WO2018068578A1 - 一种融合网络的分流方法和装置 - Google Patents

一种融合网络的分流方法和装置 Download PDF

Info

Publication number
WO2018068578A1
WO2018068578A1 PCT/CN2017/097498 CN2017097498W WO2018068578A1 WO 2018068578 A1 WO2018068578 A1 WO 2018068578A1 CN 2017097498 W CN2017097498 W CN 2017097498W WO 2018068578 A1 WO2018068578 A1 WO 2018068578A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
change
rate
network
state
Prior art date
Application number
PCT/CN2017/097498
Other languages
English (en)
French (fr)
Inventor
贺胜洪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018068578A1 publication Critical patent/WO2018068578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application relates to, but is not limited to, wireless communication technologies, and in particular, to a shunting method and apparatus for a converged network.
  • LTE Long Term Evolution
  • 5G Fifth generation mobile communication technology
  • WLAN wireless LAN
  • the embodiment of the present invention provides a method and a device for distributing a converged network.
  • the terminal dynamically selects a transmission link to achieve dynamic data distribution.
  • the embodiment of the present application provides a method for distributing a convergence network, where the method includes:
  • the current mobile state of the terminal is a relatively static state, indicating that the terminal transmits over the first network link, and scheduling the first network link to transmit the data flow of the terminal;
  • the terminal When the current mobile state of the terminal is a high-speed motion state, the terminal is instructed to transmit through the second network link, and the second network link is scheduled to transmit the data flow of the terminal.
  • the mobile state of the terminal may be characterized by a rate of change of received signal strength (RSSI) of the terminal.
  • RSSI received signal strength
  • the mobile state of the terminal may be characterized by an offset change rate of the locked position of the terminal.
  • the mobile state of the terminal may be characterized by a rate of change of reference signal received power (RSRP) of the terminal.
  • RSRP reference signal received power
  • the current mobile state of the monitoring terminal may include:
  • the rate of change of the RSSI is characterized by an absolute value of a change amount of the RSSI in a preset time
  • the current mobile state of the monitoring terminal may include:
  • an offset change rate of the lock position is characterized by an absolute value of an offset variable of the lock position within a preset time
  • the current mobile state of the monitoring terminal may include:
  • the current moving state of the end is a high speed motion state.
  • the first network link may be a WLAN; the second network link may be a cellular mobile network.
  • the indicating the terminal is transmitted by using the first network link, and the method may include:
  • the scheduling the data flow of the first network link transmission terminal may include:
  • the data of the terminal is passed through the GPRS Tunneling Protocol (GTP-U) at the Packet Data Aggregation Protocol (PDCP) layer and sent to the WLAN side network element (WT) using User Datagram Protocol (UDP).
  • GTP-U GPRS Tunneling Protocol
  • PDCP Packet Data Aggregation Protocol
  • WT WLAN side network element
  • UDP User Datagram Protocol
  • the indicating that the terminal is transmitted by using the second network link may include:
  • the scheduling the data flow of the second network link transmission terminal may include:
  • the data of the terminal is sent to the terminal through the eNodeB protocol layer at the PDCP layer.
  • the embodiment of the present application provides a traffic distribution device, where the device includes: a monitoring module, a first indication scheduling module, and a second indication scheduling module;
  • the monitoring module is configured to monitor a current mobile state of the terminal, and trigger the first indication scheduling module when the current mobile state of the terminal is a relatively static state, when the current mobile state of the terminal is a high-speed motion state Triggering the second indication scheduling module;
  • the first indication scheduling module is configured to instruct the terminal to transmit through the first network link, and schedule the first network link to transmit the data stream of the terminal;
  • the second indication scheduling module is configured to instruct the terminal to transmit through the second network link, and schedule the second network link to transmit the data stream of the terminal.
  • the mobile state of the terminal may be characterized by a rate of change of the RSSI of the terminal, a rate of change of the locked position of the terminal, or a rate of change of the RSRP of the terminal.
  • the monitoring module can be configured to:
  • RSSI or the locked position of the terminal or the rate of change of the RSRP Monitoring the RSSI or the locked position of the terminal or the rate of change of the RSRP; wherein the RSSI or the locked position or the rate of change of the RSRP is characterized by an absolute value of the RSSI or the locked position or the amount of change of the RSRP in a preset time;
  • the first network link may be a WLAN; the second network link may be a cellular mobile network.
  • the first indication scheduling module may be configured to:
  • the data of the terminal is passed through the GTP-U at the PDCP layer, and is sent to the WLAN side network element (WT) using UDP.
  • WT WLAN side network element
  • the second indication scheduling module may be configured to:
  • the data of the terminal is sent to the terminal through the eNodeB protocol layer at the PDCP layer.
  • the embodiment of the present application further provides a computer readable medium storing a shunting program of a converged network, where the shunting program is executed by a processor to implement the step of the shunting method of the converged network of the first aspect.
  • the embodiment of the present application provides a method and a device for distributing a convergence network, and determining a transmission link used by the terminal according to a mobile state of the terminal, so that the terminal dynamically selects a transmission link in a scenario of multiple network convergence. , to achieve dynamic shunting of data.
  • FIG. 1 is a schematic flowchart of a method for distributing a convergence network according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a current mobile state of a monitoring terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for distributing a convergence network according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for distributing a convergence network according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another method for distributing a convergence network according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a shunt device of a converged network according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another shunt device of a converged network according to an embodiment of the present disclosure.
  • the embodiment of the present application determines a corresponding network transmission link by monitoring a mobile state of the terminal.
  • FIG. 1 is a schematic flowchart of a method for offloading a converged network according to an embodiment of the present application. As shown in FIG. 1 , the method for offloading a converged network provided in this embodiment may include:
  • S101 Monitor a current mobile state of the terminal.
  • the rate of change of the Received Signal Strength Indication (RSSI) of the terminal may be selected to characterize the mobile state of the terminal, or the offset position of the terminal may also be selected.
  • the rate of change is used to characterize the mobile state of the terminal, or the rate of change of the Reference Signal Receiving Power (RSRP) of the terminal may be used to characterize the mobile state of the terminal.
  • RSRP Reference Signal Receiving Power
  • the terminal is in a relatively static state or a fast moving state, and the like. It should be noted that those skilled in the art may also select other network parameters of the terminal to describe the mobile state according to the application scenario and the actual situation, which is not described in this embodiment.
  • the first network link may be a WLAN; and the second network link may be a cellular mobile network.
  • monitoring the current mobile state of the terminal may include steps S1011 to S1014:
  • S1011 Monitor the rate of change of the RSSI of the terminal; where the rate of change of the RSSI is represented by an absolute value of the amount of change of the RSSI in the preset time;
  • S1012 Compare a rate of change of the RSSI of the terminal with a preset reference value
  • step S1011 when it is detected that the RSSI of the terminal changes from R1 to R2 within T seconds, the RSSI change rate L of the terminal is:
  • the statistical value of the RSSI rate of change L of the terminal may not be based on a single RSSI measurement.
  • both R1 and R2 may be the average after multiple statistics.
  • the RSSI value of the u group is taken before the RSSI change: U0, U1, ... Uu; the RSSI value of the V group after the RSSI change: V0, V1, ... Vv Can know:
  • the first network link is a WLAN; the second network link is an LTE network, and the foregoing U0, U1, ... Uu and V0, V1, ... Vv can be used in a WLAN and LTE network convergence communication system.
  • the terminal report is configured to extract the WLAN conference threshold. For example, the RSSI information of the BEACON in the WLAN may be extracted, or the RSSI information in the REQUEST message of the terminal in the WLAN may be extracted, or the RSSI information of the BEACON of the terminal in the WLAN and the RSSI in the REQUEST message of the terminal in the WLAN may be extracted.
  • the equalization value of the information is obtained, which is not described in this embodiment.
  • the current mobile state of the monitoring terminal may include:
  • an offset change rate of the lock position is characterized by an absolute value of an offset variable of the lock position within a preset time
  • the current mobile state of the monitoring terminal may include:
  • the preset reference value may be dynamically set and changed according to the scenario of the application, which is not described in this embodiment.
  • the terminal may be initialized by default to perform link transmission over the mobile cellular network.
  • the indicating that the terminal is transmitted by using the first network link, as described in step S102 may include:
  • the scheduling the data flow of the first network link transmission terminal in step S102 may include:
  • the data of the terminal is sent to the WLAN side network element (WT, WLAN Termination) by using the GPRS Tunneling Protocol (GTP-U) and using the User Datagram Protocol (UDP).
  • WT WLAN side network element
  • GTP-U GPRS Tunneling Protocol
  • UDP User Datagram Protocol
  • the offload anchor is in the PDCP layer of the evolved base station (eNodeB, Evolved Node B)
  • the data of the terminal is passed through the GTP-U at the PDCP layer, and is sent to the WT by using the UDP protocol, that is, the data of the terminal.
  • the PDCP Protocol Data Unit (PDU) is offloaded to the Xw interface.
  • the indicating that the terminal is transmitted by using the second network link may include:
  • the scheduling the data flow of the second network link transmission terminal in step S103 may include:
  • the data of the terminal is sent to the terminal through the eNodeB protocol layer at the PDCP layer.
  • the device that implements the technical solution of the embodiment may be disposed on the eNodeB. Therefore, the technical solution of the embodiment may be implemented by using the eNodeB with the device.
  • This embodiment provides a method for offloading a converged network, monitors the mobile state of the terminal by monitoring the rate of change of the RSSI of the terminal, and determines a corresponding network transmission link; thereby implementing terminal dynamics in a plurality of network convergence scenarios.
  • the transmission link is selected to achieve dynamic offloading of data.
  • FIG. 3 is a schematic flowchart of a method for distributing a convergence network according to an embodiment of the present disclosure. Taking the RSSI of the terminal as an example, as shown in FIG. 3, the method for distributing the converged network provided in this embodiment may be applied to the eNodeB, and the process may include:
  • the user equipment (UE, User Equipment) is transmitted by default using the LTE network.
  • the first network link is a WLAN
  • the second network link is an LTE network in a cellular mobile network.
  • the converged anchor based on the converged network is considered at the PDCP layer of the eNodeB.
  • the time point for initializing the UE may be located after the PDCP layer initialization time point of the eNodeB.
  • S304 preset a change rate reference value of the RSSI of the UE
  • the rate of change of the RSSI of the UE may be an absolute value of the amount of change before and after the RSSI per unit time.
  • the reference value may be labeled A.
  • the reference value A can be dynamically set and changed based on the flexibility of the WLAN and cellular technology network convergence communication offload.
  • S306 Monitor a rate of change of the RSSI of the UE.
  • the rate of change of the RSSI of the UE may be used to measure the RSSI change state of the UE.
  • the RSSI of the UE may be extracted from the WLAN conference threshold configured by the UE in the WLAN and the cellular technology network convergence communication system; for example, the RSSI information of the BEACON in the WLAN may be extracted; or the RSSI information of the REQUEST of the UE in the WLAN may be extracted. Or extracting the RSSI information in the BEACON of the UE in the WLAN and the RSSI information in the REQUEST of the UE in the WLAN, and synthesizing, and obtaining an equalization value.
  • the RSSI change rate is the absolute value of the RSSI before and after the unit time. Therefore, when it is detected that the RSSI of the UE changes from R1 to R2 within T seconds, the rate of change of the RSSI of the UE can be obtained by:
  • the statistical value of the RSSI rate of change L of the terminal may not be based on a single RSSI measurement.
  • both R1 and R2 may be the average after multiple statistics.
  • the RSSI value of the u group is taken before the RSSI change: U0, U1, ... Uu; the RSSI value of the V group after the RSSI change: V0, V1, ... Vv Can know:
  • the first network link is a WLAN; the second network link is a cellular technology network, and the foregoing U0, U1, ... Uu and V0, V1, ... Vv can be a fused communication system from the WLAN and the LTE network.
  • the endpoint report in the configuration is extracted from the WLAN conference threshold.
  • the RSSI information of the BEACON in the WLAN may be extracted, or the RSSI information in the REQUEST message of the terminal in the WLAN may be extracted, or the RSSI information of the BEACON of the terminal in the WLAN and the RSSI in the REQUEST message of the terminal in the WLAN may be extracted.
  • the equilibrium value of the information is obtained Taken this example, the description will not be repeated.
  • the UE's RSSI change rate value L is compared with the UE's RSSI change rate reference value A; if L is greater than A, then go to step S310; if L is less than A, then go to step S312;
  • L is greater than A, it is determined that the current mobile state of the UE is a high-speed motion state.
  • the LTE network is preferably used for data transmission of the UE; if L is smaller than A, the current mobile state of the UE is determined to be relatively static. At this time, it is preferred that the WLAN network performs data transmission for the UE.
  • S310 notify the UE to access the fused network by using the LTE network at the next moment, and schedule the network side to transmit the data stream of the UE by using the LTE link.
  • the notification path for the UE may be performed by the transmission link used by the UE at the current time. For example, if the UE is currently in the default initialization state, the notification is performed by using the LTE network link that is initialized by default; if the UE is currently in the non-default state, the notification is performed by using the transmission link of the current UE;
  • the UE data can be accessed to the eNodeB protocol layer at the PDCP layer and sent to the terminal.
  • S312 The UE is notified to use the WLAN network to access the fused network at the next moment; and the network side is configured to transmit the data stream of the UE by using the WLAN link.
  • the notification path for the UE may be performed by using a transmission link used by the UE at the current time;
  • the UE data can be transmitted to the WT at the PDCP layer and transmitted to the WT by using UDP, that is, the PDCP PDU is offloaded to the Xw interface.
  • the detailed flow of the shunting method of the converged network is described.
  • the monitoring state of the terminal RSSI is monitored to monitor the mobile state of the terminal, and the corresponding network transmission link is determined; thereby implementing in a plurality of network convergence scenarios.
  • the terminal dynamically selects the transmission link to achieve data movement. State shunt.
  • FIG. 4 is a schematic flowchart diagram of another method for distributing a convergence network according to an embodiment of the present disclosure.
  • the method for distributing the convergence network provided by this embodiment may include:
  • S401 Initialize access to the UE by default using 5G technology network transmission.
  • S402 Reference value of an offset change rate of the locked position of the preset access UE.
  • the offset change rate of the locked position of the access UE is an absolute value of the amount of change before and after the locked position of the UE in a unit time; the reference value may be H.
  • the reference values can be dynamically set and changed.
  • S403 Detect an offset change state of the locked position of the access UE in real time.
  • the offset change state of the locked position is measured by the relative rate of change of the locked position of the access UE.
  • the relative change rate of the locked position of the access UE is an absolute value of the amount of change before and after the locked position of the access UE in a unit time.
  • the locked location monitoring of the access UE can be obtained by Mobile Edge Computing (MEC).
  • the offset relative change rate of the locked position of the access UE is an absolute value of the amount of change before and after the lock position of the unit time. For example, it is detected that the locked position of an access UE changes from L1 to L2 in T seconds, and the relative change rate Y of the locked position of the access UE can be obtained by:
  • the relative rate of change is based on a locked location change state statistic rather than a single lock location.
  • L1 and L2 take the average value after multiple statistics; for example, the initial lock position takes the e-group lock position value U0, U1, ..., Ue, and the lock position after the change takes the f-group lock position value, V0. , V1,...,Vf, then
  • U0, U1, ..., Ue and V0, V1, ..., Vf can be obtained by MEC calculation.
  • S406 Notifying the accessing UE to transmit the access converged network by using the 5G technology network link at the next moment, and scheduling the network side to transmit the data stream of the access UE by using the 5G technology network link at the next moment.
  • the notification path for accessing the UE may be performed by using a transmission link used by the UE at the current time. For example, if the UE is currently in the default initialization state, the notification is performed through the default set 5G network link; if the UE is currently in the non-default state, the current access link of the access UE is used for notification.
  • the network side may be scheduled to use the corresponding edge node link in the 5G technology network corresponding to the access UE to transmit the data stream of the access UE.
  • the transmission link scheduling module schedules the network side to transmit the data stream of the access UE by using the WLAN link at the next moment, and the scheduling network side transmits the data stream of the access UE by using the WLAN link at the next moment.
  • the notification path for accessing the UE may be performed by using a transmission link used by the UE at the current time. For example, if the UE is currently in the default initialization state, the notification is performed through the default set 5G network link; if the UE is currently in the non-default state, the current access link of the access UE is used for notification.
  • the shunting method of the converged network monitors the mobile state of the terminal by monitoring the rate of change of the locked position of the terminal, and determines the corresponding network transmission link; thereby implementing in a plurality of network convergence scenarios.
  • the terminal dynamically selects the transmission link to achieve dynamic offloading of data.
  • FIG. 5 is a schematic flowchart of another method for distributing a convergence network according to an embodiment of the present disclosure.
  • the method for distributing the converged network provided in this embodiment may be applied to the eNodeB, and includes the following steps:
  • the user equipment (UE, User Equipment) is transmitted by default using the LTE network.
  • the first network link is a WLAN
  • the second network link is an LTE network in a cellular mobile network.
  • the converged anchor based on the converged network is considered at the PDCP layer of the eNodeB.
  • the time point for initializing the UE may be located after the PDCP layer initialization time point of the eNodeB.
  • S504 preset a change rate reference value of the RSRP of the UE;
  • the rate of change of the RSRP of the UE may be an absolute value of the amount of change before and after the RSRP per unit time.
  • the reference value may be labeled A.
  • the reference value A can be dynamically set and changed based on the flexibility of the WLAN and cellular technology network convergence communication offload.
  • S506 Monitor the rate of change of the RSRP of the UE.
  • the rate of change of the RSRP of the UE may be used to measure the RSRP change state of the UE.
  • the RSRP change rate is the absolute value of the RSRP before and after the unit time. Therefore, when it is detected that the RSRP of the UE changes from R1 to R2 in T seconds, the change rate L of the RSRP of the UE can be obtained by:
  • the statistical value of the RSRP change rate L of the terminal may not be based on a single RSRP measurement.
  • both R1 and R2 may be averages after multiple statistics.
  • the RSRP value of the u group is taken before the RSRP change: U0, U1, ... Uu; after the RSRP change, the RSRP value of the V group is taken: V0, V1, ... Vv Can know:
  • the first network link is a WLAN
  • the second network link is a cellular technology network. This embodiment does not describe it.
  • L is greater than A, it is determined that the current mobile state of the UE is a high-speed motion state.
  • the LTE network is preferably used for data transmission of the UE; if L is smaller than A, the current mobile state of the UE is determined to be relatively static. At this time, it is preferred that the WLAN network performs data transmission for the UE.
  • S510 notify the UE to use the LTE network to access the converged network at the next moment, and schedule the network side to transmit the data stream of the UE by using the LTE link.
  • the notification path for the UE may be performed by the transmission link used by the UE at the current time. For example, if the UE is currently in the default initialization state, the notification is performed by using the LTE network link that is initialized by default; if the UE is currently in the non-default state, the notification is performed by using the transmission link of the current UE;
  • the UE data can be accessed to the eNodeB protocol layer at the PDCP layer and sent to the terminal.
  • S512 The UE is notified to use the WLAN network to access the converged network at the next moment; and the scheduling network side transmits the data stream of the UE by using the WLAN link.
  • the notification path for the UE may be performed by using a transmission link used by the UE at the current time;
  • the UE data can be transmitted to the WT at the PDCP layer and transmitted to the WT by using UDP, that is, the PDCP PDU is offloaded to the Xw interface.
  • the detailed process of the shunting method of the converged network is described by taking the RSRP of the detecting terminal as an example, and monitoring the moving state of the terminal by monitoring the rate of change of the RSRP of the terminal, and determining Corresponding network transmission link; thus, in the scenario of multiple network convergence, the terminal dynamically selects the transmission link to achieve dynamic data distribution.
  • FIG. 6 is a schematic structural diagram of a shunt device of a converged network according to an embodiment of the present disclosure.
  • the traffic distribution device 60 of the fused network may include: a monitoring module 601, a first indication scheduling module 602, and a second indication scheduling module 603;
  • the monitoring module 601 is configured to monitor a current mobile state of the terminal, and trigger the first indication scheduling module 602 when the current mobile state of the terminal is a relatively static state, when the current mobile state of the terminal is a high-speed motion
  • the state triggers the second indication scheduling module 603;
  • the first indication scheduling module 602 is configured to instruct the terminal to transmit over the first network link, and schedule the first network link to transmit the data stream of the terminal;
  • the second indication scheduling module 603 is configured to instruct the terminal to transmit through the second network link, and schedule the second network link to transmit the data stream of the terminal.
  • the mobile state of the terminal may be characterized by a rate of change of the RSSI of the terminal, a rate of change of the locked position of the terminal, or an RSRP of the terminal.
  • the monitoring module 601 can be configured to:
  • RSSI or the locked position of the terminal or the rate of change of the RSRP Monitoring the RSSI or the locked position of the terminal or the rate of change of the RSRP; wherein the RSSI or the locked position or the rate of change of the RSRP is characterized by an absolute value of the RSSI or the locked position or the amount of change of the RSRP in a preset time;
  • the first network link may be a WLAN; and the second network link may be a cellular mobile network.
  • the first indication scheduling module 602 can be configured to:
  • the data of the terminal is passed through the GTP-U at the PDCP layer and sent to the WT using UDP.
  • the second indication scheduling module 603 can be configured to:
  • the data of the terminal is sent to the terminal through the eNodeB protocol layer at the PDCP layer.
  • the offloading device 60 of the converged network provided in this embodiment may be configured and applied to the eNodeB device, which is not described in this embodiment.
  • FIG. 7 is a schematic structural diagram of another shunt device of a converged network according to an embodiment of the present disclosure.
  • a detailed implementation device for WLAN and 5G network convergence communication offloading is shown, which may include: a converged communication offload initialization module 10, a preset module 20, and access.
  • the converged communication initialization module 10 is configured to perform power-on and initial configuration for each relevant module of the present application.
  • the power module can be powered on by the preset module 20, the offset change monitoring module 30 of the locked position of the access UE, the offset change rate calculation module 40 of the locked position, the transmission link notification module 50, and the transmission link scheduling module 70. And initialize the configuration.
  • the computing power sinks to the mobile edge node. This module performs actions in the entire WLAN and 5G network convergence system, and the time point is after the MEC initialization.
  • the preset module 20 is configured to preset a reference value of an offset change rate of the locked position of the access UE.
  • the offset change rate of the locked position of the access UE is an absolute value of the amount of change before and after the locked position of the UE in a unit time.
  • the reference values can be dynamically set and changed.
  • the offset change monitoring module 30 that accesses the locked position of the UE is configured to detect an offset change state of the locked position of the access UE in real time.
  • the offset change state of the locked position is measured by the relative rate of change of the locked position of the access UE.
  • the relative change rate of the locked position of the access UE is an absolute value of the amount of change before and after the locked position of the access UE in a unit time.
  • the locked location monitoring of the access UE can be obtained by MEC (Mobile Edge Computing, MEC, Mobile Edge Computing) calculation.
  • the offset change rate calculation module 40 of the locked position is configured to calculate an offset relative change rate of the locked position of the access UE.
  • the relative change rate of the offset of the locked position is the absolute value of the change amount of the front and rear offset of the locked position in the unit time.
  • the relative rate of change is based on a locked location change state statistic rather than a single lock location.
  • the transmission link notification module 50 is configured to notify the access UE whether to use the 5G technology network link transmission or the WLAN link transmission at the next moment.
  • the notification is performed according to the calculation result of the offset change rate calculation module 40 of the lock position, if the calculation result of the offset change rate calculation module 40 of the lock position is higher than the access UE set by the preset module 20
  • the reference value of the offset change rate of the lock position is notified to the access UE to transmit by the 5G technology network link at the next moment; if the calculation result of the offset change rate calculation module 40 of the lock position is not higher than the preset
  • the reference value of the offset change rate of the locked position of the access UE set by the module 20 is notified to the access UE to transmit by the WLAN link at the next moment.
  • the transmission link scheduling module 70 is configured to schedule the network side to transmit the UE data stream by using a 5G technology network link or a WLAN link at the next moment. If the calculation result of the offset change rate calculation module 40 of the lock position is higher than the reference value of the offset change rate of the lock position of the access UE set by the preset module 20, the transmission link scheduling module 70 schedules 5G technology. The network link transmits the data stream accessing the UE. Based on the 5G technology evolution architecture, the transmission link scheduling module 70 schedules the MEC to obtain the mobile edge node where the access UE is located, and then provides the service required to access the UE nearby.
  • the transmission link scheduling module 70 schedules the WLAN.
  • the network link transmits the data stream accessing the UE.
  • the convergence communication split initialization module 10 adjusts the offset change monitoring module 30 of the preset position of the lock position of the access UE, the offset change rate calculation module 40 of the lock position, the transmission link notification module 50, and the transmission.
  • the link scheduling module 70 performs power-on and initial configuration; the preset module 20 presets a reference value of the offset change rate of the locked position of the access UE; and the offset change monitoring module 30 that accesses the locked position of the UE detects the access in real time.
  • the transmission link notification module 50 calculates the offset change rate value of the locked position of the access UE according to the offset change rate calculation module 40 of the lock position, and the offset of the preset position of the preset module 20 to access the UE Comparing the reference value of the change rate of the change rate, if the offset change rate calculation module 40 of the lock position calculates the offset change rate value of the locked position of the obtained access UE is higher than the lock of the pre-set module 20 preset access UE
  • the transmission link scheduling module 70 is configured to schedule the network side to transmit the data stream of the access UE by using the 5G technology network link at the next moment; if the offset change rate calculation module 40 of the locked position The offset change rate value of the obtained locked position of the access UE is not higher than the reference value of the offset change rate of the preset position of the pre-set access
  • the embodiment of the present application further provides a computer readable medium storing a shunting program of a converged network, where the shunting program is executed by a processor to implement the step of the shunting method of the converged network.
  • embodiments of the present application can be provided as a method, system, or computer program product. Accordingly, the application can take the form of a hardware embodiment, a software embodiment, or an embodiment in combination with software and hardware. Moreover, the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operations are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • Functions are provided for implementing the functions specified in one or more blocks of a flow or a flow and/or a block diagram of a flowchart.
  • Such software may be distributed on a machine-readable medium, such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • a computer-readable medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present invention provides a method and a device for distributing a convergence network.
  • the terminal dynamically selects a transmission link to achieve dynamic data distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种融合网络的分流方法,包括:监控终端的当前移动状态;当终端的当前移动状态为相对静止状态时,指示终端通过第一网络链路传输,并调度第一网络链路传输终端的数据流;当终端的当前移动状态为高速运动状态时,指示终端通过第二网络链路传输,并调度第二网络链路传输终端的数据流。

Description

一种融合网络的分流方法和装置 技术领域
本申请涉及但不限于无线通信技术,尤其涉及一种融合网络的分流方法和装置。
背景技术
随着通信技术的发展以及流量需求的快速增加,多种网络架构同时存在的现状会维持很长的时间,例如长期演进(LTE,Long Term Evolutions)网络、第5代移动通信技术(5G,Fifth Generation)网络等蜂窝网络和无线局域网(WLAN,Wireless LAN)等不同网络架构同时存在;因此,多种网络的融合也会成为必然的趋势。但是对于在多种网络融合后,终端如何对传输链路进行选择,却没有提出有效的方案。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种融合网络的分流方法和装置,在多种网络融合的情景下,实现了终端动态地选择传输链路,从而达到数据的动态分流。
第一方面,本申请实施例提供了一种融合网络的分流方法,所述方法包括:
监控终端的当前移动状态;
当所述终端的当前移动状态为相对静止状态时,指示所述终端通过第一网络链路传输,并调度所述第一网络链路传输所述终端的数据流;
当所述终端的当前移动状态为高速运动状态时,指示所述终端通过第二网络链路传输,并调度所述第二网络链路传输所述终端的数据流。
在示例性实施方式中,所述终端的移动状态可以通过所述终端的接收信号强度(RSSI)的变化速率进行表征。
在示例性实施方式中,所述终端的移动状态可以通过所述终端的锁定位置的偏移变化速率进行表征。
在示例性实施方式中,所述终端的移动状态可以通过所述终端的参考信号接收功率(RSRP)的变化速率进行表征。
在示例性实施方式中,所述监控终端的当前移动状态,可以包括:
监控所述终端的RSSI的变化速率;其中,所述RSSI的变化速率通过预设时间内RSSI的变化量的绝对值进行表征;
将所述终端的RSSI的变化速率与预设的参照值进行比较;
当所述终端的RSSI的变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的RSSI的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
在示例性实施方式中,所述监控终端的当前移动状态,可以包括:
监控所述终端的锁定位置的偏移变化速率;其中,所述锁定位置的偏移变化速率通过预设时间内锁定位置的偏移变量的绝对值进行表征;
将所述终端的锁定位置的偏移变化速率与预设的参照值进行比较;
当所述终端的锁定位置的偏移变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的锁定位置的偏移变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
在示例性实施方式中,所述监控终端的当前移动状态,可以包括:
监控所述终端的RSRP的变化速率;其中,所述RSRP的变化速率通过预设时间内RSRP的变化量的绝对值进行表征;
将所述终端的RSRP的变化速率与预设的参照值进行比较;
当所述终端的RSRP的变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的RSRP的变化速率高于所述预设的参照值时,确定所述终 端的当前移动状态为高速运动状态。
在示例性实施方式中,所述第一网络链路可以为WLAN;所述第二网络链路可以为蜂窝移动网络。
在示例性实施方式中,当所述第一网络链路为WLAN时,所述指示终端通过第一网络链路传输,可以包括:
通知所述终端在下一时刻通过WLAN网络链路传输数据;
相应地,所述调度第一网络链路传输终端的数据流,可以包括:
在分组数据聚合协议(PDCP)层将所述终端的数据通过GPRS隧道协议(GTP-U),并使用用户数据报协议(UDP)发送到WLAN侧网元(WT)。
在示例性实施方式中,当所述第二网络链路为蜂窝移动网络时,所述指示终端通过第二网络链路传输,可以包括:
通知所述终端在下一时刻通过蜂窝移动网络链路传输数据;
相应地,所述调度第二网络链路传输终端的数据流,可以包括:
在PDCP层将所述终端的数据通过eNodeB协议层发送给所述终端。
第二方面,本申请实施例提供了一种融合网络的分流装置,所述装置包括:监控模块、第一指示调度模块和第二指示调度模块;其中,
所述监控模块,配置为监控终端的当前移动状态,并且当所述终端的当前移动状态为相对静止状态时触发所述第一指示调度模块,当所述终端的当前移动状态为高速运动状态时触发所述第二指示调度模块;
所述第一指示调度模块,配置为指示所述终端通过第一网络链路传输,并调度所述第一网络链路传输所述终端的数据流;
所述第二指示调度模块,配置为指示所述终端通过第二网络链路传输,并调度所述第二网络链路传输所述终端的数据流。
在示例性实施方式中,所述终端的移动状态可以通过所述终端的RSSI的变化速率、或者所述终端的锁定位置的变化速率、或者所述终端的RSRP的变化速率进行表征。
在示例性实施方式中,所述监控模块,可以配置为:
监控所述终端的RSSI或锁定位置或RSRP的变化速率;其中,所述RSSI或锁定位置或RSRP的变化速率通过预设时间内RSSI或锁定位置或RSRP的变化量的绝对值进行表征;
将所述终端的RSSI或锁定位置或RSRP的变化速率与预设的参照值进行比较;
当所述终端的RSSI或锁定位置或RSRP的变化速率低于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的RSSI或锁定位置或RSRP的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
在示例性实施方式中,所述第一网络链路可以为WLAN;所述第二网络链路可以为蜂窝移动网络。
在示例性实施方式中,所述第一指示调度模块,可以配置为:
通知所述终端在下一时刻通过WLAN网络链路传输数据;
在PDCP层将所述终端的数据通过GTP-U,并使用UDP发送到WLAN侧网元(WT)。
在示例性实施方式中,所述第二指示调度模块,可以配置为:
通知所述终端在下一时刻通过蜂窝移动网络链路传输数据;
在PDCP层将所述终端的数据通过eNodeB协议层发送给所述终端。
本申请实施例还提供一种计算机可读介质,存储有融合网络的分流程序,所述分流程序被处理器执行时实现上述第一方面的融合网络的分流方法的步骤。
本申请实施例提供了一种融合网络的分流方法和装置,根据终端的移动状态来确定终端所使用的传输链路,从而在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动态分流。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本申请实施例提供的一种融合网络的分流方法的流程示意图;
图2为本申请实施例提供的一种监控终端的当前移动状态的示意图;
图3为本申请实施例提供的一种融合网络的分流方法的详细流程示意图;
图4为本申请实施例提供的另一种融合网络的分流方法的流程示意图;
图5为本申请实施例提供的又一种融合网络的分流方法的流程示意图;
图6为本申请实施例提供的一种融合网络的分流装置的结构示意图;
图7为本申请实施例提供的另一种融合网络的分流装置的结构示意图。
详述
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例通过监控终端的移动状态,确定对应的网络传输链路。
图1为本申请实施例提供的一种融合网络的分流方法的流程示意图。如图1所示,本实施例提供的融合网络的分流方法,可以包括:
S101:监控终端的当前移动状态;
S102:当终端的当前移动状态为相对静止状态时,指示终端通过第一网络链路传输,并调度第一网络链路传输终端的数据流;
S103:当终端的当前移动状态为高速运动状态时,指示终端通过第二网络链路传输,并调度第二网络链路传输终端的数据流。
需要说明的是,在本实施例中,示例性地,可以选取终端的接收信号强度(RSSI,Received Signal Strength Indication)的变化速率来表征终端的移动状态,或者也可以选取终端的锁定位置的偏移变化速率来表征终端的移动状态,或者还可以通过所述终端的参考信号接收功率(RSRP,Reference Signal Receiving Power)的变化速率来表征终端的移动状态。例如终端处于相对静止状态或快速移动状态等。需要说明的是,本领域技术人员还可以根据应用场景和实际情况选择终端的其他网络参数来表征移动状态,本实施例对此不做赘述。
并且,在本实施例中,第一网络链路可以为WLAN;第二网络链路可以为蜂窝移动网络。
示例性地,当所述终端的移动状态通过所述终端的RSSI的变化速率进行表征时,对于步骤S101,参见图2,监控终端的当前移动状态,可以包括步骤S1011至S1014:
S1011:监控终端的RSSI的变化速率;其中,RSSI的变化速率通过预设时间内RSSI的变化量的绝对值进行表征;
S1012:将终端的RSSI的变化速率与预设的参照值进行比较;
S1013:当终端的RSSI的变化速率低于预设的参照值时,确定终端的当前移动状态为相对静止状态;
S1014:当终端的RSSI的变化速率高于预设的参照值时,确定终端的当前移动状态为高速运动状态。
示例性地,对于步骤S1011,当检测到终端的RSSI在T秒内从R1变化为R2,则所述终端的RSSI变化速率L为:
Figure PCTCN2017097498-appb-000001
示例性地,为了增加测量的准确性以及避免频繁选择传输链路,所述终端的RSSI变化速率L的统计值可以不基于单次RSSI测量。例如,所述R1和R2均可以为多次统计后的均值,比如,RSSI变化前取u组RSSI值:U0,U1,…Uu;RSSI变化后取V组RSSI值:V0,V1,…Vv;可以得知:
Figure PCTCN2017097498-appb-000002
在实现过程中,以第一网络链路为WLAN;第二网络链路为LTE网络为例,前述的U0,U1,…Uu和V0,V1,…Vv可以从WLAN和LTE网络融合通信***中的终端报告配置的WLAN会议阈值中提取。示例性地,可以提取WLAN中的BEACON的RSSI信息,或者提取WLAN中的终端的REQUEST消息内的RSSI信息,或者综合WLAN中的终端的BEACON的RSSI信息和WLAN中的终端的REQUEST消息内的RSSI信息的均衡值来获取,本实施例不做赘述。
示例性地,当所述终端的移动状态通过所述终端的锁定位置的偏移变化 速率进行表征时,所述监控终端的当前移动状态,可以包括:
监控所述终端的锁定位置的偏移变化速率;其中,所述锁定位置的偏移变化速率通过预设时间内锁定位置的偏移变量的绝对值进行表征;
以及,将所述终端的锁定位置的偏移变化速率与预设的参照值进行比较;
以及,当所述终端的锁定位置的偏移变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
以及,当所述终端的锁定位置的偏移变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
示例性地,当所述终端的移动状态通过RSRP的变化速率进行表征时,所述监控终端的当前移动状态,可以包括:
监控所述终端的RSRP的变化速率;其中,所述RSRP的变化速率通过预设时间内RSRP的变化量的绝对值进行表征;
将所述终端的RSRP的变化速率与预设的参照值进行比较;
当所述终端的RSRP的变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的RSRP的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
需要说明的是,基于WLAN和LTE网络融合通信分流的灵活性,预设的参照值可以随着应用的场景进行动态设置和变更,本实施例对此不做赘述。
示例性地,在本实施例中,终端可以默认初始化为通过移动蜂窝网络进行链路传输。
示例性地,当第一网络链路为WLAN网络时,对于步骤S102所述的指示终端通过第一网络链路传输,可以包括:
通知终端在下一时刻通过WLAN网络链路传输数据;
相应地,步骤S102中所述的调度第一网络链路传输终端的数据流,可以包括:
在分组数据聚合协议(PDCP,Packet Data Convergence Protocol)层将终 端的数据通过GPRS隧道协议(GTP-U,GPRS Tunneling Protocol),并使用用户数据报协议(UDP,User Datagram Protocol)发送到WLAN侧网元(WT,WLAN Termination);
需要说明的是,由于分流锚点处于演进型基站(eNodeB,Evolved Node B)的PDCP层,因此,在PDCP层将终端的数据通过GTP-U,并使用UDP协议发送到WT,即将终端的数据分流到Xw接口的PDCP协议数据单元(PDU,Protocol Data Unit)。
示例性地,当第二网络链路为蜂窝移动网络时,对于步骤S103所述的指示终端通过第二网络链路传输,可以包括:
通知终端在下一时刻通过蜂窝移动网络链路传输数据;
相应地,步骤S103中所述的调度第二网络链路传输终端的数据流,可以包括:
在PDCP层将终端的数据通过eNodeB协议层发送给终端。
对于上述技术方案,需要说明的是,实现本实施例技术方案的装置可以设置于eNodeB,因此,可以通过具有该装置的eNodeB来实现本实施例的技术方案。
本实施例提供了一种融合网络的分流方法,通过监控终端RSSI的变化速率来监控终端的移动状态,并确定对应的网络传输链路;从而在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动态分流。
图3为本申请实施例提供的一种融合网络的分流方法的详细流程示意图。以终端的RSSI为例,如图3所示,本实施例提供的一种融合网络的分流方法,可以应用于eNodeB,该流程可以包括:
S302:初始化用户设备(UE,User Equipment)默认使用LTE网络传输。
需要说明的是,本实施例中,为了能够对方案清楚地进行说明,第一网络链路为WLAN;第二网络链路为蜂窝移动网络中的LTE网络。
示例性地,基于融合网络的分流锚点处于eNodeB的PDCP层考虑,在整个WLAN和LTE网络融合***中,针对UE进行初始化的时间点可以位于eNodeB的PDCP层初始化时间点之后。
S304:预先设置UE的RSSI的变化速率参照值;
需要说明的是,UE的RSSI的变化速率可以为单位时间内RSSI的前后变化量的绝对值。在本实施例中,所述参照值可以标记为A。
示例性地,基于WLAN和蜂窝技术网络融合通信分流的灵活性,所述参照值A可以进行动态设置和变更。
S306:监控UE的RSSI的变化速率。
示例性地,UE的RSSI的变化速率可以用来衡量UE的RSSI变化状态。
其中,UE的RSSI可以从WLAN和蜂窝技术网络融合通信***中的UE报告配置的WLAN会议阈值中提取;例如,可以提取WLAN中的BEACON的RSSI信息;或者提取WLAN中的UE的REQUEST的RSSI信息;或者将WLAN中的UE的BEACON内的RSSI信息和WLAN中的UE的REQUEST内的RSSI信息提取后进行综合,并求取均衡值。
在实现过程中,由于RSSI变化速率为单位时间内RSSI的前后变化量的绝对值。因此,当检测到UE的RSSI在T秒内从R1变化为R2时,所述UE的RSSI的变化速率L的可以通过下式求取:
Figure PCTCN2017097498-appb-000003
示例性地,为了增加测量的准确性以及避免频繁选择传输链路,所述终端的RSSI变化速率L的统计值可以不基于单次RSSI测量。例如,所述R1和R2均可以为多次统计后的均值,比如,RSSI变化前取u组RSSI值:U0,U1,…Uu;RSSI变化后取V组RSSI值:V0,V1,…Vv;可以得知:
Figure PCTCN2017097498-appb-000004
在实现过程中,以第一网络链路为WLAN;第二网络链路为蜂窝技术网络为例,前述的U0,U1,…Uu和V0,V1,…Vv可以从WLAN和LTE网络融合通信***中的终端报告配置的WLAN会议阈值中提取。示例性地,可以提取WLAN中的BEACON的RSSI信息,或者提取WLAN中的终端的REQUEST消息内的RSSI信息,或者综合WLAN中的终端的BEACON的RSSI信息和WLAN中的终端的REQUEST消息内的RSSI信息的均衡值来获 取,本实施例不做赘述。
S308:将UE的RSSI变化速率值L与UE的RSSI的变化速率参照值A进行比较;如果L大于A,则转至步骤S310;如果L小于A,则转至步骤S312;
需要说明的是,如果L大于A,则确定UE的当前移动状态为高速运动状态,此时,优选LTE网络为UE进行数据传输;如果L小于A,则确定UE的当前移动状态为相对静止状态,此时,优选WLAN网络为UE进行数据传输。
S310:通知UE下一时刻使用LTE网络接入融合网络,并调度网络侧用LTE链路传输UE的数据流;
示例性地,对于UE的通知途径可以通过当前时刻UE所使用的传输链路进行。例如,如果UE当前是默认初始化状态,则通过默认初始化的LTE网络链路进行通知;如果UE当前为非默认状态,则采用当前UE的传输链路进行通知;
与此同时,基于分流锚点处于eNodeB的PDCP层考虑,可以在PDCP层将UE数据接入到eNodeB协议层后并发送给终端。
S312:通知UE下一时刻使用WLAN网络接入融合网络;并调度网络侧用WLAN链路传输UE的数据流。
示例性地,同步骤S310,对于UE的通知途径可以通过当前时刻UE所使用的传输链路进行;
与此同时,基于分流锚点在eNodeB的PDCP层考虑,可以在PDCP层将UE数据通过GTP-U,并使用UDP发送到WT,即分流到Xw接口的PDCP PDU。
需要说明的是,通过S310和S312之后,可以转至S314:结束当前融合通信的分流过程。
本实施例对融合网络的分流方法的详细流程进行了阐述,通过监控终端RSSI的变化速率来监控终端的移动状态,并确定对应的网络传输链路;从而在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动 态分流。
图4为本申请实施例提供的另一种融合网络的分流方法的流程示意图。以WLAN和5G网络融合为例,如图4所示,本实施例提供的一种融合网络的分流方法,可以包括:
S401:初始化接入UE默认使用5G技术网络传输。
S402:预置接入UE的锁定位置的偏移变化速率的参照值。
其中,接入UE的锁定位置的偏移变化速率为单位时间内的所述UE的锁定位置的前后变化量的绝对值;所述参照值可以为H。
示例性地,基于WLAN和5G网络融合通信分流的灵活性,所述参照值可以动态设置和变更。
S403:实时检测接入UE的锁定位置的偏移变化状态。
示例性地,所述锁定位置的偏移变化状态用所述接入UE的锁定位置的相对变化速率来衡量。其中,接入UE的锁定位置的相对变化速率为单位时间内所述接入UE的锁定位置的前后变化量的绝对值。示例性地,对于WLAN和5G网络融合,接入UE的锁定位置监控可通过移动边缘计算(MEC,Mobile Edge Computing)获得。
S404:对接入UE的锁定位置的偏移变化速率进行计算。
其中,接入UE的锁定位置的偏移相对变化速率为单位时间内锁定位置的前后偏移变化量的绝对值。举例地,检测到某接入UE的锁定位置在T秒内锁定位置从L1变化到L2,所述接入UE的锁定位置相对变化速率Y可以通过下式获得:
Figure PCTCN2017097498-appb-000005
示例性地,为避免频繁切换选择5G网络或WLAN传输链路以及基于准确性考虑,所述相对变化速率基于锁定位置变化状态统计值而不是单次锁定位置。举例来说,所述L1和L2均为多次统计后取其均值;比如,初次锁定位置取e组锁定位置值U0,U1,…,Ue,变化后锁定位置取f组锁定位置值,V0,V1,…,Vf,则
Figure PCTCN2017097498-appb-000006
在实现过程中,对于WLAN和5G网络融合网络,U0,U1,…,Ue和V0,V1,…,Vf,可以通过MEC计算获得。
S405:将当前锁定位置的偏移变化速率值Y与预置的参照值H进行比较:如果Y大于H,则转至步骤S406;否则,转至步骤S407。
S406:通知接入UE下一时刻用5G技术网络链路传输接入融合网络,并调度网络侧下一时刻用5G技术网络链路传输接入UE的数据流。
示例性地,对于接入UE的通知途径可以通过当前时刻UE使用的传输链路进行。例如,如若UE当前是默认初始化状态,则通过默认设置的5G网络链路进行通知;如若UE当前为非默认状态,则采用接入UE当前接入链路进行通知。
与此同时,基于响应和传输速率考虑,可以调度网络侧下一时刻使用接入UE所对应的5G技术网络中对应的边缘节点链路来传输所述接入UE的数据流。
S407:传输链路调度模块调度网络侧下一时刻用WLAN链路传输接入UE的数据流,调度网络侧下一时刻用WLAN链路传输接入UE的数据流。
示例性地,对于接入UE的通知途径可以通过当前时刻UE使用的传输链路进行。例如,如若UE当前是默认初始化状态,则通过默认设置的5G网络链路进行通知;如若UE当前为非默认状态,则采用接入UE当前接入链路进行通知。
需要说明的是,通过S406和S407之后,可以转至S408:单次WLAN和蜂窝技术网络融合通信分流结束。
通过本实施例提供的一种融合网络的分流方法,通过监控终端锁定位置的变化速率来监控终端的移动状态,并确定对应的网络传输链路;从而在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动态分流。
图5为本申请实施例提供的又一种融合网络的分流方法的流程示意图。 以检测终端RSRP为例,如图5所示,本实施例提供的一种融合网络的分流方法,可以应用于eNodeB,包括以下步骤:
S502:初始化用户设备(UE,User Equipment)默认使用LTE网络传输。
需要说明的是,本实施例中,为了能够对方案清楚地进行说明,第一网络链路为WLAN;第二网络链路为蜂窝移动网络中的LTE网络。
示例性地,基于融合网络的分流锚点处于eNodeB的PDCP层考虑,在整个WLAN和LTE网络融合***中,针对UE进行初始化的时间点可以位于eNodeB的PDCP层初始化时间点之后。
S504:预先设置UE的RSRP的变化速率参照值;
需要说明的是,UE的RSRP的变化速率可以为单位时间内RSRP的前后变化量的绝对值。在本实施例中,所述参照值可以标记为A。
示例性地,基于WLAN和蜂窝技术网络融合通信分流的灵活性,所述参照值A可以进行动态设置和变更。
S506:监控UE的RSRP的变化速率。
示例性地,UE的RSRP的变化速率可以用来衡量UE的RSRP变化状态。
在实现过程中,由于RSRP变化速率为单位时间内RSRP的前后变化量的绝对值。因此,当检测到UE的RSRP在T秒内从R1变化为R2时,所述UE的RSRP的变化速率L的可以通过下式求取:
Figure PCTCN2017097498-appb-000007
示例性地,为了增加测量的准确性以及避免频繁选择传输链路,所述终端的RSRP变化速率L的统计值可以不基于单次RSRP测量。例如,所述R1和R2均可以为多次统计后的均值,比如,RSRP变化前取u组RSRP值:U0,U1,…Uu;RSRP变化后取V组RSRP值:V0,V1,…Vv;可以得知:
Figure PCTCN2017097498-appb-000008
在实现过程中,以第一网络链路为WLAN;第二网络链路为蜂窝技术网络为例。本实施例不做赘述。
S508:将UE的RSRP变化速率值L与UE的RSRP的变化速率参照值A进行比较;如果L大于A,则转至步骤S510;如果L小于A,则转至步骤S512;
需要说明的是,如果L大于A,则确定UE的当前移动状态为高速运动状态,此时,优选LTE网络为UE进行数据传输;如果L小于A,则确定UE的当前移动状态为相对静止状态,此时,优选WLAN网络为UE进行数据传输。
S510:通知UE下一时刻使用LTE网络接入融合网络,并调度网络侧用LTE链路传输UE的数据流;
示例性地,对于UE的通知途径可以通过当前时刻UE所使用的传输链路进行。例如,如果UE当前是默认初始化状态,则通过默认初始化的LTE网络链路进行通知;如果UE当前为非默认状态,则采用当前UE的传输链路进行通知;
与此同时,基于分流锚点处于eNodeB的PDCP层考虑,可以在PDCP层将UE数据接入到eNodeB协议层后并发送给终端。
S512:通知UE下一时刻使用WLAN网络接入融合网络;并调度网络侧用WLAN链路传输UE的数据流。
示例性地,同步骤S510,对于UE的通知途径可以通过当前时刻UE所使用的传输链路进行;
与此同时,基于分流锚点在eNodeB的PDCP层考虑,可以在PDCP层将UE数据通过GTP-U,并使用UDP发送到WT,即分流到Xw接口的PDCP PDU。
需要说明的是,通过S510和S512之后,可以转至S514:结束当前融合通信的分流过程。
本实施例以检测终端RSRP为例,对融合网络的分流方法的详细流程进行了阐述,通过监控终端RSRP的变化速率来监控终端的移动状态,并确定 对应的网络传输链路;从而在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动态分流。
图6为本申请实施例提供的一种融合网络的分流装置结构示意图。参见图6,本实施例提供的一种融合网络的分流装置60,可以包括:监控模块601、第一指示调度模块602和第二指示调度模块603;其中,
所述监控模块601,配置为监控终端的当前移动状态,并且当所述终端的当前移动状态为相对静止状态时触发所述第一指示调度模块602,当所述终端的当前移动状态为高速运动状态时触发所述第二指示调度模块603;
所述第一指示调度模块602,配置为指示所述终端通过第一网络链路传输,并调度所述第一网络链路传输所述终端的数据流;
所述第二指示调度模块603,配置为指示所述终端通过第二网络链路传输,并调度所述第二网络链路传输所述终端的数据流。
在上述方案中,所述终端的移动状态可以通过所述终端的RSSI的变化速率、或者所述终端的锁定位置的变化速率、或者所述终端的RSRP进行表征。
在上述方案中,所述监控模块601,可以配置为:
监控所述终端的RSSI或锁定位置或RSRP的变化速率;其中,所述RSSI或锁定位置或RSRP的变化速率通过预设时间内RSSI或锁定位置或RSRP的变化量的绝对值进行表征;
将所述终端的RSSI或锁定位置或RSRP的变化速率与预设的参照值进行比较;
当所述终端的RSSI或锁定位置或RSRP的变化速率低于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
当所述终端的RSSI或锁定位置或RSRP的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
在上述方案中,所述第一网络链路可以为WLAN;所述第二网络链路可以为蜂窝移动网络。
在上述方案中,所述第一指示调度模块602,可以配置为:
通知所述终端在下一时刻通过WLAN网络链路传输数据;
在PDCP层将所述终端的数据通过GTP-U,并使用UDP发送到WT。
在上述方案中,所述第二指示调度模块603,可以配置为:
通知所述终端在下一时刻通过蜂窝移动网络链路传输数据;
在PDCP层将所述终端的数据通过eNodeB协议层发送给所述终端。
需要说明的是,本实施例提供的融合网络的分流装置60可以设置及应用于eNodeB设备上,本实施例对此不做赘述。
图7为本申请实施例提供的另一种融合网络的分流装置的结构示意图。以WLAN和5G网络融合为例,结合图7,其示出了用于WLAN和5G网络融合通信分流的详细实现装置,该装置可以包括:融合通信分流初始化模块10、预置模块20、接入UE的锁定位置的偏移变化监控模块30、锁定位置的偏移变化速率计算模块40、传输链路通知模块50和传输链路调度模块70。
融合通信初始化模块10,配置为对本申请每个相关模块进行上电和初始化配置。其中可以包括对预置模块20、接入UE的锁定位置的偏移变化监控模块30、锁定位置的偏移变化速率计算模块40、传输链路通知模块50和传输链路调度模块70进行上电和初始化配置。对于WLAN和5G网络融合***,基于5G演进的架构,其计算能力下沉到移动边缘节点考虑,本模块执行动作在整个WLAN和5G网络融合***中,时间点位于MEC初始化之后。
预置模块20,配置为预置接入UE的锁定位置的偏移变化速率的参照值。其中,接入UE的锁定位置的偏移变化速率为单位时间内的所述UE的锁定位置的前后变化量的绝对值。示例性地,基于WLAN和5G网络融合通信分流的灵活性,所述参照值可以动态设置和变更。
接入UE的锁定位置的偏移变化监控模块30,配置为实时检测接入UE的锁定位置的偏移变化状态。示例性地,所述锁定位置的偏移变化状态用所述接入UE的锁定位置的相对变化速率来衡量。其中,接入UE的锁定位置的相对变化速率为单位时间内所述接入UE的锁定位置的前后变化量的绝对值。示例性地,对于WLAN和5G网络融合,接入UE的锁定位置监控可通过MEC(Mobile Edge Computing,MEC,移动边缘计算)计算获得。
锁定位置的偏移变化速率计算模块40,配置为对接入UE的锁定位置的偏移相对变化速率进行计算。其中,锁定位置的偏移相对变化速率为单位时间内锁定位置的前后偏移变化量的绝对值。
示例性地,为避免频繁切换选择5G网络或WLAN传输链路以及基于准确性考虑,所述相对变化速率基于锁定位置变化状态统计值而不是单次锁定位置。
传输链路通知模块50,配置为通知接入UE在下一时刻用5G技术网络链路传输还是WLAN链路传输。其中,通知依据所述锁定位置的偏移变化速率计算模块40的计算结果进行,如果所述锁定位置的偏移变化速率计算模块40的计算结果高于所述预置模块20设置的接入UE的锁定位置的偏移变化速率的参照值,通知接入UE下一时刻用5G技术网络链路传输;如果所述锁定位置的偏移变化速率计算模块40的计算结果不高于所述预置模块20设置的接入UE的锁定位置的偏移变化速率的参照值,通知接入UE下一时刻用WLAN链路传输。
传输链路调度模块70,配置为调度网络侧在下一时刻用5G技术网络链路或者WLAN链路来传输UE数据流。如果所述锁定位置的偏移变化速率计算模块40的计算结果高于所述预置模块20设置的接入UE的锁定位置的偏移变化速率的参照值,传输链路调度模块70调度5G技术网络链路传输接入UE的数据流。基于5G技术演进的架构,传输链路调度模块70调度MEC获得接入UE所处移动边缘节点,然后就近提供接入UE所需服务。如果所述锁定位置的偏移变化速率计算模块40的计算结果不高于所述预置模块20设置的接入UE的锁定位置的偏移变化速率的参照值,传输链路调度模块70调度WLAN网络链路传输接入UE的数据流。
通过本实施例,融合通信分流初始化模块10对预置模块20、接入UE的锁定位置的偏移变化监控模块30、锁定位置的偏移变化速率计算模块40、传输链路通知模块50以及传输链路调度模块70进行上电和初始化配置;预置模块20预置接入UE的锁定位置的偏移变化速率的参照值;接入UE的锁定位置的偏移变化监控模块30实时检测接入UE的锁定位置的偏移变化状态;锁定位置的偏移变化速率计算模块40对接入UE的锁定位置的偏移变化速率 进行计算;传输链路通知模块50根据锁定位置的偏移变化速率计算模块40计算获得的接入UE的锁定位置的偏移变化速率值和预置模块20预置接入UE的锁定位置的偏移变化速率的参照值相比较,如果所述锁定位置的偏移变化速率计算模块40计算获得的接入UE的锁定位置的偏移变化速率值高于预置模块20预置接入UE的锁定位置的偏移变化速率的参照值,通知传输链路调度模块70调度网络侧下一时刻用5G技术网络链路传输接入UE的数据流;如果所述锁定位置的偏移变化速率计算模块40计算获得的接入UE的锁定位置的偏移变化速率值不高于预置模块20预置接入UE的锁定位置的偏移变化速率的参照值,通知传输链路调度模块70调度网络侧下一时刻用WLAN网络链路传输接入UE的数据流。如此,既充分发挥了5G网络覆盖能力强的优点又发挥了WLAN容量大的优点来实现动态的数据分流。
此外,本申请实施例还提供一种计算机可读介质,存储有融合网络的分流程序,该分流程序被处理器执行时实现上述融合网络的分流方法的步骤。
本领域内的技术人员应明白,本申请实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在机器可读介质(比如,计算机可读介质)上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供一种融合网络的分流方法和装置,在多种网络融合的情景下,实现了终端动态地选择传输链路,达到数据的动态分流。

Claims (17)

  1. 一种融合网络的分流方法,包括:
    监控终端的当前移动状态;
    当所述终端的当前移动状态为相对静止状态时,指示所述终端通过第一网络链路传输,并调度所述第一网络链路传输所述终端的数据流;
    当所述终端的当前移动状态为高速运动状态时,指示所述终端通过第二网络链路传输,并调度所述第二网络链路传输所述终端的数据流。
  2. 根据权利要求1所述的方法,其中,所述终端的移动状态通过所述终端的接收信号强度RSSI的变化速率进行表征。
  3. 根据权利要求1所述的方法,其中,所述终端的移动状态通过所述终端的锁定位置的偏移变化速率进行表征。
  4. 根据权利要求1所述的方法,其中,所述终端的移动状态通过所述终端的参考信号接收功率RSRP的变化速率进行表征。
  5. 根据权利要求2所述的方法,其中,所述监控终端的当前移动状态,包括:
    监控所述终端的RSSI的变化速率;其中,所述RSSI的变化速率通过预设时间内RSSI的变化量的绝对值进行表征;
    将所述终端的RSSI的变化速率与预设的参照值进行比较;
    当所述终端的RSSI的变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
    当所述终端的RSSI的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
  6. 根据权利要求3所述的方法,其中,所述监控终端的当前移动状态,包括:
    监控所述终端的锁定位置的偏移变化速率;其中,所述锁定位置的偏移变化速率通过预设时间内锁定位置的偏移变量的绝对值进行表征;
    将所述终端的锁定位置的偏移变化速率与预设的参照值进行比较;
    当所述终端的锁定位置的偏移变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
    当所述终端的锁定位置的偏移变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
  7. 根据权利要求4所述的方法,其中,所述监控终端的当前移动状态,包括:
    监控所述终端的RSRP的变化速率;其中,所述RSRP的变化速率通过预设时间内RSRP的变化量的绝对值进行表征;
    将所述终端的RSRP的变化速率与预设的参照值进行比较;
    当所述终端的RSRP的变化速率不高于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
    当所述终端的RSRP的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
  8. 根据权利要求1所述的方法,其中,所述第一网络链路为无线局域网WLAN;所述第二网络链路为蜂窝移动网络。
  9. 根据权利要求8所述的方法,其中,当所述第一网络链路为WLAN时,所述指示终端通过第一网络链路传输,包括:通知所述终端在下一时刻通过WLAN网络链路传输数据;
    相应地,所述调度第一网络链路传输所述终端的数据流,包括:在分组数据聚合协议PDCP层将所述终端的数据通过GPRS隧道协议GTP-U,并使用用户数据报协议UDP发送到WLAN侧网元WT。
  10. 根据权利要求8所述的方法,其中,当所述第二网络链路为蜂窝移动网络时,所述指示终端通过第二网络链路传输,包括:通知所述终端在下一时刻通过蜂窝移动网络链路传输数据;
    相应地,所述调度第二网络链路传输所述终端的数据流,包括:在分组数据聚合协议PDCP层将所述终端的数据通过基站eNodeB协议层发送给所述终端。
  11. 一种融合网络的分流装置,包括:监控模块、第一指示调度模块和 第二指示调度模块;其中,
    所述监控模块,配置为监控终端的当前移动状态,并且当所述终端的当前移动状态为相对静止状态时触发所述第一指示调度模块,当所述终端的当前移动状态为高速运动状态时触发所述第二指示调度模块;
    所述第一指示调度模块,配置为指示所述终端通过第一网络链路传输,并调度所述第一网络链路传输所述终端的数据流;
    所述第二指示调度模块,配置为指示所述终端通过第二网络链路传输,并调度所述第二网络链路传输所述终端的数据流。
  12. 根据权利要求11所述的装置,其中,所述终端的移动状态通过所述终端的接收信号强度RSSI的变化速率、或者所述终端的锁定位置的变化速率、或者所述终端的参考信号接收功率RSRP的变化速率进行表征。
  13. 根据权利要求12所述的装置,其中,所述监控模块,配置为:
    监控所述终端的RSSI或锁定位置或RSRP的变化速率;其中,所述RSSI或锁定位置或RSRP的变化速率通过预设时间内RSSI或锁定位置或RSRP的变化量的绝对值进行表征;
    将所述终端的RSSI或锁定位置或RSRP的变化速率与预设的参照值进行比较;
    当所述终端的RSSI或锁定位置或RSRP的变化速率低于所述预设的参照值时,确定所述终端的当前移动状态为相对静止状态;
    当所述终端的RSSI或锁定位置或RSRP的变化速率高于所述预设的参照值时,确定所述终端的当前移动状态为高速运动状态。
  14. 根据权利要求11所述的装置,其中,所述第一网络链路为无线局域网WLAN;所述第二网络链路为蜂窝移动网络。
  15. 根据权利要求14所述的装置,其中,所述第一指示调度模块,配置为:通知所述终端在下一时刻通过WLAN网络链路传输数据;在分组数据聚合协议PDCP层将所述终端的数据通过GPRS隧道协议GTP-U,并使用用户数据报协议UDP发送到WLAN侧网元WT。
  16. 根据权利要求14所述的装置,其中,所述第二指示调度模块,配置 为:通知所述终端在下一时刻通过蜂窝移动网络链路传输数据;在分组数据聚合协议PDCP层将所述终端的数据通过基站eNodeB协议层发送给所述终端。
  17. 一种计算机可读介质,存储有融合网络的分流程序,所述分流程序被处理器执行时实现如权利要求1至10中任一项所述的融合网络的分流方法的步骤。
PCT/CN2017/097498 2016-10-11 2017-08-15 一种融合网络的分流方法和装置 WO2018068578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610889778.1A CN107920365A (zh) 2016-10-11 2016-10-11 一种融合网络的分流方法和装置
CN201610889778.1 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068578A1 true WO2018068578A1 (zh) 2018-04-19

Family

ID=61892758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097498 WO2018068578A1 (zh) 2016-10-11 2017-08-15 一种融合网络的分流方法和装置

Country Status (2)

Country Link
CN (1) CN107920365A (zh)
WO (1) WO2018068578A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810935A (zh) * 2018-05-23 2018-11-13 新华三技术有限公司 一种流量转发方法及装置
CN110661684A (zh) * 2019-09-29 2020-01-07 北京浪潮数据技术有限公司 流量统计方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110415403B (zh) * 2019-07-17 2021-07-30 宁波云荆科技有限公司 一种基于边缘计算的智能锁具***的控制方法
CN110971936A (zh) * 2019-12-06 2020-04-07 中车青岛四方车辆研究所有限公司 一种视频数据处理方法、服务器和视频接收端
CN113473465B (zh) * 2021-07-13 2023-04-28 蒋溢 基于无线融合网络分流的专网细粒度访问控制方法及***
CN113473538B (zh) * 2021-07-13 2023-03-10 蒋溢 一种基于无线融合网络的分流控制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118015A1 (en) * 2001-12-20 2003-06-26 Magnus Gunnarsson Location based notification of wlan availability via wireless communication network
CN1547411A (zh) * 2003-12-14 2004-11-17 杭州电子工业学院 蜂窝网络和无线局域网松融合的移动通信网络
CN103024843A (zh) * 2012-11-30 2013-04-03 中兴通讯股份有限公司 一种切换接入网络的方法和***
CN103856997A (zh) * 2012-11-30 2014-06-11 中兴通讯股份有限公司 一种切换无线局域网的方法和***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388215B2 (ja) * 2000-02-03 2003-03-17 日本電気株式会社 移動状態検出機能付き携帯電話機
EP2858452B1 (en) * 2012-06-21 2016-11-16 Huawei Technologies Co., Ltd. Method for reporting user equipment auxiliary information, user equipment and base station
KR20140011616A (ko) * 2012-07-18 2014-01-29 삼성전자주식회사 휴대단말기의 통신망 접속제어장치 및 방법
CN103248687A (zh) * 2013-04-27 2013-08-14 苏州洁祥电子有限公司 车载智能终端的接入控制方法
CN103260220A (zh) * 2013-04-27 2013-08-21 苏州洁祥电子有限公司 车载智能终端的接入控制方法
CN103702279A (zh) * 2014-01-06 2014-04-02 北京创毅讯联科技股份有限公司 一种lte企业网内移动终端的定位方法和装置
CN105939525A (zh) * 2016-06-22 2016-09-14 努比亚技术有限公司 移动终端及小区重选控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118015A1 (en) * 2001-12-20 2003-06-26 Magnus Gunnarsson Location based notification of wlan availability via wireless communication network
CN1547411A (zh) * 2003-12-14 2004-11-17 杭州电子工业学院 蜂窝网络和无线局域网松融合的移动通信网络
CN103024843A (zh) * 2012-11-30 2013-04-03 中兴通讯股份有限公司 一种切换接入网络的方法和***
CN103856997A (zh) * 2012-11-30 2014-06-11 中兴通讯股份有限公司 一种切换无线局域网的方法和***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810935A (zh) * 2018-05-23 2018-11-13 新华三技术有限公司 一种流量转发方法及装置
CN108810935B (zh) * 2018-05-23 2021-07-23 新华三技术有限公司 一种流量转发方法及装置
CN110661684A (zh) * 2019-09-29 2020-01-07 北京浪潮数据技术有限公司 流量统计方法及装置
CN110661684B (zh) * 2019-09-29 2021-06-29 北京浪潮数据技术有限公司 流量统计方法及装置

Also Published As

Publication number Publication date
CN107920365A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2018068578A1 (zh) 一种融合网络的分流方法和装置
US10524149B2 (en) Apparatus and method for radio connection in wireless communication system
TWI628964B (zh) 使用跨系統交遞測量識別覆蓋空洞
WO2019218936A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US9125138B2 (en) System and method for optimizing video conferencing in a wireless device
US9351209B2 (en) Opportunistic device-to-device communication
WO2018010123A1 (zh) 通信方法、网络设备和终端设备
US9622252B2 (en) Systems and methods for dynamic wideband channel selection
US20170332279A1 (en) Wireless resource control system, wireless base station, relay apparatus, wireless resource control method, and program
US9693270B2 (en) Control device, control method, and communication system
WO2022000144A1 (zh) 测量的方法、基站、多模终端、通信设备及存储介质
US9832698B2 (en) Cellular communication system, user terminal, and cellular base station
US9538436B2 (en) Mitigating interference with wireless communications
US9491658B2 (en) Systems and methods for determining congestion in wireless networks
US20160100329A1 (en) Techniques for dynamically adjusting the streaming of media content from a wireless device
JP2017507580A (ja) 無線リソース制御接続の再確立手順のための構成条件
US9877244B2 (en) Inter-frequency neighboring cell proximity detection method, inter-frequency neighboring cell measurement method, radio network controller, and user equipment
EP3494728B1 (en) Determining handover parameters
JP6382530B2 (ja) 通信端末、及びプログラム
US20150350957A1 (en) Device and Method for Reliable WiFi Data Connectivity
WO2021066161A1 (ja) 通信制御方法及びユーザ装置
CN107155189B (zh) 应用于超级小区的通信方法和装置
JP6411853B2 (ja) 無線通信システム、移動通信基地局、無線端末装置及び無線通信方法
JP2021512515A (ja) 無線ローカルエリアネットワークにアクセスする方法、端末装置、及びネットワーク装置
JP2019016969A (ja) 通信装置、通信方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859464

Country of ref document: EP

Kind code of ref document: A1