WO2018072578A1 - 一种透明导电膜的制作方法、透明导电膜和触控屏 - Google Patents

一种透明导电膜的制作方法、透明导电膜和触控屏 Download PDF

Info

Publication number
WO2018072578A1
WO2018072578A1 PCT/CN2017/101995 CN2017101995W WO2018072578A1 WO 2018072578 A1 WO2018072578 A1 WO 2018072578A1 CN 2017101995 W CN2017101995 W CN 2017101995W WO 2018072578 A1 WO2018072578 A1 WO 2018072578A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive film
transparent
line
transparent conductive
Prior art date
Application number
PCT/CN2017/101995
Other languages
English (en)
French (fr)
Inventor
周小洪
王涛
吴革明
谢文
肖江梅
陈林森
Original Assignee
苏州维业达触控科技有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州维业达触控科技有限公司, 苏州大学 filed Critical 苏州维业达触控科技有限公司
Priority to US16/338,720 priority Critical patent/US10959335B2/en
Publication of WO2018072578A1 publication Critical patent/WO2018072578A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0391Using different types of conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to the field of touch screens, and more particularly to a method for fabricating a transparent conductive film having a touch function and a transparent conductive film and a touch screen produced by the method.
  • the mainstream capacitive touch panel mainly has a conductive film of indium tin oxide (ITO) on the inner surface and the interlayer of the glass screen. Since indium is a rare element, the price is high, and the resistance is high, and it is not bendable.
  • ITO indium tin oxide
  • Another capacitive touch panel uses a nano-silver metal grid to make a conductive film, which embosses the desired metal mesh groove on the polymer surface by means of mold imprinting. Refilling the nanosilver material to form a conductive film, however.
  • the conductive film of different models and different manufacturers has different circuit designs. It is necessary to manufacture different patterns of molds according to their requirements. However, the cost of the mold is very high, and the development cycle is relatively long, which cannot meet the small and diverse production. , low cost, fast manufacturing and other requirements.
  • the present invention provides a method and a product for producing a transparent conductive film which can be manufactured using a general-purpose mold.
  • a method for manufacturing a transparent conductive film comprising the steps of:
  • the fully connected grid conductive layer is an inner line; a plurality of mutually insulated conductive lines formed on a side in contact with the grid conductive layer and electrically connected to the grid conductive layer constitute an outer line;
  • the conductive material in the groove in which the inner line is located is removed according to a preset pattern to form an insulating channel and a conductive path, and the fabrication of the line in the transparent conductive film is completed.
  • the outer circuit of the present invention directly forms a plurality of conductive lines electrically connected to the conductive layer on the conductive layer by screen printing or ink jet printing.
  • the method further comprises: performing laser laser or etching on the outer circuit according to a preset pattern to remove the conductive paste and the conductive material of the laser or the etched portion to form mutually insulated conductive lines and conductive channels.
  • the formation of the outer circuit at the edge of the side in contact with the conductive layer specifically includes three modes: the outer line, that is, the contact is tangent to the inner line, the outer line, that is, the contact extends into the inner line, or the outer line That is, the contact crosses the inner line portion, that is, the overlapping manner.
  • the microstructure unit of the present invention is a continuous grid of uniform or non-uniform arrangement, the shape of the grid being one of a square, a rectangle, a diamond, a diamond, a pentagon, a hexagon, a random grid or A combination of at least two.
  • the present invention also discloses a transparent conductive film which is produced by the method for producing a transparent conductive film of the present invention.
  • the transparent conductive film includes:
  • a transparent insulating substrate comprising a first surface and a second surface corresponding to the first surface, the first surface being concavely provided with a communicating grid-like groove uniformly or non-uniformly arranged;
  • the inner circuit is recessed on the first surface, and includes a plurality of uniformly arranged conductive channels and an insulating channel disposed between the adjacent two conductive channels, the insulated channel including a single or a plurality of insulator channels, the conductive channels
  • the corresponding groove is filled with a conductive material, and the corresponding groove of the insulator channel is not filled with a conductive material;
  • the outer circuit is protruded from the first surface, and includes a plurality of conductive lines arranged according to a preset and an insulated line between two adjacent conductive lines, wherein the conductive line is electrically connected to the conductive path filled with the conductive material .
  • the transparent conductive film includes:
  • a transparent insulating substrate comprising an upper surface and a lower surface corresponding to the upper surface
  • a colloid layer formed over the upper surface, including a second surface corresponding to the upper surface and a first surface remote from the upper surface, the first surface being concavely provided with a uniform or non-uniform arrangement Connected grid-like grooves;
  • the inner circuit is recessed on the first surface, and includes a plurality of uniformly arranged conductive channels and an insulating channel disposed between the adjacent two conductive channels, the insulated channel including a single or a plurality of insulator channels, the conductive channels
  • the corresponding groove is filled with a conductive material, and the corresponding groove of the insulator channel is not filled with a conductive material;
  • the outer circuit is protruded from the first surface, and includes a plurality of conductive lines arranged according to a preset and an insulated line between two adjacent conductive lines, wherein the conductive line is electrically connected to the conductive path filled with the conductive material .
  • the insulating channel of the present invention is evenly arranged, and the insulating channel comprises a single or a plurality of insulator channels, the width of the insulator channel is at least greater than the width of the groove, and the width thereof is 1 micrometer to 10 mm; the width of the insulator channel is greater than The width of the groove is smaller than the width between two adjacent grooves.
  • the conductive line portion of the present invention is partially filled in the groove; the groove has a depth of 1 to 10 ⁇ m, the groove has a width of 1 to 5 ⁇ m, and the conductive line has a thickness of 5 to 15 Micron.
  • the invention also discloses a touch screen comprising a transparent conductive film fabricated by the foregoing method.
  • the invention combines screen printing with embedded nanoimprinting.
  • an etching process is usually used, a large amount of ITO material is wasted, and there are color block problems of alternating light and dark, and additionally due to ITO.
  • the resistance is large, and for large-size products, the resistance does not meet the demand.
  • the embedded nanoimprint process can meet the large-scale resistance requirements. Usually, the resistance is less than 10 Euros.
  • the high mold cost and long development cycle, the poor mold versatility has become a bottleneck, so we are based on this. Improvements have been made to combine screen printing with embedded nanoimprinting, and uniform grid filling as a general-purpose mold that can be applied to multiple models, as long as silk screen and laser are used according to different specifications.
  • the cost and development cycle can be effectively reduced.
  • the line width of the metal grid and the spacing of the metal grid lines can ensure the transmittance requirement.
  • the unified grid design ensures the overall visual effect of the product, and the buried structure can prevent the nanometer.
  • the oxidation of silver and the excellent electrical properties ensure that the laser has a small width of only 10 to 30 microns; a narrow bezel design can be achieved.
  • FIG. 1 is a flow chart showing a method of fabricating a transparent conductive film in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a mold in an embodiment of the present invention.
  • Fig. 3 is a partial structural view showing a transparent conductive film in the first embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing the conductive path of the transparent conductive film in the first embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing the insulating passage of the transparent conductive film in the first embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing the conductive path of the transparent conductive film in the first embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing the insulated wiring of the transparent conductive film in the first embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing a conductive path of a transparent conductive film in another embodiment of the present invention.
  • Figure 9 is a cross-sectional view showing an insulating passage of a transparent conductive film in another embodiment of the present invention.
  • Figure 10 is a cross-sectional view showing a conductive line and an insulated line of a transparent conductive film in another embodiment of the present invention.
  • a transparent conductive film is divided into a conductive region and a non-conductive region.
  • the conductive region is composed of an inner circuit and an outer circuit.
  • the non-conductive region has a grid line, and the grid line groove has no conductive material.
  • the line passages of the conductive regions are divided by laser laser or etching, and the division interval is preferably 20 micrometers.
  • the mesh of the conductive regions may be any shape such as a square, a rectangle, a diamond, a diamond, a pentagon, a hexagon, a random mesh, or the like.
  • the dividing line can be routed by single or multiple straight lines or diagonal lines, and is not limited by the shape of the channel.
  • the grid line is a buried groove structure and belongs to a metal grid structure.
  • the present invention provides a method for fabricating a transparent conductive film, comprising the following steps:
  • the fully connected grid conductive layer is an inner line; a plurality of conductive lines electrically connected to the grid conductive layer are formed on a side in contact with the grid conductive layer to form an outer line;
  • the unnecessary conductive materials in the inner and outer lines are removed according to a preset pattern to form an insulating channel, a conductive path, an insulated line and a conductive line, and the conductive path is electrically connected to the conductive line.
  • the outer circuit directly forms a plurality of conductive lines electrically connected to the conductive layer on the conductive layer by screen printing or inkjet printing, and then laser or etches the external line according to a preset pattern to remove
  • the conductive material is laser-etched or etched to form mutually insulated conductive lines; in the inner circuit, the inner circuit is laser-lased or etched according to a predetermined pattern to remove the conductive material of the laser or the etched portion to form mutual Insulated conductive path.
  • the mold can be directly imprinted on one side of the transparent insulating substrate to form a groove that matches the microstructure unit.
  • the present invention it is also possible to apply a gel on one side of the transparent insulating substrate, and then use a mold to imprint the side of the gel away from the transparent insulating substrate to form a microstructure after the gel is solidified.
  • the groove that the unit matches.
  • the laser condition of the invention the internal circuit laser 1 time, the external line laser 2-3 times, according to the situation, the laser uses a green laser, the silk screen condition can be a steel screen, the silk screen thickness can be 5-15 microns ;
  • the surface of the mold 1 has convex continuous microstructure units 10 which are continuous or non-uniformly arranged continuous grids, and the shapes of the grids include squares, rectangles, diamonds, diamonds.
  • the microstructure unit 10 has a square shape which is uniformly, seamlessly and closely arranged on the surface of the mold 1 in the horizontal direction.
  • the conductive materials used in the inner and outer lines may be the same material or different materials, and may be made of materials such as pure silver, silver-copper composition, pure copper or nickel.
  • the transparent insulating substrate is made of a material such as glass, PET, PC or PMMA.
  • the gum is an acrylate UV glue.
  • the present invention forms a buried embedded mesh on a transparent insulating substrate or a gel by imprinting the microstructure unit 10 on the mold 1 on a transparent insulating substrate or a gel.
  • the conductive material is filled to form a conductive layer, and the outer layer is formed by silk screen printing or inkjet printing of the conductive layer, and then the inner and outer lines of different specifications are formed by laser or etching to meet different needs, the line of the grid
  • the width and spacing ensure the need for transmission, and the uniform grid design guarantees the overall visual effect of the product.
  • the method of the invention has different design channels, the same series of sizes can share the same mold, no separate mold opening, low mold opening cost, short production cycle and strong versatility, greatly saving production cycle and cost, and improving industrial application. effect.
  • the transparent conductive film comprises:
  • Transparent insulating substrate 20 comprising an upper surface 201 and a lower surface 202 corresponding to the upper surface;
  • the gel layer 2 is formed above the upper surface 201, including a second surface 22 corresponding to the upper surface 201 and a first surface 21 remote from the upper surface 201.
  • the first surface 21 is concavely connected with uniform or non-uniform arrangement.
  • the inner circuit 3 is recessed on the first surface 21 and includes a plurality of uniformly arranged conductive channels 31 and an insulating channel 32 disposed between the adjacent two conductive channels.
  • the corresponding grooves of the conductive channels 31 are filled with a conductive material 33.
  • the corresponding groove of the insulating channel 32 is not filled with a conductive material;
  • the outer circuit 4 is protruded from the first surface 21 and includes a plurality of conductive lines 41 arranged in a predetermined manner and an insulating line 42 between the adjacent two conductive lines.
  • the conductive line 41 and the conductive path 31 filled with the conductive material Electrical connection.
  • the shape of the groove 23 corresponds to the shape of the protrusion of the microstructure unit 21, that is, the adjacent grooves 23 communicate with each other to form a grid-like pattern, and after being filled with the conductive material, it is formed Conductive conductive layer.
  • the groove is formed to a depth of 1 to 10 ⁇ m, the width of the groove is 1 to 5 ⁇ m, and the width between adjacent grooves is between 200 and 500 ⁇ m, thus ensuring The light transmittance of the transparent conductive film is 87% or more.
  • the insulating channels 32 obtained by the laser or etching method of the present invention are evenly arranged, and the insulating channels 32 may be composed of single or multiple insulator channels 321 according to different specifications. It is provided that the width of the insulator channel 321 is at least greater than the width of the groove 23. Preferably, the insulating channel 32 has a width of 1 micrometer to 10 millimeters, and the insulator channel 321 has a width of 1 to 25 micrometers. Referring to Figures 6 and 7, the same is true.
  • the width of the conductive channel 41 can also be set according to different specifications, and the width thereof is between 10 and 100 micrometers, and preferably, the width is 10 to 30 micrometers;
  • the present invention uses a conductive outer wire 4 obtained by direct silk screen printing or ink jet printing, and the insulating wire 42 obtained by laser or etching method is arranged according to requirements, and the width thereof is larger than The width of the groove 23 is smaller than the width between the adjacent two grooves 23.
  • the conductive lines 41 between the adjacent two insulated lines 42 may have the same or different widths at different positions, which is not limited herein.
  • the thickness of the gel layer 2 is 5 to 15 ⁇ m, and the height of the conductive material in the groove 23 is not limited;
  • the transparent conductive film comprises:
  • the transparent insulating substrate 20 includes a first surface 201 and a second surface 202 corresponding to the first surface, the first surface 201 is recessed with a uniformly or non-uniformly arranged connected grid-like recess 23;
  • the inner circuit 3 is recessed on the first surface 201 and includes a plurality of uniformly arranged conductive channels 31 and an insulating channel 32 disposed between the adjacent two conductive channels 31.
  • the corresponding recesses 23 of the conductive channels 31 are filled with conductive Material, the groove 23 corresponding to the insulating channel 32 is not filled with a conductive material;
  • the outer line 4 is protruded from the edge portion of the first surface 301, and includes a plurality of conductive lines 41 arranged in a predetermined manner and an insulating line 42 between the adjacent two conductive lines 41.
  • the conductive line 41 is filled with a conductive material. Electrically conductive channel 31 is electrically connected
  • the present invention also includes a touch screen using a transparent conductive film produced by the above method as its driving electrode or sensing electrode, or as both a driving electrode and a sensing electrode.
  • the present invention provides a method for fabricating a transparent conductive film, which is obtained by stamping a general-purpose mold to form a grid-like groove, filling a conductive material to obtain an inner line, and cooperating with silk screen or inkjet printing to obtain an outer line.
  • the laser or etching method is used to obtain preset insulation channels and insulated lines for the inner and outer lines, and the layout design of the inner and outer lines can be flexibly modified according to different design requirements, and the development cycle is not required every time the mold is made. It saves the cost of molding and greatly improves the industrial production efficiency.
  • the embedded imprint process can meet the large-scale resistance requirements, usually less than 10 Euros. At the same time, laser or etching methods can be used to achieve narrow bezel design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种透明导电膜的制作方法、透明导电膜和触控屏,制作方法包括:利用模具在透明绝缘衬底的一面上压印形成连续的凹槽;在透明绝缘衬底的一面上涂覆胶状物,利用模具对远离透明绝缘衬底的一面进行压印,使其固化后形成凹槽;向凹槽中填充导电材料,形成导电层,即内线路;在与导电层接触的一面形成外线路;按照预设图形对内线路和外线路去除不必要的导电材料,以形成绝缘通道和绝缘线路,完成透明导电膜的制作。本发明将丝网印刷与埋入式纳米压印相结合,统一的网格填充作为一个通用的模具,该模具可以适用于多个机种,只要根据不同的规格进行丝印和镭射即可,可以有效降低费用和开发周期。

Description

一种透明导电膜的制作方法、透明导电膜和触控屏
本申请要求了申请日为2016年10月19日,申请号为201610907841.X,发明名称为“一种透明导电膜的制作方法、透明导电膜和触控屏”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,
技术领域
本发明涉及触摸屏领域,尤其涉及一种具有触控功能的透明导电膜的制作方法及由该方法制得的透明导电膜和触控屏。
背景技术
随着科技发展,越来越多的消费电子产品,如手机、平板电脑、家电等产品表面采用触控功能的显示屏来操作,触摸面板作为一种最新的电脑输入设备,是目前最简单、方便、自然的一种人机交互方式。现有的触控面板,按照原理来区别包括电阻技术、电容技术、红外线技术以及表面声波技术等。目前主流的电容式触控面板,主要在玻璃屏的内表面和夹层各设有一层氧化铟锡(ITO)导电膜,由于铟是稀有元素,价格昂贵,而且阻值较高,不可弯折,不利于工业化生产和销售,而另一种电容式触控面板,采用纳米银金属网格来制作导电膜,其通过模具压印的方式,在聚合物表面压印出所需要的金属网格凹槽,再填充纳米银材料来形成导电膜,然而。不同的型号、不同厂商的导电膜其线路设计各不相同,需要按照其要求制作出不同图形的模具来制造,然而模具成本很高,而且开发周期相对较长,无法满足产品生产中小量、多样、低成本、快速制造等要求。
发明内容
为了解决上述技术问题,本发明提供了一种可以使用通用模具来制造的透明导电膜制作方法及产品。
为了达到上述目的,本发明的技术方案如下:
一种透明导电膜的制作方法,包括以下步骤:
提供一表面具有连续的凸起的纯网格微结构单元的模具;
提供一透明绝缘衬底;
利用所述模具在所述透明绝缘衬底的一面上压印形成连续的与所述微结构单元匹配的凹槽;
向所述凹槽中填充导电材料,以形成完全连通的网格导电层;
所述完全连通的网格导电层为内线路;在与所述网格导电层接触的一面的形成与所述网格导电层电连接的多个相互绝缘的导电线路,构成外线路;
按照预设图形除去所述内线路所处的凹槽中导电材料以形成绝缘通道和导电通道,完成透明导电膜内线路的制作。
本发明的外线路通过丝网印刷或者喷墨打印方法直接在所述导电层上形成与所述导电层电连接的多个导电线路。本发明中,还包括:按照预设图形对所述外线路进行激光镭射或者刻蚀,去除被镭射或者刻蚀部分的导电浆料和导电材料,以形成相互绝缘的导电线路和导电通道。
本发明中,在与导电层接触的一面的边缘处形成外线路具体包括三种方式:外线路即触头与内线路相切、外线路即触头伸入到内线路的内部,或者外线路即触头与内线路部分交叉,也就是搭接方式。
本发明的微结构单元为均匀或者非均匀排布的连续的网格,所述网格的形状为正方形、长方形、菱形、钻石形、五边形、六边形、随机网格其中之一或者至少两种之组合。
本发明还公开了一种透明导电膜,通过本发明的透明导电膜制作方法制得。
作为一种实施方式,透明导电膜包括:
透明绝缘衬底,包括第一表面和与所述第一表面相对应的第二表面,所述第一表面凹设有均匀或者非均匀排布的连通的网格状凹槽;
内线路,凹设于所述第一表面,包括多个均匀排布的导电通道以及设置于相邻两个导电通道之间的绝缘通道,绝缘通道包括单个或多个绝缘子通道,所述导电通道对应的凹槽中填充导电材料,所述绝缘子通道对应的凹槽中不填充导电材料;
外线路,凸设于所述第一表面,包括多个按照预设排布的导电线路以及相邻两个导电线路之间的绝缘线路,所述导电线路与填充有导电材料的导电通道电连接。
作为另一种实施方式,透明导电膜包括:
透明绝缘衬底,包括上表面和与所述上表面对应的下表面;
胶质层,形成与所述上表面之上,包括与所述上表面对应的第二表面和远离所述上表面的第一表面,所述第一表面凹设有均匀或者非均匀排布的连通的网格状凹槽;
内线路,凹设于所述第一表面,包括多个均匀排布的导电通道以及设置于相邻两个导电通道之间的绝缘通道,绝缘通道包括单个或多个绝缘子通道,所述导电通道对应的凹槽中填充导电材料,所述绝缘子通道对应的凹槽中不填充导电材料;
外线路,凸设于所述第一表面,包括多个按照预设排布的导电线路以及相邻两个导电线路之间的绝缘线路,所述导电线路与填充有导电材料的导电通道电连接。
优选的,本发明的绝缘通道均匀排布,绝缘通道包括单个或多个绝缘子通道,绝缘子通道的宽度至少大于凹槽的宽度,其宽度为1微米~10毫米;所述绝缘子通道的宽度大于所述凹槽的宽度并小于相邻两个凹槽之间的宽度。
优选的,本发明的导电线路部分填充于凹槽之中;所述凹槽的深度为1~10微米,所述凹槽的宽度为1~5微米,所述导电线路的厚度为5~15微米。
本发明还公开了一种触控屏,包括使用前述方法制作的透明导电膜。
本发明与现有技术相比所具有的优点和有益效果具体而言在于:
本发明将丝网印刷与埋入式纳米压印相结合,传统的ITO工艺,通常都要使用到刻蚀工艺,大量的ITO材料被浪费,并且存在明暗交替的色块问题,另外由于ITO的阻值较大,对于大尺寸的产品,阻值不满足需求。埋入式纳米压印工艺可以满足大尺寸的阻值需求,通常阻值低于10欧方,但是高额的模具费用,以及开发周期长,模具通用性差成为了瓶颈,所以我们在此基础上提出改善,将丝网印刷与埋入式纳米压印相结合,统一的网格填充作为一个通用的模具,该模具可以适用于多个机种,只要根据不同的规格进行丝印和镭射即可,可以有效降低费用和开发周期,金属网格的线宽以及金属网格线的间距可以保证透过率的需求,统一的网格设计保证了产品的整体视觉效果,埋入式的结构可以防止纳米银的氧化,以及保证了电性能优良,镭射的宽度很小,仅10~30微米;可以实现窄边框的设计。
附图说明
图1是本发明实施例中的透明导电膜的制作方法的流程图。
图2是本发明实施例中的模具的结构示意图。
图3是本发明第一个实施例中的透明导电膜的局部结构示意图。
图4是本发明第一个实施例中的透明导电膜的导电通道的剖视示意图。
图5是本发明第一个实施例中的透明导电膜的绝缘通道的剖视示意图。
图6是本发明第一个实施例中的透明导电膜的导电线路的剖视示意图。
图7是本发明第一个实施例中的透明导电膜的绝缘线路的剖视示意图。
图8是本发明另一个实施例中的透明导电膜的导电通道的剖视示意图。
图9是本发明另一个实施例中的透明导电膜的绝缘通道的剖视示意图。
图10是本发明另一个实施例中的透明导电膜的导电线路和绝缘线路的剖视示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
一种透明导电膜,该透明导电膜分为导电区域和非导电区域,导电区域由内线路和外线路组成,非导电区域存在网格线,网格线凹槽中无导电材料。在优选的实施方式中,导电区域的线路通道之间是通过激光镭射方式或者蚀刻的方式进行分割,分割间隔优选20微米。导电区域的网格可以是任何形状,如:正方形、长方形、菱形、钻石形、五边形、六边形、随机网格等均可以。分割线的走线方式可以是单根或多根直线,斜线,不受通道形状的限制。网格线为埋入式凹槽结构,属于金属网格结构。
参考图1所示流程图,本发明提供一种透明导电膜的制作方法,包括以下步骤:
提供一表面具有连续的凸起的纯网格微结构单元的模具;
提供一透明绝缘衬底;
利用所述模具在所述透明绝缘衬底的一面上压印形成连续的与所述纯网格微结构单元匹配的凹槽;
向所述凹槽中填充导电材料,以形成完全连通的网格导电层;
所述完全连通的网格导电层为内线路;在与所述网格导电层接触的一面形成与所述网格导电层电连接的多个导电线路,构成外线路;
按照预设图形去除所述内线路和外线路中不必要的导电材料,以形成绝缘通道、导电通道、绝缘线路和导电线路,导电通道与导电线路对应电连接。
进一步地,外线路通过丝网印刷或者喷墨打印方法直接在所述导电层上形成与所述导电层电连接的多个导电线路,然后按照预设图形对外线路进行激光镭射或者刻蚀,去除被镭射或者刻蚀部分的导电材料,以形成相互绝缘的导电线路;内线路中,按照预设图形对内线路进行激光镭射或者刻蚀,去除被镭射或者刻蚀部分的导电材料,以形成相互绝缘的导电通道。
本发明中,模具可以在透明绝缘衬底的一面上直接压印,以形成与微结构单元匹配的凹槽。
本发明中,还可以在透明绝缘衬底的一面上涂覆胶状物,再利用模具对胶状物远离所述透明绝缘衬底的一面进行压印,使胶状物固化后形成与微结构单元匹配的凹槽。
优选的,本发明的镭射条件:内部线路镭射1次,外部线路镭射2-3次,根据情况确定,镭射使用绿光激光器进行,丝印条件可以采用钢丝网版,丝印厚度5-15微米即可;
参考图2所示,模具1表面具有凸起的连续的微结构单元10,微结构单元10为均匀或者非均匀排布的连续的网格,网格的形状包括正方形、长方形、菱形、钻石形、五边形、六边形、随机网格等,优选的,微结构单元10的形状为正方形,其在水平方向上均匀、无缝隙、紧密地排布于模具1表面。
上述内线路和外线路使用的导电材料可以是同一种材料,也可以是不同材料,由纯银、银铜组合物、纯铜或镍等材料制成。
透明绝缘衬底由玻璃、PET、PC或PMMA等材料制成。
胶状物为丙烯酸脂类UV胶。
为了节约制作成本,在填充导电材料时,无需填充整面的凹槽,可以选择性填充内线路以及内线路和外线路接触的部分,在预设的外线路最边缘位置,由于此处无预设导电线路,可以不填充导电材料。
本发明通过将模具1上的微结构单元10压印于透明绝缘衬底或者胶状物之上,在透明绝缘衬底或胶状物上形成整面的埋入式的网格,向网格中填充导电材料以形成导电层,通过对导电层的丝印或者喷墨打印以形成外线路,再通过镭射或者刻蚀方法,形成不同规格的内线路和外线路以满足不同需求,网格的线宽以及间距可以保证透过率的需求,统一的网格设计保证了产品的整体视觉效果。本发明的方法,不同的设计通道,同一系列的尺寸可以共用同一个模具,不用单独开模,开模费用低,制作周期短,通用性强,大大节省了制作周期和成本,提高了工业化应用效果。
下面对本发明的方法制作的透明导电膜作说明:
参考图3至图7所示。在一种实施例中,透明导电膜包括:
透明绝缘衬底20,包括上表面201和与上表面对应的下表面202;
胶质层2,形成与上表面201之上,包括与上表面201对应的第二表面22和远离上表面201的第一表面21,第一表面21凹设有均匀或者非均匀排布的连通的网格状凹槽23;
内线路3,凹设于第一表面21,包括多个均匀排布的导电通道31以及设置于相邻两个导电通道之间的绝缘通道32,导电通道31对应的凹槽中填充导电材料33,绝缘通道32对应的凹槽中不填充导电材料;
外线路4,凸设于第一表面21,包括多个按照预设排布的导电线路41以及相邻两个导电线路之间的绝缘线路42,导电线路41与填充有导电材料的导电通道31电连接。
本发明中,凹槽23的形状与微结构单元21的凸起的形状相对应,即相邻的凹槽23相互连通,形成网格状的图形,在填充有导电材料之后,就形成了具有导电作用的导电层。优选的实施例中,形成的凹槽的深度为1~10微米,凹槽的宽度为1~5微米,相邻两个凹槽之间的宽度为200~500微米之间,如此,保证了透明导电膜的透光率达到87%以上。
参考图3、图4和图5所示,本发明的通过镭射或者刻蚀方法制得的绝缘通道32均匀排布,绝缘通道32可以由单个或者多个绝缘子通道321组成,具体按照不同规格需要设置,绝缘子通道321的宽度至少大于凹槽23的宽度。优选的,绝缘通道32宽度为1微米~10毫米,绝缘子通道321宽度为1~25微米。参照图6和图7,同样的, 导电通道41的宽度也可以按照不同的规格设置,其宽度为10~100微米之间,优选的,其宽度为10-30微米;
参考图3、图6和图7所示,本发明使用直接丝印或者喷墨打印制得的导电外线路4,结合镭射或刻蚀方法制得的绝缘线路42按照需求排布设置,其宽度大于凹槽23的宽度并小于相邻两个凹槽23之间的宽度。而相邻两个绝缘线路42之间的导电线路41在不同的位置宽度可以相同或不同,在此不作限定。
本发明中,胶质层2的厚度为5~15微米,凹槽23中导电材料的高度不受限制;
参考图8至图10所示。
在一种实施例中,透明导电膜,包括:
透明绝缘衬底20,包括第一表面201和与第一表面相对应的第二表面202,第一表面201凹设有均匀或者非均匀排布的连通的网格状凹槽23;
内线路3,凹设于第一表面201,包括多个均匀排布的导电通道31以及设置于相邻两个导电通道31之间的绝缘通道32,导电通道31对应的凹槽23中填充导电材料,绝缘通道32对应的凹槽23中不填充导电材料;
外线路4,凸设于第一表面301的边缘部位,包括多个按照预设排布的导电线路41以及相邻两个导电线路41之间的绝缘线路42,导电线路41与填充有导电材料的导电通道31电连接
本发明还包括一种触控屏,使用上述方法制作的透明导电膜,作为其驱动电极或者感应电极,或者同时作为驱动电极和感应电极。
综上,本发明提供的一种透明导电膜的制作方法,通过一种通用模具压印制得网格状凹槽,填充导电材料制得内线路,配合丝印或者喷墨打印印刷制得外线路,采用镭射或者刻蚀方法使得内线路和外线路得到预设的绝缘通道和绝缘线路,可以根据不同的设计需求灵活修改内线路和外线路的排版设计,无需每次制作模具,减少了开发周期,节省了制模成本,大大提高了工业化生产效率。采用埋入式压印工艺方法,可以满足大尺寸的阻值需求,通常阻值低于10欧方,同时,采用镭射或者刻蚀方法,可以实现窄边框的设计。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员 来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

  1. 一种透明导电膜的制作方法,其特征在于,包括以下步骤:
    提供一表面具有连续的凸起的纯网格微结构单元的模具;
    提供一透明绝缘衬底;
    利用所述模具在所述透明绝缘衬底的一面上压印形成连续的与所述纯网格微结构单元匹配的凹槽;
    向所述凹槽中填充导电材料,以形成完全连通的网格导电层;
    所述完全连通的网格导电层为内线路;在与所述网格导电层接触的一面形成与所述网格导电层电连接的多个导电线路,构成外线路;
    按照预设图形去除所述内线路和外线路中不必要的导电材料,以形成绝缘通道、导电通道、绝缘线路和导电线路,导电通道与导电线路对应电连接。
  2. 根据权利要求1所述的透明导电膜的制作方法,其特征在于,所述透明绝缘衬底为单层的基底,所述凹槽形成在基底上。
  3. 根据权利要求1所述的透明导电膜的制作方法,其特征在于,所述透明绝缘衬底包括叠置的胶质层和基底,所述凹槽形成在胶质层上。
  4. 根据权利要求1所述的透明导电膜的制作方法,特征在于,所述外线路通过用导电浆料进行丝网印刷或者喷墨打印形成;所述绝缘通道和导电通道均是按照预设图形对所述内线路和外线路通过激光镭射或者刻蚀,去除被刻蚀部分的凹槽中导电材料形成。
  5. 根据权利要求1所述的透明导电膜的制作方法,其特征在于,在与导电层接触的一面的边缘处形成外线路具体包括三种方式:外线路与内线路相切;或者外线路伸入到内线路的内部;或者外线路与内线路部分交叉,也就是搭接方式。
  6. 根据权利要求1所述的透明导电膜的制作方法,其特征在于,所述纯网格微结构单元为均匀或者非均匀排布的连续的网格,所述网格的形状为正方形、长方形、菱形、钻石形、五边形、六边形、随机网格其中之一或其至少两种之组合。
  7. 一种透明导电膜,其特征在于,所述透明导电膜通过权利要求1至6任意一项方法制作得到。
  8. 根据权利要求7所述的透明导电膜,其特征在于,所述绝缘通道均匀排布,绝 缘通道由单个或者多个绝缘子通道组成,绝缘子通道的宽度大于凹槽的宽度;所述绝缘通道宽度为1微米~10毫米。
  9. 一种触控屏,其特征在于,包括权利要求7或8方法制作的透明导电膜。
PCT/CN2017/101995 2016-10-19 2017-09-18 一种透明导电膜的制作方法、透明导电膜和触控屏 WO2018072578A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,720 US10959335B2 (en) 2016-10-19 2017-09-18 Method for manufacturing a transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610907841.X 2016-10-19
CN201610907841.XA CN106547397B (zh) 2016-10-19 2016-10-19 一种透明导电膜的制作方法、透明导电膜和触控屏

Publications (1)

Publication Number Publication Date
WO2018072578A1 true WO2018072578A1 (zh) 2018-04-26

Family

ID=58369215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101995 WO2018072578A1 (zh) 2016-10-19 2017-09-18 一种透明导电膜的制作方法、透明导电膜和触控屏

Country Status (4)

Country Link
US (1) US10959335B2 (zh)
CN (1) CN106547397B (zh)
TW (1) TW201816804A (zh)
WO (1) WO2018072578A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547397B (zh) * 2016-10-19 2022-03-22 苏州维业达触控科技有限公司 一种透明导电膜的制作方法、透明导电膜和触控屏
CN108062181B (zh) 2018-01-02 2021-08-17 京东方科技集团股份有限公司 基板及其制作方法、电子设备
CN109041557B (zh) * 2018-07-16 2020-04-24 苏州维业达触控科技有限公司 一种金属网格及其制作方法
CN109203745B (zh) * 2018-08-31 2020-12-18 信利光电股份有限公司 用于制备电子产品线路的模具及电子产品线路制备方法
CN109300578B (zh) * 2018-09-30 2020-10-27 博脉有限公司 一种导电皮革材料及其制备方法
CN111864068A (zh) * 2019-04-26 2020-10-30 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、显示装置
CN111949153B (zh) * 2019-11-29 2022-07-26 合肥微晶材料科技有限公司 一种可解决蚀刻痕的纳米银线触控电极及其制作方法
CN113151813B (zh) * 2020-01-07 2023-08-29 苏州维业达科技有限公司 一种导电膜的修补方法
CN113410313A (zh) * 2021-05-10 2021-09-17 深圳市百柔新材料技术有限公司 导电线路薄膜及其制备方法与光伏电池
CN114709278B (zh) * 2022-06-06 2022-08-23 一道新能源科技(衢州)有限公司 一种激光熔融制备晶硅太阳能电池电极的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235666A (zh) * 2013-05-09 2013-08-07 南昌欧菲光显示技术有限公司 滤光片组件和触摸显示组件
CN103295671A (zh) * 2013-05-30 2013-09-11 南昌欧菲光科技有限公司 透明导电膜
CN103456390A (zh) * 2013-02-05 2013-12-18 南昌欧菲光科技有限公司 导电膜及其制造方法
CN105448423A (zh) * 2014-06-12 2016-03-30 宸鸿科技(厦门)有限公司 导电膜的制作方法及触控面板的制作方法及触控面板
CN106547397A (zh) * 2016-10-19 2017-03-29 苏州维业达触控科技有限公司 一种透明导电膜的制作方法、透明导电膜和触控屏

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968804B2 (en) * 2006-12-20 2011-06-28 3M Innovative Properties Company Methods of patterning a deposit metal on a substrate
KR101051448B1 (ko) * 2010-10-26 2011-07-22 한국기계연구원 인쇄기반 금속 배선을 이용한 투명전극 제조 방법 및 그 투명전극
CN102063951B (zh) * 2010-11-05 2013-07-03 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
JP6336744B2 (ja) * 2012-12-03 2018-06-06 エルジー イノテック カンパニー リミテッド 電極部材及びこれを含むタッチパネル
CN103187118B (zh) * 2013-02-06 2015-02-18 南昌欧菲光科技有限公司 导电膜、导电膜的制造方法及其触摸屏
WO2014190790A1 (zh) * 2013-05-30 2014-12-04 南昌欧菲光科技有限公司 单层多点式触控导电膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456390A (zh) * 2013-02-05 2013-12-18 南昌欧菲光科技有限公司 导电膜及其制造方法
CN103235666A (zh) * 2013-05-09 2013-08-07 南昌欧菲光显示技术有限公司 滤光片组件和触摸显示组件
CN103295671A (zh) * 2013-05-30 2013-09-11 南昌欧菲光科技有限公司 透明导电膜
CN105448423A (zh) * 2014-06-12 2016-03-30 宸鸿科技(厦门)有限公司 导电膜的制作方法及触控面板的制作方法及触控面板
CN106547397A (zh) * 2016-10-19 2017-03-29 苏州维业达触控科技有限公司 一种透明导电膜的制作方法、透明导电膜和触控屏

Also Published As

Publication number Publication date
US20200413546A1 (en) 2020-12-31
TW201816804A (zh) 2018-05-01
CN106547397A (zh) 2017-03-29
US10959335B2 (en) 2021-03-23
CN106547397B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2018072578A1 (zh) 一种透明导电膜的制作方法、透明导电膜和触控屏
TWI541838B (zh) 透明導電膜中之導電結構、透明導電膜及製作方法
US9977275B2 (en) Filter module comprising first and second conductive patterns embedded in a patterned grooved surface of a coating layer and touch screen having the same
TWI515619B (zh) 觸摸屏及其製造方法
JP5846463B2 (ja) 容量性タッチスクリーン及びその製造方法
TWI540599B (zh) 導電膜及其製造方法,使用該導電膜之觸控式螢幕
TW201428576A (zh) 電極構件及包含其之觸控面板
TWI510993B (zh) 觸摸屏感應模組及其製作方法和顯示器
CN104951155B (zh) 电容式触控装置及其制作方法
TWI533330B (zh) 觸摸屏
US9141217B2 (en) Polarizer module, method of manufacturing the same and touch screen using the same
TWI506497B (zh) 單層觸控屏及其製造方法
US9179557B2 (en) Touch screen and method of producing the same
CN104866142A (zh) 一种触控基板及其制备方法、显示装置
CN103425327A (zh) 触摸显示屏及其滤光片模块
CN113066604A (zh) 一种导电膜及制备方法
US20210357078A1 (en) Touch panel, manufacturing method thereof and display device
CN104407459B (zh) 一种内嵌式触摸显示屏及其制造方法
CN203825594U (zh) 触控面板的透明感应层结构
CN104965619A (zh) 一种金属网格透明导电基板的制作方法
CN103353809B (zh) 滤光片模块及使用该滤光片模块的触摸显示屏
CN203490961U (zh) 导电膜及触控面板
CN103412665A (zh) 电子装置
CN111831171B (zh) Pet基材的制备方法及电容膜、电容式触屏模组、整机模组
CN103425326A (zh) 滤光片模块及包含该滤光片模块的触摸显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17862251

Country of ref document: EP

Kind code of ref document: A1