JP2013245618A - Mooring floating type hydraulic power generation system - Google Patents

Mooring floating type hydraulic power generation system Download PDF

Info

Publication number
JP2013245618A
JP2013245618A JP2012120324A JP2012120324A JP2013245618A JP 2013245618 A JP2013245618 A JP 2013245618A JP 2012120324 A JP2012120324 A JP 2012120324A JP 2012120324 A JP2012120324 A JP 2012120324A JP 2013245618 A JP2013245618 A JP 2013245618A
Authority
JP
Japan
Prior art keywords
water
power generation
floating
generation system
mooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012120324A
Other languages
Japanese (ja)
Inventor
Yasuharu Kawabata
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012120324A priority Critical patent/JP2013245618A/en
Publication of JP2013245618A publication Critical patent/JP2013245618A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mooring floating type hydraulic power generation system for generating electric power by maintaining a mooring floating state, while easily and efficiently removing dust, while coping with a change in the water depth and a flow speed in a flow passage.SOLUTION: A mooring floating type hydraulic power generation system includes a floating body plate having a projection shape in the upstream direction of flowing water and having one or more of through-holes or through-grooves, a water turbine supported by and arranged on the floating body plate, a generator arranged on one side top surface of the floating body plate and connected to a water turbine shaft via a speed governor, an electric power converting device and a control device arranged in a symmetric position to the generator, and a dust removing screen arranged in an upstream side projection part of the floating body plate, and the floating body plate wholly mounted with a power generation system constituting apparatus generates electric power while maintaining the mooring floating state of keeping a horizontal attitude to a shaft orthogonal to a flow and being in parallel or inclining in the water turbine existing downstream direction to a shaft along the flow. The system is moored by the through-hole and a mooring column in the floating body plate, and can hydraulically generate the electric power with high efficiency since components are cooled by the flowing water.

Description

本発明は、流量変化によって水深や流速が変動する河川等の流水面上で、係留浮上状態を維持しながら水車回転により電力を得る、係留浮上式水力発電システムに関する。   The present invention relates to a moored floating hydroelectric power generation system that obtains electric power by rotating a water turbine while maintaining a moored floating state on a flowing water surface such as a river whose water depth and flow velocity fluctuate due to a change in flow rate.

エネルギー自給率の向上と温暖化防止の両面から、再生可能エネルギーの普及拡大が求められている。このうち太陽光発電は曇雨天時に発電出力が減少し、夜間は発電できない課題がある。また風力発電は一定速度以上の風があれば夜間も発電できるが、昼間でも一定以上の風速がなければ発電できない。これらの出力不安定な発電方法にあっては、蓄電システムとの組み合わせにより供給安定性を向上させる方法もあるが、充電、放電それぞれで損失が生じるほか、設置スペースの増大とコストアップを伴うという課題がある。   In order to improve the energy self-sufficiency rate and prevent global warming, the spread of renewable energy is required. Among them, solar power generation has a problem that power generation output decreases during cloudy weather, and it cannot be generated at night. In addition, wind power can be generated at night if there is wind at a certain speed or more, but it cannot be generated even during daytime unless there is a certain speed or more. In these unstable power generation methods, there is a method to improve the supply stability by combining with the power storage system, but in addition to loss in charging and discharging, it also increases installation space and costs There are challenges.

こうした中、天候によらず安定的に電力を得られる発電方法として、河川や用水路等の流水エネルギーを活用する、小水力発電の期待も高まっている。時間や季節によらず安定した水量のある河川や用水路では、常時安定して電力が得られる特長があるほか、ダム建設等の工事を要さず、簡易な設置・施工で再生可能エネルギー起源の電力を得られる。 Under these circumstances, as a power generation method that can stably obtain electric power regardless of the weather, there is an increasing expectation for small hydroelectric power generation that uses flowing energy such as rivers and irrigation canals. Rivers and irrigation canals with stable water flow regardless of time or season have the advantage that power can be obtained stably at all times, and there is no need for construction such as dam construction. Electric power can be obtained.

一方、市街地を流域に持つ河川や水路においては、都市化進展によって流域の保水力が低下したため、雨水が急速に流れ込んで増水し、水深や流速が大きく変化する傾向にある。また増水時には落ち葉や枝の他、プラスチックや発砲スチロール片といった異物が大量に流下し、同時に水底近くには土砂や金属片といった沈下性の高い異物が流下、堆積する。これまで、前記特性をもつ水路で利用する、様々な小水力発電システムが提案されている。   On the other hand, in rivers and waterways that have urban areas as basins, the water retention capacity of the basin has declined due to the progress of urbanization, so that rainwater flows in rapidly and increases, and the water depth and flow velocity tend to change greatly. In addition to falling leaves and branches, a large amount of foreign substances such as plastic and foamed polystyrene parts flow down at the same time, and at the same time, highly settled foreign substances such as earth and sand and metal pieces flow down and accumulate near the bottom of the water. So far, various small hydropower generation systems have been proposed for use in waterways having the above characteristics.

特開2006−16894号公報JP 2006-16894 A 特開2011−21578号公報JP 2011-21578 A 特開2007−9830号公報JP 2007-9830 A 特開2011−32940号公報JP 2011-32940 A

まず特許文献1には、水力発電装置を備えた伸縮自在な昇降ゲートを設置し、増水時はこのゲートを上昇させて発電装置を保護するとともに、利水を維持する方法が提案されている。この方法は増水時の破損を回避しつつ、利水確保も可能だが、流水のエネルギーが大きく、それゆえに大きな発電出力が得られる増水時に発電できないという課題がある。 First, Patent Document 1 proposes a method of installing a telescopic elevating gate equipped with a hydroelectric power generation device, raising the gate to protect the power generation device when water is increased, and maintaining water utilization. Although this method can secure water utilization while avoiding breakage at the time of water increase, there is a problem that power generation is not possible at the time of water increase because the energy of running water is large and therefore large power generation output can be obtained.

次に特許文献2には、落差工に水車発電装置を設置し、増水時には除塵スクリーンを備えた取水口の上部から余剰の流水を越流させることで、増水時も除塵しつつ発電継続する方法が提案されている。ただし、この方法は装置の設置に際して土木工事が必要なほか、増水時に最も流速の大きな表層流を越流させ、有効活用できない課題がある。さらに増水時は水深増加に伴って泥や砂、小石などの沈下性ゴミが流入しやすくなり、スクリーンを通過して水車室内に堆積し、流路が閉塞されて装置が破損する恐れがある。 Next, Patent Document 2 discloses a method in which a turbine generator is installed at the head of the head, and surplus water is allowed to overflow from the upper part of the water intake provided with a dust removal screen when the water is increased, thereby continuing power generation while removing the dust even when the water is increased. Has been proposed. However, this method requires civil engineering work for installation of the equipment, and there are problems that the surface flow with the highest flow velocity overflows when the water increases and cannot be used effectively. Furthermore, when the water increases, sinking garbage such as mud, sand, and pebbles easily flows in as the water depth increases, and may pass through the screen and accumulate in the water turbine chamber, blocking the flow path and damaging the device.

また特許文献3には、常に浮力を持ち、円周上にある半分以上の羽根が水面より空中に出る形態で水車を回転させ、かつフレームにヒンジとバランサーを設け、フレームを固定して係留浮上状態で発電する方法が提案されている。ただしこの方法ではシステムに除塵機能がないため、水車に流下異物が侵入、干渉して破損するという課題があり、これを解決するために上流側に除塵スクリーンを設置する場合は、土木工事と維持管理が発生する。   In Patent Document 3, there is always buoyancy, more than half of the blades on the circumference rotate from the water surface into the air, the water wheel is rotated, and the frame is provided with a hinge and balancer, and the frame is fixed and moored A method of generating electricity in a state has been proposed. However, with this method, the system does not have a dust removal function, so there is a problem that the falling foreign substance enters the water turbine and interferes and breaks, and if a dust removal screen is installed upstream to solve this problem, civil engineering work and maintenance Management occurs.

また特許文献4には、複数の水力発電装置を並列収納した枠体の下方部を、他端が錨又は錘に接続されたワイヤで接続し、かつ前記枠体の上方部を他端が浮力体に接続されたワイヤで接続することで、前記枠体を常時流水中で係留させながら発電する方法が提案されている。ただしこの方法も除塵スクリーンがなければ装置に異物が侵入、干渉して故障し、その度にクレーンで水中から枠体を吊り上げてメンテナンスを行う必要が生じてしまう。 In Patent Document 4, a lower part of a frame body in which a plurality of hydroelectric generators are housed in parallel is connected with a wire whose other end is connected to a basket or a weight, and the upper part of the frame body is connected to a buoyancy. There has been proposed a method of generating electric power by constantly mooring the frame body in running water by connecting with a wire connected to the body. However, in this method, if there is no dust removing screen, foreign matter enters and interferes with the apparatus and breaks down, and it becomes necessary to perform maintenance by lifting the frame from the water with a crane each time.

また、何れの従来技術にも、発電出力を電力系統に供給したり、電力消費機器で利用できるようにするための電力変換装置のほか、水車と発電機の回転数制御や不具合発生時の保護機能を含む運転制御装置の設置と接続に関する開示がない。例えば河川に発電装置を設置する場合、前記装置を河川敷に設置する方法が考えられるが、その場合は河川敷や堤防上に一定の敷地が必要となるほか、増水、洪水時に装置が冠水して故障する恐れがある。   In addition, in each of the conventional technologies, in addition to a power conversion device for supplying power generation output to the power system and making it available to power consuming devices, rotation speed control of the turbine and generator and protection in the event of a malfunction There is no disclosure regarding installation and connection of operation control devices including functions. For example, when installing a power generation device in a river, a method of installing the device on a riverbed can be considered. There is a fear.

なお、前記発電システム構成機器は、運転に際して発熱を伴うため、冷却が必要となる。一般に装置内外に放熱フィンを設け、換気ファンを回して空冷することが多いが、これは冷却効率が低いため、発電出力がファン動力に消費される割合が増え、正味の発電出力が減少する課題がある。特に日射を遮る物がない河川水面上や河川敷は、日射を受け続けることで発電機や各装置が温度上昇しやすく、発電効率や電力変換の効率が低下するほか、冷却に多大なエネルギーを要する場合が多い。一方、河川等の流水は、季節によらずほぼ一定の水温を保っている特長があり、特に真夏の冷却熱源として河川熱を活用することも考えられるが、小水力発電において、その具体的方法は開示されていない。 In addition, since the said power generation system component apparatus generate | occur | produces heat | fever in an operation | movement, it needs cooling. In general, radiating fins are installed inside and outside the device, and the ventilation fan is turned to air-cool in many cases. However, because this has low cooling efficiency, the ratio of the power generation output consumed to the fan power increases and the net power generation output decreases. There is. Especially on river water surfaces and riverbeds that do not block solar radiation, generators and devices tend to rise in temperature due to continued solar radiation, which reduces power generation efficiency and power conversion efficiency, and requires a lot of energy for cooling. There are many cases. On the other hand, running water in rivers has the feature that it maintains an almost constant water temperature regardless of the season, and it is conceivable to use river heat as a cooling heat source especially in midsummer. Is not disclosed.

そこで、本発明は上記課題を解決するためになされたもので、通常時だけでなく、増水時も含めて容易かつ効率的に除塵をしつつ、利水の確保により洪水を回避しながら、速度エネルギーの大きな表層流を活用した発電を行うとともに、発電システム構成機器を流水面上に集約しつつ、個々の機器冷却を効率的に行うことで、簡易に組立、施工でき、かつ発電効率の高い係留浮上式水力発電システムを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-mentioned problems, and while removing dust easily and efficiently not only during normal times but also during water increases, while avoiding flooding by securing water utilization, speed energy Moored with high power generation efficiency by generating power using a large surface flow and consolidating power generation system components on the surface of the water flow and efficiently cooling individual devices. The purpose is to provide a floating hydropower generation system.

上記課題の解決のため、本発明は、流路の上流方向に三角または円弧状の凸形状をもち、さらに1つ以上の貫通孔または貫通溝を有する浮体板と、該浮体板の下流側に配置された水車と、該浮体板の片側天面上に配置され、調速装置を介して水車軸と接続された発電機と、該浮体板の天面上で、発電機と対称に配置された電力変換装置および制御装置と、該浮体板の上流側凸部に配置された除塵スクリーンで構成され、発電システム構成機器を全て搭載した浮体板が、流れと直交する軸に対しては水平を保ち、かつ流れに沿う軸に対しては流水面に平行、あるいは水車のある下流方向に傾斜した係留浮上状態を維持しながら発電を行うことを特徴とする。   In order to solve the above problems, the present invention provides a floating plate having a triangular or arcuate convex shape in the upstream direction of the flow path and further having one or more through holes or through grooves, and a downstream side of the floating plate. The arranged water wheel, the generator arranged on one top surface of the floating plate, and connected to the water wheel shaft via a speed governor, and arranged symmetrically with the generator on the top surface of the floating plate The power converter and control device and the dust screen placed on the upstream convex portion of the floating plate, and the floating plate with all the power generation system components mounted on the axis perpendicular to the flow It is characterized in that power generation is performed while maintaining a moored floating state that is maintained parallel to the flow surface or inclined in the downstream direction with the water wheel with respect to the axis along the flow.

この浮体板は、中空または低密度の発泡体等が充填され、発電システム構成機器を搭載しても水面上で浮上状態を保てる充分な浮力を有しているため、流水量に関わらず、常に浮上状態を維持できる。また、上流側の凸形状と上流側に配置された除塵スクリーンにより、上流からの流下異物が水流の力によって自然と下流に押し流されるようになっている。この除塵スクリーンには、例えば空気を内包したステンレス製のパイプを並べ、パイプの両端を平板に固定したものなど、強度と浮力の両方を有する構造としたものが好ましい。 This floating plate is filled with hollow or low-density foam, etc., and has sufficient buoyancy to maintain a floating state on the water surface even when power generation system components are installed. It can maintain a floating state. Further, the upstream convex shape and the dust removing screen arranged on the upstream side allow the foreign matter flowing down from the upstream side to be naturally pushed downstream by the force of the water flow. The dust removing screen preferably has a structure having both strength and buoyancy, such as a structure in which stainless steel pipes containing air are arranged and both ends of the pipe are fixed to a flat plate.

さらに、この浮体板は1つ以上の貫通孔または貫通溝を有している。これは前記の除塵スクリーンが挿入される貫通溝であっても、水底に設置した係留柱を通して、システムの係留状態を維持するための貫通孔であって、あるいは発電用の水車を配置するための貫通溝であっても良い。なお、この貫通孔または溝が、係留柱を通すためのものである場合は、孔または溝の内側接触面を半円状に加工し、水深変化や振動に対する尤度をもたせておくことが好ましい。 Further, the floating plate has one or more through holes or through grooves. This is a through-hole for maintaining the mooring state of the system through a mooring column installed at the bottom of the water, or a water turbine for power generation, even in the through-groove into which the dust removing screen is inserted. It may be a through groove. In addition, when this through-hole or groove | channel is for letting a mooring pillar pass, it is preferable to process the inner contact surface of a hole or a groove | channel into semicircle shape, and to have the likelihood with respect to a water depth change or a vibration. .

加えて前記浮体板の下流側には水車が設置され、その回転軸は、水車の回転速度に応じて最適な発電機回転速度を与える調速装置を介して発電機に接続されている。これにより、流水の流速変化に応じた最適な発電機運転が可能となる。なお、この水車は円周の下半分が受水面となり、上半分は開放系となる、中掛けクロスフロー水車となるよう配置・支持されるのが好ましい。   In addition, a water turbine is installed on the downstream side of the floating plate, and its rotating shaft is connected to the generator via a speed governor that provides an optimum generator rotation speed in accordance with the rotation speed of the water wheel. Thereby, the optimal generator operation | movement according to the flow rate change of flowing water is attained. In addition, it is preferable that this water turbine is arranged and supported so that the lower half of the circumference is a water receiving surface and the upper half is an open cross-flow turbine.

さらに、前記浮体板には、前記発電機の発電出力の電圧や周波数等の特性を調整した上で出力する電力変換装置と、発電システム全体の運転状況を監視制御する制御装置を配置する。こうして上流側に配置された除塵スクリーンと下流側に配置された水車、川岸片側に配置された調速装置および発電機と、川岸他方側に配置された電力変換装置および制御装置とで、それぞれの重量バランスを調整することで、流れ方向には流水面と水平あるいは落差を得られる下流側に傾いた状態で、かつ流水と直交する方向には水平となっている浮上状態を維持する。なお、流水面上でこの状態を実現させるための最適な重心位置は、必要箇所の材質や厚さを調整したり、錘を付加することで調整する。   Further, a power conversion device that outputs after adjusting characteristics such as voltage and frequency of the power generation output of the generator and a control device that monitors and controls the operation status of the entire power generation system are arranged on the floating plate. In this way, each of the dust screen disposed on the upstream side, the water wheel disposed on the downstream side, the speed governor and the generator disposed on one side of the river bank, and the power converter and the control device disposed on the other side of the river bank, By adjusting the weight balance, a floating state is maintained in which the flow direction is inclined with respect to the flowing water surface in a horizontal direction or on a downstream side where a head can be obtained, and in the direction orthogonal to the flowing water. In addition, the optimal center of gravity position for realizing this state on the water surface is adjusted by adjusting the material and thickness of a necessary portion or adding a weight.

次に、落差工にて係留浮上発電を行うシステムとしては、下流側の落水部に設置され、上流方向に三角または円弧形状をもち、1つ以上の貫通溝を有する浮体板と、該浮体板の貫通溝内に配置された水車と、前記浮体板上の水車下流側に配置され、プーリとベルト等による動力伝達兼調速機構を介して水車軸と接続された発電機と、同じ下流側の天面上に配置された電力変換装置および制御装置と、該浮体板の上流側凸部および水車部の天面に配置された除塵スクリーンで構成され、発電システム構成機器を全て搭載した浮体板が、流れと直交する軸に対しては水平を保ち、かつ流れに沿う軸に対しては平行あるいは発電機のある下流方向に傾斜した係留浮上状態を維持して発電することを特徴としている。 Next, as a system for mooring levitation power generation by a drop head, a floating plate that is installed in a downstream waterfall section, has a triangular or arc shape in the upstream direction, and has one or more through grooves, and the floating plate The same downstream side as the generator disposed in the through-groove of the turbine and the generator disposed on the downstream side of the turbine on the floating plate and connected to the turbine shaft via a power transmission and speed control mechanism such as a pulley and a belt Floating plate that is composed of a power conversion device and a control device disposed on the top surface of the slab, and a dust screen disposed on the top surface of the upstream convex portion of the floating body plate and the water turbine unit, and on which all power generation system components are mounted. However, it is characterized in that power is generated while maintaining a moored floating state that is kept horizontal with respect to the axis orthogonal to the flow and parallel to the axis along the flow or inclined in the downstream direction with the generator.

このシステムは、落水が水車上流側の天面にあたり、かつ落差工下流の表層流が水車の円周下半分にあたる位置に設置される。このため、基本構造は前述の流路上設置型のシステムと同様であるが、落水があたる水車の天面側にも除塵スクリーンとカバーを設置し、さらに発電機と電力変換装置を浮体板下流側に配置させることで、流れ方向および流れと垂直方向それぞれで、システムの重心調整を図っている点が異なる。   This system is installed at a position where the falling water hits the top surface of the water turbine upstream, and the surface layer flow downstream of the head falls corresponds to the lower half of the circumference of the water turbine. For this reason, the basic structure is the same as the above-mentioned system installed on the flow path, but a dust screen and cover are also installed on the top surface of the water turbine where water falls, and the generator and power converter are installed downstream of the floating plate. Is different in that the center of gravity of the system is adjusted in each of the flow direction and the direction perpendicular to the flow.

次に、前記浮体式水力発電システムを、水路上で係留維持する方法としては、水路の水底地盤に立てられた1本以上の係留柱、あるいは水底に沈下設置された1本以上のコンクリート基礎付き係留柱に、浮力体に加工された1つ以上の貫通孔または貫通溝を通すことで、システムの係留状態が維持されることを特徴としている。この方法によれば、浮体板上の孔または溝の内面と、係留柱との接触線あるいは接触面によって係留支持されるため、係留に係る力が局所集中しやすいワイヤとフックによる方法や、ヒンジ付フレームによる固定方法と比べて応力集中を回避でき、増水時でも確実に係留浮上状態を維持できる。 Next, as a method of maintaining the mooring of the floating hydroelectric power generation system on the water channel, one or more mooring pillars standing on the bottom of the water channel or one or more concrete foundations submerged on the water floor are attached. The mooring state of the system is maintained by passing one or more through holes or through grooves processed into a buoyant body through the mooring column. According to this method, since the mooring is supported by the contact line or contact surface between the inner surface of the hole or groove on the floating plate and the mooring column, a method using a wire and a hook in which the force related to mooring tends to concentrate locally, or a hinge Stress concentration can be avoided as compared with the fixing method using the attached frame, and the moored floating state can be reliably maintained even when the water is increased.

さらに、前記浮体式水力発電システムの発電機や電力変換装置、制御装置といった構成機器のうち、発熱を伴い、かつ発熱によって効率や機能が低下するものにあっては、これら機器が浮体板に加工された貫通溝を通じて挿入され、その底面が前記浮体板の底面と同一面を形成させつつ、前記浮体板の天面で自重保持される収納筐体を用い、機器の発熱部を収納筐体の内側底面に密着挿入して設置することで、機器の発熱を、収納筐体底面を介して流水中に放熱し、冷却を行うことを特徴としている。   Furthermore, among components such as generators, power converters, and control devices of the floating hydroelectric power generation system, those that generate heat and whose efficiency and function are reduced due to heat generation are processed into floating plates. The heat generating part of the device is inserted into the housing case by using a storage case that is inserted through the formed through-groove and whose bottom surface forms the same surface as the bottom surface of the floating plate and is held by its own weight on the top surface of the floating plate. By being installed in close contact with the inner bottom surface, the heat generated from the device is radiated into the running water through the bottom surface of the housing and is cooled.

ここで前記冷却方法は、機器の発熱部を底面に集約できるものについては効果的であるが、発電機等では必ずしも発熱部を底面側に集約できるとは限らず、機器の筐体表面全体で放熱したり、筐体上部に熱が集中することも考えられる。このような機器にあっては、入水管および排水管が接続された二層構造を有する収納筐体と、水車回転動力または水車発電出力、あるいは収納筐体または水車カバーの天面上に設置された太陽光発電パネルの発電出力によって駆動するポンプと取水管から構成され、取水管とポンプ、入水管を接続することで、流水からポンプで取水して前記筐体二層構造の層内を流通させることで、前記筐体内の発電装置構成機器を、ポンプ流水にて水冷することを特徴としている。   Here, the cooling method is effective for a device in which the heat generating part of the device can be concentrated on the bottom surface, but in a generator or the like, the heat generating part cannot always be concentrated on the bottom surface side, and the entire housing surface of the device. It may be possible to dissipate heat or concentrate heat on the top of the housing. In such a device, a storage case having a two-layer structure to which a water inlet pipe and a drain pipe are connected and water turbine rotating power or water turbine power generation output, or the top surface of the storage case or water wheel cover are installed. It is composed of a pump driven by the power generation output of the photovoltaic power generation panel and a water intake pipe. By connecting the water intake pipe, the pump and the water intake pipe, water is taken from the flowing water by the pump and distributed in the layer of the two-layer housing structure. By doing so, the power generation device constituting equipment in the casing is water-cooled with pump water.

なお、前記の収納筐体には、それぞれ底面から水底方向に突き出した整流板が付いている。この整流板は、流水上におけるシステムの振動を抑え、安定性を高めるほか、流下異物が水車側に入り込むことを防いでいる。さらに、整流板の突き出し高さは、前記除塵スクリーンの浮体板底面からの突き出し高さと一致しているため、渇水時でもシステムは除塵スクリーンと整流板の底面で支持され、水車の損傷が回避できるように構成されている。   In addition, each said storage housing | casing is attached with the baffle plate which protruded in the water bottom direction from the bottom face, respectively. This baffle plate suppresses the vibration of the system on the running water, improves the stability, and prevents the falling foreign matter from entering the water turbine. Furthermore, since the height of the rectifying plate is the same as the height of the dust removing screen protruding from the bottom surface of the floating plate, the system is supported by the dust removing screen and the bottom surface of the rectifying plate even during drought, thereby preventing damage to the water turbine. It is configured as follows.

本発明によれば、水深や流速の変化を伴う河川等の流路においても、常にこれらの変化に応じた係留浮上状態を維持し、かつ流水の力を利用して容易に除塵しながら、流水のエネルギーを活用した発電が可能となる。さらに発電システム構成機器を流路上にある浮体板上に集約し、流水で冷却される構成としているため、河川敷などに機器を設置する必要がなくなって設置スペースが減り、洪水時に冠水破損する恐れがなくなるほか、機器冷却のエネルギー消費も少なくて済み、高効率な発電が可能となる。 According to the present invention, even in a flow path such as a river with changes in water depth and flow velocity, the mooring floating state is always maintained in accordance with these changes, and dust is easily removed using the power of running water. It is possible to generate electricity using this energy. In addition, the power generation system components are concentrated on a floating plate on the flow path and cooled by running water, so there is no need to install the devices on riverbeds, etc. In addition, it consumes less energy to cool the equipment, enabling highly efficient power generation.

第一の実施形態に係る係留浮上式水力発電システムの構成図である。It is a lineblock diagram of a mooring floating type hydroelectric power generation system concerning a first embodiment. 第一の実施形態に係るシステムを、電力変換装置側から見た図である。It is the figure which looked at the system concerning a first embodiment from the power converter side. 第一の実施形態に係るシステムを、発電機側から見た図である。It is the figure which looked at the system concerning a first embodiment from the generator side. 第二の実施形態に係る落差工設置型発電システムの構成図である。It is a block diagram of the head work installation type power generation system which concerns on 2nd embodiment. 第二の実施形態に係るシステムを、流路の上流側から見た図である。It is the figure which looked at the system which concerns on 2nd embodiment from the upstream of the flow path. 第二の実施形態に係るシステムを、発電機側から見た図である。It is the figure which looked at the system concerning a second embodiment from the generator side.

以下、本発明の実施形態について更に詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
(第一の実施形態)
図1(a)を参照し、請求項1の係留浮上式水力発電システムは、河川の急流工等に設置され、発電システム構成機器を搭載しながら浮上状態を保てるだけの充分な浮力をもち、かつ係留用の貫通孔と除塵スクリーンや発電機収納筐体等を挿入設置するための複数の貫通溝を備え、上流方向には三角または円弧状の凸形状で、下流側には凹形状を有する浮体板1と、この浮体板の天面側から挿入固定される除塵スクリーン2と、発電機3および調速装置4を収納する整流板付き二層構造筐体5と、電力変換装置6及び制御装置7を収納する整流板付き筐体8と、前記浮体板の下流側凹部内に配置される水車9を備えている。
Hereinafter, embodiments of the present invention will be described in more detail. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
(First embodiment)
Referring to FIG. 1 (a), the moored levitation hydroelectric power generation system according to claim 1 is installed in a river rapid work or the like, and has sufficient buoyancy to maintain a floating state while mounting power generation system components, In addition, it has a mooring through-hole and a plurality of through-grooves for inserting and installing a dust-removing screen, generator housing, etc., and has a triangular or arcuate convex shape in the upstream direction and a concave shape in the downstream side Floating plate 1, dust removing screen 2 inserted and fixed from the top side of the floating plate, two-layer structure housing 5 with a rectifying plate for housing generator 3 and speed governor 4, power converter 6 and control A casing 8 with a current plate for housing the device 7 and a water wheel 9 disposed in a recess on the downstream side of the floating plate are provided.

ここで前記浮体板は、流路上流側に凸形状を有するとともに、除塵スクリーン挿入用の貫通溝を有している。この貫通溝には、ステンレスやエンジニアリングプラスチック等で作られた板やパイプが並び、これらの一方は浮体板挿入溝幅以内の板で、かつ反対側の浮体板天面で保持される側は、前記挿入溝よりも幅広な薄板でそれぞれ固定された除塵スクリーンが挿入され、浮体板の天面上で保持固定される。これにより流下異物10は、流れの力で浮体板の端を経て下流に押し流され、水車に衝突、干渉せずに流下していく。 Here, the floating plate has a convex shape on the upstream side of the flow path, and has a through groove for inserting a dust removing screen. In this through groove, plates and pipes made of stainless steel, engineering plastics, etc. are lined up, one of which is a plate within the width of the floating plate insertion groove, and the side held by the top surface of the floating plate on the opposite side, Dust removal screens fixed by thin plates wider than the insertion grooves are inserted and held and fixed on the top surface of the floating plate. As a result, the falling foreign material 10 is pushed downstream by the force of the flow through the end of the floating plate, and flows down without colliding with or interfering with the water turbine.

加えて前記浮体板の下流側凹部には、常に表層及び中層の流水を受水する水車が配置される。なお、この水車も強度と浮力の両立という観点から、ステンレスやエンジニアリングプラスチックで作られ、形態としては流路幅の極力広い範囲で受水できるよう、クロスフロー型とするのが好ましい。この水車は浮体板の凹部片側天面上に設置された水車軸の軸受支持体11と、他端側に設置された調速装置4の軸受に接続されることで、浮体板上にて支持された状態で回転し、その回転力が浮体板上に設置された調速装置に伝達される。 In addition, a water wheel that constantly receives surface and middle layer water is disposed in the downstream recess of the floating plate. In addition, from the viewpoint of achieving both strength and buoyancy, this water turbine is preferably made of stainless steel or engineering plastic, and is preferably a cross flow type so that water can be received in a wide range of flow path widths. This water turbine is supported on the floating plate by being connected to the bearing support 11 of the water wheel shaft installed on the top surface of the concave side of the floating plate and the bearing of the speed governor 4 installed on the other end. And the rotational force is transmitted to the speed governor installed on the floating plate.

ここで前記調速装置は、流速の変化、すなわち水車の回転数の変化に応じて発電機が最適な回転数で発電できるよう、制御装置7からの制御信号に基づいて調速を行い、その軸出力が発電機に接続されて発電出力が得られる。なお、この調速装置と発電機は、いずれも前記浮体板上の下流側凹部の片側にある貫通溝に、両機器を収納する整流板付きの二層構造筐体5を挿入することで配置される。ここで前記筐体の垂直面外周には、貫通溝よりも幅広な凸部を有することから、この筐体は、前記除塵スクリーンの保持固定と同様に、浮体板の貫通溝天面上で保持固定される。 Here, the speed control device performs speed control based on a control signal from the control device 7 so that the generator can generate electric power at an optimal speed according to a change in flow velocity, that is, a change in the rotation speed of the water turbine, The shaft output is connected to the generator to obtain the power generation output. Both the speed governor and the generator are arranged by inserting a two-layer structure housing 5 with a rectifying plate that accommodates both devices into a through groove on one side of the downstream recess on the floating plate. Is done. Here, since the outer periphery of the vertical surface of the housing has a convex portion wider than the through groove, the housing is held on the top surface of the through groove of the floating plate in the same manner as the dust screen is held and fixed. Fixed.

一方、前記浮体板上の他端下流側凹部には、前記発電機からの出力を電力系統等に接続供給できるようにするための電圧調整や直交変換を行う電力変換装置と、発電システムの運転状態を監視・制御する制御装置が、これらを収納する整流板付きの筐体内に挿入された上で、浮体板の貫通溝に挿入設置される。この電力変換装置と制御装置の収納及び挿入設置方法は、前記調速装置および発電機と同様の手法による。こうして、発電出力は電力変換装置に入力され、その出力線が電力系統に接続され、発電出力が利用可能となる。 On the other hand, in the other end downstream recess on the floating plate, a power conversion device that performs voltage adjustment and orthogonal transformation so that the output from the generator can be connected and supplied to a power system and the like, and the operation of the power generation system A control device for monitoring and controlling the state is inserted into a through-groove of the floating plate after being inserted into a casing with a rectifying plate that houses them. The method for storing and inserting the power conversion device and the control device is the same as that for the speed control device and the generator. In this way, the power generation output is input to the power conversion device, the output line is connected to the power system, and the power generation output can be used.

なお、この発電システムでは、上流側の除塵スクリーン2と下流側の発電用水車9が、また流路と垂直方向には下流側凹部片側に配置された調速装置及び発電機を収納する整流板付き二層構造筐体5と、同じく下流凹部反対側に対称配置された電力変換装置及び制御装置を収納する整流板付き筐体8とが、それぞれで重量バランスをとることで、発電システム全体の水平が保たれる。なお、この水平バランスを実現するにあたり、アンバランスが生じている場合には、必要箇所の構成部材の材質や厚さを調整したり、必要箇所に必要量の錘をつけることで、最適なバランスを実現させることが望ましい。 In this power generation system, the upstream dust removing screen 2 and the downstream power generation water wheel 9 are arranged in a direction perpendicular to the flow path, and the speed regulating device and generator that are disposed on the downstream side concave one side are accommodated. The two-layer structure case 5 and the case 8 with the rectifying plate that houses the power conversion device and the control device that are symmetrically arranged on the opposite side of the downstream concave portion balance the weight of each, thereby Level is maintained. In order to achieve this horizontal balance, if an imbalance has occurred, the optimal balance can be achieved by adjusting the material and thickness of the components at the required locations and attaching the required amount of weight to the required locations. It is desirable to realize

次に図1(b)及び図1(c)を参照して、請求項3に記載のシステム係留方法と、請求項4及び5に記載の発電システム構成機器の冷却方法について説明する。まずシステムの係留方法として、この発電システムを設置する流路の水底には、前記浮体システムを係留維持するための係留柱12が設置され、この柱に前記浮体板の係留用貫通孔13を通すことで、発電システムの流路上における係留浮上状態が維持される。 Next, with reference to FIG. 1B and FIG. 1C, a system mooring method according to claim 3 and a cooling method for power generation system components according to claims 4 and 5 will be described. First, as a mooring method of the system, a mooring column 12 for mooring and maintaining the floating system is installed at the bottom of the flow path where the power generation system is installed, and the mooring through hole 13 of the floating plate is passed through this column. Thus, the moored floating state on the flow path of the power generation system is maintained.

また前記係留柱は、増水、洪水時でも発電システムの係留浮上状態が維持できるよう、充分な高さを有している一方、係留柱の土台部分の高さHは、浮体板底面からの水車底面の突き出し量hよりも長く、かつ除塵スクリーン2と、収納筐体5及び8それぞれの整流板突き出し高さHとを一致させているため、渇水時においても、システムは係留柱の土台と、除塵スクリーンと筐体の整流板で支持され、水車が水底に接して汚損することはない。 In addition, the mooring column has a sufficient height so that the mooring floating state of the power generation system can be maintained even during flooding or flooding, while the height H of the base portion of the mooring column is the water wheel from the bottom of the floating plate. Since the protrusion amount h of the bottom surface is longer and the dust removal screen 2 and the rectifying plate protrusion heights H of the storage housings 5 and 8 are made to coincide with each other, even in drought, the system It is supported by the dust removal screen and the baffle plate of the housing, so that the water wheel does not get in contact with the bottom of the water and become fouled.

次に請求項4記載の発電システム構成機器の冷却方法として、前記電力変換装置と制御装置の収納筐体8は、その筐体底面が浮体板1の底面と一致するよう流路側に露出しているとともに、収納筐体に挿入された電力変換装置と制御装置それぞれの発熱部品14及び15が、この収納筐体8の底面と接触するように部品配置されている。これにより、各部品の発熱部が筐体底面を介して常に低温の流水に接して放熱することで、電装部品の過熱を回避しながら発電運転を行うことができる。 Next, as a method for cooling a power generation system component device according to a fourth aspect of the present invention, the housing 8 for the power conversion device and the control device is exposed to the flow path side so that the bottom surface of the housing coincides with the bottom surface of the floating plate 1. In addition, the heat generating components 14 and 15 of the power conversion device and the control device inserted into the storage housing are arranged so as to come into contact with the bottom surface of the storage housing 8. Thereby, the heat generating part of each part always contacts the low-temperature flowing water through the bottom of the housing and dissipates heat, so that the power generation operation can be performed while avoiding overheating of the electrical parts.

また、調速装置や発電機も前記電装部品と同様、これらの収納筐体5の底面を介して流水冷却を行うこともできるが、機器の上面や側面も発熱し、底面に発熱部を集約できないことも考えられる。この場合は請求項5に記載の通り収納筐体5を二層構造とし、さらに浮体板の貫通孔を通じて流水から取水し、ポンプ16にて取水した流水を前記収納筐体の二層構造内を流通させて熱交換を行い、筐体の底部下流側にある放水口17から放流して流路に戻すことで、流水を利用して筐体全体を水冷すればよい。   In addition, the speed governor and generator can be cooled with running water through the bottom surface of the housing 5 as in the case of the electrical components, but the top and side surfaces of the device also generate heat, and the heat generating part is concentrated on the bottom surface. There are also things you can't do. In this case, as described in claim 5, the storage case 5 has a two-layer structure, and water is taken from the flowing water through the through hole of the floating plate, and the flowing water taken by the pump 16 passes through the two-layer structure of the storage case. The entire casing may be cooled with water using flowing water by exchanging the heat and performing heat exchange, discharging the water from the water outlet 17 on the downstream side of the bottom of the casing and returning it to the flow path.

ここで、前記ポンプの駆動動力としては、水車の回転力や発電電力を利用しても良いが、図1(b)および(c)に示す水車カバー18の天面に搭載した太陽光発電パネル19の発電出力か、図示しない各収納筐体の防滴機器カバー天面に搭載した太陽光発電パネルの発電出力を利用するのが好ましい。発熱機器を収納した筐体の防滴カバーにパネルを設置すれば、これが機器への日射を遮って温度上昇を抑制しながら、パネルで得られた発電出力でポンプの駆動動力を得ることができ、効率的な冷却が可能となる。また水車カバーを取り付け、その天面に太陽光発電パネルを搭載すれば、筐体カバーよりも大面積のパネル設置が可能となり、ポンプ駆動動力としては充分な電力が得られる他、水車が露出しないことでシステムの安全性が高まり、異物混入等による故障のリスクも軽減できる。なお、ポンプの回転数、すなわち冷却水の取水量や循環量は、冷却対象物の温度を制御装置7に入力し、この入力に基づいた制御装置からの出力信号をポンプに入力して制御している。   Here, as the driving power of the pump, the rotational force of the turbine or the generated power may be used, but the photovoltaic power generation panel mounted on the top surface of the turbine cover 18 shown in FIGS. 1 (b) and (c). It is preferable to use the power generation output of the photovoltaic power generation panel mounted on the top surface of the drip-proof device cover of each storage housing (not shown). If a panel is installed on the drip-proof cover of the housing that contains the heat generating device, this can block the solar radiation to the device and suppress the temperature rise, while obtaining the drive power of the pump with the power generation output obtained from the panel. Efficient cooling is possible. If a water turbine cover is attached and a solar power generation panel is mounted on the top surface, it is possible to install a panel with a larger area than the housing cover, and sufficient power can be obtained as pump drive power, and the water turbine is not exposed. As a result, the safety of the system is increased, and the risk of failure due to contamination of foreign matters can be reduced. The number of revolutions of the pump, that is, the amount of cooling water drawn or circulated, is controlled by inputting the temperature of the object to be cooled to the control device 7 and inputting an output signal from the control device based on this input to the pump. ing.

(第二の実施形態)
次に、本発明の第二の実施形態である、落差工設置型の係留浮上式水力発電システムについて説明する。本実施形態の基本構成は第一の実施形態と同様であるので、重複説明は省略する。本実施形態が前記実施形態と異なる点は、図2(a)に示す通り、水車9が落水と落差工下流の流水を受水するため、図2(b)に示す通り浮体板1の上流側に形成された貫通溝内に配置されている点、そして図2(c)に示す通り、落水とともに落下する異物を流水の力で浮体板の両端側を経て下流に押し流すよう、水車の天面側に構成した、落差流対応型除塵スクリーン20で保護されている点、更に図2(b)に示す通り、浮体板の上流側に配置される水車と重量バランスをとるため、発電機等の構成機器が浮体板の下流側に配置され、太陽光発電パネル付き防滴カバー21で保護されている点である。
(Second embodiment)
Next, a mooring floating hydroelectric power generation system of a drop work installation type, which is a second embodiment of the present invention, will be described. Since the basic configuration of the present embodiment is the same as that of the first embodiment, redundant description is omitted. The difference between the present embodiment and the previous embodiment is that, as shown in FIG. 2 (a), the water wheel 9 receives the falling water and the flowing water downstream of the drop work, so that the upstream of the floating plate 1 as shown in FIG. 2 (b). As shown in FIG. 2 (c), the top of the water turbine is arranged so that the foreign matter falling along with the falling water is pushed downstream through both ends of the floating plate by the flowing water as shown in FIG. 2 (c). In order to balance the weight with the water wheel arranged upstream of the floating plate, as shown in FIG. 2 (b), a generator, etc. The components are arranged on the downstream side of the floating plate and protected by a drip-proof cover 21 with a photovoltaic power generation panel.

本発明は、一般河川や用水路のみならず、海洋での潮流や干満により生ずる海峡流にも広く適用可能である。   The present invention can be widely applied not only to general rivers and irrigation canals but also to strait flows caused by tidal currents and tidal waves in the ocean.

1・・・・浮体板
2・・・・除塵スクリーン
3・・・・発電機
4・・・・増速装置
5・・・・発電機及び増速装置収納筐体
6・・・・電力変換装置
7・・・・発電システム制御装置
8・・・・電力変換装置及び発電システム制御装置収納筐体
9・・・・発電用水車
10・・・流下異物
11・・・水車軸受付き支持体
12・・・係留柱
13・・・係留用貫通孔
14・・・電力変換装置中の発熱部
15・・・発電システム制御装置中の発熱部
16・・・流水取水ポンプ
17・・・放水口
18・・・水車カバー
19・・・太陽光発電パネル
20・・・落差流対応型除塵スクリーン
21・・・発電システム構成機器用防滴カバー
DESCRIPTION OF SYMBOLS 1 ...... Floating plate 2 ... Dust removal screen 3 ... Generator 4 ... Speed increasing device 5 ... Generator and speed increasing device housing 6 ... Power conversion Device 7... Power generation system control device 8... Power conversion device and power generation system control device housing 9... Power generation turbine 10. ... Mooring column 13 ... Mooring through hole 14 ... Heat generating part 15 in the power conversion device ... Heat generating part 16 in the power generation system control device ... Running water intake pump 17 ... Water outlet 18 ... Watermill cover 19 ... Solar power generation panel 20 ... Drop-type dust removal screen 21 ... Drip-proof cover for power generation system components

Claims (5)

係留浮上状態を維持しつつ、流水によって回転する水車から発電機を介して電力を得る係留浮上式水力発電システムのうち、上流方向に凸形状を有し、さらに1つ以上の貫通孔または貫通溝を有する浮体板と、該浮体板の下流側に配置された水車と、該浮体板の片端天面上に配置され、調速装置を介して水車軸と接続された発電機と、これらと対称となる片端天面上に配置された電力変換装置および制御装置と、該浮体板の上流側凸部に配置された除塵スクリーンで構成され、前記発電システム構成機器を搭載した浮体板が、流れと直交する軸に対しては水平を保ち、かつ流れに沿う軸に対しては流水面と平行、あるいは流水面に対して水車側に傾斜した係留浮上状態を維持しながら発電することを特徴とする、係留浮上式水力発電システム Among moored floating hydroelectric power generation systems that obtain electric power via a generator from a water turbine that rotates by running water while maintaining the moored floating state, the moored floating hydroelectric power generation system has a convex shape in the upstream direction, and further has one or more through holes or through grooves A floating body plate, a water wheel disposed on the downstream side of the floating body plate, a generator disposed on one top surface of the floating body plate and connected to the water wheel shaft via a speed governor, and symmetrical thereto And a power conversion device and a control device arranged on the top surface of the one end, and a dust screen disposed on the upstream convex portion of the floating plate, and the floating plate on which the power generation system component device is mounted, Electricity is generated while maintaining a moored floating state that is horizontal to the axis perpendicular to the axis and parallel to the flow surface or inclined to the water turbine side with respect to the flow axis. Moored floating hydropower system 係留浮上状態を維持しつつ、流水によって回転する水車から発電機を介して電力を得る係留浮上式水力発電システムのうち、落差工下流側の落水部に設置され、1つ以上の貫通溝を有する浮体板と、該浮体板の貫通溝内に配置された水車と、前記浮体板上で水車より下流側に配置され、動力伝達機構および調速装置を介して水車軸と接続された発電機と、同じ下流側で、発電機等と対称に配置された電力変換装置および制御装置と、該浮体板の上流および水車の天面を覆うように配置された除塵スクリーンで構成され、前記発電システム構成機器を搭載した浮体板が、流れと直交する軸に対しては水平を保ち、かつ流れに沿う軸に対しては流水面と平行、または発電機のある下流方向に傾斜した係留浮上状態を維持しながら発電を行うことを特徴とする、落差工設置型係留浮上式水力発電システム Among moored floating hydroelectric power generation systems that obtain power via a generator from a water turbine that rotates by running water while maintaining the moored floating state, the moored floating hydroelectric power generation system is installed in a waterfall section on the downstream side of a drop head and has one or more through grooves A floating body plate, a water wheel disposed in a through groove of the floating body plate, a generator disposed on the downstream side of the water wheel on the floating body plate, and connected to a water wheel shaft via a power transmission mechanism and a speed governor; A power conversion device and a control device arranged symmetrically with a generator or the like on the same downstream side, and a dust removing screen arranged so as to cover the floating plate and the top surface of the water turbine, and the power generation system configuration The floating board with the equipment is kept horizontal with respect to the axis perpendicular to the flow, and the moored floating state is maintained parallel to the flow surface or inclined to the downstream side of the generator with respect to the axis along the flow. While generating electricity The butterfly, drop Engineering-mounted mooring floating hydroelectric power system 水路の水底に立てられた1本以上の係留柱、あるいは水底に沈下設置された1本以上の錘付係留柱を、発電システムを搭載した浮力体に加工された1つ以上の貫通孔または貫通溝に通すことで、流水面上において、水力発電システムを搭載した浮力体の係留浮上状態を維持することを特徴とする、係留浮上式水力発電システムの係留方法 One or more through-holes or penetrating holes that have been processed into a buoyant body equipped with a power generation system by using one or more mooring pillars standing at the bottom of a water channel or one or more mooring pillars installed under the water. A mooring method for a moored levitated hydroelectric power generation system, characterized in that the moored floating state of a buoyant body equipped with a hydroelectric power generation system is maintained on the surface of the flowing water by passing through a groove. 浮力体に加工された貫通溝を通じて挿入され、その底面が前記浮力体の底面と同一面を形成させつつ、前記浮力体の天面によって保持・固定される収納筐体と、該筐体の収納部内面に挿入設置される発電システム構成機器について、前記機器の発熱部を収納筐体の内側底面に密着させることで、発電システム構成機器の発熱を収納筐体の底面を通じて流水中に放熱して機器冷却を行うことを特徴とする、水力発電システム構成機器の冷却方法   A storage housing that is inserted through a through-groove processed into a buoyancy body and whose bottom surface is flush with the bottom surface of the buoyancy body, and is held and fixed by the top surface of the buoyancy body, and storage of the housing For the power generation system components that are inserted and installed on the inner surface of the unit, heat generated by the power generation system components is dissipated into the running water through the bottom surface of the storage case by bringing the heat generating part of the device into close contact with the inner bottom surface of the storage case. Cooling method for hydroelectric power generation system component equipment, characterized by equipment cooling 入水管及び排水管が接続された二層構造の発電システム構成機器収納筐体と、水車動力か、水力発電出力か、前記収納筐体または水車のカバー天面に設置された太陽光発電パネル出力の何れかにより駆動するポンプと、流水を取水する取水管から構成され、取水管とポンプ、入水管を接続し、流水を前記二層構造筐体の層内を流通させることで、筐体内の機器をポンプ流水にて水冷することを特徴とする、水力発電システム構成機器の冷却方法   Two-layer power generation system components housing housing connected to the water inlet and drain pipes, turbine power or hydropower output, solar panel output installed on the top of the housing or water turbine cover A pump driven by any of the above, and a water intake pipe for taking flowing water, connecting the water intake pipe to the pump and the water intake pipe, and circulating the flowing water through the layers of the two-layer structure housing, A method for cooling a component of a hydroelectric power generation system, characterized in that the device is cooled with pump water
JP2012120324A 2012-05-26 2012-05-26 Mooring floating type hydraulic power generation system Pending JP2013245618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120324A JP2013245618A (en) 2012-05-26 2012-05-26 Mooring floating type hydraulic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120324A JP2013245618A (en) 2012-05-26 2012-05-26 Mooring floating type hydraulic power generation system

Publications (1)

Publication Number Publication Date
JP2013245618A true JP2013245618A (en) 2013-12-09

Family

ID=49845599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120324A Pending JP2013245618A (en) 2012-05-26 2012-05-26 Mooring floating type hydraulic power generation system

Country Status (1)

Country Link
JP (1) JP2013245618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212526A (en) * 2014-05-02 2015-11-26 日中東北物産有限会社 Hydraulic power generation device
DE102014110877A1 (en) * 2014-07-31 2016-02-04 Heinrich Graucob Hydro-dynamic pressure device
KR101634637B1 (en) * 2015-02-04 2016-06-29 주식회사 웨스텍 Hydroelectric generating apparatus using guide vane and hybrid generator
CN111911339A (en) * 2020-07-08 2020-11-10 哈尔滨首捷智能科技有限公司 Floating type tidal energy water turbine with surging power device
US11739725B2 (en) 2018-03-14 2023-08-29 Gerald Coyle Waterwheel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212526A (en) * 2014-05-02 2015-11-26 日中東北物産有限会社 Hydraulic power generation device
DE102014110877A1 (en) * 2014-07-31 2016-02-04 Heinrich Graucob Hydro-dynamic pressure device
DE102014110877B4 (en) * 2014-07-31 2018-02-15 Heinrich Graucob Hydro-dynamic pressure device
KR101634637B1 (en) * 2015-02-04 2016-06-29 주식회사 웨스텍 Hydroelectric generating apparatus using guide vane and hybrid generator
US11739725B2 (en) 2018-03-14 2023-08-29 Gerald Coyle Waterwheel
CN111911339A (en) * 2020-07-08 2020-11-10 哈尔滨首捷智能科技有限公司 Floating type tidal energy water turbine with surging power device

Similar Documents

Publication Publication Date Title
KR101608814B1 (en) Modular ocean energy generating plant
KR100992067B1 (en) Water-power generation
KR100790082B1 (en) Energy generator powered by tidal currents
JP2014510236A (en) Multipurpose rotating device and power generation system equipped with the same
KR101802795B1 (en) Floating type solar power generator
JP4787286B2 (en) Hydroelectric generator
JP4653036B2 (en) Hydroelectric generator
JP2013245618A (en) Mooring floating type hydraulic power generation system
JP6020988B2 (en) Hydroelectric generator
JP5865572B2 (en) Low flow hydropower system for rivers
US20100123316A1 (en) Power generator barge
KR101228298B1 (en) Rotation apparatus for hydraulic power generation and Hydraulic power generation apparatus equipped therewith
KR101035321B1 (en) Electric power plant use wind and water
KR20130066258A (en) Current power generating apparatus
JP2007009830A (en) Float type hydraulic power generation device
KR102236015B1 (en) Tidal-operated energy generating device and method of providing the device
JP2011137439A (en) Device and method for water turbine power generation
KR20100034129A (en) Low head micro hydropower system
JP2014043856A (en) Hydraulic power generation machine and hydraulic power generation system
WO2017092379A1 (en) Generator system for horizontal use and reutilization of hydroenergy
JP6078364B2 (en) Water current generator
JP2013079539A (en) Hydraulic generating equipment
JP2002081362A (en) Hydraulic power generating system
JP2010116771A (en) Hydroelectric power generation system and comprehensive hydroelectric power generation system
JP2004270674A (en) Flowing water energy collector