WO2018076634A1 - 全息显示***和全息显示方法 - Google Patents

全息显示***和全息显示方法 Download PDF

Info

Publication number
WO2018076634A1
WO2018076634A1 PCT/CN2017/081562 CN2017081562W WO2018076634A1 WO 2018076634 A1 WO2018076634 A1 WO 2018076634A1 CN 2017081562 W CN2017081562 W CN 2017081562W WO 2018076634 A1 WO2018076634 A1 WO 2018076634A1
Authority
WO
WIPO (PCT)
Prior art keywords
observer
light source
holographic display
holographic
source module
Prior art date
Application number
PCT/CN2017/081562
Other languages
English (en)
French (fr)
Inventor
张玉欣
石炳川
吴新银
乔勇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/570,465 priority Critical patent/US20190049898A1/en
Publication of WO2018076634A1 publication Critical patent/WO2018076634A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/19Microoptic array, e.g. lens array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/03Means for moving one component

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a holographic display system and a holographic display method.
  • holographic images can be viewed in larger viewing areas. However, in this larger viewing area, only the holographic image information corresponding to the viewer's binocular window is utilized, and the holographic image information in the remaining areas is wasted. Therefore, only the holographic image information contributing to the binocular window can be calculated, and the eyeball position can be tracked by the eyeball tracking technique; thus, the observer can see the holographic image and greatly reduce the amount of calculation.
  • embodiments of the present invention provide a holographic display system and a holographic display method, which can utilize a shift of at least one of a light source module and a spatial light modulator to enable observation of a plurality of still or moving motions over a wide range.
  • a holographic display system and a holographic display method which can utilize a shift of at least one of a light source module and a spatial light modulator to enable observation of a plurality of still or moving motions over a wide range.
  • an embodiment of the invention provides a holographic display system.
  • the holographic display system includes: a light source module for generating a coherent light beam; a spatial light modulator for generating a holographic image using the coherent light beam; a position detecting device for detecting an eye position of at least one observer; and an actuating device,
  • the actuating device is capable of moving at least one of the light source module and the spatial light modulator in accordance with an eye position of the at least one observer to project the holographic image to an eye position of the at least one observer.
  • the actuating device is moved according to the eye position of at least one observer
  • At least one of the light source module and the spatial light modulator is moved to project a holographic image to an eye position of the at least one observer.
  • the holographic display system further comprises: a liquid crystal lens array disposed on a light exiting side of the spatial light modulator.
  • the liquid crystal lens array is capable of more accurately adjusting the viewing window to at least one observer's eye position based on at least one observer's eye position, including the distance and azimuth of the viewer relative to the holographic display system.
  • the liquid crystal lens array can be used corresponding to multiple viewers.
  • the actuation device is a three-dimensional actuation device.
  • At least one of the coherent light source, the lens, and the spatial light modulator can be moved in a three-dimensional direction using a three-dimensional actuating device.
  • a three-dimensional actuating device When the position of the observer relative to the holographic display system (eg, distance and azimuth) changes, at least one of the coherent light source, the lens, and the spatial light modulator can be moved, for example, using a three-dimensional actuating device, which can be efficient and precise The display quality of the holographic image for the viewer is maintained.
  • the actuating device is a piezoelectric actuator or a micro electro mechanical system (MEMS) actuating device.
  • MEMS micro electro mechanical system
  • Both piezoelectric actuators and MEMS actuators have the advantages of small size, light weight, low power consumption, high reliability, high sensitivity, easy integration, and the like, and thus can be advantageously applied in a holographic display system.
  • the holographic display device further comprises: eye diagram processing means for acquiring the gaze point coordinates of the at least one observer according to the pupil center of the at least one observer's eye.
  • the holographic image of the observer's most attention may be determined more accurately based on the observer's gaze point coordinates. The portion, thereby further reducing the amount of data and the amount of calculation of the holographic image.
  • the light source module includes a laser light source and a lens disposed on a light exiting side of the laser light source.
  • the laser light source comprises at least a red laser, a green laser, and a blue laser.
  • a red laser or a red coherent light source
  • a green laser or a green coherent light source
  • a blue laser or a blue coherent light source
  • the light source module can also be implemented using an array of LED light sources including at least a red LED, a green LED, and a blue LED.
  • an embodiment of the present invention provides a holographic display method.
  • the holographic display method includes: generating a coherent light beam using a light source module; generating a holographic image using the spatial light modulator and the coherent light beam; detecting an eye position of at least one observer; and moving the eye position according to the at least one observer At least one of a light source module and a spatial light modulator to project the holographic image to an eye position of the at least one observer.
  • At least one of the light source module and the spatial light modulator is moved in accordance with at least one observer's eye position to project a holographic image to the at least one observer's eye position.
  • moving at least one of the light source module and the spatial light modulator according to the eye position of the at least one observer comprises: moving the light source module in a three-dimensional direction according to an eye position of the at least one observer And at least one of the spatial light modulators.
  • the position of the observer relative to the holographic display system eg, distance and azimuth
  • at least one of the light source module and the spatial light modulator can be moved efficiently and accurately using, for example, a three-dimensional actuating device.
  • the display quality of the holographic image for the viewer.
  • a separate refractive device is used to deflect the beam in the holographic display system
  • the focal length such as the imaging lens should also be adjusted cooperatively, which greatly increases the complexity of the system.
  • moving at least one of the light source module and the spatial light modulator according to the eye position of the at least one observer comprises: utilizing a piezoelectric actuator or a micro-electromechanical according to an eye position of the at least one observer
  • the system actuating device moves at least one of the light source module and the spatial light modulator.
  • Both piezoelectric actuators and MEMS actuators have the advantages of small size, light weight, low power consumption, high reliability, high sensitivity, easy integration, and the like, and thus can be advantageously applied in a holographic display system.
  • the method further comprises: acquiring gaze point coordinates of the at least one observer according to a pupil center of the at least one observer's eye.
  • the position of the holographic image most concerned by the observer may be determined more accurately based on the observer's gaze point coordinates, thereby further reducing The amount of data and the amount of calculation of a small hologram image.
  • the method further comprises projecting the holographic image to an eye position of the at least one observer using a liquid crystal lens array based on the eye position of the at least one observer.
  • the liquid crystal lens array is capable of more accurately adjusting the viewing window to at least one observer's eye position based on at least one observer's eye position, including the distance and azimuth of the viewer relative to the holographic display system.
  • the liquid crystal lens array can be used corresponding to multiple viewers.
  • generating the holographic image by using the spatial light modulator and the coherent light beam comprises: generating at least a red hologram image, a green holography image, and a blue holography image by using a spatial light modulator and the light source module by using time division multiplexing .
  • a red laser or a red coherent light source
  • a green laser or a green coherent light source
  • a blue laser or a blue coherent light source
  • the light source module can also be implemented using an array of LED light sources including at least a red LED, a green LED, and a blue LED.
  • the method further comprises determining a movement period of at least one of the light source module and the spatial light modulator according to the number of the at least one observer.
  • the movement period T of at least one of the light source module and the spatial light modulator may include N stages P, where N is the number of the at least one observer; for example, the durations of all stages P may be set to be the same.
  • P (S + D), where S is the movement time of at least one of the light source module and the spatial light modulator in each of the periods, and D is in each of the periods
  • the display time of the holographic display system In order to ensure that the movement of at least one of the light source module and the spatial light modulator is not perceived by an observer, switching between at least one of the light source module and the spatial light modulator at each working position should be in the human eye.
  • the visual persistence time (0.05-0.2 seconds) is completed.
  • FIG. 1 is a schematic structural view of a holographic display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a holographic display device according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a light source according to an embodiment of the present invention.
  • FIG. 4 shows a flow chart of a holographic display method in accordance with an embodiment of the present invention
  • FIG. 5 is a flow chart showing a holographic display method according to another embodiment of the present invention.
  • FIG. 6 shows a timing diagram of light source operation and spatial light modulator loading holographic image data in accordance with an embodiment of the present invention.
  • an embodiment of the present invention provides a holographic display system 100.
  • the holographic display system 100 includes a light source module 110 (including a coherent light source 101 and a lens 102 disposed on a light exit side of the coherent light source 101) for generating a coherent light beam 104; a spatial light modulator 103 for generating a hologram using the coherent light beam 104 Image a position detecting device 106 for detecting an eye position A, A' of at least one observer; and an actuating device 107 capable of moving the coherent light source according to an eye position of the at least one observer 101. At least one of a lens 102 and a spatial light modulator 103 to project the holographic image 105 to an eye position of the at least one observer.
  • the actuation device moves at least one of the light source module and the spatial light modulator in accordance with at least one observer's eye position to project a holographic image to the at least one observer's eye position.
  • the respective “detection means” and “processing means” in the embodiments may be implemented by a computer or a combination of a computer and an appropriate sensor, and the processes of the respective “detection means” and “processing means” may each be, for example Implemented by a processor in the computer.
  • the position detecting device can be implemented using a combination of a video camera and a computer; the eye image processing device can be implemented using a processor in a computer.
  • the raw holographic image data may be provided to a processor of the computer via a network or memory, the processor calculating holographic image data corresponding to the eye position of the at least one observer based on the eye position of the at least one observer; spatial light
  • the modulator displays the holographic image using the computed holographic image data to project the holographic image to the eye position of the at least one observer.
  • the holographic display system 100 further includes a liquid crystal lens array 109 disposed on a light exiting side of the spatial light modulator 103.
  • the liquid crystal lens array 109 is capable of more accurately adjusting the viewing window to at least one observer's eye position based on at least one observer's eye position including the distance and azimuth of the observer relative to the holographic display system.
  • a plurality of liquid crystal lens arrays 109 can be used corresponding to multiple viewers.
  • the actuation device 107 is a three-dimensional actuation device.
  • the actuation device can be arranged to support at least one of the coherent light source, the lens, and the spatial light modulator to effect actuation of at least one of the coherent light source, the lens, and the spatial light modulator.
  • At least one of the coherent light source, the lens, and the spatial light modulator can be moved in a three-dimensional direction using a three-dimensional actuating device.
  • a three-dimensional actuating device When the position of the observer relative to the holographic display system (eg, distance and azimuth) changes, at least one of the coherent light source, the lens, and the spatial light modulator can be moved, for example, using a three-dimensional actuating device, which can be efficient and precise The display quality of the holographic image for the viewer is maintained.
  • the actuation device 107 is a piezoelectric actuator or a microelectromechanical system actuation device.
  • Both piezoelectric actuators and MEMS actuators have the advantages of small size, light weight, low power consumption, high reliability, high sensitivity, easy integration, and the like, and thus can be advantageously applied in a holographic display system.
  • the holographic display device 100 may further include an eye diagram processing device 108 for acquiring the gaze point coordinates of the at least one observer according to the pupil center of the at least one observer's eye. .
  • the position of the holographic image that the observer is most concerned with can be determined more accurately based on the gaze point coordinates of the observer, thereby further reducing the data amount of the holographic image and Computation.
  • the light source module 110 includes a laser light source 101 and a lens 102 disposed on a light exiting side of the laser light source.
  • the laser light source 101 includes at least a red laser 1011, a green laser 1012, and a blue laser 1013. Beams respectively emitted from the red laser 1011, the green laser 1012, and the blue laser 1013 may be combined in the same beam using, for example, beam splitters 201 and 202.
  • a red laser or a red coherent light source
  • a green laser or a green coherent light source
  • a blue laser or a blue coherent light source
  • the light source module can also be implemented using an array of LED light sources including at least a red LED, a green LED, and a blue LED.
  • an embodiment of the present invention provides a Holographic display method 400.
  • the holographic display method 400 includes: generating a coherent light beam using a light source module (S401); generating a holographic image using the spatial light modulator and the coherent light beam (S402); detecting an eye position of at least one observer (S403); The at least one observer's eye position moves at least one of the light source module and the spatial light modulator to project the holographic image to an eye position of the at least one observer (S404).
  • At least one of the light source module and the spatial light modulator is moved in accordance with at least one observer's eye position to project a holographic image to the at least one observer's eye position.
  • moving at least one of the light source module and the spatial light modulator according to the eye position of the at least one observer comprises: moving the light source module in a three-dimensional direction according to an eye position of the at least one observer And at least one of the spatial light modulators.
  • At least one of the light source module and the spatial light modulator can be moved efficiently and accurately using, for example, a three-dimensional actuating device.
  • the display quality of the holographic image for the viewer.
  • a separate refractive device is used to deflect the light beam in the holographic display system
  • the distance of the observer relative to the holographic display system changes, in order to ensure the display quality of the holographic image, it is also necessary to coordinately adjust such as an imaging lens.
  • Focal length which greatly increases the complexity of the system.
  • moving at least one of the light source module and the spatial light modulator according to the eye position of the at least one observer comprises: utilizing a piezoelectric actuator or a micro-electromechanical according to an eye position of the at least one observer
  • the system actuating device moves at least one of the light source module and the spatial light modulator.
  • Both piezoelectric actuators and MEMS actuators have the advantages of small size, light weight, low power consumption, high reliability, high sensitivity, easy integration, and the like, and thus can be advantageously applied in a holographic display system.
  • the method 400 may further include: acquiring a gaze point coordinate of the at least one observer according to a pupil center of the at least one observer's eye (S403').
  • the position of the holographic image most concerned by the observer may be determined more accurately based on the observer's gaze point coordinates, thereby further reducing The amount of data and the amount of calculation of a small hologram image.
  • the method may further include projecting the holographic image to the at least one observer using a liquid crystal lens array according to an eye position of the at least one observer Eye position.
  • the liquid crystal lens array is capable of more accurately adjusting the viewing window to at least one observer's eye position based on at least one observer's eye position, including the distance and azimuth of the viewer relative to the holographic display system.
  • the liquid crystal lens array can be used corresponding to multiple viewers.
  • generating the holographic image by using the spatial light modulator and the coherent light beam comprises: generating at least a red hologram image, a green holography image, and a blue holography image by using a spatial light modulator and the light source module by using time division multiplexing .
  • a red laser or a red coherent light source
  • a green laser or a green coherent light source
  • a blue laser or a blue coherent light source
  • the light source module can also be implemented using an array of LED light sources including at least a red LED, a green LED, and a blue LED.
  • a red laser or a red coherent light source
  • a green laser or a green coherent light source
  • a blue laser or a blue coherent light source
  • the spatial light modulator SLM is at a certain
  • the holographic image data corresponding to the color is loaded during the laser illumination of the color, thereby displaying a holographic image of the color.
  • the hologram display device can display the hologram image corresponding to each color at a predetermined frequency, thereby allowing the observer to observe the color hologram image.
  • the spatial light modulator can be turned off during execution of the movement;
  • the spatial light modulator blocks the coherent light beam during the execution of the movement.
  • the method may further include determining a movement period of at least one of the light source module and the spatial light modulator according to the number of the at least one observer.
  • the movement period T of at least one of the light source module and the spatial light modulator may include N stages P, where N is the number of the at least one observer; for example, the durations of all stages P may be set to be the same.
  • P (S + D), where S is the movement time of at least one of the light source module and the spatial light modulator in each of the periods, and D is in each of the periods
  • the display time of the holographic display system In order to ensure that the movement of at least one of the light source module and the spatial light modulator is not perceived by an observer, switching between at least one of the light source module and the spatial light modulator at each working position should be in the human eye.
  • the visual persistence time (0.05-0.2 seconds) is completed.
  • Embodiments of the present invention provide a holographic display device and a holographic display method for moving at least one of a light source module and a spatial light modulator according to at least one observer's eye position, thereby projecting a holographic image to the at least one observer Eye position.
  • the holographic image can be projected to the eye position of the at least one observer in real time in a time division multiplexed manner, thereby improving the holographic image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

一种全息显示***(100)和全息显示方法(400),利用光源模块(110)和空间光调制器(103)之至少一者的移动,能够在较大范围内向多个静止或移动的观察者提供全息图像(105)。全息显示***(100)包括:光源模块(110),用于产生相干光束(104);空间光调制器(103),利用相干光束(104)产生全息图像(105);位置检测装置(106),用于检测至少一个观察者的眼睛位置(A、A');以及致动装置(107),能够根据至少一个观察者的眼睛位置(A、A')移动光源模块(110)和空间光调制器(103)之至少一者,从而将全息图像(105)投射至至少一个观察者的眼睛位置(A、A')。

Description

全息显示***和全息显示方法
相关申请
本申请要求保护在2016年10月28日提交的申请号为201610966546.1的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种全息显示***以及全息显示方法。
背景技术
传统的全息图像可以在较大的观察区域内被观察。然而,在这个较大的观察区域中,只利用了对应于观察者双眼视窗的全息图像信息,其余区域中的全息图像信息都被浪费了。因此,可以仅计算对双眼视窗有贡献的全息图像信息,并藉由眼球追踪技术追踪眼球位置;由此,观察者可以看到全息图像,还大大减小了计算量。
发明内容
发明人意识到,这种“视窗”技术导致了观察视角小的问题,观察者只能在固定的观察窗口内观察全息图像;这种全息图像的观察范围受限,并且不适合多人观看。
为此,本发明实施例提出了一种全息显示***以及全息显示方法,利用光源模块和空间光调制器之至少一者的移动(shift),能够在较大范围内向多个静止或移动的观察者提供全息图像。
根据本发明的一个方面,本发明实施例提供了一种全息显示***。所述全息显示***包括:光源模块,用于产生相干光束;空间光调制器,利用所述相干光束产生全息图像;位置检测装置,用于检测至少一个观察者的眼睛位置;以及致动装置,所述致动装置能够根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将所述全息图像投射至所述至少一个观察者的眼睛位置。
在本发明实施例中,致动装置根据至少一个观察者的眼睛位置移 动所述光源模块和空间光调制器之至少一者,从而将全息图像投射至所述至少一个观察者的眼睛位置。利用上述配置,在存在多个观察者和/或观察者在运动的情况下,全息图像都能以时分复用的方式实时地投射至所述至少一个观察者的眼睛位置,从而改善了全息图像的显示效果和质量。并且,对于全息显示的光路来说,利用本申请实施例的配置,无需在光路中***额外的器件,避免了光的损失以及***复杂度的增加。
可选地,所述全息显示***进一步包括:布置在所述空间光调制器的出光侧的液晶透镜阵列。
液晶透镜阵列能够根据至少一个观察者的眼睛位置(包括观察者相对于所述全息显示***的距离和方位角),将观察视窗更加准确地调整到至少一个观察者的眼睛位置处。本领域技术人员能够理解,对应于多个观察者,可以使用多个液晶透镜阵列。
可选地,所述致动装置是三维致动装置。
利用三维致动装置,能够在三维方向上移动所述相干光源、透镜和空间光调制器之至少一者。当观察者相对于全息显示***的位置(例如:距离和方位角)发生变化时,利用例如三维致动装置来移动所述相干光源、透镜和空间光调制器之至少一者,能够高效和精确地保持全息图像对于观察者的显示质量。相反,如果使用单独的折射装置来偏折全息显示***中的光束,那么当观察者相对于全息显示***的距离发生变化时,为了确保全息图像的显示质量,还应当协同地调节诸如成像透镜的焦距,这极大地增加了***复杂度。
可选地,所述致动装置是压电致动装置或微机电***(MEMS,Micro Electro Mechanical System)致动装置。
压电致动装置和微机电***致动装置都具有体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等优点,因此可以有利地应用在全息显示***中。
可选地,所述全息显示装置进一步包括:眼图处理装置,用于根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标。
利用眼图处理装置获取所述至少一个观察者的注视点坐标,可以更精确地基于观察者的注视点坐标来确定观察者最关注的全息图像的 部位,从而进一步减小全息图像的数据量和运算量。
可选地,所述光源模块包括激光光源和布置在所述激光光源出光侧的透镜。
可选地,所述激光光源至少包括红色激光器、绿色激光器和蓝色激光器。
为了实现彩色全息显示,可以使用例如红色激光器(或,红色相干光源)、绿色激光器(或,绿色相干光源)和蓝色激光器(或,蓝色相干光源),以时分复用的方式分别地显示红色、绿色和蓝色的全息图像,从而由观察者感知为彩色的全息图像。类似地,也可以使用至少包括红色LED、绿色LED和蓝色LED的LED光源阵列来实现光源模块。本领域技术人员能够理解,还可以使用其他的颜色组合来产生彩色的全息图像。
根据本发明的另一方面,本发明实施例提供了一种全息显示方法。所述全息显示方法包括:利用光源模块产生相干光束;利用空间光调制器和所述相干光束产生全息图像;检测至少一个观察者的眼睛位置;以及根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将所述全息图像投射至所述至少一个观察者的眼睛位置。
在本发明实施例中,根据至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将全息图像投射至所述至少一个观察者的眼睛位置。利用上述配置,在存在多个观察者和/或观察者在运动的情况下,全息图像都能以时分复用的方式实时地投射至所述至少一个观察者的眼睛位置,从而改善了全息图像的显示效果和质量。并且,对于全息显示的光路来说,利用本申请实施例的配置,无需在光路中***额外的器件,避免了光的损失以及***复杂度的增加。
可选地,根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,在三维方向上移动所述光源模块和空间光调制器之至少一者。
当观察者相对于全息显示***的位置(例如:距离和方位角)发生变化时,利用例如三维致动装置来移动所述光源模块和空间光调制器之至少一者,能够高效和精确地保持全息图像对于观察者的显示质量。相反,如果使用单独的折射装置来偏折全息显示***中的光束, 那么当观察者相对于全息显示***的距离发生变化时,为了确保全息图像的显示质量,还应当协同地调节诸如成像透镜的焦距,这极大地增加了***的复杂度。
可选地,根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,利用压电致动装置或微机电***致动装置移动所述光源模块和空间光调制器之至少一者。
压电致动装置和微机电***致动装置都具有体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等优点,因此可以有利地应用在全息显示***中。
可选地,所述方法还包括:根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标。
根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标,可以更精确地基于观察者的注视点坐标来确定观察者最关注的全息图像的部位,从而进一步减小全息图像的数据量和运算量。
可选地,所述方法还包括:根据所述至少一个观察者的眼睛位置,利用液晶透镜阵列将所述全息图像投射至所述至少一个观察者的眼睛位置。
液晶透镜阵列能够根据至少一个观察者的眼睛位置(包括观察者相对于所述全息显示***的距离和方位角),将观察视窗更加准确地调整到至少一个观察者的眼睛位置处。本领域技术人员能够理解,对应于多个观察者,可以使用多个液晶透镜阵列。
可选地,利用空间光调制器和所述相干光束产生全息图像包括:采用时分复用的方式,利用空间光调制器和所述光源模块产生至少红色全息图像、绿色全息图像和蓝色全息图像。
为了实现彩色全息显示,可以使用例如红色激光器(或,红色相干光源)、绿色激光器(或,绿色相干光源)和蓝色激光器(或,蓝色相干光源),以时分复用的方式分别地显示红色、绿色和蓝色的全息图像,从而由观察者感知为彩色的全息图像。类似地,也可以使用至少包括红色LED、绿色LED和蓝色LED的LED光源阵列来实现光源模块。本领域技术人员能够理解,还可以使用其他的颜色组合来产 生彩色的全息图像。
可选地,所述方法还包括:根据所述至少一个观察者的数量来确定所述光源模块和空间光调制器之至少一者的移动周期。
所述光源模块和空间光调制器之至少一者的移动周期T可以包括N个阶段P,其中N是所述至少一个观察者的数量;例如,可以将所有阶段P的时长设置为相同的。对于每个阶段来说,P=(S+D),其中S是每个所述周期中所述光源模块和空间光调制器之至少一者的移动时间,D是每个所述周期中所述全息显示***的显示时间。为确保所述光源模块和空间光调制器之至少一者的移动不会被观察者察觉,所述光源模块和空间光调制器之至少一者在各个工作位置之间的切换应当在人眼的视觉暂留时间(0.05-0.2秒)内完成。
附图说明
图1示出了根据本发明实施例的全息显示装置的结构示意图;
图2示出了根据本发明另一实施例的全息显示装置的结构示意图;
图3示出了根据本发明实施例的光源的结构示意图;
图4示出了根据本发明实施例的全息显示方法的流程图;
图5示出了根据本发明另一实施例的全息显示方法的流程图;以及
图6示出了根据本发明实施例的光源工作和空间光调制器加载全息图像数据的时序图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明专利保护的范围。
根据本发明的一个方面,如图1所示,本发明实施例提供了一种全息显示***100。所述全息显示***100包括:光源模块110(包括相干光源101和布置在相干光源101出光侧的透镜102),用于产生相干光束104;空间光调制器103,利用所述相干光束104产生全息图像 105;位置检测装置106,用于检测至少一个观察者的眼睛位置A、A’;以及致动装置107,所述致动装置107能够根据所述至少一个观察者的眼睛位置移动所述相干光源101、透镜102和空间光调制器103之至少一者,从而将所述全息图像105投射至所述至少一个观察者的眼睛位置。
在本发明实施例中,致动装置根据至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将全息图像投射至所述至少一个观察者的眼睛位置。利用上述配置,在存在多个观察者和/或观察者在运动的情况下,全息图像都能以时分复用的方式实时地投射至所述至少一个观察者的眼睛位置,从而改善了全息图像的显示效果和质量。并且,对于全息显示的光路来说,利用本申请实施例的配置,无需在光路中***额外的器件,避免了光的损失以及***复杂度的增加。
在本发明的上下文中,实施例中的各个“检测装置”和“处理装置”可以由计算机或者计算机与适当传感器的结合来实现,各个“检测装置”和“处理装置”的处理过程均可以例如由所述计算机中的处理器来实现。例如,可以利用摄像机和计算机的组合来实现位置检测装置;可以利用计算机中的处理器来实现眼图处理装置。
原始的全息图像数据可以经由网络或存储器提供给计算机的处理器,所述处理器根据所述至少一个观察者的眼睛位置计算对应于所述至少一个观察者的眼睛位置的全息图像数据;空间光调制器利用计算的全息图像数据显示全息图像,从而将全息图像投射至所述至少一个观察者的眼睛位置。
可选地,如图2所示,所述全息显示***100进一步包括:布置在所述空间光调制器103的出光侧的液晶透镜阵列109。
液晶透镜阵列109能够根据至少一个观察者的眼睛位置(包括观察者相对于所述全息显示***的距离和方位角),将观察视窗更加准确地调整到至少一个观察者的眼睛位置处。本领域技术人员能够理解,对应于多个观察者,可以使用多个液晶透镜阵列109。
可选地,所述致动装置107是三维致动装置。可以将所述致动装置布置为支撑所述相干光源、透镜和空间光调制器之至少一者,从而实现对所述相干光源、透镜和空间光调制器之至少一者的致动。
利用三维致动装置,能够在三维方向上移动所述相干光源、透镜和空间光调制器之至少一者。当观察者相对于全息显示***的位置(例如:距离和方位角)发生变化时,利用例如三维致动装置来移动所述相干光源、透镜和空间光调制器之至少一者,能够高效和精确地保持全息图像对于观察者的显示质量。相反,如果使用单独的折射装置来偏折全息显示***中的光束,那么当观察者相对于全息显示***的距离发生变化时,为了确保全息图像的显示质量,还应当协同地调节诸如成像透镜的焦距,这极大地增加了***复杂度。
可选地,所述致动装置107是压电致动装置或微机电***致动装置。
压电致动装置和微机电***致动装置都具有体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等优点,因此可以有利地应用在全息显示***中。
可选地,如图1所示,所述全息显示装置100可以进一步包括眼图处理装置108,用于根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标。
利用眼图处理装置获取所述至少一个观察者的注视点坐标,可以更精确地基于观察者的注视点坐标来确定观察者最关注的全息图像的部位,从而进一步减小全息图像的数据量和运算量。
可选地,如图3所示,所述光源模块110包括激光光源101和布置在所述激光光源出光侧的透镜102。所述激光光源101至少包括红色激光器1011、绿色激光器1012和蓝色激光器1013。可以使用例如分束器201和202将分别发射自红色激光器1011、绿色激光器1012和蓝色激光器1013的光束合并在同一光束中。
为了实现彩色全息显示,可以使用例如红色激光器(或,红色相干光源)、绿色激光器(或,绿色相干光源)和蓝色激光器(或,蓝色相干光源),以时分复用的方式分别地显示红色、绿色和蓝色的全息图像,从而由观察者感知为彩色的全息图像。类似地,也可以使用至少包括红色LED、绿色LED和蓝色LED的LED光源阵列来实现光源模块。本领域技术人员能够理解,还可以使用其他的颜色组合来产生彩色的全息图像。
根据本发明的另一方面,如图4所示,本发明实施例提供了一种 全息显示方法400。所述全息显示方法400包括:利用光源模块产生相干光束(S401);利用空间光调制器和所述相干光束产生全息图像(S402);检测至少一个观察者的眼睛位置(S403);以及根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将所述全息图像投射至所述至少一个观察者的眼睛位置(S404)。
在本发明实施例中,根据至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将全息图像投射至所述至少一个观察者的眼睛位置。利用上述配置,在存在多个观察者和/或观察者在运动的情况下,全息图像都能以时分复用的方式实时地投射至所述至少一个观察者的眼睛位置,从而改善了全息图像的显示效果和质量。并且,对于全息显示的光路来说,利用本申请实施例的配置,无需在光路中***额外的器件,避免了光的损失以及***复杂度的增加。
可选地,根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,在三维方向上移动所述光源模块和空间光调制器之至少一者。
当观察者相对于全息显示***的位置(例如:距离和方位角)发生变化时,利用例如三维致动装置来移动所述光源模块和空间光调制器之至少一者,能够高效和精确地保持全息图像对于观察者的显示质量。相反,如果使用单独的折射装置来偏折全息显示***中的光束,那么当观察者相对于全息显示***的距离发生变化时,为了确保全息图像的显示质量,还应当协同地调节诸如成像透镜的焦距,这极大地增加了***的复杂度。
可选地,根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,利用压电致动装置或微机电***致动装置移动所述光源模块和空间光调制器之至少一者。
压电致动装置和微机电***致动装置都具有体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等优点,因此可以有利地应用在全息显示***中。
可选地,如图5所示,所述方法400还可以包括:根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标 (S403’)。
根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标,可以更精确地基于观察者的注视点坐标来确定观察者最关注的全息图像的部位,从而进一步减小全息图像的数据量和运算量。
可选地,如参考图2说明的实施例所述,所述方法还可以包括:根据所述至少一个观察者的眼睛位置,利用液晶透镜阵列将所述全息图像投射至所述至少一个观察者的眼睛位置。
液晶透镜阵列能够根据至少一个观察者的眼睛位置(包括观察者相对于所述全息显示***的距离和方位角),将观察视窗更加准确地调整到至少一个观察者的眼睛位置处。本领域技术人员能够理解,对应于多个观察者,可以使用多个液晶透镜阵列。
可选地,利用空间光调制器和所述相干光束产生全息图像包括:采用时分复用的方式,利用空间光调制器和所述光源模块产生至少红色全息图像、绿色全息图像和蓝色全息图像。
为了实现彩色全息显示,可以使用例如红色激光器(或,红色相干光源)、绿色激光器(或,绿色相干光源)和蓝色激光器(或,蓝色相干光源),以时分复用的方式分别地显示红色、绿色和蓝色的全息图像,从而由观察者感知为彩色的全息图像。类似地,也可以使用至少包括红色LED、绿色LED和蓝色LED的LED光源阵列来实现光源模块。本领域技术人员能够理解,还可以使用其他的颜色组合来产生彩色的全息图像。为了实现彩色全息显示,可以采用如图6所示的激光器工作和空间光调制器加载全息图像数据的时序图。如图6所示,红色激光器(或,红色相干光源)、绿色激光器(或,绿色相干光源)和蓝色激光器(或,蓝色相干光源)交替发光;所述空间光调制器SLM在某一颜色的激光器发光期间加载对应于该颜色的全息图像数据,从而显示该颜色的全息图像。由此,全息显示装置可以以预定的频率显示对应于各个颜色的全息图像,从而令观察者观察到彩色全息图像。
本领域技术人员能够理解,为确保所述相干光源、透镜和空间光调制器之至少一者的移动不会被观察者察觉,可以在执行所述移动期间关断所述空间光调制器;即,在执行所述移动期间,所述空间光调制器阻挡所述相干光束。
可选地,所述方法还可以包括:根据所述至少一个观察者的数量来确定所述光源模块和空间光调制器之至少一者的移动周期。
所述光源模块和空间光调制器之至少一者的移动周期T可以包括N个阶段P,其中N是所述至少一个观察者的数量;例如,可以将所有阶段P的时长设置为相同的。对于每个阶段来说,P=(S+D),其中S是每个所述周期中所述光源模块和空间光调制器之至少一者的移动时间,D是每个所述周期中所述全息显示***的显示时间。为确保所述光源模块和空间光调制器之至少一者的移动不会被观察者察觉,所述光源模块和空间光调制器之至少一者在各个工作位置之间的切换应当在人眼的视觉暂留时间(0.05-0.2秒)内完成。
本发明实施例提供了一种全息显示装置和全息显示方法,根据至少一个观察者的眼睛位置移动光源模块和空间光调制器之至少一者,从而将全息图像投射至所述至少一个观察者的眼睛位置。利用上述配置,在存在多个观察者和/或观察者在运动的情况下,全息图像都能以时分复用的方式实时地投射至所述至少一个观察者的眼睛位置,从而改善了全息图像的显示效果和质量。并且,对于全息显示的光路来说,利用本申请实施例的配置,无需在光路中***额外的器件,避免了光的损失以及***复杂度的增加。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型。

Claims (15)

  1. 一种全息显示***,包括:
    光源模块,用于产生相干光束;
    空间光调制器,利用所述相干光束产生全息图像;
    位置检测装置,用于检测至少一个观察者的眼睛位置;以及
    致动装置,所述致动装置能够根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将所述全息图像投射至所述至少一个观察者的眼睛位置。
  2. 如权利要求1所述的全息显示***,进一步包括:布置在所述空间光调制器的出光侧的液晶透镜阵列。
  3. 如权利要求1或2所述的全息显示***,其中所述致动装置是三维致动装置。
  4. 如权利要求1或2所述的全息显示***,其中所述致动装置是压电致动装置或微机电***致动装置。
  5. 如权利要求1或2所述的全息显示***,进一步包括:眼图处理装置,用于根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标。
  6. 如权利要求1或2所述的全息显示***,其中所述光源模块包括激光光源和布置在所述激光光源出光侧的透镜。
  7. 如权利要求6所述的全息显示***,其中所述激光光源至少包括红色激光器、绿色激光器和蓝色激光器。
  8. 如权利要求1或2所述的全息显示***,其中所述光源模块包括LED光源阵列;所述LED光源阵列至少包括红色LED、绿色LED和蓝色LED。
  9. 一种全息显示方法,包括:
    利用光源模块产生相干光束;
    利用空间光调制器和所述相干光束产生全息图像;
    检测至少一个观察者的眼睛位置;以及
    根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者,从而将所述全息图像投射至所述至少一个观察者的眼睛位置。
  10. 如权利要求9所述的全息显示方法,其中根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,在三维方向上移动所述光源模块和空间光调制器之至少一者。
  11. 如权利要求9所述的全息显示方法,其中根据所述至少一个观察者的眼睛位置移动所述光源模块和空间光调制器之至少一者包括:根据所述至少一个观察者的眼睛位置,利用压电致动装置或微机电***致动装置移动所述光源模块和空间光调制器之至少一者。
  12. 如权利要求9所述的全息显示方法,还包括:根据所述至少一个观察者的眼睛的瞳孔中心获取所述至少一个观察者的注视点坐标。
  13. 如权利要求9所述的全息显示方法,还包括:根据所述至少一个观察者的眼睛位置,利用液晶透镜阵列将所述全息图像投射至所述至少一个观察者的眼睛位置。
  14. 如权利要求9所述的全息显示方法,其中利用空间光调制器和所述相干光束产生全息图像包括:采用时分复用的方式,利用空间光调制器和所述光源模块产生至少红色全息图像、绿色全息图像和蓝色全息图像。
  15. 如权利要求9所述的全息显示方法,还包括:根据所述至少一个观察者的数量来确定所述光源模块和空间光调制器之至少一者的移动周期。
PCT/CN2017/081562 2016-10-28 2017-04-24 全息显示***和全息显示方法 WO2018076634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,465 US20190049898A1 (en) 2016-10-28 2017-04-24 Holographic display system and holographic display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610966546.1 2016-10-28
CN201610966546.1A CN106406063A (zh) 2016-10-28 2016-10-28 全息显示***和全息显示方法

Publications (1)

Publication Number Publication Date
WO2018076634A1 true WO2018076634A1 (zh) 2018-05-03

Family

ID=58014416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081562 WO2018076634A1 (zh) 2016-10-28 2017-04-24 全息显示***和全息显示方法

Country Status (3)

Country Link
US (1) US20190049898A1 (zh)
CN (1) CN106406063A (zh)
WO (1) WO2018076634A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106406063A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 全息显示***和全息显示方法
CN108508727A (zh) * 2017-05-18 2018-09-07 苏州纯青智能科技有限公司 一种三维全息图的数字化实现方法
CN111198489B (zh) * 2018-11-16 2023-05-02 青岛海信激光显示股份有限公司 全息显示***及方法
CN111179734B (zh) * 2020-01-16 2022-07-22 深圳市金质金银珠宝检验研究中心有限公司 一种反射式体全息彩色三维防伪的实现方法
CN113608353A (zh) * 2021-07-14 2021-11-05 上海大学 一种基于阵列光源的全息近眼显示***及眼瞳箱扩展方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171553A (zh) * 2005-05-06 2008-04-30 视瑞尔技术公司 三维场景的全息再现装置
TW200912572A (en) * 2007-04-10 2009-03-16 Seereal Technologies Sa Holographic projection system with optical wave tracking and with means for correcting the holographic reconstruction
CN103384854A (zh) * 2010-12-22 2013-11-06 视瑞尔技术公司 用于跟踪使用者的组合光调制装置
CN103529554A (zh) * 2008-07-10 2014-01-22 实景成像有限公司 宽视角显示和用户接口
CN104506836A (zh) * 2014-11-28 2015-04-08 深圳市亿思达科技集团有限公司 基于眼球追踪的个人全息三维显示方法及设备
WO2016075437A1 (en) * 2014-11-12 2016-05-19 De Montfort University Image display system
CN105739280A (zh) * 2014-12-31 2016-07-06 乐金显示有限公司 全息图显示设备及其控制方法
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示***和显示方法
CN106406063A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 全息显示***和全息显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540109B1 (ko) * 2003-02-06 2006-01-10 가부시끼가이샤 도시바 입체 화상 표시 장치
GB2403842A (en) * 2003-07-10 2005-01-12 Ocuity Ltd Alignment of elements of a display apparatus
KR101704738B1 (ko) * 2010-07-26 2017-02-08 한국전자통신연구원 고해상도 홀로그래픽 디스플레이
CN102957931A (zh) * 2012-11-02 2013-03-06 京东方科技集团股份有限公司 一种3d显示的控制方法和装置、及视频眼镜
KR20140090838A (ko) * 2013-01-10 2014-07-18 한국전자통신연구원 홀로그램 영상 표시 장치 및 방법
EP2959685A4 (en) * 2013-02-19 2016-08-24 Reald Inc IMAGING PROCESS AND DEVICE BASED ON BINOCULAR FIXING
CN103475893B (zh) * 2013-09-13 2016-03-23 北京智谷睿拓技术服务有限公司 三维显示中对象的拾取装置及三维显示中对象的拾取方法
CN104618706A (zh) * 2015-01-12 2015-05-13 深圳市亿思达科技集团有限公司 一种分时实现多人多角度全息立体显示的移动终端及方法
CN204719393U (zh) * 2015-06-23 2015-10-21 深圳市时代华影科技股份有限公司 基于液晶透镜的高光效3d***
CN105446028B (zh) * 2016-01-08 2019-12-10 京东方科技集团股份有限公司 一种液晶透镜板和显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171553A (zh) * 2005-05-06 2008-04-30 视瑞尔技术公司 三维场景的全息再现装置
TW200912572A (en) * 2007-04-10 2009-03-16 Seereal Technologies Sa Holographic projection system with optical wave tracking and with means for correcting the holographic reconstruction
CN103529554A (zh) * 2008-07-10 2014-01-22 实景成像有限公司 宽视角显示和用户接口
CN103384854A (zh) * 2010-12-22 2013-11-06 视瑞尔技术公司 用于跟踪使用者的组合光调制装置
WO2016075437A1 (en) * 2014-11-12 2016-05-19 De Montfort University Image display system
CN104506836A (zh) * 2014-11-28 2015-04-08 深圳市亿思达科技集团有限公司 基于眼球追踪的个人全息三维显示方法及设备
CN105739280A (zh) * 2014-12-31 2016-07-06 乐金显示有限公司 全息图显示设备及其控制方法
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示***和显示方法
CN106406063A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 全息显示***和全息显示方法

Also Published As

Publication number Publication date
CN106406063A (zh) 2017-02-15
US20190049898A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2018076634A1 (zh) 全息显示***和全息显示方法
US10685492B2 (en) Switchable virtual reality and augmented/mixed reality display device, and light field methods
Kramida Resolving the vergence-accommodation conflict in head-mounted displays
JP6769974B2 (ja) ウェアラブルヘッドアップディスプレイにおけるアイボックス拡張のためのシステム、機器、及び方法
US9958694B2 (en) Minimized-thickness angular scanner of electromagnetic radiation
CN105492957B (zh) 采用成对眼镜形式的图像显示设备
JP6704353B2 (ja) 仮想および拡張現実における焦点面を作成する方法およびシステム
US20170272735A1 (en) Pulsed projection system for 3d video
KR20190082916A (ko) 머리-장착 디스플레이 시스템들을 위한 다해상도 디스플레이 어셈블리
US20150153572A1 (en) Adjustment of Location of Superimposed Image
EP3816701A1 (en) Multi-focal plane display system and apparatus
US20160042554A1 (en) Method and apparatus for generating real three-dimensional (3d) image
US10410566B1 (en) Head mounted virtual reality display system and method
KR20190123515A (ko) 확장된 시야창을 제공하는 3차원 영상 디스플레이 장치 및 방법
CN107797436B (zh) 全息显示装置及其显示方法
US20180299683A1 (en) Image presenting apparatus, optical transmission type head-mounted display, and image presenting method
US11716456B2 (en) Autocalibrated near-eye display
WO2019154942A1 (en) Projection array light field display
US20230077212A1 (en) Display apparatus, system, and method
JPH08334730A (ja) 立体像再生装置
Stolle et al. Technical solutions for a full-resolution autostereoscopic 2D/3D display technology
JP2002330452A (ja) 立体画像表示装置
CN110618529A (zh) 用于增强现实的光场显示***和增强现实装置
JP2021152565A (ja) 表示装置及び光学素子
JP2010139855A (ja) 表示装置、表示装置の制御方法、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863796

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17863796

Country of ref document: EP

Kind code of ref document: A1