WO2018063023A1 - Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium - Google Patents

Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium Download PDF

Info

Publication number
WO2018063023A1
WO2018063023A1 PCT/RU2016/000654 RU2016000654W WO2018063023A1 WO 2018063023 A1 WO2018063023 A1 WO 2018063023A1 RU 2016000654 W RU2016000654 W RU 2016000654W WO 2018063023 A1 WO2018063023 A1 WO 2018063023A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
temperature
melt
coils
alloy
Prior art date
Application number
PCT/RU2016/000654
Other languages
English (en)
Russian (ru)
Other versions
WO2018063023A8 (fr
Inventor
Виктор Христьянович МАНН
Александр Юрьевич КРОХИН
Александр Николаевич АЛАБИН
Виктор Федорович ФРОЛОВ
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2017113263A priority Critical patent/RU2657678C1/ru
Priority to PCT/RU2016/000654 priority patent/WO2018063023A1/fr
Priority to CN201680031037.8A priority patent/CN108603273A/zh
Publication of WO2018063023A1 publication Critical patent/WO2018063023A1/fr
Publication of WO2018063023A8 publication Critical patent/WO2018063023A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Definitions

  • the invention relates to the field of metallurgy and can be used to obtain products for electrical purposes that can operate at elevated temperatures, in particular: wires of high voltage power lines (power lines), vehicle on-board wires, wires of oil and gas complex devices and other products.
  • power lines high voltage power lines
  • vehicle on-board wires wires of oil and gas complex devices and other products.
  • the initial billet in most cases is a wire rod, for the production of which the following basic operations are performed: melt preparation, crystallization of the melt into a billet of infinite length, hot deformation of the billet into a wire rod, winding of wire rod into measured bays.
  • Rod refers to the shape of the metal in the form of a bar, usually produced by hot rolling on a multi-roll mill, which is a workpiece for subsequent wire production.
  • Al-Mg-Si alloys (bxxx series) are characterized by a higher level of strength properties, in particular, alloys of type 6101 are widely used for the production of self-supporting insulated wires.
  • alloys of the bxxx series are characterized by relatively low heat resistance, which usually does not exceed 90 ° C, which is associated with the following processes during heating:
  • alloys of this type is an aluminum nickel-containing material and a method for producing the product disclosed in Southwire's US3830635.
  • the material is characterized by a conductivity of 57% IACS and contains (mass%) 0.20-1.60 nickel, 0.30-1.30 cobalt, the rest is aluminum and impurities.
  • the material may contain 0.001-1.0%) iron and magnesium.
  • the method of obtaining the product includes the following basic operations: the continuous preparation of the billet from the melt between the rotating rolls, hot rolling of the billet in a multi-roll mill to a wire rod and wire drawing.
  • the method for producing the melt involves the introduction of additional elements (wt.%), In particular, misch metal, niobium, tantalum and zirconium.
  • the disadvantages of this method include the achievement of relatively low values of electrical conductivity (at the level of 57% IACS) and the relatively high cost of cobalt, which limits the use of this material in mass production, such as wires for high voltage power lines.
  • a significant increase in thermal stability at elevated temperatures without significant deterioration (not more than 3%) of the electrical conductivity of aluminum wire can be achieved by introducing small additives of transition metals, in particular zirconium and / or other transition metals.
  • the method for producing a heat-resistant wire with a minimum level of electrical resistance from a Zr-containing alloy in this case usually includes the following operations: forming a cast billet in a continuous or semi-continuous way, deforming the cast billet into a wire rod, heat treating the wire rod and drawing the wire rod into the wire.
  • the manufacturing method relates to a material containing 250-1200 ppm of scandium and the rest of the impurity.
  • the alloy may contain up to 0.1 wt.% Zirconium.
  • the method includes the following stages: preparing a melt containing aluminum, scandium and inevitable impurities, obtaining a cast billet from the melt, rolling the billet and drawing the wire without the use of stabilizing annealing.
  • the disadvantages of this method include the high final cost of the resulting product due to the content of scandium and the limited resource base for scandium.
  • the description does not show the absolute level of strength characteristics of the obtained wire from Sc-containing aluminum alloy.
  • the method provides a conductivity of at least 58% IACS, which in some cases is insufficient.
  • the objective of the invention is to create a new method for producing wire rod from a heat-resistant alloy based on aluminum, containing zirconium as the main alloying element, ensuring the simultaneous achievement of high electrical conductivity (not lower than 60% IACS) and a high level of mechanical properties, including those remaining at 90 % of the initial after high-temperature heating up to 300 ° C.
  • the technical result is the solution of the problem, increasing the heat resistance of the aluminum-based alloy while ensuring the required electrical conductivity, achieved without the use of long time exposures during heat treatment.
  • the solution of this problem and the achievement of the specified technical result is ensured by the fact that a method for producing wire rod from a heat-resistant aluminum-based alloy characterized by a conductivity of at least 60% IACS containing zirconium in an amount of 0.20-0.52 wt.% And unavoidable impurities, including melt preparation, obtaining a cast billet of infinite length by crystallization of the melt, obtaining a wire rod of infinite length by hot deformation of the cast billet, winding the wire rod in bays of measured length, thermal abotku the reforming by heating and holding at a preset temperature.
  • the crystallization of the melt is carried out at a temperature of 5 ° C above the liquidus temperature of the alloy, the maximum temperature of the wire rod after hot deformation is not more than 300 ° C, the heat treatment of the coils of wire rod is carried out at a maximum heating temperature of 415 ° C for no more than 144 hours, while heating in the temperature range 300 ⁇ 10 ° C not higher than 15 ° C / h.
  • the structure of the conductive material should be an unalloyed aluminum solution distributed in it secondary precipitates of a Zr-containing phase with a size of up to 20 nm with a lattice type Ll 2 .
  • the effect of increasing conductivity is achieved by reducing the concentration of zirconium in the aluminum solution and the formation of secondary precipitates of the Zr-containing phase.
  • the effect of increased heat resistance in this case is achieved due to the positive effect of the secondary emissions of the zirconium phase, which are resistant to high temperature heating.
  • the reduction of the heat treatment time necessary to achieve the required characteristics is achieved due to the uniform decay of the zirconium phase with a size of up to 20 nm, the release of which is preceded by the formation of “pre-precipitations” in the process of controlled heating.
  • Zirconium in an amount of 0.20-0.52 wt.% Is necessary for the formation of secondary precipitates of the metastable phase Al 3 (Zr) with a crystal lattice Ll 2 .
  • zirconium is redistributed between the aluminum solution and the secondary precipitates of the metastable phase Al 3 Zr with a lattice of the Ll 2 type, the maximum fraction of the latter being in the range of 0.31-0.91 mass. %
  • a higher zirconium content than 0.52% in an aluminum solution leads to a decrease in thermal conductivity and a decrease in electrical conductivity below 60% IACS.
  • concentrations above Zr above 0.52% an increase in casting temperature will be required significantly above 800 ° C ( Figure 1), which is difficult to achieve under industrial conditions, otherwise it is possible to form in the structure of the cast billet primary crystals of a phase with a lattice of type D0 23 .
  • the presence in the structure of Zr particles with a lattice of type D0 23 is unacceptable due to the failure to provide the required heat resistance, in addition, a decrease in manufacturability when drawing wire of thin diameters is possible.
  • zirconium concentrations in the alloy below 0.20 wt.% The number of secondary precipitates of the metastable phase A1 3 Z with a lattice of type L1? will be insufficient to achieve the specified strength characteristics and heat resistance.
  • a decrease in the melt temperature below the alloy liquidus temperature can lead to the formation of coarse primary crystals of the Al 3 Zr phase during crystallization and a decrease in the concentration of zirconium in the aluminum solid solution. The consequence of this will be a decrease in the number of secondary precipitates of the Zr phase in the final structure and will lead to a decrease in strength properties and heat resistance.
  • the heating rate of the bays is higher than 15 ° C / h, then an uneven decomposition of the aluminum solution is possible with the formation of secondary precipitates of the Al 3 Zr phase with an Ll 2 type lattice, which will negatively affect the general level of mechanical properties, heat resistance, and increase in heat treatment time.
  • the size of the secondary precipitates containing Zr may exceed 20 nm, which will negatively affect the strength properties, while the residual solubility of zirconium in the aluminum solution will be increased, which will negatively affect the electrical conductivity (Fig. .2).
  • the method can also be used for heat-resistant materials containing transition metals as the main alloying elements, for example, Sc and Cr.
  • the heat-resistant aluminum-based alloy may be an alloy containing zirconium and at least one element selected from the group consisting of iron and nickel.
  • cast billets (with a cross-sectional area of 1256 mm 2 ) were obtained at various casting temperatures. The casting temperature of the billets was measured immediately before pouring the mold, providing a crystallization rate of 40 K / s.
  • the microstructure was analyzed for the presence or absence of primary crystals of the Al 3 Zr DO23 phase.
  • the structure of the cast billet was an aluminum solid solution of zirconium and other elements, a certain amount of iron-containing phases of eutectic origin.
  • Such a cast billet structure is acceptable for subsequent bending and heat treatment.
  • wire rod was obtained on a continuous casting and rolling unit. Further, the heat treatment of wire rod was carried out in a furnace with different heating rates. Next, wire was obtained from wire rod.
  • a criterion for a positive result was the achievement of a given level of specific electrical resistance (p) of 28.5 ⁇ Ohm mm and the loss of strength properties ( ⁇ ) on the wire of not more than 10% after annealing at 400 ° C for 1 hour.
  • An alloy of composition 3 (Table 1) was used for heat treatment of wire rods with a constant heating rate of 10 ° C / h and a constant annealing time of 96 hours.
  • a rod with a different final temperature was obtained from an alloy of composition 3 (Table 1).
  • the wire rod was heated to 390 ° C with a given heating rate of 10 ° C / h and annealed for 144 hours.
  • the criterion was the heat resistance of the wire (level of drop in strength characteristics ( ⁇ )) obtained from wire rod.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

L'invention appartient au domaine de la métallurgie et peut être utilisée pour obtenir des articles fabriqués à usage électrotechnique capables de fonctionner à des températures élevées. L'invention concerne un procédé de production de fil laminé en alliage thermorésistant qui comprend en tant que élément d'alliage principal le zirconium dans des quantités de 0,20-0,52 % en masse, qui consiste à : préparer un bain de fusion, obtenir une pièce coulée de longueur infinie par cristallisation de bain de fusion, obtenir un fil laminé de longueur infinie par déformation à chaud de la pièce coulée, enrouler le fil laminé pour former des bottes de longueur mesurable, effectuer le traitement thermique des bottes de fil laminé par chauffage et retenue à température voulue. La cristallisation du bain de fusion s'effectue à une température de plus de 5°C que la température de liquidus, la température maximale du fil laminé après la déformation à chaud étant maintenue à un niveau de 300°C au maximum, le traitement thermique des bottes du fil laminé s'effectuant à une température de chauffe inférieure ou égale à 415°С pendant pas plus de 144 h, la vitesse de chauffe des bottes dans l'intervalle de températures de 300-400°С ne dépassant pas 15°C/h. Le résultat technique consiste en une meilleure résistance thermique de l'alliage à base d'aluminium et assurer une conductivité électrique désirée, ce qui est obtenu sans utilisation d'intervalles temporels prolongés lors d'un traitement thermique.
PCT/RU2016/000654 2016-09-30 2016-09-30 Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium WO2018063023A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2017113263A RU2657678C1 (ru) 2016-09-30 2016-09-30 Способ получения катанки из термостойкого сплава на основе алюминия
PCT/RU2016/000654 WO2018063023A1 (fr) 2016-09-30 2016-09-30 Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium
CN201680031037.8A CN108603273A (zh) 2016-09-30 2016-09-30 由耐热性铝基合金制造棒线材的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2016/000654 WO2018063023A1 (fr) 2016-09-30 2016-09-30 Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium

Publications (2)

Publication Number Publication Date
WO2018063023A1 true WO2018063023A1 (fr) 2018-04-05
WO2018063023A8 WO2018063023A8 (fr) 2020-01-16

Family

ID=61763546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000654 WO2018063023A1 (fr) 2016-09-30 2016-09-30 Procédé de production de fil laminé à partir d'un alliage thermorésistant à base d'aluminium

Country Status (3)

Country Link
CN (1) CN108603273A (fr)
RU (1) RU2657678C1 (fr)
WO (1) WO2018063023A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696794C1 (ru) * 2018-11-14 2019-08-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения катанки из термостойкого алюминиевого сплава

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827949A (ja) * 1981-08-12 1983-02-18 Tokyo Electric Power Co Inc:The 導電用耐熱アルミニウム合金線の製造方法
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
JPS61238945A (ja) * 1985-04-12 1986-10-24 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造法
JPS63293146A (ja) * 1987-05-26 1988-11-30 Sumitomo Electric Ind Ltd 導電用高力耐熱アルミニウム合金の製造方法
RU2541263C2 (ru) * 2013-07-01 2015-02-10 Общество с ограниченной ответственностью "ЭМ-КАТ" Проводниковый термостойкий сплав на основе алюминия

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411760A1 (de) * 1983-03-31 1984-10-04 Alcan International Ltd., Montreal, Quebec Verfahren zur herstellung von blech oder band aus einem walzbarren einer aluminiumlegierung
CN102021444B (zh) * 2010-12-09 2012-08-22 北京科技大学 一种高导电耐热铝合金导线及其制备方法
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
WO2014088449A1 (fr) * 2012-12-06 2014-06-12 The Federal State Autonomous Educational Institution Of The Higher Professional Education "National University Of Science And Technology "Misis" Alliage résistant à la chaleur à base d'aluminium et procédé de fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
JPS5827949A (ja) * 1981-08-12 1983-02-18 Tokyo Electric Power Co Inc:The 導電用耐熱アルミニウム合金線の製造方法
JPS61238945A (ja) * 1985-04-12 1986-10-24 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造法
JPS63293146A (ja) * 1987-05-26 1988-11-30 Sumitomo Electric Ind Ltd 導電用高力耐熱アルミニウム合金の製造方法
RU2541263C2 (ru) * 2013-07-01 2015-02-10 Общество с ограниченной ответственностью "ЭМ-КАТ" Проводниковый термостойкий сплав на основе алюминия

Also Published As

Publication number Publication date
RU2657678C1 (ru) 2018-06-14
WO2018063023A8 (fr) 2020-01-16
CN108603273A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6039999B2 (ja) Cu−Ni−Co−Si系銅合金板材およびその製造法
JP5320642B2 (ja) 銅合金の製造方法及び銅合金
JP6782167B2 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
RU2534170C1 (ru) Термостойкий сплав на основе алюминия и способ получения из него деформированных полуфабрикатов
JP2015096645A (ja) アルミニウム合金導体、アルミニウム合金撚線、被覆電線およびワイヤーハーネス
WO2012133522A1 (fr) Alliage de magnésium
CN110468306B (zh) 铝合金线材及其制造方法
JP2021130878A (ja) アルミニウム基合金から変形半製品の製造方法
JP2016505713A5 (fr)
JP3317328B2 (ja) 銅合金
Jabłoński et al. Effect of iron addition to aluminium on the structure and properties of wires used for electrical purposes
RU2636548C1 (ru) Термокоррозионностойкий алюминиевый сплав
RU2657678C1 (ru) Способ получения катанки из термостойкого сплава на основе алюминия
JPS6132386B2 (fr)
JP2006299305A (ja) 耐熱アルミニウム合金線およびその製造方法
JP2017179449A (ja) Al−Mg―Si系合金板の製造方法
JP2011063884A (ja) 耐熱アルミニウム合金線
JP2020516777A (ja) ケーブル導体用アルミニウム合金
CN103225049A (zh) 一种改善中强铝合金导电率的处理工艺
WO2018004373A1 (fr) Alliage à base d'aluminium résistant thermiquement
JP2022526677A (ja) 高強度および高伝導率を有する銅合金、ならびにこのような銅合金を作製するための方法
JP6009145B2 (ja) アルミニウム電線及びその製造方法
JP2004124154A (ja) マグネシウム基合金の圧延線材及びその製造方法
JP2017057423A (ja) アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
Szkliniarz Formation of microstructure and properties of Cu-3Ti alloy in thermal and thermomechanical processes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017113263

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917842

Country of ref document: EP

Kind code of ref document: A1