent blocks.
  • Each of the display units 1 is provided with a block-shaped second electrode 202, and the second electrode 202 of the plurality of display units 1 forms a plurality of independent block electrodes.
  • This embodiment is described by way of example, but not Limited to this.
  • one of the first electrode 102 and the second electrode 202 may be provided over the entire surface (a planar electrode, which may correspond to a plurality of display units), and the other is a plurality of independent block electrodes. It suffices that each display unit can individually perform light adjustment (transmission or total reflection) for display.
  • the manner in which the first electrode 102 and the second electrode 202 are disposed in this embodiment is not limited.
  • first electrode 102 and the second electrode 202 may be connected to the driving IC through respective leads, and the driving IC is configured to apply a voltage to the first electrode 102 and the second electrode 202 of each display unit 1.
  • the display panel provided in this embodiment has the beneficial effects of at least one of the following.
  • the electrostrictive material is used as a total reflection medium control mechanism, and the structure is simple and repeatable, and the cost is reduced.
  • the electrostrictive material drives the electric field strength to be weak, and the electrostrictive material can have a shape memory function, and when the static display is realized, the power consumption is low, and the power consumption is effectively reduced.
  • the mechanical flexibility of the electrostrictive material can make the reflective cavity and the groove well combined, and has good processing performance and low processing cost.
  • the electrostrictive material has a fast response speed, so that the display device including the display panel has better dynamic display performance.
  • This embodiment provides a method for manufacturing a display panel, including the following steps.
  • the first electrode 102, the electrostrictive layer 103, and the reflective groove 104 are formed on the first base substrate 101 to fabricate the first substrate 10.
  • the second electrode 202 and the reflective cavity 203 are formed on the second base substrate 201 to fabricate the second substrate 20.
  • the first substrate 10 and the second substrate 20 are disposed opposite to each other, and a support 30 is formed between the first substrate 101 and the second substrate 201 such that the first substrate 101 and the second substrate 201 are disposed between The distance remains the same.
  • the reflective groove 104 has a recessed portion 1041, and the reflective cavity 203 has a raised portion 2031 whose surface matches the surface of the raised portion 2031 of the reflective cavity 203.
  • the first electrode 102 and the second electrode 202 are configured to form an electric field such that the electrostrictive layer 103 is deformed in a direction perpendicular to the first base substrate 101 under the action of an electric field, such that the thickness of the electrostrictive layer 103 is increased or The reduction is such that the depressed portion 1041 of the reflective groove 104 and the raised portion 2031 of the reflective cavity 203 can be switched between a gap 431 formed therebetween and a surface in close contact therebetween.
  • the manufacturing method of the display panel provided in this embodiment can be made into an all-solid state, and the packaging process is simple, and the yield is improved.
  • the method of fabricating the display panel further includes forming a light absorbing layer 105. See the description of Embodiment 1 for the light absorbing layer 105.
  • a gap 431 may be formed between the recessed portion 1041 of the reflective recess 104 and the raised portion 2031 of the reflective cavity 203.
  • the concave portion 1041 of the reflective groove 104 and the convex portion 2031 of the reflective cavity 203 can be closely adhered. Thereby, when the electrostrictive layer 103 is contracted (thickness is reduced) by the electric field, a gap 431 is formed between the depressed portion 1041 of the reflective groove 104 and the convex portion 2031 of the reflective cavity 203.
  • the display panel in Embodiment 1 can be formed by the manufacturing method of this embodiment.
  • the display panel of the embodiment is the same as or similar to the display panel provided in the first embodiment.
  • the similarities can be referred to each other and will not be described here.
  • the embodiment provides a display device, including any of the display panels described in the first embodiment. Thereby, a mechanically deformed reflective display device can be formed.
  • the beneficial effects of the reflective display device provided by this embodiment can be referred to the beneficial effects of the display panel of Embodiment 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

提供一种显示面板及其制作方法、显示装置。该显示面板包括多个显示单元(1),每个显示单元(1)包括彼此相对设置的第一基板(10)和第二基板(20)。第一基板(10)包括第一衬底基板(101)以及设置在其上的第一电极(102)、电致伸缩层(103)和反射凹槽(104)。第二基板(20)包括第二衬底基板(201)以及设置在其上的第二电极(202)和反射腔体(203)。在第一衬底基板(101)和第二衬底基板(201)之间设置支撑物(30),以使得其间的距离保持不变。反射凹槽(104)具有凹陷部(1041),反射腔体(203)具有凸起部(2031),反射凹槽(104)的凹陷部(1041)的表面和反射腔体(203)的凸起部(2031)的表面相匹配。第一电极(102)和第二电极(202)被配置来形成电场,电致伸缩层(103)在电场的作用下可在垂直于第一衬底基板(101)的方向上发生变形,使得反射凹槽(104)的凹陷部(1041)和反射腔体(203)的凸起部(2031)可在其间形成有间隙(431)和两者表面紧密贴合之间进行转换。

Description

显示面板及其制作方法、显示装置 技术领域
本公开至少一实施例涉及一种显示面板及其制作方法、显示装置。
背景技术
通常,采用全发射技术为核心的反射性产品,结构为反光薄膜以及薄膜后面的带电颗粒,其原理是通过调节带电颗粒的位置来改变反光薄膜的全反射强度,进而改变薄膜显示的亮度。
发明内容
本公开的至少一实施例涉及一种显示面板及其制作方法、显示装置,以得到结构简单,易于制作的机械变形式的反射显示装置。
本公开的至少一实施例提供一种显示面板,包括多个显示单元,每个显示单元包括彼此相对设置的第一基板和第二基板,其中,
所述第一基板包括第一衬底基板以及设置在其上的第一电极、电致伸缩层和反射凹槽;
所述第二基板包括第二衬底基板以及设置在其上的第二电极和反射腔体;
在所述第一衬底基板和所述第二衬底基板之间设置支撑物,以使得所述第一衬底基板和所述第二衬底基板之间的距离保持不变;
所述反射凹槽具有凹陷部,所述反射腔体具有凸起部,所述反射凹槽的凹陷部的表面和所述反射腔体的凸起部的表面相匹配;
所述第一电极和所述第二电极被配置来形成电场,所述电致伸缩层在所述电场的作用下可在垂直于所述第一衬底基板的方向上发生变形,使得所述电致伸缩层的厚度增加或减小,从而使得所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部可在其间形成有间隙和两者表面紧密贴合之间进行转换。
本公开的至少一实施例提供一种显示面板的制作方法,包括:
在第一衬底基板上形成第一电极、电致伸缩层和反射凹槽以制作第一基 板,
在第二衬底基板上形成第二电极和反射腔体以制作第二基板,
将所述第一基板和所述第二基板相对设置,在所述第一衬底基板和所述第二衬底基板之间形成支撑物,使得所述第一衬底基板和所述第二衬底基板之间的距离保持不变;其中,
所述反射凹槽具有凹陷部,所述反射腔体具有凸起部,所述反射凹槽的凹陷部的表面和所述反射腔体的凸起部的表面相匹配;
所述第一电极和所述第二电极被配置来形成电场使得所述电致伸缩层在所述电场的作用下在垂直于所述第一衬底基板的方向上发生变形,使得所述电致伸缩层的厚度增加或减小,从而使得所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部可在其间形成有间隙和两者表面紧密贴合之间进行转换。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种全反射显示装置示意图;
图2为本公开实施例1提供的一种显示面板的示意图(反射凹槽的凹陷部和反射腔体的凸起部之间形成有间隙);
图3为本公开实施例1提供的一种显示面板的示意图(反射凹槽的凹陷部和反射腔体的凸起部的表面紧密贴合);
图4为本公开实施例1提供的另一种显示面板的示意图;
图5为本公开实施例1提供的另一种显示面板的示意图。
附图标记:
01-背板;02-电子墨水;03-反光薄膜;1-显示单元;10-第一基板;20-第二基板;101-第一衬底基板;102-第一电极;103-电致伸缩层;104-反射凹槽;201-第二衬底基板;202-第二电极;203-反射腔体;30-支撑物;1041-凹陷部;2031-凸起部;431-间隙;105-光吸收层;40-封框胶。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1示出了一种全反射显示装置,包括背板01、反光薄膜03和设置在两者之间的电子墨水02。电子墨水02中含有带电微粒。在背板01和反光薄膜的表面还可分别设置电极。通过调节带电微粒的位置来改变反光薄膜03的全反射强度,进而改变显示的亮度。不加电的情况下,带电微粒均匀分散在电子墨水02中,经过反光薄膜03的光发生全反射。加电的情况下,电子墨水02中含有的带电微粒在电场作用下可聚集在反光薄膜03侧,从而,使得经过反光薄膜03的光折射进入聚集的带电微粒中。而该结构中,控制粒子运动会出现不均匀及漏光现象,且需要制作挡墙减少粒子团聚,结构较为复杂。这种产品结构反射效率依赖于反光薄膜03与电子墨水02之间的折射率差值,对于材料折射率要求高。
本公开至少一实施例提供一种显示面板,包括多个显示单元,每个显示单元包括彼此相对设置的第一基板和第二基板。第一基板包括第一衬底基板以及设置在其上的第一电极、电致伸缩层和反射凹槽。第二基板包括第二衬 底基板以及设置在其上的第二电极和反射腔体。在第一衬底基板和第二衬底基板之间设置支撑物,以使得第一衬底基板和第二衬底基板之间的距离保持不变。反射凹槽具有凹陷部,反射腔体具有凸起部,反射凹槽的凹陷部的表面和反射腔体的凸起部的表面相匹配。第一电极和第二电极被配置来形成电场使得电致伸缩层在电场的作用下在垂直于第一衬底基板的方向上发生变形,使得电致伸缩层的厚度增加或减小,从而使得反射凹槽的凹陷部和反射腔体的凸起部可在其间形成有间隙和两者表面紧密贴合之间进行转换。
本公开至少一实施例的显示面板,结构简单,易于制作,采用机械变形的方式进行光的调节以进行显示。
以下通过几个实施例进行说明。
实施例一
本实施例提供一种显示面板,如图2所示,该显示面板包括多个显示单元1。每个显示单元1包括彼此相对设置的第一基板10和第二基板20。
如图2所示,第一基板10包括第一衬底基板101以及设置在其上的第一电极102、电致伸缩层103和反射凹槽104。例如,在第一衬底基板101可依次设置第一电极102、电致伸缩层103和反射凹槽104。第二基板20包括第二衬底基板201以及设置在其上的第二电极202和反射腔体203。在第一衬底基板101和第二衬底基板201之间设置支撑物30,以使得第一衬底基板101和第二衬底基板201之间的距离保持不变。
如图2所示,反射凹槽104具有凹陷部1041,反射腔体203具有凸起部2031,反射凹槽104的凹陷部1041的表面和反射腔体203的凸起部2031的表面相匹配。第一电极102和第二电极202彼此绝缘,并被配置来形成电场,使得电致伸缩层103在电场的作用下可在垂直于第一衬底基板101的方向上发生变形(形变,应变),使得电致伸缩层103的厚度增加或减小,从而使得反射凹槽104的凹陷部1041和反射腔体203的凸起部2031可在其间形成有间隙431和两者表面紧密贴合之间进行转换。例如,可对第一电极102和第二电极202分别施加不同的电压以形成电压差,从而形成电场。
反射凹槽104的凹陷部1041的表面和反射腔体203的凸起部2031的表面相匹配例如是指凹陷部1041和凸起部2031的结构互补,两者的表面可紧密贴合在一起。
如图2所示,为反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间形成有间隙431的示意图。如图3所示,为反射凹槽104的凹陷部1041和反射腔体203的凸起部2031的表面紧密贴合的示意图。例如,间隙431可为空气层,但不限于此,例如,间隙431内还可填充有其他气体,例如,填充有氮气或者惰性气体等。如果填充气体采用空气之外的其他气体,器件***需要采用封装包装,使整个器件处于该气体气氛之中。本实施例以间隙431为空气层为例进行说明。本实施例提供的显示面板可用空气替代低折射率填充材料,增加反射效率。可采用全固态材料支撑,可以有效降低产品成本及提高良率。
本实施例提供的显示面板为反射式显示面板,例如,当电致伸缩层在电场中收缩时,空气填满反射腔体与反射凹槽之间的间隙(缝隙),由于全反射定律,Sinα=n/n,入射角度大于临界角的自然光在反射腔体与空气层的界面被全反射回空气中,子像素可呈现白态。当电致伸缩层在电场中伸展时,反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间的间隙内的空气被挤走,反射凹槽104的凹陷部1041和反射腔体203的凸起部2031直接接触,全反射消失,光线可穿过反射凹槽104和反射腔体203。可通过施加电压形成电场,调控电致伸缩层103的变形量。
例如,如图2所示,显示面板还可包括光吸收层105,为了获得较好的显示效果,光吸收层105可设置在电致伸缩层103和反射凹槽104之间。从而,穿过反射凹槽104和反射腔体203的光线可进入光吸收层105,光吸收层105可包括彩色滤光层或黑色阵列,从而,子像素可呈现彩色或黑色,实现彩色显示。反射式彩色显示模式,基本原理为全反射调节显示技术。采用电致收缩材料,调控凹陷部1041和凸起部2031之间的全反射间隙的大小,从而达到反射式彩色显示的效果。采用反射原理,利用环境光进行彩色显示,在强光下阅读效果更好。光吸收层105的设置位置不限于此,只要能起到光吸收的作用从而实现彩色或黑色显示即可。
一个示例中,反射凹槽104和反射腔体203采用高折射率的透光材料,其折射率大于空气层的折射率。如果间隙内填充其他气体,反射凹槽104和反射腔体203的折射率大于间隙处物质的折射率。例如,反射凹槽104的折射率与反射腔体203的折射率相同或基本相同(相近)。从而,在反射凹槽 104的凹陷部1041和反射腔体203的凸起部2031的表面紧密贴合的情况下,光线可以穿过反射凹槽104和反射腔体203。基本相同例如是指反射凹槽104的折射率与反射腔体203的折射率相差不大,在反射凹槽104的凹陷部1041和反射腔体203的凸起部2031的表面紧密贴合可以使得大部分的光从反射腔体203进入到反射凹槽104。例如,基本相同是指反射凹槽104的折射率与反射腔体203的折射率相差在±0.2以内,例如,反射凹槽104的折射率与反射腔体203的折射率相差小于反射腔体203的折射率的10%,进一步例如相差小于5%,更进一步的,相差小于3%。例如,反射凹槽104和反射腔体203的折射率在1.6-1.8的范围内。采用高折射率材料与空气界面作为全反射界面,由于空气的低折射率,可大幅提升反射效率,并降低对高折射率材料要求,从而,可使得材料制备及加工工艺简单。可采用相同高折射率材质制作反射腔体与反射凹槽,中间通过电致伸缩层控制反射凹槽与反射腔体之间的空气层厚度,对于材料适用性强。空气折射率为1,而通常的电子墨水折射率为1.3,可大幅提升反射效率。反射凹槽104的折射率与反射腔体203的折射率的差值可影响反射率。例如,反射凹槽104和反射腔体203的材料可包括树脂,本实施例对反射凹槽104和反射腔体203的材质不做限定。
例如,为了更好的获得全反射效果,反射腔体203的凸起部2031可为半球形,但不限于此,例如,凸起部2031还可以是棱柱形,圆锥形、四面体形等其他形状,本实施例对其不做限定,只要在反射腔体203和空气层的界面能发生全反射即可。因反射凹槽104的凹陷部1041与反射腔体203的凸起部2031的结构相匹配,故而,反射凹槽104的凹陷部1041可为半球形、棱柱形,圆锥形、四面体形等与凸起部2031的形状对应的形状。
例如,在第一电极102和第二电极202之间形成电场的情况下,电致伸缩层103的厚度增加,从而使得反射凹槽104的凹陷部1041的表面和反射腔体203的凸起部2031的表面紧密贴合,在第一电极102和第二电极202之间没有电场的情况下,反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间形成有间隙431。
例如,在第一电极102和第二电极202之间形成电场的情况下,电致伸缩层103的厚度减小,从而使得反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间形成有间隙431,在第一电极102和第二电极202之间没 有电场的情况下,反射凹槽104的凹陷部1041的表面和反射腔体203的凸起部2031的表面紧密贴合。
例如,为了提高光的利用率,第一电极102和第二电极202可采用透明导电材料。例如,第一电极102和第二电极202可以是金属电极或透明氧化物电极等,其中金属电极能够将进入显示面板内部的光线进行反射,增加反射率。
例如,电致伸缩层103可采用具有电致收缩性能的材料。电致收缩性能例如是指电致收缩材料在电场作用下可产生形变,例如,电致收缩材料在电场作用下厚度增加或者减小。例如,电致收缩材料在电场作用下可产生的与场强二次方成正比的应变。电致伸缩层103可采用下列材料之一或其组合:纳米钛酸钡、聚氨酯复合体或陶瓷。电致伸缩层103的材料不限于列举的情形。例如,电致伸缩层103可采用纳米压印的方法制作,但不限于此,也可以采用其他方法制作。
例如,该显示面板的每一个独立的显示单元(子像素)都可以控制中间的间隙(例如,空气夹层)的厚度,以实现反射腔体203的全反射态与光透过态的转换。
如图2和图3所示,每个显示单元1都对应设置有支撑物30,也可如图4所示,相邻两个支撑物30之间设置多个显示单元1。图2-图4中,支撑物30设置在第一衬底基板101和第二衬底基板201之间,当然,也可以设置在第一电极102和第二电极202之间,本实施例对支撑物30的设置方式不做限定,只要能起到第一衬底基板101和第二衬底基板201之间的距离保持不变的作用即可。支撑物30可采用光刻胶材料,但不限于此。图4中示出了光吸收层105可为彩色滤光层,彩色滤光层例如包括红色(R)、绿(G)、蓝(B)三基色。一个像素包括多个子像素,图4示出了红色(R)子像素、绿色(G)子像素、蓝色(B)子像素,一个显示单元1对应一个子像素,但不限于此。对于一个像素来说,还可以一个显示单元1对应多个子像素,或者多个显示单元1对应一个子像素。
一个示例中,如图5所示,为了获得稳定的光学效果和更好的支撑盒厚,在第一衬底基板101和第二衬底基板201的四周还可以设置封框胶40对第一基板10和第二基板20进行密封。例如,盒厚可大于或者等于15微米。在封 框胶40中含有纳米球或者纳米棒,以进行盒厚支撑。纳米球或者纳米棒的材质例如包括氧化硅或树脂,但不限于此,本示例中,对纳米球或者纳米棒的材质不作限定,只要能起到盒厚支撑作用即可。在制作的显示装置尺寸不大的情况下,也可将封框胶40作为支撑物30,即,只在所有显示单元1的***设置支撑物30。
多个显示单元1可构成阵列排布,图2-5中,每个显示单元1设置一个块状的第一电极102,多个显示单元1中的第一电极102形成多个独立的块状电极,每个显示单元1设置一个块状的第二电极202,多个显示单元1中的第二电极202形成多个独立的块状电极,本实施例以此为例进行说明,但并不限于此。例如,可以第一电极102和第二电极202之一整面设置(面状电极,可对应多个显示单元),另一个为多个独立的块状电极。只要能够使得每一显示单元单独进行光的调节(透射或全反射)以进行显示即可。本实施例对于第一电极102和第二电极202设置方式不做限定。
例如,第一电极102和第二电极202可分别通过各自的引线与驱动IC相连,驱动IC被配置来对各显示单元1的第一电极102和第二电极202施加电压。
本实施例提供的显示面板,具有如下至少之一的有益效果。
(1)不需要设置电子墨水,从而可避免粒子团聚现象。
(2)结构较为简单,可采用全固态,制程较为稳定,封装简单,制作工艺简单,可提升良率。
(3)采用电致伸缩材料,结构简单,重复性好,降低成本。
(4)采用反射原理,利用环境光进行显示,在强光下阅读效果更好。
(5)采用电致伸缩材料作为全反射介质调控机构,结构简单重复性好,降低成本。
(6)电致伸缩材料驱动电场强度弱,且电致伸缩材料可具有形状记忆功能,在实现静态显示时,功耗低,有效降低功耗。
(7)电致伸缩材料较好的机械柔韧性,可使反射腔体与凹槽良好结合,具有良好的加工性能以及较低的加工成本。
(8)电致伸缩材料的响应速度快,使得包含该显示面板的显示装置具有更好的动态显示性能。
实施例二
本实施例提供一种显示面板的制作方法,包括如下步骤。
在第一衬底基板101上形成第一电极102、电致伸缩层103和反射凹槽104以制作第一基板10。
在第二衬底基板201上形成第二电极202和反射腔体203以制作第二基板20。
将第一基板10和第二基板20相对设置,在第一衬底基板101和第二衬底基板201之间形成支撑物30,使得第一衬底基板101和第二衬底基板201之间的距离保持不变。
反射凹槽104具有凹陷部1041,反射腔体203具有凸起部2031,反射凹槽104的凹陷部1041的表面和反射腔体203的凸起部2031的表面相匹配。
第一电极102和第二电极202被配置来形成电场使得电致伸缩层103在电场的作用下在垂直于第一衬底基板101的方向上发生变形,使得电致伸缩层103的厚度增加或减小,从而使得反射凹槽104的凹陷部1041和反射腔体203的凸起部2031可在其间形成有间隙431和两者表面紧密贴合之间进行转换。
本实施例提供的显示面板的制作方法,可采用全固态制成,封装工艺简单,提升良率。
一个示例中,显示面板的制作方法还包括形成光吸收层105,有关光吸收层105可参见实施例1的叙述。
例如,封装时,可使反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间具有间隙431。从而,在电致伸缩层103在电场作用下伸展(厚度增加)时,使得反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间紧密贴合。
例如,封装时,可使反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间紧密贴合。从而,在电致伸缩层103在电场作用下收缩(厚度减小)时,使得反射凹槽104的凹陷部1041和反射腔体203的凸起部2031之间具有间隙431。
采用本实施例的制作方法可形成实施例1中的显示面板。
本实施例的显示面板的制作方法中与实施例一提供的显示面板相同或相 似之处可相互参见,在此不再赘述。
实施例三
本实施例提供一种显示装置,包括实施例一所述的任一显示面板。从而可形成机械变形反射显示装置。
本实施例提供的反射显示装置的有益效果可参照实施例1的显示面板的有益效果。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一附图标记代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(4)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本专利申请要求于2016年10月28日递交的中国专利申请第201610967155.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种显示面板,包括多个显示单元,每个显示单元包括彼此相对设置的第一基板和第二基板,其中,
    所述第一基板包括第一衬底基板以及设置在其上的第一电极、电致伸缩层和反射凹槽;
    所述第二基板包括第二衬底基板以及设置在其上的第二电极和反射腔体;
    在所述第一衬底基板和所述第二衬底基板之间设置支撑物,以使得所述第一衬底基板和所述第二衬底基板之间的距离保持不变;
    所述反射凹槽具有凹陷部,所述反射腔体具有凸起部,所述反射凹槽的凹陷部的表面和所述反射腔体的凸起部的表面相匹配;
    所述第一电极和所述第二电极被配置来形成电场,所述电致伸缩层在所述电场的作用下可在垂直于所述第一衬底基板的方向上发生变形,使得所述电致伸缩层的厚度增加或减小,从而使得所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部可在其间形成有间隙和两者表面紧密贴合之间进行转换。
  2. 根据权利要求1所述的显示面板,其中,所述第一电极和所述第二电极被配置来形成电场,使所述电致伸缩层的厚度增加,从而使得所述反射凹槽的所述凹陷部的表面和所述反射腔体的所述凸起部的表面紧密贴合;所述第一电极和所述第二电极之间没有电场,所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部之间形成有所述间隙。
  3. 根据权利要求1或2所述的显示面板,其中,所述第一电极和所述第二电极被配置来形成电场,使所述电致伸缩层的厚度减小,从而使得所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部之间形成有所述间隙;所述第一电极和所述第二电极之间没有电场,所述反射凹槽的所述凹陷部的表面和所述反射腔体的所述凸起部的表面紧密贴合。
  4. 根据权利要求1-3任一项所述的显示面板,其中,所述间隙包括空气层。
  5. 根据权利要求4所述的显示面板,其中,所述反射凹槽和所述反射腔 体采用高折射率的透光材料,其折射率大于所述空气层的折射率。
  6. 根据权利要求1-5任一项所述的显示面板,其中,所述反射凹槽的折射率与所述反射腔体的折射率相同或基本相同。
  7. 根据权利要求1-6任一项所述的显示面板,其中,所述反射凹槽和所述反射腔体的折射率在1.6-1.8的范围内。
  8. 根据权利要求1-7任一项所述的显示面板,其中,所述反射腔体的所述凸起部为半球形。
  9. 根据权利要求1-8任一项所述的显示面板,还包括光吸收层,其中,所述光吸收层设置在所述电致伸缩层和所述反射凹槽之间。
  10. 根据权利要求1-9任一项所述的显示面板,其中,所述第一电极和所述第二电极采用透明导电材料。
  11. 根据权利要求1-10任一项所述的显示面板,还包括设置在所述第一衬底基板和所述第二衬底基板之间的封框胶,所述封框胶中含有纳米球或者纳米棒。
  12. 一种显示装置,包括权利要求1-11任一项所述的显示面板。
  13. 一种显示面板的制作方法,包括:
    在第一衬底基板上形成第一电极、电致伸缩层和反射凹槽以制作第一基板,
    在第二衬底基板上形成第二电极和反射腔体以制作第二基板,
    将所述第一基板和所述第二基板相对设置,在所述第一衬底基板和所述第二衬底基板之间形成支撑物,使得所述第一衬底基板和所述第二衬底基板之间的距离保持不变;其中,
    所述反射凹槽具有凹陷部,所述反射腔体具有凸起部,所述反射凹槽的凹陷部的表面和所述反射腔体的凸起部的表面相匹配;
    所述第一电极和所述第二电极被配置来形成电场使得所述电致伸缩层在所述电场的作用下在垂直于所述第一衬底基板的方向上发生变形,使得所述电致伸缩层的厚度增加或减小,从而使得所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部可在其间形成有间隙和两者表面紧密贴合之间进行转换。
  14. 根据权利要求13所述的显示面板的制作方法,其中,封装时,使所 述反射凹槽的凹陷部和所述反射腔体的凸起部之间具有所述间隙。
  15. 根据权利要求13所述的显示面板的制作方法,其中,封装时,使所述反射凹槽的所述凹陷部和所述反射腔体的所述凸起部之间紧密贴合。
PCT/CN2017/087436 2016-10-28 2017-06-07 显示面板及其制作方法、显示装置 WO2018076702A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/567,263 US10437043B2 (en) 2016-10-28 2017-06-07 Display panel and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967155.1 2016-10-28
CN201610967155.1A CN106681063B (zh) 2016-10-28 2016-10-28 显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018076702A1 true WO2018076702A1 (zh) 2018-05-03

Family

ID=58840382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087436 WO2018076702A1 (zh) 2016-10-28 2017-06-07 显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10437043B2 (zh)
CN (1) CN106681063B (zh)
WO (1) WO2018076702A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681063B (zh) 2016-10-28 2019-08-16 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN108267884B (zh) * 2018-02-02 2022-04-12 北京京东方显示技术有限公司 透射反射切换结构、显示装置及其工作方法
CN108445690B (zh) * 2018-03-19 2020-07-31 京东方科技集团股份有限公司 显示模组及电子设备
CN109507825A (zh) * 2018-12-19 2019-03-22 惠科股份有限公司 显示面板和显示面板制造方法
CN110164314B (zh) * 2019-06-04 2021-01-26 京东方科技集团股份有限公司 反射式显示面板及显示装置
CN115148104B (zh) * 2022-06-29 2024-04-19 上海天马微电子有限公司 一种可拉伸显示面板及可拉伸显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469178A (zh) * 2002-06-10 2004-01-21 ������������ʽ���� 电泳显示装置
JP2011248065A (ja) * 2010-05-26 2011-12-08 Seiko Epson Corp 電気泳動表示装置、及び電気泳動表示装置の製造方法
JP2012181237A (ja) * 2011-02-28 2012-09-20 Mitsubishi Pencil Co Ltd 電気泳動表示装置の製造方法
CN102819161A (zh) * 2011-06-07 2012-12-12 精工爱普生株式会社 电泳显示装置及电子设备
CN103823323A (zh) * 2014-03-21 2014-05-28 大连龙宁科技有限公司 一种多组分胆甾型液晶电子纸的封装结构及其制造方法
CN106019573A (zh) * 2016-08-08 2016-10-12 京东方科技集团股份有限公司 一种显示面板、显示装置
CN106681063A (zh) * 2016-10-28 2017-05-17 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151984A (ja) * 1993-09-23 1995-06-16 Daewoo Electron Co Ltd M×nエレクトロディスプレーシブアクチュエーテッドミラーアレーの製法
US6091182A (en) 1996-11-07 2000-07-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element
US6724973B1 (en) * 1997-11-06 2004-04-20 Ngk Insulators, Ltd. Display and its manufacturing method
US7405884B2 (en) * 2000-12-21 2008-07-29 Olympus Corporation Optical apparatus
JP2002258179A (ja) * 2000-12-27 2002-09-11 Ngk Insulators Ltd 反射型表示装置
JP2002296515A (ja) * 2001-03-30 2002-10-09 Ngk Insulators Ltd ディスプレイの光学系
CA2643808C (en) 2006-04-19 2013-08-13 The University Of British Columbia Ionic electrophoresis in tir-modulated reflective image displays
EP3019911A4 (en) 2013-07-08 2017-06-28 Clearink Displays, Inc. Tir-modulated wide viewing angle display
US20180031941A1 (en) * 2015-02-12 2018-02-01 Clearink Displays, Inc. Multi-electrode total internal reflection image display
CN105652528A (zh) * 2016-01-27 2016-06-08 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法
CN106292120B (zh) * 2016-09-29 2017-09-26 京东方科技集团股份有限公司 显示面板及其驱动方法
CN106154678A (zh) * 2016-09-29 2016-11-23 京东方科技集团股份有限公司 一种显示器件
CN106200199B (zh) * 2016-09-29 2018-03-20 京东方科技集团股份有限公司 显示面板及其驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469178A (zh) * 2002-06-10 2004-01-21 ������������ʽ���� 电泳显示装置
JP2011248065A (ja) * 2010-05-26 2011-12-08 Seiko Epson Corp 電気泳動表示装置、及び電気泳動表示装置の製造方法
JP2012181237A (ja) * 2011-02-28 2012-09-20 Mitsubishi Pencil Co Ltd 電気泳動表示装置の製造方法
CN102819161A (zh) * 2011-06-07 2012-12-12 精工爱普生株式会社 电泳显示装置及电子设备
CN103823323A (zh) * 2014-03-21 2014-05-28 大连龙宁科技有限公司 一种多组分胆甾型液晶电子纸的封装结构及其制造方法
CN106019573A (zh) * 2016-08-08 2016-10-12 京东方科技集团股份有限公司 一种显示面板、显示装置
CN106681063A (zh) * 2016-10-28 2017-05-17 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US10437043B2 (en) 2019-10-08
CN106681063A (zh) 2017-05-17
US20180292643A1 (en) 2018-10-11
CN106681063B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2018076702A1 (zh) 显示面板及其制作方法、显示装置
CN111834544B (zh) 显示面板和显示装置
US10901263B2 (en) Backlight module, display screen, and terminal
US11994766B2 (en) Backlight module, method of manufacturing the same, display device
US7808696B2 (en) Electrophoretic display device and fabrication thereof
TWI480637B (zh) 電子裝置及製造一光電黑色遮罩之方法
EP3109902B1 (en) Black matrix, flat screen display and manufacturing method thereof
US9239458B2 (en) Photoluminescence display device
WO2018161650A1 (zh) 显示面板和显示装置
CN108878626A (zh) 一种显示面板及制作方法、显示装置
EP3420593A1 (en) Manufacturing display panels with integrated micro lens array
CN211879404U (zh) 显示基板及显示装置
TWI663447B (zh) 顯示面板
WO2022012226A1 (zh) 背光模组及其设计方法、显示装置
TWI765491B (zh) 顯示基板及其製備方法、顯示裝置
CN113437052B (zh) 改善微小型led背光或显示均匀性的色转换层及其制备方法
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
US20200326596A1 (en) Display device
CN106707624A (zh) 一种显示器件、背光源、显示装置
US20240027820A1 (en) Color film substrate, display panel and display device
CN214225623U (zh) 一种反射式液晶显示面板
KR20170020182A (ko) 양자점 광변환 소자
US10795150B2 (en) Pixel unit, display substrate and display panel
JP2004259606A (ja) 表示体および表示装置
TWI720883B (zh) 電激發光顯示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15567263

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864835

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17864835

Country of ref document: EP

Kind code of ref document: A1