WO2018062380A1 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018062380A1
WO2018062380A1 PCT/JP2017/035199 JP2017035199W WO2018062380A1 WO 2018062380 A1 WO2018062380 A1 WO 2018062380A1 JP 2017035199 W JP2017035199 W JP 2017035199W WO 2018062380 A1 WO2018062380 A1 WO 2018062380A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
inclusion
delayed fracture
fracture resistance
Prior art date
Application number
PCT/JP2017/035199
Other languages
English (en)
French (fr)
Inventor
義彦 小野
真平 吉岡
中村 展之
長谷川 寛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017567838A priority Critical patent/JP6354921B1/ja
Priority to MX2019002330A priority patent/MX2019002330A/es
Priority to KR1020197005705A priority patent/KR102226643B1/ko
Priority to US16/329,672 priority patent/US10982297B2/en
Priority to CN201780053038.7A priority patent/CN109642294B/zh
Priority to EP17856329.2A priority patent/EP3489382B1/en
Publication of WO2018062380A1 publication Critical patent/WO2018062380A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a steel plate and a manufacturing method thereof.
  • the present invention relates to a steel plate suitable for manufacturing parts such as automobiles and home appliances formed by cold pressing.
  • TS from 1320 to body frame parts such as center pillar R / F (reinforcement), bumpers, impact beam parts (hereinafter also referred to as parts)
  • body frame parts such as center pillar R / F (reinforcement), bumpers, impact beam parts (hereinafter also referred to as parts)
  • delayed fracture may occur due to an increase in residual stress in the part or deterioration of delayed fracture resistance due to the steel sheet itself. is there.
  • delayed fracture means that when a component is placed in a hydrogen intrusion environment with a high stress applied to the component, hydrogen penetrates into the steel plate constituting the component, reducing the interatomic bonding force. This is a phenomenon in which a microcrack is generated by causing local deformation, and breakage is caused by the progress of the microcrack.
  • Patent Documents 2, 3 and 4 disclose a technique for preventing hydrogen-induced cracking resistance by reducing the amount of S in steel to a certain level and adding Ca.
  • Patent Document 5 C: 0.1 to 0.5%, Si: 0.10 to 2%, Mn: 0.44 to 3%, N ⁇ 0.008%, Al: 0.005 to Containing 0.1%, V: 0.05-2.82%, Mo: 0.1% or more and less than 3.0%, Ti: 0.03-1.24%, Nb: 0.05- There is disclosed a technique for improving delayed fracture resistance by containing 0.95% of one kind or two or more kinds and dispersing fine alloy carbides serving as hydrogen trap sites.
  • Japanese Patent No. 3514276 Japanese Patent No. 5428705 JP 54-31019 A JP 2013-213242 A Japanese Patent No. 4427010
  • the delayed fracture described above is mostly caused from the end face of a steel sheet (hereinafter, also referred to as a shear end face) that is cut by shearing or punching in an actual pressed part.
  • a shear end face a steel sheet
  • the work is hardened and hardened in the vicinity of the strain-affected zone (that is, the proportional limit is”
  • the delayed fracture limit stress of the steel sheet with the shear end face is about 1/3 to 1/20 of the delayed fracture limit stress when the strain-affected zone is removed by reaming. That is, it is considered that delayed fracture resistance against delayed fracture generated from the shear end face (hereinafter also referred to as delayed fracture resistance of the shear end face) is one of the main factors that determine the delayed fracture resistance of actual parts.
  • Patent Documents 1 to 5 are intended to improve the delayed fracture resistance of the steel sheet itself, and do not fully consider the existence of the strain-affected zone on the shear end face. For this reason, the steel sheets according to the techniques of Patent Documents 1 to 5 are not necessarily sufficient in improving the delayed fracture resistance of the shear end face.
  • Patent Documents 2 to 4 are originally intended for so-called thick steel plates having a thickness of 10 mm or more, and are not intended for so-called thin steel plates formed on automobile parts. Moreover, such a thick steel plate and a thin steel plate are greatly different from each other in sheet thickness, cumulative rolling reduction in the manufacturing process, microstructure (steel structure), material strength, and workability by pressing.
  • the present invention has been developed in view of the above situation, and has a plate thickness of 0.5 to 2.6 mm and a high tensile strength (TS) of 1320 MPa or more, delayed fracture resistance,
  • TS tensile strength
  • steel plates with excellent delayed fracture resistance at the shear end face more specifically, when cold press forming is performed after blanking or punching by shearing or slitting, or parts by shearing after cold press forming.
  • An object of the present invention is to provide a steel sheet that has excellent delayed fracture resistance even in a press-molded product obtained when performing drilling by cutting or punching, together with its advantageous manufacturing method.
  • the inventors of the present invention have made extensive studies in order to solve the above problems, and have obtained the following knowledge.
  • Delayed fracture resistance at the shear end face is governed by the degree of damage to the shear end face (surface hardening amount and residual stress) and the ease of crack propagation to the inside.
  • TS ⁇ 1320 MPa class In high-strength steel sheets, a large inclusion group (inclusion group A) with a major axis length of 100 ⁇ m or more increases local strain and residual stress inside the shear end face, and the origin and propagation path of delayed fracture And adversely affects its characteristics.
  • This inclusion group A is an inclusion group mainly composed of MnS, Al 2 O 3 , and (Al, Ca) —O. Since there are many inclusions at the center of the plate thickness, it is not sufficient to treat only the surface layer. It is necessary to reduce the inclusion group A including the central part of the plate thickness. In particular, in the case of a thin steel plate having a thickness of 0.5 to 2.6 mm, there are many inclusion groups A arranged in a dotted line over 300 ⁇ m or more at the Mn center segregation portion in the center of the thickness, which is a delayed fracture. Have a great negative impact. For this reason, reduction of such inclusion group A is important. The inclusion group A is reduced by reducing Mn as much as possible and reducing S to at least less than 10 ppm by mass, preferably 6 ppm by mass or less.
  • This inclusion group B is an inclusion in which MnS is complex-precipitated with Nb (C, N), (Nb, Ti) (C, N), Ti (C, S) distributed in a cluster form, and the core. .
  • Mn ⁇ 1.8%, a certain amount of microsegregation and macrosegregation of Mn is generated, and these are likely to be combined and generated at the segregation site, combined with the adverse effects of Mn segregation itself and combined precipitation of MnS, Compared with the case where Nb (C, N), (Nb, Ti) (C, N), and Ti (C, S) are simply deposited, the adverse effect of the inclusion group B is significantly increased.
  • Nb and Ti contents were controlled to a specific range, slab heating temperature and time were strictly controlled, and Nb and Ti were added to reduce the N and S contents to the limit. Even steel, the adverse effects of inclusions are reduced, and the delayed fracture resistance is greatly improved. In addition, the delayed fracture resistance is improved by growing the ⁇ grains by high-temperature annealing the steel sheet to which Nb and Ti are added in a continuous annealing process such as CAL and CGL.
  • the present invention has been completed after further studies based on the above findings. That is, the gist configuration of the present invention is as follows.
  • One or two of 002% or more and less than 0.035% and Ti: 0.002% or more and less than 0.040% are contained so as to satisfy the formulas (1) and (2), and the balance is Fe and inevitable Inclusion group A having a component composition consisting of impurities, an area ratio of 90% to 100% in total with respect to the entire structure of martensite and bainite, an average old ⁇ particle size of 6 to 15 ⁇ m, and satisfying the following condition A
  • the component composition further contains, by mass%, one or two selected from Cu: 0.005 to 1% and Ni: 0.01 to 1% [1] to [3]
  • the steel plate in any one of.
  • the above component composition is further mass%, Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, V: 0.003 to 0.5%, Zr: 0.00.
  • the component composition further includes, by mass%, Ca: 0.0002 to 0.0030%, Ce: 0.0002 to 0.0030%, La: 0.0002 to 0.0030%, and Mg: 0.00.
  • the steel sheet according to any one of [1] to [5], containing one or more selected from 0002 to 0.0030%.
  • the component composition further contains one or two selected from Sb: 0.002 to 0.1% and Sn: 0.002 to 0.1% by mass% [1]
  • the steel sheet according to any one of [6].
  • a steel slab having the composition according to any one of [1] and [4] to [7] is hot-rolled after being held at a soaking temperature of more than 100 minutes at a slab heating temperature of over 1220 ° C.
  • the hot-rolled steel sheet is cold-rolled by cold-rolling the hot-rolled steel sheet at a reduction ratio of 20 to 75% so that the plate thickness is 0.5 to 2.6 mm.
  • the manufacturing method of the steel plate which performs annealing which cools with the average cooling rate of / s or more.
  • TS tensile strength
  • the unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
  • C 0.13% to 0.40% (0.13 to 0.40%)
  • C is an element that improves the hardenability, and is necessary from the viewpoint of ensuring the area ratio of predetermined martensite and / or bainite, increasing the strength of these structures, and ensuring TS ⁇ 1320 MPa. Moreover, it has the effect
  • the C content is less than 0.13%, it becomes impossible to obtain a predetermined strength while maintaining excellent delayed fracture resistance.
  • it is 0.14% or more, more preferably 0.16% or more.
  • the C content exceeds 0.40%, the strength becomes too high, and it becomes difficult to obtain sufficient delayed fracture resistance.
  • it is 0.30% or less, More preferably, it is 0.25% or less. Accordingly, the C content is set to 0.13 to 0.40%. From the viewpoint of obtaining TS ⁇ 1470 MPa while maintaining excellent delayed fracture resistance, the C content is preferably more than 0.17%.
  • Si 1.5% or less
  • Si is a strengthening element by solid solution strengthening.
  • Si when tempering a steel sheet in a temperature range of 200 ° C. or higher, Si suppresses the formation of film-like carbides and contributes to the improvement of delayed fracture resistance. Furthermore, it contributes to the suppression of the formation of MnS by reducing Mn segregation at the center of the plate thickness. In addition, it contributes to the decarburization by oxidation of the steel sheet surface layer during continuous annealing, and further to the suppression of de-B.
  • the lower limit of the Si content is not particularly limited, but it is desirable to contain 0.02% or more of Si in order to sufficiently obtain the above effects. Preferably it is 0.10% or more, more preferably 0.20% or more.
  • the Si content is 1.5% or less. Preferably it is 1.2% or less, More preferably, it is 1.0% or less.
  • the Si content may be 0%.
  • Mn 1.8-4% Mn is contained in order to improve the hardenability of the steel and to secure a predetermined martensite and / or bainite area ratio. Further, Mn has an effect of fixing S in steel as MnS and reducing hot brittleness. If the Mn content is less than 1.8%, in the annealing line cooled by gas or mist, ferrite is generated during cooling and the delayed fracture resistance of the shear end face is greatly deteriorated. In order to suppress the formation of ferrite, Mn needs to be contained by 1.8% or more. On the other hand, Mn is an element that particularly promotes the generation and coarsening of MnS in the central portion of the plate thickness.
  • the Mn content exceeds 4%, the Mn is large in the central portion of the plate thickness even if S is reduced to the limit.
  • the number and size of the inclusion groups A and B are increased, and the delayed fracture resistance characteristics of the shear end face are remarkably deteriorated. Therefore, the Mn content is 1.8 to 4%.
  • the Mn content is preferably 1.8% or more and 3.2% or less. % To 2.8% is more preferable.
  • Mn is preferably 1.9% or more, and more preferably 2.3% or more.
  • P 0.02% or less
  • P is an element that strengthens steel, but if its content is large, delayed fracture resistance and spot weldability are significantly deteriorated. Therefore, the P content is 0.02% or less. Preferably it is 0.010% or less. From the viewpoint of improving the delayed fracture resistance of the welded portion, P is more preferably 0.005% or less.
  • the minimum of P content is not specifically limited, The minimum which can be implemented industrially is about 0.002% now.
  • inclusion group B inclusion groups having a length of 20 ⁇ m or more and less than 100 ⁇ m is promoted, and MnS covers the periphery compared to Nb (C, N) or the like, so that the peel strength from the parent phase is increased. This causes a decrease in the delayed destruction significantly.
  • the thickness of the cast slab is about 180 to 250 mm, and the thickness of the final product plate is 0.5 to 2.6 mm, so the cumulative reduction amount is about 99%.
  • the elongation of the steel plate in the rolling direction reaches 5 to 10 times that in the case of the thick steel plate, so that the adverse effect of MnS becomes even greater, and the adverse effect becomes significant at the shear end face.
  • a huge inclusion group A is formed in the Mn segregation portion at the center of the thickness.
  • the delayed fracture resistance is particularly adversely affected.
  • the S content needs to be less than 0.0010%. Preferably it is 0.0006% or less, More preferably, it is 0.0004% or less.
  • the lower limit of the S content is not particularly limited, but the lower limit that can be industrially implemented is currently about 0.0002%.
  • sol. Al 0.2% or less sol.
  • Al is added to perform sufficient deoxidation and reduce inclusions in the steel.
  • the Al content is preferably 0.01% or more.
  • sol. When the Al content exceeds 0.2%, carbides containing Fe as a main component, such as cementite, generated during winding after hot rolling are hard to be dissolved by annealing, and the delayed fracture resistance is deteriorated. Therefore, sol.
  • the Al content is 0.2% or less. Preferably it is 0.10% or less, More preferably, it is 0.05% or less.
  • N less than 0.0060%
  • N is an element that forms nitrides such as TiN, (Nb, Ti) (C, N), AlN, and carbonitride inclusions in steel, and through these generations Deteriorates delayed fracture resistance. Although these inclusions alone have a small influence on delayed fracture, some of them become MnS precipitation nuclei and are distributed in a sequence of dots with MnS to form a huge inclusion group (inclusion group B). Deteriorates delayed fracture resistance.
  • the N content needs to be less than 0.0060%. Preferably it is 0.0045% or less, More preferably, it is 0.0040% or less.
  • the lower limit of the N content is not particularly limited, but the lower limit that can be industrially implemented is currently about 0.0006%.
  • B 0.0003% or more and less than 0.0035%
  • B is an element that improves the hardenability of steel, and generates martensite and / or bainite having a predetermined area ratio even when the amount of Mn is small. Have advantages. Further, the delayed fracture resistance is improved by the solute B remaining. In order to obtain such an effect of B, it is necessary to contain 0.0003% or more of B. Moreover, it is more preferable to make it contain 0.0005% or more. More preferably, it is 0.0010% or more.
  • the B content is 0.0035% or more, not only the effect is saturated, but also the slow dissolution rate of cementite at the time of annealing, and carbides mainly composed of Fe, such as undissolved cementite, are obtained. As a result, the delayed fracture resistance of the shear end face is deteriorated.
  • the B content is set to 0.0003% or more and less than 0.0035%.
  • O is an element that forms oxide inclusions such as Al 2 O 3 , SiO 2 , CaO, MgO, (Al, Ca) —O having a diameter of 1 to 20 ⁇ m in steel.
  • the O content needs to be less than 0.0020%. Preferably it is 0.0015% or less, More preferably, it is 0.0010% or less.
  • the lower limit of the O content is not particularly limited, but the lower limit that can be industrially implemented is about 0.0005%.
  • Nb and Ti are included. Even if the Nb content is less than the following lower limit (less than 0.002%), Nb is an inevitable impurity when Ti is within the scope of the present invention below and satisfies the formulas (1) and (2). Shall be included. Even if the Ti content is less than the following lower limit (less than 0.002%), if Nb is within the scope of the present invention below and satisfies the formulas (1) and (2), Ti is an unavoidable impurity. Shall be included. Therefore, these are all within the scope of the present invention.
  • Nb 0.002% or more and less than 0.035%
  • Nb is a refinement of prior ⁇ grains, resulting in a refinement of the internal structure of martensite and bainite, formation of fine precipitates that serve as hydrogen trap sites, Through formation, even a small amount of addition significantly contributes to the improvement in delayed fracture resistance as well as the increase in strength.
  • Nb is desirably contained at 0.002% or more. More preferably it is 0.004% or more, and still more preferably 0.010% or more.
  • Nb-based coarse particles such as NbN, Nb (C, N), (Nb, Ti) (C, N), which remain undissolved during slab heating in the hot rolling process, are included.
  • Nb needs to be less than 0.035%.
  • it is 0.030% or less, More preferably, it is 0.020% or less.
  • Ti 0.002% or more and less than 0.040%
  • Ti is refined of old ⁇ grains, thereby refined internal structure of martensite and bainite, formation of fine precipitates that become hydrogen trap sites, Through formation, even a small amount of addition contributes significantly to increasing strength and improving delayed fracture resistance. Furthermore, it contributes to improvement of castability. From such a viewpoint, Ti is desirably contained in an amount of 0.002% or more. More preferably it is 0.004% or more, and still more preferably 0.010% or more. However, when Ti is contained in a large amount, Ti-based coarse precipitates such as TiN, Ti (C, N), Ti (C, S), and TiS that remain undissolved during slab heating in the hot rolling process are present.
  • Ti at less than 0.040%. Preferably it is 0.030% or less, More preferably, it is 0.020% or less.
  • [% Ti] + [% Nb]: more than 0.007% Nb and Ti are elements that improve delayed fracture resistance. To obtain these effects, at least the total content of these elements is 0.007. It is necessary to be over%. Preferably it is 0.010% or more, More preferably, it is 0.015% or more. The upper limit is preferably 0.060% or less, more preferably 0.050% or less, and still more preferably 0.040% or less. Note that [% Nb] and [% Ti] represent the contents (% by mass) of Nb and Ti.
  • [% Ti] ⁇ [% Nb] 2 ⁇ 5.0 ⁇ 10 ⁇ 6 is preferable, and [% Ti] ⁇ [% Nb] 2 ⁇ 3.0 ⁇ 10 ⁇ 6 is more preferable. In many cases, [% Ti] ⁇ [% Nb] 2 ⁇ 0.05 ⁇ 10 ⁇ 6 . Note that [% Nb] and [% Ti] represent the contents (% by mass) of Nb and Ti.
  • the steel plate of this invention can contain the following arbitrary elements suitably.
  • it may contain one or two selected from Cu: 0.005 to 1% and Ni: 0.01 to 1% by mass%.
  • Cu 0.005 to 1%
  • Cu is an element mixed when scrap is used as a raw material. By allowing Cu to be mixed, recycled material can be used as a raw material and manufacturing costs can be reduced. From such a viewpoint, Cu is preferably contained in an amount of 0.005% or more, and more preferably 0.05% or more in terms of improving delayed fracture resistance. More preferably, it is 0.10% or more. However, if the Cu content is excessively large, surface defects are caused, so the Cu content is preferably 1% or less. More preferably, it is 0.50% or less, More preferably, it is 0.30% or less.
  • Ni 0.01 to 1% Ni, like Cu, is an element that has the effect of improving corrosion resistance. Moreover, Ni has the effect
  • Cr 0.01 to 1.0%
  • Mo 0.01 to 0.5%
  • V 0.003 to 0.5%
  • Zr 0.005 to 0.2%
  • W One or more selected from 0.005 to 0.2% may be contained.
  • Cr 0.01 to 1.0% Cr has the effect of improving the hardenability of the steel. In order to obtain such an effect, it is preferable to contain 0.01% or more of Cr. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. However, if the Cr content exceeds 1.0%, the solid solution rate of cementite during annealing is delayed, and carbides mainly composed of Fe such as undissolved cementite remain, thereby delaying the resistance of the shear end face. Destructive properties deteriorate. Moreover, pitting corrosion resistance and also chemical conversion processability deteriorate. Therefore, the Cr content is desirably 0.01 to 1.0%. If the Cr content exceeds 0.2%, delayed fracture resistance, pitting corrosion resistance, and chemical conversion processability may be deteriorated. From the viewpoint of preventing these, the Cr content is 0.2%. More preferably, it is as follows.
  • Mo 0.01% or more and 0.5% or less
  • Mo is an effect of improving the hardenability of steel, the formation of fine carbides containing Mo that become hydrogen trap sites, and the delayed fracture resistance due to the refinement of martensite and bainite.
  • the Mo content exceeds 0.5%, the chemical conversion processability is remarkably deteriorated. Preferably it is 0.2% or less. From the above, the Mo content is desirably 0.01% or more and 0.5% or less.
  • V 0.003-0.5%
  • V is an object of improving the hardenability of steel, producing fine carbides containing V that become hydrogen trap sites, and further improving the delayed fracture resistance due to refinement of martensite and bainite. It is desirable to make it contain 0.003% or more. More preferably, it is 0.005% or more, More preferably, it is 0.007% or more. However, if the V content exceeds 0.5%, the castability is significantly deteriorated. More preferably, it is 0.20% or less, More preferably, it is 0.09% or less. Most preferably, it is 0.01% or less. From the above, the V content is preferably 0.003 to 0.5%.
  • Zr 0.005 to 0.2%
  • Zr is 0. It is desirable to make it contain at 005% or more. More preferably, it is 0.010% or more, More preferably, it is 0.020% or more.
  • the Zr content is desirably 0.2% or less. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less.
  • W 0.005 to 0.2%
  • it is desirable to make it contain at 005% or more. More preferably, it is 0.010% or more, More preferably, it is 0.030% or more.
  • the W content is desirably 0.2% or less. More preferably, it is 0.1% or less.
  • Ca 0.0002 to 0.0030%
  • Ce 0.0002 to 0.0030%
  • La 0.0002 to 0.0030%
  • Mg 0.0002 to 0.0030% You may contain 1 type, or 2 or more types selected from.
  • Ca 0.0002 to 0.0030% Ca fixes S as CaS and contributes to the improvement of delayed fracture resistance. For this reason, it is preferable that Ca content shall be 0.0002% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0008% or more. However, if Ca is added in a large amount, the surface quality and bendability are deteriorated, so the Ca content is preferably 0.0030% or less. More preferably, it is 0.0020% or less, More preferably, it is 0.0015% or less.
  • Ce 0.0002 to 0.0030% Ce, like Ca, fixes S and contributes to the improvement of delayed fracture resistance. For this reason, it is preferable that Ce content shall be 0.0002% or more. More preferably, it is 0.0003% or more, More preferably, it is 0.0005% or more. However, since the surface quality and bendability deteriorate when a large amount of Ce is added, the Ce content is preferably 0.0030% or less. More preferably, it is 0.0020% or less, More preferably, it is 0.0015% or less.
  • La 0.0002 to 0.0030%
  • La like Ca, fixes S and contributes to improved delayed fracture resistance.
  • the La content is preferably 0.0030% or less. More preferably, it is 0.0020% or less, More preferably, it is 0.0015% or less.
  • Mg 0.0002 to 0.0030% Mg fixes O as MgO and contributes to the improvement of delayed fracture resistance. For this reason, it is preferable that Mg content shall be 0.0002% or more. More preferably, it is 0.0010% or more, More preferably, it is 0.0015% or more. However, since the surface quality and bendability deteriorate when a large amount of Mg is added, the Mg content is preferably 0.0030% or less. More preferably, it is 0.0025% or less, More preferably, it is 0.0020% or less.
  • it may contain one or two selected from Sb: 0.002 to 0.1% and Sn: 0.002 to 0.1% by mass%.
  • Sb 0.002 to 0.1%
  • Sb suppresses the oxidation and nitridation of the steel sheet surface layer portion, and thereby suppresses the reduction of the content of the C and B surface layers. Moreover, by suppressing the said reduction
  • Sn 0.002 to 0.1% Sn suppresses oxidation and nitridation of the steel sheet surface layer portion, and thereby suppresses a reduction in the content of the C and B surface layers. Moreover, by suppressing the said reduction
  • components other than the above are Fe and inevitable impurities.
  • the said arbitrary element when included below a lower limit, the said arbitrary element shall be included as an unavoidable impurity.
  • Total area ratio of martensite and bainite more than 90% and 100% or less
  • the total area ratio of martensite and bainite exceeds 90% in total. To do. If it is less than this, either ferrite or residual ⁇ (residual austenite) increases, and the delayed fracture resistance deteriorates. Preferably it is 92% or more, More preferably, it is 94% or more, More preferably, it is 96% or more.
  • tissue of a martensite and a bainite is 100% in total.
  • the steel structure of the present invention includes both martensite and bainite. Since bainite contributes to the improvement of ductility, it is preferably contained in an amount of 1 to 25%.
  • the remainder other than martensite and bainite is ferrite, residual ⁇ , and the like.
  • non-metallic inclusions and cementite are also included as constituent structures, but since these area ratios are very small, these area ratios are excluded and evaluated.
  • the area ratio of the residual ⁇ is not particularly defined, but since the residual ⁇ deteriorates the delayed fracture resistance, the area ratio is preferably less than 5%.
  • the inclusion group A satisfies the following condition A.
  • the length of the long axis of the inclusion group is 100 ⁇ m or more.
  • the length of the long axis of the inclusion group A is 100 ⁇ m or more. Inclusion groups having a major axis length of 100 ⁇ m or more have a large adverse effect on delayed fracture resistance, and therefore need to be considered separately from inclusion group B described later.
  • the length of the long axis of the inclusion particles constituting the inclusion group A is 0.3 ⁇ m or more.
  • the reason why the length of the major axis is 0.3 ⁇ m or more is because inclusion particles of less than 0.3 ⁇ m have a small adverse effect on delayed fracture resistance even if they are aggregated. This is because the inclusion group A is not frequently present, and if the size is less than that, cracks are connected and are difficult to extend.
  • the length of the long axis means the length of inclusion particles in the rolling direction.
  • the shortest distance between the inclusion particles is 30 ⁇ m or less.
  • the inclusion group affecting the delayed fracture resistance is appropriately expressed, and the unit area of the inclusion group based on this definition
  • the shortest distance is for inclusion particles in a fan-shaped region of ⁇ 10 ° with respect to the rolling direction centered on the longitudinal end of the inclusion particles (when a part is included in the region) Is the target.)
  • the shortest distance between particles is the shortest distance between points on the outer periphery of each particle.
  • inclusion particles constituting the inclusion group A are not particularly limited, but in the present invention, the inclusion particles are usually expanded in the rolling direction, or distributed in a dotted line in the rolling direction. Or inclusions. “Inclusion particles distributed in a dot sequence in the rolling direction” refers to those composed of two or more inclusion particles distributed in a dot sequence in the rolling direction.
  • the distribution in the form of dots in the rolling direction is, for example, the same distribution as that in which inclusions extending in the rolling direction are divided during cold rolling and distributed in the form of dots. In addition, this is description of a distribution state, and it is not the meaning limited to what was divided
  • the number density (distribution density) of the inclusion group A satisfying the above conditions is 2 pieces / mm 2 or less.
  • inclusions such as MnS, oxides and nitrides as described above should be placed in the plate thickness surface layer to plate thickness center region, particularly in the plate thickness center portion. Need to be reduced sufficiently.
  • it is necessary to reduce the number of inclusions to 2 / mm 2 or less in order to suppress the occurrence of cracks from the shear end face.
  • it is 0 / mm 2 .
  • the number of inclusion groups per 1 mm 2 is measured with the inclusion particle having a major axis length of 100 ⁇ m or more as one inclusion particle group. To do.
  • Inclusion group B The inclusion group B specifically satisfies the following condition B.
  • Condition B The length of the long axis of the inclusion group is 20 ⁇ m or more and less than 100 ⁇ m.
  • the length of the long axis of the inclusion group B is 20 ⁇ m or more and less than 100 ⁇ m.
  • the length of the long axis is set to 20 ⁇ m or more.
  • Those whose major axis length exceeds 100 ⁇ m are considered as inclusion group A because they have a particularly large influence on the delayed fracture resistance.
  • the length of the long axis means the length of the inclusion group in the rolling direction.
  • the length of the long axis of the inclusion particles is 0.3 ⁇ m or more.
  • the reason why the length of the major axis is 0.3 ⁇ m or more is because inclusions of less than 0.3 ⁇ m have a small influence on the delayed fracture resistance even if they are aggregated.
  • the length of the long axis means the length of inclusion particles in the rolling direction.
  • the inclusion group B is composed of two or more inclusion particles, the shortest distance between the inclusion particles is 10 ⁇ m or less.
  • inclusion particles in a fan-shaped region of ⁇ 10 ° with respect to the rolling direction with the longitudinal end portion of the inclusion group as the center point are targeted (partly in the above region). If it is included, it is a target.)
  • the shortest distance between the particles is the shortest distance between the points on the outer periphery of each particle, and the shortest distance between the particles is the shortest distance between the outer peripheral points of the particles and the particles constituting the particles.
  • the shortest distance between the particle groups is the shortest distance between the particles of each particle group.
  • grains which comprise the inclusion group B and an existing state
  • the number density of the inclusion group B that satisfies the above conditions is 5 pieces / mm 2 or less.
  • the amount of the inclusion group B composed of MnS, oxides and nitrides is changed from the surface thickness layer portion to the thickness center portion, particularly the plate thickness. In the central part, it is necessary to reduce sufficiently.
  • the number density of such inclusion groups needs to be reduced to 5 pieces / mm 2 or less in order to suppress the occurrence of cracks from the shear end face.
  • it is 4 pieces / mm ⁇ 2 > or less.
  • inclusion group B is preferably 0 / mm 2 .
  • the number of inclusion groups per mm 2 is defined as one inclusion particle group having inclusions having a major axis length of 20 ⁇ m or more and less than 100 ⁇ m. Measure.
  • the relationship between delayed fracture resistance of shear end faces and inclusion particles As a result of detailed investigations, it has been found that, under annealing conditions that have been generally implemented so far, carbides mainly composed of Fe such as cementite are not completely dissolved, and a certain amount may remain. . Moreover, this carbide mainly composed of undissolved Fe, specifically, a coarse carbide mainly composed of Fe having an aspect ratio of 2.0 or less and a major axis length of 0.30 ⁇ m or more and 2 ⁇ m or less.
  • the reason why the aspect ratio is 2.0 or less and the length of the major axis is 0.30 ⁇ m or more and 2 ⁇ m or less is because the aspect ratio is 2.0 or less and the length of the major axis is 0.00. This is because it has been found that a coarse carbide mainly composed of Fe of 30 ⁇ m or more and 2 ⁇ m or less adversely affects the delayed fracture resistance of the shear end face.
  • carbides mainly composed of Fe are specifically Fe—C based carbides such as cementite ( ⁇ ), ⁇ , ⁇ , ⁇ , etc., and Mn, Si, B, Cr, Mo, etc. are included in these. Slightly dissolved.
  • main component refers to an element other than carbon, such as Fe, Mn, Si, B, Cr, and Mo, that contains 50 at% or more of Fe in the ratio.
  • Such carbide containing Fe as a main component needs to be reduced to 4000 pieces / mm 2 or less. Preferably it is 2000 pieces / mm ⁇ 2 > or less. More preferably, it is 1500 pieces / mm 2 or less. In addition, it is preferable that the carbide
  • fine carbides in the grains precipitated in the tempering process and film-like precipitates at the grain boundaries do not show black in the SEM reflected electron image, and thus are distinguished from carbides mainly composed of black Fe. Is possible.
  • Average old ⁇ particle size 6-15 ⁇ m
  • high-temperature annealing and appropriately coarsening the ⁇ grains are effective in improving delayed fracture resistance.
  • the average old ⁇ particle size is 6 to 15 ⁇ m.
  • the lower limit is preferably 7 ⁇ m or more, more preferably 8 ⁇ m or more, and further preferably 9 ⁇ m or more.
  • About an upper limit, 12 micrometers or less are preferable, More preferably, it is 10 micrometers or less.
  • the average old ⁇ particle size means the average particle size.
  • Carbides with a diameter of 10 to 200 nm distributed inside martensite and / or bainite 0.3 ⁇ 10 7 pieces / mm 2 or more Fine carbides distributed inside martensite and / or bainite precipitate mainly during the tempering process. It is a carbide mainly composed of Fe. These carbides can improve the smoothness of the fracture surface in the shearing process, and can be used as a hydrogen trap site in a hydrogen intrusion environment. For this reason, it is preferable that the carbide having a diameter of 10 to 200 nm distributed inside the tempered martensite and / or bainite is 0.3 ⁇ 10 7 pieces / mm 2 or more.
  • the upper limit is not particularly limited, but the upper limit is preferably about 0.7 to 10 ⁇ 10 7 pieces / mm 2 . Above this, the strength becomes too high and the delayed fracture resistance may deteriorate.
  • both martensite and bainite contain carbides having a diameter of 10 to 200 nm, the number of carbides is measured for both martensite and bainite.
  • the number of carbides having a diameter of 10 to 200 nm distributed inside the structure containing the carbide is measured, and the total area of martensite and bainite is measured. Calculate the density for.
  • carbides mainly composed of Fe are specifically Fe—C based carbides such as cementite ( ⁇ ), ⁇ , ⁇ , ⁇ , etc., and Mn, Si, B, Cr, Mo, etc. are included in these. Slightly dissolved.
  • main component refers to an element other than carbon, such as Fe, Mn, Si, B, Cr, and Mo, that contains 50 at% or more of Fe in the ratio.
  • the total area ratio of martensite and bainite and the area ratio of ferrite as the balance are determined by corroding the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet with nital after polishing, and from the surface of the steel sheet to the thickness direction. In addition, it can be measured by observing four visual fields at a magnification of 2000 times with a SEM at a 1/4 thickness position, and analyzing the photographed tissue photograph.
  • martensite and bainite exhibit gray or white in the SEM
  • ferrite exhibits black contrast in the SEM. It should be noted that bainitic ferrite produced in a temperature range of more than 400 ° C.
  • martensite and bainite contain trace amounts of carbides, nitrides, sulfides and oxides, but it is difficult to exclude them, so the area ratio of the region including these is determined as martensite and bainite.
  • the area ratio of bainite is used. If residual ⁇ is present, the area ratio of martensite and bainite is obtained by subtracting the area ratio of residual ⁇ determined by X-ray diffraction from the area ratio of martensite and bainite determined by the above SEM observation. Determined by
  • bainite has the following characteristics. That is, it has a plate-like form with an aspect ratio of 2.5 or more, and has a slightly black structure as compared with martensite.
  • the width of the plate is 0.3 to 1.7 ⁇ m.
  • the distribution density of carbide having a diameter of 10 to 200 nm inside the bainite (hereinafter also referred to as carbide B) is 0 to 3 / ⁇ m 2 .
  • the area ratio of residual ⁇ was assumed to be equal to the volume ratio of residual ⁇ obtained by X-ray, and the value was used.
  • the volume ratio of the residual ⁇ is, for example, (200) (211) (220) plane of ⁇ and (200) of ⁇ by X-ray diffraction at a steel plate 1/4 thickness position using a K ⁇ X-ray source targeting Co. It can be obtained from the integrated intensity ratio of the (220) (311) plane.
  • the number density per 1 mm 2 of inclusion group A and inclusion group B is 1 / 5t to 4 from the surface layer of the steel sheet without corroding after polishing the L section (vertical section parallel to the rolling direction) of the steel sheet.
  • 5 mm area (t is the thickness of the steel sheet) that is, 1 mm 2 area in the area from the 1/5 thickness position to the plate thickness from the surface to the 1/5 thickness position on the back surface side can be obtained by measuring the number of such inclusion groups from the taken SEM photographs.
  • the measurement in the region of 1 / 5t to 4 / 5t from the surface layer of the steel sheet is that the inclusion groups A and B are less frequently present on the surface layer of the steel sheet, and especially in the vicinity of the center of the plate thickness.
  • the photograph is preferably measured by stretching it 2000 times. Since the inclusion group A is thinly formed in a film shape, it is difficult to identify when observing on a plane parallel to the rolling surface or when observing with an optical microscope, and the length is accurately determined similarly. It is also difficult to measure.
  • the SEM image is preferably a reflected electron image.
  • the magnification for photographing is preferably 1000 times.
  • the individual inclusion particles may be magnified 5000 times as appropriate, and the above inclusion group image may be determined.
  • the shortest distance between inclusion particles is the distance between surfaces as described above, and means the distance between surfaces that can be obtained from this image. Further, the measurement direction of the shortest distance is limited to the case where the rolling direction or the rolling direction is within ⁇ 10 degrees as described above.
  • the total length in the rolling direction of the inclusion group (the length of the long axis) is the inclusion particles located at both ends of the inclusion group in the rolling direction. It becomes the length in the rolling direction between the outer ends in the rolling direction.
  • the total length of the inclusion group in the rolling direction is the length of the inclusion particle in the rolling direction.
  • the individual inclusion particles forming this inclusion group are mainly Mn, Ti, Zr, Ca, REM sulfides, Al, Ca, Mg, Si, Na oxides, Ti, Zr, Nb, Al nitrides, Ti, Nb, Zr, and Mo carbides. Many of these inclusions were formed in the casting process and then existed in an insoluble state during slab heating, and the rest were combined or close to them by subsequent hot rolling, winding and annealing. It is a deposit. Note that the inclusion particles do not include carbides mainly composed of Fe.
  • the number (distribution density) per 1 mm 2 of a carbide mainly composed of Fe having an aspect ratio of 2.0 or less and a major axis of 0.30 ⁇ m or more and 2 ⁇ m or less (hereinafter also referred to as carbide A) is After polishing the L cross-section (vertical cross-section parallel to the rolling direction) of the steel sheet, it is corroded without being corroded or very lightly with nital, and 15 times 5000 times using SEM at the 1/4 thickness position of the steel sheet thickness. Field of view can be taken and measured.
  • the aspect ratio is “major axis length / minor axis length”, and the minor axis direction and the major axis direction are orthogonal to each other on the observation surface.
  • the SEM image is preferably a reflected electron image
  • the carbide A is a black particle in the reflected electron image.
  • carbides having a diameter of 10 to 200 nm hereinafter also referred to as carbide B
  • carbide B distributed inside martensite and / or bainite, which will be described later, do not exhibit black in the reflected electron image, and therefore can be measured separately.
  • the carbide is mainly composed of Fe.
  • the average grain size of the prior ⁇ grains is determined by adding a chemical solution (for example, a saturated picric acid aqueous solution or ferric chloride to this) that corrodes the old ⁇ grain boundaries after polishing the L section (vertical section parallel to the rolling direction) of the steel sheet.
  • a chemical solution for example, a saturated picric acid aqueous solution or ferric chloride to this
  • the old ⁇ grain size can be measured by arbitrarily observing four fields of view at a magnification of 400 times with an optical microscope at a 1/4 thickness position of the thickness of the steel sheet.
  • the particle diameter can be measured by a cutting method using the obtained photograph.
  • the number (distribution density) of carbides having a diameter of 10 to 200 nm (hereinafter also referred to as carbide B) distributed inside martensite and / or bainite is determined by the sample corroded with nital used in the measurement of the area ratio of each phase. It can be measured using a photograph taken at 4 times the magnification of 10000 times with a secondary electron image of SEM at a 1/4 thickness position of the plate thickness of the steel plate and enlarged to a magnification of 25000 times. .
  • the carbide B is present in martensite and bainite grains and is white particles. Further, the diameter of the carbide B can be obtained as (a ⁇ b) 0.5 , which is a circle-equivalent diameter when the major axis is a and the uniaxial axis is b.
  • the plate thickness and the tensile strength TS are set to the following ranges.
  • Plate thickness 0.5-2.6mm
  • the plate thickness increases, it becomes difficult to perform bending forming required for automobile parts. For example, if the plate thickness exceeds 2.6 mm, it becomes impossible to obtain a bending angle of 90 degrees or more with a bending radius of 5 mm or less, and application to automobile parts becomes difficult.
  • the plate thickness is in the range of 0.5 to 2.6 mm.
  • the lower limit is preferably 0.6 mm or more, more preferably 0.8 mm or more.
  • the upper limit is preferably 2.0 mm or less, more preferably 1.8 mm or less.
  • Tensile strength TS 1320 MPa or more
  • the deterioration of the delayed fracture resistance of the shear end face becomes particularly apparent when the tensile strength of the steel sheet is 1320 MPa or more.
  • One of the features of the present invention is that the delayed fracture resistance of the shear end face is good even at 1320 MPa or more. For this reason, a steel sheet having a tensile strength of 1320 MPa or more is used here.
  • the steel plate of the present invention often has 2000 MPa or less or 1900 MPa or less.
  • the excellent delayed fracture resistance of the steel sheet of the present invention means “no fracture” when the delayed fracture characteristics evaluated in the examples are TS: 1320 MPa or more and less than 1500 MPa, and when TS: 1500 MPa or more and less than 1550 MPa, the delayed fracture time. If it is 24 hr or more, TS: 1550 MPa or more and less than 1670 MPa, the delayed fracture time is 6 hr or more, and if TS: 1670 MPa or more, the delayed fracture time is 1.0 hr or more.
  • the yield strength (YP) is often 800 MPa or more and 1500 MPa or less.
  • the total elongation (El) is often in the range of 5% to 15%.
  • the steel plate of the present invention may be a steel plate having a plating layer on the surface.
  • the plating layer may be Zn plating or other metal plating.
  • a hot dipped layer or an electroplated layer may be used.
  • a hot dip galvanized layer and an alloyed hot dip galvanized layer are preferable.
  • Slab heating temperature More than 1220 ° C
  • Hot rolling of steel slabs includes a method of rolling the slab after heating, a method of rolling directly without heating the slab after continuous casting, and heating the slab after continuous casting for a short time Examples of the method include rolling by applying a treatment.
  • the slab heating temperature is higher than 1220 ° C.
  • slab heating temperature surface temperature
  • slab heating temperature shall be over 1220 degreeC.
  • the upper limit of slab heating temperature is not specifically limited, Usually, it is 1400 degrees C or less.
  • the average heating rate during slab heating may be 5 to 15 ° C./min.
  • Slab soaking hold time 100 min or more Hold so that the holding time (soaking time) at a slab surface temperature of more than 1220 ° C. is 100 min or more.
  • the main cause of the inclusion group B remaining is that even if the slab heating temperature reaches the melting temperature of the inclusion, sufficient time cannot be secured and the dissolved state has reached equilibrium. It became clear that there was no cause.
  • Ensuring sufficient soaking time promotes solid solution of sulfides and carbonitrides and improves delayed fracture resistance. If it is less than 100 min, solid solution of Nb and Ti-based carbonitrides becomes insufficient, and they remain, and MnS precipitates with them as nuclei, so that delayed fracture resistance is deteriorated.
  • the upper limit of the holding time is not particularly limited, but is 250 min or less, more preferably 200 min or less. More preferably, it is 175 min or less.
  • the slab casting thickness is preferably in the range of 100 to 250 mm, particularly preferably 150 to 200 mm.
  • the cumulative rolling reduction at a temperature range of 950 ° C. or higher may be 90 to 98%, and the cumulative rolling reduction at 950 ° C. or lower including cold rolling may be 50 to 92%.
  • Finish rolling is preferably performed at a finish rolling temperature of 840 to 950 ° C., and then cooled to a temperature range of more than 450 ° C. to 630 ° C. at a cooling rate of 10 ° C./s to 200 ° C./s.
  • the finish rolling temperature (FT) is preferably in the range of 840 to 950 ° C. from the viewpoint of promoting transformation, and is preferably lowered in a range not lower than the Ar 3 transformation point.
  • the coiling temperature is set to more than 450 ° C.
  • the coiling temperature (CT) is preferably as low as possible. Is preferably 530 ° C. or lower.
  • the wound coil is cooled with water while rotating and taken out from the coiler. At this time, it is preferable to shorten the water cooling time as much as possible, and it is more preferable not to carry out water cooling. From the viewpoint of suppressing subsequent surface oxidation and non-uniform transformation after winding the coil in the temperature range from 450 ° C. to 630 ° C., the coil may be cooled with water or unwound and cooled with water or gas. . Such rapid cooling can reduce carbides mainly composed of Fe having an aspect ratio of 2.0 or less and a major axis of 0.30 ⁇ m to 2 ⁇ m.
  • Descaling is preferably performed at a collision pressure of 500 MPa or higher.
  • the remaining red scale and the thickness of the secondary scale can be reduced, and the surface oxidation of the steel sheet due to the oxygen in the scale being taken into the steel sheet during winding in hot rolling can be reduced.
  • the thickness of the surface oxide layer in the final product can be reduced, which contributes to the improvement of corrosion resistance.
  • the rolling reduction may be set to 20 to 75%, and the thickness of the steel sheet after cold rolling may be set to 0.5 to 2.6 mm.
  • the lower limit of the rolling reduction is preferably 30% or more, more preferably 40% or more.
  • the upper limit of the rolling reduction is preferably 72% or less, more preferably 70% or less.
  • the lower limit of the plate thickness is preferably 0.6 mm or more, more preferably 0.8 mm or more, and further preferably 1.0 mm or more.
  • the upper limit of the plate thickness is preferably 2.4 mm or less, more preferably 2.1 mm or less, and even more preferably 1.8 mm or less.
  • Annealing The steel sheet after the cold rolling is subjected to annealing and tempering treatment (including treatment for self-tempering) by continuous annealing (CAL), and then subjected to temper rolling as necessary.
  • the important thing here is (1) Ensuring the area ratio of predetermined martensite and bainite, (2) Reduction of undissolved carbides (carbides mainly composed of Fe having an aspect ratio of 2.0 or less and a major axis of 0.30 ⁇ m or more and 2 ⁇ m or less) (acceleration of solid solution of carbides during annealing), (3) maintenance of old ⁇ grains of appropriate diameter, (4) Fine dispersion of carbide in martensite and / or bainite, Is to adjust the steel structure so that is achieved.
  • the points for achieving (1) to (4) are as follows.
  • High-temperature annealing for a long time (corresponding to (1) and (2)), avoiding excessively high-temperature and long-time annealing (corresponding to (3)), after annealing, quenching from high temperature ((1 )), And tempering for a predetermined time in a specific temperature range (corresponding to (4)).
  • a carbide mainly composed of Fe having an aspect ratio of 2.0 or less and a major axis of 0.30 ⁇ m or more and 2 ⁇ m or less (The carbide A) is a carbide such as cementite particles remaining in an insoluble solution after annealing, and in order to sufficiently reduce such carbide, annealing is performed at a high temperature for a long time. Specifically, the annealing temperature: 860 It is necessary to soak at 150 ° C for 150 seconds or more. On the other hand, if the annealing temperature exceeds 910 ° C.
  • the old ⁇ grains become coarse, and the delayed fracture resistance is deteriorated.
  • it is soaked at an annealing temperature of 860 ° C. or more and 910 ° C. or less for 150 to 600 seconds. More preferably, it is soaked at an annealing temperature of 870 to 900 ° C. for 300 to 600 seconds.
  • the said annealing temperature and soaking time contribute to making the total area ratio of a martensite and a bainite into a desired range with the cooling conditions from the following annealing temperature.
  • the upper limit is not particularly limited, but is usually about 100 ° C./s.
  • Average cooling rate from 420 ° C. to 280 ° C. or lower 10 ° C./s or more Bainitic ferrite and fine lower bainite are formed when the cooling rate is slow in the temperature range of 420 ° C. to 280 ° C. and lowers strength. Further, the delayed fracture resistance is deteriorated due to an increase in residual ⁇ . Further, coarse carbides may be formed inside martensite and bainite. For this reason, the delayed fracture resistance may deteriorate. It is desirable to quickly cool this temperature range. Therefore, the average cooling rate from 420 ° C. to 280 ° C. or lower is set to 10 ° C./s or higher.
  • the average cooling rate is preferably 20 ° C./s or more, more preferably 70 ° C./s or more. Although an upper limit is not specifically limited, Usually, it is about 2000 degrees C / s. From the viewpoint of producing 1% or more of bainite, the average cooling rate from 420 ° C. to 280 ° C. is preferably 1000 ° C./s or less, or it is desirable to hold it in the temperature range of 280 ° C. to 230 ° C. for 5 seconds or more.
  • a reheating treatment is performed as necessary, and then the temperature is maintained at 120 to 280 ° C. for 15 seconds to 3 days.
  • a carbide having a diameter of 10 to 200 nm distributed inside martensite and / or bainite is a carbide generated during holding in a low temperature range after quenching, and this distribution density is 0.2 ⁇ 10 7 pieces / mm 2 or more.
  • reheat to 120 to 280 ° C and hold for 15 seconds to 3 days, or set the cooling stop temperature to 120 to 280 ° C and control the holding time to 15 seconds to 3 days It is advantageous to do so. It is also possible to reduce the cooling rate in the temperature range where the holding temperature is 280 ° C. or lower, or to achieve the above heat history by performing batch annealing after cooling to room temperature.
  • the holding temperature is less than 120 ° C. or the holding time is less than 15 seconds, the distribution density of carbide in martensite or bainite is reduced, and the effect of improving delayed fracture resistance is reduced.
  • the holding temperature exceeds 280 ° C., carbides are coarsened in the old ⁇ grains and in the old ⁇ grain boundaries, and the distribution density of carbides in martensite or bainite becomes insufficient.
  • the holding time is preferably 30 seconds or more and 5 hours or less.
  • temper rolling skin pass rolling
  • the skin pass elongation rate is preferably 0.05 to 0.6%.
  • the present steel sheet can be formed into a plated steel sheet by performing a hot dipping process during cooling after soaking in annealing, or by performing electroplating after soaking in annealing.
  • the plating type include Zn-based plating (Zn-based, Zn-Ni-based, Zn-Fe-based, etc.) and Al plating. After hot dip plating or electroplating, it is desirable to perform heat treatment in a temperature range of 280 ° C. or lower in order to reduce hydrogen that has entered the steel.
  • the obtained cold-rolled steel sheet was annealed in the continuous annealing line as the conditions shown in Table 2 (annealing temperature (AT), soaking time at a temperature of 860 ° C. to 910 ° C. (holding time 1)), The conditions shown in Table 2 for the average cooling rate from the annealing temperature to 420 ° C (primary cooling rate), and the conditions shown in Table 2 for the average cooling rate (secondary cooling rate) to the cooling stop temperature of 420 ° C to 280 ° C or lower. Cooled with. Tempering treatment was performed under the conditions of the cooling stop temperature shown in Table 2, or the holding temperature after reheating as necessary (holding temperature 2), and the holding time (holding time 2) shown in Table 2 at that temperature. (However, No.
  • 10 is an example of cooling to 100 ° C. without holding.
  • the time required for cooling is described in the item of holding time.
  • the temperature at which the cooling rate was less than 10 ° C./s was defined as the cooling stop temperature.
  • temper rolling with an elongation of 0.1% was performed to obtain a final steel plate.
  • the thickness of the obtained steel plate was in the range of 0.5 to 2.6 mm.
  • the steel sheet was immersed in a molten zinc plating bath at 480 ° C. in the cooling process to 420 ° C., then heated to 540 ° C. and held for 15 seconds to perform alloying treatment, and then alloyed and melted A galvanized steel sheet was obtained.
  • the steel sheet thus obtained was analyzed and measured for the steel structure by the method described above.
  • Tensile test The tensile test was performed by cutting out a JIS No. 5 tensile test piece in the width direction at 1/4 position of the coil width so that the direction perpendicular to the rolling direction was the longitudinal direction, and conducting the tensile test in accordance with JIS Z2241. Yield strength (YP), tensile strength (TS), and elongation (El) were evaluated.
  • the delayed fracture resistance was evaluated as follows. That is, strip specimens having a rolling perpendicular direction: 100 mm and a rolling direction: 30 mm were collected from a 1/4 position of the coil width in the width direction of the obtained steel plate (coil). The end face on the long side with a length of 100 mm is cut out by shearing, and in the state of shearing (without machining to remove burrs), bending is performed so that the burrs are on the bending outer side. did. Shearing clearance was 13% and rake angle was 2 degrees.
  • the bending angle was 90 degrees (V-bending).
  • the punch has a U-shape (the tip R portion is semicircular and the punch body has a thickness of 2R), and the die has a corner R of 30 mm. The depth at which the punch pushed the steel plate was adjusted, and the tip was bent so that the bending angle was 90 degrees (V-shaped).
  • test piece Tighten the test piece with a hydraulic jack so that it has the same shape as in bending (to cancel out the opening of the straight piece by springback) And tightened with bolts in that state.
  • the bolt was fixed in advance through an elliptical hole (short axis 10 mm, long axis 15 mm) provided 10 mm inside from the short side edge of the strip test piece.
  • the obtained specimens after bolting are immersed in 1 L or more of hydrochloric acid (hydrogen chloride aqueous solution) having a pH of 1 L or more, and the delayed fracture resistance is evaluated by controlling the pH at a constant temperature under the condition of aqueous solution temperature: 20 ° C. The test was conducted.
  • hydrochloric acid hydrogen chloride aqueous solution
  • microcrack initial state of delayed fracture
  • the time from the start of immersion of the test piece to the start of microcracking is delayed.
  • no microcracks were observed after 200 hours from the start of immersion of the test piece, it was judged as “no breakage”.
  • a plate having a rolling direction of 300 mm ⁇ a perpendicular direction of rolling of 300 mm is collected, the surface Zn layer is dissolved and removed with diluted hydrochloric acid, and stored at room temperature for 1 day (dehydrogenation treatment). Samples were collected and prepared for delayed fracture evaluation.
  • TS when TS is 1320 MPa or more and less than 1500 MPa, “no fracture”, when TS is 1500 MPa or more and less than 1550 MPa, delayed fracture time is 24 hours or more, when TS is 1550 MPa or more and less than 1670 MPa, delayed fracture time is 6 hours or more, and when TS is 1670 MPa or more, delayed fracture If the time was 1.0 hr or more, it was judged that the delayed fracture resistance was excellent.
  • inclusion group A and inclusion group B including inclusion particles having a major axis length of less than 0.3 ⁇ m
  • inclusion group A also includes those in which the shortest distance between inclusion particles exceeds 30 ⁇ m.
  • the minimum distance between inclusion particles exceeds 10 ⁇ m is also defined as inclusion group B, the relationship between the number density of inclusion groups and the delayed fracture resistance improvement effect was not clear. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

板厚:0.5~2.6mmでかつ引張強さ(TS):1320MPa以上の高強度を有し、耐遅れ破壊特性、特にはせん断端面の耐遅れ破壊特性に優れる鋼板を、その有利な製造方法とともに提供する。 特定の成分組成と、マルテンサイトおよびベイナイトの組織全体に対する面積率が合計で90%超100%以下であり、特定の条件を満たす介在物群Aが2個/mm以下および特定の条件を満たす介在物群Bが5個/mm以下で存在し、アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下である、Feを主成分とする炭化物が4000個/mm以下で存在し、平均旧γ粒径が6~15μmである鋼組織と、を有する鋼板とする。

Description

鋼板およびその製造方法
 本発明は、鋼板およびその製造方法に関する。特に、冷間プレスにより成形される自動車、家電等の部品の製造に適した鋼板に関する。
 近年、自動車車体への軽量化ニーズのさらなる高まりから、センターピラーR/F(レインフォースメント)等の車体骨格部品や、バンパー、インパクトビーム部品等(以下、部品ともいう)へのTS:1320~1470MPa級の高強度鋼板の適用が進みつつある。また、自動車車体の一層の軽量化の観点から、TS:1800MPa級(1.8GPa級)、さらにはそれ以上の強度を有する鋼板の適用ついても、検討が開始されている。
 従来、熱間でプレスする熱間プレス成形による高強度鋼板の適用の検討が精力的に進められてきたが、最近では、コスト・生産性の観点から、改めて冷間プレス成形による高強度鋼板の適用が検討されつつある。
 しかしながら、TS:1320MPa級以上の高強度鋼板を冷間プレスにより成形して部品とした場合、部品内での残留応力の増加や鋼板そのものによる耐遅れ破壊特性の劣化により、遅れ破壊が生じるおそれがある。
 ここで、遅れ破壊とは、部品に高い応力が加わった状態で部品が水素侵入環境下に置かれたとき、水素が部品を構成する鋼板内に侵入し、原子間結合力を低下させることや局所的な変形を生じさせることで微小亀裂が生じ、その微小亀裂が進展することで破壊に至る現象である。
 このような耐遅れ破壊特性を改善する技術として、例えば、特許文献1には、質量%または質量ppmで、C:0.08~0.18%、Si:1%以下、Mn:1.2~1.8%、P:0.03%以下、S:0.01%以下、sol.Al:0.01~0.1%、N:0.005%以下、O:0.005%以下、B:5~25ppmに加えて、Nb:0.005~0.04%、Ti:0.005~0.04%、Zr:0.005~0.04%のうち1種または2種以上を含み、CeqとTSの関係がTS≧2270×Ceq+260、Ceq≦0.5、Ceq=C+Si/24+Mn/6を満たし、ミクロ組織(鋼組織)について、体積率で80%以上のマルテンサイトを含有させることで、耐遅れ破壊特性を改善する技術が開示されている。
 また、特許文献2、3および4には、鋼中のS量を一定水準まで低減するとともに、Caを添加することで、耐水素誘起割れを防止する技術が開示されている。
 さらに、特許文献5には、C:0.1~0.5%、Si:0.10~2%、Mn:0.44~3%、N≦0.008%、Al:0.005~0.1%を含有するとともに、V:0.05~2.82%、Mo:0.1%以上3.0%未満、Ti:0.03~1.24%、Nb:0.05~0.95%の1種または2種以上を含有させ、水素のトラップサイトとなる微細な合金炭化物を分散させることで、耐遅れ破壊特性を改善する技術が開示されている。
特許第3514276号公報 特許第5428705号公報 特開昭54-31019号公報 特開2013-213242号公報 特許第4427010号公報
 ここで、上記した遅れ破壊は、プレス加工した実際の部品では、せん断や打ち抜き加工により切断される鋼板の端面(以下、せん断端面ともいう)から生じることがほとんどである。これは、せん断端面ではすでに破壊限界歪に達した領域(以下、歪影響部ともいう)が存在していることや、また歪影響部の近傍では大きく加工硬化している(すなわち、比例限が増加している)ため、引き続くプレス加工後に残留する引張応力も高くなることが原因と考えられる。実際、せん断端面ままの鋼板の遅れ破壊限界応力は、歪影響部をリーマ加工で除去した場合の遅れ破壊限界応力の1/3~1/20程度である。つまり、せん断端面から生じる遅れ破壊に対する耐遅れ破壊特性(以下、せん断端面の耐遅れ破壊特性ともいう)が、実際の部品の耐遅れ破壊特性を決定付ける主因子の一つであると考えられる。
 しかしながら、特許文献1~5の技術はいずれも、鋼板そのものの耐遅れ破壊特性を改善しようとするものであり、せん断端面の歪影響部の存在を十分に考慮したものではない。このため、特許文献1~5の技術に従う鋼板では、せん断端面の耐遅れ破壊特性の改善効果が必ずしも十分なものとは言えない。
 また、特許文献2~4は、そもそも板厚10mm以上のいわゆる厚鋼板を対象とするものであり、自動車部品などに成形されるいわゆる薄鋼板を対象とするものではない。また、かような厚鋼板と薄鋼板は、板厚をはじめ、製造過程での累積圧下率、ミクロ組織(鋼組織)、材料強度、さらにはプレスによる加工度も大きく異なるものとなる。
 本発明は、上記の現状に鑑み開発されたものであって、板厚:0.5~2.6mmでかつ引張強さ(TS):1320MPa以上の高強度を有し、耐遅れ破壊特性、特に、せん断端面の耐遅れ破壊特性に優れる鋼板、より具体的には、せん断やスリットによるブランク加工もしくは打ち抜きによる穴あけ加工後に冷間プレス成形を行う場合、または、冷間プレス成形後にせん断による部品の切断もしくは打ち抜きによる穴あけ加工を行う場合に得られるプレス成形品においても、優れた耐遅れ破壊特性が得られる鋼板を、その有利な製造方法とともに提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意検討を重ねたところ、以下の知見を得た。
 i)せん断端面における耐遅れ破壊特性は、せん断端面の損傷度合い(表層の硬化量および残留応力)と、内部への亀裂の進展のし易さに支配されており、特に、TS≧1320MPa級の高強度鋼板においては、長軸長さが100μm以上の巨大な介在物群(介在物群A)が、せん断端面内部での局所的な歪や残留応力を増加させ、遅れ破壊の起点・伝播経路となり、その特性に悪影響を及ぼす。
 この介在物群Aは、MnS、Al、(Al,Ca)-Oを主とした介在物群であり、板厚中央部に多く存在するので表層のみの処理だけでは不十分であり、板厚中央部まで含めた介在物群Aの低減が必要である。特に、板厚が0.5~2.6mmの薄鋼板では、板厚中央のMn中心偏析部で300μm以上にわたり点列状に並んだ介在物群Aが多く認められる場合があり、これが遅れ破壊に多大な悪影響を及ぼす。このため、かような介在物群Aの低減が重要である。この介在物群Aは、Mnを極力低減した上でSを少なくとも10質量ppm未満、好ましくは6質量ppm以下に低減することで低減される。
 ii)Nb、Tiの微量添加で耐遅れ破壊特性は顕著に改善する。しかしながら、C≧0.13%の鋼では、これらの添加量が多い場合や複合して添加される場合に耐遅れ破壊特性が顕著に劣化する場合が認められた。C≧0.13%の鋼では、長軸長さが20μm以上100μm未満の比較的大きな介在物群(介在物群B)が残存し、介在物群Bも介在物群Aと同様に、悪影響を及ぼすと考えられる。この介在物群Bは、クラスター状に分布したNb(C,N)、(Nb,Ti)(C,N)、Ti(C,S)やそれを核にMnSが複合析出した介在物である。Mn≧1.8%では、Mnのミクロ偏析およびマクロ偏析が一定量生じており、その偏析箇所でこれらが複合して生成しやすくなるので、Mn偏析そのものの悪影響やMnSの複合析出と相まって、単純にNb(C,N)、(Nb,Ti)(C,N)、Ti(C,S)が析出した場合と比べて、この介在物群Bによる悪影響は著しく大きくなる。
 これに対して、Nb、Tiの含有量を特定の範囲に制御し、スラブ加熱温度と時間を厳密に制御すること、さらにN、S含有量を極限まで低減することでNb、Tiを添加した鋼であっても介在物の悪影響が軽減され、耐遅れ破壊特性が大幅に向上する。また、Nb、Tiを添加した鋼板をCAL、CGL等の連続焼鈍工程で高温焼鈍してγ粒を成長させることで耐遅れ破壊特性が改善される。
 iii)固溶Bの残存により、耐遅れ破壊特性は顕著に改善する。しかしながら、上記した特許文献2~4の厚鋼板とは異なり冷間圧延後に焼鈍が施される冷延鋼板では、とりわけ固溶Bを残存させた鋼では、焼鈍でセメンタイトなどのFeを主成分とする炭化物が凝集・粗大化して一部がそのまま未固溶の状態で残存し、せん断端面の遅れ破壊に悪影響を及ぼす。このため、かようなFeを主成分とする炭化物の低減も重要となる。この炭化物の低減には、連続焼鈍(CAL)工程で高温・長時間焼鈍することが有効である。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。すなわち、本発明の要旨構成は次のとおりである。
 [1]質量%で、C:0.13~0.40%、Si:1.5%以下、Mn:1.8~4%、P:0.02%以下、S:0.0010%未満、sol.Al:0.2%以下、N:0.0060%未満、B:0.0003%以上0.0035%未満、O:0.0020%未満を含有するとともに、さらに、Nb:0.002%以上0.035%未満、Ti:0.002%以上0.040%未満の1種または2種を(1)式、(2)式を満たすように含有し、残部はFeおよび不可避的不純物からなる成分組成と、マルテンサイトおよびベイナイトの組織全体に対する面積率が合計で90%超100%以下であり、平均旧γ粒径が6~15μmであり、下記条件Aを満たす介在物群Aが2個/mm以下および下記条件Bを満たす介在物群Bが5個/mm以下で存在し、アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下である、Feを主成分とする炭化物が4000個/mm以下で存在する鋼組織と、を有し、板厚が0.5~2.6mmであり、引張強度が1320MPa以上である鋼板。
[%Ti]+[%Nb]>0.007・・・(1)式
[%Ti]×[%Nb]<7.5×10-6・・・(2)式
ここで、[%Nb]、[%Ti]はNb、Tiの含有量(質量%)を表す。
(条件A)
(i)介在物群の長軸の長さが100μm以上である。
(ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合に介在物粒子間の最短距離が30μm以下である。
(条件B)
(i)介在物群の長軸の長さが20μm以上100μm未満である。
(ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合介在物粒子間の最短距離が10μm以下である。
 [2]前記マルテンサイトおよび/または前記ベイナイトの内部に分布する直径10~200nmの炭化物が、0.3×10個/mm2以上で存在する[1]に記載の鋼板。
 [3]残留γの組織全体に対する面積率が5%未満である[1]または[2]に記載の鋼板。
 [4]前記成分組成が、さらに質量%で、Cu:0.005~1%およびNi:0.01~1%のうちから選んだ1種または2種を含有する[1]~[3]のいずれかに記載の鋼板。
 [5]前記成分組成が、さらに質量%で、Cr:0.01~1.0%、Mo:0.01~0.5%、V:0.003~0.5%、Zr:0.005~0.2%およびW:0.005~0.2%のうちから選んだ1種または2種以上を含有する[1]~[4]のいずれかに記載の鋼板。
 [6]前記成分組成が、さらに質量%で、Ca:0.0002~0.0030%、Ce:0.0002~0.0030%、La:0.0002~0.0030%およびMg:0.0002~0.0030%のうちから選んだ1種または2種以上を含有する、[1]~[5]のいずれかに記載の鋼板。
 [7]前記成分組成が、さらに質量%で、Sb:0.002~0.1%およびSn:0.002~0.1%のうちから選んだ1種または2種を含有する[1]~[6]のいずれかに記載の鋼板。
 [8]表面にめっき層を有する[1]~[7]のいずれかに記載の鋼板。
 [9][1]、[4]~[7]のいずれか一項に記載の成分組成を有する鋼スラブを、スラブ加熱温度:1220℃超として100min以上均熱時保持した後に熱間圧延することで熱延鋼板とし、該熱延鋼板を、圧下率:20~75%として板厚が0.5~2.6mmとなるように冷間圧延することで冷延鋼板とし、該冷延鋼板を、860℃以上910℃以下の焼鈍温度で150~600秒均熱し、焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却したのち、420℃から280℃以下の温度まで10℃/s以上の平均冷却速度で冷却する焼鈍を行う鋼板の製造方法。
 [10]前記焼鈍は、280℃以下の温度まで冷却する前記冷却をした後に、必要に応じて再加熱を行い120~280℃の温度域で15秒~3日間保持し、その後室温まで冷却する焼鈍である[9]に記載の鋼板の製造方法。
 [11]前記焼鈍の焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却する過程でめっき浴に浸漬してめっき処理を行う[9]または[10]に記載の鋼板の製造方法。
 [12]前記めっき処理のめっき浴浸漬後に480~600℃に加熱して合金化処理する[11]に記載の鋼板の製造方法。
 本発明によれば、板厚:0.5~2.6mmでかつ引張強度(TS):1320MPa以上の高強度を有し、耐遅れ破壊特性、特に、せん断端面の耐遅れ破壊特性に優れる鋼板が得られる。また、本発明の鋼板は、せん断や打ち抜き加工を伴う冷間プレス成形用途に好適であるため、部品強度の向上や軽量化に寄与し、さらにはコスト削減にも寄与する。
 以下、本発明の実施形態を具体的に説明する。なお、本発明は以下の実施形態に限定されない。
 まず、本発明の鋼板における成分組成について説明する。成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
 C:0.13%以上0.40%以下(0.13~0.40%)
 Cは、焼入れ性を向上させる元素であり、所定のマルテンサイトおよび/またはベイナイトの面積率を確保するとともに、これらの組織の強度を上昇させ、TS≧1320MPaを確保する観点から、必要である。また、マルテンサイトおよびベイナイトの内部に水素のトラップサイトとなる微細な炭化物を生成させ、耐遅れ破壊特性を向上させる作用を有する。ここで、C含有量が0.13%未満では優れた耐遅れ破壊特性を維持して所定の強度を得ることができなくなる。好ましくは0.14%以上、より好ましくは0.16%以上である。一方、C含有量が0.40%を超えると強度が高くなり過ぎ、十分な耐遅れ破壊特性を得ることが難しくなる。好ましくは0.30%以下、より好ましくは0.25%以下である。以上より、C含有量は0.13~0.40%とする。なお、優れた耐遅れ破壊特性を維持しつつTS≧1470MPaを得る観点からは、C含有量は0.17%超とすることが望ましい。
 Si:1.5%以下
 Siは固溶強化による強化元素である。また、Siは、200℃以上の温度域で鋼板を焼き戻す場合に、フィルム状の炭化物の生成を抑制して耐遅れ破壊特性の改善に寄与する。さらに、板厚中央部でのMn偏析を軽減してMnSの生成の抑制にも寄与する。加えて、連続焼鈍時の鋼板表層部の酸化による脱炭、さらには脱Bの抑制にも寄与する。ここで、Si含有量の下限は特に限定されるものではないが、上記のような効果を十分に得るには、Siを0.02%以上含有することが望ましい。好ましくは0.10%以上、より好ましくは0.20%以上である。一方、Si含有量が多くなりすぎると、その偏析量が多くなり耐遅れ破壊特性が劣化する。また、熱間圧延および冷間圧延での圧延荷重の増加や靭性の低下を招くおそれがある。したがって、Si含有量は1.5%以下とする。好ましくは1.2%以下、より好ましくは1.0%以下である。なお、Si含有量は0%であってもよい。
 Mn:1.8~4%
 Mnは、鋼の焼入れ性を向上させ、所定のマルテンサイトおよび/またはベイナイトの面積率を確保するために含有させる。また、Mnは、鋼中のSをMnSとして固定し、熱間脆性を軽減する効果を有する。Mn含有量が1.8%未満では、ガスやミストで冷却する焼鈍ラインにおいて、冷却中にフェライトが生成してせん断端面の耐遅れ破壊特性が大きく劣化する。フェライト生成を抑制するためにMnは1.8%以上含有させる必要がある。一方、Mnは、板厚中央部でのMnSの生成・粗大化を特に助長する元素であり、Mn含有量が4%を超えると、Sを極限まで低減しても板厚中央部での巨大な介在物群AおよびBの数と大きさが増加し、せん断端面の耐遅れ破壊特性が著しく劣化する。したがって、Mn含有量は1.8~4%とする。なお、板厚中央部の粗大なMnSをより一層低減し、耐遅れ破壊特性を改善する観点からは、Mn含有量は1.8%以上3.2%以下とすることが好ましく、1.8%以上2.8%以下とすることがさらに好ましい。
 また、フェライトの生成を抑制して耐遅れ破壊特性を改善する観点からは、Mnは1.9%以上、さらに2.3%以上とすることが好ましい。
 P:0.02%以下
 Pは、鋼を強化する元素であるが、その含有量が多いと耐遅れ破壊特性やスポット溶接性が著しく劣化する。したがって、P含有量は0.02%以下とする。好ましくは0.010%以下である。溶接部の耐遅れ破壊特性を改善する観点からはPは0.005%以下とすることがさらに好ましい。なお、P含有量の下限は特に限定されるものではないが、現在、工業的に実施可能な下限は0.002%程度である。
 S:0.0010%未満
 S含有量は、MnS、TiS、Ti(C,S)等の形成を通じてせん断端面の耐遅れ破壊特性に大きな悪影響を及ぼすので、厳密に制御する必要がある。特に、MnSは、熱間圧延で圧延とともに伸ばされ、また冷間圧延では破砕されながら伸ばされていく。そして、最終製品では80~400μmもの長さに達する介在物群(介在物群A、B)を形成する。また、Nb、Tiを添加した鋼でNb(C,N)、(Nb,Ti)(C,N)等がスラブ加熱時に残存していると、その周囲に複合してMnSが生成するので、その結果、20μm以上100μm未満の長さの介在物群(介在物群B)の形成を助長し、しかもNb(C,N)等と比べてMnSが周囲を覆うことで母相との剥離強度の低下をもたらして遅れ破壊を著しく悪化させる。本発明の薄鋼板の場合、例えば、鋳造スラブの厚さは約180~250mm、最終製品板の板厚は0.5~2.6mmとなるので、累積圧下量は約99%にもなる。薄鋼板では、圧延方向への鋼板の伸び率が厚鋼板の場合の5~10倍に達するので、MnSの弊害はより一層大きくなり、せん断端面ではその悪影響が顕著となる。また、特にせん断端面では、板厚方向の全ての領域が露出しているので、板厚中央部のMn偏析部に巨大な介在物群Aが形成される。その結果、Mn偏析と相まって耐遅れ破壊特性に特に悪影響を与える。この介在物群Aによる弊害を軽減するために、S含有量は0.0010%未満とする必要がある。好ましくは0.0006%以下、さらに好ましくは0.0004%以下である。なお、S含有量の下限は特に限定されるものではないが、現在、工業的に実施可能な下限は0.0002%程度である。
 sol.Al:0.2%以下
 sol.Alは十分な脱酸を行い、鋼中介在物を低減するために添加される。ここで、安定して脱酸を行うためには、sol.Al含有量は0.01%以上とすることが望ましい。一方、sol.Al含有量が0.2%超となると、熱間圧延後の巻取り時に生成したセメンタイトなどのFeを主成分とする炭化物が焼鈍で固溶しにくくなり、耐遅れ破壊特性が劣化する。したがって、sol.Al含有量は0.2%以下とする。好ましくは0.10%以下、より好ましくは0.05%以下である。
 N:0.0060%未満
 Nは、鋼中でTiN、(Nb,Ti)(C,N)、AlN等の窒化物、炭窒化物系の介在物を形成する元素であり、これらの生成を通じて耐遅れ破壊特性を劣化させる。これらの介在物単体では遅れ破壊に対する影響度は小さいが、その一部がMnSの析出核となりMnSとともに点列状に分布して巨大な介在物群(介在物群B)を形成することで、耐遅れ破壊特性を劣化させる。このような介在物群の生成を抑制するため、N含有量は0.0060%未満とする必要がある。好ましくは0.0045%以下、より好ましくは0.0040%以下である。なお、N含有量の下限は特に限定されるものではないが、現在、工業的に実施可能な下限は0.0006%程度である。
 B:0.0003%以上0.0035%未満
 Bは、鋼の焼入れ性を向上させる元素であり、Mn量が少ない場合であっても、所定の面積率のマルテンサイトおよび/またはベイナイトを生成させる利点を有する。また、固溶Bの残存により耐遅れ破壊特性は向上する。このようなBの効果を得るには、Bを0.0003%以上含有させる必要がある。また、0.0005%以上含有させることがより好ましい。さらに好ましくは0.0010%以上である。一方、B含有量が0.0035%以上になると、その効果が飽和するだけでなく、焼鈍時のセメンタイトの固溶速度を遅延させ、未固溶のセメンタイトなどのFeを主成分とする炭化物が残存することとなり、これにより、せん断端面の耐遅れ破壊特性を劣化させる。好ましくは0.0030%以下、さらに好ましくは0.0025%以下である。以上より、B含有量は0.0003%以上0.0035%未満とする。
 O:0.0020%未満
 Oは、鋼中で直径1~20μmのAl、SiO、CaO、MgO、(Al,Ca)-O等の酸化物系介在物を形成する元素であり、これらの生成を通じて耐遅れ破壊特性を劣化させる。このような耐遅れ破壊特性への悪影響を小さくするため、O含有量は0.0020%未満とする必要がある。好ましくは0.0015%以下、より好ましくは0.0010%以下である。なお、O含有量の下限は特に限定されるものではないが、現在、工業的に実施可能な下限は0.0005%程度である。
 本発明ではNbおよびTiの少なくとも1種を含む。Nb含有量が下記の下限値未満(0.002%未満)であっても、Tiが下記の本発明範囲内にあり、(1)式および(2)式を満たす場合、Nbを不可避的不純物として含むものとする。Ti含有量が下記の下限値未満(0.002%未満)であっても、Nbが下記の本発明範囲内にあり、(1)式および(2)式を満たす場合、Tiを不可避的不純物として含むものとする。したがって、これらはいずれも本発明範囲である。
 Nb:0.002%以上0.035%未満
 Nbは、旧γ粒の微細化や、それによるマルテンサイトおよびベイナイトの内部構造の微細化、水素トラップサイトとなる微細析出物の形成、集合組織の形成を通じて、微量添加であっても高強度化とともに耐遅れ破壊特性の改善に顕著に寄与する。このような観点から、Nbは0.002%以上で含有させることが望ましい。より好ましくは0.004%以上、さらに好ましくは0.010%以上である。しかし、Nbを多量に含有させると、熱間圧延工程のスラブ加熱時に未固溶で残存するNbN、Nb(C,N)、(Nb,Ti)(C,N)等のNb系の粗大な析出物が増加し、それにMnSが複合析出することで、著しくせん断端面の耐遅れ破壊特性が劣化する。このため、Nbは0.035%未満とする必要がある。好ましくは0.030%以下、さらに好ましくは0.020%以下である。
 Ti:0.002%以上0.040%未満
 Tiは、旧γ粒の微細化や、それによるマルテンサイトおよびベイナイトの内部構造の微細化、水素トラップサイトとなる微細析出物の形成、集合組織の形成を通じて、微量添加であっても高強度化かつ耐遅れ破壊特性の改善に顕著に寄与する。さらに、鋳造性の改善にも寄与する。このような観点から、Tiは0.002%以上含有させることが望ましい。より好ましくは0.004%以上、さらに好ましくは0.010%以上である。ただし、Tiを多量に含有すると、熱間圧延工程のスラブ加熱時に未固溶で残存するTiN、Ti(C,N)、Ti(C,S)、TiS等のTi系の粗大な析出物が増加し、それにMnSが複合析出することで、せん断端面の耐遅れ破壊特性が劣化する。このため、Tiを0.040%未満で含有することが望ましい。好ましくは0.030%以下、さらに好ましくは0.020%以下である。
 [%Ti]+[%Nb]:0.007%超
 Nb、Tiは耐遅れ破壊特性を改善する元素であり、これらの効果を得るためには、少なくともこれらの含有量を合計で0.007%超とする必要がある。好ましくは0.010%以上、さらに好ましくは0.015%以上である。上限については0.060%以下が好ましく、より好ましくは0.050%以下、さらに好ましくは0.040%以下である。なお、[%Nb]、[%Ti]はNb、Tiの含有量(質量%)を表す。
 [%Ti]×[%Nb]:7.5×10-6未満
 Nb、Tiの含有量が過剰になると、介在物群Bの形成を通じて耐遅れ破壊特性が著しく劣化する。特に、NbとTiが複合して添加される場合は析出物が安定化して粗大な介在物として残存しやすく耐遅れ破壊特性が著しく劣化する。したがって、これらの添加量は厳密に制御されなければならない。その悪影響を低減するには、これらの含有量を[%Ti]×[%Nb]<7.5×10-6の範囲に制御する必要がある。[%Ti]×[%Nb]≦5.0×10-6が好ましく、より好ましくは[%Ti]×[%Nb]≦3.0×10-6である。また、[%Ti]×[%Nb]≧0.05×10-6であることが多い。なお、[%Nb]、[%Ti]はNb、Tiの含有量(質量%)を表す。
 以上、基本成分について説明したが、本発明の鋼板は、以下の任意元素を適宜含有することができる。
 さらに質量%で、Cu:0.005~1%およびNi:0.01~1%のうちから選んだ1種または2種を含有してもよい。
 Cu:0.005~1%
 Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを低減することができる。このような観点からCuは0.005%以上含有させることが好ましく、さらに耐遅れ破壊特性向上の観点からは、Cuは0.05%以上含有させることがより望ましい。より好ましくは0.10%以上である。しかしながら、Cu含有量が多くなりすぎると表面欠陥の発生を招来するので、Cu含有量は1%以下とすることが望ましい。より好ましくは0.50%以下、さらに好ましくは0.30%以下である。
 Ni:0.01~1%
 Niも、Cuと同様、耐食性を向上する作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい、表面欠陥の発生を抑制する作用がある。このため、Niは0.01%以上含有させることが望ましい。より好ましくは0.02%以上であり、さらに好ましくは0.04%以上である。しかし、Ni含有量が多くなりすぎると、加熱炉内でのスケール生成が不均一になり、却って表面欠陥を発生させる原因になる。また、コスト増も招く。このため、Ni含有量は1%以下とする。より好ましくは0.50%以下、さらに好ましくは0.20%以下である。
 さらに質量%で、Cr:0.01~1.0%、Mo:0.01~0.5%、V:0.003~0.5%、Zr:0.005~0.2%およびW:0.005~0.2%のうちから選んだ1種または2種以上を含有してもよい。
 Cr:0.01~1.0%
 Crは、鋼の焼入れ性を向上させる効果がある。このような効果を得るには、Crを0.01%以上含有させることが好ましい。より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。しかしながら、Cr含有量が1.0%を超えると、焼鈍時のセメンタイトの固溶速度を遅延させ、未固溶のセメンタイトなどのFeを主成分とする炭化物が残存することでせん断端面の耐遅れ破壊特性が劣化する。また、耐孔食性、さらには化成処理性が劣化する。したがって、Cr含有量は0.01~1.0%とすることが望ましい。なお、Cr含有量が0.2%を超えると、耐遅れ破壊特性や耐孔食性、化成処理性が劣化するおそれが生じるので、これらを防止する観点からは、Cr含有量は0.2%以下とすることがより好ましい。
 Mo:0.01%以上0.5%以下
 Moは、鋼の焼入れ性の向上効果や、水素のトラップサイトとなるMoを含む微細な炭化物の生成並びにマルテンサイトおよびベイナイトの微細化による耐遅れ破壊特性のさらなる改善効果を得る目的で、0.01%以上含有させることが望ましい。より好ましくは0.03%以上、さらに好ましくは0.05%以上である。しかしながら、Mo含有量が0.5%を超えると、化成処理性が著しく劣化する。好ましくは0.2%以下である。以上より、Mo含有量は0.01%以上0.5%以下とすることが望ましい。
 V:0.003~0.5%
 Vは、鋼の焼入れ性の向上効果や、水素のトラップサイトとなるVを含む微細な炭化物の生成およびマルテンサイトやベイナイトの微細化による耐遅れ破壊特性のさらなる改善効果を得る目的で、0.003%以上含有させることが望ましい。より好ましくは0.005%以上、さらに好ましくは0.007%以上である。しかしながら、V含有量が0.5%を超えると、鋳造性が著しく劣化する。より好ましくは0.20%以下、さらに好ましくは0.09%以下である。最も好ましくは0.01%以下である。以上より、V含有量は0.003~0.5%とすることが望ましい。
 Zr:0.005~0.2%
 Zrは、鋼の焼入れ性の向上効果や、水素のトラップサイトとなるVを含む微細な炭化物の生成およびマルテンサイトやベイナイトの微細化による耐遅れ破壊特性のさらなる改善効果を得る目的で、0.005%以上で含有させることが望ましい。より好ましくは0.010%以上、さらに好ましくは0.020%以上である。ただし、Zrを多量に含有させると、熱間圧延工程のスラブ加熱時に未固溶で残存するZrNやZrSといった粗大な析出物が増加し、せん断端面の耐遅れ破壊特性が劣化する。このため、Zr含有量は0.2%以下が望ましい。より好ましくは0.1%以下、さらに好ましくは0.05%以下である。
 W:0.005~0.2%
 Wは、鋼の焼入れ性の向上効果や、水素のトラップサイトとなるVを含む微細な炭化物の生成およびマルテンサイトやベイナイトの微細化による耐遅れ破壊特性のさらなる改善効果を得る目的で、0.005%以上で含有させることが望ましい。より好ましくは0.010%以上、さらに好ましくは0.030%以上である。ただし、Wを多量に含有させると、熱間圧延工程のスラブ加熱時に未固溶で残存するWNやWSといった粗大な析出物が増加し、せん断端面の耐遅れ破壊特性が劣化する。このため、W含有量は0.2%以下で含有させることが望ましい。より好ましくは0.1%以下である。
 さらに質量%で、Ca:0.0002~0.0030%、Ce:0.0002~0.0030%、La:0.0002~0.0030%およびMg:0.0002~0.0030%のうちから選んだ1種または2種以上を含有してもよい。
 Ca:0.0002~0.0030%
 Caは、SをCaSとして固定し、耐遅れ破壊特性の改善に寄与する。このため、Ca含有量は0.0002%以上とすることが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0008%以上である。ただし、Caは多量に添加すると表面品質や曲げ性を劣化させるので、Ca含有量は0.0030%以下とすることが望ましい。より好ましくは0.0020%以下、さらに好ましくは0.0015%以下である。
 Ce:0.0002~0.0030%
 Ceも、Caと同様、Sを固定し、耐遅れ破壊特性の改善に寄与する。このため、Ce含有量は0.0002%以上とすることが好ましい。より好ましくは0.0003%以上、さらに好ましくは0.0005%以上である。ただし、Ceを多量に添加すると表面品質や曲げ性が劣化するので、Ce含有量は0.0030%以下とすることが望ましい。より好ましくは0.0020%以下、さらに好ましくは0.0015%以下である。
 La:0.0002~0.0030%
 Laも、Caと同様、Sを固定し、耐遅れ破壊特性の改善に寄与する。このため、La含有量は0.0002%以上とすることが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。ただし、Laを多量に添加すると表面品質や曲げ性が劣化するので、La含有量は0.0030%以下とすることが望ましい。より好ましくは0.0020%以下、さらに好ましくは0.0015%以下である。
 Mg:0.0002~0.0030%
 MgはMgOとしてOを固定し、耐遅れ破壊特性の改善に寄与する。このため、Mg含有量は0.0002%以上とすることが好ましい。より好ましくは0.0010%以上、さらに好ましくは0.0015%以上である。ただし、Mgを多量に添加すると表面品質や曲げ性が劣化するので、Mg含有量は0.0030%以下とすることが望ましい。より好ましくは0.0025%以下、さらに好ましくは0.0020%以下である。
 さらに質量%で、Sb:0.002~0.1%およびSn:0.002~0.1%のうちから選んだ1種または2種を含有してもよい。
 Sb:0.002~0.1%
 Sbは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。また、CやBの含有量の上記低減が抑制されることで、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐遅れ破壊特性が改善する。このような観点から、Sbは0.002%以上含有させることが望ましい。より好ましくは0.004%以上、さらに好ましくは0.006%以上である。ただし、Sbを0.1%を超えて含有させると、鋳造性が劣化し、また、旧γ粒界に偏析して、せん断端面の耐遅れ破壊特性を劣化させる。このため、Sbは0.1%以下で含有させることが望ましい。より好ましくは0.05%以下、さらに好ましくは0.02%以下である。
 Sn:0.002~0.1%
 Snは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。また、CやBの含有量の上記低減が抑制されることで、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐遅れ破壊特性が改善する。このような観点から、Snは0.002%以上含有させることが望ましい。好ましくは0.003%以上である。ただし、Snを0.1%を超えて含有させると、鋳造性が劣化し、また、旧γ粒界に偏析して、せん断端面の耐遅れ破壊特性を劣化させる。このため、Snは0.1%以下で含有させることが望ましい。より好ましくは0.05%以下、さらに好ましくは0.01%以下である。
 なお、上記以外の成分は、Feおよび不可避的不純物である。また、上記任意元素を下限値未満で含む場合、上記任意元素を不可避的不純物として含むものとする。
  次に、本発明の鋼板における鋼組織について、説明する。
  マルテンサイトおよびベイナイトの合計面積率:90%超100%以下
 TS≧1320MPaの高強度と優れた耐遅れ破壊特性を両立するため、マルテンサイトおよびベイナイトの組織全体に対する面積率は合計で90%超とする。これより少ないと、フェライト、残留γ(残留オーステナイト)のいずれかが多くなり、耐遅れ破壊特性が劣化する。好ましくは92%以上、より好ましくは94%以上、さらに好ましくは96%以上である。なお、マルテンサイトおよびベイナイトの組織全体に対する面積率は合計で100%であることが好ましい。なお、本発明の鋼組織は、マルテンサイトおよびベイナイトの両者を含む。ベイナイトは、延性向上に寄与するので、1~25%含有するのが好ましい。
 なお、マルテンサイトおよびベイナイト以外の残部は、フェライト、残留γなどとなる。上記以外に非金属介在物、セメンタイトも構成組織として含まれるが、これらの面積率は非常に少ないので、これらの面積率は除外して評価する。残留γの面積率は特に規定しないが、残留γは耐遅れ破壊特性を劣化させるため、その面積率は5%未満とすることが望ましい。
 介在物群A
 介在物群Aは、具体的には以下の条件Aを満たす。
(条件A)
(i)介在物群の長軸の長さが100μm以上である。
(ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合に介在物粒子間の最短距離が30μm以下である。
 条件(i)
 介在物群Aの長軸の長さは100μm以上である。長軸の長さが100μm以上の介在物群は、耐遅れ破壊特性に大きな悪影響を与えるため、後述する介在物群Bとは区別して考慮する必要がある。
 条件(ii)
 介在物群Aを構成する介在物粒子の長軸の長さは、0.3μm以上である。上記長軸の長さが0.3μm以上であるものに着目するのは、0.3μm未満の介在物粒子は、それらが集合したとしても耐遅れ破壊特性への悪影響が小さいためである。これは、介在物群Aの存在頻度が少なく、それ未満の大きさでは亀裂が連結して伸展しにくいためである。また、長軸の長さは、圧延方向における介在物粒子の長さを意味する。
 介在物群Aが2個以上の介在物粒子から構成される場合、介在物粒子間の最短距離が30μm以下である。条件(i)を満たす介在物群について、このように介在物群を定義することで、耐遅れ破壊特性に影響を与える介在物群が適切に表現され、この定義に基づく介在物群の単位面積(mm)当たりの個数を調整することで、耐遅れ破壊特性を改善できる。最短距離は、介在物粒子の長手方向端部を中心点とした圧延方向に対して±10°の扇形状の領域にある介在物粒子を対象とする(一部が上記領域に含まれる場合には対象とする。)。なお、粒子間の最短距離は各粒子の外周上の点同士の最短距離である。
 介在物群Aを構成する介在物粒子の形状、存在状態については、特に限定されないが、本発明においては、通常、圧延方向に伸展した介在物粒子であったり、圧延方向に点列状に分布した介在物であったりする。「圧延方向に点列状に分布した介在物粒子」とは、圧延方向に点列状に分布した2個以上の介在物粒子から構成されるものを指す。圧延方向に点列状に分布とは、例えば、圧延方向に延びる介在物が、冷間圧延の際に分割されて点列状に分布したものと同様の分布状態である。なお、これは分布状態の説明であり、冷間圧延で分割されて点列状に分布したものに限定する意味ではない。
 本発明では、以上の条件を満たす介在物群Aの個数密度(分布密度)が、2個/mm以下である。せん断端面の耐遅れ破壊特性を向上させるために、MnSや酸化物、窒化物から構成される上記のような介在物群を板厚表層部~板厚中央部の領域、特に板厚中央部において、十分に低減する必要がある。TS≧1320MPaの高強度鋼を使用した部品においてもせん断端面からの亀裂発生を抑制するために、かような介在物群は2個/mm以下に低減する必要がある。好ましくは0個/mmとすることである。なお、1個の介在物粒子から構成される場合には、長軸の長さが100μm以上である介在物粒子を1個の介在物粒子群として、1mm当たりの介在物群の個数を測定する。
 介在物群B
 介在物群Bは、具体的には以下の条件Bを満たす。
(条件B)
(i)介在物群の長軸の長さが20μm以上100μm未満である。
(ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合介在物粒子間の最短距離が10μm以下である。
 条件(i)
 介在物群Bの長軸の長さは20μm以上100μm未満である。長軸の長さが20μm未満の場合、耐遅れ破壊特性への悪影響が小さいので、20μm以上とする。長軸長さが100μmを超えるものは、耐遅れ破壊特性への影響が特に大きいため、介在物群Aとして考慮する。長軸の長さは、圧延方向における介在物群の長さを意味する。
 条件(ii)
 介在物粒子の長軸の長さが0.3μm以上である。上記長軸の長さが0.3μm以上であるものに着目するのは、0.3μm未満の介在物は、それらが集合したとしても耐遅れ破壊特性への影響が小さいためである。また、長軸の長さは、圧延方向における介在物粒子の長さを意味する。介在物群Bが2個以上の介在物粒子から構成される場合には、介在物粒子間の最短距離が10μm以下である。条件(i)を満たす介在物群について、このように介在物群を定義することで、耐遅れ破壊特性に影響を与える介在物群が適切に表現され、この定義に基づく介在物群の単位面積(mm)当たりの個数を調整することで、耐遅れ破壊特性を改善できる。なお、最短距離の測定においては、介在物群の長手方向端部を中心点とした圧延方向に対して±10°の扇形状の領域にある介在物粒子を対象とする(一部が上記領域に含まれる場合には対象とする。)。粒子間の最短距離は各粒子の外周上の点同士の最短距離であり、粒子群と粒子との間の最短距離は粒子の外周状の点と粒子群を構成する粒子との間の最短距離であり、粒子群間の最短距離は各粒子群の粒子同士の最短距離である。
 なお、介在物群Bを構成する介在物粒子の形状、存在状態については、特に限定されないが、本発明においては、通常、介在物群Aの場合と同様に、圧延方向に伸展した介在物粒子であったり、圧延方向に点列状に分布した介在物であったりする。
 本発明では、以上の条件を満たす介在物群Bの個数密度が、5個/mm以下である。せん断端面の耐遅れ破壊特性を向上させるために、MnSや酸化物、窒化物から構成される上記のような介在物群Bの量を板厚表層部~板厚中央部の領域、特に板厚中央部において、十分に低減する必要がある。TS≧1320MPaの高強度鋼を使用した部品においてもせん断端面からの亀裂発生を抑制するために、かような介在物群の個数密度は5個/mm以下に低減する必要がある。好ましくは4個/mm以下である。さらに好ましくは3個/mm以下である。なお、このような介在物群Bは、0個/mmとするのが好ましい。また、1個の介在物粒子から構成される場合には、長軸の長さが20μm以上100μm未満である介在物粒子を1個の介在物粒子群として、1mm当たりの介在物群の個数を測定する。
 アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下である、Feを主成分とする炭化物:4000個/mm2以下
 せん断端面の耐遅れ破壊特性と介在物粒子の関係を詳細に調査した結果、これまで一般的に実施されてきた焼鈍条件では、セメンタイトなどのFeを主成分とする炭化物が完全には固溶せず、ある一定量残存する場合があることが判明した。しかもこの未固溶のFeを主成分とする炭化物、具体的には、アスペクト比が2.0以下、長軸の長さが0.30μm以上2μm以下であるFeを主成分とする粗大な炭化物が、せん断端面の耐遅れ破壊特性に悪影響を及ぼすことが判明した。なお、この粗大な炭化物は、焼き戻し過程で析出する粒内の微細炭化物や粒界におけるフィルム状の粗大析出物とは明らかに異なる形態を呈するものである。
 ここで、アスペクト比が2.0以下のもの、長軸の長さが0.30μm以上2μm以下であるものに着目する理由は、アスペクト比が2.0以下、長軸の長さが0.30μm以上2μm以下であるFeを主成分とする粗大な炭化物が、せん断端面の耐遅れ破壊特性に悪影響を及ぼすことが判明したからである。
 また、Feを主成分とする炭化物とは、具体的にはセメンタイト(θ)、η、χ、ε等のFe-C系の炭化物であり、これらにMn、Si、B、Cr、Mo等がわずかに固溶したものである。また、「主成分」とは炭素以外のFe、Mn、Si、B、Cr、Mo等の元素に関し、それらの割合においてFeを50at%以上含むことを意味する。
 かようなFeを主成分とする炭化物は、4000個/mm以下に低減する必要がある。好ましくは2000個/mm以下である。さらに好ましくは1500個/mm以下である。なお、このようなFeを主成分とする炭化物は、0個/mmとするのが好ましい。
 後述するように、焼き戻し過程で析出する粒内の微細炭化物や粒界におけるフィルム状の析出物は、SEM反射電子像で黒色を呈さないので、黒色を呈するFeを主成分とする炭化物と識別が可能である。
 平均旧γ粒径:6~15μm
 NbやTiを添加した鋼では、高温焼鈍を行い、γ粒を適度に粗大化することが耐遅れ破壊特性の改善に有効である。このメカニズムは明らかではないが、高温焼鈍してγ粒を成長させることで耐遅れ破壊特性の改善に有利な集合組織が発達することが考えられる。耐遅れ破壊特性改善の観点から、平均旧γ粒径は、6~15μmとする。下限について好ましくは7μm以上、より好ましくは8μm以上、さらに好ましくは9μm以上である。上限については12μm以下が好ましく、より好ましくは10μm以下である。なお、平均旧γ粒径は平均粒径を意味する。
 マルテンサイトおよび/またはベイナイトの内部に分布する直径10~200nmの炭化物:0.3×10個/mm以上
 マルテンサイトおよび/またはベイナイトの内部に分布する微細炭化物は主に焼き戻し過程で析出したFeを主体とする炭化物である。これらの炭化物は、せん断加工における破面の平滑度を向上させ、また、水素侵入環境下での水素トラップサイトとして活用できる。このため、焼き戻しマルテンサイトおよび/またはベイナイトの内部に分布する直径10~200nmの炭化物は0.3×10個/mm以上とすることが好ましい。より好ましくは0.5×10個/mm以上、さらに好ましくは0.7×10個/mm以上である。なお、上限については特に限定されるものではないが、上限を0.7~10×10個/mm程度とすることが好ましい。これ以上では強度が高くなりすぎ耐遅れ破壊特性が劣化する場合がある。また、マルテンサイトおよびベイナイトのいずれにも、直径10~200nmの炭化物が含まれる場合には、マルテンサイトおよびベイナイトの両方について上記炭化物の個数を測定する。マルテンサイトおよびベイナイトのいずれかにしか上記炭化物が含まれない場合には、炭化物が含まれる組織の内部に分布する直径10~200nmの炭化物の個数を測定し、これについてマルテンサイトおよびベイナイトの合計面積に対する密度を計算する。
 また、Feを主成分とする炭化物とは、具体的にはセメンタイト(θ)、η、χ、ε等のFe-C系の炭化物であり、これらにMn、Si、B、Cr、Mo等がわずかに固溶したものである。また、「主成分」とは炭素以外のFe、Mn、Si、B、Cr、Mo等の元素に関し、それらの割合においてFeを50at%以上含むことを意味する。
 次に、上記した組織の分析・測定方法について、説明する。
 まず、マルテンサイトおよびベイナイトの合計の面積率、ならびに残部となるフェライトの面積率は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後ナイタールで腐食し、鋼板の表面から板厚方向に1/4厚み位置においてSEMで2000倍の倍率にて4視野観察し、撮影した組織写真を画像解析して測定することができる。ここで、マルテンサイトおよびベイナイトはSEMでは灰色もしくは白色を呈し、フェライトは、SEMで黒色のコントラストを呈する。なお、400℃超の温度域で生成するベイニティックフェライトはその内部に転位を僅かしか含まず、特性はフェライトとほぼ等しいので、これはフェライトとして計測する。また、マルテンサイトおよびベイナイトの内部には、微量の炭化物、窒化物、硫化物および酸化物が含まれるが、これらを除外することは困難なので、これらを含めた領域の面積率を、マルテンサイトおよびベイナイトの面積率とする。また、残留γが存在する場合は、マルテンサイトおよびベイナイトの面積率は、上記のSEM観察により求められたマルテンサイトおよびベイナイトの面積率からX線回折により求められた残留γの面積率を差し引くことにより求めた。
 ここで、ベイナイトは以下の特徴を有する。すなわち、アスペクト比が2.5以上でプレート状の形態を呈しており、マルテンサイトとくらべるとやや黒色の組織である。プレートの幅は0.3~1.7μmである。ベイナイトの内部の直径10~200nmの炭化物(以下、炭化物Bともいう)の分布密度は0~3個/μmである。
 残留γの面積率は、X線で求めた残留γの体積率と等しいと仮定し、その値を用いた。残留γの体積率は、例えば、CoをターゲットとしたKαX線源を用い、鋼板1/4厚み位置でのX線回折によるαの(200)(211)(220)面、γの(200)(220)(311)面の積分強度比から求めることができる。
 また、介在物群A、介在物群Bの1mmあたりの個数密度は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、腐食せずに鋼板の表層から1/5t~4/5tの領域(tは鋼板の厚み)、すなわち表面より板厚に対して1/5厚み位置から、板厚中心を挟み、裏側表面側の1/5厚み位置までの領域において1mmの領域を連続してSEMで約100視野撮影し、撮影したSEM写真から、このような介在物群の個数を計測することで求めることができる。鋼板の表層から1/5t~4/5tの領域で測定するのは、鋼板表層には介在物群A、Bとも存在頻度が少なく、板厚中央付近で特に多いこと、その結果板厚中央付近から初期亀裂が発生するためである。写真は2000倍に引き延ばして測定することが好ましい。介在物群Aはフィルム状に薄く生成しているので、圧延面と平行な面で観察する場合や、光学顕微鏡で観察する場合には識別する事が困難であり、同様にその長さを正確に計測することも困難である。
 ここで、SEM像は反射電子像とすることが好ましい。また、撮影する倍率は1000倍が好ましい。ただし、介在物粒子のサイズや介在物粒子間の距離が正確に把握しにくい場合は適宜、個々の介在物粒子を5000倍に拡大して、上記の介在物群を画像判定すればよい。
 なお、介在物粒子間の最短距離は、上記の通り、表面間距離であり、本画像から求めることができる表面間距離を意味する。また、最短距離の測定方向は、上記の通り、圧延方向または圧延方向±10度の範囲にある場合に限定する。
 また、介在物群が、2個以上の介在物粒子から構成される場合、介在物群の圧延方向における全長(長軸の長さ)は、介在物群の圧延方向両端に位置する介在物粒子同士の圧延方向外端部間の、圧延方向の長さとなる。また、介在物群が1個の介在物粒子で構成される場合、介在物群の圧延方向における全長は、この介在物粒子の圧延方向における長さとなる。
 さらに、この介在物群を形成する個々の介在物粒子は、主にMn、Ti、Zr、Ca、REM系の硫化物、Al、Ca、Mg、Si、Na系の酸化物、Ti、Zr、Nb、Al系の窒化物、Ti、Nb、Zr、Mo系の炭化物である。これら介在物群の多くは鋳造工程で生成し、その後、スラブ加熱時に未固溶で存在していたものであり、残りは、その後の熱延・巻取り・焼鈍でそれに複合あるいは近接して再析出したものである。なお、この介在物粒子には、Feを主成分とする炭化物は含まない。
 また、アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下であるFeを主成分とする炭化物(以下、炭化物Aともいう)の1mmあたりの個数(分布密度)は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、腐食せずにあるいはナイタールにて極軽微に腐食させ、鋼板の板厚の1/4厚み位置でSEMを用いて5000倍で15視野撮影して計測することができる。なお、アスペクト比は「長軸長さ/短軸長さ」であり、観察面上で、短軸方向と長軸方向は直交する。
 ここで、SEM像は反射電子像とすることが好ましく、炭化物Aは反射電子像で黒色を呈する粒子である。なお、後述するマルテンサイトおよび/またはベイナイト内部に分布する直径10~200nmの炭化物(以下、炭化物Bともいう)は反射電子像では黒色を呈さないので、これらは分離して測定可能である。
 また、Feを主体とする炭化物であることは、EDXにて当該粒子の元素分析を行うことで、確認することができる。
 旧γ粒の平均粒径は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、旧γ粒界を腐食する薬液(例えば飽和ピクリン酸水溶液やこれに塩化第2鉄を添加したもの)で腐食し、鋼板の板厚の1/4厚み位置において光学顕微鏡で400倍の倍率にて任意に4視野観察して旧γ粒径を測定することができる。なお、粒径は得られた写真を用いて切断法にて測定することが出来る。つまり、写真上に圧延方向、圧延方向と直角方向(板厚方向)それぞれに20本の直線をひき、それらと交差する粒界の数を計測し、さらに合計線長を交差した粒界の合計数で除した値に1.13を乗じることで測定できる。
 また、マルテンサイトおよび/またはベイナイト内部に分布する直径10~200nmの炭化物(以下、炭化物Bともいう)の個数(分布密度)は、各相の面積率の測定で使用したナイタールで腐食した試料を用いて、鋼板の板厚の1/4厚み位置で、SEMの2次電子像で10000倍の倍率にて4視野撮影し、25000倍の倍率まで引き伸ばした写真を用いて、測定することができる。
 なお、炭化物Bはマルテンサイトやベイナイト粒内に存在しており、白色を呈する粒子である。また、炭化物Bの直径は、長軸をa、単軸をbとしたとき、円換算相当直径である(a×b)0.5として求めることができる。
 また、本発明の鋼板では、板厚および引張強度TSを以下の範囲とする。
 板厚:0.5~2.6mm
 板厚が厚くなると、自動車部品で必要な曲げ成形が困難となる。例えば、板厚が2.6mmを超えると、5mm以下の曲げ半径で90度以上の曲げ角度を得ることができなくなり、自動車用部品への適用が困難となる。一方、TS≧1320MPa以上の高強度鋼板を板厚:0.5mm未満にまで薄くして製造することは、圧延荷重増大の問題から極めて困難である。したがって、板厚は0.5~2.6mmの範囲とする。下限について好ましくは0.6mm以上、より好ましくは0.8mm以上である。上限について好ましくは2.0mm以下、より好ましくは1.8mm以下である。
 引張強度TS:1320MPa以上
 せん断端面の耐遅れ破壊特性の劣化は、鋼板の引張強度が1320MPa以上で特に顕在化する。1320MPa以上でも、せん断端面の耐遅れ破壊特性が良好な点が本発明の特徴の一つである。このため、ここでは、引張強度:1320MPa以上の鋼板を対象とする。引張強度の上限について、本発明の鋼板では、2000MPa以下や1900MPa以下になることが多い。
 また、本発明の鋼板が有する優れた耐遅れ破壊特性とは、実施例において評価される遅れ破壊特性がTS:1320MPa以上1500MPa未満では「破壊なし」、TS:1500MPa以上1550MPa未満では遅れ破壊時間が24hr以上、TS:1550MPa以上1670MPa未満では遅れ破壊時間が6hr以上、TS:1670MPa以上では遅れ破壊時間が1.0hr以上である。
 また、本発明の課題を解決するために必須ではないが、降伏強度(YP)は800MPa以上1500MPa以下である場合が多い。また、全伸び(El)は5%以上15%以下の範囲にあることが多い。
 以上の本発明の鋼板は、表面にめっき層を有する鋼板であってもよい。めっき層はZnめっきでも他の金属のめっきでもよい。また、溶融めっき層、電気めっき層のいずれでもよい。本発明では溶融亜鉛めっき層、合金化溶融亜鉛めっき層が好ましい。
 次に、本発明の鋼板の製造方法について説明する。
 スラブ加熱温度:1220℃超
 鋼スラブを熱間圧延する方法としては、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などが挙げられる。本発明の製造方法においては、スラブ加熱温度を1220℃超とすることが極めて重要である。スラブ加熱温度(表面温度)を1220℃超とすることで、硫化物、炭窒化物の固溶促進とMn偏析の軽減が図られ、上記した介在物群の大きさや個数低減が図られる。このため、スラブ加熱温度は1220℃超とする。スラブ加熱温度の上限は特に限定されないが、通常、1400℃以下である。また、スラブ加熱時の平均加熱速度は5~15℃/分とすればよい。
 スラブ均熱保持時間:100min以上
 1220℃超のスラブ表面温度での保持時間(均熱時間)が100min以上となるように保持する。発明者らの調査の結果、介在物群Bが残存する主な原因は、スラブ加熱温度が介在物の溶解温度に達していても十分な時間が確保できておらず溶解状態が平衡に達していないことが原因であることが明らかになった。均熱時間を十分確保することで硫化物、炭窒化物の固溶促進が図られ、耐遅れ破壊特性が改善する。100min未満ではNb、Ti系の炭窒化物の固溶が不十分となり、それらが残存するとともに、それらを核としてMnSが析出するので耐遅れ破壊特性が劣化する。保持時間の上限は特に限定されないが250min以下、より好ましくは200min以下である。さらに好ましくは175min以下である。
 なお、圧延率から算出した鋼の伸び歪:ε1(幅方向の変化が無いと仮定した場合の真歪)に対するMnS系介在物の介在物群としての長軸の伸び歪:ε2(破砕した場合はそれによる介在物間距離の増加を含めた長径の増加量)の比率ε2/ε1は、熱間圧延および冷間圧延でそれぞれ0.60、0.65であり、いずれの工程でも伸ばされることが判った。
 このことは、熱間圧延での圧下率と比べて、冷間圧延での圧下率を小さくすることで介在物の伸展度を低減できるが、圧下率の配分調整による効果は非常に小さく、累積圧下率が支配的であることを意味する。つまり、最終製品板の板厚に対してスラブの鋳造厚さを薄くすることが重要である。しかし、実際にはスラブを薄くすると生産性を阻害するので、スラブ鋳造厚は100~250mmの範囲とし、特に150~200mmとすることが好ましい。なお、定法に従い、950℃以上の温度域での累積圧下率は90~98%、冷間圧延も含めた950℃以下の累積圧下率は50~92%とすればよい。
 仕上げ圧延温度:840~950℃として仕上げ圧延を行い、その後、10℃/s以上200℃/s以下の冷却速度で450℃超~630℃の温度域まで冷却して巻き取ることが好ましい。仕上げ圧延温度(FT)は、変態を促進する観点から、840~950℃の範囲とし、Ar変態点を下回らない範囲で低温化することが好ましい。本発明においては560℃以下の巻取温度にすることで所望の組織にしやすくなる。なお、平均旧γ粒径を6μm以上にするために450℃超の巻取温度にする。
 また、鋼板(コイル)の板厚変動を抑制するためには、仕上げ圧延後、30℃/s以上200℃/s以下の冷却速度で600℃以下の温度まで冷却し、530℃以下で巻き取ることが好ましい。なお、アスペクト比が2.0以下、長軸が0.30μm以上2μm以下のFeを主成分とする炭化物の量を低減する観点からも、巻き取り温度(CT)は低いほど好ましく、具体的には530℃以下とすることが好ましい。
 ついで、必要に応じ、巻取られたコイルを回転させながら水冷し、コイラーから取り出す。この時、水冷時間は極力短くするのが好ましく、水冷を実施しないのがより好ましい。450℃超~630℃の温度域でコイルを巻き取った後、その後の表面酸化や不均一な変態を抑制する観点から、コイルまま水冷する、または巻きほぐして水もしくはガスで冷却してもよい。このような急冷によりアスペクト比が2.0以下、長軸が0.30μm以上2μm以下のFeを主成分とする炭化物を低減することもできる。
 また、鋼板表面に生成した1次スケールおよび2次スケールを除去するためにデスケーリングを行うことが望ましい。デスケーリングは衝突圧:500MPa以上の高圧で施すことが好ましい。これにより赤スケールの残存と2次スケールの生成厚を低減することができ、熱間圧延での巻き取りにおいて、スケール中の酸素が鋼板内に取り込まれることによる鋼板の表面酸化が軽減できる。その結果、最終製品での表層の酸化層の厚さが低減でき、耐食性の向上に寄与する。また、鋼板の表層部におけるC、Bの酸化による、これらの元素の表層部付近での低減を防止することができ、後述する連続焼鈍において、鋼板の表層部でのフェライト生成を抑制することができる。その結果、せん断端面の耐遅れ破壊特性も改善される。
 なお、熱延コイルを冷間圧延する前に十分酸洗してスケールの残存を軽減することが好ましい。また、冷間圧延における荷重低減の観点から、必要に応じて熱延板焼鈍を施してもよい。
 冷間圧延の圧下率:20~75%
 冷間圧延では、圧下率を20~75%として、冷間圧延後の鋼板の板厚を0.5~2.6mmにすればよく、それ以外の条件については定法に従えばよい。圧下率の下限について好ましくは30%以上、より好ましくは40%以上である。圧下率の上限について好ましくは72%以下、より好ましくは70%以下である。板厚の下限について好ましくは0.6mm以上、より好ましくは0.8mm以上、さらに好ましくは1.0mm以上である。板厚の上限について好ましくは2.4mm以下、より好ましくは2.1mm以下、さらに好ましくは1.8mm以下である。
 焼鈍
 上記冷間圧延後の鋼板に、連続焼鈍(CAL)で、焼鈍と焼き戻し処理(自己焼戻しのための処理も含む)を施し、その後必要に応じて調質圧延を施す。ここで重要なのは、
(1)所定のマルテンサイトおよびベイナイトの面積率の確保、
(2)未固溶炭化物(アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下であるFeを主成分とする炭化物)の低減(焼鈍時の炭化物の固溶促進)、
(3)適切な直径の旧γ粒の維持、
(4)マルテンサイトおよび/またはベイナイトの内部における炭化物の微細分散、
が達成されるように、鋼組織を調整することである。ここで、(1)~(4)を達成するためのポイントは以下のとおりである。
 高温・長時間焼鈍すること((1)と(2)に対応)、過度に高温・長時間の焼鈍を避けること((3)に対応)、焼鈍後、高温から急冷を行うこと((1)に対応)、特定の温度域で所定時間焼き戻すこと((4)に対応)である。
 860℃以上910℃以下の焼鈍温度で150~600秒均熱
 上述したように、アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下であるFeを主成分とする炭化物(炭化物A)は、焼鈍後にも未固溶で残存するセメンタイト粒子などの炭化物であり、かような炭化物を十分に低減するには、高温・長時間焼鈍する、具体的には、焼鈍温度:860℃以上で150秒以上均熱する必要がある。一方、焼鈍温度が910℃を超える、または均熱時間が600秒を超えると、旧γ粒の粗大化を招き、却って耐遅れ破壊特性を劣化させる。このため、860℃以上910℃以下の焼鈍温度で150~600秒均熱する。より好ましくは870~900℃の焼鈍温度で300~600秒均熱する。また、上記焼鈍温度と均熱時間は、下記焼鈍温度からの冷却条件とともに、マルテンサイトおよびベイナイトの合計面積率を所望の範囲にすることに寄与する。
 焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却
 フェライト、残留γといった残部組織を低減し、マルテンサイトおよびベイナイトの合計の面積率を90%以上にするためには、焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却する必要がある。平均冷却速度が2℃/sより小さいとフェライトが多く生成するとともに、炭素がγに濃化してマルテンサイトが硬質化して耐遅れ破壊特性が劣化する。上限は特に限定されるものではないが、通常100℃/s程度である。
 420℃から280℃以下の温度までの平均冷却速度:10℃/s以上
 420℃から280℃以下の温度域での冷却速度が遅いとベイニティックフェライトや微細な下部ベイナイトが生成し、強度低下や残留γの残留γの増加による耐遅れ破壊特性の劣化を招く。また、マルテンサイト、ベイナイト内部に粗大な炭化物を形成する場合がある。このため、耐遅れ破壊特性が劣化することがある。この温度域は速やかに冷却することが望ましい。そこで、420℃から280℃以下の温度までの平均冷却速度を10℃/s以上とする。なお、平均冷却速度は、好ましくは20℃/s以上、より好ましくは70℃/s以上である。上限は特に限定されるものではないが、通常2000℃/s程度である。ベイナイトを1%以上生成させる観点からは、420℃から280℃までの平均冷却速度は1000℃/s以下とするか、あるいは280℃~230℃の温度域で5秒以上保持することが望ましい。
 鋼板に溶融めっき処理を行う場合は、焼鈍温度から420℃まで冷却する過程でめっき浴に浸漬してめっき処理を行うことが望ましく、必要に応じてめっき浴浸漬後に480~600℃に加熱して合金化処理することが可能である。
 また、280℃以下の温度まで冷却する上記冷却後、必要に応じて再加熱処理を施し、その後、120~280℃の温度域で15秒~3日間保持する。
 マルテンサイトおよび/またはベイナイト内部に分布する直径10~200nmの炭化物は、焼き入れ後の低温域での保持中に生成する炭化物であり、この分布密度を0.2×10個/mm以上とするには、室温付近まで急冷した後に120~280℃に再加熱して15秒~3日保持するか、または冷却停止温度を120~280℃とし、保持時間を15秒~3日に制御することが有利である。保持温度が280℃以下の温度域で冷却速度を低下させることや、室温まで冷却した後にバッチ焼鈍することで上記の熱履歴とすることも可能である。
 なお、保持温度が120℃未満、または保持時間が15秒未満になると、マルテンサイトまたはベイナイト内部の炭化物の分布密度が少なくなり耐遅れ破壊特性の改善効果が小さくなる。一方、保持温度が280℃を超えると、旧γ粒内および旧γ粒界での炭化物の粗大化が生じ、マルテンサイトまたはベイナイト内部の炭化物の分布密度が不十分となる。ここで、保持時間は、好ましくは30秒以上5hr以下である。
 420℃から280℃以下の温度まで冷却された鋼板、上記した120~280℃の温度域で15秒~3日間保持後室温まで冷却して得られた鋼板に、必要に応じて、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点から調質圧延(スキンパス圧延)を施すことができる。その場合、スキンパス伸長率は0.05~0.6%とするのが好ましい。この場合、スキンパスロールはダルロールとし、鋼板の粗さRaを0.8~1.8μmに調整することが、形状平坦化の観点からは好ましい。
 本鋼板においては、上記の通り、焼鈍での均熱後の冷却中に溶融めっき処理を施す、また、焼鈍での均熱後に電気めっきを施す等により、めっき鋼板とすることができる。めっき種はZn系めっき(Zn系、Zn-Ni系、Zn-Fe系等)、Alめっきが挙げられる。溶融めっき、電気めっきを施した後は鋼中に侵入した水素を低減するために、280℃以下の温度域で熱処理を施すことが望ましい。
 表1に示す鋼番A~Wの鋼を溶製後、130~230mm厚のスラブに鋳造した。鋳造したスラブを、表2(表2-1と表2-2を合わせて表2とする)に示す条件(スラブ加熱温度(SRT)、スラブ表面温度が1220℃以上の時間(均熱時間)、仕上圧延温度(FT))として、熱間圧延を施し、その後、平均冷却速度(冷却速度):30~200℃/sとして冷却し、表2に示す巻取温度(CT)にて巻き取った。得られた熱延鋼板を、酸洗し、表2に示す圧延率にて冷間圧延を施し、表2に示す板厚の冷延鋼板とした。なお、表1の「[%Ti]×[%Nb]」の単位は(質量%)である。
 得られた冷延鋼板を、連続焼鈍ラインにおいて、表2に示す条件(焼鈍温度(AT)、860℃以上910℃以下の温度での均熱時間(保持時間1))として焼鈍し、その後、焼鈍温度~420℃までの平均冷却速度(1次冷却速度)を表2に示す条件、420℃~280℃以下の冷却停止温度までの平均冷却速度(2次冷却速度)を表2に示す条件で冷却した。表2に示す冷却停止温度、または、必要に応じて再加熱した後の保持温度(保持温度2)、該温度での表2に示す保持時間(保持時間2)の条件で焼き戻し処理を行った(ただし、No10は、保持を行わずに100℃まで冷やしきった例である。保持時間の項目には冷却に要した時間を記載した。)。なお、ここでは冷却速度が10℃/s未満となった温度を冷却停止温度とした。また、その後、伸長率:0.1%の調質圧延を行い、最終的な鋼板を得た。得られた鋼板の厚みは0.5~2.6mmの範囲内であった。
 鋼Cについては、焼鈍後、420℃までの冷却過程で480℃の溶融亜鉛鍍金浴に鋼板を浸漬し、その後、540℃に加熱して15秒保持して合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 かくして得られた鋼板について、上記した手法により鋼組織の分析・測定を行った。
 また、以下のようにして、1)引張試験、2)耐遅れ破壊特性の評価を行った。
 なお、これらの結果を表2に併記する。
 1)引張試験
 引張試験は、幅方向にコイル幅の1/4位置において、圧延直角方向が長手方向となるように、JIS5号引張試験片を切り出し、JIS Z2241に準拠して引張試験を実施し、降伏強度(YP)、引張強度(TS)、伸び(El)を評価した。
 2)耐遅れ破壊特性の評価
 耐遅れ破壊特性の評価は次のようにして行った。すなわち、得られた鋼板(コイル)の幅方向にコイル幅の1/4位置より圧延直角方向:100mm、圧延方向:30mmとなる短冊試験片を採取して実施した。長さが100mmとなる長辺側の端面の切り出しはせん断加工とし、せん断加工ままの状態で(バリを除去する機械加工を施さずに)、バリが曲げ外周側となるように曲げ加工を施した。せん断加工のクリアランスは13%、レーキ角は2度とした。曲げ加工は、先端曲げ半径をRと鋼板の板厚をtとしたときに、R/t=4.0となる曲げ半径(例えば、板厚が2.0mmなら、先端半径:8.0mmのポンチで曲げ成形)で、曲げ頂点内側の角度が90度(V曲げ)となるように行った。ポンチは先端が上記の半径でありU字形状(先端R部分が半円形状でポンチ胴部は厚さが2R)のものを用い、ダイのコーナーRは30mmのものを用いた。ポンチが鋼板を押し込む深さを調整し、先端の曲げ角度が90度(V字形状)となる様に成形した。曲げ成形時と同じ形状となるように(スプリングバックによる直片部の開口をキャンセルアウトするように)、油圧ジャッキで試験片を挟んで締め込み(曲げ成形最大押し込み時と同じフランジ端部距離となるように締め込み)、その状態でボルト締結した。ボルトはあらかじめ短冊試験片の短辺エッジから10mm内側に設けた楕円形状(短軸10mm、長軸15mm)の穴に通して固定した。得られたボルト締め後の試験片を、1個あたり1L以上のpH1の塩酸(塩化水素水溶液)中に浸漬し、水溶液温度:20℃の条件でpHを一定に管理して耐遅れ破壊特性評価試験を実施した。目視またはカメラで、目視で確認できるレベル(およそ1mm長さ)の微小亀裂(遅れ破壊の初期状態)の有無を確認し、試験片の浸漬開始から微小亀裂が生じ始めるまでの時間を遅れ破壊時間として測定した。ただし、試験片の浸漬開始後、200時間経過しても微小亀裂が観察されなかったものは、「破壊なし」と判断した。めっき鋼板については、圧延方向300mm×圧延直角方向300mmの板を採取して、希釈塩酸で表面のZn層を溶解除去し、室温で1日保管(脱水素処理)した後に、上記と同じ工程で試験片採取・作製を行い、遅れ破壊評価に供した。
 ここで、TS:1320MPa以上1500MPa未満では「破壊なし」、TS:1500MPa以上1550MPa未満では遅れ破壊時間が24hr以上、TS:1550MPa以上1670MPa未満では遅れ破壊時間が6hr以上、TS:1670MPa以上では遅れ破壊時間が1.0hr以上であれば、耐遅れ破壊特性が優れると判断した。
 表2より、発明例ではいずれも、引張強度(TS):1320MPa以上の高強度を有し、優れた耐遅れ破壊特性を有する鋼板が得られていることがわかる。
 一方、比較例では、十分な強度が得られないか、耐遅れ破壊特性が十分なものとは言えなかった。
 また、長軸長さが0.3μm未満の介在物粒子も含めて介在物群Aや介在物群Bを定義する場合、介在物粒子の間の最短距離が30μmを超えるものも介在物群Aと定義する場合、介在物粒子の間の最短距離が10μmを超えるものも介在物群Bと定義する場合については、介在物群の個数密度と耐遅れ破壊改善効果との関係が明瞭ではなかった。

Claims (12)

  1.  質量%で、
    C:0.13~0.40%、
    Si:1.5%以下、
    Mn:1.8~4%、
    P:0.02%以下、
    S:0.0010%未満、
    sol.Al:0.2%以下、
    N:0.0060%未満、
    B:0.0003%以上0.0035%未満、
    O:0.0020%未満を含有するとともに、
    さらに、Nb:0.002%以上0.035%未満、
    Ti:0.002%以上0.040%未満の1種または2種を(1)式、(2)式を満たすように含有し、残部はFeおよび不可避的不純物からなる成分組成と、
     マルテンサイトおよびベイナイトの組織全体に対する面積率が合計で90%超100%以下であり、
     平均旧γ粒径が6~15μmであり、
     下記条件Aを満たす介在物群Aが2個/mm以下および下記条件Bを満たす介在物群Bが5個/mm以下で存在し、
     アスペクト比が2.0以下であり、長軸が0.30μm以上2μm以下である、Feを主成分とする炭化物が4000個/mm以下で存在する鋼組織と、を有し、
     板厚が0.5~2.6mmであり、
     引張強度が1320MPa以上である鋼板。
    [%Ti]+[%Nb]>0.007・・・(1)式
    [%Ti]×[%Nb]<7.5×10-6・・・(2)式
    ここで、[%Nb]、[%Ti]はNb、Tiの含有量(質量%)を表す。
    (条件A)
    (i)介在物群の長軸の長さが100μm以上である。
    (ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合に介在物粒子間の最短距離が30μm以下である。
    (条件B)
    (i)介在物群の長軸の長さが20μm以上100μm未満である。
    (ii)1個以上の介在物粒子から構成され、介在物粒子の長軸長さは0.3μm以上であり、2個以上の介在物粒子から構成される場合介在物粒子間の最短距離が10μm以下である。
  2.  前記マルテンサイトおよび/または前記ベイナイトの内部に分布する直径10~200nmの炭化物が、0.3×10個/mm2以上で存在する請求項1に記載の鋼板。
  3.  残留γの組織全体に対する面積率が5%未満である請求項1または2に記載の鋼板。
  4.  前記成分組成が、さらに質量%で、
    Cu:0.005~1%
    およびNi:0.01~1%のうちから選んだ1種または2種を含有する請求項1~3のいずれかに記載の鋼板。
  5.  前記成分組成が、さらに質量%で、
    Cr:0.01~1.0%、
    Mo:0.01~0.5%、
    V:0.003~0.5%、
    Zr:0.005~0.2%
    およびW:0.005~0.2%のうちから選んだ1種または2種以上を含有する請求項1~4のいずれかに記載の鋼板。
  6.  前記成分組成が、さらに質量%で、
    Ca:0.0002~0.0030%、
    Ce:0.0002~0.0030%、
    La:0.0002~0.0030%
    およびMg:0.0002~0.0030%のうちから選んだ1種または2種以上を含有する、請求項1~5のいずれかに記載の鋼板。
  7.  前記成分組成が、さらに質量%で、
    Sb:0.002~0.1%
    およびSn:0.002~0.1%のうちから選んだ1種または2種を含有する請求項1~6のいずれかに記載の鋼板。
  8.  表面にめっき層を有する請求項1~7のいずれかに記載の鋼板。
  9.  請求項1、4~7のいずれか一項に記載の成分組成を有する鋼スラブを、スラブ加熱温度:1220℃超として100min以上均熱時保持した後に熱間圧延することで熱延鋼板とし、
     該熱延鋼板を、圧下率:20~75%として板厚が0.5~2.6mmとなるように冷間圧延することで冷延鋼板とし、
     該冷延鋼板を、860℃以上910℃以下の焼鈍温度で150~600秒均熱し、焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却したのち、420℃から280℃以下の温度まで10℃/s以上の平均冷却速度で冷却する焼鈍を行う鋼板の製造方法。
  10.  前記焼鈍は、280℃以下の温度まで冷却する前記冷却をした後に、必要に応じて再加熱を行い120~280℃の温度域で15秒~3日間保持し、その後室温まで冷却する焼鈍である請求項9に記載の鋼板の製造方法。
  11.  前記焼鈍の焼鈍温度から420℃まで2℃/s以上の平均冷却速度で冷却する過程でめっき浴に浸漬してめっき処理を行う請求項9または10に記載の鋼板の製造方法。
  12.  前記めっき処理のめっき浴浸漬後に480~600℃に加熱して合金化処理する請求項11に記載の鋼板の製造方法。
PCT/JP2017/035199 2016-09-28 2017-09-28 鋼板およびその製造方法 WO2018062380A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017567838A JP6354921B1 (ja) 2016-09-28 2017-09-28 鋼板およびその製造方法
MX2019002330A MX2019002330A (es) 2016-09-28 2017-09-28 Lamina de acero y metodo para producir la misma.
KR1020197005705A KR102226643B1 (ko) 2016-09-28 2017-09-28 강판 및 그 제조 방법
US16/329,672 US10982297B2 (en) 2016-09-28 2017-09-28 Steel sheet and method for producing the same
CN201780053038.7A CN109642294B (zh) 2016-09-28 2017-09-28 钢板及其制造方法
EP17856329.2A EP3489382B1 (en) 2016-09-28 2017-09-28 Steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-189896 2016-09-28
JP2016189896 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062380A1 true WO2018062380A1 (ja) 2018-04-05

Family

ID=61762659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035199 WO2018062380A1 (ja) 2016-09-28 2017-09-28 鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10982297B2 (ja)
EP (1) EP3489382B1 (ja)
JP (1) JP6354921B1 (ja)
KR (1) KR102226643B1 (ja)
CN (1) CN109642294B (ja)
MX (1) MX2019002330A (ja)
WO (1) WO2018062380A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645637B1 (ja) * 2018-08-22 2020-02-14 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2020039697A1 (ja) * 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2020090303A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020129403A1 (ja) * 2018-12-21 2020-06-25 Jfeスチール株式会社 鋼板、部材およびこれらの製造方法
JP2021025094A (ja) * 2019-08-06 2021-02-22 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
KR20210060551A (ko) * 2018-10-18 2021-05-26 제이에프이 스틸 가부시키가이샤 고연성 고강도 전기 아연계 도금 강판 및 그의 제조 방법
KR20210060550A (ko) * 2018-10-18 2021-05-26 제이에프이 스틸 가부시키가이샤 고항복비 고강도 전기 아연계 도금 강판 및 그의 제조 방법
CN112955575A (zh) * 2018-10-31 2021-06-11 杰富意钢铁株式会社 高强度构件、高强度构件的制造方法和高强度构件用钢板的制造方法
KR20210092279A (ko) * 2018-12-21 2021-07-23 제이에프이 스틸 가부시키가이샤 강판, 부재 및 이것들의 제조 방법
WO2022070636A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板、及び鋼板の製造方法
EP3922744A4 (en) * 2019-02-06 2022-08-10 Nippon Steel Corporation HOT DIP ZINC COATED STEEL SHEET AND METHOD OF MAKING IT
EP3950975A4 (en) * 2019-03-29 2022-12-14 Nippon Steel Corporation SHEET STEEL
WO2023281939A1 (ja) * 2021-07-09 2023-01-12 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板及びそれらの製造方法並びに部材
EP3943623A4 (en) * 2019-03-20 2023-03-01 Nippon Steel Corporation HOT STAMPING MOLDED BODY
WO2023032423A1 (ja) * 2021-08-30 2023-03-09 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材
WO2023032424A1 (ja) * 2021-08-30 2023-03-09 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002846A1 (en) * 2019-12-19 2023-01-05 Nippon Steel Corporation Steel sheet and manufacturing method thereof
KR20220112299A (ko) * 2020-01-31 2022-08-10 제이에프이 스틸 가부시키가이샤 강판, 부재 및 그들의 제조 방법
CN114981462B (zh) * 2020-01-31 2023-11-14 杰富意钢铁株式会社 钢板、部件及其制造方法
CN116670308A (zh) * 2020-12-25 2023-08-29 杰富意钢铁株式会社 钢板、构件和它们的制造方法
JP7226672B1 (ja) 2021-07-28 2023-02-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
WO2016111271A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016120914A1 (ja) * 2015-01-30 2016-08-04 Jfeスチール株式会社 高強度めっき鋼板およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428705B2 (ja) 1971-12-21 1979-09-18
JPS514276A (ja) 1974-06-29 1976-01-14 Toyo Kogyo Co
JPS5431019U (ja) 1977-08-01 1979-03-01
JPS5431019A (en) 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS552785A (en) * 1979-01-16 1980-01-10 Sumitomo Metal Ind Ltd Manufacture of high tensile steel excellent in delayed crackableness
JP3514276B2 (ja) 1995-10-19 2004-03-31 Jfeスチール株式会社 耐遅れ破壊特性に優れた超高強度鋼板及びその製造方法
JP4427010B2 (ja) 2004-07-05 2010-03-03 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度調質鋼およびその製造方法
CN100510141C (zh) * 2004-12-28 2009-07-08 株式会社神户制钢所 耐氢脆化特性优良的超高强度薄钢板
JP4811288B2 (ja) * 2007-02-05 2011-11-09 住友金属工業株式会社 高強度冷延鋼板およびその製造方法
JP5428705B2 (ja) 2009-09-25 2014-02-26 新日鐵住金株式会社 高靭性鋼板
JP5466552B2 (ja) 2010-03-24 2014-04-09 株式会社神戸製鋼所 伸び、伸びフランジ性および溶接性を兼備した高強度冷延鋼板
JP4947176B2 (ja) * 2010-03-24 2012-06-06 Jfeスチール株式会社 超高強度冷延鋼板の製造方法
JP5824401B2 (ja) 2012-03-30 2015-11-25 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびその製造方法
JP6291289B2 (ja) * 2013-03-06 2018-03-14 株式会社神戸製鋼所 鋼板形状および形状凍結性に優れた高強度冷延鋼板およびその製造方法
EP3128026B1 (en) 2014-03-31 2019-03-06 JFE Steel Corporation High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
CN107429349B (zh) * 2015-03-25 2019-04-23 杰富意钢铁株式会社 冷轧钢板及其制造方法
CN105861926B (zh) * 2016-06-17 2019-01-18 首钢集团有限公司 一种抗拉强度1000MPa的双相钢及其生产方法
EP3486346B1 (en) * 2016-09-28 2020-08-12 JFE Steel Corporation Steel sheet and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
WO2016111271A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016120914A1 (ja) * 2015-01-30 2016-08-04 Jfeスチール株式会社 高強度めっき鋼板およびその製造方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846002B2 (en) 2018-08-22 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
WO2020039697A1 (ja) * 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
KR102507715B1 (ko) * 2018-08-22 2023-03-07 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
JP6645637B1 (ja) * 2018-08-22 2020-02-14 Jfeスチール株式会社 高強度鋼板及びその製造方法
CN112585290A (zh) * 2018-08-22 2021-03-30 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20210032499A (ko) * 2018-08-22 2021-03-24 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
CN112930411A (zh) * 2018-10-18 2021-06-08 杰富意钢铁株式会社 高屈服比高强度电镀锌系钢板及其制造方法
EP3828299A4 (en) * 2018-10-18 2021-06-02 JFE Steel Corporation HIGHLY RESISTANT AND HIGH BENDABLE ELECTROZINGED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME
KR102541248B1 (ko) * 2018-10-18 2023-06-08 제이에프이 스틸 가부시키가이샤 고연성 고강도 전기 아연계 도금 강판 및 그의 제조 방법
KR20210060551A (ko) * 2018-10-18 2021-05-26 제이에프이 스틸 가부시키가이샤 고연성 고강도 전기 아연계 도금 강판 및 그의 제조 방법
KR20210060550A (ko) * 2018-10-18 2021-05-26 제이에프이 스틸 가부시키가이샤 고항복비 고강도 전기 아연계 도금 강판 및 그의 제조 방법
CN112867807A (zh) * 2018-10-18 2021-05-28 杰富意钢铁株式会社 高延展性高强度电镀锌系钢板及其制造方法
EP3828298A4 (en) * 2018-10-18 2021-06-02 JFE Steel Corporation HIGH STRENGTH AND HIGH PERFORMANCE ELECTROZINGOATED STEEL SHEET, AND METHOD OF MANUFACTURING THE SAME
KR102537350B1 (ko) 2018-10-18 2023-05-30 제이에프이 스틸 가부시키가이샤 고항복비 고강도 전기 아연계 도금 강판 및 그의 제조 방법
CN112867807B (zh) * 2018-10-18 2023-04-21 杰富意钢铁株式会社 高延展性高强度电镀锌系钢板及其制造方法
CN112955575A (zh) * 2018-10-31 2021-06-11 杰富意钢铁株式会社 高强度构件、高强度构件的制造方法和高强度构件用钢板的制造方法
CN112955575B (zh) * 2018-10-31 2022-07-08 杰富意钢铁株式会社 高强度构件、高强度构件的制造方法和高强度构件用钢板的制造方法
JP6729835B1 (ja) * 2018-10-31 2020-07-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020090303A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11846003B2 (en) 2018-10-31 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
KR20210092279A (ko) * 2018-12-21 2021-07-23 제이에프이 스틸 가부시키가이샤 강판, 부재 및 이것들의 제조 방법
WO2020129403A1 (ja) * 2018-12-21 2020-06-25 Jfeスチール株式会社 鋼板、部材およびこれらの製造方法
KR102547459B1 (ko) 2018-12-21 2023-06-26 제이에프이 스틸 가부시키가이샤 강판, 부재 및 이것들의 제조 방법
EP3875616A4 (en) * 2018-12-21 2021-10-13 JFE Steel Corporation STEEL SHEET, ELEMENT AND MANUFACTURING PROCESS FOR IT
KR102547460B1 (ko) 2018-12-21 2023-06-26 제이에프이 스틸 가부시키가이샤 강판, 부재 및 이것들의 제조 방법
JPWO2020129403A1 (ja) * 2018-12-21 2021-02-15 Jfeスチール株式会社 鋼板、部材およびこれらの製造方法
KR20210092278A (ko) * 2018-12-21 2021-07-23 제이에프이 스틸 가부시키가이샤 강판, 부재 및 이것들의 제조 방법
EP3922744A4 (en) * 2019-02-06 2022-08-10 Nippon Steel Corporation HOT DIP ZINC COATED STEEL SHEET AND METHOD OF MAKING IT
EP3943623A4 (en) * 2019-03-20 2023-03-01 Nippon Steel Corporation HOT STAMPING MOLDED BODY
EP3950975A4 (en) * 2019-03-29 2022-12-14 Nippon Steel Corporation SHEET STEEL
JP7088140B2 (ja) 2019-08-06 2022-06-21 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP2021025094A (ja) * 2019-08-06 2021-02-22 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
WO2022070636A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板、及び鋼板の製造方法
JP7401826B2 (ja) 2020-09-30 2023-12-20 日本製鉄株式会社 鋼板、及び鋼板の製造方法
JP7239078B1 (ja) * 2021-07-09 2023-03-14 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板及びそれらの製造方法並びに部材
WO2023281939A1 (ja) * 2021-07-09 2023-01-12 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板及びそれらの製造方法並びに部材
JP7260073B1 (ja) * 2021-08-30 2023-04-18 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材
JP7255759B1 (ja) * 2021-08-30 2023-04-11 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材
WO2023032424A1 (ja) * 2021-08-30 2023-03-09 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材
WO2023032423A1 (ja) * 2021-08-30 2023-03-09 Jfeスチール株式会社 高強度鋼板,高強度めっき鋼板及びそれらの製造方法,並びに部材

Also Published As

Publication number Publication date
CN109642294B (zh) 2021-01-26
EP3489382A4 (en) 2019-05-29
JPWO2018062380A1 (ja) 2018-09-27
KR102226643B1 (ko) 2021-03-10
EP3489382B1 (en) 2020-05-13
EP3489382A1 (en) 2019-05-29
JP6354921B1 (ja) 2018-07-11
CN109642294A (zh) 2019-04-16
KR20190034600A (ko) 2019-04-02
MX2019002330A (es) 2019-07-04
US10982297B2 (en) 2021-04-20
US20190194775A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6354921B1 (ja) 鋼板およびその製造方法
JP6388085B2 (ja) 鋼板およびその製造方法
JP6112261B2 (ja) 冷延鋼板およびその製造方法
WO2017026125A1 (ja) 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
WO2014188966A1 (ja) 熱延鋼板及びその製造方法
US20220056549A1 (en) Steel sheet, member, and methods for producing them
WO2020203158A1 (ja) 鋼板
JP6787535B1 (ja) 高強度鋼板およびその製造方法
US20220090247A1 (en) Steel sheet, member, and methods for producing them
WO2022138894A1 (ja) 鋼板、部材およびそれらの製造方法
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP7440800B2 (ja) 鋼板及びその製造方法
JP6947334B1 (ja) 高強度鋼板およびその製造方法
JP2018003115A (ja) 高強度鋼板およびその製造方法
JP7226672B1 (ja) 鋼板、部材およびそれらの製造方法
JP7226673B1 (ja) 鋼板、部材およびそれらの製造方法
JP7140301B1 (ja) 鋼板、部材およびそれらの製造方法
WO2023135983A1 (ja) 高強度鋼板およびその製造方法
US20230021370A1 (en) Steel sheet and method for producing same
JP2022024998A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017567838

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005705

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017856329

Country of ref document: EP

Effective date: 20190225

NENP Non-entry into the national phase

Ref country code: DE