WO2018070051A1 - エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 Download PDF

Info

Publication number
WO2018070051A1
WO2018070051A1 PCT/JP2016/080629 JP2016080629W WO2018070051A1 WO 2018070051 A1 WO2018070051 A1 WO 2018070051A1 JP 2016080629 W JP2016080629 W JP 2016080629W WO 2018070051 A1 WO2018070051 A1 WO 2018070051A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
temperature
epoxy
compound
monomer
Prior art date
Application number
PCT/JP2016/080629
Other languages
English (en)
French (fr)
Inventor
丸山 直樹
優香 吉田
智子 東内
福田 和真
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/080629 priority Critical patent/WO2018070051A1/ja
Priority to CA3040449A priority patent/CA3040449A1/en
Priority to TW106135134A priority patent/TWI767946B/zh
Priority to KR1020197011420A priority patent/KR102345562B1/ko
Priority to EP17860947.5A priority patent/EP3514191B1/en
Priority to US16/341,559 priority patent/US10800872B2/en
Priority to CN201780063273.2A priority patent/CN109843966B/zh
Priority to JP2018545083A priority patent/JPWO2018070534A1/ja
Priority to PCT/JP2017/037267 priority patent/WO2018070534A1/ja
Publication of WO2018070051A1 publication Critical patent/WO2018070051A1/ja
Priority to JP2020026634A priority patent/JP7160058B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, a cured epoxy resin, and a composite material.
  • Epoxy resins are used in various applications by taking advantage of their excellent heat resistance. In recent years, in response to the increase in the actual use temperature of power devices using epoxy resins, studies on epoxy resins having excellent thermal conductivity have been underway.
  • An epoxy resin containing an epoxy compound having a mesogen structure in the molecule (hereinafter also referred to as a mesogen-containing epoxy resin) is known as an epoxy resin having excellent thermal conductivity.
  • mesogen-containing epoxy resins generally have a higher viscosity than other epoxy resins, and sufficient fluidity may not be obtained during operation.
  • an object of the present invention is to provide an epoxy resin and an epoxy resin composition excellent in handleability, and an epoxy resin cured product and a composite material obtained using these.
  • Means for solving the above problems include the following embodiments.
  • Dynamic shear viscosity ⁇ ′1 (Pa ⁇ s) measured in the temperature lowering step in the temperature range of 30 ° C. to 150 ° C. and dynamics measured at the same temperature as the measurement temperature of ⁇ ′1 in the temperature raising step.
  • An epoxy resin composition comprising the epoxy resin according to ⁇ 1> or ⁇ 2> and a curing agent.
  • a cured epoxy resin which is a cured product of the epoxy resin composition according to ⁇ 3>.
  • a composite material comprising the cured epoxy resin according to ⁇ 4> and a reinforcing material.
  • an epoxy resin and an epoxy resin composition excellent in handleability and an epoxy resin cured product and a composite material obtained by using these.
  • Example 3 is a graph showing the measurement results of dynamic shear viscosity of the epoxy resin produced in Example 1.
  • 4 is a graph showing the measurement results of dynamic shear viscosity of the epoxy resin produced in Comparative Example 1.
  • the numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the “epoxy compound” means a compound having an epoxy group in the molecule.
  • the “epoxy resin” is a concept that captures a plurality of epoxy compounds as an aggregate, and means an uncured state.
  • the epoxy resin of this embodiment is an epoxy resin containing an epoxy compound having a mesogenic structure
  • Dynamic shear viscosity ⁇ ′1 (Pa ⁇ s) measured in the temperature lowering step in the temperature range of 30 ° C. to 150 ° C. and dynamics measured at the same temperature as the measurement temperature of ⁇ ′1 in the temperature raising step.
  • the maximum value of ⁇ ′2 / ⁇ ′1 obtained from the static shear viscosity ⁇ ′2 (Pa ⁇ s) is 20 or less.
  • the dynamic shear viscosity (hereinafter, also simply referred to as viscosity) of the epoxy resin is measured in a vibration mode using a rheometer in accordance with the standard of JIS K 7244-10: 2005.
  • a parallel plate having a diameter of 12 mm is used, and the measurement conditions are a frequency of 1 Hz, a gap of 0.2 mm, and a strain of 2%.
  • the measurement is performed by allowing the epoxy resin to melt at 150 ° C. for 3 minutes or more, and then lowering the temperature of the epoxy resin from 150 ° C. to 30 ° C. at a rate of 2 ° C./min.
  • the rheometer for example, “MCR-301” manufactured by Anton Paar can be used.
  • Mesogen-containing epoxy resins generally have high molecular orientation and high crystallinity. When the temperature of the highly crystalline mesogen-containing epoxy resin is changed, a phase transition occurs between the liquid crystal phase or the isotropic phase and the crystalline phase at any temperature.
  • the viscosity measured when the temperature of a mesogen-containing epoxy resin that exhibits a liquid crystal phase or an isotropic phase at 150 ° C. and a crystalline phase at 30 ° C. is lowered from 150 ° C. to 30 ° C. at a rate of 2 ° C./min.
  • the viscosity measured when the temperature of the mesogen-containing epoxy resin is increased from 30 ° C. to 150 ° C. at a rate of 2 ° C./minute the temperature rises from the viscosity during temperature reduction even at the same temperature.
  • the viscosity at the time shows a higher phenomenon (temperature hysteresis). This phenomenon is caused by the fact that the phase transition to the crystal phase due to the strong orientation of the mesogenic structure cannot follow the temperature change at a rate of 2 ° C./min.
  • a mesogen-containing epoxy resin exhibiting temperature hysteresis is in an equilibrium state by being maintained at 100 ° C., for example, and even if it exhibits a crystalline phase, it is in equilibrium at 100 ° C. under a temperature drop condition of 2 ° C./min
  • the viscosity value corresponding to the liquid crystal phase or the isotropic phase state is not measured, and when the temperature is raised from the crystallized state after cooling to 30 ° C. and reaches 100 ° C., the viscosity corresponding to the crystal phase state The value of is measured.
  • the state of the phase is different between the temperature drop and the temperature rise, so that a difference occurs between the viscosity at the temperature drop and the temperature rise.
  • the mesogen-containing epoxy resin exhibiting temperature hysteresis has a higher viscosity when the temperature is raised than when the temperature is lowered even at the same temperature.
  • an epoxy resin that is easily crystallized to such a degree when the temperature is changed at a rate of 2 ° C./minute in the equilibrium state, the crystal phase is shown and handling of fluidity, applicability, moldability, etc. May become unstable.
  • the resin crystallizes after being formed into a sheet. Therefore, when stored in a roll or other roll, cracks may occur depending on the thickness of the sheet. May occur.
  • the maximum value of ⁇ ′2 / ⁇ ′1 obtained in the temperature range of 30 ° C. to 150 ° C. is 20 or less. That is, the value of the viscosity ⁇ ′2 at the time of temperature rise is relatively close to the viscosity ⁇ ′1 at the time of temperature drop, and the viscosity is sufficiently lowered at the time of temperature rise. For this reason, it can be suitably used for a processing method involving relatively rapid heating.
  • the temperature at which the epoxy resin melts is not particularly limited as long as it is 150 ° C. or lower, which is the start temperature of the temperature lowering process. From the viewpoint of handleability of the epoxy resin, the temperature at which the epoxy resin melts is preferably 130 ° C. or less, and more preferably 100 ° C. or less. However, the lower the melting temperature, the lower the molecular orientation. For this reason, from the viewpoint of ensuring the molecular orientation in the curing process, the melting point of the epoxy resin is preferably 0 ° C. or higher, and more preferably 50 ° C. or higher. The melting point of the epoxy resin can be determined, for example, from the melting peak temperature measured at a heating rate of 10 ° C./min in differential scanning calorimetry.
  • the maximum value of ⁇ ′2 / ⁇ ′1 obtained in the temperature range of 30 ° C. to 150 ° C. is 20 or less, preferably 10 or less, more preferably 5 or less, and preferably 2 or less. Further preferred.
  • the minimum value of ⁇ ′2 / ⁇ ′1 obtained in the temperature range of 30 ° C. to 150 ° C. is not particularly limited.
  • a mesogen-containing epoxy resin that undergoes a phase transition within a temperature range of 30 ° C. to 150 ° C. has a higher viscosity ( ⁇ ′2) measured at the time of temperature rise than the viscosity ( ⁇ ′1) measured at the time of temperature drop.
  • ⁇ ′2 / ⁇ ′1 is usually a value of 1 or more.
  • the minimum value of ⁇ ′2 / ⁇ ′1 is theoretically 1. However, the minimum value of ⁇ ′2 / ⁇ ′1 may be less than 1 depending on circumstances such as measurement conditions.
  • the epoxy resin of the present embodiment has a liquid crystal phase or a phase transition between an isotropic phase and a crystalline phase within a temperature range of 30 ° C. to 150 ° C., or at any temperature of 30 ° C. to 150 ° C. It may be a liquid crystal phase or an isotropic phase. From the viewpoint of handleability, a liquid crystal phase or an isotropic phase is preferable at any temperature of 30 ° C. to 150 ° C.
  • the epoxy resin of this embodiment is a liquid crystal phase or an isotropic phase at any temperature of 30 ° C. to 150 ° C.
  • the maximum value of ⁇ ′2 / ⁇ ′1 even if it does not exhibit temperature hysteresis May exhibit temperature hysteresis in a range that satisfies the condition that is 20 or less.
  • the liquid crystal phase is a smectic phase
  • the orientation is relatively stronger than that of the nematic phase, and the value of ⁇ ′2 / ⁇ ′1 tends to increase.
  • the value of ⁇ ′2 / ⁇ ′1 tends to be smaller than that of the epoxy resin showing the crystal phase.
  • the temperature when ⁇ ′2 / ⁇ ′1 becomes the maximum value is not particularly limited.
  • the range of ⁇ ′1 when the temperature of the epoxy resin is 100 ° C. is not particularly limited.
  • a range of 0.1 Pa ⁇ s to 500 Pa ⁇ s is preferable, and a range of 1 Pa to 50 Pa is more preferable.
  • the range of ⁇ ′1 when the temperature of the epoxy resin is 100 ° C. is not particularly limited.
  • a range of 0.1 Pa ⁇ s to 500 Pa ⁇ s is preferable, and a range of 1 Pa to 50 Pa is more preferable.
  • the epoxy resin of this embodiment preferably forms a higher order structure in a cured state (resin matrix).
  • the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher order structure can be determined by a polarizing microscope. That is, in the observation in the crossed Nicols state, it can be distinguished by seeing interference fringes due to depolarization.
  • This higher order structure usually exists in an island shape in the cured product of the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the constituent elements of this higher order structure are formed by covalent bonds.
  • Examples of the higher order structure formed in the cured state include a nematic structure and a smectic structure.
  • Each of the nematic structure and the smectic structure is a kind of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only an alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure. The order is higher in the smectic structure than in the nematic structure.
  • a higher order structure having a smectic structure From the viewpoint of thermal conductivity and fracture toughness of the cured product, it is preferable to form a higher order structure having a smectic structure. Whether or not a smectic structure is formed in the cured product of the epoxy resin composition can be determined by X-ray diffraction measurement of the cured product. X-ray diffraction measurement can be performed, for example, using an X-ray diffraction apparatus manufactured by Rigaku Corporation.
  • the epoxy resin of the present embodiment includes an epoxy compound having a mesogenic structure.
  • the epoxy compound having a mesogenic structure contained in the epoxy resin may be only one type or two or more types.
  • mesogen structure examples include a biphenyl structure, a phenylbenzoate structure, an azobenzene structure, a stilbene structure, a terphenyl structure, an anthracene structure, derivatives thereof, and a structure in which two or more of these mesogenic structures are bonded via a bonding group. Can be mentioned.
  • At least a part of the epoxy compound may be a compound (hereinafter also referred to as a multimer) including a structure derived from two or more of the epoxy compounds in the monomer state (hereinafter also referred to as an epoxy monomer).
  • a multimer including a structure derived from two epoxy monomers may be particularly referred to as a dimer.
  • the multimer may be obtained by reacting with a compound having a functional group capable of reacting with the epoxy group of the epoxy monomer, or may be obtained by self-polymerization of the epoxy monomers.
  • Examples of the multimer obtained by reacting with a compound having a functional group capable of reacting with an epoxy group of an epoxy monomer include compounds having a structure represented by the following general formula (A) or (B).
  • * represents a bonding position with an adjacent atom.
  • Adjacent atoms include oxygen and nitrogen atoms.
  • R 1 to R 3 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • n, m and l each independently represents an integer of 0 to 4.
  • n, m and l are each independently preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and even more preferably 0.
  • the structure represented by the general formula (B) is preferable.
  • the maximum value of ⁇ ′2 / ⁇ ′1 of the epoxy resin is smaller than when the multimer has a structure represented by the general formula (A). It tends to be easy. The reason for this is not clear, but it is presumed that the molecular mobility increased with the increase in the molecular weight of the multimer and the orientation decreased.
  • the structure represented by the following general formula (a) or (b) is preferable.
  • a multimer having such a structure tends to have a linear molecular structure. For this reason, it is considered that the stacking property of molecules is high and higher-order structures are more easily formed.
  • R 1 ⁇ R 3, n, m and l are * in formula (A) and (B), R 1 ⁇ R 3, n, The definition and preferred examples of m and l are the same.
  • the epoxy compound may be an epoxy compound having a structure represented by the following general formula (I).
  • the epoxy resin containing the epoxy compound having the structure represented by the general formula (I) has a higher glass transition temperature of the obtained cured product and fracture toughness than the epoxy resin containing the epoxy compound having another mesogenic structure. The value tends to be high. Furthermore, an epoxy resin containing an epoxy compound having a structure represented by the general formula (I) exhibits superior molecular orientation compared to an epoxy resin containing an epoxy compound having another mesogenic structure, and such a compound. Tends to have a relatively low melting point and excellent handleability.
  • R 1 ⁇ R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the epoxy compound has two or more structures represented by the general formula (I), at least one selected from the group consisting of structural units represented by the following general formulas (II-A) to (II-D) It may be an epoxy compound having one.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each independently represent carbon.
  • n and m each independently represents an integer of 0 to 4.
  • X independently represents -0- or -NH-.
  • R 1 ⁇ R 4 in the general formula (II-A) ⁇ (II -D) is the same as the specific examples of R 1 ⁇ R 4 in formula (I), it is the same and the preferred ranges thereof .
  • R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, More preferably, it is a group.
  • n and m each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, and preferably an integer of 0 to 1. Is more preferred and 0 is even more preferred. That is, the benzene ring to which R 5 or R 6 is attached in the general formulas (II-A) to (II-D) preferably has 2 to 4 hydrogen atoms, and preferably 3 or 4 hydrogen atoms. More preferably, it has an atom, and further preferably has 4 hydrogen atoms.
  • Formula (II-a) ⁇ R 1 ⁇ R 6 in (II-d), n, definition and preferred examples of m and X have the general formula (II-A) R 1 in the ⁇ (II-D) ⁇ R 6 , N, m and X are the same as defined and preferred examples.
  • the structure in the case where the epoxy compound is an epoxy compound (dimer compound) containing two structural units represented by the general formula (I) is represented by the following general formulas (III-A) to (III to F). And at least one selected from the group consisting of epoxy compounds.
  • Formula (III-A) ⁇ R 1 in (III ⁇ F) ⁇ R 6 , n, the definition of m and X have the general formula (II-A) R 1 in the ⁇ (II-D) ⁇ R 6, n , M and X are the same, and the preferred range is also the same.
  • Formula (III-a) ⁇ R 1 in (III ⁇ f) ⁇ R 6 , n, the definition of m and X have the general formula (III-A) R 1 in the ⁇ (III-F) ⁇ R 6, n , M and X are the same, and the preferred range is also the same.
  • a method for synthesizing a multimer by reacting an epoxy monomer with a compound having a functional group capable of reacting with an epoxy group of the epoxy monomer is not particularly limited. Specifically, for example, by dissolving an epoxy monomer, a compound having a functional group capable of reacting with an epoxy group of the epoxy monomer, and a reaction catalyst used as necessary in a solvent, stirring while heating, Multimers can be synthesized. Alternatively, for example, by mixing a specific epoxy monomer and a compound having a functional group capable of reacting with an epoxy group of the specific epoxy monomer without using a reaction catalyst and a solvent, if necessary, and stirring while heating, Specific epoxy compounds can be synthesized.
  • Examples of the epoxy monomer include an epoxy compound represented by the following general formula (M).
  • the epoxy compound represented by the general formula (M) has a mesogenic structure, and reacts with a curing agent to form a smectic liquid crystal structure in the cured product.
  • an epoxy monomer contains the epoxy compound represented by general formula (M)
  • only 1 type may be sufficient as the epoxy compound represented by general formula (M)
  • 2 or more types may be sufficient as it.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the solvent is not particularly limited as long as it can dissolve the epoxy monomer and the compound having a functional group capable of reacting with the epoxy group of the epoxy monomer and can be heated to a temperature necessary for the reaction of both compounds.
  • Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like.
  • the amount of the solvent is not particularly limited as long as it is an amount capable of dissolving the epoxy monomer, the compound having a functional group capable of reacting with the epoxy group of the epoxy monomer, and the reaction catalyst used as necessary at the reaction temperature.
  • solubility differs depending on the type of raw material before the reaction, the type of solvent, etc., for example, if the charged solid content concentration is 20% by mass to 60% by mass, the viscosity of the solution after the reaction is in a preferred range. There is a tendency.
  • the compound having a functional group capable of reacting with the epoxy group of the epoxy monomer is not particularly limited. From the viewpoint of forming a smectic structure in the cured product, a compound having a functional group capable of reacting with an epoxy group of an epoxy monomer is a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, and two amino groups.
  • a diaminobenzene compound having a structure in which a group is bonded to one benzene ring, a dihydroxybiphenyl compound having a structure in which one hydroxyl group is bonded to each of two benzene rings forming a biphenyl structure, and two benzene rings forming a biphenyl structure It is preferably at least one selected from the group consisting of diaminobiphenyl compounds each having a structure in which one amino group is bonded (hereinafter also referred to as a specific aromatic compound).
  • a multimer having at least one selected from the group consisting of structures represented by general formulas (IA) to (ID) by reacting an epoxy group of an epoxy monomer with a hydroxyl group or an amino group of a specific aromatic compound Can be synthesized.
  • Examples of the dihydroxybenzene compound include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and derivatives thereof.
  • Examples of the diaminobenzene compound include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, and derivatives thereof.
  • Examples of the dihydroxybiphenyl compound include 3,3′-dihydroxybiphenyl, 3,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and derivatives thereof.
  • Examples of the diaminobiphenyl compound include 3,3′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, and derivatives thereof.
  • Examples of the derivative of the specific aromatic compound include a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of the specific aromatic compound.
  • a specific aromatic compound may be used individually by 1 type, and may use 2 or more types together.
  • 1,4-dihydroxybenzene, 1,4-diaminobenzene, 4,4′-dihydroxybiphenyl and 4,4 are used as specific aromatic compounds.
  • '-Diaminobiphenyl is preferred.
  • the multimer obtained by reacting them with an epoxy monomer tends to have a linear structure. For this reason, it is considered that the stacking property of the molecule is high and it is easy to form a smectic structure in the cured product.
  • reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • an organic phosphorus compound is preferable as the reaction catalyst.
  • the organic phosphorus compound include an organic phosphine compound, a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond such as maleic anhydride, a quinone compound, diazophenylmethane, and a phenol resin to an organic phosphine compound, organic And a complex of a phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiaryl A phosphine etc. are mentioned.
  • quinone compound examples include 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Examples include 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone.
  • organic boron compound examples include tetraphenyl borate, tetra-p-tolyl borate, and tetra-n-butyl borate.
  • the amount of the reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the total of the epoxy monomer and the compound having a functional group capable of reacting with the epoxy group of the epoxy monomer. Preferably, the amount is 0.2 to 1 part by mass.
  • all of the epoxy monomers may react to form a multimer, or a part of the epoxy monomer may remain unreacted in the monomer state. .
  • Multimer synthesis can be performed using a reaction vessel such as a flask for a small scale and a synthesis kettle for a large scale.
  • a specific synthesis method is as follows, for example. First, an epoxy monomer is put into a reaction vessel, a solvent is put in if necessary, and heated to a reaction temperature with an oil bath or a heat medium to dissolve the epoxy monomer. A compound having a functional group capable of reacting with the epoxy group of the epoxy monomer is added thereto, and then a reaction catalyst is introduced as necessary to start the reaction. Subsequently, a multimer is obtained by distilling a solvent off under reduced pressure as needed.
  • the reaction temperature is not particularly limited as long as the reaction between the epoxy group of the epoxy monomer and the functional group capable of reacting with the epoxy group proceeds, and is preferably in the range of 100 ° C. to 180 ° C., for example, More preferably, it is in the range of ⁇ 150 ° C.
  • the reaction temperature is set to 100 ° C. or higher, the time until the reaction is completed tends to be shortened.
  • the reaction temperature to 180 ° C. or lower, the possibility of gelation tends to be reduced.
  • the compounding ratio of the epoxy monomer used for the synthesis of the multimer and the compound having a functional group capable of reacting with the epoxy group of the epoxy monomer is not particularly limited.
  • the ratio (A / B) between the number of equivalents of epoxy groups (A) and the number of equivalents of functional groups capable of reacting with epoxy groups (A / B) is in the range of 100/100 to 100/1.
  • a blending ratio in which A / B is in the range of 100/50 to 100/1 is preferable.
  • the structure of the multimer is, for example, the molecular weight of the multimer estimated from the reaction between the epoxy monomer used for the synthesis and a compound having a functional group capable of reacting with the epoxy group of the epoxy monomer, UV, and mass spectrum. It can be determined by collating the molecular weight of the target compound determined by liquid chromatography carried out using a liquid chromatograph equipped with a detector.
  • the content of the multimer is preferably 10% by mass or more of the entire epoxy resin, more preferably 20% by mass or more, and further preferably 30% by mass or more. From the viewpoint of heat resistance, it is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, based on the entire epoxy resin.
  • the content of the dimer compound is preferably 10% by mass or more of the entire epoxy resin, more preferably 15% by mass or more, and further preferably 20% by mass or more. preferable.
  • the content of the dimer compound is preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less of the entire epoxy resin. preferable.
  • the content of the epoxy monomer is preferably 30% by mass or more of the entire epoxy resin, more preferably 35% by mass or more, and further preferably 40% by mass or more. From the viewpoint of handleability, it is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the epoxy resin contains an epoxy compound (epoxy monomer) having a mesogen structure and an epoxy compound (multimer) having two or more mesogen structures having the same structure as the mesogen structure of the epoxy monomer, the viewpoint of handling properties of the epoxy resin Therefore, it is preferable that the ratio of the epoxy monomer obtained by liquid chromatography is 50% or less of the whole epoxy resin.
  • An epoxy resin in which the proportion of epoxy monomer obtained by liquid chromatography is 50% or less of the whole epoxy resin is ⁇ ′2 / ⁇ ′1 as compared with an epoxy resin in which the proportion of epoxy monomer exceeds 50% of the whole epoxy resin.
  • the maximum value tends to be small and tends to be excellent in handleability. The reason is not clear, but when the proportion of the epoxy monomer is 50% or less of the entire epoxy resin, a polymer having high molecular mobility and relatively low orientation becomes the main component in the system, and the epoxy resin It is presumed that the crystallization rate is remarkably lowered or no phase transition to the crystal phase occurs.
  • Liquid chromatography is performed at a sample concentration of 0.5% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min.
  • the measurement can be performed using, for example, a high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd. and a data analysis apparatus “C-R4A” manufactured by Shimadzu Corporation.
  • As the column for example, “G2000HXL” and “G3000HXL” which are GPC columns manufactured by Tosoh Corporation can be used.
  • the proportion of the epoxy monomer obtained by liquid chromatography is preferably 50% or less of the entire epoxy resin, more preferably 49% or less, and 48% or less. Further preferred.
  • the proportion of the epoxy monomer obtained by liquid chromatography is preferably 35% or more of the entire epoxy resin, more preferably 37% or more, and 40%. More preferably, it is the above.
  • the epoxy resin may contain an epoxy monomer represented by the general formula (I), a multimer of the epoxy monomer, and other epoxy monomers. By including other epoxy monomers, effects such as further suppression of crystallization can be expected.
  • Other epoxy monomers include 3,3 ', 5,5'-tetramethyl-4,4'-biphenol diglycidyl ether.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the epoxy resin are not particularly limited and can be selected according to desired properties of the epoxy resin.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the epoxy resin are values obtained by liquid chromatography.
  • Liquid chromatography is performed at a sample concentration of 0.5% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min.
  • a calibration curve is prepared using a polystyrene standard sample, and Mn and Mw are measured in terms of polystyrene using the calibration curve.
  • the measurement can be performed using, for example, a high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd. and a data analysis apparatus “C-R4A” manufactured by Shimadzu Corporation.
  • As the GPC column for example, “G2000HXL” and “G3000HXL” manufactured by Tosoh Corporation can be used.
  • the epoxy resin composition of the present embodiment includes the epoxy resin of the above-described embodiment and a curing agent.
  • the curing agent is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin contained in the epoxy resin composition of the present embodiment.
  • Specific examples of the curing agent include amine curing agents, phenol curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. Only one type or two or more types of curing agents may be used.
  • the curing agent is preferably an amine curing agent or a phenol curing agent, and from the viewpoint of heat resistance, an amine curing agent is more preferable, particularly an aromatic ring.
  • a compound having two or more amino groups directly bonded to is more preferable.
  • amine curing agents include 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diamino- 3,3′-dimethoxybiphenyl, 4,4′-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, 1,3-diamino Examples include benzene, 1,4-diaminobenzene, 4,4′-diaminobenzanilide, trimethylene-bis-4-aminobenzoate, and the like.
  • the phenol curing agent examples include a low molecular phenol compound and a phenol novolac resin obtained by connecting low molecular phenol compounds with a methylene chain to form a novolac.
  • Low molecular phenol compounds include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, and p-cresol, bifunctional phenol compounds such as catechol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1 , 2,4-trihydroxybenzene, trifunctional phenol compounds such as 1,3,5-trihydroxybenzene and the like.
  • the content of the curing agent in the epoxy resin composition is not particularly limited. From the viewpoint of the efficiency of the curing reaction, the ratio between the number of active hydrogen equivalents (amine equivalent number) of the curing agent contained in the epoxy resin composition and the epoxy equivalent number of epoxy resin (amine equivalent number / epoxy equivalent number). Is preferably in an amount of 0.3 to 3.0, more preferably in an amount of 0.5 to 2.0.
  • An epoxy resin composition may contain other components other than an epoxy resin and a hardening
  • a curing catalyst and a filler may be included.
  • Specific examples of the curing catalyst include compounds exemplified as reaction catalysts that can be used for the synthesis of multimers.
  • the use of the epoxy resin composition of this embodiment is not particularly limited, it can be suitably used for a processing method involving relatively rapid heating of the epoxy resin composition.
  • a processing method involving relatively rapid heating of the epoxy resin composition.
  • suitable for the manufacture of FRP involving the step of impregnating the epoxy resin composition while heating the gap between the fibers, and the production of a sheet-like material involving the step of spreading the epoxy resin composition with a squeegee etc.
  • the epoxy resin composition of this embodiment can also be suitably used in a processing method in which it is desired to omit or reduce the addition of a solvent for decreasing the viscosity from the viewpoint of suppressing the generation of voids in the cured product.
  • the epoxy resin cured product of the present embodiment is obtained by curing the epoxy resin composition of the present embodiment.
  • the composite material of this embodiment includes the epoxy resin cured product of this embodiment and a reinforcing material.
  • the material of the reinforcing material included in the composite material is not particularly limited and can be selected according to the use of the composite material.
  • Specific examples of the reinforcing material include carbon materials, glass, aromatic polyamide resins (for example, Kevlar (registered trademark)), ultrahigh molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, silicon, and the like.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous and particulate (filler).
  • the reinforcing material contained in the composite material may be one type or two or more types.
  • Example 2 An epoxy resin was obtained in the same manner as in Example 1 except that 3.1 g of hydroquinone was added instead of 5.2 g of 4,4′-dihydroxybiphenyl. Next, a cured epoxy resin was obtained in the same manner as in Example 1 except that the amount of 4,4′-diaminodiphenyl sulfone was changed to 9.8 g.
  • the ratio of the peak area derived from the epoxy monomer in the entire epoxy resin was found to be 45%.
  • the first epoxy compound used for producing the epoxy resin had a peak top at 27.7 minutes.
  • Liquid chromatography uses a liquid chromatograph equipped with UV and mass spectrum detectors (high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd.) and a data analysis device “C-R4A” manufactured by Shimadzu Corporation. went.
  • As the column “G2000HXL” and “G3000HXL”, which are GPC columns manufactured by Tosoh Corporation, were used.
  • Example 3 2.5 g of 3,3 ′, 5,5′-tetramethyl-4,4′-biphenol diglycidyl ether was added to 50 g of the epoxy resin synthesized in Example 2 to obtain an epoxy resin. Next, a cured epoxy resin was obtained in the same manner as in Example 1 except that the amount of 4,4′-diaminodiphenylsulfone was 10.1 g.
  • Example 4 An epoxy resin was obtained in the same manner as in Example 1 except that 3.0 g of catechol was added instead of 5.2 g of 4,4′-dihydroxybiphenyl. Next, a cured epoxy resin was obtained in the same manner as in Example 1 except that the amount of 4,4′-diaminodiphenylsulfone was 10.1 g.
  • the dynamic shear viscosity (Pa ⁇ s) of the epoxy resin was measured in a vibration mode with a rheometer (MCR-301, manufactured by Anton Paar). For the measurement, a parallel plate with a diameter of 12 mm was used, and the measurement conditions were a frequency of 1 Hz, a gap of 0.2 mm, and a strain of 2%. The measurement is performed by allowing the epoxy resin to melt at 150 ° C. for 3 minutes or more, and then lowering the temperature of the epoxy resin from 150 ° C. to 30 ° C. at a rate of 2 ° C./min. A temperature raising step for increasing the temperature from 0 ° C. to 150 ° C.
  • Epoxy resin maintains fluidity and can sweep 10 cm with a uniform appearance.
  • B The epoxy resin maintains fluidity to a certain extent and can be swept by 10 cm, but is partially faint.
  • C The epoxy resin becomes lumpy and cannot be swept uniformly, or the viscosity is too high to sweep over 10 cm, or it cannot be swept at all.
  • the fracture toughness value (MPa ⁇ m 1/2 ) was measured as an index for evaluating the fracture toughness of the cured epoxy resin.
  • the fracture toughness value of the test piece was calculated by performing a three-point bending measurement based on ASTM D5045. Instron 5948 (Instron) was used as the evaluation device. The results are shown in Table 1.
  • the glass transition temperature (Tg, ° C.) was measured as an index for evaluating the heat resistance of the cured epoxy resin.
  • the glass transition temperature of the test piece was calculated by performing dynamic viscoelasticity measurement in a tensile mode. The measurement conditions were a frequency of 10 Hz, a heating rate of 5 ° C./min, and a strain of 0.1%. In the obtained temperature-tan ⁇ relationship diagram, the temperature at which tan ⁇ was maximized was regarded as the glass transition temperature.
  • RSA-G2 manufactured by TA Instruments
  • the epoxy resins produced in Examples 1 to 4 in which the maximum value of ⁇ ′2 / ⁇ ′1 is 20 or less are comparative examples in which the maximum value of ⁇ ′2 / ⁇ ′1 exceeds 20.
  • the coating property was excellent.
  • the cured epoxy resins produced in Examples 1 to 4 all exhibited high fracture toughness values and high glass transition temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

メソゲン構造を有するエポキシ化合物を含むエポキシ樹脂であり、前記エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、前記エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施したときに、30℃から150℃の温度範囲における、前記降温工程において測定される動的せん断粘度η'1(Pa・s)と、前記昇温工程においてη'1の測定温度と同じ温度で測定される動的せん断粘度η'2(Pa・s)とから得られるη'2/η'1の最大値が20以下である、エポキシ樹脂。

Description

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
 本発明は、エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料に関する。
 エポキシ樹脂は、その優れた耐熱性を活かして種々の用途に用いられている。近年では、エポキシ樹脂を用いたパワーデバイスの実使用温度の高温化等を受けて、熱伝導性に優れるエポキシ樹脂の検討が進められている。
 分子内にメソゲン構造を有するエポキシ化合物を含むエポキシ樹脂(以下、メソゲン含有エポキシ樹脂ともいう)は、熱伝導性に優れるエポキシ樹脂として知られている。しかしながら、メソゲン含有エポキシ樹脂は一般に他のエポキシ樹脂に比べて粘度が高く、作業時に充分な流動性が得られない場合がある。
 メソゲン含有エポキシ樹脂の流動性を向上する方法としては、溶剤を添加して粘度を下げることが考えられる。また、流動性及び熱伝導性に優れるメソゲン含有エポキシ樹脂として、メソゲン構造を有するエポキシモノマーと2価フェノール化合物とを反応させて得られ、特定範囲の分子量を有するエポキシ樹脂が提案されている(例えば、特許文献1参照)。
国際公開第2016-104772号
 メソゲン含有エポキシ樹脂に溶剤を添加する方法では、硬化の際に溶剤に起因するボイドが発生して製品の品質に影響を及ぼすおそれがある。また、特許文献1に記載されたメソゲン含有エポキシ樹脂では軟化点の低下が達成されているが、粘度が高く取り扱い性の観点から改善の余地がある。
 本発明は上記状況に鑑み、取り扱い性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>メソゲン構造を有するエポキシ化合物を含むエポキシ樹脂であり、
 前記エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、前記エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施したときに、
 30℃から150℃の温度範囲における、前記降温工程において測定される動的せん断粘度η’1(Pa・s)と、前記昇温工程においてη’1の測定温度と同じ温度で測定される動的せん断粘度η’2(Pa・s)とから得られるη’2/η’1の最大値が20以下である、エポキシ樹脂。
<2>硬化剤と反応させて硬化させた際にスメクチック構造を硬化物中に形成する、<1>に記載のエポキシ樹脂。
<3><1>又は<2>に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
<4><3>に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
<5><4>に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
 本発明によれば、取り扱い性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料が提供される。
実施例1で作製したエポキシ樹脂の動的せん断粘度の測定結果を示すグラフである。 比較例1で作製したエポキシ樹脂の動的せん断粘度の測定結果を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において「エポキシ化合物」とは、分子中にエポキシ基を有する化合物を意味する。「エポキシ樹脂」とは、複数のエポキシ化合物を集合体として捉える概念であって硬化していない状態のものを意味する。
<エポキシ樹脂>
 本実施形態のエポキシ樹脂は、メソゲン構造を有するエポキシ化合物を含むエポキシ樹脂であり、
 前記エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、前記エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施したときに、
 30℃から150℃の温度範囲における、前記降温工程において測定される動的せん断粘度η’1(Pa・s)と、前記昇温工程においてη’1の測定温度と同じ温度で測定される動的せん断粘度η’2(Pa・s)とから得られるη’2/η’1の最大値が20以下である。
 本実施形態において、エポキシ樹脂の動的せん断粘度(以下、単に粘度ともいう)の測定は、JIS K 7244-10:2005の規格に従い、レオメータを用いて振動モードで行う。測定には直径12mmの平行平板プレートを用い、測定条件は周波数1Hz、ギャップ0.2mm、ひずみ2%とする。
 測定は、エポキシ樹脂を150℃で3分以上放置して溶融させた後、エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施し、その間の動的せん断粘度を少なくとも1点/℃以上の間隔で測定する。レオメータとしては、例えば、アントンパール社の「MCR-301」を用いることができる。
 メソゲン含有エポキシ樹脂は、一般に分子の配向性が高く結晶性が高い。結晶性の高いメソゲン含有エポキシ樹脂の温度を変化させた場合、いずれかの温度において、液晶相又は等方相と、結晶相との間で相転移が生じる。
 例えば、150℃において液晶相又は等方相を示し、30℃において結晶相を示すメソゲン含有エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させたときに測定される粘度と、メソゲン含有エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させたときに測定される粘度とを比べた場合、同じ温度であっても降温中の粘度より昇温時の粘度の方が高い現象(温度ヒステリシス)を示す場合がある。この現象は、メソゲン構造の強い配向性に起因する結晶相への相転移が、2℃/分の速度の温度変化に追従できないことによって生じる。
 つまり、温度ヒステリシスを示すメソゲン含有エポキシ樹脂は、例えば100℃に保持されることで平衡状態であり、結晶相を示すものであっても、2℃/分の降温条件下では100℃で平衡に達せず液晶相又は等方相の状態に相当する粘度の値が測定され、30℃まで冷却して結晶化した状態から昇温して100℃に達したときは結晶相の状態に相当する粘度の値が測定される。このように、同じ温度であっても降温時と昇温時とで相の状態が異なるため、降温時と昇温時における粘度の間に乖離が生じる。
 以上のように、温度ヒステリシスを示すメソゲン含有エポキシ樹脂は、同じ温度であっても降温時よりも昇温時の方が粘度が高い。2℃/分の速度で温度を変化させた場合に、このような挙動を示すほどに結晶化しやすいエポキシ樹脂の場合、平衡状態では結晶相を示して流動性、塗布性、成型性等の取り扱い性が不安定となるおそれがある。
 さらに、温度ヒステリシスを示す樹脂をシート化した場合においても、シート化後に樹脂が結晶化するため、ロール等の巻物で保管した場合に、シートの厚みによってはクラックを生じるなど、品質管理上の問題が生じるおそれがある。
 本実施形態のエポキシ樹脂は、30℃~150℃の温度範囲において得られるη’2/η’1の最大値が20以下である。すなわち、昇温時における粘度η’2の値が降温時における粘度η’1に比較的近く、昇温時に粘度が充分に低下する。このため、比較的急速な加温を伴う加工方法にも好適に用いることができる。
 エポキシ樹脂が溶融する温度は、降温工程の開始温度である150℃以下であれば特に制限されない。エポキシ樹脂の取り扱い性の観点からは、エポキシ樹脂が溶融する温度は130℃以下であることが好ましく、100℃以下であることがより好ましい。ただし、溶融する温度が低いほど、分子の配向性が低下する傾向がある。このため、硬化過程における分子の配向性を確保する観点からは、エポキシ樹脂の融点は0℃以上であることが好ましく、50℃以上であることがより好ましい。
 エポキシ樹脂の融点は、たとえば、示差走査熱量測定における加熱速度10℃/分で測定される融解ピーク温度から求めることができる。
 30℃~150℃の温度範囲において得られるη’2/η’1の最大値は20以下であり、10以下であることが好ましく、5以下であることがより好ましく、2以下であることがさらに好ましい。
 30℃~150℃の温度範囲において得られるη’2/η’1の最小値は、特に制限されない。30℃~150℃の温度範囲内で相転移が生じるメソゲン含有エポキシ樹脂は、降温時に測定される粘度(η’1)よりも昇温時に測定される粘度(η’2)の方が高いため、η’2/η’1の最小値は通常は1以上の値となる。
 温度ヒステリシスを示さないメソゲン含有エポキシ樹脂の場合、η’2/η’1の最小値は、理論上は1となる。ただし、測定条件等の事情によりη’2/η’1の最小値が1未満となる場合もある。
 本実施形態のエポキシ樹脂は、30℃~150℃の温度範囲内で液晶相又は等方相と結晶相との相転移が生じるものであっても、30℃~150℃のいずれの温度においても液晶相又は等方相であるものであってもよい。取り扱い性の観点からは、30℃~150℃のいずれの温度においても液晶相又は等方相であるものが好ましい。
 本実施形態のエポキシ樹脂が、30℃~150℃のいずれの温度においても液晶相又は等方相である場合、温度ヒステリシスを示さないものであっても、η’2/η’1の最大値が20以下であるという条件を満たす範囲において温度ヒステリシスを示すものであってもよい。例えば、液晶相がスメクチック相である場合は、ネマチック相よりも配向性が比較的強く、η’2/η’1の値が大きくなる傾向にある。ただし、結晶相ほど分子運動が強く拘束されていないため、η’2/η’1の値は結晶相を示すエポキシ樹脂よりも小さくなる傾向にある。
 本実施形態のエポキシ樹脂において、η’2/η’1が最大値となるときの温度は特に制限されない。
 本実施形態のエポキシ樹脂において、エポキシ樹脂の温度が100℃であるときのη’1の範囲は特に制限されない。例えば、0.1Pa・s~500Pa・sの範囲が好ましく、1Pa~50Paの範囲がより好ましい。
 本実施形態のエポキシ樹脂において、エポキシ樹脂の温度が100℃であるときのη’1の範囲は特に制限されない。例えば、0.1Pa・s~500Pa・sの範囲が好ましく、1Pa~50Paの範囲がより好ましい。
 本実施形態のエポキシ樹脂は、硬化した状態(樹脂マトリックス)で高次構造を形成することが好ましい。ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡によって判断することができる。すなわち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。この高次構造体は、通常はエポキシ樹脂組成物の硬化物中に島状に存在してドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
 硬化した状態で形成される高次構造としては、ネマチック構造とスメクチック構造とが挙げられる。ネマチック構造とスメクチック構造はそれぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみをもつ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。
 硬化物の熱伝導性及び破壊じん性の観点からは、スメクチック構造の高次構造を形成することが好ましい。エポキシ樹脂組成物の硬化物中にスメクチック構造が形成されているか否かは、硬化物のX線回折測定により判断できる。X線回折測定は、例えば、株式会社リガク製のX線回折装置を用いて行うことができる。CuKα1線を用い、管電圧40kV、管電流20mA、2θ=2~30°の範囲で測定すると、スメクチック構造を有している硬化物であれば、2θ=2~10°の範囲に回折ピークが現れる。
(エポキシ化合物)
 本実施形態のエポキシ樹脂は、メソゲン構造を有するエポキシ化合物を含む。エポキシ樹脂に含まれるメソゲン構造を有するエポキシ化合物は1種のみでも2種以上であってもよい。
 メソゲン構造としては、例えば、ビフェニル構造、フェニルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、及びこれらのメソゲン構造の2つ以上が結合基を介して結合した構造が挙げられる。
 エポキシ化合物の少なくとも一部は、モノマーの状態のエポキシ化合物(以下、エポキシモノマーともいう)の2つ以上に由来する構造を含む化合物(以下、多量体ともいう)であってもよい。エポキシ化合物の少なくとも一部が多量体の状態であることで、エポキシ化合物がすべてモノマーの状態である場合に比べてエポキシ樹脂の粘度挙動が温度ヒステリシスを示しにくい傾向にある。本明細書において、2つのエポキシモノマーに由来する構造を含む多量体を特に二量体と称する場合がある。
 多量体は、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と反応させて得られるものであっても、エポキシモノマー同士の自己重合により得られるものであってもよい。
 エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と反応させて得られる多量体としては、下記一般式(A)又は(B)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(A)及び(B)において、*は隣接する原子との結合位置を表す。隣接する原子としては酸素原子及び窒素原子が挙げられる。R~Rはそれぞれ独立に炭素数1~8のアルキル基を表す。n、m及びlはそれぞれ独立に0~4の整数を表す。n、m及びlはそれぞれ独立に、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。
 一般式(A)又は(B)で表される構造の中でも、一般式(B)で表される構造が好ましい。多量体が一般式(B)で表される構造を有する場合は、一般式(A)で表される構造を有する場合よりも、エポキシ樹脂のη´2/η´1の最大値が小さくなりやすい傾向にある。その理由は明らかではないが、多量体の分子量増大に伴い分子の運動性が増大して配向性が低下したためと推測される。
 一般式(A)又は(B)で表される構造の中でも、下記一般式(a)又は(b)で表される構造が好ましい。このような構造を有する多量体は、分子構造が直線的になりやすい。このため、分子のスタッキング性が高く、高次構造をより形成し易いと考えられる。
Figure JPOXMLDOC01-appb-C000002
 一般式(a)及び(b)における*、R~R、n、m及びlの定義及び好ましい例は、一般式(A)及び(B)における*、R~R、n、m及びlの定義及び好ましい例と同様である。
 エポキシ化合物は、下記一般式(I)で表される構造を有するエポキシ化合物であってもよい。
 一般式(I)で表される構造を有するエポキシ化合物を含むエポキシ樹脂は、他のメソゲン構造を有するエポキシ化合物を含むエポキシ樹脂に比べ、得られる硬化物のガラス転移温度が高く、かつ破壊じん性値が高い傾向にある。
 さらに、一般式(I)で表される構造を有するエポキシ化合物を含むエポキシ樹脂は、他のメソゲン構造を有するエポキシ化合物を含むエポキシ樹脂に比べ、優れた分子配向性を示し、かつそのような化合物としては比較的融点が低く取り扱い性に優れる傾向にある。
Figure JPOXMLDOC01-appb-C000003
[一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 エポキシ化合物が一般式(I)で表される構造を2つ以上有する場合は、下記一般式(II-A)~(II-D)で表される構造単位からなる群より選択される少なくとも1つを有するエポキシ化合物であってもよい。
Figure JPOXMLDOC01-appb-C000004
 一般式(II-A)~(II-D)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、R及びRはそれぞれ独立に、炭素数1~8のアルキル基を示す。n及びmはそれぞれ独立に、0~4の整数を示す。Xはそれぞれ独立に、-0-又は-NH-を表す。
 一般式(II-A)~(II-D)におけるR~Rの具体例は、一般式(I)におけるR~Rの具体例と同様であり、その好ましい範囲も同様である。
 一般式(II-A)~(II-D)中、R及びRはそれぞれ独立に炭素数1~8のアルキル基を表し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 一般式(II-A)~(II-D)中、n及びmはそれぞれ独立に、0~4の整数を示し、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。つまり、一般式(II-A)~(II-D)においてR又はRを付されたベンゼン環は、2個~4個の水素原子を有することが好ましく、3個又は4個の水素原子を有することがより好ましく、4個の水素原子を有することがさらに好ましい。
 高次構造形成の観点からは、一般式(II-A)~(II-D)で表される構造の中でも下記一般式(II-a)~(II-d)で表される構造を有するエポキシ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(II-a)~(II-d)におけるR~R、n、m及びXの定義及び好ましい例は一般式(II-A)~(II-D)におけるR~R、n、m及びXの定義及び好ましい例と同様である。
 エポキシ化合物が一般式(I)で表される構造単位を2つ含むエポキシ化合物(二量体化合物)である場合の構造としては、下記一般式(III-A)~(III~F)で表されるエポキシ化合物からなる群より選択される少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(III-A)~(III~F)におけるR~R、n、m及びXの定義は、一般式(II-A)~(II-D)におけるR~R、n、m及びXの定義と同様であり、その好ましい範囲も同様である。
 高次構造形成の観点からは、一般式(III-A)~(III~F)で表されるエポキシ化合物の中でも下記一般式式(III-a)~(III~f)で表されるエポキシ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(III-a)~(III~f)におけるR~R、n、m及びXの定義は、一般式(III-A)~(III-F)におけるR~R、n、m及びXの定義と同様であり、その好ましい範囲も同様である。
(多量体の合成方法)
 エポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物とを反応させて多量体を合成する方法は、特に制限されない。具体的には、例えば、エポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを溶媒中に溶解し、加熱しながら撹拌することで、多量体を合成することができる。
 あるいは、例えば、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物を、必要に応じて用いる反応触媒と溶媒を用いずに混合し、加熱しながら撹拌することで、特定エポキシ化合物を合成することができる。
 エポキシモノマーとしては、下記一般式(M)で表されるエポキシ化合物が挙げられる。一般式(M)で表されるエポキシ化合物はメソゲン構造を有し、硬化剤と反応して硬化物中にスメクチック液晶構造を形成する。エポキシモノマーが一般式(M)で表されるエポキシ化合物を含む場合、一般式(M)で表されるエポキシ化合物は1種のみでも2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000008
 一般式(M)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 一般式(M)で表されるエポキシ化合物としては、特開2011-74366号公報に記載されている化合物が挙げられる。具体的には、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の化合物が挙げられる。
 溶媒は、エポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物とを溶解でき、かつ両化合物が反応するのに必要な温度にまで加温できる溶媒であれば、特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。
 溶媒の量は、エポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを反応温度において溶解できる量であれば特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、例えば、仕込み固形分濃度が20質量%~60質量%となる量であれば、反応後の溶液の粘度が好ましい範囲となる傾向にある。
 エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物は、特に制限されない。硬化物中にスメクチック構造を形成する観点からは、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物は、2つの水酸基が1つのベンゼン環に結合した構造を有するジヒドロキシベンゼン化合物、2つのアミノ基が1つのベンゼン環に結合した構造を有するジアミノベンゼン化合物、ビフェニル構造を形成する2つのベンゼン環にそれぞれ1つの水酸基が結合した構造を有するジヒドロキシビフェニル化合物及びビフェニル構造を形成する2つのベンゼン環にそれぞれ1つのアミノ基が結合した構造を有するジアミノビフェニル化合物からなる群より選択される少なくとも1種(以下、特定芳香族化合物とも称する)であることが好ましい。
 エポキシモノマーのエポキシ基と特定芳香族化合物の水酸基又はアミノ基とを反応させることで、一般式(IA)~(ID)で表される構造からなる群より選択される少なくとも1つを有する多量体を合成することができる。
 ジヒドロキシベンゼン化合物としては、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)、これらの誘導体等が挙げられる。
 ジアミノベンゼン化合物としては、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、これらの誘導体等が挙げられる。
 ジヒドロキシビフェニル化合物としては、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、これらの誘導体等が挙げられる。
 ジアミノビフェニル化合物としては、3,3’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、これらの誘導体等が挙げられる。
 特定芳香族化合物の誘導体としては、特定芳香族化合物のベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。特定芳香族化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エポキシ樹脂の硬化物中におけるスメクチック構造の形成し易さの観点からは、特定芳香族化合物としては1,4-ジヒドロキシベンゼン、1,4-ジアミノベンゼン、4,4’-ジヒドロキシビフェニル及び4,4’-ジアミノビフェニルが好ましい。これらの化合物は、ベンゼン環上の2つの水酸基又はアミノ基がパラ位の位置関係となっているため、これをエポキシモノマーと反応させて得られる多量体は直線構造となり易い。このため、分子のスタッキング性が高く、硬化物中にスメクチック構造を形成し易いと考えられる。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化物の耐熱性の観点からは、反応触媒としては有機リン化合物が好ましい。
 有機リン化合物の好ましい例としては、有機ホスフィン化合物、有機ホスフィン化合物に無水マレイン酸、キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、有機ホスフィン化合物と有機ボロン化合物との錯体などが挙げられる。
 有機ホスフィン化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 キノン化合物として具体的には、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等が挙げられる。
 有機ボロン化合物として具体的には、テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等が挙げられる。
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点からは、エポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物との合計質量100質量部に対し、0.1質量部~1.5質量部であることが好ましく、0.2質量部~1質量部であることがより好ましい。
 エポキシモノマーを用いて多量体を合成する場合、エポキシモノマーのすべてが反応して多量体の状態になっていても、エポキシモノマーの一部が反応せずにモノマーの状態で残存していてもよい。
 多量体の合成は、少量スケールであればフラスコ、大量スケールであれば合成釜等の反応容器を使用して行うことができる。具体的な合成方法は、例えば以下の通りである。
 まず、エポキシモノマーを反応容器に投入し、必要に応じて溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、エポキシモノマーを溶解する。そこにエポキシモノマーのエポキシ基と反応しうる官能基を有する化合物を投入し、次いで必要に応じて反応触媒を投入し、反応を開始させる。次いで、必要に応じて減圧下で溶媒を留去することで、多量体が得られる。
 反応温度は、エポキシモノマーのエポキシ基と、エポキシ基と反応しうる官能基との反応が進行する温度であれば特に制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~150℃の範囲であることがより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 多量体の合成に用いるエポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物の配合比は、特に制限されない。例えば、エポキシ基の当量数(A)と、エポキシ基と反応しうる官能基の当量数(B)との比率(A/B)が100/100~100/1の範囲となる配合比としてもよい。硬化物の破壊靭性及び耐熱性の観点からは、A/Bが100/50~100/1の範囲となる配合比が好ましい。
 多量体の構造は、例えば、合成に使用したエポキシモノマーと、エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物との反応より得られると推定される多量体の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 液体クロマトグラフィーは、例えば、株式会社日立製作所製の「LaChrom II C18」を分析用カラムとして使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/10mmol/l酢酸アンモニウム水溶液=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)と連続的に変化させて測定を行う。また、流速を1.0ml/minとして行う。UVスペクトル検出器では280nmの波長における吸光度を検出し、マススペクトル検出器ではイオン化電圧を2700Vとして検出する。
 取り扱い性の観点からは、多量体の含有率は、エポキシ樹脂全体の10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。耐熱性の観点からは、エポキシ樹脂全体の80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 エポキシ樹脂が、多量体として二量体化合物を含む場合、その含有率は特に制限されない。取り扱い性の観点からは、二量体化合物の含有率は、エポキシ樹脂全体の10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。耐熱性の観点からは、二量体化合物の含有率は、エポキシ樹脂全体の60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。
 エポキシ樹脂がエポキシモノマーを含む場合、その含有率は特に制限されない。耐熱性の観点からは、エポキシモノマーの含有率は、エポキシ樹脂全体の30質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。取り扱い性の観点からは、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 エポキシ樹脂がメソゲン構造を有するエポキシ化合物(エポキシモノマー)と、そのエポキシモノマーのメソゲン構造と同じ構造のメソゲン構造を2つ以上有するエポキシ化合物(多量体)とを含む場合、エポキシ樹脂の取り扱い性の観点からは、液体クロマトグラフィーにより得られるエポキシモノマーの割合がエポキシ樹脂全体の50%以下であることが好ましい。
 液体クロマトグラフィーにより得られるエポキシモノマーの割合がエポキシ樹脂全体の50%以下であるエポキシ樹脂は、エポキシモノマーの割合がエポキシ樹脂全体の50%を超えるエポキシ樹脂に比べてη´2/η´1の最大値が小さくなりやすく、取り扱い性に優れる傾向にある。その理由は明らかではないが、エポキシモノマーの割合がエポキシ樹脂全体の50%以下である場合、分子の運動性が高く、比較的配向性が低い多量体が系中の主成分となり、エポキシ樹脂の結晶化速度が著しく低下するか、あるいは結晶相に相転移しなくなるためと推測される。
 液体クロマトグラフィーにより得られるエポキシモノマーの割合は、液体クロマトグラフにより得られるチャートにおける、全てのエポキシ化合物に由来するピークの合計面積に占めるエポキシモノマーに由来するピークの面積の割合(%)である。具体的には、測定対象のエポキシ樹脂の280nmの波長における吸光度を検出し、検出された全てのピークの合計面積と、エポキシモノマーに相当するピークの面積とから、下記式により算出する。
 エポキシモノマーに由来するピークの面積の割合(%)=(エポキシモノマーに由来するピークの面積/全てのエポキシ化合物に由来するピークの合計面積)×100
 液体クロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。測定は、例えば、株式会社日立製作所製の高速液体クロマトグラフ「L6000」と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行うことができる。カラムとしては、例えば、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を用いることができる。
 取り扱い性向上の観点からは、液体クロマトグラフィーにより得られるエポキシモノマーの割合は、エポキシ樹脂全体の50%以下であることが好ましく、49%以下であることがより好ましく、48%以下であることがさらに好ましい。
 固有粘度(溶融時の粘度)の観点からは、液体クロマトグラフィーにより得られるエポキシモノマーの割合は、エポキシ樹脂全体の35%以上であることが好ましく、37%以上であることがより好ましく、40%以上であることがさらに好ましい。
 エポキシ樹脂は、一般式(I)で表されるエポキシモノマーと、当該エポキシモノマーの多量体と、その他のエポキシモノマーを含むものであってもよい。その他のエポキシモノマーを含むことにより、結晶化がより抑制される等の効果が期待できる。その他のエポキシモノマーとしては、3,3’,5,5’-テトラメチル-4,4’-ビフェノールジグリシジルエーテルが挙げられる。
 エポキシ樹脂の数平均分子量(Mn)及び重量平均分子量(Mw)は特に制限されず、エポキシ樹脂の所望の特性に応じて選択できる。
 本実施形態において、エポキシ樹脂の数平均分子量(Mn)と重量平均分子量(Mw)は液体クロマトグラフィーにより得られる値とする。
 液体クロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。検量線はポリスチレン標準サンプルを用いて作成し、それを用いてポリスチレン換算値でMn及びMwを測定する。
 測定は、例えば、株式会社日立製作所製の高速液体クロマトグラフ「L6000」と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行うことができる。GPCカラムとしては、例えば、東ソー株式会社製の「G2000HXL」及び「G3000HXL」を用いることができる。
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、上述した実施形態のエポキシ樹脂と、硬化剤と、を含む。
(硬化剤)
 硬化剤は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂と硬化反応を生じることができる化合物であれば、特に制限されない。硬化剤の具体例としては、アミン硬化剤、フェノール硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、1種のみでも2種以上であってもよい。
 エポキシ樹脂組成物の硬化物中に高次構造を形成する観点からは、硬化剤としては、アミン硬化剤又はフェノール硬化剤が好ましく、耐熱性の観点からはアミン硬化剤がより好ましく、特に芳香環に直接結合しているアミノ基を2つ以上有する化合物であることがさらに好ましい。
 アミン硬化剤として具体的には、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート等が挙げられる。
 エポキシ樹脂組成物の硬化物中にスメクチック構造を形成する観点からは4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4-ジアミノベンズアニリド、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルメタン及びトリメチレン-ビス-4-アミノベンゾアートが好ましく、高Tgの硬化物を得る観点からは4,4’-ジアミノジフェニルスルホン及び4,4’-ジアミノベンズアニリドがより好ましい。
 フェノール硬化剤としては、低分子フェノール化合物、及び低分子フェノール化合物をそれらをメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂が挙げられる。低分子フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能フェノール化合物などが挙げられる。
 エポキシ樹脂組成物における硬化剤の含有量は特に制限されない。硬化反応の効率性の観点からは、エポキシ樹脂組成物に含まれる硬化剤の活性水素の当量数(アミン当量数)と、エポキシ樹脂のエポキシ当量数との比(アミン当量数/エポキシ当量数)が0.3~3.0となる量であることが好ましく、0.5~2.0となる量であることがより好ましい。
(その他の成分)
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂と硬化剤以外のその他の成分を含んでもよい。例えば、硬化触媒、フィラー等を含んでもよい。硬化触媒の具体例としては、多量体の合成に使用しうる反応触媒として例示した化合物が挙げられる。
(用途)
 本実施形態のエポキシ樹脂組成物の用途は特に制限されないが、エポキシ樹脂組成物の比較的急速な加温を伴う加工方法にも好適に用いることができる。例えば、繊維間の空隙にエポキシ樹脂組成物を加温しながら含浸する工程を伴うFRPの製造、エポキシ樹脂組成物を加温しながらスキージ等で広げる工程を伴うシート状物の製造などにも好適に用いることができる。
 本実施形態のエポキシ樹脂組成物は、硬化物中のボイドの発生を抑制する観点から粘度低下のための溶剤の添加を省略又は低減することが望まれる加工方法にも好適に用いることができる。
<エポキシ樹脂硬化物及び複合材料>
 本実施形態のエポキシ樹脂硬化物は、本実施形態のエポキシ樹脂組成物を硬化して得られる。本実施形態の複合材料は、本実施形態のエポキシ樹脂硬化物と、強化材と、を含む。
 複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、炭素材料、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリコン等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料に含まれる強化材は、1種でも2種以上であってもよい。
 以下、本発明の実施例を示し具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」および「%」は質量基準である。
<実施例1>
 500mLの三口フラスコに、エポキシモノマーとして(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、下記構造)を50g量り取り、そこにプロピレングリコールモノメチルエーテルを80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。エポキシモノマーが溶解し、透明な溶液になったことを確認した後、4、4’-ジヒドロキシビフェニルを5.2g、反応触媒としてトリフェニルホスフィンを0.5g添加し、120℃のオイルバス温度で加熱を継続した。3時間加熱を継続した後に、反応溶液からプロピレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、エポキシモノマーの一部が4、4’-ジヒドロキシビフェニルと反応して多量体を形成した状態のエポキシ樹脂を得た。
Figure JPOXMLDOC01-appb-C000009
 次いで、得られたエポキシ樹脂を50g、硬化剤として4,4-ジアミノジフェニルスルホン9.4gをステンレスシャーレに量り取り、ホットプレートで180℃に加熱した。ステンレスシャーレ内の樹脂が溶融した後に、180℃で1時間加熱した。常温(25℃)まで冷却した後にステンレスシャーレから樹脂を取り出し、恒温槽にて230℃で1時間加熱して硬化を完了させて、エポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物を3.75mm×7.5mm×33mmの直方体に切り出し、破壊じん性評価用の試験片を作製した。さらに、硬化物を2mm×0.5mm×40mmの短冊状に切り出し、ガラス転移温度評価用の試験片を作製した。
<実施例2>
 4,4’-ジヒドロキシビフェニル5.2gに替えて、ヒドロキノンを3.1g添加した以外は実施例1と同様にして、エポキシ樹脂を得た。
 次いで、4,4’-ジアミノジフェニルスルホンの量を9.8gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
 上述した方法に従って液体クロマトグラフィーにより得られたエポキシ樹脂のチャートより、エポキシモノマーに由来するピーク面積のエポキシ樹脂全体における割合を求めたところ、45%であった。
 なお、エポキシ樹脂の作製に用いた第一のエポキシ化合物は、27.7分のところにピークトップを有していた。
 液体クロマトグラフィーは、UV及びマススペクトル検出器を備える液体クロマトグラフ(株式会社日立製作所製の高速液体クロマトグラフ「L6000」)と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行った。カラムとしては、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を使用した。
<実施例3>
 実施例2で合成したエポキシ樹脂50gに、3,3’,5,5’-テトラメチル-4,4’-ビフェノールジグリシジルエーテルを2.5g添加し、エポキシ樹脂を得た。
次いで、4,4’-ジアミノジフェニルスルホンの量を10.1gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
<実施例4>
 4,4’-ジヒドロキシビフェニル5.2gに替えて、カテコールを3.0g添加した以外は実施例1と同様にして、エポキシ樹脂を得た。
 次いで、4,4’-ジアミノジフェニルスルホンの量を10.1gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
 実施例2と同様にして液体クロマトグラフィーにより得られたエポキシ樹脂のチャートより、エポキシモノマーに由来するピーク面積のエポキシ樹脂全体における割合を求めたところ、48%であった。
<比較例1>
 4,4’-ジヒドロキシビフェニル5.2gに替えて、ヒドロキノンを1.6g添加した以外は実施例1と同様にして、エポキシ樹脂を得た。
 次いで、4,4’-ジアミノジフェニルスルホンの量を11.2gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
<比較例2>
 4,4’-ジヒドロキシビフェニル5.2gに替えて、ヒドロキノンを2.8g添加した以外は実施例1と同様にして、エポキシ樹脂を得た。
 次いで、4,4’-ジアミノジフェニルスルホンの量を10.1gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
<比較例3>
 4,4’-ジヒドロキシビフェニル5.2gに替えて、カテコールを1.2g添加した以外は実施例1と同様にして、エポキシ樹脂を得た。
 次いで、4,4’-ジアミノジフェニルスルホンの量を12.2gとした以外は実施例1と同様にして、エポキシ樹脂硬化物を得た。
[動的せん断粘度の測定]
 エポキシ樹脂の動的せん断粘度(Pa・s)は、レオメータ(MCR-301、アントンパール社製)により振動モードで測定した。測定には直径12mmの平行平板プレートを用い、測定条件は、周波数1Hz、ギャップ0.2mm、ひずみ2%とした。
 測定は、エポキシ樹脂を150℃で3分以上放置して溶融させた後、エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施した。降温工程及び昇温工程では、エポキシ樹脂の粘度を1点/℃の間隔で測定し、降温時の動的せん断粘度η’1と昇温時の動的せん断粘度η’2とからη’2/η’1の最大値を計算した。結果を表1に示す。また、実施例1と比較例1で作製したエポキシ樹脂の動的せん断粘度の測定結果のグラフを図1及び図2に示す。
[塗布性の評価]
 エポキシ樹脂の塗布性と流動性を次のように評価した。150℃に加熱したホットプレート上にステンレス板を設置して充分加熱した後、ステンレス板の上にPETフィルムを置き、固定した。次いで、PETフィルムの上にエポキシ樹脂を数g程度載せて、溶融させた。次いで、ホットプレートの温度を100℃まで下げ、同温度で5分ほど放置した。その後、予め100℃に加熱したアプリケータを、ギャップ100μmとして掃引し、エポキシ樹脂をPETフィルム上に引き伸ばした。このときのエポキシ樹脂の塗布性を、下記の評価基準に従って評価した。結果を表1に示す。
 A…エポキシ樹脂が流動性を保ち、均一な外観のまま10cm掃引できる。
 B…エポキシ樹脂が一定程度流動性を保ち、10cm掃引できるが、一部かすれる。
 C…エポキシ樹脂がダマになって均一に掃引できない、又は、粘度が高すぎて10cmを超えて掃引できないか、全く掃引できない。
[破壊じん性値の評価]
 エポキシ樹脂硬化物の破壊じん性の評価の指標として、破壊じん性値(MPa・m1/2)を測定した。試験片の破壊じん性値は、ASTM D5045に基づいて3点曲げ測定を行って算出した。評価装置には、インストロン5948(インストロン社製)を用いた。結果を表1に示す。
[耐熱性の評価]
 エポキシ樹脂硬化物の耐熱性の評価の指標として、ガラス転移温度(Tg、℃)を測定した。試験片のガラス転移温度は、引張りモードによる動的粘弾性測定を行って算出した。測定条件は、周波数10Hz、昇温速度5℃/分、ひずみ0.1%とした。得られた温度―tanδ関係図において、tanδが最大となる温度を、ガラス転移温度とみなした。評価装置には、RSA-G2(ティー・エイ・インスツルメント社製)を用いた。結果を表1に示す。
[X線回折測定]
 エポキシ樹脂硬化物中にスメクチック構造が形成されているか否かを確認するために、X線回折測定を行った。測定条件は、CuKα線を用い、管電圧50kV、管電流300mA、走査速度を1°/分、測定角度を2θ=2~30°とした。評価装置には、株式会社リガク製のX線回折装置を用いた。結果を表1に示す。
 有…2θ=2°~10°の範囲に回折ピークが現れ、スメクチック構造が形成されている。
 無…2θ=2°~10°の範囲に回折ピークが現れず、スメクチック構造が形成されていない。
Figure JPOXMLDOC01-appb-T000010
 表1に示すように、η’2/η’1の最大値が20以下である実施例1~4で作製したエポキシ樹脂は、η’2/η’1の最大値が20を超える比較例1~3で作製したエポキシ樹脂に比べて塗布性に優れていた。
 また、実施例1~4で作製したエポキシ樹脂の硬化物は、いずれも高い破壊じん性値と高いガラス転移温度を示した。

Claims (5)

  1.  メソゲン構造を有するエポキシ化合物を含むエポキシ樹脂であり、
     前記エポキシ樹脂の温度を150℃から30℃まで2℃/分の速度で下降させる降温工程と、前記エポキシ樹脂の温度を30℃から150℃まで2℃/分の速度で上昇させる昇温工程と、をこの順に実施したときに、
     30℃から150℃の温度範囲における、前記降温工程において測定される動的せん断粘度η’1(Pa・s)と、前記昇温工程においてη’1の測定温度と同じ温度で測定される動的せん断粘度η’2(Pa・s)とから得られるη’2/η’1の最大値が20以下である、エポキシ樹脂。
  2.  硬化剤と反応させて硬化させた際にスメクチック構造を硬化物中に形成する、請求項1に記載のエポキシ樹脂。
  3.  請求項1又は請求項2に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
  4.  請求項3に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
  5.  請求項4に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
PCT/JP2016/080629 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 WO2018070051A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2016/080629 WO2018070051A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
CA3040449A CA3040449A1 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
TW106135134A TWI767946B (zh) 2016-10-14 2017-10-13 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
KR1020197011420A KR102345562B1 (ko) 2016-10-14 2017-10-13 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
EP17860947.5A EP3514191B1 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured object, and composite material
US16/341,559 US10800872B2 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
CN201780063273.2A CN109843966B (zh) 2016-10-14 2017-10-13 环氧树脂、环氧树脂组合物、环氧树脂固化物和复合材料
JP2018545083A JPWO2018070534A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
PCT/JP2017/037267 WO2018070534A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020026634A JP7160058B2 (ja) 2016-10-14 2020-02-19 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080629 WO2018070051A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Publications (1)

Publication Number Publication Date
WO2018070051A1 true WO2018070051A1 (ja) 2018-04-19

Family

ID=61905403

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/080629 WO2018070051A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
PCT/JP2017/037267 WO2018070534A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037267 WO2018070534A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Country Status (8)

Country Link
US (1) US10800872B2 (ja)
EP (1) EP3514191B1 (ja)
JP (2) JPWO2018070534A1 (ja)
KR (1) KR102345562B1 (ja)
CN (1) CN109843966B (ja)
CA (1) CA3040449A1 (ja)
TW (1) TWI767946B (ja)
WO (2) WO2018070051A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2020053937A1 (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US12049538B2 (en) 2018-09-10 2024-07-30 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070051A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
EP3514190B1 (en) * 2016-10-14 2021-09-29 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019064545A1 (ja) 2017-09-29 2019-04-04 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019064546A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6642768B2 (ja) * 2017-10-17 2020-02-12 日立化成株式会社 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法
JP7095732B2 (ja) * 2018-02-22 2022-07-05 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
KR20200143356A (ko) * 2018-04-10 2020-12-23 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
TW202020004A (zh) * 2018-08-31 2020-06-01 日商捷恩智股份有限公司 組成物、硬化物、積層體及電子機器
JP7444667B2 (ja) 2020-03-25 2024-03-06 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物および硬化物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065759A1 (ja) * 2011-11-02 2013-05-10 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、配線板、半硬化エポキシ樹脂組成物の製造方法及び硬化エポキシ樹脂組成物の製造方法
WO2015146606A1 (ja) * 2014-03-28 2015-10-01 新日鉄住金化学株式会社 エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951778A (en) * 1958-06-05 1960-09-06 Grace W R & Co High temperature adhesive containing polyepoxide resin mixture
JP2004010762A (ja) 2002-06-07 2004-01-15 Hitachi Ltd エポキシ樹脂,エポキシ樹脂組成物,エポキシ樹脂硬化物及びそれらの製造方法
US20090142981A1 (en) * 2007-12-03 2009-06-04 Velsicol Chemical Corporation Novel Compositions Comprising Structural Isomers Of 1,4-Cyclohexanedimethanol Dibenzoate and Polymer Compositions Containing Same
JP5348740B2 (ja) * 2008-06-23 2013-11-20 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5019272B2 (ja) * 2008-09-30 2012-09-05 Tdk株式会社 エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
WO2011027802A1 (ja) 2009-09-03 2011-03-10 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP5885330B2 (ja) * 2011-07-26 2016-03-15 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物、プリプレグおよびそれらの硬化物
JP5911700B2 (ja) * 2011-11-11 2016-04-27 新日鉄住金化学株式会社 難燃性エポキシ樹脂及び該エポキシ樹脂を必須成分とする組成物、硬化物
JP6102082B2 (ja) * 2012-04-26 2017-03-29 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2016155985A (ja) * 2015-02-26 2016-09-01 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、及びそれらを用いた樹脂シート、プリプレグ、積層板、金属基板、配線板、パワー半導体装置
JP6680351B2 (ja) * 2016-02-25 2020-04-15 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物
CN109415490A (zh) * 2016-06-22 2019-03-01 日立化成株式会社 环氧树脂组合物、固化物和复合材料
EP3514190B1 (en) * 2016-10-14 2021-09-29 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2018070053A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018070051A1 (ja) 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
CA3056564A1 (en) * 2017-03-15 2018-09-20 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JP6642768B2 (ja) 2017-10-17 2020-02-12 日立化成株式会社 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065759A1 (ja) * 2011-11-02 2013-05-10 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、配線板、半硬化エポキシ樹脂組成物の製造方法及び硬化エポキシ樹脂組成物の製造方法
WO2015146606A1 (ja) * 2014-03-28 2015-10-01 新日鉄住金化学株式会社 エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11919995B2 (en) 2018-02-19 2024-03-05 Resonac Corporation Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2020053937A1 (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
CN112673040A (zh) * 2018-09-10 2021-04-16 昭和电工材料株式会社 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料
US20220049046A1 (en) * 2018-09-10 2022-02-17 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
CN112673040B (zh) * 2018-09-10 2024-05-28 株式会社力森诺科 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料
US12049538B2 (en) 2018-09-10 2024-07-30 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material

Also Published As

Publication number Publication date
JPWO2018070534A1 (ja) 2019-06-24
KR20190069441A (ko) 2019-06-19
US20190284332A1 (en) 2019-09-19
CN109843966B (zh) 2022-05-31
WO2018070534A1 (ja) 2018-04-19
CA3040449A1 (en) 2018-04-19
CN109843966A (zh) 2019-06-04
TWI767946B (zh) 2022-06-21
EP3514191A4 (en) 2020-04-15
JP7160058B2 (ja) 2022-10-25
EP3514191B1 (en) 2021-08-04
JP2020079417A (ja) 2020-05-28
US10800872B2 (en) 2020-10-13
KR102345562B1 (ko) 2021-12-29
EP3514191A1 (en) 2019-07-24
TW201821468A (zh) 2018-06-16

Similar Documents

Publication Publication Date Title
JP7160058B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6635201B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6988882B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6775737B2 (ja) エポキシ樹脂組成物、硬化物及び複合材料
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11840600B2 (en) Cured epoxy resin material, epoxy resin composition, molded article, and composite material
JP2019065126A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR102686755B1 (ko) 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR102408630B1 (ko) 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
WO2019198703A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019198158A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020053937A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP