WO2018068583A1 - 一种人工木材及其制备方法 - Google Patents

一种人工木材及其制备方法 Download PDF

Info

Publication number
WO2018068583A1
WO2018068583A1 PCT/CN2017/098277 CN2017098277W WO2018068583A1 WO 2018068583 A1 WO2018068583 A1 WO 2018068583A1 CN 2017098277 W CN2017098277 W CN 2017098277W WO 2018068583 A1 WO2018068583 A1 WO 2018068583A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial wood
parts
lignocellulose
lignin
wood
Prior art date
Application number
PCT/CN2017/098277
Other languages
English (en)
French (fr)
Inventor
孙庆丰
王超
金春德
熊业
Original Assignee
浙江农林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江农林大学 filed Critical 浙江农林大学
Priority to US15/921,015 priority Critical patent/US10557021B2/en
Publication of WO2018068583A1 publication Critical patent/WO2018068583A1/zh
Priority to US16/714,744 priority patent/US11466141B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the field of artificial wood technology, in particular to an artificial wood and a preparation method thereof.
  • the main chemical composition of wood is the material that constitutes the cell wall and intercellular layer of wood. It is composed of three polymer compounds of cellulose, hemicellulose and lignin, and the total amount accounts for more than 90% of wood.
  • wood With the rapid disappearance of petroleum resources and the consumption of petrochemical products and environmental pollution, the world has begun to pay attention to renewable woody biomass resources based on wood. In addition to natural regeneration, wood has many advantages. For example, wood is easy to process, and its strength is higher than that of ordinary metal materials. Air drying is a good thermal and electrical insulating material. Wood has the effect of ultraviolet absorption and infrared reflection. Wood is an elastoplastic material that can be tempered and dehumidified. Therefore, in the future, wood will be an important topic for the study of materials science in the future.
  • wood is mainly used in traditional industries such as paper making, and as the global population increases, the amount of paper used also rises sharply.
  • the present invention provides an artificial wood and a method of preparing the same to provide a high ratio of artificial wood instead of wood.
  • the present invention provides an artificial wood comprising the following components by weight: 35-50 parts of cellulose, 20-35 parts of hemicellulose, and 15-35 parts of lignin.
  • the following parts by weight are included: 42 parts of cellulose, 27 parts of hemicellulose, and 28 parts of lignin.
  • the present invention provides a method of preparing the artificial wood by forming lignin from natural wood and agglutinating lignin with cellulose and hemicellulose to form the artificial wood.
  • the method includes the following steps:
  • Step S1 weighing and mixing the cellulose, hemicellulose and lignin according to a desired quality to form lignocellulose;
  • Step S2 adding the lignocellulose to the ionic liquid and heating and stirring to dissolve it, to obtain a lignocellulose ionic liquid dispersion, wherein the ionic liquid is selected from the following ions at room temperature Any of the liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium chloride, 1 - benzyl-3-methylimidazolium chloride salt and 1-ethyl-3-methylimidazolium phosphate salt, the heating and stirring temperature is 50 ° C -200 ° C, heating and stirring time is 2h-24h;
  • Step S3 the lignocellulose ionic liquid dispersion is washed and replaced with water to obtain a lignocellulose hydrogel, wherein the water comprises deionized water, distilled water or ultrapure water, and the number of times of the cleaning replacement is 1-99 times, each replacement time is 0.5h-99h;
  • Step S4 drying the lignocellulose hydrogel to obtain the artificial wood, wherein the drying treatment comprises any one of critical point drying, freeze drying or supercritical drying, the drying time It is 1h-1000h.
  • the artificial wood provided by the present invention mixes cellulose, hemicellulose and lignin to form raw materials of artificial wood by mimicking the chemical structure of the wood, and the artificial wood has a high specific surface area.
  • the invention also provides a method for preparing artificial wood, which is simple in operation, low in raw material price, and greatly reduces preparation cost.
  • the artificial wood provided by the invention creates a new idea for the recycling of wood materials.
  • FIG. 1 is a flow chart showing a method for preparing artificial wood according to an embodiment of the present invention
  • Example 2 is a scanning electron micrograph of artificial wood provided in Example 1 of the present invention.
  • Fig. 3 is a graph showing stress-strain curves of artificial wood provided in Examples 1-3 of the present invention.
  • Fig. 4 is a graph showing stress-strain curves of artificial wood and natural wood provided in Example 4 of the present invention.
  • the present invention provides an artificial wood comprising the following components by weight: 35-50 parts of cellulose, 20-35 parts of hemicellulose, and 15-35 parts of lignin.
  • components comprising the following parts by weight: 42 parts of cellulose, 27 parts of hemicellulose, and 28 parts of lignin.
  • FIG. 1 is a flow chart showing a method for preparing artificial wood according to an embodiment of the present invention.
  • the present invention provides a method of preparing the artificial wood by forming lignin from natural wood and agglutinating lignin with cellulose and hemicellulose to form the artificial wood. Including the following steps:
  • Step S1 The cellulose, hemicellulose, and lignin are weighed and mixed according to a desired mass to form lignocellulose.
  • Step S2 adding the lignocellulose to the ionic liquid and heating and stirring to dissolve it, thereby obtaining a lignocellulose ionic liquid dispersion.
  • the ionic liquid is selected from any one of the following ionic liquids at room temperature: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium chloride, 1- Allyl-3-methylimidazolium chloride, 1-benzyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium phosphate.
  • the heating and stirring temperature is 50 ° C - 200 ° C
  • the heating and stirring time is 2 h - 24 h.
  • Step S3 washing and replacing the lignocellulose ionic liquid dispersion with water to obtain a lignocellulose hydrogel.
  • the water comprises deionized water, distilled water or ultrapure water.
  • the number of times of cleaning and replacement is 1-99 times, and the time of each replacement is 0.5h-99h.
  • Step S4 drying the lignocellulose hydrogel to obtain the artificial wood.
  • drying treatment comprises any one of critical point drying, freeze drying or supercritical drying.
  • the drying time is from 1 h to 1000 h.
  • the artificial wood provided by the present invention mixes cellulose, hemicellulose and lignin to form raw materials of artificial wood by mimicking the chemical structure of the wood, and the artificial wood has a high specific surface area.
  • the invention also provides a method for preparing artificial wood, which is simple in operation, low in raw material price, and greatly reduces preparation cost.
  • the artificial wood provided by the invention creates a new idea for the recycling of wood materials.
  • the artificial wood prepared by the invention has a specific surface area of 284.7 m 2 /g, low density, low energy consumption, mild conditions and easy operation.
  • the artificial wood provided by the invention is in tissue engineering, controlled release system, sensor, agriculture, water purification, chromatographic analysis, super efficient heat insulation sound insulation material, biomedicine, and also in high-efficiency rechargeable battery, super capacitor, catalyst and carrier, Filter materials, etc. have great application prospects.
  • Natural wood combines cellulose and hemicellulose with lignin to make it a wood with excellent properties, and the invention adopts the chemical structure of natural wood to synthesize artificial wood with high ratio table, and solves the preparation of high specific wood.
  • the material has high energy consumption and complicated production methods.
  • the artificial wood obtained by the invention has a regular shape and a light brown cylinder without obvious damage and deformation, indicating that the high-profile artificial wood has good forming ability.
  • Fig. 2 is a scanning electron micrograph of the artificial wood provided in Example 1 of the present invention.
  • the artificial wood comprises the following components by weight: 35 parts of cellulose, 20 parts of hemicellulose, and 15 parts of lignin.
  • This example prepares artificial wood by the following preparation method:
  • cellulose, hemicellulose, and lignin are weighed and mixed as desired to form lignocellulose.
  • the lignocellulose is added to 1-butyl-3-methylimidazolium hexafluorophosphate and dissolved by heating to obtain a lignocellulose ionic liquid dispersion.
  • the heating and stirring temperature is 50 ° C, and the heating and stirring time is 24 h.
  • the lignocellulosic ionic liquid dispersion is washed and replaced with deionized water to obtain a lignocellulose hydrogel.
  • the number of times of the cleaning replacement is one time, and the time of each replacement is 99 hours.
  • the drying time is 1 h.
  • the artificial wood comprises the following components by weight: 38 parts of cellulose, 23 parts of hemicellulose, and 19 parts of lignin.
  • This example prepares artificial wood by the following preparation method:
  • cellulose, hemicellulose, and lignin are weighed and mixed as desired to form lignocellulose.
  • the lignocellulose is added to 1-butyl-3-methylimidazolium chloride salt and dissolved by heating to obtain a lignocellulose ionic liquid dispersion.
  • the heating and stirring temperature is 90 ° C, and the heating and stirring time is 18 h.
  • the lignocellulose ionic liquid dispersion is washed and replaced with distilled water to obtain a lignocellulose hydrogel.
  • the number of times of the cleaning replacement is 5 times, and the time of each replacement is 90 hours.
  • the lignocellulosic hydrogel is subjected to freeze-drying treatment to obtain the artificial wood.
  • the drying time is 50 h.
  • the artificial wood comprises the following components by weight: 42 parts of cellulose, 27 parts of hemicellulose, and 28 parts of lignin.
  • This example prepares artificial wood by the following preparation method:
  • the lignocellulose is added to 1-allyl-3-methylimidazolium chloride salt and dissolved by heating to obtain a lignocellulose ionic liquid dispersion.
  • the temperature of the heating and stirring is 120 ° C, and the time of heating and stirring is 15 h.
  • the lignocellulosic ionic liquid dispersion is washed and replaced with ultrapure water to obtain a lignocellulose hydrogel.
  • the number of times of the cleaning replacement is 40 times, and the time of each replacement is 80 hours.
  • drying time is 100h.
  • the artificial wood comprises the following components by weight: 44 parts of cellulose, 29 parts of hemicellulose, and 32 parts of lignin.
  • This example prepares artificial wood by the following preparation method:
  • cellulose, hemicellulose, and lignin are weighed and mixed as desired to form lignocellulose.
  • the lignocellulose is added to 1-benzyl-3-methylimidazolium chloride salt and dissolved by heating to obtain a lignocellulose ionic liquid dispersion.
  • the temperature of the heating and stirring is 150 ° C, and the time of heating and stirring is 10 h.
  • the lignocellulosic ionic liquid dispersion is washed and replaced with deionized water to obtain a lignocellulose hydrogel.
  • the number of times of the cleaning replacement is 60 times, and the time of each replacement is 12 hours.
  • the drying time is 500 h.
  • the artificial wood comprises the following components by weight: 50 parts of cellulose, 35 parts of hemicellulose, and 35 parts of lignin.
  • This example prepares artificial wood by the following preparation method:
  • cellulose, hemicellulose, and lignin are weighed and mixed as desired to form lignocellulose.
  • the lignocellulose is added to 1-ethyl-3-methylimidazolium phosphate salt and dissolved by heating to obtain a lignocellulose ionic liquid dispersion.
  • the heating and stirring temperature is 200 ° C, and the heating and stirring time is 5 h.
  • the lignocellulosic ionic liquid dispersion is washed and replaced with ultrapure water to obtain a lignocellulose hydrogel.
  • the number of times of the cleaning replacement is 99 times, and the time of each replacement is 0.5 hours.
  • the drying time is 1000 h.
  • Figure 3 is a stress-strain curve of artificial wood prepared in Examples 1-3 of the present invention. Referring to Fig. 3 and in conjunction with Table 1, it can be seen that the artificial wood prepared by the method of the present invention generally has a high specific surface area.
  • the artificial wood and the natural wood obtained by the present invention were subjected to a compression test to compare the mechanical properties of the two.
  • the artificial wood and natural wood prepared by the fourth embodiment of the present invention, the artificial wood and the natural wood have a cross-sectional dimension of 16 mm ⁇ 16 mm and a length of 270 mm, respectively, as test pieces for the compression test of the grain.
  • the mechanical test of the compressive mechanical properties of wood is based on the 10,000-capacity experimental machine.
  • a stencil compression mold is equipped on the 10,000-capacity experimental machine.
  • the compression speed of the grain was set to 2 mm/min, and the artificial wood and the natural wood were subjected to the grain compression.
  • the experimental data was analyzed by regression analysis, and the regression function function expression between dependent variable and independent variable was established by statistical method.
  • the stress and strain relationship of the wood treated at each stage was calculated by the graphic data analysis software package "S-PLUS".
  • Fig. 4 is a graph showing stress-strain curves of artificial wood and natural wood provided in Example 4 of the present invention.
  • the corresponding stress-strain curves are shown in Figure 4 by measuring the stress and strain values of artificial wood and natural wood. It can be seen that the artificial wood compression test generally showed higher stress than the natural wood under the same strain, and the natural wood broke when the strain was about 1.5% during the test, and the strain exceeded 3%. The damage has been severe (end of test), and the artificial wood of the present invention has not undergone significant damage throughout the test, and it can be seen that the toughness of the bionic wood is significantly higher than that of the natural wood.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Materials Engineering (AREA)

Abstract

一种人工木材,包括如下重量份的组份:纤维素35-50份,半纤维素20-35份,和木质素15-35份。其制备方法通过从天然木材中提取木质素,并将木质素与纤维素以及半纤维素凝集在一起,从而形成该人工木材。通过仿造木材的化学结构,将纤维素、半纤维素和木质素混合形成人工木材的原料,该人工木材具有较高的比表面积。该制备人工木材的方法,操作简单,原料价格低廉,降低制备成本。

Description

一种人工木材及其制备方法 技术领域
本发明涉及人工木材技术领域,具体涉及一种人工木材及其制备方法。
背景技术
木材的主要化学成分是构成木材细胞壁和胞间层的物质,由纤维素、半纤维素和木质素三种高分子化合物组成,一般总量占木材的90%以上。随着石油资源的快速消失和石化产品消耗以及引起的环境污染,使得全世界开始关注以木材为主的可再生的木质生物质资源。木材除了天然可再生外还有诸多优点,如木材易加工,强重比比一般的金属材料高,气干才是良好的热、电绝缘材料,木材有对紫外线吸收和对红外线反射的作用,并且木材是一种可以调温解湿的弹塑性材料。所以将来木材必将是未来材料学的研究重要课题。
但是木材主要还是用于造纸等传统工业,并且随着全球人口的增加,纸张的用量也大幅度的上升。
由于树木本身生长周期的问题,木材的再生利用也是重中之重。对于木质材料的纤维素、木质素等的分离技术已经成熟。所以利用纤维素和半纤维素等重新获得可利用的人工木材就非常重要。
发明内容
针对现有技术中的缺陷,本发明提供一种人工木材及其制备方法,以提供高比表的人工木材,代替木材的使用。
第一方面,本发明提供了一种人工木材,包括如下重量份的组份:纤维素35-50份,半纤维素20-35份,和木质素15-35份。
可选地,包括如下重量份的组份:纤维素42份,半纤维素27份,和木质素28份。
第二方面,本发明提供的制备所述人工木材的方法,通过从天然木材中提取木质素,并将木质素与纤维素以及半纤维素凝集在一起,从而形成所述人工木材。
可选地,包括如下步骤:
步骤S1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素;
步骤S2、将所述木质纤维素加入到离子液体中并加热搅拌使其溶解,获得木质纤维素离子液体分散液,其中,所述离子液体选自以下室温下的离子 液体中的任意一种:1-丁基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑氯盐、1-烯丙基-3-甲基咪唑氯盐、1-苄基-3-甲基咪唑氯盐和1-乙基-3-甲基咪唑磷酸酯盐,所述加热搅拌的温度为50℃-200℃,加热搅拌的时间为2h-24h;
步骤S3、将所述木质纤维素离子液体分散液使用水进行清洗置换,获得木质纤维素水凝胶,其中,所述水包括去离子水、蒸馏水或超纯水,所述清洗置换的次数为1-99次,每次置换时间为0.5h-99h;
步骤S4、对所述木质纤维素水凝胶进行干燥处理,获得所述的人工木材,其中,所述干燥处理包括临界点干燥、冷冻干燥或超临界干燥中的任意一种,所述干燥时间为1h-1000h。
由上述技术方案可知,本发明提供的人工木材,通过仿造木材的化学结构,将纤维素、半纤维素和木质素混合形成人工木材的原料,该人工木材具有较高的比表面积。同时本发明还提供了制备人工木材的方法,该制备方法操作简单,原料价格低廉,大大降低制备成本。本发明所提供的人工木材,为木质材料的循环利用创造了新的思路。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1示出了本发明实施例所提供的一种人工木材的制备方法的流程图;
图2示出了本发明实施例1所提供的人工木材的扫描电子显微镜图;
图3示出了本发明实施例1-3所提供的人工木材的应力-应变曲线图。
图4示出了本发明实施例4所提供的人工木材和天然木材的应力-应变曲线图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
本发明提供了一种人工木材,包括如下重量份的组份:纤维素35-50份,半纤维素20-35份,和木质素15-35份。
其中优选为包括如下重量份的组份:纤维素42份,半纤维素27份,和木质素28份。
图1示出了本发明实施例所提供的一种人工木材的制备方法的流程图。参见图1,本发明提供的制备所述人工木材的方法,通过从天然木材中提取木质素,并将木质素与纤维素以及半纤维素凝集在一起,从而形成所述人工木材。包括如下步骤:
步骤S1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素。
步骤S2、将所述木质纤维素加入到离子液体中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述离子液体选自以下室温下的离子液体中的任意一种:1-丁基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑氯盐、1-烯丙基-3-甲基咪唑氯盐、1-苄基-3-甲基咪唑氯盐和1-乙基-3-甲基咪唑磷酸酯盐。
其中,所述加热搅拌的温度为50℃-200℃,加热搅拌的时间为2h-24h。
步骤S3、将所述木质纤维素离子液体分散液使用水进行清洗置换,获得木质纤维素水凝胶。
其中,所述水包括去离子水、蒸馏水或超纯水。
其中,所述清洗置换的次数为1-99次,每次置换时间为0.5h-99h。
步骤S4、对所述木质纤维素水凝胶进行干燥处理,获得所述的人工木材。
其中,所述干燥处理包括临界点干燥、冷冻干燥或超临界干燥中的任意一种。
其中,所述干燥时间为1h-1000h。
本发明提供的人工木材,通过仿造木材的化学结构,将纤维素、半纤维素和木质素混合形成人工木材的原料,该人工木材具有较高的比表面积。同时本发明还提供了制备人工木材的方法,该制备方法操作简单,原料价格低廉,大大降低制备成本。本发明所提供的人工木材,为木质材料的循环利用创造了新的思路。
本发明制备的人工木材比表面积为284.7m2/g,密度低,材料能耗低,条件温和,易于操作。
本发明提供的人工木材在组织工程、控释***、传感器、农业、水净化、色谱分析、超级高效隔热隔声材、生物医药,还可在高效可充电电池、超级电容器、催化剂及载体、过滤材料等有巨大的应用前景。
天然的木材由于木质素将纤维素、半纤维素结合起来使得其成为具有优异性能的木材,而本发明采用仿天然木材的化学结构合成具有高比表的人工木材,解决了制备高比表木质材料存在的能耗高和制作方法复杂的问题。
本发明所获得的人工木材,形状规整,呈浅褐色圆柱体,且无明显的破损与变形,表明这类高比表人工木材具有良好的成型能力。
图2示出了本发明实施例1所提供的人工木材的扫描电子显微镜图。参 见图2,本发明提供的人工木材由交联的三维网络构成。
下面针对本发明提供的人工木材及其制备方法,提供了以下多个实施例。
实施例1
本实施例中,人工木材,包括如下重量份的组份:纤维素35份,半纤维素20份,和木质素15份。
本实施例通过如下制备方法制备人工木材:
1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素。
2、将所述木质纤维素加入到1-丁基-3-甲基咪唑六氟磷酸盐中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述加热搅拌的温度为50℃,加热搅拌的时间为24h。
3、将所述木质纤维素离子液体分散液使用去离子水进行清洗置换,获得木质纤维素水凝胶。
其中,所述清洗置换的次数为1次,每次置换时间为99h。
4、对所述木质纤维素水凝胶进行临界点干燥处理,获得所述的人工木材。
其中,所述干燥时间为1h。
实施例2
本实施例中,人工木材,包括如下重量份的组份:纤维素38份,半纤维素23份,和木质素19份。
本实施例通过如下制备方法制备人工木材:
1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素。
2、将所述木质纤维素加入到1-丁基-3-甲基咪唑氯盐中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述加热搅拌的温度为90℃,加热搅拌的时间为18h。
3、将所述木质纤维素离子液体分散液使用蒸馏水进行清洗置换,获得木质纤维素水凝胶。
其中,所述清洗置换的次数为5次,每次置换时间为90h。
4、对所述木质纤维素水凝胶进行冷冻干燥处理,获得所述的人工木材。
其中,所述干燥时间为50h。
实施例3
本实施例中,人工木材,包括如下重量份的组份:纤维素42份,半纤维素27份,和木质素28份。
本实施例通过如下制备方法制备人工木材:
1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成 木质纤维素。
2、将所述木质纤维素加入到1-烯丙基-3-甲基咪唑氯盐中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述加热搅拌的温度为120℃,加热搅拌的时间为15h。
3、将所述木质纤维素离子液体分散液使用超纯水进行清洗置换,获得木质纤维素水凝胶。
其中,所述清洗置换的次数为40次,每次置换时间为80h。
4、对所述木质纤维素水凝胶进行超临界干燥处理,获得所述的人工木材。
其中,所述干燥时间为100h。
实施例4
本实施例中,人工木材,包括如下重量份的组份:纤维素44份,半纤维素29份,和木质素32份。
本实施例通过如下制备方法制备人工木材:
1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素。
2、将所述木质纤维素加入到1-苄基-3-甲基咪唑氯盐中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述加热搅拌的温度为150℃,加热搅拌的时间为10h。
3、将所述木质纤维素离子液体分散液使用去离子水进行清洗置换,获得木质纤维素水凝胶。
其中,所述清洗置换的次数为60次,每次置换时间为12h。
4、对所述木质纤维素水凝胶进行临界点干燥处理,获得所述的人工木材。
其中,所述干燥时间为500h。
实施例5
本实施例中,人工木材,包括如下重量份的组份:纤维素50份,半纤维素35份,和木质素35份。
本实施例通过如下制备方法制备人工木材:
1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素。
2、将所述木质纤维素加入到1-乙基-3-甲基咪唑磷酸酯盐中并加热搅拌使其溶解,获得木质纤维素离子液体分散液。
其中,所述加热搅拌的温度为200℃,加热搅拌的时间为5h。
3、将所述木质纤维素离子液体分散液使用超纯水进行清洗置换,获得木质纤维素水凝胶。
其中,所述清洗置换的次数为99次,每次置换时间为0.5h。
4、对所述木质纤维素水凝胶进行超临界干燥处理,获得所述的人工木材。
其中,所述干燥时间为1000h。
针对本发明实施例1-3所制备的人工木材,分别取四个试样进行压缩试验性能研究,其具体参数见表1。
表1实施例1-3所制备的人工木材的压缩试验性能
Figure PCTCN2017098277-appb-000001
图3是本发明实施例1-3中所制备的人工木材的应力-应变曲线。参见图3并结合表1,可以看出,本发明的制备人工木材的方法,所制备获得的人工木材,普遍具有较高的比表面积。
对本发明所获得的人工木材和天然木材分别进行顺纹压缩试验,以对比二者的力学性能。取本发明实施例4所制备的人工木材和天然木材,人工木材和天然木材的横截面尺寸为16mm×16mm,长度为270mm,分别作为顺纹压缩试验试件。
木材顺纹压缩力学试验采用万能力学实验机,为了确保压杆稳定性,在万能力学实验机上配以顺纹压缩模具。为了获得试样的最大顺纹压缩率和比较合适的用于多维弯曲的顺纹压缩率,设定顺纹压缩速度为2mm/min,分别对人工木材和天然木材进行顺纹压缩。
试验数据采用回归分析法,利用统计方法建立因变量与自变量之间的回归关系函数表达式。通过图形数据分析软件包“S-PLUS”计算各阶段处理木材的应力、应变关系。
图4示出了本发明实施例4所提供的人工木材和天然木材的应力-应变曲线图。参见图4,通过测定人工木材和天然木材的应力和应变值,其对应的应力-应变曲线见图4。可以看出,人工木材压缩测试时在相同应变下总体表现出了比天然木材更高的应力,并且在测试过程时,在应变为1.5%左右时,天然木材出现了破裂,应变超过3%时已破损严重(测试结束),而本发明的人工木材在整个测试过程中,没有发生明显的破损,可以看仿生木材的韧性明显高于天然木材。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (4)

  1. 一种人工木材,其特征在于,包括如下重量份的组份:纤维素35-50份,半纤维素20-35份,和木质素15-35份。
  2. 根据权利要求1所述的人工木材,其特征在于,包括如下重量份的组份:纤维素42份,半纤维素27份,和木质素28份。
  3. 一种制备权利要求1或2所述的人工木材的方法,其特征在于,通过从天然木材中提取木质素,并将木质素与纤维素以及半纤维素凝集在一起,从而形成所述人工木材。
  4. 根据权利要求3所述的制备人工木材的方法,其特征在于,包括如下步骤:
    步骤S1、将所述纤维素、半纤维素和木质素按所需质量进行称量并混合形成木质纤维素;
    步骤S2、将所述木质纤维素加入到离子液体中并加热搅拌使其溶解,获得木质纤维素离子液体分散液,其中,所述离子液体选自以下室温下的离子液体中的任意一种:1-丁基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑氯盐、1-烯丙基-3-甲基咪唑氯盐、1-苄基-3-甲基咪唑氯盐和1-乙基-3-甲基咪唑磷酸酯盐,所述加热搅拌的温度为50℃-200℃,加热搅拌的时间为2h-24h;
    步骤S3、将所述木质纤维素离子液体分散液使用水进行清洗置换,获得木质纤维素水凝胶,其中,所述水包括去离子水、蒸馏水或超纯水,所述清洗置换的次数为1-99次,每次置换时间为0.5h-99h;
    步骤S4、对所述木质纤维素水凝胶进行干燥处理,获得所述的人工木材,其中,所述干燥处理包括临界点干燥、冷冻干燥或超临界干燥中的任意一种,所述干燥时间为1h-1000h。
PCT/CN2017/098277 2016-10-12 2017-08-21 一种人工木材及其制备方法 WO2018068583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/921,015 US10557021B2 (en) 2016-10-12 2018-03-14 Artificial timber and method for preparing artificial timber
US16/714,744 US11466141B2 (en) 2016-10-12 2019-12-15 Artificial timber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610890490.6 2016-10-12
CN201610890490.6A CN106493827B (zh) 2016-10-12 2016-10-12 一种人工木材及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/921,015 Continuation-In-Part US10557021B2 (en) 2016-10-12 2018-03-14 Artificial timber and method for preparing artificial timber

Publications (1)

Publication Number Publication Date
WO2018068583A1 true WO2018068583A1 (zh) 2018-04-19

Family

ID=58293835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098277 WO2018068583A1 (zh) 2016-10-12 2017-08-21 一种人工木材及其制备方法

Country Status (3)

Country Link
US (2) US10557021B2 (zh)
CN (1) CN106493827B (zh)
WO (1) WO2018068583A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493827B (zh) * 2016-10-12 2018-07-20 浙江农林大学 一种人工木材及其制备方法
CN115505352A (zh) * 2022-10-28 2022-12-23 西南林业大学 一种超支化纤维素基木材胶黏剂制备方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067399A (zh) * 1991-06-05 1992-12-30 蛇口招商无胶人造板新技术有限公司 纤维木素原料制造无胶人造板的工业方法及设备
CN102114654A (zh) * 2010-01-06 2011-07-06 仇峰 一种人造木材和一种人造木材的制造方法
CN102443188A (zh) * 2011-10-26 2012-05-09 东北林业大学 利用离子液体制备非晶态纤维素气凝胶的方法
CN102702566A (zh) * 2012-06-20 2012-10-03 东北林业大学 一种利用离子液体制备木质纤维素气凝胶的方法
CN103146017A (zh) * 2013-03-06 2013-06-12 东北林业大学 一种快速溶解木质纤维素制备气凝胶的方法
CN103406967A (zh) * 2013-07-30 2013-11-27 有机木材集团有限公司 基于木素胶的制备无甲醛人造板的方法
CN103556518A (zh) * 2013-10-22 2014-02-05 广西金麦克生物科技有限公司 甘蔗叶和/或甘蔗梢加工产品、其制备方法和应用
US20150233057A1 (en) * 2014-02-18 2015-08-20 Api Intellectual Property Holdings, Llc Lignin-coated cellulose fibers from lignocellulosic biomass
CN105235044A (zh) * 2014-07-09 2016-01-13 高云 一种木基棉花秸秆复合人造板的制造方法
CN106493827A (zh) * 2016-10-12 2017-03-15 浙江农林大学 一种人工木材及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611171B2 (ja) * 1991-09-30 1997-05-21 工業技術院長 生分解性高分子材料
JPH10212690A (ja) * 1997-01-23 1998-08-11 Oji Paper Co Ltd 低密度体
US6124384A (en) * 1997-08-19 2000-09-26 Mitsui Chemicals, Inc. Composite resin composition
MXPA03009787A (es) * 2001-04-26 2005-03-07 Univ Washington Material mixto de madera - plastico celular de baja densidad y procedimiento para formacion.
GB0210215D0 (en) * 2002-05-03 2002-06-12 K C Shen Internat Ltd Method for making dimensionally stable composite products from lignocelluloses
US8187423B1 (en) * 2006-05-09 2012-05-29 The United States Of America As Represented By The Secretary Of Agriculture Fiber reinforced composites
CN201095152Y (zh) * 2007-09-11 2008-08-06 天津天同新型建材有限公司 人造复合板材
CN101225215A (zh) * 2007-12-05 2008-07-23 青岛科技大学 含水凝胶不饱和聚酯树脂阻燃复合材料及其制备方法
CN101676078A (zh) * 2008-09-19 2010-03-24 斯戴尔有限责任上市公司 人造木材产品及其生产方法
US8772406B2 (en) * 2009-08-06 2014-07-08 Robert J. Linhardt Synthetic wood composite
CN101805461A (zh) * 2010-03-15 2010-08-18 南京工业大学 一种生物基复合材料及其制备方法和应用
CN102501525B (zh) * 2011-10-20 2014-09-17 深圳市石头记环保科技有限公司 一种人造木材及其制造方法
CN102561082B (zh) * 2012-03-01 2013-12-11 北京林业大学 从木质纤维原料提取半纤维素、纤维素和木质素的方法
US20140342124A1 (en) * 2012-10-04 2014-11-20 Dawid Zambrzycki Wood-like composite materials and methods of preparation thereof
US9550871B2 (en) * 2012-11-09 2017-01-24 Wisconsin Alumni Research Foundation Sustainable hybrid organic aerogels and methods and uses thereof
BR112015012968A2 (pt) * 2012-12-07 2017-09-12 Danisco Us Inc composições e métodos de uso
CN103131038B (zh) * 2013-03-07 2014-09-24 东北林业大学 一种木质纤维素泡沫材料的制备方法
CN103554548B (zh) * 2013-10-24 2015-12-02 华南理工大学 一种木质纤维生物质气凝胶的制备方法
CN105085688B (zh) * 2015-03-19 2018-03-16 北京林业大学 水溶性纤维素的制备方法及由该方法制备的水溶性纤维素
JP2016204277A (ja) * 2015-04-17 2016-12-08 真庭バイオケミカル株式会社 リグニンの抽出方法
CN105484083B (zh) * 2015-11-22 2017-05-03 北京化工大学 木质纤维素组分分离的绿色工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067399A (zh) * 1991-06-05 1992-12-30 蛇口招商无胶人造板新技术有限公司 纤维木素原料制造无胶人造板的工业方法及设备
CN102114654A (zh) * 2010-01-06 2011-07-06 仇峰 一种人造木材和一种人造木材的制造方法
CN102443188A (zh) * 2011-10-26 2012-05-09 东北林业大学 利用离子液体制备非晶态纤维素气凝胶的方法
CN102702566A (zh) * 2012-06-20 2012-10-03 东北林业大学 一种利用离子液体制备木质纤维素气凝胶的方法
CN103146017A (zh) * 2013-03-06 2013-06-12 东北林业大学 一种快速溶解木质纤维素制备气凝胶的方法
CN103406967A (zh) * 2013-07-30 2013-11-27 有机木材集团有限公司 基于木素胶的制备无甲醛人造板的方法
CN103556518A (zh) * 2013-10-22 2014-02-05 广西金麦克生物科技有限公司 甘蔗叶和/或甘蔗梢加工产品、其制备方法和应用
US20150233057A1 (en) * 2014-02-18 2015-08-20 Api Intellectual Property Holdings, Llc Lignin-coated cellulose fibers from lignocellulosic biomass
CN105235044A (zh) * 2014-07-09 2016-01-13 高云 一种木基棉花秸秆复合人造板的制造方法
CN106493827A (zh) * 2016-10-12 2017-03-15 浙江农林大学 一种人工木材及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11662899B2 (en) 2018-02-09 2023-05-30 Sas Woodoo Touch detection device with touch interface made of composite material

Also Published As

Publication number Publication date
CN106493827B (zh) 2018-07-20
US20200115531A1 (en) 2020-04-16
US10557021B2 (en) 2020-02-11
US20180201765A1 (en) 2018-07-19
CN106493827A (zh) 2017-03-15
US11466141B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2018068583A1 (zh) 一种人工木材及其制备方法
Arsène et al. Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites
Sari et al. Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light
CN105566502B (zh) 耐水性可再生纳米纤维素薄膜的制备方法
CN111395025A (zh) 一种木质纤维素生物质综合利用方法
Chin et al. Ball milling pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB) fibres for the production of levulinic acid
CN101285058B (zh) 木薯渣工业用复合酶制剂
Guo et al. Production of recycled cellulose fibers from waste paper via ultrasonic wave processing
CN105622980A (zh) 一种LiCl/DMSO溶解的木质纤维素制备木质纤维凝胶材料的方法
Macías-Almazán et al. Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust
Zhang et al. Effects of ultrasonic vibration-assisted pelleting on chemical composition and sugar yield of corn stover and sorghum stalk
CN106702800A (zh) 一种用质子型离子液体去除秸秆木质素和半纤维素的方法
Sievers et al. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate
CN105713050B (zh) 一种选择性降解玉米芯半纤维素提高木糖得率的方法
Liu et al. Exploring the effect of lignin on the chemical structure and microstructure of Chinese fir wood by segmental delignification
Liu et al. Preparation of bamboo-epoxy resin materials with microwave assistance
Huang et al. Eco-friendly, high-utilization, and easy-manufacturing bamboo units for engineered bamboo products: Processing and mechanical characterization
Li et al. Morphology, chemical composition and thermal stability of bamboo parenchyma cells and fibers isolated by different methods
CN103554534B (zh) 一种木质纤维生物质薄膜的制备方法
Manorach et al. Optimization of sub-critical water pretreatment for enzymatic hydrolysis of sugarcane bagasse
Brazdausks et al. Evaluation of cellulose content in hemp shives after salt catalyzed hydrolysis
Chen et al. Tunable physical-mechanical properties of eco-friendly and sustainable processing bamboo self-bonding composites by adjusting parenchyma cell content
CN109161031B (zh) 一种基于稀酸预浸渍的高效分离木质素的方法
CN106809832B (zh) 一种用棉秸秆制备高比表面多级孔活性炭的预处理方法
Zhang et al. Mechanical and Physical Properties of Regenerated Biomass Composite Films from Lignocellulosic Materials in Ionic Liquid.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860023

Country of ref document: EP

Kind code of ref document: A1