WO2018074287A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2018074287A1
WO2018074287A1 PCT/JP2017/036715 JP2017036715W WO2018074287A1 WO 2018074287 A1 WO2018074287 A1 WO 2018074287A1 JP 2017036715 W JP2017036715 W JP 2017036715W WO 2018074287 A1 WO2018074287 A1 WO 2018074287A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lateral position
acquired
host vehicle
collision avoidance
Prior art date
Application number
PCT/JP2017/036715
Other languages
English (en)
French (fr)
Inventor
祐輔 横井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/342,326 priority Critical patent/US10793096B2/en
Publication of WO2018074287A1 publication Critical patent/WO2018074287A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • This disclosure relates to a vehicle control device that performs collision avoidance control on an object.
  • the collision avoidance control is performed based on the position information of the object acquired by the object detection sensor and the collision prediction area that is the target of the collision avoidance control. Specifically, when the distance between the object and the host vehicle is a predetermined distance or less and the lateral position of the object belongs to the collision prediction area, an alarm device, a brake device, or the like is operated as collision avoidance control.
  • another vehicle (front vehicle) existing in front of the traveling direction of the host vehicle may enter (interrupt) the running path of the host vehicle.
  • the front vehicle performs an interruption operation, depending on the posture of the front vehicle, it is conceivable that the rear portion of the front vehicle is detected by the object detection sensor, and in this case, based on the position of the rear portion of the front vehicle Collision avoidance control is performed. In this case, the collision avoidance control is not performed unless the lateral position of the rear portion of the front vehicle belongs to the collision prediction area. For this reason, there is a concern that the collision avoidance control is not properly performed on the preceding vehicle that performs the interruption operation.
  • the present disclosure has been made in view of the above-described problem, and a vehicle control device that can appropriately perform collision avoidance control when an object that exists in front of the traveling direction of the host vehicle enters the traveling path of the host vehicle.
  • the purpose is to provide.
  • the present disclosure is a vehicle control device that detects an object existing ahead of a traveling direction of an own vehicle by an object detection sensor and performs collision avoidance control on the object based on the detection result.
  • an object detection sensor When there is an object that moves in a direction that intersects the traveling direction of the host vehicle, a portion other than the front end of the object is acquired by the object detection sensor as the detection position of the object. And when it is determined that a part other than the front end part of the object has been acquired, the horizontal position of the acquired part is a collision prediction area that is a target of the collision avoidance control. And a control unit that allows the collision avoidance control to be performed even if it does not belong.
  • the forward vehicle when the preceding vehicle interrupts the runway of the own vehicle, the forward vehicle is considered to enter obliquely with respect to the runway of the own vehicle. That is, in this case, the front portion (for example, the front end portion) of the front vehicle enters the running path of the host vehicle earlier than the rear portion (for example, the rear end portion).
  • the front end of the object is detected by the object detection sensor as the object detection position. It is determined that a part other than the part has been acquired.
  • the object detection sensor detects a part other than the part.
  • the collision avoidance control is allowed to be performed even if the horizontal position of the acquired portion does not belong to the collision prediction region. I did it. Therefore, the collision avoidance control can be performed earlier than in the case where the collision avoidance control is performed based only on the lateral position acquired by the object detection sensor. Thereby, collision avoidance control can be appropriately implemented with respect to the object which approachs the runway of the own vehicle.
  • FIG. 1 is a diagram showing a schematic configuration of a PCSS of a vehicle.
  • FIG. 2 is a diagram for explaining sensor detection in a scene in which a preceding vehicle enters the running path of the host vehicle.
  • FIG. 3 is a diagram for explaining the calculation of the front end lateral position of the front vehicle.
  • FIG. 4 is a flowchart showing a control process executed by the vehicle control device according to this embodiment.
  • FIG. 5 is a diagram for explaining calculation of the traveling angle of the forward vehicle in another example.
  • FIG. 6 is a diagram showing the relationship between the length of an object and TTC
  • FIG. 7 is a diagram showing the relationship between the travel angle and TTC.
  • FIG. 1 shows a pre-crash safety system (hereinafter referred to as PCSS: Pre-crash safety system) to which a vehicle control device is applied.
  • PCSS is an example of a vehicle system mounted on a vehicle.
  • the host vehicle collides with the object. The avoidance operation or the collision mitigation operation is performed.
  • the vehicle 1 includes an object detection sensor of the radar device 21 and the imaging device 22, a vehicle speed sensor 23, an ECU 10, an alarm device 31, and a brake device 32.
  • the ECU 10 functions as a vehicle control device.
  • the radar device 21 detects an object in front of the host vehicle using a directional electromagnetic wave (exploration wave) such as a millimeter wave or a laser, and its optical axis is at the front of the host vehicle 50. It is attached so that it faces.
  • the radar device 21 scans a region extending in a predetermined range toward the front of the vehicle every predetermined time with a radar signal, and receives an electromagnetic wave reflected from the surface of the front object, whereby the relative position of the front object, the front object The relative speed and the like are acquired as object information.
  • the relative position is acquired as a relative coordinate position where the vehicle width direction of the host vehicle 50 is the X axis and the traveling direction of the host vehicle 50 is the Y axis when the host vehicle 50 is the origin.
  • the component in the vehicle width direction (X axis) indicates the lateral position of the object with respect to the host vehicle 50
  • the component in the traveling direction (Y axis) of the host vehicle 50 indicates the distance from the front object.
  • the acquired object information is input to the ECU 10.
  • the imaging device 22 is a vehicle-mounted camera, and is configured using, for example, a CCD camera, a CMOS image sensor, a near-infrared camera, or the like.
  • the imaging device 22 is attached to a predetermined height (for example, near the upper end of the windshield) in the center of the host vehicle 50 in the vehicle width direction, and images a region extending in a predetermined angle range toward the front of the host vehicle from an overhead viewpoint.
  • the captured image is input to the ECU 10 at predetermined intervals.
  • the imaging device 22 may be a monocular camera or a stereo camera.
  • the vehicle speed sensor 23 detects the traveling speed of the host vehicle 50 based on the rotational speed of the wheels. The detection result by the vehicle speed sensor 23 is input to the ECU 10.
  • the alarm device 31 warns the driver that there is an object ahead of the host vehicle by a control command from the ECU 10.
  • the alarm device 31 includes, for example, a speaker provided in the passenger compartment and a display unit that displays an image.
  • the brake device 32 is a braking device that brakes the host vehicle 50.
  • the brake device 32 is activated when the possibility of collision with a front object increases. Specifically, the braking force with respect to the brake operation by the driver is increased (brake assist function), or automatic braking is performed if the brake operation is not performed by the driver (automatic brake function).
  • ECU10 is comprised as a known microcomputer provided with CPU and various memory (ROM, RAM), and implements control in the own vehicle 50 with reference to the arithmetic program and control data in memory.
  • the ECU 10 detects an object based on object information output from the radar device 21 or a captured image output from the imaging device 22, and based on the detection result, the alarm device 31 and the brake device 32 are controlled. Perform PCS.
  • ECU10 sets the collision prediction area
  • the collision prediction area is set based on, for example, the lateral velocity Vx of the object, and is set so as to expand in the lateral direction as the lateral velocity Vx of the object increases.
  • the width of the collision prediction region in the horizontal axis direction is set based on the width of the host vehicle 50, for example.
  • the ECU 10 calculates a collision margin time TTC (Time to Collision) for the object.
  • TTC Time to Collision
  • the ECU 10 determines whether or not the lateral position of the object output from the radar device 21 belongs to the collision prediction area.
  • the separately calculated TTC and alarm device 31 are determined. And each device is operated based on each operation timing of the brake device 32. Specifically, if the TTC is equal to or lower than the operation timing of the alarm device 31, an alarm is given to the driver by operating a speaker or the like. Further, if TTC is equal to or lower than the operation timing of the brake device 32, control is performed to operate the automatic brake to reduce the collision speed. In addition, it is good also as a structure which operates each apparatus using the distance with the object based on TTC.
  • the ECU 10 acquires image data from the imaging device 22 and exists in front of the host vehicle based on the image data and dictionary information for object identification prepared in advance.
  • the type of object to be determined is determined.
  • the dictionary information for object identification is prepared individually according to the type of object such as an automobile, a two-wheeled vehicle, a pedestrian, and an obstacle on the road, and stored in the memory in advance.
  • As the automobile dictionary information at least dictionary information of a front pattern and a rear pattern is prepared. Further, as a front or rear pattern of a car, for example, a plurality of vehicle types such as a large car, a normal car, a light car, etc. It is recommended that dictionary information be prepared for each. ECU10 determines the kind of object by collating image data and dictionary information by pattern matching.
  • the ECU 10 calculates position information (including the width of the object) in the lateral direction with respect to the traveling direction of the host vehicle 50 based on the image data and the dictionary information. Then, based on the position information of the object and the collision prediction area, collision avoidance control for the object is performed. For example, it is good also as a structure which implements collision avoidance control according to the ratio with which the horizontal width of the object and a collision prediction area
  • a forward vehicle 60 existing in front of the host vehicle 50 may enter (interrupt, etc.) the path of the host vehicle 50.
  • the rear portion for example, the rear end portion
  • inconvenience occurs.
  • FIG. 2 shows a scene in which the forward vehicle 60 performs an interruption operation on the traveling path of the host vehicle 50.
  • the host vehicle 50 and the forward vehicle 60 exist on the path of the host vehicle 50, and the posture of the front vehicle 60 is inclined laterally with respect to the path (traveling direction) of the host vehicle 50. It has become.
  • 2A shows the detection result of the front vehicle 60 by the radar device 21
  • FIG. 2B shows the detection result of the front vehicle 60 by the imaging device 22, respectively.
  • the position of the object is detected based on the reflection point of the exploration wave by the radar device 21.
  • a plurality of detection points QA are detected in accordance with a portion that can be a reflection point (detection point) of the exploration wave, such as unevenness on the rear side and rear end of the front vehicle 60.
  • a representative point representing the object is acquired from the detected plurality of detection points QA.
  • the detection point having the highest reflection intensity is used as a representative point.
  • the detection point Q corresponding to the rear end portion of the forward vehicle 60 is used as the representative point in FIG.
  • the ECU 10 performs collision avoidance control based on the representative point (detection point Q).
  • the collision avoidance control is performed based on the fact that the object belongs to the collision prediction area.
  • the detection point Q does not belong to the collision prediction area S. Not implemented.
  • the representative point of the detection points may be one point selected from a plurality of detection points (for example, a point having a high reflection intensity, a left end point or a right end point, or an intermediate point among the plurality of detection points). Or it is good also as a midpoint of a left end point and a right end point.
  • the position of the object is detected based on pattern matching based on the image data of the imaging device 22.
  • the rear area A of the forward vehicle 60 is detected by collating the image data with the dictionary information of the rear pattern of the car.
  • the ECU 10 performs the collision avoidance control based on the region A. Therefore, in the scene of FIG. 2B, since the area A does not belong to the collision prediction area S, the collision avoidance control is not performed.
  • the object detection sensor may not be able to accurately grasp the position of the front object.
  • the object detection sensors 21 and 22 are used as object detection positions. To determine that a part other than the front end of the object has been acquired. When it is determined that a part other than the front end of the object has been acquired, the collision avoidance control is allowed to be performed even if the lateral position of the acquired part does not belong to the collision prediction region. I made it.
  • the front end lateral position XA of the object is estimated, and collision avoidance control is performed based on the estimated front end lateral position XA belonging to the collision prediction region.
  • the lateral position of the front end portion P of the forward vehicle 60 belongs to the collision prediction region S, so that collision avoidance control can be performed. it can.
  • the front end lateral position XA of the interrupting object is used instead of the lateral position actually acquired by the object detection sensors 21 and 22, so that the execution timing of the collision avoidance control is advanced.
  • the front end lateral position XA corresponds to the lateral position of the host vehicle 50 in the vehicle width direction at the front end on the side where the object is inclined with respect to the host vehicle 50 (the left side or the right side of the object).
  • the ECU 10 determines that portions other than the front end portion of the front object have been acquired by the object detection sensors 21 and 22.
  • the ECU 10 determines that a portion other than the front end of the front object is acquired as a detection position of the front object by recognizing a situation in which the object moves in the same direction as the host vehicle 50 and interrupts in front of the host vehicle. To do. Specifically, the ECU 10 performs an interrupt determination.
  • a known method can be applied to the interrupt determination, for example, based on the lateral position of the object.
  • the threshold value Wth is set based on the width of the own lane.
  • an interrupt determination can be made based on the amount of lateral movement of the forward vehicle 60 and the lateral speed Vx.
  • the ECU 10 estimates the front end lateral position XA of the front vehicle 60 based on the position of the portion other than the front end portion of the object acquired by the object detection sensors 21 and 22.
  • FIG. 3 shows an example of a calculation method for estimating the front end lateral position XA.
  • the detection point Q is acquired as a representative point of the forward vehicle 60 by the radar device 21, the front end lateral position XA of the forward vehicle 60 is calculated based on the speed vector VT of the forward vehicle 60.
  • the ECU 10 calculates the traveling angle ⁇ of the forward vehicle 60 from the longitudinal speed Vy and the lateral speed Vx of the forward vehicle 60 based on the following formula (1).
  • the longitudinal speed Vy of the forward vehicle 60 is calculated by adding the relative speed with the forward vehicle 60 to the vehicle speed of the host vehicle 50 acquired by the vehicle speed sensor 23.
  • the lateral speed Vx of the forward vehicle 60 is calculated from the amount of change in the lateral position (for example, the detection point Q) of the forward vehicle 60 per unit time.
  • the traveling angle ⁇ indicates 0 ° when the speed vector VT of the forward vehicle 60 extends in the same direction (that is, in parallel) with the traveling direction of the host vehicle 50, and the forward vehicle 60 is relative to the host vehicle 50.
  • the ECU 10 calculates the front end lateral position XA of the front vehicle 60 from the calculated advance angle ⁇ of the front vehicle 60 based on the following equation (2).
  • Front end lateral position XA Sensor detected lateral position + vehicle length L ⁇ sin ⁇ (2)
  • the front end lateral position XA and the lateral position by sensor detection indicate values in the vehicle width direction (X-axis component) on relative coordinates. That is, in FIG. 3, the lateral position detected by the sensor corresponds to Qx, and the front end lateral position XA corresponds to Px.
  • the vehicle length L of the forward vehicle 60 refers to the length of the vehicle in the moving direction of the forward vehicle 60, and a predetermined value (for example, 4 m) is determined. Then, the ECU 10 performs the collision avoidance control based on the estimated front end lateral position XA.
  • the front end lateral position XA of the front vehicle 60 is estimated using the detection result of the radar device 21, but from the rear region A of the front vehicle 60 detected based on the captured image of the imaging device 22.
  • the front end lateral position XA can be estimated. That is, the front end lateral position XA is calculated by applying a predetermined lateral position of the region A (for example, the lateral position at the left end) to the above equation (2).
  • the collision avoidance control process performed by the ECU 10 will be described using the flowchart of FIG. This process is repeatedly performed by the ECU 10 at a predetermined cycle.
  • step S11 the object information output from the radar device 21 and the captured image output from the imaging device 22 are input.
  • step S12 based on the input captured image, it is determined whether or not the forward vehicle 60 exists ahead of the host vehicle.
  • the ECU 10 determines the presence of the forward vehicle 60 by pattern matching with the dictionary information of the pattern at the rear of the vehicle.
  • step S12 If the result in step S12 is negative, the process is terminated.
  • step S12 is affirmed, it progresses to step S13 and the lateral position of the front vehicle 60 is acquired.
  • the lateral position is acquired based on the object information output from the radar device 21.
  • step S ⁇ b> 14 it is determined whether or not the preceding vehicle 60 interrupts the traveling path of the host vehicle 50.
  • the ECU 10 performs an interrupt determination based on the lateral position of the forward vehicle 60 described above.
  • Step S14 corresponds to a “determination unit”.
  • step S14 the process proceeds to step S15 to determine whether or not the vehicle speed of the host vehicle 50 is equal to or higher than the threshold value Vth.
  • the threshold value Vth is a determination value for determining whether or not the vehicle speed of the host vehicle 50 is low, and is set to 20 km / h, for example.
  • the host vehicle 50 is traveling at a low speed due to a traffic jam or the like, it is considered that an interruption is performed in a state where the distance from the preceding vehicle 60 is close. If the collision avoidance control based on the estimated front end lateral position XA is to be performed during such low-speed traveling, the operation of the brake or the like frequently occurs, which may cause inconvenience.
  • the threshold value Vth can be changed as appropriate. For example, when the collision avoidance control based on the estimated front end lateral position XA is performed during high-speed traveling, the threshold value Vth is set to 60 km / h, for example. Is set.
  • step S15 in addition to the vehicle speed, the lateral speed of the host vehicle 50 may be added as a condition. In such a configuration, step S15 is affirmed when the vehicle speed is equal to or higher than the threshold value Vth and the lateral speed of the host vehicle 50 is equal to or higher than a predetermined value.
  • step S15 If step S15 is affirmed, that is, if the speed condition is satisfied, the process proceeds to step S16, and the front end lateral position XA of the forward vehicle 60 is estimated.
  • the front end lateral position XA is calculated by the method shown in FIG. Step S16 corresponds to an “estimator”.
  • the estimated front end lateral position XA is set as the lateral position of the forward vehicle 60, and the process proceeds to step S18. Note that step S15 and subsequent steps S18 to S23 in which the collision avoidance control is performed with the front end lateral position XA as the lateral position of the front vehicle 60 correspond to the “control unit”.
  • step S14 and step S15 are respectively denied, it progresses to step S18.
  • the collision avoidance control is performed with the lateral position acquired in step S13 as the lateral position of the forward vehicle 60. That is, normal collision avoidance control based on the detection results of the object detection sensors 21 and 22 is performed.
  • a collision prediction area is set. Specifically, the collision prediction area is set based on the lateral speed Vx of the forward vehicle 60.
  • step S19 it is determined whether or not the lateral position of the forward vehicle 60 exists within the set collision prediction area.
  • the front end lateral position XA is set as the lateral position of the front vehicle 60 in step S17, it is determined whether or not the front end portion of the front vehicle 60 belongs to the collision prediction area.
  • step S19 is denied, this process is complete
  • step S19 is affirmed, it progresses to step S20.
  • step S20 it is determined whether or not the relative distance between the preceding vehicle 60 and the host vehicle 50 existing in the collision prediction area is smaller than the first predetermined distance D1.
  • step S20 is denied, this process is complete
  • step S ⁇ b> 21 an operation command is transmitted to the alarm device 31 in order to warn the driver that the preceding vehicle 60 existing in the collision prediction area is approaching the host vehicle 50.
  • step S22 it is determined whether or not the relative distance between the preceding vehicle 60 and the host vehicle 50 existing in the collision prediction area is smaller than the second predetermined distance D2. This assumes a case in which the preceding vehicle 60 continues to approach the host vehicle 50 even though the warning device 31 issues a warning to the driver.
  • step S22 is denied, this process is complete
  • step S22 is affirmed, the process proceeds to step S23, and an operation command is transmitted to the brake device 32.
  • step S21 During the period when the operation command is transmitted to the alarm device 31 at step S21 or the period when the operation command is transmitted to the brake device 32 at step S23, if the preceding vehicle 60 is out of the collision prediction area, it is being executed. The process in step S21 or the process in step S23 is immediately stopped.
  • the front vehicle 60 When there is a forward vehicle 60 that moves toward the front of the host vehicle 50 in a direction that intersects the traveling direction of the host vehicle 50, the front vehicle 60 is detected by the object detection sensors 21 and 22 as the detection position of the front vehicle 60.
  • the lateral position of the acquired portion is determined to be a collision prediction. Even if it does not belong to the area, the configuration is made to allow the implementation of the collision avoidance control. Therefore, the collision avoidance control can be performed earlier than the case where the collision avoidance control is performed based only on the lateral position acquired by the object detection sensors 21 and 22. Thereby, collision avoidance control can be appropriately implemented with respect to the forward vehicle 60 entering the running path of the host vehicle 50.
  • the front end portion of the forward vehicle 60 may belong to the collision prediction region.
  • the front end lateral position XA of the front vehicle 60 is estimated based on a portion (rear end portion) other than the front end portion of the front vehicle 60 acquired by the object detection sensors 21 and 22.
  • the collision avoidance control is performed based on the estimated front end lateral position XA belonging to the collision prediction area. Therefore, even if the lateral position of the object acquired by the object detection sensors 21 and 22 does not belong to the collision prediction area, the collision avoidance control can be performed if the front end lateral position XA belongs to the collision prediction area. Thereby, at the time of interruption of the forward vehicle 60, the collision avoidance control can be performed earlier.
  • the front end lateral position XA of the forward vehicle 60 is determined by the length in the moving direction of the forward vehicle 60 from the geometrical relationship. This is considered to depend on the moving angle of the forward vehicle 60. Considering this point, the front end lateral position XA of the front vehicle 60 is estimated on the basis of the length of the object (vehicle length L) and the movement angle (travel angle ⁇ ). Can be estimated with high accuracy, and as a result, collision avoidance control can be properly performed.
  • the travel angle ⁇ is calculated from the speed vector VT of the front vehicle 60, and the front end lateral position XA is calculated using the travel angle ⁇ .
  • the traveling angle ⁇ is not limited to this method, and may be calculated based on, for example, the movement trajectory between the host vehicle 50 and the forward vehicle 60 as shown in FIG.
  • FIG. 5 shows the position histories of the host vehicle 50 and the forward vehicle 60.
  • the movement vectors of the host vehicle 50 and the forward vehicle 60 are calculated. These movement vectors can be regarded as linear functions on the same coordinates, and can be expressed by the following equations (3) and (4).
  • Movement vector of own vehicle y ax + b (3)
  • Forward vehicle movement vector y cx + d (4)
  • an angle formed by the movement vector between the host vehicle 50 and the forward vehicle 60 is calculated based on the following equation (5).
  • Travel angle ⁇ arctan (c) ⁇ arctan (a) (5)
  • the front end lateral position XA of the forward vehicle 60 is calculated based on the above equation (2) using the calculated advance angle ⁇ .
  • the interrupt determination in step S14 in Fig. 4 may be performed based on the lateral position of the forward vehicle 60, the lateral speed Vx, and the amount of movement.
  • the forward vehicle 60 interrupts the running path of the host vehicle 50, paying attention to the fact that the side of the front vehicle 60 faces the front side of the host vehicle 50, for example, as a detection point by the radar device 21
  • the interruption of the forward vehicle 60 may be determined when the side of the vehicle 60 is detected.
  • the front object is the front vehicle 60, and the vehicle length L that is predetermined in the estimation of the front end lateral position XA of the front vehicle 60 is used.
  • the length of the object in the moving direction that is, the vehicle length L
  • the ECU 10 estimates the length of the front object, and estimates the front end lateral position XA of the object based on the length of the front object.
  • the front end lateral position XA can be accurately estimated according to the length of the object, and collision avoidance control can be appropriately performed.
  • the process of estimating the length of the front object corresponds to a “length estimation unit”.
  • the longer the length of the front object the greater the deviation between the lateral position detected by the sensor and the front end lateral position XA of the front object. That is, as the length of the front object is longer, a situation in which the front end lateral position XA of the front object belongs to the collision prediction area is more likely to occur even if the lateral position detected by the sensor does not belong to the collision prediction area.
  • the collision avoidance control based on the front end lateral position XA may be easily performed as compared with a case where the length is shorter than that. In such a configuration, for example, collision avoidance control can be easily performed by changing the TTC calculation or the collision prediction area setting.
  • FIG. 6 shows the relationship between the length of the front object and TTC as an example.
  • the TTC is calculated as a smaller value as the length of the front object becomes longer.
  • the TTC is corrected to be a smaller value as the length of the front object becomes longer.
  • the setting of the threshold value TTCth to be compared with TTC in the operation determination of the alarm device 31 or the like may be changed.
  • the threshold value TTCth is set to a larger value as the length of the front object becomes longer.
  • the collision avoidance control can be performed earlier than when the length is shorter than that.
  • the collision prediction area S is within the virtual line in which the width of the own vehicle 50 is extended in the traveling direction of the own vehicle 50
  • the rear part of the forward vehicle 60 is the collision prediction area S. If the front end portion P of the forward vehicle 60 belongs to the collision prediction region S, the collision avoidance control is performed earlier as the total length of the forward vehicle 60 is longer.
  • the lateral position detected by the sensor and the front object lateral position as the travel angle ⁇ increases within the range of 0 ° to 90 ° (that is, the vehicle is more inclined with respect to the host vehicle 50).
  • the deviation from XA is considered to be large. That is, it is considered that the larger the advance angle ⁇ of the front object, the more likely it is that the front end lateral position XA of the front object belongs to the collision prediction area even if the lateral position detected by the sensor does not belong to the collision prediction area. .
  • collision avoidance control can be easily performed by changing the TTC calculation or the collision prediction area setting.
  • FIG. 7 shows, as an example, the relationship between the traveling angle ⁇ (0 to 90 °) and TTC.
  • the TTC is calculated as a smaller value as the traveling angle ⁇ increases.
  • the TTC is corrected to be a smaller value as the traveling angle ⁇ becomes larger.
  • the setting of the threshold value TTCth to be compared with TTC in the operation determination of the alarm device 31 or the like may be changed.
  • the threshold value TTCth is set to a larger value as the traveling angle ⁇ increases.
  • the collision avoidance control can be performed earlier than when the advance angle ⁇ is smaller than that.
  • the collision prediction area S is within the virtual line in which the width of the own vehicle 50 is extended in the traveling direction of the own vehicle 50
  • the rear part of the forward vehicle 60 is the collision prediction area S. If the front end portion P of the forward vehicle 60 belongs to the collision prediction region S, the collision avoidance control is performed earlier as the advance angle ⁇ of the forward vehicle 60 is larger.
  • the detection point Q (rear end portion) of the forward vehicle 60 is acquired as the representative point in the object detection by the radar device 21 .
  • the detection point other than the detection point Q that is, the rear end It may be a case where detection points corresponding to parts other than the part are acquired as representative points.
  • the front end lateral position XA may be calculated based on the following equation (6).
  • Front end lateral position XA lateral position detected by sensor + vehicle length L ⁇ sin ⁇ ⁇ correction coefficient k (6)
  • the correction coefficient k is a value greater than 0 and equal to or less than 1, depending on the position of the representative point. Is set. For example, when the midpoint between the front end portion and the rear end portion of the front object is detected as the representative point, the correction coefficient k is a value of 1/2.
  • the reflection intensity is higher at the side than at the rear end of the special vehicle due to unevenness of the cargo bed.
  • the front end lateral position XA of the special vehicle can be accurately estimated by using the correction coefficient k based on the above equation (6).
  • the forward vehicle 60 is interrupted at a junction of a branch road or a multilane road.
  • the advance angle ⁇ of the forward vehicle 60 becomes a certain value (for example, around 30 °).
  • a predetermined value for estimating the front end lateral position XA is determined, and when it is determined that there is an interruption of the forward vehicle 60, the front end lateral position XA is calculated without calculating the advance angle ⁇ . It is good also as a structure. According to this configuration, the calculation load can be reduced.
  • the collision avoidance control is performed in the host vehicle 50 including the radar device 21 and the imaging device 22 as the object detection sensors.
  • the imaging device 22 is provided among the radar device 21 and the imaging device 22.
  • the collision avoidance control may be performed in the host vehicle 50.
  • the ECU 10 having the PCS function is configured to estimate the front end lateral position XA of the forward vehicle 60 at the time of interruption so that the forward vehicle 60 is subject to collision avoidance control earlier.
  • the above-described configuration may be applied to the ECU 10 having an ACC (Adaptive Cruise Control) function for performing control to follow the preceding vehicle. In such a case, when there is an interruption of the forward vehicle 60, the target of the preceding vehicle can be changed earlier.
  • ACC Adaptive Cruise Control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両制御装置は、物体検出センサ(21,22)により自車両(50)の進行方向前方に存在する物体を検出し、その検出結果に基づいて前記物体に対する衝突回避制御を実施するものであり、前記自車両の正面に向けて、当該自車両の進行方向に対して交差する方向に移動する物体が存在する場合に、前記物体の検出位置として、前記物体検出センサにより前記物体の前端部以外の部分が取得されていることを判定する判定部と、前記物体の前端部以外の部分が取得されていると判定された場合に、当該取得されている部分の横位置が、前記衝突回避制御の対象とする衝突予測領域に属していなくても、前記衝突回避制御の実施を許容する制御部と、を備える。

Description

車両制御装置 関連出願の相互参照
 本出願は、2016年10月18日に出願された日本出願番号2016-204534号に基づくもので、ここにその記載内容を援用する。
 本開示は、物体に対して衝突回避制御を実施する車両制御装置に関する。
 従来、自車両の周囲に存在する物体を検出するとともに、その検出結果に基づいてその物体に対する衝突回避制御を行うことが提案されている。例えば、特許文献1に記載の車両制御装置では、物体検出センサによって取得される物体の位置情報と衝突回避制御の対象となる衝突予測領域とに基づいて、衝突回避制御を実施する。具体的には、物体と自車両との距離が所定距離以下であって、物体の横位置が衝突予測領域に属する場合に、衝突回避制御として警報装置やブレーキ装置等を作動させる。
特開2012-48460号公報
 ところで、自車両の進行方向前方に存在する他車両(前方車)が、自車両の走路に進入する(割込む)ことがある。ここで、前方車が割込み動作を行う際において、前方車の姿勢によっては、物体検出センサにより前方車の後部が検出されることが考えられ、その際には前方車の後部の位置に基づいて衝突回避制御が実施される。この場合、前方車の後部の横位置が衝突予測領域に属さなければ、衝突回避制御が実施されないことになる。そのため、割込み動作を行う前方車に対して、衝突回避制御が適正に実施されないことが懸念される。
 本開示は、上記課題に鑑みてなされたものであり、自車両の進行方向前方に存在する物体が自車両の走路に進入する場合に、衝突回避制御を適正に実施することができる車両制御装置を提供することを目的とする。
 本開示は、物体検出センサにより自車両の進行方向前方に存在する物体を検出し、その検出結果に基づいて前記物体に対する衝突回避制御を実施する車両制御装置であって、前記自車両の正面に向けて、当該自車両の進行方向に対して交差する方向に移動する物体が存在する場合に、前記物体の検出位置として、前記物体検出センサにより前記物体の前端部以外の部分が取得されていることを判定する判定部と、前記物体の前端部以外の部分が取得されていると判定された場合に、当該取得されている部分の横位置が、前記衝突回避制御の対象とする衝突予測領域に属していなくても、前記衝突回避制御の実施を許容する制御部と、を備える。
 例えば、前方車が自車両の走路に割込みする際、前方車は自車両の走路に対して斜めに進入すると考えられる。つまりこの場合、前方車の前部(例えば前端部)の方が、後部(例えば後端部)よりも早く自車両の走路に進入することになる。
 この点、上記構成では、自車両の正面に向けて、当該自車両の進行方向に対して交差する方向に移動する物体が存在する場合に、物体の検出位置として、物体検出センサにより物体の前端部以外の部分が取得されていることを判定する。ここで、自車両の正面に向けて当該自車両の進行方向に対して交差する方向に移動する物体が存在しており、その物体の前端部以外の部分が、物体の検出位置として取得されている場合には、自車両の走路に対して物体が斜めに進入していると考えられる。そしてこの場合、その物体の前端部はすでに自車両の走路に進入している可能性がある。そこで、物体の前端部以外の部分が取得されていると判定された場合には、当該取得されている部分の横位置が衝突予測領域に属していなくても、衝突回避制御の実施を許容するようにした。そのため、物体検出センサにより取得される横位置だけに基づいて衝突回避制御を実施する場合に比べて、衝突回避制御をより早く実施することができる。これにより、自車両の走路に進入する物体に対して、衝突回避制御を適正に実施することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両のPCSSの概略構成を示す図であり、 図2は、前方車が自車両の走路に進入するシーンにおけるセンサ検出を説明するための図であり、 図3は、前方車の前端横位置の算出を説明するための図であり、 図4は、本実施形態に係る車両制御装置が実行する制御処理を示すフローチャートであり、 図5は、別例における前方車の進行角度の算出を説明するための図であり、 図6は、物体の長さとTTCとの関係を示す図であり、 図7は、進行角度とTTCとの関係を示す図である。
 図1は、車両制御装置を適用したプリクラッシュセーフティシステム(以下、PCSS:Pre-crash safety systemと記載する。)を示している。PCSSは、車両に搭載される車両システムの一例であり、自車両の周囲に存在する物体を検出し、検出した物体と自車両とが衝突する可能性がある場合に、物体に対する自車両の衝突の回避動作、又は衝突の緩和動作を実施する。
 図1に示す自車両50は、レーダ装置21及び撮像装置22の物体検出センサと、車速センサ23と、ECU10と、警報装置31と、ブレーキ装置32とを備えている。図1に示す実施形態において、ECU10が車両制御装置として機能する。
 レーダ装置21は、ミリ波やレーザ等の指向性のある電磁波(探査波)を利用して自車前方の物体を検出するものであり、自車両50の前部においてその光軸が自車前方を向くように取り付けられている。レーダ装置21は、所定時間ごとに自車前方に向かって所定範囲で広がる領域をレーダ信号で走査するとともに、前方物体の表面で反射された電磁波を受信することで前方物体の相対位置、前方物体との相対速度等を物体情報として取得する。なお、相対位置は、自車両50を原点とした場合に、自車両50の車幅方向をX軸とし、自車両50の進行方向をY軸とする相対座標上の位置として取得される。相対位置において、車幅方向(X軸)の成分が自車両50に対する物体の横位置を示し、自車両50の進行方向(Y軸)の成分が前方物体との距離を示す。取得された物体情報は、ECU10に入力される。
 撮像装置22は、車載カメラであって、例えばCCDカメラ、CMOSイメージセンサ、近赤外線カメラ等を用いて構成されている。撮像装置22は、自車両50の車幅方向中央の所定高さ(例えば、フロントガラス上端付近)に取り付けられ、自車前方へ向けて所定角度範囲で広がる領域を俯瞰視点から撮像する。撮像された撮像画像は、所定周期毎にECU10に入力される。なお、撮像装置22は、単眼カメラであってもよく、ステレオカメラであってもよい。
 車速センサ23は、車輪の回転速度に基づき自車両50の走行速度を検出する。車速センサ23による検出結果は、ECU10に入力される。
 警報装置31は、ECU10からの制御指令により、ドライバに対して自車前方に物体が存在することを警報する。警報装置31は、例えば、車室内に設けられたスピーカや、画像を表示する表示部により構成されている。
 ブレーキ装置32は、自車両50を制動する制動装置である。ブレーキ装置32は、前方物体に衝突する可能性が高まった場合に作動する。具体的には、ドライバによるブレーキ操作に対する制動力をより強くしたり(ブレーキアシスト機能)、ドライバによりブレーキ操作が行われてなければ自動制動を行ったりする(自動ブレーキ機能)。
 ECU10は、CPU、各種メモリ(ROM、RAM)を備える周知のマイクロコンピュータとして構成されており、メモリ内の演算プログラムや制御データを参照して、自車両50における制御を実施する。ECU10は、レーダ装置21から出力される物体情報や、撮像装置22から出力される撮像画像に基づいて物体を検出し、その検出結果に基づいて、警報装置31やブレーキ装置32を制御対象とするPCSを実施する。
 以下に、ECU10により実施されるPCSについて説明する。ECU10は、物体を衝突回避制御の対象とする衝突予測領域を設定する。衝突予測領域は、例えば、物体の横速度Vxに基づいて設定され、物体の横速度Vxが大きいほど横方向により広がるように設定される。なお、衝突予測領域の横軸方向における幅は、例えば自車両50の幅に基づいて設定される。また、ECU10は、物体に対する衝突余裕時間TTC(Time to Collision)を算出する。
 そして、ECU10は、レーダ装置21から出力される物体の横位置が衝突予測領域に属するか否かを判定し、物体の横位置が衝突予測領域に属する場合に、別途算出したTTCと警報装置31及びブレーキ装置32のそれぞれの作動タイミングとに基づいて、各装置を作動させる。具体的には、TTCが警報装置31の作動タイミング以下となれば、スピーカ等を作動させてドライバへ警報を行う。また、TTCがブレーキ装置32の作動タイミング以下となれば、自動ブレーキを作動させて衝突速度を低減する制御等を行う。なお、TTCに基づく物体との距離を用いて、各装置を作動させる構成としてもよい。
 一方、撮像画像に基づく物体の検出について言えば、ECU10は、撮像装置22から画像データを取得し、その画像データと予め用意された物体識別用の辞書情報とに基づいて、自車前方に存在する物体の種類を判定する。物体識別用の辞書情報は、例えば自動車、二輪車、歩行者、路上障害物といった物体の種類に応じて個別に用意され、メモリに予め記憶されている。自動車の辞書情報としては、少なくとも前部パターンと後部パターンとの辞書情報が用意されており、さらに、自動車の前部又は後部のパターンとして、例えば大型車、普通車、軽自動車等、複数の車種ごとに辞書情報が用意されるとよい。ECU10は、画像データと辞書情報とをパターンマッチングにより照合することで、物体の種類を判定する。
 そして、ECU10は、画像データと辞書情報とに基づいて、自車両50の進行方向に対する横方向の物体の位置情報(物体の横幅等を含む)を算出する。そして、その物体の位置情報と衝突予測領域とに基づいて、当該物体に対する衝突回避制御を実施する。例えば、その物体の横幅と衝突予測領域とが重複する割合に応じて、衝突回避制御を実施する構成としてもよい。
 ところで、自車両50の前方に存在する前方車60が自車両50の走路に進入(割込み等)することがある。かかる場合において、前方車60の姿勢(向き)によっては、物体検出センサにより前方車60の後部(例えば、後端部)が検出されることがあると考えられ、これにより衝突回避制御の実施が遅れる等の不都合が生じると考えられる。
 図2は、前方車60が自車両50の走路に割込み動作を行うシーンを示している。図2では、自車両50の走路上に自車両50と前方車60とが存在しており、自車両50の走路(進行方向)に対して、前方車60の姿勢が横方向に傾斜した状態となっている。なお、図2(a)はレーダ装置21による前方車60の検出結果を、図2(b)は撮像装置22による前方車60の検出結果をそれぞれ示している。
 図2(a)では、レーダ装置21による探査波の反射点に基づいて、物体の位置が検出される。ここでは、前方車60の側部後方や後端部の凹凸等、探査波の反射点(検出点)となりうる部位に応じて、複数の検出点QAが検出される。そして、検出された複数の検出点QAのうち、当該物体を代表する代表点が取得される。本実施形態では、反射強度が最も大きい検出点を代表点とする構成としており、かかる構成において、図2(a)では前方車60の後端部に相当する検出点Qを代表点とする。そして、ECU10は、この代表点(検出点Q)に基づいて、衝突回避制御を実施する。衝突回避制御は、物体が衝突予測領域に属していることに基づいて実施されるが、図2(a)のシーンでは、検出点Qが衝突予測領域Sに属していないため、衝突回避制御が実施されない。
 なお、検出点の代表点は、複数の検出点の中から選択された1つの点(例えば、反射強度が大きい点、左端点又は右端点、複数の検出点のうちの中間点)としてもよく、又は左端点と右端点との中点としてもよい。
 一方、図2(b)では、撮像装置22の画像データによるパターンマッチングに基づいて、物体の位置が検出される。ここでは、画像データと自動車の後部のパターンの辞書情報との照合により、前方車60の後部の領域Aが検出される。そして、ECU10は、この領域Aに基づいて、衝突回避制御を実施する。そのため、図2(b)のシーンでは、領域Aが衝突予測領域Sに属していないため、衝突回避制御が実施されない。以上のように前方物体の割込みシーンにおいて、物体検出センサでは前方物体の位置が的確に把握できないおそれがあると考えられる。
 そこで、本実施形態では、自車両50の正面に向けて、当該自車両の進行方向に対して交差する方向に移動する物体が存在する場合に、物体の検出位置として、物体検出センサ21,22により物体の前端部以外の部分が取得されていることを判定する。そして、物体の前端部以外の部分が取得されていると判定された場合に、当該取得されている部分の横位置が衝突予測領域に属していなくても、衝突回避制御の実施を許容するようにした。
 具体的には、物体の前端横位置XAを推定し、推定された前端横位置XAが衝突予測領域に属することに基づいて衝突回避制御を実施するようにした。かかる構成とすることで、例えば図2(a),(b)のシーンでは、前方車60の前端部Pの横位置が衝突予測領域Sに属しているため、衝突回避制御を実施することができる。要するに、前方物体の割込み時において、実際に物体検出センサ21,22により取得される横位置でなく、割込み物体の前端横位置XAを用いることで、衝突回避制御の実施タイミングを早くしている。なお、前端横位置XAは、物体が自車両50に対して傾斜している側(物体の左側又は右側)の前端部における自車両50の車幅方向の横位置に相当する。
 本実施形態において、ECU10は、前方物体の前端部以外の部分が、物体検出センサ21,22により取得されていることを判定する。ここで、物体が自車両50と同じ方向に移動しながら自車両正面に割り込む状況下では、物体の後端部が検出されやすくなり、その後端部の位置が物体の検出位置として取得されると考えられる。そこで、ECU10は、物体が自車両50と同じ方向に移動しながら自車両正面に割り込む状況を認識することをもって、前方物体の検出位置として前方物体の前端部以外の部分が取得されていると判定する。具体的には、ECU10は、割り込み判定を実施する。割込み判定には、周知の方法を適用することができ、例えば物体の横位置に基づいて行うことができる。かかる構成では、例えば前方車60の横位置と自車両50の横位置との横距離が、閾値Wthよりも小さくなった場合に、割込みありと判定する。なお、閾値Wthは、自車線の幅等に基づいて設定される。またその他に、前方車60の横方向の移動量や横速度Vxに基づいて、割込み判定を行うことができる。
 また、ECU10は、物体検出センサ21,22により取得される物体の前端部以外の部分の位置に基づいて、前方車60の前端横位置XAを推定する。図3では、前端横位置XAの推定にあたり、その算出方法の一例が示されている。ここでは、レーダ装置21によって、前方車60の代表点として検出点Qが取得されている場合に、前方車60の速度ベクトルVTに基づいて前方車60の前端横位置XAが算出される。
 より詳しくは、まず、ECU10は、前方車60の縦速度Vy及び横速度Vxから、下記の式(1)に基づいて、前方車60の進行角度θを算出する。なお、前方車60の縦速度Vyは、車速センサ23により取得される自車両50の車速に、前方車60との相対速度を加算することで算出される。前方車60の横速度Vxは、単位時間当たりの前方車60の横位置(例えば、検出点Q)の変化量から算出される。また、進行角度θは、自車両50の進行方向に対して同方向に(すなわち平行に)前方車60の速度ベクトルVTが延びる場合に0°を示し、前方車60が自車両50に対して横を向くほど大きくなる角度を示している。
sinθ=Vx/√(Vx2+Vy2) … (1)
 そして、ECU10は、算出された前方車60の進行角度θから下記の式(2)に基づいて、前方車60の前端横位置XAを算出する。
前端横位置XA=センサ検出による横位置+車長L×sinθ … (2)
 ここで、前端横位置XA及びセンサ検出による横位置は、相対座標上の車幅方向(X軸成分)の値を示している。つまり、図3では、センサ検出による横位置がQxに相当し、前端横位置XAがPxに相当する。また、前方車60の車長Lは、前方車60の移動方向における車両の長さをいい、所定値(例えば、4m)が定められている。そして、ECU10は、推定された前端横位置XAに基づいて、衝突回避制御を実施する。
 なお、図3では、レーダ装置21による検出結果を用いて、前方車60の前端横位置XAを推定したが、撮像装置22の撮像画像に基づいて検出される前方車60の後部の領域Aからも同様に、前端横位置XAを推定することができる。すなわち、領域Aの所定の横位置(例えば、左端の横位置)を、上記の式(2)に適用することで前端横位置XAが算出される。
 図4のフローチャートを用いて、ECU10により実施される衝突回避制御処理について説明する。この処理は、ECU10により所定周期で繰り返し実施される。
 まず、ステップS11では、レーダ装置21から出力された物体情報、及び撮像装置22から出力された撮像画像を入力する。ステップS12では、入力された撮像画像に基づいて、自車前方に前方車60が存在しているか否かを判定する。ECU10は、車両後部のパターンの辞書情報とのパターンマッチングにより、前方車60の存在を判定する。
 ステップS12を否定した場合、そのまま本処理を終了する。ステップS12を肯定した場合、ステップS13に進み、前方車60の横位置を取得する。例えば、レーダ装置21から出力された物体情報に基づいて、横位置を取得する。続くステップS14では、前方車60が自車両50の走路に割込みするか否かを判定する。ECU10は、例えば、上述した前方車60の横位置に基づいて、割込み判定を行う。なお、ステップS14が「判定部」に相当する。
 ステップS14を肯定した場合、ステップS15へ進み、自車両50の車速が閾値Vth以上であるか否かを判定する。閾値Vthは、自車両50の車速が低速であるか否かを判定するための判定値であって、例えば20km/hに設定される。ここで、渋滞等によって自車両50が低速で走行している場合には、前方車60との距離が接近した状態で割込みが行われると考えられる。そして、このような低速走行中に、推定された前端横位置XAに基づく衝突回避制御を実施しようとすると、ブレーキ等の作動が頻発し、不都合が生じるおそれがある。そこで、所定の速度条件を設けることで、その不都合の発生を抑制している。なお、閾値Vthは適宜変更することができ、例えば、高速走行中に、推定さた前端横位置XAに基づく衝突回避制御を実施する形態とする場合には、閾値Vthは、例えば60km/hに設定される。
 また、ステップS15において、車速に加えて、自車両50の横速度を条件に加えてもよい。かかる構成では、車速が閾値Vth以上であって、かつ自車両50の横速度が所定値以上である場合にステップS15が肯定される。
 ステップS15を肯定した場合、つまり速度条件が成立した場合、ステップS16へ進み、前方車60の前端横位置XAを推定する。例えば前端横位置XAは、上述の図3に示すような方法で算出される。なお、ステップS16が「推定部」に相当する。続くステップS17では、推定された前端横位置XAを前方車60の横位置として設定し、ステップS18へ進む。なお、ステップS15、及び、前端横位置XAを前方車60の横位置として衝突回避制御を実施する後続のステップS18~S23が「制御部」に相当する。
 一方、ステップS14及びステップS15をそれぞれ否定した場合は、ステップS18へ進む。かかる場合は、ステップS13で取得された横位置を前方車60の横位置として、衝突回避制御を実施する。つまり、物体検出センサ21,22の検出結果に基づいた通常の衝突回避制御を実施する。
 続くステップS18では、衝突予測領域を設定する。具体的には、前方車60の横速度Vxに基づいて、衝突予測領域を設定する。ステップS19では、設定された衝突予測領域内に前方車60の横位置が存在するか否かを判定する。なお、ステップS17において前端横位置XAを前方車60の横位置として設定した場合には、前方車60の前端部が衝突予測領域内に属するか否かを判定する。ステップS19を否定した場合は、前方車60と自車両50とが衝突する可能性はないとして、そのまま本処理を終了する。ステップS19を肯定した場合は、ステップS20に進む。
 ステップS20では、衝突予測領域内に存在する前方車60と自車両50との相対距離が第1所定距離D1よりも小さいか否かを判定する。ステップS20を否定した場合は、そのまま本処理を終了する。ステップS20を肯定した場合は、ステップS21に進む。ステップS21では、ドライバに対して衝突予測領域内に存在する前方車60が自車両50に接近していることを警告するため、警報装置31に対して作動指令を送信する。
 ステップS22では、衝突予測領域内に存在する前方車60と自車両50との相対距離が第2所定距離D2よりも小さいか否かを判定する。これは、警報装置31によりドライバに警報を発したにもかかわらず、前方車60が自車両50への接近を継続している場合を想定している。ステップS22を否定した場合は、そのまま本処理を終了する。ステップS22を肯定した場合は、ステップS23に進み、ブレーキ装置32に対して作動指令を送信する。
 ステップS21で警報装置31に作動指令を送信している期間、又はステップS23でブレーキ装置32に作動指令を送信している期間に、前方車60が衝突予測領域から外れた場合には、実行中のステップS21の処理又はステップS23の処理は直ちに停止する。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 自車両50の正面に向けて当該自車両の進行方向に対して交差する方向に移動する前方車60が存在する場合に、前方車60の検出位置として、物体検出センサ21,22により前方車60の前端部以外の部分が取得されていることを判定し、前方車60の前端部以外の部分が取得されていると判定された場合には、当該取得されている部分の横位置が衝突予測領域に属していなくても、衝突回避制御の実施を許容する構成とした。そのため、物体検出センサ21,22により取得される横位置だけに基づいて衝突回避制御を実施する場合に比べて、衝突回避制御をより早く実施することができる。これにより、自車両50の走路に進入する前方車60に対して、衝突回避制御を適正に実施することができる。
 前方車60が自車両50と同じ方向に移動しながら自車両正面に割り込む状況下では、前方車60の後端部が検出されやすくなり、その後端部の位置が前方車60の検出位置として取得されることが考えられる。この点を考慮し、上記構成では、前方車60が自車両50と同じ方向に移動しながら自車両正面に割り込む状況下では、前方車60の検出位置として前方車60の前端部以外の部分が取得されていると判定するようにしたため、判定を精度よく行うことができる。
 自車両50の走路に対して前方車60が斜めに進入している状況下では、その前方車60の前端部は衝突予測領域に属している場合が考えられ、かかる場合には、衝突回避制御が実施されることが望ましい。この点を考慮し、上記構成では、物体検出センサ21,22により取得されている前方車60の前端部以外の部分(後端部)に基づいて、前方車60の前端横位置XAを推定し、推定された前端横位置XAが衝突予測領域に属していることに基づいて衝突回避制御を実施するようにした。そのため、物体検出センサ21,22により取得された物体の横位置が衝突予測領域に属していなくても、前端横位置XAが衝突予測領域に属していれば衝突回避制御を実施することができる。これにより、前方車60の割込み時において、衝突回避制御をより早く実施することができる。
 前方車60は、割込みの際、自車両50に対して斜めに進入してくることから、幾何学的な関係より、前方車60の前端横位置XAは、前方車60の移動方向における長さと前方車60の移動角度に依拠すると考えられる。この点を考慮し、物体の長さ(車長L)と移動角度(進行角度θ)とに基づいて前方車60の前端横位置XAを推定するようにしたため、前方車60の前端横位置XAを精度よく推定することができ、ひいては、衝突回避制御を適正に実施することができる。
 渋滞等により自車両50が低速走行している場合には、自車両50と前方車60との距離が接近した状態で割込み動作が行われる。このような状況下での割込み時においても、前方車60の前端横位置XAを推定し、その前端横位置XAに基づいて衝突回避制御を実施しようとすると、ブレーキ等の作動が頻発し不要作動が生じるおそれがある。この点を考慮し、自車両50の車速が閾値Vthよりも小さい場合は、推定された前端横位置XAに基づく衝突回避制御を実施しないようにしたため、不要作動の発生を抑制しつつ、衝突回避制御を適正に実施することができる。
 上記実施形態を例えば次のように変更してもよい。
 ・上記実施形態では、前方車60の前端横位置XAの推定において、前方車60の速度ベクトルVTから進行角度θを算出し、その進行角度θを用いて前端横位置XAを算出する構成とした。この点、進行角度θは、この方法に限らず、例えば、図5に示すように自車両50と前方車60との移動軌跡に基づいて算出してもよい。
 図5は、自車両50と前方車60とのそれぞれの位置履歴を示している。この位置履歴に最小二乗法といった周知の線形補間演算を用いることで、自車両50と前方車60との移動ベクトルがそれぞれ算出される。なお、これら移動ベクトルは、同一座標上における一次関数とみなすことができ、下記の式(3),(4)で表すことができる。
自車の移動ベクトルy=ax+b … (3)
前方車の移動ベクトルy=cx+d … (4)
 そして、各一次関数における傾きa,cを用い、下記式(5)に基づいて、自車両50と前方車60との移動ベクトルがなす角度(前方車60の進行角度θ)が算出される。
進行角度θ=arctan(c)-arctan(a) … (5)
なお、算出された進行角度θを用い、上記の式(2)に基づいて、前方車60の前端横位置XAが算出される。
 ・図4のステップS14における割込み判定を、前方車60の横位置や、横速度Vx、移動量以外に基づいて実施してもよい。ここで、前方車60が自車両50の走路に割込む際には、自車両50の正面側に前方車60の側部が対向することに着目して、例えばレーダ装置21による検出点として前方車60の側部が検出されたことをもって、前方車60の割込みを判定してもよい。
 ・上記実施形態では、前方物体を前方車60とし、その前方車60の前端横位置XAの推定において予め定められた車長Lを用いる構成とした。この点、これに限らず、例えば、物体の移動方向における長さ(つまり、車長L)を可変設定する構成としてもよい。この場合、ECU10は、前方物体の長さを推定し、その前方物体の長さに基づいて、その物体の前端横位置XAを推定する。上記構成によれば、物体の長さに応じて前端横位置XAを精度よく推定することができ、衝突回避制御を適正に実施することができる。なお、ECU10において、前方物体の長さを推定する処理が「長さ推定部」に相当する。
 一方、前方物体の長さが長いほど、センサ検出による横位置と前方物体の前端横位置XAとのずれは大きくなると考えられる。つまり、前方物体の長さが長いほど、センサ検出による横位置は衝突予測領域に属していなくても、前方物体の前端横位置XAは衝突予測領域に属している状況が生じやすいと考えられる。この点を考慮して、例えば、前方物体の移動方向における長さが長い場合は、それよりも短い場合に比べて、前端横位置XAに基づく衝突回避制御を実施されやすくする構成としてもよい。かかる構成において、例えば、TTCの算出や衝突予測領域の設定を変更することにより、衝突回避制御を実施されやすくすることができる。
 図6には一例として、前方物体の長さとTTCとの関係を示している。ここでは、前方物体の長さが長くなるほど、TTCが小さい値として算出される。言い換えると、前方物体の長さが長くなるほど、TTCは小さい値となるように補正される。なお、TTCの値に代えて、警報装置31等の作動判定においてTTCと比較される閾値TTCthの設定を変更してもよい。この場合、前方物体の長さが長くなるほど、閾値TTCthは大きい値として設定される。
 この構成によれば、物体の長さが長い場合に、それよりも短い場合に比べて衝突回避制御をより早く実施することができる。例えば、図2のような割込みシーンで、自車両50の幅を自車両50の進行方向に延長した仮想線内を衝突予測領域Sと仮定した場合において、前方車60の後部が衝突予測領域Sに属していなくても、前方車60の前端部Pが衝突予測領域Sに属していれば、前方車60の全長が長いほど、早期に衝突回避制御が実施される。
 ・前方物体の進行角度θにおいて、0°~90°の範囲内で、進行角度θが大きくなる(つまり自車両50に対して大きく傾く)ほど、センサ検出による横位置と前方物体の前端横位置XAとのずれは大きくなると考えられる。つまり、前方物体の進行角度θが大きいほど、センサ検出による横位置は衝突予測領域に属していなくても、前方物体の前端横位置XAは衝突予測領域に属している状況が生じやすいと考えられる。この点を考慮して、例えば、前方物体の進行角度θが大きい場合は、それよりも小さい場合に比べて、前端横位置XAに基づく衝突回避制御を実施されやすくする構成としてもよい。かかる構成において、例えば、TTCの算出や衝突予測領域の設定を変更することにより、衝突回避制御を実施されやすくすることができる。
 図7には一例として、進行角度θ(0~90°)とTTCとの関係を示している。ここでは、進行角度θが大きくなるほど、TTCが小さい値として算出される。言い換えると、進行角度θが大きくなるほど、TTCは小さい値となるように補正される。なお、TTCの値に代えて、警報装置31等の作動判定においてTTCと比較される閾値TTCthの設定を変更してもよい。この場合、進行角度θが大きくなるほど、閾値TTCthは大きい値として設定される。
 この構成によれば、前方物体の進行角度θが大きい場合に、それよりも小さい場合に比べて衝突回避制御をより早く実施することができる。例えば、図2のような割込みシーンで、自車両50の幅を自車両50の進行方向に延長した仮想線内を衝突予測領域Sと仮定した場合において、前方車60の後部が衝突予測領域Sに属していなくても、前方車60の前端部Pが衝突予測領域Sに属していれば、前方車60の進行角度θが大きいほど、早期に衝突回避制御が実施される。
 ・上記実施形態では、レーダ装置21による物体検出において、前方車60の検出点Q(後端部)が代表点として取得される場合を示したが、検出点Q以外の検出点、すなわち後端部以外に相当する部分の検出点が代表点として取得される場合であってもよい。なお、かかる場合には、前端横位置XAは下記の式(6)に基づいて算出されるとよい。
前端横位置XA=センサ検出による横位置+車長L×sinθ×補正係数k … (6)ここで、補正係数kは、0よりも大きく1以下の値であり、代表点の位置に応じて設定される。例えば、前方物体の前端部と後端部との中点が代表点として検出される場合には、補正係数kは、1/2の値となる。
 また、例えば荷台付きトラックのような特殊車両の場合には、荷台に係る凹凸に起因して、特殊車両の後端部よりも側部の方が反射強度が大きくなることも考えられる。かかる場合においても、上記の式(6)に基づく補正係数kを用いることで、特殊車両の前端横位置XAを精度よく推定することができる。
 ・上記実施形態では、分岐路の合流地点や複車線道路において前方車60が割込みする場合を想定している。ここで、そのような割込みシーンにおいては、前方車60の進行角度θはある程度定まった値(例えば、30°付近)となると考えられる。この点を考慮し、前端横位置XAを推定するための所定値を定めておき、前方車60の割込みがあると判定した場合は、進行角度θを算出することなく前端横位置XAを算出する構成としてもよい。この構成によれば、演算負荷を軽減することができる。
 ・上記実施形態では、物体検出センサとしてレーダ装置21及び撮像装置22を備えた自車両50において衝突回避制御を実施する構成としたが、レーダ装置21及び撮像装置22のうち撮像装置22のみを備えた自車両50において衝突回避制御を実施する構成としてもよい。
 ・上記実施形態では、PCS機能を有するECU10について、前方車60をより早く衝突回避制御の対象とすべく、割込み時に前方車60の前端横位置XAを推定する構成とした。この点、例えば先行車に追従させる制御を行うACC(Adaptive Cruise Control)機能を有するECU10に上記構成を適用してもよい。かかる場合には、前方車60の割込みがあった場合には、先行車の対象をより早く変更することができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  物体検出センサ(21,22)により自車両(50)の進行方向前方に存在する物体を検出し、その検出結果に基づいて前記物体に対する衝突回避制御を実施する車両制御装置(10)であって、
     前記自車両の正面に向けて、当該自車両の進行方向に対して交差する方向に移動する物体が存在する場合に、前記物体の検出位置として、前記物体検出センサにより前記物体の前端部以外の部分が取得されていることを判定する判定部と、
     前記物体の前端部以外の部分が取得されていると判定された場合に、当該取得されている部分の横位置が、前記衝突回避制御の対象とする衝突予測領域に属していなくても、前記衝突回避制御の実施を許容する制御部と、
    を備える車両制御装置。
  2.  前記判定部は、前記物体が前記自車両と同じ方向に移動しながら自車両正面に割り込む状況である場合に、前記物体の検出位置として前記物体の前端部以外の部分が取得されていると判定する請求項1に記載の車両制御装置。
  3.  前記判定部により前記物体の前端部以外の部分が取得されていると判定された場合に、前記物体検出センサにより取得されている前記物体の前端部以外の部分に基づいて、前記物体の前端部の横位置である前端横位置を推定する推定部を備え、
     前記制御部は、前記推定部により推定された前記前端横位置が前記衝突予測領域に属していることに基づいて、前記衝突回避制御を実施する請求項1又は2に記載の車両制御装置。
  4.  前記推定部は、前記物体の移動方向における前記物体の長さと、前記自車両の進行方向に対して前記物体の移動方向がなす移動角度とを取得するとともに、取得された前記物体の長さと前記移動角度とに基づいて、前記前端横位置を推定する請求項3に記載の車両制御装置。
  5.  前記制御部は、前記自車両の車速が所定値よりも小さい場合は、前記推定部により推定された前記前端横位置に基づく前記衝突回避制御を実施しない請求項3又は4に記載の車両制御装置。
  6.  前記物体の移動方向における前記物体の長さを推定する長さ推定部を備え、
     前記制御部は、前記物体の長さが長い場合に、それよりも短い場合に比べて、前記推定部により推定された前記前端横位置に基づく前記衝突回避制御を実施されやすくする請求項3乃至5のいずれか1項に記載の車両制御装置。
  7.  前記制御部は、前記自車両の進行方向に対して前記物体の移動方向がなす移動角度が大きい場合に、それよりも小さい場合に比べて、前記推定部により推定された前記前端横位置に基づく前記衝突回避制御を実施されやすくする請求項3乃至6のいずれか1項に記載の車両制御装置。
PCT/JP2017/036715 2016-10-18 2017-10-10 車両制御装置 WO2018074287A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,326 US10793096B2 (en) 2016-10-18 2017-10-10 Vehicle control device with object detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204534A JP6729282B2 (ja) 2016-10-18 2016-10-18 車両制御装置
JP2016-204534 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074287A1 true WO2018074287A1 (ja) 2018-04-26

Family

ID=62018699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036715 WO2018074287A1 (ja) 2016-10-18 2017-10-10 車両制御装置

Country Status (3)

Country Link
US (1) US10793096B2 (ja)
JP (1) JP6729282B2 (ja)
WO (1) WO2018074287A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453582A1 (en) * 2017-09-01 2019-03-13 Toyota Jidosha Kabushiki Kaisha Driving support apparatus
CN111169475A (zh) * 2020-01-15 2020-05-19 北京汽车集团有限公司 车辆碰撞预警装置、方法及车辆
EP3690481A1 (en) * 2019-01-30 2020-08-05 Mando Corporation Driver assistance system and control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054926B1 (ko) * 2018-02-27 2019-12-12 주식회사 만도 Free Space 신호 기반 근거리 컷인 차량 검출 시스템 및 방법
US11518204B2 (en) * 2018-05-01 2022-12-06 Continental Autonomous Mobility US, LLC Trailer detection and autonomous hitching
JP7035862B2 (ja) * 2018-07-04 2022-03-15 株式会社デンソー 走行支援装置
JP7245006B2 (ja) 2018-07-05 2023-03-23 株式会社デンソー 車両の運転支援制御装置、車両の運転支援システムおよび車両の運転支援制御方法
JP7135808B2 (ja) * 2018-12-07 2022-09-13 トヨタ自動車株式会社 衝突回避支援装置
JP7261635B2 (ja) * 2019-03-28 2023-04-20 本田技研工業株式会社 車両制御装置
JP7275773B2 (ja) * 2019-04-02 2023-05-18 トヨタ自動車株式会社 車両制御装置
KR20210150926A (ko) * 2020-06-03 2021-12-13 현대자동차주식회사 혼잡 교통 상황에서 저속 타겟 물체를 검출할 수 있는 자율 주행 제어 장치, 그를 포함한 시스템 및 그 방법
CN113232650A (zh) * 2021-05-31 2021-08-10 吉林大学 一种面对有前方车辆汇入的车辆避撞控制***及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148336A (ja) * 2000-11-15 2002-05-22 Fujitsu Ten Ltd 割り込み予測装置
JP2008117073A (ja) * 2006-11-01 2008-05-22 Fuji Heavy Ind Ltd 割り込み車両検出装置
JP2016215761A (ja) * 2015-05-19 2016-12-22 株式会社デンソー 車両の走行制御装置
JP2017111682A (ja) * 2015-12-17 2017-06-22 株式会社デンソー 物体検知装置、物体検知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387531B2 (ja) 2010-08-26 2014-01-15 株式会社デンソー 走行支援装置
EP3007150A1 (en) * 2014-10-07 2016-04-13 Autoliv Development AB Lane change detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148336A (ja) * 2000-11-15 2002-05-22 Fujitsu Ten Ltd 割り込み予測装置
JP2008117073A (ja) * 2006-11-01 2008-05-22 Fuji Heavy Ind Ltd 割り込み車両検出装置
JP2016215761A (ja) * 2015-05-19 2016-12-22 株式会社デンソー 車両の走行制御装置
JP2017111682A (ja) * 2015-12-17 2017-06-22 株式会社デンソー 物体検知装置、物体検知方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453582A1 (en) * 2017-09-01 2019-03-13 Toyota Jidosha Kabushiki Kaisha Driving support apparatus
US11074817B2 (en) 2017-09-01 2021-07-27 Denso Corporation Driving support apparatus
EP3690481A1 (en) * 2019-01-30 2020-08-05 Mando Corporation Driver assistance system and control method thereof
CN111497833A (zh) * 2019-01-30 2020-08-07 株式会社万都 驾驶员辅助***及其控制方法
US11299147B2 (en) 2019-01-30 2022-04-12 Mando Mobility Solutions Corporation Driver assistance system and control method thereof
CN111169475A (zh) * 2020-01-15 2020-05-19 北京汽车集团有限公司 车辆碰撞预警装置、方法及车辆
CN111169475B (zh) * 2020-01-15 2022-01-11 北京汽车集团有限公司 车辆碰撞预警装置、方法及车辆

Also Published As

Publication number Publication date
JP2018067102A (ja) 2018-04-26
US10793096B2 (en) 2020-10-06
JP6729282B2 (ja) 2020-07-22
US20190263344A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018074287A1 (ja) 車両制御装置
JP6561584B2 (ja) 車両制御装置、及び車両制御方法
JP6453695B2 (ja) 運転支援装置、及び運転支援方法
CN108541325B (zh) 驾驶辅助装置以及驾驶辅助方法
WO2016159288A1 (ja) 物標存在判定方法及び装置
JP6432447B2 (ja) 車両制御装置、及び車両制御方法
JP6384446B2 (ja) 車両制御装置、車両制御方法
US10569769B2 (en) Vehicle control device
US11938924B2 (en) Driving assistance control apparatus for vehicle, driving assistance control system for vehicle, and driving assistance control method for vehicle
WO2017104773A1 (ja) 移動体制御装置及び移動体制御方法
US11338801B2 (en) Collision avoidance device
JP6740970B2 (ja) 走行支援装置
US10787170B2 (en) Vehicle control method and apparatus
JP7054327B2 (ja) 走行支援装置
US20190061750A1 (en) Collision mitigation control device
JP2016192166A (ja) 車両制御装置、及び車両制御方法
WO2017179469A1 (ja) 車両制御装置、及び車両制御方法
US11180141B2 (en) Vehicle control system
WO2017138329A1 (ja) 衝突予測装置
JP2016192167A (ja) 車両制御装置、及び車両制御方法
WO2017183668A1 (ja) 車両制御装置、車両制御方法
CN108885833B (zh) 车辆检知装置
US20230166730A1 (en) Vehicle control device
JP6733616B2 (ja) 車両制御装置
JP7035862B2 (ja) 走行支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863264

Country of ref document: EP

Kind code of ref document: A1