WO2018066093A1 - セルスタック、およびレドックスフロー電池 - Google Patents

セルスタック、およびレドックスフロー電池 Download PDF

Info

Publication number
WO2018066093A1
WO2018066093A1 PCT/JP2016/079678 JP2016079678W WO2018066093A1 WO 2018066093 A1 WO2018066093 A1 WO 2018066093A1 JP 2016079678 W JP2016079678 W JP 2016079678W WO 2018066093 A1 WO2018066093 A1 WO 2018066093A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
cell
cell stack
length
outer end
Prior art date
Application number
PCT/JP2016/079678
Other languages
English (en)
French (fr)
Inventor
山口 英之
毅 寒野
本井 見二
健司 山名
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2016/079678 priority Critical patent/WO2018066093A1/ja
Publication of WO2018066093A1 publication Critical patent/WO2018066093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cell stack and a redox flow battery.
  • a cell frame having a bipolar plate, a positive electrode, a diaphragm, a negative electrode, and a cell frame are stacked, a cell stack in which the stacked body is sandwiched between supply and discharge plates, and a redox using the cell stack A flow battery is described.
  • the cell frame includes a bipolar plate and a frame body disposed on the outer periphery of the bipolar plate. In this configuration, one cell is formed between the bipolar plates of adjacent cell frames.
  • the cell stack of the present disclosure is A cell stack used for a redox flow battery,
  • the cell stack includes a laminate in which a plurality of cell frames having a frame are laminated,
  • the plurality of cell frames include at least one set of cell frame pairs each having a first cell frame and a second cell frame adjacent to each other,
  • the frame of the first cell frame has a first outer end;
  • the frame of the second cell frame has a second outer end adjacent to the first outer end;
  • the cell stack in which the first outer end portion is shifted by 0.5 mm or more and 20 mm or less with respect to the second outer end portion in a direction intersecting with a stacking direction of the plurality of cell frames.
  • the redox flow battery of the present disclosure is The cell stack of the present disclosure is provided.
  • FIG. 3 is an operation principle diagram of the redox flow battery according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of a redox flow battery according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of a cell stack according to Embodiment 1.
  • FIG. 3 is a schematic plan view of a cell frame provided in the cell stack according to Embodiment 1.
  • FIG. 3 is a partial enlarged view of the cell stack when the cell stack according to the first embodiment is viewed from a direction orthogonal to the stacking direction of the cell frames.
  • 10 is a schematic plan view of a cell frame provided in a cell stack according to Embodiment 3.
  • FIG. 6 is a schematic plan view of a cell frame provided in a cell stack according to Embodiment 4.
  • FIG. 10 is a schematic plan view of a cell frame provided in a cell stack according to Embodiment 5.
  • FIG. 1 is a schematic configuration diagram of a cell stack according to Embodiment 1.
  • the frame body provided in the cell frame is often manufactured by injection molding in which a resin is injected into a mold.
  • a locally thickened portion is easily formed at a position in the vicinity of the outer end portion of the frame body manufactured by injection molding.
  • the locally thickened portion is not a portion that has been intentionally thickened, but is a portion that becomes thick due to the characteristics of injection molding, and can be easily located in the same position on the frame. Therefore, when multiple cell frames are stacked and tightened, the locally thick parts of each frame overlap, and stress concentrates on the thick parts, damaging the cell frame. There is a fear.
  • an object of the present disclosure is to provide a cell stack in which when a plurality of cell frames are stacked and tightened, the cell frame is hardly damaged.
  • an object of the present disclosure is to provide a redox flow battery including a cell stack in which a cell frame is hardly damaged.
  • the cell stack according to the embodiment is A cell stack used for a redox flow battery,
  • the cell stack includes a laminate in which a plurality of cell frames having a frame are laminated,
  • the plurality of cell frames include at least one set of cell frame pairs each having a first cell frame and a second cell frame adjacent to each other,
  • the frame of the first cell frame has a first outer end;
  • the frame of the second cell frame has a second outer end adjacent to the first outer end;
  • the cell stack in which the first outer end portion is shifted by 0.5 mm or more and 20 mm or less with respect to the second outer end portion in a direction intersecting with a stacking direction of the plurality of cell frames.
  • the amount of deviation between the adjacent first outer end portion and the second outer end portion is 0.5 mm or more, excessive stress concentrates on the locally thickened portions of the frame bodies of both cell frames. Can be sufficiently suppressed.
  • the amount of deviation is too large, the flow of the electrolyte between the manifold provided in the first cell frame (see FIG. 2 of the embodiment) and the manifold provided in the second cell frame is hindered. There is a possibility, but such a problem does not occur if the amount of deviation is 20 mm or less.
  • any of the pair of cell frames adjacent in the stacking direction can satisfy the requirements for the cell frame pair.
  • the frame of the first cell frame may have the same shape as the frame of the second cell frame.
  • the first outer end portion and the second outer end portion that are adjacent to each other are arranged so as to be shifted from each other, so that it is excessive in the thickened portions of the frame bodies provided in both cell frames. Stress is hard to act.
  • the frame of the first cell frame may be different from the frame of the second cell frame when viewed from the stacking direction.
  • the size of the frame provided in the first cell frame when viewed from the stacking direction is different from the size of the frame provided in the second cell frame, the first of the frames provided in the first cell frame. And the second outer end of the frame provided in the second cell frame are shifted from each other.
  • the locally thick portions are different in the frame bodies having different sizes, it is difficult for excessive stress to act on the thick portions of the frame bodies provided in both cell frames.
  • the cell frame may include a bipolar plate disposed on the inner side of the frame.
  • the positive electrode and the negative electrode provided on the cell frame can be separated by the bipolar plate.
  • a frame can be manufactured with high productivity using a mold.
  • the frame includes a liquid supply manifold disposed on one end side thereof and a drainage manifold disposed on the other end side, and a direction in which the liquid supply manifold and the drainage manifold are separated is a length of the frame body.
  • the direction perpendicular to the length direction and the stacking direction is the width direction of the frame,
  • the first outer end portion of the first cell frame and the second outer end portion of the second cell frame are shifted in both the length direction and the width direction. be able to.
  • the frame includes a liquid supply manifold disposed on one end side thereof and a drainage manifold disposed on the other end side, and a direction in which the liquid supply manifold and the drainage manifold are separated is a length of the frame body.
  • the direction perpendicular to the length direction and the stacking direction is the width direction of the frame,
  • the length of the said length direction of each said frame body can mention the form larger than the length of the said width direction.
  • the frame includes a liquid supply manifold disposed on one end side thereof and a drainage manifold disposed on the other end side, and a direction in which the liquid supply manifold and the drainage manifold are separated is a length of the frame body.
  • the direction perpendicular to the length direction and the stacking direction is the width direction of the frame,
  • the length of the said length direction of each said frame body can mention the form smaller than the length of the said width direction.
  • the frame includes a liquid supply manifold disposed on one end side thereof and a drainage manifold disposed on the other end side, and a direction in which the liquid supply manifold and the drainage manifold are separated is a length of the frame body.
  • the direction perpendicular to the length direction and the stacking direction is the width direction of the frame, The form which the length of the said length direction of each said frame body is the same as the length of the said width direction can be mentioned.
  • a tightening mechanism can mention the form comprised so that it may contact
  • the tightening mechanism Having a pair of end plates disposed on both sides in the stacking direction of the plurality of cell stacks;
  • the tightening mechanism may be configured to be in close contact while applying pressure to the plurality of cell frames via the end plate.
  • the redox flow battery according to the embodiment is The cell stack according to the embodiment is provided.
  • the redox flow battery according to the embodiment is a redox flow battery including a cell stack in which the cell frame is hardly damaged. Therefore, the redox flow battery according to the embodiment is a redox flow battery in which problems associated with damage to the cell frame, for example, problems such as liquid leakage from the cell frame are unlikely to occur.
  • a redox flow battery (hereinafter referred to as an RF battery) according to an embodiment will be described with reference to FIGS.
  • the RF battery is one of electrolyte circulation type storage batteries, and is used for storing new energy such as solar power generation and wind power generation.
  • the RF battery 1 includes a redox potential of active material ions contained in the positive electrode electrolyte and a redox potential of active material ions contained in the negative electrode electrolyte. It is a battery which charges / discharges using the difference with this.
  • the RF battery 1 includes a cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
  • a positive electrode 104 is built in the positive electrode cell 102 and a positive electrode electrolyte tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
  • the conduit 108 is provided with a pump 112, and these members 106, 108, 110, 112 constitute a positive electrode circulation mechanism 100P that circulates the positive electrode electrolyte.
  • a negative electrode electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 that stores a negative electrode electrolyte is connected via conduits 109 and 111.
  • the conduit 109 is provided with a pump 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100N for circulating the negative electrode electrolyte.
  • the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
  • the cell 100 is usually formed inside a structure called a cell stack 2 as shown in FIGS.
  • the cell stack 2 is configured by sandwiching a laminated structure called a sub stack 200 (FIG. 3) between two end plates 210 and 220 from both sides and tightening with a tightening mechanism 230 (illustrated in FIG. 3).
  • the configuration uses a plurality of substacks 200).
  • the sub-stack 200 (FIG. 3) includes a stack of a plurality of cell frames 120, positive electrodes 104, diaphragms 101, negative electrodes 105, and cell frames 120.
  • the structure is sandwiched in (omitted in FIG. 2).
  • the cell frame 120 includes a frame body 122 having a through window and a bipolar plate 121 that closes the through window.
  • the cell plate 120 is disposed so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121.
  • the negative electrode 105 is disposed so as to contact. In this configuration, one cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • the electrolyte solution flows through the supply / discharge plates 190, 190 to the cell 100 by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126.
  • the vertical direction in FIG. 4 which is the direction in which the liquid supply manifold 123 (124) and the drainage manifold 126 (125) are separated, is the length direction of the frame body 122.
  • the horizontal direction of the paper surface which is the direction in which the liquid supply manifold 124 is separated, is the width direction of the frame body 122, and the depth direction of the paper surface is the thickness direction of the frame body 122.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 via the inlet slit 123 s formed on one surface side (the front side of the paper surface) of the frame body 122, and the outlet slit formed in the upper portion of the frame body 122.
  • the liquid is discharged to the drainage manifold 125 through 125s.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit 124 s (shown by a broken line) formed on the other surface side (the back side of the paper) of the frame 122.
  • the liquid is discharged to the drainage manifold 126 through an outlet slit 126 s (shown by a broken line) formed in the upper part of 122.
  • An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200 is suppressed.
  • the frame body 122 of the cell frame 120 is an injection molded body (resin member) manufactured by injection molding.
  • a portion in the vicinity of the outer end portion 5, for example, a portion in the vicinity of the four corner portions tends to be locally thick.
  • the outer end portion 5 is a portion that forms an outer peripheral contour line when the frame body 122 is viewed in plan view, and in this example, shows the entire outer end surface along the thickness direction of the frame body 122. It is a problem in the characteristics of injection molding that the vicinity of the outer end portion 5 is locally thick, and it is not intended to be thick, but locally in the same position in each frame 122. It is easy to create a thickened part.
  • the position of the locally thickened portion is almost the same. If a plurality of such cell frames 120 are stacked, locally thickened portions of the frame body 122 of each cell frame 120 overlap, and when the sub stack 200 is tightened by the tightening mechanism 230, Excessive stress may act on the thickened part. When an excessive stress is applied to the locally thickened portion, there is a risk that the frame body 122 of the cell frame 120 may break, and the electrolyte may leak from the cell stack 2.
  • the first cell frame and the second cell frame constituting at least a part of the cell frame pairs out of the cell frame pairs provided in the cell stack 2 are shifted. It is laminated in a state. In this example, both frames are shifted in the vertical direction with respect to the installation surface on which the cell stack 2 is installed. This point will be described based on the partially enlarged view of FIG.
  • FIG. 5 shows the cell stack 2 as viewed from the direction orthogonal to the stacking direction (left and right direction on the paper) of the cell frames 120A, 120B, and 120C in the vicinity of the outer end 5 of the three cell frames 120A, 120B, and 120C. It is a partial enlarged view.
  • a cell frame pair 3 is composed of a cell frame 120A (first cell frame) and a cell frame 120B (second cell frame), and a cell frame 120B (first cell frame) and a cell frame 120C ( The second cell frame) constitutes a cell frame pair 4.
  • the portion (second outer end portion) 5 is shifted by a length L3.
  • the shift amounts (lengths L3 and L4) in the different cell frame pairs 3 and 4 may be different.
  • the corner portion of the outer end portion 5 of the frame body 122 is chamfered with an R chamfer. By doing so, it is possible to suppress an excessive stress from acting on the adjacent cell frames 120A, 120B, and 120C by the corners of the outer end portion 5 of the frame body 122.
  • the shift amount (length L3, L4) of the outer end 5 is 0.5 mm or more and 20 mm or less. If the shift amount of the outer end 5 is 0.5 mm or more, the locally thickened portion in the frame body 122 of the cell frame 120A (120B) and the locally in the frame body 122 of the cell frame 120B (120C). The thickened portion is shifted in the plane direction of the cell frames 120A and 120B (120B and 120C). As a result, excessive stress is unlikely to act on locally thickened portions of the frame body 122 of each cell frame 120A, 120B, 120C during tightening, and defects such as cracks are less likely to occur in the portions.
  • the displacement amount of the outer end portion 5 is 20 mm or less, the manifolds 123 to 126 of the two cell frames 120 shown in FIG. 3 are not displaced and the manifolds 123 to 126 are not blocked.
  • the deviation amount of the outer end portion 5 is preferably 0.8 mm or more and 10 mm or less, more preferably 1.2 mm or more and 5 mm or less.
  • the first cell frames and the second cell frames of all cell frame pairs provided in the cell stack 2 are stacked in a shifted state as shown in FIG. As a result, it is possible to suppress excessive stress from acting locally in all cell frames provided in the cell stack 2.
  • the maximum shift amount of all the cell frames 120 provided in the cell stack 2 is 20 mm or less. The maximum shift amount is a shift amount between the cell frame 120 at the lowest position and the cell frame 120 at the highest position among all the cell frames 120.
  • the state in which the two adjacent cell frames 120 are displaced in the vertical direction (length direction along the vertical direction) with respect to the installation surface on which the cell stack 2 is installed has been described. It may be in a state shifted in the direction). Two adjacent cell frames 120 may be shifted in both the vertical direction and the horizontal direction with reference to the installation surface. In this case, the amount of deviation in the vertical direction and the amount of deviation in the horizontal direction are 0.5 mm or more and 20 mm or less, respectively.
  • the size of the frame provided in the first cell frame may be different. If cell frames having different sizes of frames are stacked, the outer edge of the frame provided in the first cell frame and the outside of the frame provided in the second cell frame are viewed from the direction orthogonal to the stacking direction. The edge part is shifted, and the locally thickened part in the frame of the first cell frame and the locally thickened part in the frame of the second cell frame are shifted in the plane direction of the cell frame. .
  • the shape of the cell frame 120 is not limited to the shape shown in FIG. 4, and may be the shape shown in FIG. 6, for example.
  • slits 123s, 124s, 125s, and 126s provided in the frame body 122 are substantially J-shaped. Specifically, after extending outward from the lateral side position of the bipolar plate 121, the bipolar plate 121 is connected to the manifolds 123, 124, 125, 126 after being bent inward.
  • the shape of the cell frame 120 may be the shape shown in FIG. In the cell frame 120 of FIG. 7, slits 123 s, 124 s, 125 s, 126 s provided in the frame body 122 are complicatedly curved in the vertical direction and the horizontal direction and connected to the manifolds 123, 124, 125, 126.
  • the shape of the cell frame 120 may be the shape shown in FIG. In the cell frame 120 of FIG. 8, slits that connect the manifolds 123, 124, 125, and 126 to the bipolar plate 121 are not formed. Instead, a slit is formed in the gasket 129 disposed between the adjacent cell frames 120.
  • the gasket 129 in FIG. 5 is a gasket 129 that is stacked on the front side of the cell frame 120 in the drawing.
  • the gasket 129 is provided with manifolds 123, 124, 125, and 126, a notched inlet slit 123 s connected to the manifold 123, and a notched outlet slit 125 s connected to the manifold 125.
  • the gasket 129 overlapped on the back side of the paper surface of the cell frame 120 has manifolds 123, 124, 125, 126, a notch-shaped inlet slit 124 s connected to the manifold 124, and a notch shape connected to the manifold 126.
  • Outlet slit 126s is provided with manifolds 123, 124, 125, and 126, a notched inlet slit 123 s connected to the manifold 123, and a notched outlet slit 125 s connected to the manifold 125.
  • the cell frame 120 has been described in which the length of the frame body 122 in the width direction (left and right direction in the drawing) is larger than the length of the frame body 122 in the length direction (up and down direction in the drawing).
  • a cell frame having a length in the length direction larger than the length in the width direction may be used.
  • a cell frame having the same length in the length direction and the width direction may be used.
  • test body A A cell stack (test body A) was prepared in which the shift amount of the outer end portion of all cell frame pairs provided in the cell stack was around 0.5 mm to 3.0 mm.
  • a cell stack (test body B) in which the shift amount of the outer end portion of all cell frame pairs provided in the cell stack is about 0.3 mm was prepared.
  • the tightening force of the cell stack tightening mechanism 230 was gradually increased. As a result, the cell frame of the test body B was cracked when the predetermined tightening force was reached, but the cell frame of the test example A tightened with the same tightening force was cracked. Did not occur.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

レドックスフロー電池に用いられるセルスタックであって、前記セルスタックは、枠体を有する複数のセルフレームを積層した積層体を備え、複数の前記セルフレームは、隣接する第1のセルフレームと第2のセルフレームとを有するセルフレーム対を少なくとも一組含み、前記第1のセルフレームの前記枠体は、その少なくとも一部に第1の外端部を有し、前記第2のセルフレームの前記枠体は、その少なくとも一部に前記第1の外端部に隣接する第2の外端部を有し、前記第1の外端部は、前記複数のセルフレームの積層方向と交差する方向において、前記第2の外端部に対して0.5mm以上20mm以下ずれているセルスタック。

Description

セルスタック、およびレドックスフロー電池
 本発明は、セルスタック、およびレドックスフロー電池に関するものである。
 特許文献1には、双極板を有するセルフレーム、正極電極、隔膜、負極電極、およびセルフレームを複数積層し、その積層体を給排板で挟み込んだセルスタック、およびそのセルスタックを用いたレドックスフロー電池が記載されている。セルフレームは、双極板と、この双極板の外周に配置される枠体とを備える。この構成では、隣接する各セルフレームの双極板の間に一つのセルが形成される。
特開2015-79738号公報
 本開示のセルスタックは、
 レドックスフロー電池に用いられるセルスタックであって、
 前記セルスタックは、枠体を有する複数のセルフレームを積層した積層体を備え、
 複数の前記セルフレームは、隣接する第1のセルフレームと第2のセルフレームとを有するセルフレーム対を少なくとも一組含み、
 前記第1のセルフレームの前記枠体は、第1の外端部を有し、
 前記第2のセルフレームの前記枠体は、前記第1の外端部に隣接する第2の外端部を有し、
 前記第1の外端部は、前記複数のセルフレームの積層方向と交差する方向において、前記第2の外端部に対して0.5mm以上20mm以下ずれているセルスタック。
 本開示のレドックスフロー電池は、
 本開示のセルスタックを備える。
実施形態1に係るレドックスフロー電池の動作原理図である。 実施形態1に係るレドックスフロー電池の概略構成図である。 実施形態1に係るセルスタックの概略構成図である。 実施形態1に係るセルスタックに備わるセルフレームの概略平面図である。 実施形態1に係るセルスタックをセルフレームの積層方向と直交する方向から見たセルスタックの部分拡大図である。 実施形態3に係るセルスタックに備わるセルフレームの概略平面図である。 実施形態4に係るセルスタックに備わるセルフレームの概略平面図である。 実施形態5に係るセルスタックに備わるセルフレームの概略平面図である。
[本開示が解決しようとする課題]
 セルフレームに備わる枠体は、金型内に樹脂を射出する射出成形で製造されることが多い。しかし、射出成形で製造される枠体の外端部の近傍の位置には、局所的に厚くなった部分ができ易い。その局所的に厚くなった部分は、意図して厚くした部分ではなく、射出成形の特性上、厚くなってしまう部分であり、枠体における同じような位置にでき易い。そのため、複数のセルフレームを積層して締め付けたときに、各枠体の局所的に厚くなった部分が重なってしまい、その厚くなった部分に応力が集中して、セルフレームの枠体が損傷する恐れがある。特に、隣接する一対のセルフレームに備わる枠体が同一の金型で作製された同一形状の枠体である場合、両セルフレームの枠体における局所的に厚くなった部分の位置がほぼ同じとなるため、上述したセルフレームの損傷の問題が生じ易い。
 そこで、本開示では、複数のセルフレームを積層して締め付けたときに、セルフレームに損傷が生じ難いセルスタックを提供することを目的の一つとする。また、本開示では、セルフレームに損傷が生じ難いセルスタックを備えるレドックスフロー電池を提供することを目的の一つとする。
[本開示の効果]
 本開示のセルスタックでは、セルフレームの枠体に損傷が生じ難い。また、本開示のレドックスフロー電池では、セルフレームの枠体に損傷が生じ難い。
[本願発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
<1>実施形態に係るセルスタックは、
 レドックスフロー電池に用いられるセルスタックであって、
 前記セルスタックは、枠体を有する複数のセルフレームを積層した積層体を備え、
 複数の前記セルフレームは、隣接する第1のセルフレームと第2のセルフレームとを有するセルフレーム対を少なくとも一組含み、
 前記第1のセルフレームの前記枠体は、第1の外端部を有し、
 前記第2のセルフレームの前記枠体は、前記第1の外端部に隣接する第2の外端部を有し、
 前記第1の外端部は、前記複数のセルフレームの積層方向と交差する方向において、前記第2の外端部に対して0.5mm以上20mm以下ずれているセルスタック。
 既に述べたように、射出成形体の枠体では、同じような位置に意図せず厚くなった部分ができ易い。これに対して、上記構成に示すように、隣接する第1のセルフレームに備わる枠体の第1の外端部と、第2のセルフレームに備わる枠体の第2の外端部とをずらすことで、第1のセルフレームの枠体における局所的に厚くなった部分と、第2のセルフレームの枠体における局所的に厚くなった部分とが、セルフレームの平面方向にずれる。その結果、セルフレーム対が締め付けられたときに、第1のセルフレームの枠体と第2のセルフレームの枠体における局所的に厚くなった部分に過剰に応力が集中することがなく、両セルフレームの枠体が損傷し難い。
 隣接する第1の外端部と第2の外端部とのずれ量が0.5mm以上であれば、両セルフレームの枠体における局所的に厚くなった部分に過剰な応力が集中することを十分に抑制できる。一方、上記ずれ量が大きくなり過ぎると、第1のセルフレームに設けられるマニホールド(実施形態の図2参照)と第2のセルフレームに設けられるマニホールドとの間の電解液の流通が阻害される恐れがあるが、当該ずれ量が20mm以下であればそのような問題は生じない。
<2>実施形態に係るセルスタックの一形態として、
 前記積層方向に隣接する一対の前記セルフレームのいずれもが、前記セルフレーム対の要件を満たす形態を挙げることができる。
 上記構成によれば、セルスタックに備わる全てのセルフレームに備わる枠体の損傷を効果的に抑制することができる。
<3>実施形態に係るセルスタックの一形態として、
 前記第1のセルフレームの枠体は、前記第2のセルフレームの枠体と同一形状である形態を挙げることができる。
 同一の金型で作製された同一形状の枠体では、枠体におけるほぼ同じ位置に局所的に厚くなった部分ができ易い。しかし、実施形態に係るセルスタックでは、隣接する第1の外端部と第2の外端部とがずれて配置されているため、両セルフレームに備わる枠体の厚くなった部分に過大な応力が作用し難い。
<4>実施形態に係るセルスタックの一形態として、
 前記第1のセルフレームの枠体は、前記第2のセルフレームの枠体と、前記積層方向から見たときの大きさが異なる形態を挙げることができる。
 積層方向から見たときの第1のセルフレームに備わる枠体の大きさと、第2のセルフレームに備わる枠体の大きさが異なっていれば、第1のセルフレームに備わる枠体の第1の外端部と、第2のセルフレームに備わる枠体の第2の外端部とがずれる。また、大きさの異なる枠体では、局所的に厚くなった部分が異なるため、両セルフレームに備わる枠体の厚くなった部分に過大な応力が作用し難い。
<5>実施形態に係るセルスタックの一形態として
 前記セルフレームは、前記枠体の内側に配される双極板を備える形態を挙げることができる。
 双極板によってセルフレームに設けられる正極電極と負極電極とを離隔することができる。
<6>実施形態に係るセルスタックの一形態として、
 前記枠体が樹脂で構成されている形態を挙げることができる。
 樹脂であれば、金型を用いて枠体を生産性良く製造することができる。
<7>実施形態に係るセルスタックの一形態として、
 前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
 前記長さ方向と前記幅方向の両方で、前記第1のセルフレームの前記第1の外端部と、前記第2のセルフレームの前記第2の外端部とがずれている形態を挙げることができる。
 上記構成であれば、枠体の全域にわたって枠体の損傷を効果的に抑制できる。
<8>実施形態に係るセルスタックの一形態として、
 前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
 各前記枠体の前記長さ方向の長さが前記幅方向の長さよりも大きい形態を挙げることができる。
 上記構成によれば、セルスタックの設置スペースに制約がある場合でも、セルスタックを設置し易い。
<9>実施形態に係るセルスタックの一形態として、
 前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
 各前記枠体の前記長さ方向の長さが前記幅方向の長さよりも小さい形態を挙げることができる。
 上記構成によれば、セルスタックの設置スペースに制約がある場合でも、セルスタックを設置し易い。
<10>実施形態に係るセルスタックの一形態として、
 前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
 各前記枠体の前記長さ方向の長さが前記幅方向の長さと同じである形態を挙げることができる。
 上記構成によれば、セルスタックの設置スペースが立方体状で、その幅と高さに制限がある場合でも、セルスタックを設置し易い。
<11>実施形態に係るセルスタックの一形態として、
 さらに締付機構を備え、
 前記締付機構は、複数の前記セルフレームに圧力を与えながら密着させるように構成されている形態を挙げることができる。
 締付機構によってセルスタックを締め付けることで、セルスタックからの電解液の漏れを抑制できる。
<12>前記締付機構を備える実施形態に係るセルスタックの一形態として、
 複数の前記セルスタックの積層方向の両側に配置される一対のエンドプレートを有し、
 前記締付機構は、前記エンドプレートを介して複数の前記セルフレームに圧力を与えながら密着させるように構成されている形態を挙げることができる。
 エンドプレートを介してセルスタックを締め付けることで、締め付け力がセルフレームに直接作用することを抑制でき、セルフレームの損傷を抑制できる。
<13>実施形態に係るレドックスフロー電池は、
 実施形態に係るセルスタックを備える。
 実施形態のレドックスフロー電池は、セルフレームに損傷が生じ難いセルスタックを備えるレドックスフロー電池である。そのため、実施形態のレドックスフロー電池は、セルフレームの損傷に伴う不具合、例えばセルフレームから液漏れなどの不具合が生じ難いレドックスフロー電池である。
[本発明の実施形態の詳細]
 以下、実施形態に係るレドックスフロー電池(RF電池)の実施形態を説明する。なお、本発明は実施形態に示される構成に限定されるわけではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
 実施形態に係るレドックスフロー電池(以下、RF電池)を図1~図4に基づいて説明する。
 ≪RF電池≫
 RF電池は、電解液循環型の蓄電池の一つであって、太陽光発電や風力発電といった新エネルギーの蓄電に利用されている。図1のRF電池1の動作原理図に示すように、RF電池1は、正極用電解液に含まれる活物質イオンの酸化還元電位と、負極用電解液に含まれる活物質イオンの酸化還元電位との差を利用して充放電を行う電池である。RF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離されたセル100を備える。
 正極セル102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極電解液用タンク106が導管108,110を介して接続されている。導管108にはポンプ112が設けられており、これら部材106,108,110,112によって正極用電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極電解液用タンク107が導管109,111を介して接続されている。導管109にはポンプ113が設けられており、これらの部材107,109,111,113によって負極用電解液を循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。
 ≪セルスタック≫
 上記セル100は通常、図2、図3に示すような、セルスタック2と呼ばれる構造体の内部に形成される。セルスタック2は、サブスタック200(図3)と呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることで構成されている(図3に例示する構成では、複数のサブスタック200を用いている)。
 サブスタック200(図3)は、セルフレーム120、正極電極104、隔膜101、負極電極105、およびセルフレーム120を複数積層し、その積層体を給排板190,190(図3の下図参照、図2では省略)で挟み込んだ構成を備える。セルフレーム120は、貫通窓を有する枠体122と貫通窓を塞ぐ双極板121とを有しており、双極板121の一面側には正極電極104が接触するように配置され、双極板121の他面側には負極電極105が接触するように配置される。この構成では、隣接する各セルフレーム120の双極板121の間に一つのセル100が形成されることになる。
 給排板190,190を介したセル100への電解液の流通は、図4に示すように、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。本例では、給液用マニホールド123(124)と排液用マニホールド126(125)とが離隔する方向である図4の紙面上下方向が枠体122の長さ方向であり、給液用マニホールド123と給液用マニホールド124とが離隔する方向である紙面左右方向が枠体122の幅方向、紙面奥行き方向が枠体122の厚さ方向である。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される入口スリット123sを介して正極電極104に供給され、枠体122の上部に形成される出口スリット125sを介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される入口スリット124s(破線で示す)を介して負極電極105に供給され、枠体122の上部に形成される出口スリット126s(破線で示す)を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200からの電解液の漏れが抑制されている。
 上記セルフレーム120の枠体122は、射出成形によって製造された射出成形体(樹脂性部材)である。射出成形体である枠体122は、その外端部5の近傍の部分、例えば四つの角部の近傍の部分が局所的に厚くなり易い。外端部5は、枠体122を平面視したときに外周輪郭線を構成する部分であって、本例では枠体122の厚み方向に沿った外端面全体を示す。外端部5の近傍が局所的に厚くなるのは、射出成形の特性上の問題であって、意図して厚くしているわけではないが、各枠体122における同じような位置に、局所的に厚くなった部分ができ易い。特に、同一の金型で作製された枠体122では、局所的に厚くなった部分の位置がほぼ同じとなる。このようなセルフレーム120を複数積層すれば、各セルフレーム120の枠体122の局所的に厚くなった部分が重なってしまい、締付機構230でサブスタック200を締め付けたときに、局所的に厚くなった部分に過大な応力が作用する恐れがある。局所的に厚くなった部分に過大な応力が作用した場合、セルフレーム120の枠体122が割れるなどの不具合が生じる恐れがあり、そうなるとセルスタック2から電解液が漏れる恐れがある。
 上記問題点に鑑み、本例のRF電池1では、セルスタック2に備わるセルフレーム対のうち、少なくとも一部のセルフレーム対を構成する第1のセルフレームと第2のセルフレームとがずれた状態で積層されている。本例では、セルスタック2を設置する設置面を基準にして上下方向に両フレームをずれた状態にしている。この点を図5の部分拡大図に基づいて説明する。
 図5は、3枚のセルフレーム120A,120B,120Cの外端部5近傍の部分を、セルフレーム120A,120B,120Cの積層方向(紙面左右方向)に直交する方向から見たセルスタック2の部分拡大図である。
 図5では、セルフレーム120A(第1のセルフレーム)とセルフレーム120B(第2のセルフレーム)とでセルフレーム対3が構成され、セルフレーム120B(第1のセルフレーム)とセルフレーム120C(第2のセルフレーム)とでセルフレーム対4が構成されている。図5に示すように、セルフレーム対3における第1のセルフレーム120Aの枠体122における外端部(第1の外端部)5と、第2のセルフレーム120Bの枠体122における外端部(第2の外端部)5とが、長さL3だけずれている。また、セルフレーム対4における第1のセルフレーム120Bの枠体122の外端部(第1の外端部)5と、第2のセルフレーム120Cの外端部(第2の外端部)5とが、長さL4だけずれている。このように、異なるセルフレーム対3,4におけるずれ量(長さL3,L4)は異なっていても良い。ここで、枠体122の外端部5の角部はR面取りやC面取りしておくことが好ましい。そうすることで、枠体122の外端部5の角部によって、隣接するセルフレーム120A,120B,120Cに過度な応力が作用することを抑制できる。
 外端部5のずれ量(長さL3,L4)は、0.5mm以上20mm以下とする。外端部5のずれ量が0.5mm以上であれば、セルフレーム120A(120B)の枠体122における局所的に厚くなった部分と、セルフレーム120B(120C)の枠体122における局所的に厚くなった部分とが、セルフレーム120A,120B(120B,120C)の平面方向にずれる。その結果、締め付け時に各セルフレーム120A,120B,120Cの枠体122における局所的に厚くなった部分に過大な応力が作用し難くなり、当該部分に割れなどの不具合が生じ難くなる。一方、外端部5のずれ量が20mm以下であれば、図3に示す二枚のセルフレーム120のマニホールド123~126がずれて、マニホールド123~126が閉塞することがない。上記外端部5のずれ量は、0.8mm以上10mm以下、さらには1.2mm以上5mm以下とすることが好ましい。
 ここで、セルスタック2に備わる全てのセルフレーム対の第1のセルフレームと第2のセルフレームとが、図5に示すようにずれた状態で積層されていることが好ましい。その結果、セルスタック2に備わる全てのセルフレームにおいて、局所的に過剰な応力が作用することを抑制できる。この場合、セルスタック2に備わる全てのセルフレーム120の最大ずれ量を20mm以下となるようにすることが好ましい。最大ずれ量とは、全てのセルフレーム120のうち、最も低い位置にあるセルフレーム120と最も高い位置にあるセルフレーム120とのずれ量のことである。
 本例では、隣接する二つのセルフレーム120が、セルスタック2を設置する設置面を基準にして上下方向(鉛直方向に沿った長さ方向)にずれた状態を説明したが、左右方向(幅方向)にずれた状態としても良い。また、隣接する二つのセルフレーム120が、設置面を基準にして上下方向と左右方向の両方にずれた状態としても構わない。この場合、上下方向のずれ量と左右方向のずれ量はそれぞれ、0.5mm以上20mm以下とする。
<実施形態2>
 隣接する第1のセルフレームと第2のセルフレームとで、局所的に厚くなった部分をセルフレームの平面方向にずらす構成として、第1のセルフレームに備わる枠体の大きさと、第2のセルフレームに備わる枠体の大きさとを異ならせても構わない。大きさの異なる枠体を備えるセルフレームを重ねれば、積層方向に直交する方向から見た第1のセルフレームに備わる枠体の外端部と、第2のセルフレームに備わる枠体の外端部とがずれるし、第1のセルフレームの枠体における局所的に厚くなった部分と、第2のセルフレームの枠体における局所的に厚くなった部分とがセルフレームの平面方向にずれる。
<実施形態3>
 セルフレーム120の形状は、図4の形状に限定されるわけではなく、例えば図6に示す形状としても構わない。
 図6のセルフレーム120は、枠体122に備わるスリット123s,124s,125s,126sが概略J字状である。具体的には、双極板121の横方向の側面の位置から外方側に伸びた後、内方側に湾曲してから各マニホールド123,124,125,126に繋がっている。
 このような形状のセルフレーム120においても、隣接する二つのセルフレームの外端部をずらすことで、枠体122の損傷を抑制できる。
<実施形態4>
 セルフレーム120の形状は、図7に示す形状とすることもできる。図7のセルフレーム120では、枠体122に備わるスリット123s,124s,125s,126sが縦方向と横方向に複雑に湾曲して各マニホールド123,124,125,126に繋がっている。
 このような形状のセルフレーム120においても、隣接する二つのセルフレームの外端部をずらすことで、枠体122の損傷を抑制できる。
<実施形態5>
 セルフレーム120の形状は、図8に示す形状とすることもできる。図8のセルフレーム120には、マニホールド123,124,125,126から双極板121に繋がるスリットが形成されていない。その代わりに、隣接するセルフレーム120間に配置するガスケット129にスリットを形成している。図5のガスケット129は、セルフレーム120の紙面手前側に重ねるガスケット129である。このガスケット129には、マニホールド123,124,125,126と、マニホールド123に繋がる切欠き状の入口スリット123sと、マニホールド125に繋がる切欠き状の出口スリット125sと、が設けられている。ここで、図示しないが、セルフレーム120の紙面裏側に重ねるガスケット129には、マニホールド123,124,125,126と、マニホールド124に繋がる切欠き状の入口スリット124sと、マニホールド126に繋がる切欠き状の出口スリット126sと、が設けられている。
 このような形状のセルフレーム120においても、隣接する二つのセルフレームの外端部をずらすことで、枠体122の損傷を抑制できる。
<実施形態6>
 実施形態1~5では、枠体122の幅方向(紙面左右方向)の長さが、枠体122の長さ方向(紙面上下方向)の長さよりも大きいセルフレーム120を説明した。これに対して、幅方向の長さよりも長さ方向の長さが大きいセルフレームとすることもできる。
<実施形態7>
 その他、長さ方向と幅方向の長さが同じセルフレームとすることもできる。
<試験例>
 セルスタックに備わる全てのセルフレーム対における外端部のずれ量が0.5mm~3.0mm前後であるセルスタック(試験体A)を用意した。また、セルスタックに備わる全てのセルフレーム対における外端部のずれ量が0.3mm前後であるセルスタック(試験体B)を用意した。そして、セルスタックの締付機構230の締め付け力を徐々に大きくしていった。その結果、所定の締め付け力となったときに、試験体Bに備わるセルフレームの枠体に割れが生じたが、同じ締め付け力で締め付けられた試験例Aに備わるセルフレームの枠体には割れが生じなかった。
 この試験例の結果から、セルフレーム対を構成する第1のセルフレームに備わる枠体の外端部と、第2のセルフレームに備わる枠体の外端部とを0.5mm以上ずらすことが、セルスタックの締め付け時のセルフレームの割れを抑制する上で有効であることが分かった。
1 RF電池(レドックスフロー電池)
2 セルスタック
3,4 セルフレーム対
5 外端部
100 セル 101 隔膜 102 正極セル 103 負極セル
 100P 正極用循環機構 100N 負極用循環機構
 104 正極電極 105 負極電極 106 正極電解液用タンク
 107 負極電解液用タンク 108,109,110,111 導管
 112,113 ポンプ
 120,120A,120B,120C セルフレーム
 121 双極板 122 枠体
 123,124 給液用マニホールド
 125,126 排液用マニホールド
 123s,124s 入口スリット 125s,126s 出口スリット
 129 ガスケット
 190 給排板 200 サブスタック
 210,220 エンドプレート
 127 シール部材
 230 締付機構

Claims (13)

  1.  レドックスフロー電池に用いられるセルスタックであって、
     前記セルスタックは、枠体を有する複数のセルフレームを積層した積層体を備え、
     複数の前記セルフレームは、隣接する第1のセルフレームと第2のセルフレームとを有するセルフレーム対を少なくとも一組含み、
     前記第1のセルフレームの前記枠体は、第1の外端部を有し、
     前記第2のセルフレームの前記枠体は、前記第1の外端部に隣接する第2の外端部を有し、
     前記第1の外端部は、前記複数のセルフレームの積層方向と交差する方向において、前記第2の外端部に対して0.5mm以上20mm以下ずれているセルスタック。
  2.  前記積層方向に隣接する一対の前記セルフレームのいずれもが、前記セルフレーム対の要件を満たす請求項1に記載のセルスタック。
  3.  前記第1のセルフレームの枠体は、前記第2のセルフレームの枠体と同一形状である請求項1または請求項2に記載のセルスタック。
  4.  前記第1のセルフレームの枠体は、前記第2のセルフレームの枠体と、前記積層方向から見たときの大きさが異なる請求項1または請求項2に記載のセルスタック。
  5.  前記セルフレームは、前記枠体の内側に配される双極板を備える請求項1から請求項4のいずれか1項に記載のセルスタック。
  6.  前記枠体が樹脂で構成されている請求項1から請求項5のいずれか1項に記載のセルスタック。
  7.  前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
     前記長さ方向と前記幅方向の両方で、前記第1のセルフレームの前記第1の外端部と、前記第2のセルフレームの前記第2の外端部とがずれている請求項1から請求項6のいずれか1項に記載のセルスタック。
  8.  前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
     各前記枠体の前記長さ方向の長さが前記幅方向の長さよりも大きい請求項1から請求項7のいずれか1項に記載のセルスタック。
  9.  前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
     各前記枠体の前記長さ方向の長さが前記幅方向の長さよりも小さい請求項1から請求項7のいずれか1項に記載のセルスタック。
  10.  前記枠体は、その一端側に配置される給液マニホールドと他端側に配置される排液マニホールドとを備え、前記給液マニホールドと前記排液マニホールドとが離隔する方向が前記枠体の長さ方向で、前記長さ方向と前記積層方向に直交する方向が前記枠体の幅方向であり、
     各前記枠体の前記長さ方向の長さが前記幅方向の長さと同じである請求項1から請求項7のいずれか1項に記載のセルスタック。
  11.  さらに締付機構を備え、
     前記締付機構は、複数の前記セルフレームに圧力を与えながら密着させるように構成されている請求項1から請求項10のいずれか1項に記載のセルスタック。
  12.  複数の前記セルスタックの積層方向の両側に配置される一対のエンドプレートを有し、
     前記締付機構は、前記エンドプレートを介して複数の前記セルフレームに圧力を与えながら密着させるように構成されている請求項11に記載のセルスタック。 
  13.  請求項1から請求項12のいずれか1項に記載のセルスタックを備えるレドックスフロー電池。
PCT/JP2016/079678 2016-10-05 2016-10-05 セルスタック、およびレドックスフロー電池 WO2018066093A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079678 WO2018066093A1 (ja) 2016-10-05 2016-10-05 セルスタック、およびレドックスフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079678 WO2018066093A1 (ja) 2016-10-05 2016-10-05 セルスタック、およびレドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2018066093A1 true WO2018066093A1 (ja) 2018-04-12

Family

ID=61830974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079678 WO2018066093A1 (ja) 2016-10-05 2016-10-05 セルスタック、およびレドックスフロー電池

Country Status (1)

Country Link
WO (1) WO2018066093A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019468159B2 (en) * 2019-09-25 2022-12-01 De Nora Permelec Ltd Laminated structure including electrodes
TWI840419B (zh) 2019-09-25 2024-05-01 日商迪諾拉永久電極股份有限公司 包含電極之疊層構造體

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135008A (ja) * 1993-11-09 1995-05-23 Sumitomo Electric Ind Ltd 電池セル構造
JP2002329523A (ja) * 2001-05-01 2002-11-15 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム
JP2002367660A (ja) * 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルスタック
JP2003504811A (ja) * 1999-07-01 2003-02-04 スクワレル・ホールディングス・リミテッド 膜分離されたバイポーラマルチセル電気化学反応器
JP2008537290A (ja) * 2005-04-16 2008-09-11 リーフュエル・テクノロジー・リミテッド 電気化学セルスタック
JP2010277811A (ja) * 2009-05-28 2010-12-09 Abe Tomomi レドックスフロー電池のセルユニットとそのセルスタック構造
JP2014207122A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 双極板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135008A (ja) * 1993-11-09 1995-05-23 Sumitomo Electric Ind Ltd 電池セル構造
JP2003504811A (ja) * 1999-07-01 2003-02-04 スクワレル・ホールディングス・リミテッド 膜分離されたバイポーラマルチセル電気化学反応器
JP2002329523A (ja) * 2001-05-01 2002-11-15 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム
JP2002367660A (ja) * 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルスタック
JP2008537290A (ja) * 2005-04-16 2008-09-11 リーフュエル・テクノロジー・リミテッド 電気化学セルスタック
JP2010277811A (ja) * 2009-05-28 2010-12-09 Abe Tomomi レドックスフロー電池のセルユニットとそのセルスタック構造
JP2014207122A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 双極板及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019468159B2 (en) * 2019-09-25 2022-12-01 De Nora Permelec Ltd Laminated structure including electrodes
EP4036277A4 (en) * 2019-09-25 2022-12-07 De Nora Permelec Ltd LAMINATED STRUCTURE WITH ELECTRODES
US11718922B2 (en) 2019-09-25 2023-08-08 De Nora Permelec Ltd Laminated structure including electrodes
TWI840419B (zh) 2019-09-25 2024-05-01 日商迪諾拉永久電極股份有限公司 包含電極之疊層構造體

Similar Documents

Publication Publication Date Title
TWI712207B (zh) 框體、氧化還原液流電池用單元框及氧化還原液流電池
KR20170083526A (ko) 전지 셀 및 레독스 플로우 전지
KR101555651B1 (ko) 가스켓을 구비한 레독스 흐름 전지
TWI732009B (zh) 框體、電池框架、電池組及氧化還原液流電池
WO2018069996A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
EP3279990A1 (en) Separator for fuel cells and method for producing same
US20170352894A1 (en) Electrolyte-circulating battery
WO2018105091A1 (ja) レドックスフロー電池
WO2018066093A1 (ja) セルスタック、およびレドックスフロー電池
JP6014528B2 (ja) 燃料電池スタック
JP6731167B2 (ja) 枠体、セルフレーム、セルスタック、およびレドックスフロー電池
WO2019167144A1 (ja) セルスタック、及びレドックスフロー電池
JP6849954B2 (ja) 枠体、セルフレーム、セルスタック、及びレドックスフロー電池
JP6991468B2 (ja) セルスタック、及びレドックスフロー電池
WO2018134927A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
KR20110080552A (ko) 가스켓 일체형 분리판 및 이를 위한 금형

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP