WO2018064785A1 - System for energy extraction in watercourses - Google Patents

System for energy extraction in watercourses Download PDF

Info

Publication number
WO2018064785A1
WO2018064785A1 PCT/CL2016/000057 CL2016000057W WO2018064785A1 WO 2018064785 A1 WO2018064785 A1 WO 2018064785A1 CL 2016000057 W CL2016000057 W CL 2016000057W WO 2018064785 A1 WO2018064785 A1 WO 2018064785A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
energy extraction
turbines
extraction system
turbine
Prior art date
Application number
PCT/CL2016/000057
Other languages
Spanish (es)
French (fr)
Inventor
Emilio Alfonso DE LA JARA HARTWIG
Original Assignee
De La Jara Hartwig Emilio Alfonso
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De La Jara Hartwig Emilio Alfonso filed Critical De La Jara Hartwig Emilio Alfonso
Priority to PCT/CL2016/000057 priority Critical patent/WO2018064785A1/en
Publication of WO2018064785A1 publication Critical patent/WO2018064785A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/20Controlling by varying liquid flow specially adapted for turbines with jets of high-velocity liquid impinging on bladed or like rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • hydrokinetic generation systems which can be opened or closed (with duct) of which there are several patents with advantages and disadvantages.
  • open hydrokinetic turbines its main advantage is simplicity, which in general have few moving parts, reducing the probability of failure.
  • the great disadvantage of this type of systems is that they only capture a smaller percentage of the total power that the water course carries, proportional to the cube of the local speed of the channel, which are often very low (less than Im / s) and that by construction generally do not exceed 2.5 m / s.
  • transverse axis turbines such as WO 2014 / 194438A1 and US 20130026761 Al, among others, these have as a great advantage the amount of area they access, which is more similar to the shape of a rectangular channel.
  • the most important disadvantages are in the first place that they are very prone to blocking by floating elements and secondly that they generate an important blocking effect, which in many cases decreases the amount of generation, leaving it at about 10% conversion efficiency of energy
  • the blocking effect in a channel when they reach a high turning speed, can cause the free surface to exceed the channel revenge and water is lost from it, losing its main function of transporting water.
  • Stators such as those set forth in patents such as US6472768 Bl, US9097233 Bl, US7471009 B2, US20120139251 Al, US6954006 B2, US8633609 B2 , US9000604 B2, US20080211233A1, US 20110148117 Al, US20120139251 Al, US20120243987 Al, WO2010017869A2, US 8764391 B2, among others.
  • the purpose of these stators is usually to increase the area facing the turbine, improving its efficiency.
  • the great disadvantage of this type of systems is that they generate very little space between the turbine and the stator, which is a problem when a foreign element of similar dimensions enters.
  • Another important problem is that, like their peers without stator, the amount of energy they can potentially access is relatively small in flows that have speeds of less than 5m / s, which leaves many places with channels out of economic and technical feasibility. artificial and natural. Another of the important problems is that this type of system works, in general, completely submerged, so in the case that the flow rate is less than that required to completely submerge the system, it would be functioning sub-optimally.
  • WO2006011781 Al shows a system of several water wheels in series, along the channel, maximizing energy extraction, but with the problem that the maximum turbine extraction is very low (less than 10%).
  • WO 2007023432 A2 It shows an arrangement of water wheels in parallel for the extraction of energy or water pumping, but like the other water wheels, the efficiency per system makes the application of these systems technically and economically no longer make sense.
  • Another important shortcoming of this type of solutions is that in general it is not taken into account that for different behaviors of water wheels, different heights of water will be induced upstream, which can affect water spill problems outside the canal .
  • a turbine requires kinetic energy to operate, either in the form of kinetic energy that carries the flow or induced by a height difference, both of which are relatively rare alternatives along artificial channels.
  • This low amount of extractable energy often happens in channels that have a large amount of total energy, but in the following combinations: A sub-critical runoff regime of the low speed channel and a large area; Or a supercritical runoff regime of the channel with high flow velocity but a very small area to add a turbine for energy extraction.
  • turbine efficiency when facing flow conditions outside its operating range. Regardless of the type of turbine, all of them need certain specific physical conditions to operate efficiently, so high flow variability means that their efficiency is very low.
  • Hydraulic pumps to extract water from the irrigation channel require electricity and an electric generator to operate, which is not technically and / or economically feasible in many rural locations and has several heat losses in the electric motor and its used controller.
  • the means used to solve the aforementioned technical problems are varied, so we use a specific application example to show how the system improves the current solutions described in the description of the state of the art section.
  • the application example to be used is a canal lined with irrigation, with a slope of 1.6%, 2,000 meters long, square section with 1.6 meters deep and 3.2 meters wide, with concrete cladding with Manning coefficient of 0.016. In this way, we can show the means to solve the problems stated in the description of the state of the art and the effects that the invention has over the current state of the art.
  • the system does not modify the civil works of the canal, because the support and anchoring elements of the system are additional to the canal and can be installed without the requirement to alter the walls or the bottom of the canal, which allows the installation of the system without the need to modify the normal channel of the channel. In this way the maximum runoff capacity of the canal and the access of water to users downstream of the turbine installation is maintained.
  • Figure 1 shows the system in its position outside the water, which allows the maximum runoff of the canal and / or perform cleaning and maintenance of the canal.
  • Figure 2 shows the system in the generation position with 3 turbines of the hydrokinetic type, with its axis axial to the flow.
  • Dynamic damming is a methodology that allows energy to be accumulated between different systems in series in the form of potential energy, using its natural infrastructure or bathymetry, so that it is then released in the form of kinetic energy in the turbine.
  • the dynamic damming methodology combines the action of the different gates (main and turbine) together with the torque and angular speed of the rotor of each of the turbines.
  • the aggregate effect of these three variables aims to maximize the amount of energy extracted by the turbines, subject to water not draining out of the channel, regulating the level of water upstream and downstream of each system. Thanks to the fact that the system precisely regulates water levels, between each system, a significant amount of energy can be accumulated in the form of gravitational potential energy, achieving runoff levels greater than the normal runoff height, but less than the rematch of the canal, taking advantage of its existing infrastructure.
  • An example of the system is shown in Figure 3, in an isometric view in section, showing the gates and turbines out of the water, with the normal level of water runoff (A) and the flow direction from right to left ( B).
  • Figure 4 shows the same system and view as in Figure 3, but with the turbines and gates in the generation position, which modify the level of runoff upstream (C) and downstream (B), maintaining the height of lesser water to the edge of the canal wall.
  • the water level upstream of the system rises above the normal runoff height (1 m) at a height closer to the edge of the channel (1.5 m). Thanks to this effect, a contraction of the water flow is caused below the gate, causing the water flow to accelerate in the turbine area, generally moving from subcritical to supercritical flow, achieving higher speeds and directions for the propulsion of a turbine
  • Both the level of water upstream and downstream of the device are affected either by the position of the gates or the behavior of the turbine rotors.
  • FIG. 3 and 4 of the example set forth above the device has multiple rotors along the width of the channel, which gives the ability to have a larger area of energy collection compared to a common hydrokinetic turbine.
  • Figures 5 to 8 show the comparison of two flow situations to exemplify this advantage of the system over a common hydrokinetic system.
  • Figure 5 shows a frontal view in section of the canal, with the free surface of the water (A) and a hydrokinetic turbine (B) of 1 m in diameter, with runoff height of 1.2 m and flow rate 7 m 3 / s flow, which is completely submerged.
  • Figure 6 shows a front view in section of the canal, with the free surface of the water (A) and a hydrokinetic turbine (B) of 1 m in diameter, with a normal height of 0.8 m and 4.2 m 3 / s of flow, leaving part of the blade out of the water, generating losses by generating waves on the surface and vibrations in the turbine, lowering the amount of power generated by it.
  • An example of the system of the invention is shown, with three hydrokinetic turbines with horizontal axis (B) of 0.6 m diameter standard height upstream of l, 5m and 7 m 3 / s flow in Figure 7, with part of the flow relieved over the turbines and under the main gate (C), maximizing the speed of the water around the turbines to prevent the channel from overflowing.
  • FIG 8 An example of the system of the invention is shown in Figure 8, with 3 horizontal axis (B) hydrokinetic turbines of 0.6 m in diameter, with 5.6 m 3 / s mass flow and normal height upstream of l , 3m, thanks to the fact that the main gate (C) went down around 20 centimeters, managing to keep the water level upstream constant.
  • the conventional hydrokinetic turbine shown in Figures 5 and 6 has the functional requirement that the runoff height is greater than its diameter, since with lower flows, the area of energy collection decreases, in addition to power losses by generating waves on the surface and vibrations in the mechanical elements, because part of the rotor is out of the water (see figure 6).
  • the invention solves the problem of the area and its different water levels in the year, thanks to what we call dynamic damming, seeking an optimal combination between the gate and the blocking of the turbines, so that the water is maintained on the turbines and the free surface, at some level near but below the upper edge of the channel, avoiding water losses over the wall of the Chanel.
  • Another important technical problem that solves this device is the adaptation to different mass water flows that occur throughout the year, maximizing the amount of energy annual.
  • This problem is solved with the ability of the system to adapt to different mass water flows, modifying the blocking effect by the turbines in operation, together with the position of the gates that decreases the area at the entrance of the turbines. In this way, a level of blocking is achieved that maximizes the instantaneous power of the device system, subject to the surface of the water not exceeding the height of the edge of the channel.
  • Figures 9, 10 and 11 the invention is shown in a rectangular section channel, the optimum position of the gates for different mass flows: 5.6m 3 / s ( Figure 9), 4.2m 3 / s ( figure 10) and lm 3 / s (figure 11).
  • the system manages to maintain the water level prior to the turbine, near the edge of the channel, achieving the accumulation of upstream potential energy, thanks to the infrastructure existing channel, which is discharged in turbines that are available for generation (3.2 or 1 turbine in this case).
  • the final objective of the invention is to maximize the energy extracted from the channel throughout the year of several series systems, which is not trivial, since there is physical interaction between them, since each system will affect the hydraulic axis along the channel.
  • the effect of energy collection by systems has effects on upstream and downstream runoff, so the sizing of how many and which systems to install is an important issue to solve in order to achieve a technical and economically efficient scale, for each group of turbines installed in series along the channel.
  • Figure 14 shows the total energy generated by all the systems in a year, that is, the sum of energy of all the systems arranged in series along the 2 kilometers of the channel, for different mass flows that occur in that year (see mass flows in figure 12) compared to the power of the sum of conventional hydrokinetic turbines installed in the same place and at the same distance.
  • the invention is capable of generating up to 5.4 times more annual energy than its conventional alternative, in the case of 1 turbine and 4.7 times more annual energy for the maximum power of the systems arranged in series, which would be when 4 systems of the invention are installed in series, versus 4 conventional hydrokinetic systems in the same place.
  • Figure 16 shows an isometric view in section and Figure 2, a side view of the system, in its generation position, showing the effect on water runoff, upstream (A) and downstream of the system (B), with the main parts of the system in sight.
  • These figures show the use of horizontal axis hydrokinetic turbines (1), the flow separation plates (16), the support structure (4) of the turbines (1) and flow separation plates (16), whose position is determined by the mechanical positioning system (5) from a fan, which allows the support structure (4) to rise thanks to the shortening of the cable that connects with it, which can be lowered by gravity to the lengthen the cable, sliding through the general support structure (6).
  • the general support structure (6) has a reinforced concrete block that rests on the ground outside the channel (D), which connects with all the beams that support the positioning systems with fans (5 and 8), the support structure of the turbines (4) and the gates (7), so that everything can be positioned above the channel wall (C) if required, as shown in figure 1.
  • the gates in figure (7) are of the sliding type, all commanded independently by its own positioning system (8), which in the case of the figure, is a fan, which allows the gate to slide upwards by shortening the steel cable which connects to the gate, which can be lowered thanks to its own weight. This entire system is supported by a main gate that slides on a vertical beam that is part of the main support structure (6).
  • FIGs 16 and 17 are general schemes, since each subsystem has different technological options for each.
  • turbines of the horizontal axis hydrokinetic type are shown, which may vary in other types of turbine rotor, changing both the orientation of its axis and the type of turbine, which can be: i. Of horizontal axis, axial to the flow, with rotors of the type Kaplan, Bulbo or Pit; ii. Vertical axis with rotors of the Banki, Darrieus or Gorlov type; iii. Horizontal axis, transverse to the flow, with rotors of the type with rotors of the type Banki, Darrieus or Gorlov.
  • the huinche shown in the figures can be replaced by: i. Endless screw system operated manually or by a motor; ii. A rack and pinion system, operated manually or by a motor; iii. A hydraulic piston system, operated manually or by a hydraulic group.
  • Figure 18 shows a side detail view, in perspective, showing the direct mechanical connection with an axis (2) of a turbine (1) with the electric generator (3).
  • the system of seals and axle support to prevent the ingress of water showing the rubber seal (16), the support of the rubber seal (21), then the support of mechanical seals and bearings (22), with their respective mechanical seals (17), bearings (18), adjusting nut (19) and flexible coupling between shafts (20).
  • a variation is shown in Figures 19 and 20 where the turbine shaft (2) is connected to a hydraulic pump (23) that replaces the electric generator, to generate pressure and water flow to a hydraulic network outside the channel, sucking water through an inlet filter (24) to a water distribution network (25).
  • FIG 21 a rear isometric view in section and perspective is shown, showing the mechanical connection between the turbines (1) of the system, its axis (2) and a generator (12) by means of a system of belts and pulleys (10 ).
  • Figure 22 and 23 shows a top and isometric rear perspective view (respectively) showing the mechanical connection between the turbines (1) of the system, which are below the water level, connecting its axis (2) and the axis of a generator (12), by means of a system of belts and pulleys (10).
  • FIGS 24, 25 and 26 the same configuration is shown as in figures 21 to 23, but showing the variation that includes a hydraulic pump (14) instead of a generator (12), connecting the turbine (1) and its shaft (2), with a system of belts and pulleys (10), with the pump shaft (14) which sucks water from the channel from a tube (26) properly connected to the water, which is not shown in the figure, with the aim of giving simplicity in the explanation of the concept.
  • the outlet pipe (27) of the hydraulic pump (14) is connected with a hydraulic network outside the channel.
  • FIGS 27, 28 and 29, a front view of the invention is shown, showing the level of the free water surface (A), the support structure of the turbines (4), the turbines (1), the structure of general support (6) and independent gates (15) in different positions.
  • Figure 27 shows the system with all independent gates open
  • Figure 28 shows the system with one of the gates closed to reduce the flow through the system and maintain the level of water damming (A)
  • Figure 29 the system with two closed gates is shown to achieve the same effect with a smaller mass flow.
  • Figure 30 shows the connection scheme for a permanent magnet generator.
  • Figure 31 shows the connection scheme for an induction generator doubly powered by the mains.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

This invention lies within the scope of systems for converting the energy of a watercourse (artificial or natural) into mechanical and/or electric energy. The technical problems overcome by this invention are varied and are the main reason that many artificial channels with energy generating potential remain unexploited. First, one of the most important problems for converting the energy of a watercourse without drops is that the level of energy that can be extracted by conventional means is usually very low for practical applications, making it technically or economically unviable. Second, artificial channels commonly show a large variability in flow levels throughout the year, which involves different heights of water levels throughout the year, thus making energy production difficult due to the fixed size of the rotors in conventional systems, which in conditions of variable height would cause part of the turbine to be outside the water, leading to splashing and waves for a horizontal turbine and a smaller wetted area for a vertical turbine. The third problem solved by this system is that when a turbine is installed in the channel, current systems generate obstructions to the water flow, which can cause the channel to overflow during floods and require the channel to be designed for maximum spill. The fourth problem solved by this invention is the cutting off or change in direction that must be performed in a channel when installing a turbine, since the structural work required by conventional systems requires redirecting or completely cutting off the water flow, leaving downstream users without water. The system of the invention includes the following subsystems: turbines, sluice gates, with their respective supports and positioning systems, all of which are supported from outside the channel in order to maintain the same discharge capacity as it had before installing the system. At the flow inlet, the system has an entirely removable gate, the function of which together with the blocking caused by the turbines, is to regulate the pouring height upstream from the channel, at the same time keeping the turbines submerged for different mass flow rates throughout the year. The device comprises a plurality of turbines, which may be entirely removed and have one or more rotors that may be independent or interconnected with electric pumps or generators to convert the mechanical energy of the rotor into useful energy. The system changes a series of geometric and dynamic parameters in a balanced manner in order to maximise the performance of energy extraction, changing the rotation speed and torque of the turbine together with the height of the sluice gates in order to maximise energy extraction for different flow levels throughout the year, while preventing water from being spilled over the edge of the channel. The system is designed for installation in series and to maximise the energy extracted from the watercourse, generating more output and energy per year than conventional systems.

Description

"SISTEMA DE EXTRACCIÓN DE ENERGÍA EN CURSOS DE AGUA"  "ENERGY EXTRACTION SYSTEM IN WATER COURSES"
1. Campo de la invención 1. Field of the invention
Sistema para la extracción de energía desde cursos de aguas artificiales y naturales, con el objetivo de generar energía eléctrica y/o mecánica.  System for the extraction of energy from artificial and natural water courses, with the aim of generating electrical and / or mechanical energy.
2. Descripción del estado del arte  2. Description of the state of the art
A lo largo de la historia de la hidroélectricidad, ésta tecnología nos ha proveído de energía limpia, estable y predecible, la cual ha sido la base dé la energía eléctrica en muchos países del mundo, pero a pesar de todo esto, esta tecnología aún tiene desafíos para su expansión hacia nuevas fuentes de energía hídrica. Uno de los principales requisitos para la instalación de una planta hidroeléctrica, es que posea una diferencia de altura entre la aducción de la cañería hasta la turbina, lo cual al menos debe tener 2 metros y es precisamente esta condición que deja fuera de factibilidad técnica a muchos lugares con potencial energético. En todo el mundo existen una serie de canales artificiales con un importante flujo de agua, pero no poseen caídas, tal como canales de riego, navegación, aducción de centrales hidroeléctricas, entre otros canales artificiales, en los cuales aún no ha sido posible instalar una tecnología para extraer su potencial energético de manera eficiente y eficaz. Durante varios siglos, muchos inventos han sido propuestos para la extracción de energía en canales artificiales, desde ruedas de agua en la edad media, hasta sofisticados sistemas propuestos los últimos años. A pesar de esta gran cantidad de propuestas, aún no existe una opción tecnológica dominante a nivel mundial, principalmente debido a los desafíos tecnológicos que todavía enfrentan este tipo de inventos. Cada uno de estos sistemas para generación hidroeléctrica "sin caídas" de agua tienen sus propias ventajas y desventajas, las cuales pretendemos dilucidar en esta sección.  Throughout the history of hydroelectricity, this technology has provided us with clean, stable and predictable energy, which has been the basis of electrical energy in many countries of the world, but despite all this, this technology still has challenges for its expansion towards new sources of water energy. One of the main requirements for the installation of a hydroelectric plant, is that it has a height difference between the adduction of the pipe to the turbine, which must at least have 2 meters and it is precisely this condition that leaves out of technical feasibility to Many places with energy potential. Throughout the world there are a number of artificial channels with an important water flow, but they do not have falls, such as irrigation channels, navigation, adduction of hydroelectric plants, among other artificial channels, in which it has not yet been possible to install a technology to extract its energy potential efficiently and effectively. For several centuries, many inventions have been proposed for the extraction of energy in artificial channels, from water wheels in the middle ages, to sophisticated systems proposed in recent years. Despite this large number of proposals, there is still no dominant technological option worldwide, mainly due to the technological challenges that still face this type of inventions. Each of these systems for hydroelectric generation "without falls" of water have their own advantages and disadvantages, which we intend to elucidate in this section.
Un tipo de solución para generar energía a partir del movimiento de agua, es la aplicación de sistemas de generación hidrocinéticos, las cuales pueden ser abiertas o cerradas (con ducto) de las cuales existen varias patentes con ventajas y desventajas. Respecto de las turbinas hidrocinéticas abiertas, su principal ventaja es la simpleza, las cuales en general poseen pocas partes móviles, disminuyendo la probabilidad de falla. Por otro lado, la gran desventaja de este tipo de sistemas es que sólo capturan un porcentaje menor de la potencia total que lleva el curso de agua, proporcional al cubo de la velocidad local del canal, la cual muchas veces son muy bajas (menores a Im/s) y que por construcción generalmente no sobrepasan los 2.5 m/s. Además, la eficiencia de estas turbinas limitada por el tipo de turbina, su geometría particular y el límite de betz, en el caso que el efecto bloqueo de las turbinas sobre el canal sea pequeño, como es en la mayoría de los casos del estado del arte actual. Otro problema práctico de este tipo de sistema, es para que las turbinas generen potencias del orden de kilo-watts, la velocidad local de la zona de instalación debe ser superior a los l,5m/s, lo cual es poco frecuente en canales artificiales, ya que en muchos casos la pendiente es baja para poder acceder la mayor cantidad de área a regar por el canal de regadío. Para poder mostrar más en específico los desafíos del estado del arte de este tipo de turbinas, podemos dividir esta categoría de soluciones por el tipo de turbina que utilizan: Verticales, horizontales y de eje transverso. One type of solution to generate energy from the movement of water is the application of hydrokinetic generation systems, which can be opened or closed (with duct) of which there are several patents with advantages and disadvantages. Regarding open hydrokinetic turbines, its main advantage is simplicity, which in general have few moving parts, reducing the probability of failure. On the other hand, the great disadvantage of this type of systems is that they only capture a smaller percentage of the total power that the water course carries, proportional to the cube of the local speed of the channel, which are often very low (less than Im / s) and that by construction generally do not exceed 2.5 m / s. In addition, the efficiency of these turbines limited by the type of turbine, its particular geometry and the betz limit, in the event that the blocking effect of the turbines on the channel is small, as it is in most cases of the current state of the art. Another practical problem of this type of system is for the turbines to generate powers of the order of kilo-watts, the local speed of the installation area must be greater than 1.5m / s, which is rare in artificial channels , since in many cases the slope is low to be able to access the largest amount of area to be irrigated through the irrigation canal. In order to show more specifically the challenges of the state of the art of this type of turbines, we can divide this category of solutions by the type of turbine they use: Vertical, horizontal and transverse axis.
Respecto de las turbinas de eje vertical como la que se muestra en las patentes CN101719243A, US8550786B2, WO2012073320A1, US20140217732A1, WO2016004506A1 y JP2006207475A éstos sistemas presentan ventajas como la simpleza de sus componentes y la aislación de sistemas eléctricos fuera del agua. La mayor desventaja de estos sistemas es su menor eficiencia respecto de turbinas de eje horizontal, una mayor probabilidad de problemas con elementos flotantes que pueden quedar entre sus aspas y a una baja cantidad de energía extraíble en un flujo con velocidades menores a 1,5 m/s. Éstas desventajas hacen que la aplicación de este tipo de sistema sea limitada a pocos lugares donde existan velocidades suficientes para que la potencia generada pague el costo de capital. With respect to vertical axis turbines such as that shown in patents CN101719243A, US8550786B2, WO2012073320A1, US20140217732A1, WO2016004506A1 and JP2006207475 These systems have advantages such as the simplicity of their components and the isolation of electrical systems outside the water. The greatest disadvantage of these systems is their lower efficiency with respect to horizontal axis turbines, a greater probability of problems with floating elements that may remain between their blades and a low amount of removable energy in a flow with speeds less than 1.5 m / s. These disadvantages mean that the application of this type of system is limited to a few places where there are enough speeds for the generated power to pay the cost of capital.
Respecto de las turbinas de eje horizontal tales como las expuestas en US2010/024452A1, EP2463508A1, US 7682126 B2, entre otras, poseen la ventaja de ser eficientes (alrededor de 40%) y simples, pero tienen varias desventajas intrínsecas. El problema más importante de este tipo de turbina, es que al igual que todas las hidrocinéticas a flujo abierto, se requieren velocidades superiores a 1.5m/s para generar una cantidad de potencia que sea útil para aplicaciones prácticas, lo cual deja a muchos lugares sin factibilidad técnica ni económica para instalarse.  With respect to horizontal axis turbines such as those set forth in US2010 / 024452A1, EP2463508A1, US 7682126 B2, among others, they have the advantage of being efficient (about 40%) and simple, but they have several intrinsic disadvantages. The most important problem with this type of turbine is that, like all open flow hydrokinetics, speeds greater than 1.5m / s are required to generate an amount of power that is useful for practical applications, which leaves many places without technical or economic feasibility to settle.
Respecto de las turbinas de eje transverso, tales como WO 2014/194438A1 y US 20130026761 Al, entre otras, éstas tienen como gran ventaja la cantidad de área a la cual acceden, la cual es más parecida a la forma de un canal rectangular. Las desventajas más importantes son en primer lugar que son muy propensas al bloqueo por elementos flotantes y en segundo lugar que generan un efecto de bloqueo importante, lo cual en muchos casos disminuye la cantidad de generación, dejándola en alrededor de 10% de eficiencia de conversión de energía. En el caso de turbinas del tipo Darrieus y Gorlov, el efecto bloqueo en un canal, cuando éstas alcanzan una alta velocidad de giro, puede generar que la superficie libre sobrepase la revancha del canal y se pierda agua de éste, perdiendo su función principal de transportar agua. Regarding the transverse axis turbines, such as WO 2014 / 194438A1 and US 20130026761 Al, among others, these have as a great advantage the amount of area they access, which is more similar to the shape of a rectangular channel. The most important disadvantages are in the first place that they are very prone to blocking by floating elements and secondly that they generate an important blocking effect, which in many cases decreases the amount of generation, leaving it at about 10% conversion efficiency of energy In the case of Darrieus and Gorlov type turbines, the blocking effect in a channel, when they reach a high turning speed, can cause the free surface to exceed the channel revenge and water is lost from it, losing its main function of transporting water.
Una opción interesante para disminuir el problema de la baja eficiencia de las turbinas hidrocinéticas es hacer uso de "estatores", tal como los expuestos en las patentes como por ejemplo US6472768 Bl, US9097233 Bl, US7471009 B2, US20120139251 Al, US6954006 B2, US8633609 B2, US9000604 B2, US20080211233A1, US 20110148117 Al, US20120139251 Al, US20120243987 Al, WO2010017869A2, US 8764391 B2, entre otras. El objetivo de estos estatores es usualmente aumentar el área que enfrenta la turbina, mejorando su eficiencia. La gran desventaja de este tipo de sistemas, es que generan muy poco espacio entre la turbina y el estator, lo cual es un problema cuando entra un elemento extraño de dimensiones similares. Otro problema importante es que al igual que sus pares sin estator, la cantidad de energía que potencialmente pueden acceder es relativamente pequeña en caudales que posean velocidades menores a l,5m/s, lo cual deja fuera de factibilidad económica y técnica a muchos lugares con canales artificiales y naturales. Otro de los problemas importantes, es que este tipo de sistemas funcionan, en general, completamente sumergidos, por lo que en el caso que el caudal sea menor al requerido para sumergir por completo el sistema, éste estaría funcionando de manera sub-óptima.  An interesting option to reduce the problem of low efficiency of hydrokinetic turbines is to use "stators", such as those set forth in patents such as US6472768 Bl, US9097233 Bl, US7471009 B2, US20120139251 Al, US6954006 B2, US8633609 B2 , US9000604 B2, US20080211233A1, US 20110148117 Al, US20120139251 Al, US20120243987 Al, WO2010017869A2, US 8764391 B2, among others. The purpose of these stators is usually to increase the area facing the turbine, improving its efficiency. The great disadvantage of this type of systems is that they generate very little space between the turbine and the stator, which is a problem when a foreign element of similar dimensions enters. Another important problem is that, like their peers without stator, the amount of energy they can potentially access is relatively small in flows that have speeds of less than 5m / s, which leaves many places with channels out of economic and technical feasibility. artificial and natural. Another of the important problems is that this type of system works, in general, completely submerged, so in the case that the flow rate is less than that required to completely submerge the system, it would be functioning sub-optimally.
Las "ruedas de agua" o "water-wheels" en inglés, es probablemente una de las soluciones más antiguas, pero cuyo concepto aún se encuentra presente en varias soluciones técnicas propuestas actualmente, tales como las expuestas en las patentes EP 2735729 Al, EP 2463508 Al, US 6877968 B2, US7503744B1, EP 2691636 Bl, EP 2691636 Bl, DE 38139258, US4053787, US6877968, entre otras. Las principales ventajas de estos sistemas son el que poseen un eje fuera del agua, lo cual facilita la instalación de generadores o lo que sea que se requiera conectar mecánicamente (bomba, molino, etc). Las principales desventajas de estos sistemas es que poseen una eficiencia que en muchos casos es baja (alrededor de 10%) y que en casos de ruedas más eficientes, no cambian de orden de magnitud de eficiencia y poseen un alto bloqueo del flujo de agua, subiendo el nivel de agua aguas arriba y posiblemente derramando agua fuera del canal.  The "water wheels" or "water-wheels" in English, is probably one of the oldest solutions, but whose concept is still present in several technical solutions currently proposed, such as those set forth in EP 2735729 Al, EP 2463508 Al, US 6877968 B2, US7503744B1, EP 2691636 Bl, EP 2691636 Bl, DE 38139258, US4053787, US6877968, among others. The main advantages of these systems are that they have an axis outside the water, which facilitates the installation of generators or whatever is required to connect mechanically (pump, mill, etc). The main disadvantages of these systems is that they have an efficiency that in many cases is low (around 10%) and that in cases of more efficient wheels, do not change order of magnitude of efficiency and have a high blockage of water flow, raising the level of water upstream and possibly spilling water out of the canal.
Otra opción para la aplicación de sistemas de ruedas de agua es hacer arreglos de éstos, de manera de lograr mayores velocidades locales alrededor de las turbinas. En la patente WO2006011781 Al se muestra un sistema de varias ruedas de agua en serie, a lo largo del canal, maximizando la extracción de energía, pero con el problema que el máximo de extracción por turbina es muy bajo (menor al 10%). En la patente WO 2007023432 A2, se muestra un arreglo de ruedas de agua en paralelo para la extracción de energía o bombeo de agua, pero al igual que las otras ruedas de agua, la eficiencia por sistema hace que técnica y económicamente la aplicación de estos sistemas deje de tener sentido. Otra falencia importante de este tipo de soluciones es que en general no se toma en cuenta que para distintos comportamientos de las ruedas de agua, se inducirán distintas alturas de agua aguas arriba, lo cual puede incidir en problemas de derrame de agua por fuera del canal. Another option for the application of water wheel systems is to arrange them, in order to achieve higher local speeds around the turbines. WO2006011781 Al shows a system of several water wheels in series, along the channel, maximizing energy extraction, but with the problem that the maximum turbine extraction is very low (less than 10%). In WO 2007023432 A2, It shows an arrangement of water wheels in parallel for the extraction of energy or water pumping, but like the other water wheels, the efficiency per system makes the application of these systems technically and economically no longer make sense. Another important shortcoming of this type of solutions is that in general it is not taken into account that for different behaviors of water wheels, different heights of water will be induced upstream, which can affect water spill problems outside the canal .
Una opción eficiente y atractiva para capturar el potencial energético en canales es hacer uso de soluciones de la hidroelectricidad tradicional ya que es una tecnología muy eficiente y probada, pero que aún no se encuentra una solución técnicamente suficiente para su uso extensivo en la generación de energía en flujos de agua sin caída. En patentes tales como US 4289971, US 4441029 y WO 2013/093727 A2, se ha mostrado el concepto de incluir sistemas hidroeléctricos convencionales, pero todas estas patentes aún poseen problemas técnicos no resueltos. El principal problema técnico que generan es la modificación permanente el flujo del canal, la cual es inducida por la obra civil permanente que se requiere para la aplicación de este tipo de turbina. El que posea parte de la obra civil fija, implica que el canal ya no tendrá la capacidad de evacuación máxima con la que había sido diseñado, lo cual puede provocar un accidente por derramamiento en caso que se produzca una crecida en el canal. Otro de los problemas técnicos que inciden la aplicación de este tipo de tecnologías, es que en muchos de los casos se requiere detener o desviar el flujo del canal para realizar las obras civiles, perdiendo la función principal del canal de proveer agua. An efficient and attractive option to capture the energy potential in channels is to make use of traditional hydroelectricity solutions since it is a very efficient and proven technology, but a technically sufficient solution for extensive use in energy generation is not yet found in water flows without falling. In patents such as US 4289971, US 4441029 and WO 2013/093727 A2, the concept of including conventional hydroelectric systems has been shown, but all these patents still have unresolved technical problems. The main technical problem they generate is the permanent modification of the flow of the canal, which is induced by the permanent civil works required for the application of this type of turbine. The one that owns part of the fixed civil works, implies that the channel will no longer have the maximum evacuation capacity with which it had been designed, which can cause a spill accident in case a flood occurs in the channel. Another of the technical problems that affect the application of this type of technologies is that in many cases it is necessary to stop or divert the flow of the canal to perform civil works, losing the main function of the channel to provide water.
Una de las opciones para contrarrestar las bajas velocidades de los escurrimientos sub-críticos de un canal artificial, es realizar ciertas modificaciones a éste, con el objetivo de maximizar la potencia extraíble por turbinas en ciertas zonas del canal. Algunos ejemplos de estas modificaciones se pueden ver en las patentes US 20080101866 Al, WO 2016020933 Al y WO2011125072 A2, en donde se muestran las capacidades de este tipo de solución técnica. Las principal desventaja, que hace que estas soluciones técnicas no sean ampliamente adoptadas es que todas ellas modifican la infraestructura del canal, no permitiendo necesariamente la evacuación total del agua que se tenía en el diseño original del canal, provocando eventuales problemas en las crecidas. Otro tema importante no tomado en cuenta en este tipo de solución, es el bloqueo del agua que ejercen las turbinas, lo cual modifica el escurrimiento del canal, disminuyendo la velocidad que enfrenta la turbina en muchos casos. Otra de las opciones para maximizar la velocidad que enfrentan las turbinas, puede ser el uso de compuertas y turbinas tales como las que se presentan en las patentes US 8558402 B2, WO20140/51526 Al y US 2013/0062882 Al, pero en todas ellas aún persisten problemas técnicos no resueltos. En el caso de la patente US 8558402 B2, se presenta un sistema modular y transportable con varias turbinas que se pueden elegir con sus compuertas respectivas; El principal problema que presenta este sistema, es que para la posición de generación con todas las compuertas arriba, no se permite el paso del agua por el costado de las turbinas, por lo que el bloqueo producido por el funcionamiento de las turbinas, podría generar el rebalse del canal o bien disminuir la potencia generada al perder la energía cinética de la caída de agua sobre la compuerta. En el caso de la solución propuesta en WO 2014/051526 Al, el mayor problema es que las turbinas que utiliza (Banki) tienen un área de bloqueo cercano al 100%, lo cual es sub- óptimo para caudales cercanos al caudal máximo de diseño que tenía el canal antes de la instalación del problema; Adicionalmente, en esta solución no especifica cuál es el caudal de evacuación total, con las turbinas en posición separada, pudiendo provocar problemas de rebalsamiento del canal aún en la posición sin turbinas, ya que éstas no se pueden remover fácilmente fuera del canal en caso de una crecida. Por último, la solución propuesta US 2013/0062882 Al, posee la desventaja intrínseca de generar desahogo por arriba de la compuerta, lo cual puede ser posible sólo en salidas laterales de agua del canal, o bien, cuando el flujo del canal es menor al caudal máximo de diseño del canal, caso en el que no podría realizarse el represamiento requerido para que esta solución funcione. One of the options to counteract the low speeds of the sub-critical runoff of an artificial channel is to make certain modifications to it, with the aim of maximizing the removable power by turbines in certain areas of the channel. Some examples of these modifications can be seen in US Patents 20080101866 Al, WO 2016020933 Al and WO2011125072 A2, where the capabilities of this type of technical solution are shown. The main disadvantage, which makes these technical solutions not widely adopted is that they all modify the infrastructure of the canal, not necessarily allowing the total evacuation of the water that was in the original design of the canal, causing eventual problems in the floods. Another important issue not taken into account in this type of solution is the blockage of the water exerted by the turbines, which modifies the runoff of the canal, decreasing the speed that the turbine faces in many cases. Another option to maximize the speed that turbines face, may be the use of gates and turbines such as those presented in US patents 8558402 B2, WO20140 / 51526 Al and US 2013/0062882 Al, but all of them still have unresolved technical problems. In the case of US 8558402 B2, a modular and transportable system is presented with several turbines that can be chosen with their respective gates; The main problem that this system presents, is that for the generation position with all the gates up, the passage of water is not allowed on the side of the turbines, so the blockage caused by the operation of the turbines could generate the overflow of the channel or decrease the power generated by losing the kinetic energy of the water fall on the gate. In the case of the solution proposed in WO 2014/051526 Al, the biggest problem is that the turbines used (Banki) have a blocking area close to 100%, which is sub-optimal for flows close to the maximum design flow I had the channel before installing the problem; Additionally, in this solution it does not specify what the total evacuation flow is, with the turbines in a separate position, which can cause problems of overflow of the channel even in the position without turbines, since these cannot be easily removed outside the channel in case of A flood. Finally, the proposed solution US 2013/0062882 Al, has the intrinsic disadvantage of generating relief above the gate, which may be possible only in lateral water outlets of the channel, or, when the channel flow is less than maximum channel design flow, in which case the damming required for this solution to work cannot be performed.
Una opción interesante para explotar el potencial en canales artificiales es lo planteado por la empresa JAG Seabell en sus patentes EP 2711541 Al, US 8475113 B2 y WO2010086958A1 por ejemplo. El principal problema técnico que no resuelve esta solución es que dado que el porcentaje de área bloqueada por la máquina es muy cercana al 100%, los niveles de agua aguas arriba de la máquina están limitados por la cantidad de flujo que pueden evacuar por sobre la máquina. Este problema es particularmente complicado cuando se requiere instalar una de estas máquinas en un canal con poca pared sobre la superficie libre del agua y con un caudal de diseño que implique que la altura de escurrimiento esté cerca del borde de la pared, caso en el cual se rebalsaría el canal. Otro problema que no se resuelve de manera directa con este sistema es cómo el sistema reacciona ante crecidas repentinas del canal, lo cual puede provocar el rebalsamiento catastrófico del canal. n de la InvenciónAn interesting option to exploit the potential in artificial channels is that raised by the company JAG Seabell in its patents EP 2711541 Al, US 8475113 B2 and WO2010086958A1 for example. The main technical problem that this solution does not solve is that since the percentage of area blocked by the machine is very close to 100%, the water levels upstream of the machine are limited by the amount of flow that can evacuate over the machine. This problem is particularly complicated when it is required to install one of these machines in a channel with little wall on the free surface of the water and with a design flow that implies that the runoff height is close to the edge of the wall, in which case the channel would overflow. Another problem that is not solved directly with this system is how the system reacts to sudden flooding of the canal, which can cause catastrophic overflow of the canal. n of the invention
as Técnicos resueltos por la invención Technicians resolved by the invention
les problemas técnicos no resueltos por el estado del arte y que el sistema descritonte invención intenta resolver son:The technical problems not solved by the state of the art and which the invention described system tries to solve are:
sibilidad de generación hidroeléctrica en cursos de agua sin caída, con régimen escurrimiento subcrítico con pendientes desde 0,05%, cambiando el paradigma sobre qué lugares son factibles para la generación hidroeléctrica y generación de presión de agua para riego o consumo humano. sibility of hydroelectric generation in water courses without falling, with subcritical runoff regime with slopes of 0.05%, changing the paradigm on which places are feasible for hydroelectric generation and generation of water pressure for irrigation or human consumption.
ificación de la sección transversal del canal artificial o el cauce natural del río, lo cual provoca problemas de desabastecimiento temporal o permanente del agua durante la construcción y/o operación del sistema de generación de energía, además del impacto social y/o ambiental por la disminución de los caudales.ification of the cross-section of the artificial channel or the natural channel of the river, which causes problems of temporary or permanent shortage of water during the construction and / or operation of the power generation system, in addition to the social and / or environmental impact by the Decrease in flows.
lemas de seguridad de los equipos, el canal o los alrededores, en el caso de crecidas que requieran el caudal de evacuación máximo que tiene por diseño del canal. Esto ocurre en todos los casos en que se obstruya el canal, modificando su caudal máximo de diseño, lo cual generaría un rebalse del canal en el escenario que se dé el caudal máximo de diseño.  safety slogans of the equipment, the channel or the surrounding area, in the case of floods that require the maximum evacuation flow that is designed by the channel. This occurs in all cases where the channel is obstructed, modifying its maximum design flow, which would generate an overflow of the channel in the scenario that the maximum design flow is given.
cantidad de energía extraíble del flujo en canal abierto, lo cual dificulta la extracción de energía por medio de una turbina. Una turbina requiere energía cinética para funcionar, ya sea en forma de energía cinética que lleva el flujo o inducida por una diferencia de altura, siendo ambas alternativas relativamente poco frecuentes a lo largo de canales artificiales. Ésta baja cantidad de energía extraíble, muchas veces sucede en canales que poseen una gran cantidad de energía total, pero en las siguientes combinaciones: Un régimen sub-crítico de escurrimiento del canal con velocidad baja y un área de gran tamaño; O bien un régimen supercrítico de escurrimiento del canal con velocidad alta del flujo pero un área muy pequeña para agregar una turbina para la extracción de energía. eficiencia de las turbinas al enfrentar condiciones dé flujo fuera de su rango de operación. Independiente del tipo de turbina, todas ellas necesitan ciertas condiciones físicas específicas para operar de manera eficiente, por lo que una gran variabilidad de caudales hace que su eficiencia sea muy baja. La gran variabilidad de los caudales en canales artificiales genera grandes variaciones en las alturas y velocidades de escurrimiento, ya sea en escala de segundos, minutos, horas, días, meses o años. Esta gran variabilidad implica que las alternativas actuales de turbinas hidrocinéticas tengan una menor área mojada en el caso que sean de eje vertical, o bien que las aspas de la turbina queden por fuera del agua en el caso que sean de eje horizontal, generando vibración, olas en la superficie y una menor eficiencia. amount of extractable energy from the flow in the open channel, which makes it difficult to extract energy through a turbine. A turbine requires kinetic energy to operate, either in the form of kinetic energy that carries the flow or induced by a height difference, both of which are relatively rare alternatives along artificial channels. This low amount of extractable energy, often happens in channels that have a large amount of total energy, but in the following combinations: A sub-critical runoff regime of the low speed channel and a large area; Or a supercritical runoff regime of the channel with high flow velocity but a very small area to add a turbine for energy extraction. turbine efficiency when facing flow conditions outside its operating range. Regardless of the type of turbine, all of them need certain specific physical conditions to operate efficiently, so high flow variability means that their efficiency is very low. The great variability of the flows in artificial channels generates great variations in the heights and runoff speeds, either in seconds, minutes, hours, days, months or years. This great variability implies that the current alternatives of hydrokinetic turbines have a smaller wet area in the case that they are of vertical axis, or that the blades of the turbine are outside the water in the case that they are of horizontal axis, generating vibration, surface waves and lower efficiency.
Poca cantidad de área para extracción de energía en el flujo de un canal, lo cual incide en que la cantidad de energía mecánica por eje de cada rotor sea muy baja para aplicaciones prácticas de generación de energía eléctrica, presión de agua u otro fin productivo.  Little amount of area for energy extraction in the flow of a channel, which affects the amount of mechanical energy per axis of each rotor is very low for practical applications of electric power generation, water pressure or other productive purpose.
No existe una metodología que maximice la cantidad de energía generada anual de una serie de dispositivos dispuestos en serie en un canal desde 0,05% de pendiente.  There is no methodology that maximizes the amount of annual energy generated from a series of devices arranged in series in a channel from 0.05% slope.
Las bombas hidráulicas para extraer agua del canal de regadío, requieren electricidad y un generador eléctrico para funcionar, lo cual no es factible técnica y/o económicamente en muchas localidades rurales y posee varias pérdidas por calor en el motor eléctrico y su controlador utilizado.  Hydraulic pumps to extract water from the irrigation channel, require electricity and an electric generator to operate, which is not technically and / or economically feasible in many rural locations and has several heat losses in the electric motor and its used controller.
3.2. Medios para resolver el problema y efectos de la invención 3.2. Means for solving the problem and effects of the invention
Los medios que se ocupan para resolver los problemas técnicos anteriormente mencionados son variados, por lo que usamos ejemplo de aplicación en concreto para mostrar la manera en que el sistema logra mejorar las soluciones actuales descritas en la sección de la descripción del estado del arte. El ejemplo de aplicación que se utilizará es un canal revestido de regadío, con pendiente de 1,6%, 2.000 metros de largo, de sección cuadrada con 1,6 metros de profundidad y 3,2 metros de ancho, con revestimiento de concreto con coeficiente de Manning de 0,016. De esta manera, podremos mostrar los medios para resolver los problemas enunciados en la descripción del estado del arte y los efectos que tiene la invención por sobre el estado actual de la técnica.  The means used to solve the aforementioned technical problems are varied, so we use a specific application example to show how the system improves the current solutions described in the description of the state of the art section. The application example to be used is a canal lined with irrigation, with a slope of 1.6%, 2,000 meters long, square section with 1.6 meters deep and 3.2 meters wide, with concrete cladding with Manning coefficient of 0.016. In this way, we can show the means to solve the problems stated in the description of the state of the art and the effects that the invention has over the current state of the art.
El sistema no modifica la obra civil del canal, gracias a que los elementos de soporte y anclaje del sistema son adicionales al canal y pueden ser instalados sin el requerimiento de alterar los muros ni el fondo del canal, lo cual permite la instalación del sistema sin la necesidad de modificar el cauce normal del canal. De esta manera se mantiene la capacidad máxima de escurrimiento del canal y el acceso de agua a usuarios aguas abajo de la instalación de la turbina. En la figura 1 se muestra el sistema en su posición fuera del agua, la cual permite el escurrimiento máximo del canal y/o realizar labores de limpieza y mantención del canal. En la figura 2 se muestra el sistema en posición de generación con 3 turbinas del tipo hidrocinético, con su eje de manera axial al flujo. The system does not modify the civil works of the canal, because the support and anchoring elements of the system are additional to the canal and can be installed without the requirement to alter the walls or the bottom of the canal, which allows the installation of the system without the need to modify the normal channel of the channel. In this way the maximum runoff capacity of the canal and the access of water to users downstream of the turbine installation is maintained. Figure 1 shows the system in its position outside the water, which allows the maximum runoff of the canal and / or perform cleaning and maintenance of the canal. Figure 2 shows the system in the generation position with 3 turbines of the hydrokinetic type, with its axis axial to the flow.
Una de las grandes diferencias del dispositivo, en comparación con las alternativas existentes, es que el sistema accede a una cantidad de energía extraída mayor que la energía cinética que éste posee en su escurrimiento sin sistema, gracias a la metodología que denominamos "Represamiento Dinámico". Represamiento dinámico es una metodología que permite acumular energía entre distintos sistemas en serie en forma de energía potencial, usando la infraestructura o batimetría natural de éste, para que luego sea liberada en forma de energía cinética en la turbina. La metodología de represamiento dinámico combina la acción de las distintas compuertas (principales y de turbina) junto con el torque y velocidad angular del rotor de cada una de las turbinas. El efecto agregado de estas tres variables, tiene como objetivo maximizar la cantidad de energía extraída por las turbinas, sujeto a qué no se escurra agua fuera del canal, regulando el nivel del agua aguas arriba y abajo de cada sistema. Gracias a que el sistema regula de manera precisa los niveles de agua, entre cada sistema, se puede acumular una cantidad importante de energía en forma de energía potencial gravitatoria, logrando niveles de escurrimiento mayores a la altura normal de escurrimiento, pero menores a la revancha del canal, aprovechando así la infraestructura existente de éste. En la figura 3 se muestra un ejemplo del sistema, en una vista isométrica en corte, donde se muestran las compuertas y turbinas fuera del agua, con el nivel normal de escurrimiento del agua (A) y la dirección del flujo de derecha a izquierda (B). En la figura 4 se muestra el mismo sistema y vista que en la figura 3, pero con las turbinas y compuertas en posición de generación, las cuales modifican el nivel de escurrimiento aguas arriba (C) y aguas abajo (B), manteniendo la altura de agua menor al borde de la pared del canal. En este caso, donde el dispositivo se encuentra sumergido, el nivel de agua aguas arriba del sistema se eleva por sobre la altura normal de escurrimiento (1 m) a una altura más cercana al borde del canal (1,5 m). Gracias a este efecto, se provoca una contracción del flujo del agua por debajo de la compuerta, haciendo que el flujo de agua acelere en la zona de la turbina, pasando generalmente de flujo subcrítico a supercrítico, logrando mayores velocidades y direcciones para la propulsión de una turbina. Tanto el nivel de agua aguas arriba y abajo del dispositivo se ven afectados ya sea por la posición de las compuertas como con el comportamiento de los rotores de la turbina. Otro problema técnico que resuelve este dispositivo es la maximización del área de extracción de energía. Tal como se visualiza en las figuras 3 y 4 del ejemplo enunciadas anteriormente, el dispositivo posee múltiples rotores a lo ancho del canal, lo cual da la capacidad de tener mayor área de captación de energía en comparación con una turbina hidrocinética común. En las figuras 5 a 8 se muestra la comparación de dos situaciones de flujo para ejemplificar esta ventaja del sistema por sobre un sistema hidrocinético común. En la figura 5 se aprecia una vista frontal en corte del canal, con la superficie libre del agua (A) y una turbina hidrocinética (B) de 1 m de diámetro, con altura de escurrimiento de 1,2 m y caudal 7 m3/s de flujo, la cual queda completamente sumergida. En la figura 6 se muestra una vista frontal en corte del canal, con la superficie libre del agua (A) y una turbina hidrocinética (B) de 1 m de diámetro, con altura normal de 0,8 m y 4,2 m3/s de flujo, quedando parte del aspa fuera del agua, generando pérdidas por generación de olas en la superficie y vibraciones en la turbina, bajando la cantidad de potencia generada por ésta. En la figura 7, se muestra un ejemplo del sistema de la invención, con 3 turbinas hidrocinéticas de eje horizontal (B) de 0,6 m de diámetro altura normal aguas arriba de l,5m y 7 m3/s de flujo, con parte del flujo aliviado por sobre las turbinas y bajo la compuerta principal (C), maximizando la velocidad del agua alrededor de las turbinas para evitar que se rebalse el canal. En la figura 8, se muestra un ejemplo del sistema de la invención, con 3 turbinas hidrocinéticas de eje horizontal (B) de 0,6 m de diámetro, con flujo másico de 5,6 m3/s y altura normal aguas arriba de l,3m, gracias a que la compuerta principal (C) bajó alrededor de 20 centímetros, logrando mantener constante el nivel del agua aguas arriba. La turbina hidrocinética convencional que se muestra en las figuras 5 y 6, tiene como requerimiento funcional el que la altura de escurrimiento sea mayor a su diámetro, ya que con menores flujos, disminuye el área de captación de energía, además de las pérdidas de potencia por generación de olas en la superficie y vibraciones en los elementos mecánicos, por quedar parte del rotor fuera del agua (véase figura 6). En el caso del ejemplo de sistema de la invención que se muestra en las figuras 7 y 8, se puede apreciar que la invención resuelve el problema del área y sus distintos niveles de agua en el año, gracias a lo que denominamos represamiento dinámico, buscando una combinación óptima entre la compuerta y el bloqueo de las turbinas, de manera que se mantenga el agua sobre las turbinas y la superficie libre, en algún nivel cercano pero por debajo al borde superior del canal, evitando las pérdidas de agua por sobre el muro del canal. One of the great differences of the device, in comparison with the existing alternatives, is that the system accesses an amount of energy extracted greater than the kinetic energy that it has in its runoff without a system, thanks to the methodology that we call "Dynamic Repression" . Dynamic damming is a methodology that allows energy to be accumulated between different systems in series in the form of potential energy, using its natural infrastructure or bathymetry, so that it is then released in the form of kinetic energy in the turbine. The dynamic damming methodology combines the action of the different gates (main and turbine) together with the torque and angular speed of the rotor of each of the turbines. The aggregate effect of these three variables, aims to maximize the amount of energy extracted by the turbines, subject to water not draining out of the channel, regulating the level of water upstream and downstream of each system. Thanks to the fact that the system precisely regulates water levels, between each system, a significant amount of energy can be accumulated in the form of gravitational potential energy, achieving runoff levels greater than the normal runoff height, but less than the rematch of the canal, taking advantage of its existing infrastructure. An example of the system is shown in Figure 3, in an isometric view in section, showing the gates and turbines out of the water, with the normal level of water runoff (A) and the flow direction from right to left ( B). Figure 4 shows the same system and view as in Figure 3, but with the turbines and gates in the generation position, which modify the level of runoff upstream (C) and downstream (B), maintaining the height of lesser water to the edge of the canal wall. In this case, where the device is submerged, the water level upstream of the system rises above the normal runoff height (1 m) at a height closer to the edge of the channel (1.5 m). Thanks to this effect, a contraction of the water flow is caused below the gate, causing the water flow to accelerate in the turbine area, generally moving from subcritical to supercritical flow, achieving higher speeds and directions for the propulsion of a turbine Both the level of water upstream and downstream of the device are affected either by the position of the gates or the behavior of the turbine rotors. Another technical problem that solves this device is the maximization of the energy extraction area. As shown in Figures 3 and 4 of the example set forth above, the device has multiple rotors along the width of the channel, which gives the ability to have a larger area of energy collection compared to a common hydrokinetic turbine. Figures 5 to 8 show the comparison of two flow situations to exemplify this advantage of the system over a common hydrokinetic system. Figure 5 shows a frontal view in section of the canal, with the free surface of the water (A) and a hydrokinetic turbine (B) of 1 m in diameter, with runoff height of 1.2 m and flow rate 7 m 3 / s flow, which is completely submerged. Figure 6 shows a front view in section of the canal, with the free surface of the water (A) and a hydrokinetic turbine (B) of 1 m in diameter, with a normal height of 0.8 m and 4.2 m 3 / s of flow, leaving part of the blade out of the water, generating losses by generating waves on the surface and vibrations in the turbine, lowering the amount of power generated by it. An example of the system of the invention is shown, with three hydrokinetic turbines with horizontal axis (B) of 0.6 m diameter standard height upstream of l, 5m and 7 m 3 / s flow in Figure 7, with part of the flow relieved over the turbines and under the main gate (C), maximizing the speed of the water around the turbines to prevent the channel from overflowing. An example of the system of the invention is shown in Figure 8, with 3 horizontal axis (B) hydrokinetic turbines of 0.6 m in diameter, with 5.6 m 3 / s mass flow and normal height upstream of l , 3m, thanks to the fact that the main gate (C) went down around 20 centimeters, managing to keep the water level upstream constant. The conventional hydrokinetic turbine shown in Figures 5 and 6, has the functional requirement that the runoff height is greater than its diameter, since with lower flows, the area of energy collection decreases, in addition to power losses by generating waves on the surface and vibrations in the mechanical elements, because part of the rotor is out of the water (see figure 6). In the case of the example of the system of the invention shown in Figures 7 and 8, it can be seen that the invention solves the problem of the area and its different water levels in the year, thanks to what we call dynamic damming, seeking an optimal combination between the gate and the blocking of the turbines, so that the water is maintained on the turbines and the free surface, at some level near but below the upper edge of the channel, avoiding water losses over the wall of the Chanel.
Otro problema técnico importante que resuelve este dispositivo, es la adaptación a distintos flujos másicos de agua que se dan a lo largo del año, maximizando la cantidad de energía anual. Este problema se resuelve con la capacidad que posee el sistema para adaptarse a distintos flujos másicos de agua, modificando el efecto de bloqueo por las turbinas en operación, junto con la posición de las compuertas que disminuye el área a la entrada de las turbinas. De esta manera, se logra un nivel de bloqueo que maximiza la potencia instantánea del sistema de dispositivos, sujeto a que la superficie del agua no supere la altura del borde del canal. En las figuras 9, 10 y 11, se muestra la invención en un canal de sección rectangular, con la posición óptima de las compuertas para distintos flujos másicos: 5,6m3/s (figura 9), 4,2m3/s (figura 10) y lm3/s (figura 11). Tal como se aprecia en las figuras anteriormente mencionadas, gracias al uso de las compuertas secundarias, el sistema logra mantener el nivel del agua previo a la turbina, cerca del borde del canal, logrando la acumulación de energía potencial aguas arriba, gracias a la infraestructura existente del canal, la cual es descargada en las turbinas que estén disponibles para la generación (3,2 o 1 turbina en este caso). Si se considera la distribución de caudales que se aprecia en la figura 12, podemos calcular la potencia generada durante el año como se muestra en la figura 13, comparando la potencia generada por la invención versus una turbina hidrocinética convencional de lm de diámetro a lo largo del año. Como podemos notar, la invención genera entre 2,8 a 3,5 veces más potencia instantánea que una turbina hidrocinética convencional, en los meses que ambas generan (octubre hasta abril). Además, la invención logra producir 6,3 kW en los meses de mayo y junio, cuando la turbina hidrocinética no puede operar, ya que queda con el rotor fuera del agua. Another important technical problem that solves this device, is the adaptation to different mass water flows that occur throughout the year, maximizing the amount of energy annual. This problem is solved with the ability of the system to adapt to different mass water flows, modifying the blocking effect by the turbines in operation, together with the position of the gates that decreases the area at the entrance of the turbines. In this way, a level of blocking is achieved that maximizes the instantaneous power of the device system, subject to the surface of the water not exceeding the height of the edge of the channel. In Figures 9, 10 and 11, the invention is shown in a rectangular section channel, the optimum position of the gates for different mass flows: 5.6m 3 / s (Figure 9), 4.2m 3 / s ( figure 10) and lm 3 / s (figure 11). As can be seen in the aforementioned figures, thanks to the use of the secondary gates, the system manages to maintain the water level prior to the turbine, near the edge of the channel, achieving the accumulation of upstream potential energy, thanks to the infrastructure existing channel, which is discharged in turbines that are available for generation (3.2 or 1 turbine in this case). If we consider the distribution of flows that can be seen in figure 12, we can calculate the power generated during the year as shown in figure 13, comparing the power generated by the invention versus a conventional hydrokinetic turbine of lm in diameter along of the year. As we can see, the invention generates between 2.8 to 3.5 times more instantaneous power than a conventional hydrokinetic turbine, in the months that both generate (October to April). In addition, the invention manages to produce 6.3 kW in the months of May and June, when the hydrokinetic turbine cannot operate, since it is left with the rotor out of the water.
El objetivo final de la invención es maximizar la energía extraída del canal a lo largo del año de varios sistemas en serie, lo cual no es trivial, ya que existe interacción física entre ellos, dado que cada sistema afectará el eje hidráulico a lo largo del canal. El efecto de la captación de energía por parte de los sistemas, tiene efectos en el escurrimiento aguas arriba y abajo, por lo que el dimensionamiento de cuántos y cuáles sistemas instalar es un tema importante a resolver para poder lograr una escala técnica y económicamente eficiente, para cada grupo de turbinas instaladas en serie a lo largo del canal. Haciendo los balances de energía, flujo másico y momentum a través de los sistemas, se puede establecer cuál sería la potencia total de los sistemas en un periodo de tiempo (e.g. un año) a distintas distancias entre los sistemas, determinando el nivel óptimo de bloqueo de cada sistema en cada flujo másico del año. En la figura 14 se puede apreciar la energía total generada por todos los sistemas en un año, es decir, la suma de energía de todos los sistemas dispuesto en serie a lo largo de los 2 kilómetros de canal, para distintos flujos másicos que se dan en ese año (véase flujos másicos en figura 12) comparado con la potencia de la suma de turbinas hidrocinéticas convencionales instaladas en el mismo lugar y a la misma distancia. Tal como se aprecia en la figura 14, la invención es capaz de generar hasta 5,4 veces más de energía anual que su alternativa convencional, en el caso de 1 turbina y 4,7 veces más energía anual para la potencia máxima de los sistemas dispuestos en serie, que sería cuando se instalan 4 sistemas de la invención puestos en serie, versus 4 sistemas hidrocinéticos convencionales en el mismo lugar. The final objective of the invention is to maximize the energy extracted from the channel throughout the year of several series systems, which is not trivial, since there is physical interaction between them, since each system will affect the hydraulic axis along the channel. The effect of energy collection by systems has effects on upstream and downstream runoff, so the sizing of how many and which systems to install is an important issue to solve in order to achieve a technical and economically efficient scale, for each group of turbines installed in series along the channel. By making the balances of energy, mass flow and momentum through the systems, it can be established what the total power of the systems would be in a period of time (eg one year) at different distances between the systems, determining the optimal level of blocking of each system in each mass flow of the year. Figure 14 shows the total energy generated by all the systems in a year, that is, the sum of energy of all the systems arranged in series along the 2 kilometers of the channel, for different mass flows that occur in that year (see mass flows in figure 12) compared to the power of the sum of conventional hydrokinetic turbines installed in the same place and at the same distance. As can be seen in Figure 14, the invention is capable of generating up to 5.4 times more annual energy than its conventional alternative, in the case of 1 turbine and 4.7 times more annual energy for the maximum power of the systems arranged in series, which would be when 4 systems of the invention are installed in series, versus 4 conventional hydrokinetic systems in the same place.
Si en la figura 14 se analiza el incremento en la energía por año que genera un sistema adicional, la cantidad de energía por un sistema de la invención adicional, la tasa de incremento de la energía anual comienza a decrecer por cada sistema adicional, creciendo un 100% de 1 a 2 sistemas, un 42% de 2 a 3, un 27% de 3 a 4 y sólo un 3% de 4 a 5, ya que estos comienzan a influir la manera en que escurre el agua en el canal, disminuyendo la cantidad de energía extraída a medida que aumento un sistema adicional. Este efecto no afecta en los sistemas hidrocinéticos convencionales analizados en este caso, ya que la influencia en el eje hidráulico para las distancias analizadas es despreciable, principalmente porque el canal alcanza a recuperar su eje hidráulico para tales distancias. Por otro lado, en el caso del ejemplo, cuyos resultados dado que la pendiente del canal es la misma en el tramo analizado, todos los sistemas estarían separados equidistantemente ya que la pendiente es constante a lo largo del tramo, tal como se muestra en la figura 15. En caso que las pendientes cambiaran a lo largo del canal, o bien existan singularidades hidráulicas (cambios de área, curvas, etc) la distancia óptima entre los sistemas debería no ser equidistante. If the increase in energy per year generated by an additional system is analyzed in Figure 14, the amount of energy for an additional invention system, the annual energy increase rate begins to decrease for each additional system, growing by 100% of 1 to 2 systems, 42% of 2 to 3, 27% of 3 to 4 and only 3% of 4 to 5, since these begin to influence the way in which the water drains into the canal, decreasing the amount of energy extracted as an additional system increases. This effect does not affect the conventional hydrokinetic systems analyzed in this case, since the influence on the hydraulic axis for the distances analyzed is negligible, mainly because the channel reaches its hydraulic axis for such distances. On the other hand, in the case of the example, whose results given that the slope of the channel is the same in the analyzed section, all the systems would be separated equidistantly since the slope is constant along the section, as shown in the Figure 15. If the slopes change along the channel, or there are hydraulic singularities (changes in area, curves, etc.), the optimal distance between the systems should not be equidistant.
4. Descripción de los dibujos 4. Description of the drawings
A continuación se detallan las figuras que pretenden ilustrar distintos elementos de la invención y cómo se relacionan entre ellos. Las medidas de las figuras no son necesariamente las reales con el objetivo de mostrar los conceptos de la invención de manera clara.  The figures that attempt to illustrate different elements of the invention and how they relate to each other are detailed below. The measurements of the figures are not necessarily the real ones in order to show the concepts of the invention clearly.
La figura 16 muestra una vista isométrica en corte y la figura 2, una vista lateral del sistema, en su posición de generación, mostrando el efecto en el escurrimiento del agua, aguas arriba (A) y aguas debajo del sistema (B), con las principales piezas del sistema a la vista. En estas figuras se aprecia el uso de turbinas (1) hidrocinéticas de eje horizontal, las placas de separación de flujo (16), la estructura de soporte (4) de las turbinas (1) y placas de separación de flujo (16), cuya posición está determinada por el sistema mecánico de posicionamiento (5) a partir de un hinche, el cual permite que la estructura de soporte (4) pueda subir gracias al acortamiento del cable que se conecta con ésta, la cual puede bajar por gravedad al alargar el cable, deslizando por la estructura de soporte general (6). La estructura de soporte general (6) posee un bloque de hormigón armado que se apoya en el suelo fuera del canal (D), que se conecta con todas las vigas que dan soporte los sistemas de posicionamiento con hinche (5 y 8), la estructura de soporte de las turbinas (4) y las compuertas (7), para que todo pueda posicionarse por sobre la pared del canal (C) en caso que se requiera, tal como se muestra en la figura 1. Las compuertas de la figura (7) son del tipo deslizante, todas comandadas de manera independiente por su propio sistema de posicionamiento (8), que en el casó de la figura, es de hinche, que permite que la compuerta se deslice hacia arriba al acortar el cable de acero que se conecta con la compuerta, la cual puede bajar gracias a su peso propio. Todo este sistema está soportado por una compuerta principal que desliza en una viga vertical que es parte de la estructura de soporte principal (6). Figure 16 shows an isometric view in section and Figure 2, a side view of the system, in its generation position, showing the effect on water runoff, upstream (A) and downstream of the system (B), with the main parts of the system in sight. These figures show the use of horizontal axis hydrokinetic turbines (1), the flow separation plates (16), the support structure (4) of the turbines (1) and flow separation plates (16), whose position is determined by the mechanical positioning system (5) from a fan, which allows the support structure (4) to rise thanks to the shortening of the cable that connects with it, which can be lowered by gravity to the lengthen the cable, sliding through the general support structure (6). The general support structure (6) has a reinforced concrete block that rests on the ground outside the channel (D), which connects with all the beams that support the positioning systems with fans (5 and 8), the support structure of the turbines (4) and the gates (7), so that everything can be positioned above the channel wall (C) if required, as shown in figure 1. The gates in figure (7) are of the sliding type, all commanded independently by its own positioning system (8), which in the case of the figure, is a fan, which allows the gate to slide upwards by shortening the steel cable which connects to the gate, which can be lowered thanks to its own weight. This entire system is supported by a main gate that slides on a vertical beam that is part of the main support structure (6).
La figura 16 y 17 son esquemas generales, ya que cada subsistema tiene distintas opciones tecnológicas para cada uno. Respecto del subsistema de las turbinas (1) que se muestra en la figura 16 y siguientes, se muestran turbinas del tipo hidrocinético de eje horizontal, lo cual puede variar en otros tipos de rotor de turbina, cambiando tanto la orientación de su eje como el tipo de turbina, pudiendo ser: i. De eje horizontal, axial al flujo, con rotores del tipo Kaplan, Bulbo o Pit; ii. Eje vertical con rotores del tipo Banki, Darrieus o Gorlov; iii. Eje horizontal, transversal al flujo, con rotores del tipo con rotores del tipo Banki, Darrieus o Gorlov. Respecto de los subsistemas mecánicos de posicionamiento (5 y 8) que están encargados de posicionar el soporte de las turbinas (4) y las compuertas (7), el huinche que se muestra en las figuras puede ser reemplazado por: i. Sistema de tornillo sin fin accionado manualmente o por un motor; ii. Un sistema de piñón y cremallera, accionados manualmente o por un motor; iii. Un sistema de pistones hidráulicos, accionados manualmente o por un grupo hidráulico. Respecto del subsistema de compuertas (7), en el caso de canal con escurrimiento supercrítico, éstas serían reemplazadas por rejas hidráulicas removibles, las cuales estarían en contacto con el fondo del canal, por delante de las turbinas, con el objetivo de evitar la entrada de objetos distintos al agua; Respecto de la instalación de rejas en el caso subcrítico, éstas serían instaladas de manera independiente aguas arriba del sistema, con el mismo objetivo que se menciona anteriormente. Figures 16 and 17 are general schemes, since each subsystem has different technological options for each. With respect to the turbine subsystem (1) shown in Figure 16 and following, turbines of the horizontal axis hydrokinetic type are shown, which may vary in other types of turbine rotor, changing both the orientation of its axis and the type of turbine, which can be: i. Of horizontal axis, axial to the flow, with rotors of the type Kaplan, Bulbo or Pit; ii. Vertical axis with rotors of the Banki, Darrieus or Gorlov type; iii. Horizontal axis, transverse to the flow, with rotors of the type with rotors of the type Banki, Darrieus or Gorlov. Regarding the mechanical positioning subsystems (5 and 8) that are responsible for positioning the support of the turbines (4) and the gates (7), the huinche shown in the figures can be replaced by: i. Endless screw system operated manually or by a motor; ii. A rack and pinion system, operated manually or by a motor; iii. A hydraulic piston system, operated manually or by a hydraulic group. Regarding the gate subsystem (7), in the case of a channel with supercritical runoff, these would be replaced by removable hydraulic grilles, which would be in contact with the bottom of the channel, ahead of the turbines, with the aim of preventing entry of objects other than water; Regarding the installation of bars in the subcritical case, they would be installed independently upstream of the system, with the same objective as mentioned above.
En la figura 18 se muestra una vista de detalle lateral, en perspectiva, mostrando la conexión mecánica directa con un eje (2) de una turbina (1) con el generador eléctrico (3). El sistema de sellos y soporte de ejes para evitar el ingreso del agua, mostrando el retén de goma (16), el soporte del retén de goma (21), luego el soporte de sellos mecánicos y rodamientos (22), con sus respectivos sellos mecánicos (17), rodamientos (18), tuerca de ajuste (19) y acople flexible entre ejes (20). En las figuras 19 y 20 se muestra una variación donde el eje de la turbina (2) se conecta con una bomba hidráulica (23) que reemplaza el generador eléctrico, para generar presión y flujo de agua a una red hidráulica fuera del canal, succionando agua a través de un filtro de entrada (24) hacia una red de distribución de agua (25). Figure 18 shows a side detail view, in perspective, showing the direct mechanical connection with an axis (2) of a turbine (1) with the electric generator (3). The system of seals and axle support to prevent the ingress of water, showing the rubber seal (16), the support of the rubber seal (21), then the support of mechanical seals and bearings (22), with their respective mechanical seals (17), bearings (18), adjusting nut (19) and flexible coupling between shafts (20). A variation is shown in Figures 19 and 20 where the turbine shaft (2) is connected to a hydraulic pump (23) that replaces the electric generator, to generate pressure and water flow to a hydraulic network outside the channel, sucking water through an inlet filter (24) to a water distribution network (25).
En la figura 21, se muestra una vista de isométrica posterior en corte y perspectiva, mostrando la conexión mecánica entre las turbinas (1) del sistema, su eje (2) y un generador (12) mediante un sistema de correas y poleas (10). En la figura 22 y 23 se muestra una vista en perspectiva superior e isométrica trasera (respectivamente) mostrando la conexión mecánica entre las turbinas (1) del sistema, que están bajo el nivel de agua, conectando su eje (2) y el eje de un generador (12), mediante un sistema de correas y poleas (10). En las figuras 24, 25 y 26, se muestra la misma configuración que las figuras 21 a 23, pero mostrando la variación que incluye una bomba hidráulica (14) en vez de un generador (12), conectando la turbina (1) y su eje (2), con un sistema de correas y poleas (10), con el eje de la bomba (14) la cual succiona agua del canal desde un tubo (26) adecuadamente conectado con el agua, el cual no se muestra en la figura, con el objetivo dar simplicidad en la explicación del concepto. El tubo de salida (27) de la bomba hidráulica (14), se conecta con una red hidráulica exterior al canal. En las figuras 27, 28 y 29, se muestra una vista frontal de la invención, mostrando el nivel de la superficie libre del agua (A), la estructura de soporte de las turbinas (4), las turbinas (1), la estructura de soporte general (6) y las compuertas independientes (15) en distintas posiciones. En la figura 27, se aprecia él sistema con todas las compuertas independientes abiertas, en la figura 28 se muestra el sistema con una de las compuertas cerradas para disminuir el flujo a través del sistema y mantener el nivel de represamiento de agua (A), y en la figura 29 se muestra el sistema con dos compuertas cerradas para lograr el mismo efecto con un flujo másico menor.  In figure 21, a rear isometric view in section and perspective is shown, showing the mechanical connection between the turbines (1) of the system, its axis (2) and a generator (12) by means of a system of belts and pulleys (10 ). Figure 22 and 23 shows a top and isometric rear perspective view (respectively) showing the mechanical connection between the turbines (1) of the system, which are below the water level, connecting its axis (2) and the axis of a generator (12), by means of a system of belts and pulleys (10). In figures 24, 25 and 26, the same configuration is shown as in figures 21 to 23, but showing the variation that includes a hydraulic pump (14) instead of a generator (12), connecting the turbine (1) and its shaft (2), with a system of belts and pulleys (10), with the pump shaft (14) which sucks water from the channel from a tube (26) properly connected to the water, which is not shown in the figure, with the aim of giving simplicity in the explanation of the concept. The outlet pipe (27) of the hydraulic pump (14) is connected with a hydraulic network outside the channel. In figures 27, 28 and 29, a front view of the invention is shown, showing the level of the free water surface (A), the support structure of the turbines (4), the turbines (1), the structure of general support (6) and independent gates (15) in different positions. Figure 27 shows the system with all independent gates open, Figure 28 shows the system with one of the gates closed to reduce the flow through the system and maintain the level of water damming (A), and in figure 29 the system with two closed gates is shown to achieve the same effect with a smaller mass flow.
Las siguientes dos figuras muestran los esquemas eléctricos de conexión, entre los generadores eléctricos (12 o 3) y el sistema interconectado eléctrico (conectados a la red o en una red independiente) para distintas topologías. En la figura 30 se muestra el esquema de conexión para un generador de ¡manes permanentes. En la figura 31 se muestra el esquema de conexión para un generador de inducción doblemente alimentado por la red eléctrica.  The following two figures show the electrical connection diagrams, between the electrical generators (12 or 3) and the interconnected electrical system (connected to the network or in a separate network) for different topologies. Figure 30 shows the connection scheme for a permanent magnet generator. Figure 31 shows the connection scheme for an induction generator doubly powered by the mains.

Claims

REVINDICACIONES REVINDICATIONS
1. Sistema de extracción de energía desde un curso de agua confinado en forma natural o artificial para convertir dicha energía en mecánica y/o eléctrica, CARACTERIZADO porque dicho sistema comprende de una pluralidad de turbinas (1) dispuestas en paralelo en la dirección perpendicular al flujo, separadas entre sí por una placa de separación de flujo (16), conectadas mecánicamente (2) con un generador eléctrico (3), soportado por una estructura de soporte adecuada (4) la cual puede ser posicionada en distintas posiciones, gracias a un sistema de accionamiento mecánico (5) y soportada por una estructura (6) que se apoya en el suelo fuera del canal, mediante base de hormigón armado, la cual también soporta una pluralidad de compuertas móviles (7) que se instalan aguas arriba de las turbinas, las cuales son posicionadas de manera independiente por un sistema mecánico (8). 1. Energy extraction system from a naturally or artificially confined water course to convert said energy into mechanical and / or electrical, CHARACTERIZED because said system comprises a plurality of turbines (1) arranged in parallel in the direction perpendicular to the flow, separated from each other by a flow separation plate (16), mechanically connected (2) with an electric generator (3), supported by a suitable support structure (4) which can be positioned in different positions, thanks to a mechanical drive system (5) and supported by a structure (6) that rests on the ground outside the canal, by means of reinforced concrete, which also supports a plurality of mobile gates (7) that are installed upstream the turbines, which are positioned independently by a mechanical system (8).
2. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque comprende de una pluralidad de turbinas (1) de eje horizontal del tipo hidrocinético, con una pluralidad de aspas, que poseen forma hidrodinámica, con ángulos de ataque variables a lo largo de su radio. 2. Energy extraction system according to claim 1, CHARACTERIZED in that it comprises a plurality of horizontal axis turbines (1) of the hydrokinetic type, with a plurality of blades, which have a hydrodynamic shape, with varying angles of attack. along its radius.
3. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta de una pluralidad de turbinas (1) de eje horizontal, axial al flujo, con rotor del tipo Kaplan, bulbo o pit. 3. Energy extraction system according to claim 1, CHARACTERIZED in that it consists of a plurality of turbines (1) with a horizontal axis, axial to the flow, with a Kaplan rotor, bulb or pit.
4. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta de una pluralidad de turbinas (1) de eje horizontal, transversal al flujo, con rotor del tipo Banki, Darrieus o Gorlov. 4. Energy extraction system according to claim 1, CHARACTERIZED in that it consists of a plurality of turbines (1) with a horizontal axis, transverse to the flow, with a rotor of the Banki, Darrieus or Gorlov type.
5. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta pluralidad de turbinas (1) de eje vertical, con rotores del tipo Banki, Darrieus o Gorlov. 5. Energy extraction system according to claim 1, CHARACTERIZED in that it consists of a plurality of vertical axis turbines (1), with rotors of the Banki, Darrieus or Gorlov type.
6. Sistema de extracción de energía de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la conexión mecánica (2) entre un rotor de la turbina (1) y un generador eléctrico aislado (3) es mediante un eje que conecta de manera directa el generador (3) con la turbina (1). 6. Energy extraction system according to any of the preceding claims, CHARACTERIZED because the mechanical connection (2) between a rotor of the turbine (1) and an isolated electric generator (3) is by means of a shaft that directly connects the generator (3) with the turbine (1).
7. Sistema de extracción de energía de acuerdo con la reivindicación 6, CARACTERIZADO porque consta de una estructura de soporte (4) por cada turbina, permitiendo posicionar cada turbina de manera independiente. 7. Energy extraction system according to claim 6, CHARACTERIZED because it consists of a support structure (4) for each turbine, allowing each turbine to be positioned independently.
8. Sistema de extracción de energía de acuerdo con cualquiera de las reivindicaciones 1 a 5, CARACTERIZADO porque consta de una conexión mecánica (2) entre el eje de cada turbina (1) y el eje de un generador eléctrico (12), uno por turbina, todo esto a través de conexión mecánica correas o cadenas, dejando los ejes secundarios y el generador apoyados en la estructura de soporte (4) sobre el nivel del agua. 8. Energy extraction system according to any of claims 1 to 5, CHARACTERIZED because it consists of a mechanical connection (2) between the axis of each turbine (1) and the axis of an electric generator (12), one per turbine, all this through mechanical connection belts or chains, leaving the secondary axes and the generator supported on the support structure (4) above the water level.
9. Sistema de extracción de energía de acuerdo con la reivindicación 7 y 8, CARACTERIZADO porque reemplaza el generador eléctrico (3 y 12) por una bomba de agua (13 y 14) la cual se conecta con una tubería donde succiona agua del canal hacia un sistema de tuberías afuera del canal para diversos usos. 9. Energy extraction system according to claim 7 and 8, CHARACTERIZED in that it replaces the electric generator (3 and 12) with a water pump (13 and 14) which is connected to a pipe where water is suctioned from the canal to a pipe system outside the canal for various uses.
10. Sistema de extracción de energía de acuerdo con la reivindicación 7, CARACTERIZADO porque los ejes secundarios de cada turbina (11) se encuentran conectados entre sí, para ser conectados mecánicamente a un solo generador (12). 10. Energy extraction system according to claim 7, CHARACTERIZED because the secondary axes of each turbine (11) are connected to each other, to be mechanically connected to a single generator (12).
11. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO por poseer un generador (3 y 12) de imanes permanentes, rectificado y conectado con un sistema de inversor y MPPT. 11. Energy extraction system according to claim 1, CHARACTERIZED by having a permanent magnet generator (3 and 12), rectified and connected to an inverter and MPPT system.
12. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO por poseer un generador (3) de inducción, conectado con un sistema de electrónica de potencia adecuado. 12. Energy extraction system according to claim 1, CHARACTERIZED by having an induction generator (3), connected to a suitable power electronics system.
13. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta de una pluralidad de sistemas de posicionamiento mecánico (5) de huinche mecánico y cable de acero, el cual permite alzar la estructura que soporta las turbinas (4) la cual puede bajar accionada por su peso propio. 13. Energy extraction system according to claim 1, CHARACTERIZED because it consists of a plurality of mechanical positioning systems (5) of mechanical huinche and steel cable, which allows to lift the structure that supports the turbines (4) which can be lowered by its own weight.
14. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque la pluralidad de sistemas de posicionamiento mecánico (5) son del tipo tornillo sin fin accionados manualmente o por un motor. 14. Energy extraction system according to claim 1, CHARACTERIZED in that the plurality of mechanical positioning systems (5) are of the worm type driven manually or by a motor.
15. Sistema de extracción de energía de acuerdo con la reivindicación 12, CARACTERIZADO porque la pluralidad de sistemas de posicionamiento mecánico (5) son de piñón y cremallera, accionados manualmente o por un motor. 15. Energy extraction system according to claim 12, CHARACTERIZED in that the plurality of mechanical positioning systems (5) are rack and pinion, driven manually or by a motor.
16. Sistema de extracción de energía de acuerdo con la reivindicación 12, CARACTERIZADO porque la pluralidad de sistemas de posicionamiento mecánico (5) son pistones hidráulicos accionados manualmente o por un grupo hidráulico. 16. Energy extraction system according to claim 12, CHARACTERIZED in that the plurality of mechanical positioning systems (5) are hydraulic pistons driven manually or by a hydraulic group.
17. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta de una pluralidad de soportes de hormigón armado (6) donde cada soporte soporta de manera independiente la estructura de soporte de las turbinas (4) y las compuertas (7). 17. Energy extraction system according to claim 1, CHARACTERIZED in that it consists of a plurality of reinforced concrete supports (6) where each support independently supports the support structure of the turbines (4) and the gates (7 ).
18. Sistema de extracción de energía de acuerdo con la reivindicación 1, CARACTERIZADO porque consta de una compuerta (7) del tipo deslizante o de orugas que cubre el ancho completo del canal y múltiples compuertas secundarias (15). 18. Energy extraction system according to claim 1, CHARACTERIZED in that it consists of a gate (7) of the sliding or track type that covers the entire width of the channel and multiple secondary gates (15).
19. Sistema de extracción de energía de acuerdo con la reivindicación 17 y 18,19. Energy extraction system according to claim 17 and 18,
CARACTERIZADO porque consta con una compuerta (15) deslizante o de oruga por cada una de las turbinas. CHARACTERIZED because it has a sliding or caterpillar gate (15) for each of the turbines.
20. Sistema de extracción de energía de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque consta de compuertas (7 y 15) del tipo reja hidráulica. 20. Energy extraction system according to any one of the preceding claims, CHARACTERIZED because it consists of gates (7 and 15) of the hydraulic grid type.
21. Uso del sistema de extracción de energía de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque dicho sistema puede ser útil para ser utilizado cualquier curso de agua artificial y/o natural, con escurrimiento subcrítico o supercrítico. 21. Use of the energy extraction system according to any of the preceding claims, CHARACTERIZED in that said system can be useful for any artificial and / or natural water course to be used, with subcritical or supercritical runoff.
22. Uso del sistema de extracción de energía de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque se instalan varios de estos sistemas en serie en cualquier curso de agua artificial y/o natural, con escurrimiento subcrítico o supercrítico. 22. Use of the energy extraction system according to any of the preceding claims, CHARACTERIZED because several of these systems are installed in series in any artificial and / or natural watercourse, with subcritical or supercritical runoff.
PCT/CL2016/000057 2016-10-06 2016-10-06 System for energy extraction in watercourses WO2018064785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2016/000057 WO2018064785A1 (en) 2016-10-06 2016-10-06 System for energy extraction in watercourses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2016/000057 WO2018064785A1 (en) 2016-10-06 2016-10-06 System for energy extraction in watercourses

Publications (1)

Publication Number Publication Date
WO2018064785A1 true WO2018064785A1 (en) 2018-04-12

Family

ID=61831621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/000057 WO2018064785A1 (en) 2016-10-06 2016-10-06 System for energy extraction in watercourses

Country Status (1)

Country Link
WO (1) WO2018064785A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317330A (en) * 1979-12-10 1982-03-02 Mihaly Brankovics Water turbine generator system
US20110089695A1 (en) * 2009-03-26 2011-04-21 Krouse Wayne F Method and Apparatus for Improved Hydropower Generation at Existing Impoundments
US20130062882A1 (en) * 2011-09-14 2013-03-14 Rentricity Inc. Power Sluice Gate System
US20150285209A1 (en) * 2012-10-17 2015-10-08 Technische Universität München Systems comprising a plurality of shafts and connecting channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317330A (en) * 1979-12-10 1982-03-02 Mihaly Brankovics Water turbine generator system
US20110089695A1 (en) * 2009-03-26 2011-04-21 Krouse Wayne F Method and Apparatus for Improved Hydropower Generation at Existing Impoundments
US20130062882A1 (en) * 2011-09-14 2013-03-14 Rentricity Inc. Power Sluice Gate System
US20150285209A1 (en) * 2012-10-17 2015-10-08 Technische Universität München Systems comprising a plurality of shafts and connecting channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUNOZ, A. H. ET AL.: "A design tool and fabrication guidelines for small low cosi horizontal axis hydrokinetic turbines", ENERGY FOR SUSTAINABLE DEVELOPMENT, vol. 22, 2014, pages 21 - 33, XP055474610, Retrieved from the Internet <URL:http://dx.doi.0rg/10.1016/j.esd.2014.05.003> doi:10.1016/j.esd.2014.05.003 *

Similar Documents

Publication Publication Date Title
ES2774652T3 (en) Pipeline-mounted turbine and hydroelectric power generation system
ES2560552T3 (en) Procedure and device for installing tidal dams
ES2638604T3 (en) Power and floating power plant for river or canals
KR101092201B1 (en) Electricity generation enhancement apparatus and method of green hydropower electricity generation system
JP2016533455A (en) Coastal conservation and wave energy power generation system
KR20110058998A (en) Tide generator having multi-winges type
KR101091654B1 (en) Hydraulic Power Plant System Using Flowing Water
KR20090085295A (en) Hydro-electric power apparatus
JP2013245618A (en) Mooring floating type hydraulic power generation system
RU2508467C2 (en) Submersible monoblock microhydro power plant
TWI659154B (en) Coastal protection and wave energy generation system
WO2018064785A1 (en) System for energy extraction in watercourses
WO2014194438A1 (en) Device which converts tidal kinetic energy into electric energy and comprises a cross-flow water turbine capable of directing the captured flows in an optimal manner, redirecting and accelerating same toward an inner runner of the water turbine, and an electricity generating plant that uses said device
US10502178B2 (en) In-bank veritcal axis hydropower system
JP6464492B2 (en) Small hydro turbine
KR20200002084A (en) The non-power eletric pumping water and small hydropower system
KR101278534B1 (en) Small water power generation system
KR101611857B1 (en) Underwater installation type small hydroelectric power generator
RU2303707C1 (en) Hydroelectric power station
RU185644U1 (en) Damless hydroelectric power station
KR101634637B1 (en) Hydroelectric generating apparatus using guide vane and hybrid generator
RU2459973C1 (en) System of autonomous bridge lighting
RU2020260C1 (en) Riverside hydroelectric station
KR20100104694A (en) Horizontal hydroelectric power system
KR20230169146A (en) wind generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918119

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16918119

Country of ref document: EP

Kind code of ref document: A1