WO2018062164A1 - Sealing agent for liquid crystal display device, vertical conduction material, and liquid crystal display device - Google Patents

Sealing agent for liquid crystal display device, vertical conduction material, and liquid crystal display device Download PDF

Info

Publication number
WO2018062164A1
WO2018062164A1 PCT/JP2017/034711 JP2017034711W WO2018062164A1 WO 2018062164 A1 WO2018062164 A1 WO 2018062164A1 JP 2017034711 W JP2017034711 W JP 2017034711W WO 2018062164 A1 WO2018062164 A1 WO 2018062164A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
liquid crystal
acrylate
crystal display
compound
Prior art date
Application number
PCT/JP2017/034711
Other languages
French (fr)
Japanese (ja)
Inventor
慶枝 松井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017553431A priority Critical patent/JP7007196B2/en
Priority to KR1020187025323A priority patent/KR102466030B1/en
Priority to CN201780014067.2A priority patent/CN108780247A/en
Publication of WO2018062164A1 publication Critical patent/WO2018062164A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that is excellent in curability and stability under reduced pressure. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • a photothermal combined curing type seal as disclosed in Patent Document 1 and Patent Document 2 is used from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a liquid crystal dropping method called a dropping method using an agent is used. In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. .
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were.
  • An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in sclerosis
  • hardenability and stability under reduced pressure. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
  • the present invention contains a curable resin, a maleimide compound, and a radical polymerization initiator, the curable resin contains a compound having a molecular weight of 500 to 1500, and the molecular weight in 100 parts by weight of the curable resin is 500.
  • This inventor examined improving the stability of the sealing agent under reduced pressure by using a compound having a specific range of molecular weight as the curable resin used for the sealing agent.
  • the obtained sealing agent is excellent in stability under reduced pressure, there is a problem that it is inferior in reactivity (curability).
  • the content of the compound having a molecular weight in the specific range or the content of the polymerization initiator is adjusted, it is difficult to achieve both curability and stability under reduced pressure. Therefore, as a result of further intensive studies, the present inventors have determined that the content of the compound having the molecular weight in the specific range is a specific ratio, and that the maleimide compound is used in addition to the curable resin, so that the curability and the pressure can be reduced. It has been found that a sealing agent for liquid crystal display elements that can achieve both stability and stability can be obtained, and the present invention has been completed.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin contains a compound having a molecular weight of 500 to 1500.
  • the sealing agent for liquid crystal display elements of the present invention is excellent in stability under reduced pressure.
  • the preferable lower limit of the molecular weight of the compound having a molecular weight of 500 to 1500 is 600, the preferable upper limit is 1300, the more preferable lower limit is 700, and the more preferable upper limit is 1000.
  • the “molecular weight” is a molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of polymerization degree and a compound whose modification site is unspecified. , Sometimes expressed using weight average molecular weight.
  • the above “weight average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko). Further, as will be described later, in the present invention, the maleimide compound is not included in the curable resin.
  • the curable resin preferably contains a (meth) acrylic compound having a molecular weight of 500 to 1500 as the compound having a molecular weight of 500 to 1500.
  • the (meth) acrylic compound having a molecular weight of 500 to 1500 is preferably an epoxy (meth) acrylate having a molecular weight of 500 to 1500 obtained by reacting (meth) acrylic acid with an epoxy compound.
  • the (meth) acrylic compound having a molecular weight of 500 to 1500 preferably has two or more (meth) acryloyl groups in one molecule because of its high reactivity.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl compound” means an acryloyl group or a methacryloyl group (hereinafter referred to as “(meth) acryloyl group”). Also referred to as).
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy compound with (meth) acrylic acid.
  • the (meth) acrylic compound having a molecular weight of 500 to 1500 include, for example, phenol novolac type epoxy (meth) acrylate, orthocresol novolac type epoxy (meth) acrylate, and dicyclopentadiene novolac type epoxy (meth) acrylate.
  • the preferable lower limit of the content of the compound having a molecular weight of 500 to 1500 in 100 parts by weight of the curable resin is 10 parts by weight, and the preferable upper limit is 50 parts by weight.
  • the content of the compound having a molecular weight of 500 to 1500 is within this range, the obtained sealing agent for liquid crystal display elements has an excellent effect of achieving both curability and stability under reduced pressure.
  • a more preferable lower limit of the content of the compound having a molecular weight of 500 to 1500 is 20 parts by weight, and a more preferable upper limit is 30 parts by weight.
  • the curable resin contains other curable resins in addition to the compound having a molecular weight of 500 to 1500.
  • the other curable resin is preferably a compound having a molecular weight of less than 500.
  • Examples of the compound having a molecular weight of less than 500 include (meth) acrylic compounds having a molecular weight of less than 500, epoxy compounds having a molecular weight of less than 500, and the like.
  • Examples of the (meth) acrylic compound having a molecular weight of less than 500 include, for example, a (meth) acrylic acid ester compound having a molecular weight of less than 500, an epoxy (meth) acrylate having a molecular weight of less than 500, and a urethane (meth) acrylate having a molecular weight of less than 500. Etc. Of these, epoxy (meth) acrylate having a molecular weight of less than 500 is preferred.
  • the (meth) acrylic compound having a molecular weight of less than 500 preferably has two or more (meth) acryloyl groups in one molecule because of its high reactivity.
  • Examples of monofunctional compounds among the (meth) acrylic acid ester compounds having a molecular weight of less than 500 include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl ( (Meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl
  • Examples of the bifunctional one of the (meth) acrylic acid ester compounds having a molecular weight of less than 500 include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Tetraethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Neopentyl glycol di (meta Acrylate, dimethylol dicyclopent
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, glycerin tri ( And (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, pentaerythritol tetra (meth) acrylate, and the like.
  • Examples of the epoxy (meth) acrylate having a molecular weight of less than 500 include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound used as a raw material for synthesizing an epoxy (meth) acrylate having a molecular weight of less than 500 include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol E diglycidyl ether, and hydrogenated bisphenol A diglycidyl.
  • the urethane (meth) acrylate having a molecular weight of less than 500 is, for example, 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. It can be obtained by reacting.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated Examples include MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, tetramethylxylylene diisocyanate, and the like.
  • MDI isophorone diisocyanate
  • 2,4-tolylene diisocyanate 2,6-tolylene diisocyanate
  • hexamethylene diisocyanate trimethylhexamethylene diisocyanate
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl (meth) acrylate and mono (meth) acrylate of a divalent alcohol.
  • Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like. It is done.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and the like.
  • the epoxy compound having a molecular weight of less than 500 examples include an epoxy compound used as a raw material for synthesizing an epoxy (meth) acrylate having a molecular weight of less than 500, a partial (meth) acryl-modified epoxy resin having a molecular weight of less than 500, and the like.
  • the partial (meth) acryl-modified epoxy resin means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy groups. It can be obtained by reacting a part of the epoxy group of the epoxy compound having a methacrylic acid with (meth) acrylic acid.
  • the sealing agent for liquid crystal display elements of this invention contains a maleimide compound.
  • the sealing agent for liquid crystal display elements of the present invention has excellent curability.
  • the maleimide compound is not contained in either a curable resin or a radical polymerization initiator.
  • the maleimide compound is preferably a polyfunctional maleimide compound having two or more maleimide groups in one molecule from the viewpoint of reactivity.
  • a preferred lower limit of the molecular weight of the maleimide compound is 400.
  • the resulting sealant for a liquid crystal display element is more excellent in the effect of achieving both curability and stability under reduced pressure.
  • a more preferred lower limit of the molecular weight of the maleimide compound is 500.
  • the upper limit with preferable molecular weight of the said maleimide compound is 1500, and a more preferable upper limit is 1000.
  • maleimide compound a compound represented by the following formula (1) or a compound represented by the following formula (2) is preferably used.
  • R 1 represents an alkylene group having 2 to 3 carbon atoms, and n is an integer of 2 to 40.
  • R 2 represents a divalent aliphatic group having 1 to 40 carbon atoms.
  • R 2 preferably has 12 to 36 carbon atoms.
  • R 2 preferably has an aliphatic ring.
  • Specific examples of the compound represented by the above formula (2) include 1,20-bismaleimide-10,11-dioctyl-eicosane (compound represented by the following formula (3-1)), 1- Heptylenemaleimide-2-octylenemaleimide-4-octyl-5-heptylcyclohexane (compound represented by the following formula (3-2)), 1,2-dioctylenemaleimide-3-octyl-4-hexyl And cyclohexane (a compound represented by the following formula (3-3)). These compounds can be synthesized by the method described in US Pat. No. 5,973,166.
  • the minimum with preferable content of the said maleimide compound with respect to 100 weight part of said curable resins is 1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the content of the maleimide compound is in this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both curability and stability under reduced pressure.
  • a more preferred lower limit for the content of the maleimide compound is 3 parts by weight, and a more preferred upper limit is 8 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention contains a radical polymerization initiator.
  • a radical polymerization initiator a photo radical polymerization initiator or a thermal radical polymerization initiator can be used. Of these, a radical photopolymerization initiator is preferable. Further, as described above, in the present invention, the maleimide compound is not included in the radical polymerization initiator.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like. Of these, oxime ester compounds are preferred.
  • oxime ester compounds examples include 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), O-acetyl-1- (6- (2-methylbenzoyl) ) -9-ethyl-9H-carbazol-3-yl) ethanone oxime and the like.
  • Examples of commercially available photo radical polymerization initiators include IRGACURE OXE01, IRGACURE OXE02, IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE Benzo F2 Examples include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • a polymer azo initiator composed of a polymer azo compound is preferable.
  • the “polymer azo compound” means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. means.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • Examples of the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo compound include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) and terminal. Examples thereof include polycondensates of polydimethylsiloxane having an amino group.
  • Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.).
  • Examples of the azo compound that is not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the radical polymerization initiator is within this range, the curability can be improved without deteriorating the storage stability of the obtained sealing agent for liquid crystal display elements.
  • the minimum with more preferable content of the said radical polymerization initiator is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
  • thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include, for example, SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the flexible particles include silicone particles, vinyl particles, urethane particles, fluorine particles, and nitrile particles. Of these, silicone particles and vinyl particles are preferable.
  • a silicone rubber particle is preferable from a dispersible viewpoint to resin.
  • (Meth) acrylic particles are preferably used as the vinyl particles.
  • the (meth) acrylic particles can be obtained by polymerizing monomers as raw materials by a known method. Specifically, for example, a method in which a monomer is suspension-polymerized in the presence of a radical polymerization initiator, and a seed particle is swollen by absorbing the monomer into a non-crosslinked seed particle in the presence of a radical polymerization initiator. And a seed polymerization method.
  • Examples of the monomer that is a raw material for forming the (meth) acrylic particles include alkyl (meth) acrylates, oxygen atom-containing (meth) acrylates, nitrile-containing monomers, and fluorine-containing (meth) acrylates. Monofunctional monomers such as the like.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2- Examples include ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
  • oxygen atom-containing (meth) acrylates examples include 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and the like.
  • nitrile-containing monomer examples include (meth) acrylonitrile. Examples thereof include trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate.
  • alkyl (meth) acrylates are preferable because the Tg of the homopolymer is low and the deformation amount when a 1 g load is applied can be increased.
  • tetramethylol methane tetra (meth) acrylate tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, trimethylol propane tri (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid
  • the preferable lower limit is 1% by weight and the preferable upper limit is 90% by weight in the whole monomer as a raw material for forming the (meth) acrylic particles.
  • the amount of the crosslinkable monomer used is 1% by weight or more, the solvent resistance is improved, and when kneaded with various sealant raw materials, problems such as swelling do not occur and the particles are easily dispersed uniformly.
  • the amount of the crosslinkable monomer used is 90% by weight or less, the recovery rate can be lowered.
  • a more preferable lower limit of the amount of the crosslinkable monomer used is 3% by weight, and a more preferable upper limit is 80% by weight.
  • styrene monomers In addition to these acrylic monomers, styrene monomers, vinyl ethers, carboxylic acid vinyl esters, unsaturated hydrocarbons, halogen-containing monomers, triallyl cyanurate, triallyl isocyanurate, Monomers such as triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, ⁇ - (meth) acryloxypropyltrimethoxysilane, vinyltrimethoxysilane may be used.
  • the styrene monomer include styrene, ⁇ -methylstyrene, trimethoxysilylstyrene, and the like.
  • Examples of the vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and the like.
  • Examples of the carboxylic acid vinyl esters include vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate.
  • Examples of the unsaturated hydrocarbon include ethylene, propylene, isoprene, butadiene and the like.
  • Examples of the halogen-containing monomer include vinyl chloride, vinyl fluoride, chlorostyrene, and the like.
  • core-shell (meth) acrylate copolymer fine particles are also preferably used.
  • core-shell (meth) acrylate copolymer fine particles include F351 (manufactured by Zeon Kasei Co., Ltd.).
  • vinyl particles for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.
  • the preferable lower limit of the average particle diameter of the flexible particles is 0.01 ⁇ m, and the preferable upper limit is 10 ⁇ m.
  • the more preferable lower limit of the average particle diameter of the flexible particles is 0.1 ⁇ m, and the more preferable upper limit is 8 ⁇ m.
  • the average particle diameter of the said flexible particle means the value obtained by measuring using the laser diffraction type particle size distribution measuring apparatus about the particle
  • the laser diffraction particle size distribution measuring device Mastersizer 2000 (manufactured by Malvern) or the like can be used.
  • the preferable lower limit of the hardness of the flexible particles is 10, and the preferable upper limit is 50.
  • the more preferable lower limit of the hardness of the soft particles is 20, and the more preferable upper limit is 40.
  • the hardness of the said flexible particle means the durometer A hardness measured by the method based on JISK6253.
  • the preferable lower limit of the content of the flexible particles in 100 parts by weight of the sealing agent for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 50 parts by weight.
  • grain is 10 weight part, and a more preferable upper limit is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
  • Examples of the filler include inorganic fillers and organic fillers other than those contained in the flexible particles.
  • Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesion to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • the light-shielding agent examples include titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black.
  • the iron oxide, titanium oxide, etc. which were mentioned as said inorganic filler can also be used as said light-shielding agent.
  • titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between the board
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without lowering the adhesion to the substrate, the strength after curing, and the drawability. it can.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • the sealing agent for liquid crystal display elements of the present invention further contains additives such as a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be.
  • Examples of the method for producing the sealing agent for liquid crystal display elements of the present invention include a curable resin and a maleimide using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
  • the method etc. which mix a compound, a radical polymerization initiator, the silane coupling agent etc. which are added as needed are mentioned.
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • a liquid crystal dropping method is preferably used as a method for producing the liquid crystal display element of the present invention.
  • a method having the following steps First, the sealant for liquid crystal display element of the present invention is applied to one of two substrates such as a glass substrate with an electrode such as an ITO thin film or a polyethylene terephthalate substrate by screen printing, dispenser application, etc. A step of forming a pattern is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, a step of applying droplets of liquid crystals into the frame of the seal pattern of the substrate and superimposing another substrate under vacuum is performed.
  • a liquid crystal display element can be obtained by the method of irradiating light, such as an ultraviolet-ray, to the seal pattern part of the sealing agent for liquid crystal display elements of this invention, and photocuring a sealing agent.
  • a step of heating and thermosetting the sealant may be performed.
  • the sealing compound for liquid crystal display elements which is excellent in sclerosis
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • Examples 1 to 9 and Comparative Examples 1 to 6 According to the blending ratios described in Tables 1 and 2, each material was mixed using a planetary stirrer ("Shinky”, “Awatori Nertaro”), and then mixed by using three rolls. Sealants for liquid crystal display elements of Examples 1 to 9 and Comparative Examples 1 to 6 were prepared. Note that dimaleimide acetate of polytetramethylene ether glycol (manufactured by DIC, “LUMICURE MIA200”) described in the table as a maleimide compound is a compound represented by the above formula (1).
  • the sealing compound for liquid crystal display elements which is excellent in sclerosis
  • the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

An objective of the present invention is to provide a sealing agent for a liquid crystal display device which has excellent curability and is extremely safe under reduced pressure. In addition, another objective of the present invention is to provide a vertical conduction material and a liquid crystal display device which are made by using the sealing agent for a liquid crystal display device. The present invention relates to a sealing agent for a liquid crystal display device, the sealing agent containing a curable resin, a maleimide compound, and a radical polymerization initiator, wherein the curable resin contains a compound having a molecular weight of 500-1500, and the content of the compound having a molecular weight of 500-1500 is 10-50 parts by weight on the basis of 100 parts by weight of the curable resin.

Description

液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
本発明は、硬化性及び減圧下での安定性に優れる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that is excellent in curability and stability under reduced pressure. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, a photothermal combined curing type seal as disclosed in Patent Document 1 and Patent Document 2 is used from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using an agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a method for reducing the size of the apparatus, there is a narrow frame of the liquid crystal display unit. For example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、溶出したシール剤成分による硬化反応が液晶中において進行することで液晶汚染が発生するという問題があった。液晶汚染を抑制するために反応性の高い硬化性樹脂を用いた場合、液晶表示素子の製造工程において基板貼り合わせ時に減圧した際に、シール剤の安定性が悪くなって部分的に硬化し、貼り合わせ後のシール剤の直線性が損なわれる等の問題があった。 However, in the narrow frame design, the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were. When a highly reactive curable resin is used to suppress liquid crystal contamination, when the pressure is reduced at the time of bonding the substrates in the manufacturing process of the liquid crystal display element, the stability of the sealing agent is deteriorated and partially cured, There was a problem that the linearity of the sealing agent after bonding was impaired.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
本発明は、硬化性及び減圧下での安定性に優れる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in sclerosis | hardenability and stability under reduced pressure. Another object of the present invention is to provide a vertical conduction material and a liquid crystal display element using the sealing agent for a liquid crystal display element.
本発明は、硬化性樹脂とマレイミド化合物とラジカル重合開始剤とを含有し、上記硬化性樹脂は、分子量が500~1500の化合物を含有し、上記硬化性樹脂100重量部中における上記分子量が500~1500の化合物の含有量が10~50重量部である液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention contains a curable resin, a maleimide compound, and a radical polymerization initiator, the curable resin contains a compound having a molecular weight of 500 to 1500, and the molecular weight in 100 parts by weight of the curable resin is 500. A sealing agent for a liquid crystal display device, wherein the content of the compound of ˜1500 is 10 to 50 parts by weight.
The present invention is described in detail below.
本発明者は、シール剤に用いる硬化性樹脂として、特定の範囲の分子量を有する化合物を用いることにより、減圧下におけるシール剤の安定性を向上させることを検討した。しかしながら、得られたシール剤は、減圧下での安定性には優れるものの、反応性(硬化性)に劣るという問題があった。該特定の範囲の分子量を有する化合物や重合開始剤の含有量を調整しても、硬化性と減圧下での安定性とを両立することは困難であった。
そこで本発明者は更に鋭意検討した結果、該特定の範囲の分子量を有する化合物の含有量を特定の割合としつつ、硬化性樹脂に加えてマレイミド化合物を用いることにより、硬化性と減圧下での安定性とを両立できる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
This inventor examined improving the stability of the sealing agent under reduced pressure by using a compound having a specific range of molecular weight as the curable resin used for the sealing agent. However, although the obtained sealing agent is excellent in stability under reduced pressure, there is a problem that it is inferior in reactivity (curability). Even when the content of the compound having a molecular weight in the specific range or the content of the polymerization initiator is adjusted, it is difficult to achieve both curability and stability under reduced pressure.
Therefore, as a result of further intensive studies, the present inventors have determined that the content of the compound having the molecular weight in the specific range is a specific ratio, and that the maleimide compound is used in addition to the curable resin, so that the curability and the pressure can be reduced. It has been found that a sealing agent for liquid crystal display elements that can achieve both stability and stability can be obtained, and the present invention has been completed.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、分子量が500~1500の化合物を含有する。上記分子量が500~1500の化合物を用いることにより、本発明の液晶表示素子用シール剤は、減圧下での安定性に優れるものとなる。
上記分子量が500~1500の化合物の分子量の好ましい下限は600、好ましい上限は1300、より好ましい下限は700、より好ましい上限は1000である。
なお、本明細書において、上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、重量平均分子量を用いて表す場合がある。本明細書において、上記「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
また、後述するように、本発明においてマレイミド化合物は、上記硬化性樹脂には含まない。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin contains a compound having a molecular weight of 500 to 1500. By using the compound having a molecular weight of 500 to 1500, the sealing agent for liquid crystal display elements of the present invention is excellent in stability under reduced pressure.
The preferable lower limit of the molecular weight of the compound having a molecular weight of 500 to 1500 is 600, the preferable upper limit is 1300, the more preferable lower limit is 700, and the more preferable upper limit is 1000.
In the present specification, the “molecular weight” is a molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of polymerization degree and a compound whose modification site is unspecified. , Sometimes expressed using weight average molecular weight. In the present specification, the above “weight average molecular weight” is a value determined by polystyrene conversion after measurement by gel permeation chromatography (GPC). Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko).
Further, as will be described later, in the present invention, the maleimide compound is not included in the curable resin.
上記硬化性樹脂は、上記分子量が500~1500の化合物として、分子量が500~1500の(メタ)アクリル化合物を含有することが好ましい。
上記分子量が500~1500の(メタ)アクリル化合物としては、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られる分子量が500~1500のエポキシ(メタ)アクリレートが好ましい。また、上記分子量が500~1500の(メタ)アクリル化合物は、反応性の高さから1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、アクリロイル基又はメタクリロイル基(以下、「(メタ)アクリロイル基」ともいう)を有する化合物を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The curable resin preferably contains a (meth) acrylic compound having a molecular weight of 500 to 1500 as the compound having a molecular weight of 500 to 1500.
The (meth) acrylic compound having a molecular weight of 500 to 1500 is preferably an epoxy (meth) acrylate having a molecular weight of 500 to 1500 obtained by reacting (meth) acrylic acid with an epoxy compound. The (meth) acrylic compound having a molecular weight of 500 to 1500 preferably has two or more (meth) acryloyl groups in one molecule because of its high reactivity.
In the present specification, the “(meth) acryl” means acryl or methacryl, and the “(meth) acryl compound” means an acryloyl group or a methacryloyl group (hereinafter referred to as “(meth) acryloyl group”). Also referred to as). The “(meth) acrylate” means acrylate or methacrylate. Furthermore, the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy compound with (meth) acrylic acid.
上記分子量が500~1500の(メタ)アクリル化合物としては、具体的には例えば、フェノールノボラック型エポキシ(メタ)アクリレート、オルトクレゾールノボラック型エポキシ(メタ)アクリレート、ジシクロペンタジエンノボラック型エポキシ(メタ)アクリレート、ビフェニルノボラック型エポキシ(メタ)アクリレート、ナフタレンフェノールノボラック型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールE型エポキシ(メタ)アクリレート、ビスフェノールS型エポキシ(メタ)アクリレート、2,2’-ジアリルビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノール型エポキシ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールA型エポキシ(メタ)アクリレート、カプロラクトン変性ビスフェノールA型エポキシ(メタ)アクリレート、レゾルシノール型エポキシ(メタ)アクリレート、ビフェニル型エポキシ(メタ)アクリレート、スルフィド型エポキシ(メタ)アクリレート、ジフェニルエーテル型エポキシ(メタ)アクリレート、ジシクロペンタジエン型エポキシ(メタ)アクリレート、ナフタレン型エポキシ(メタ)アクリレート、グリシジルアミン型エポキシ(メタ)アクリレート、アルキルポリオール型エポキシ(メタ)アクリレート、ゴム変性型エポキシ(メタ)アクリレート等が挙げられる。 Specific examples of the (meth) acrylic compound having a molecular weight of 500 to 1500 include, for example, phenol novolac type epoxy (meth) acrylate, orthocresol novolac type epoxy (meth) acrylate, and dicyclopentadiene novolac type epoxy (meth) acrylate. , Biphenyl novolac type epoxy (meth) acrylate, naphthalenephenol novolac type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol E type epoxy (meth) acrylate, bisphenol S type Epoxy (meth) acrylate, 2,2'-diallylbisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol type epoxy (meth) acrylic Propylene oxide-added bisphenol A type epoxy (meth) acrylate, caprolactone-modified bisphenol A type epoxy (meth) acrylate, resorcinol type epoxy (meth) acrylate, biphenyl type epoxy (meth) acrylate, sulfide type epoxy (meth) acrylate, Diphenyl ether type epoxy (meth) acrylate, dicyclopentadiene type epoxy (meth) acrylate, naphthalene type epoxy (meth) acrylate, glycidylamine type epoxy (meth) acrylate, alkyl polyol type epoxy (meth) acrylate, rubber-modified epoxy (meth) ) Acrylate and the like.
上記硬化性樹脂100重量部中における上記分子量が500~1500の化合物の含有量の好ましい下限は10重量部、好ましい上限は50重量部である。上記分子量が500~1500の化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、硬化性と減圧下での安定性とを両立する効果に優れるものとなる。上記分子量が500~1500の化合物の含有量のより好ましい下限は20重量部、より好ましい上限は30重量部である。 The preferable lower limit of the content of the compound having a molecular weight of 500 to 1500 in 100 parts by weight of the curable resin is 10 parts by weight, and the preferable upper limit is 50 parts by weight. When the content of the compound having a molecular weight of 500 to 1500 is within this range, the obtained sealing agent for liquid crystal display elements has an excellent effect of achieving both curability and stability under reduced pressure. A more preferable lower limit of the content of the compound having a molecular weight of 500 to 1500 is 20 parts by weight, and a more preferable upper limit is 30 parts by weight.
上記硬化性樹脂は、上記分子量が500~1500の化合物に加えて、その他の硬化性樹脂を含有する。上記その他の硬化性樹脂としては、分子量が500未満の化合物が好ましい。 The curable resin contains other curable resins in addition to the compound having a molecular weight of 500 to 1500. The other curable resin is preferably a compound having a molecular weight of less than 500.
上記分子量が500未満の化合物としては、例えば、分子量が500未満の(メタ)アクリル化合物、分子量が500未満のエポキシ化合物等が挙げられる。
上記分子量が500未満の(メタ)アクリル化合物としては、例えば、分子量が500未満の(メタ)アクリル酸エステル化合物、分子量が500未満のエポキシ(メタ)アクリレート、分子量が500未満のウレタン(メタ)アクリレート等が挙げられる。なかでも、分子量が500未満のエポキシ(メタ)アクリレートが好ましい。また、上記分子量が500未満の(メタ)アクリル化合物は、反応性の高さから1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
Examples of the compound having a molecular weight of less than 500 include (meth) acrylic compounds having a molecular weight of less than 500, epoxy compounds having a molecular weight of less than 500, and the like.
Examples of the (meth) acrylic compound having a molecular weight of less than 500 include, for example, a (meth) acrylic acid ester compound having a molecular weight of less than 500, an epoxy (meth) acrylate having a molecular weight of less than 500, and a urethane (meth) acrylate having a molecular weight of less than 500. Etc. Of these, epoxy (meth) acrylate having a molecular weight of less than 500 is preferred. The (meth) acrylic compound having a molecular weight of less than 500 preferably has two or more (meth) acryloyl groups in one molecule because of its high reactivity.
上記分子量が500未満の(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Examples of monofunctional compounds among the (meth) acrylic acid ester compounds having a molecular weight of less than 500 include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl ( (Meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate 4-hydroxybutyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl ( (Meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethyl carbitol (meth) ) Acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-O Tafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl Examples include hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2- (meth) acryloyloxyethyl phosphate, and glycidyl (meth) acrylate.
また、上記分子量が500未満の(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional one of the (meth) acrylic acid ester compounds having a molecular weight of less than 500 include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Tetraethylene glycol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Neopentyl glycol di (meta Acrylate, dimethylol dicyclopentadienyl di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate Etc.
また、上記分子量が500未満の(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 Further, among the (meth) acrylic acid ester compounds having a molecular weight of less than 500, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, glycerin tri ( And (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, pentaerythritol tetra (meth) acrylate, and the like.
上記分子量が500未満のエポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate having a molecular weight of less than 500 include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
上記分子量が500未満のエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールEジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールEジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ビフェニル-4,4’-ジイルビス(グリシジルエーテル)、1,6-ナフタレンジイルビス(グリシジルエーテル)、エチレングリコールジグリシジルエーテル、1,3-プロパンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル等が挙げられる。 Examples of the epoxy compound used as a raw material for synthesizing an epoxy (meth) acrylate having a molecular weight of less than 500 include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol E diglycidyl ether, and hydrogenated bisphenol A diglycidyl. Ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol E diglycidyl ether, resorcinol diglycidyl ether, biphenyl-4,4′-diylbis (glycidyl ether), 1,6-naphthalenediylbis (glycidyl ether), ethylene glycol Examples include diglycidyl ether, 1,3-propanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, and the like.
上記分子量が500未満のウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate having a molecular weight of less than 500 is, for example, 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with respect to 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. It can be obtained by reacting.
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、テトラメチルキシリレンジイソシアネート等が挙げられる。 Examples of the isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated Examples include MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, tetramethylxylylene diisocyanate, and the like.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキル(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール等が挙げられる。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl (meth) acrylate and mono (meth) acrylate of a divalent alcohol.
Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like. It is done.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and the like.
上記分子量が500未満のエポキシ化合物としては、例えば、上記分子量が500未満のエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、分子量が500未満の部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味し、例えば、2つ以上のエポキシ基を有するエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
Examples of the epoxy compound having a molecular weight of less than 500 include an epoxy compound used as a raw material for synthesizing an epoxy (meth) acrylate having a molecular weight of less than 500, a partial (meth) acryl-modified epoxy resin having a molecular weight of less than 500, and the like. Is mentioned.
In the present specification, the partial (meth) acryl-modified epoxy resin means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy groups. It can be obtained by reacting a part of the epoxy group of the epoxy compound having a methacrylic acid with (meth) acrylic acid.
本発明の液晶表示素子用シール剤は、マレイミド化合物を含有する。上記マレイミド化合物を用いることにより、本発明の液晶表示素子用シール剤は、硬化性に優れるものとなる。
なお、本発明において上記マレイミド化合物は、硬化性樹脂にもラジカル重合開始剤にも含まない。
The sealing agent for liquid crystal display elements of this invention contains a maleimide compound. By using the maleimide compound, the sealing agent for liquid crystal display elements of the present invention has excellent curability.
In the present invention, the maleimide compound is not contained in either a curable resin or a radical polymerization initiator.
上記マレイミド化合物は、反応性の観点から、1分子中に2個以上のマレイミド基を有する多官能マレイミド化合物であることが好ましい。 The maleimide compound is preferably a polyfunctional maleimide compound having two or more maleimide groups in one molecule from the viewpoint of reactivity.
上記マレイミド化合物の分子量の好ましい下限は400である。上記マレイミド化合物の分子量が400以上であることにより、得られる液晶表示素子用シール剤が、硬化性と減圧下での安定性とを両立する効果により優れるものとなる。上記マレイミド化合物の分子量のより好ましい下限は500である。
また、反応性の観点から、上記マレイミド化合物の分子量の好ましい上限は1500、より好ましい上限は1000である。
A preferred lower limit of the molecular weight of the maleimide compound is 400. When the molecular weight of the maleimide compound is 400 or more, the resulting sealant for a liquid crystal display element is more excellent in the effect of achieving both curability and stability under reduced pressure. A more preferred lower limit of the molecular weight of the maleimide compound is 500.
Moreover, from a reactive viewpoint, the upper limit with preferable molecular weight of the said maleimide compound is 1500, and a more preferable upper limit is 1000.
上記マレイミド化合物としては、下記式(1)で表される化合物や下記式(2)で表される化合物が好適に用いられる。 As the maleimide compound, a compound represented by the following formula (1) or a compound represented by the following formula (2) is preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、炭素数2~3のアルキレン基を表し、nは、2~40の整数である。 In the formula (1), R 1 represents an alkylene group having 2 to 3 carbon atoms, and n is an integer of 2 to 40.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(2)中、Rは、炭素数1~40の2価の脂肪族基を表す。 In the formula (2), R 2 represents a divalent aliphatic group having 1 to 40 carbon atoms.
上記式(2)中、Rの炭素数は、12~36であることが好ましい。また、Rは、脂肪族環を有することが好ましい。
上記式(2)で表される化合物としては、具体的には例えば、1,20-ビスマレイミド-10,11-ジオクチル-エイコサン(下記式(3-1)で表される化合物)、1-ヘプチレンマレイミド-2-オクチレンマレイミド-4-オクチル-5-ヘプチルシクロヘキサン(下記式(3-2)で表される化合物)、1,2-ジオクチレンマレイミド-3-オクチル-4-ヘキシルシクロヘキサン(下記式(3-3)で表される化合物)等が挙げられる。これらの化合物は、米国特許第5973166号明細書に記載の方法等によって合成することができる。
In the above formula (2), R 2 preferably has 12 to 36 carbon atoms. R 2 preferably has an aliphatic ring.
Specific examples of the compound represented by the above formula (2) include 1,20-bismaleimide-10,11-dioctyl-eicosane (compound represented by the following formula (3-1)), 1- Heptylenemaleimide-2-octylenemaleimide-4-octyl-5-heptylcyclohexane (compound represented by the following formula (3-2)), 1,2-dioctylenemaleimide-3-octyl-4-hexyl And cyclohexane (a compound represented by the following formula (3-3)). These compounds can be synthesized by the method described in US Pat. No. 5,973,166.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記硬化性樹脂100重量部に対する上記マレイミド化合物の含有量の好ましい下限は1重量部、好ましい上限は10重量部である。上記マレイミド化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が、硬化性と減圧下での安定性とを両立する効果により優れるものとなる。上記マレイミド化合物の含有量のより好ましい下限は3重量部、より好ましい上限は8重量部である。 The minimum with preferable content of the said maleimide compound with respect to 100 weight part of said curable resins is 1 weight part, and a preferable upper limit is 10 weight part. When the content of the maleimide compound is in this range, the obtained sealing agent for liquid crystal display elements is more excellent in the effect of achieving both curability and stability under reduced pressure. A more preferred lower limit for the content of the maleimide compound is 3 parts by weight, and a more preferred upper limit is 8 parts by weight.
本発明の液晶表示素子用シール剤は、ラジカル重合開始剤を含有する。
上記ラジカル重合開始剤としては、光ラジカル重合開始剤や熱ラジカル重合開始剤を用いることができる。なかでも、光ラジカル重合開始剤が好ましい。
また、上述したように、本発明においてマレイミド化合物は、上記ラジカル重合開始剤には含まない。
The sealing agent for liquid crystal display elements of the present invention contains a radical polymerization initiator.
As the radical polymerization initiator, a photo radical polymerization initiator or a thermal radical polymerization initiator can be used. Of these, a radical photopolymerization initiator is preferable.
Further, as described above, in the present invention, the maleimide compound is not included in the radical polymerization initiator.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。なかでも、オキシムエステル系化合物が好ましい。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like. Of these, oxime ester compounds are preferred.
上記オキシムエステル系化合物としては、例えば、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、O-アセチル-1-(6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル)エタノンオキシム等が挙げられる。 Examples of the oxime ester compounds include 1- (4- (phenylthio) phenyl) -1,2-octanedione 2- (O-benzoyloxime), O-acetyl-1- (6- (2-methylbenzoyl) ) -9-ethyl-9H-carbazol-3-yl) ethanone oxime and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE OXE01、IRGACURE OXE02、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available photo radical polymerization initiators include IRGACURE OXE01, IRGACURE OXE02, IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE Benzo F2 Examples include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, a polymer azo initiator composed of a polymer azo compound is preferable.
In the present specification, the “polymer azo compound” means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. means.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo compound is within this range, it can be easily mixed with a curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ化合物としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo compound include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) and terminal. Examples thereof include polycondensates of polydimethylsiloxane having an amino group.
Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). .
Examples of the azo compound that is not a polymer include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記ラジカル重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の保存安定性等を悪化させることなく、硬化性により優れるものとすることができる。上記ラジカル重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the radical polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the radical polymerization initiator is within this range, the curability can be improved without deteriorating the storage stability of the obtained sealing agent for liquid crystal display elements. The minimum with more preferable content of the said radical polymerization initiator is 0.5 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
The sealing agent for liquid crystal display elements of the present invention may contain a thermosetting agent.
Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available organic acid hydrazides include, for example, SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、より熱硬化性に優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the thermosetting agent is within this range, the thermosetting property can be further improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、硬化物の柔軟性や接着性等を向上させたり、液晶のシール剤への差し込みやシール剤の液晶への溶出を抑制したりする等の観点から、柔軟粒子を含有することが好ましい。 From the standpoint of improving the flexibility and adhesiveness of the cured product, suppressing the elution of the sealing agent into the liquid crystal and the sealing agent for the liquid crystal display element of the present invention, It is preferable to contain soft particles.
上記柔軟粒子としては、例えば、シリコーン系粒子、ビニル系粒子、ウレタン系粒子、フッ素系粒子、ニトリル系粒子等が挙げられる。なかでも、シリコーン系粒子、ビニル系粒子が好ましい。 Examples of the flexible particles include silicone particles, vinyl particles, urethane particles, fluorine particles, and nitrile particles. Of these, silicone particles and vinyl particles are preferable.
上記シリコーン系粒子としては、樹脂への分散性の観点からシリコーンゴム粒子が好ましい。 As said silicone type particle | grain, a silicone rubber particle is preferable from a dispersible viewpoint to resin.
上記ビニル系粒子としては、(メタ)アクリル粒子が好適に用いられる。
上記(メタ)アクリル粒子は、原料となる単量体を公知の方法により重合させることで得ることができる。具体的には例えば、ラジカル重合開始剤の存在下で単量体を懸濁重合する方法、ラジカル重合開始剤の存在下で非架橋の種粒子に単量体を吸収させることにより種粒子を膨潤させてシード重合する方法等が挙げられる。
(Meth) acrylic particles are preferably used as the vinyl particles.
The (meth) acrylic particles can be obtained by polymerizing monomers as raw materials by a known method. Specifically, for example, a method in which a monomer is suspension-polymerized in the presence of a radical polymerization initiator, and a seed particle is swollen by absorbing the monomer into a non-crosslinked seed particle in the presence of a radical polymerization initiator. And a seed polymerization method.
上記(メタ)アクリル粒子を形成するための原料となる単量体としては、例えば、アルキル(メタ)アクリレート類、酸素原子含有(メタ)アクリレート類、ニトリル含有単量体、フッ素含有(メタ)アクリレート類等の単官能単量体が挙げられる。
上記アルキル(メタ)アクリレート類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。
上記酸素原子含有(メタ)アクリレート類としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。
上記ニトリル含有単量体としては、例えば、(メタ)アクリロニトリル等が挙げられる。
上記トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等が挙げられる。
なかでも、単独重合体のTgが低く、1g荷重を加えたときの変形量を大きくすることができることから、アルキル(メタ)アクリレート類が好ましい。
Examples of the monomer that is a raw material for forming the (meth) acrylic particles include alkyl (meth) acrylates, oxygen atom-containing (meth) acrylates, nitrile-containing monomers, and fluorine-containing (meth) acrylates. Monofunctional monomers such as the like.
Examples of the alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2- Examples include ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
Examples of the oxygen atom-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, and the like.
Examples of the nitrile-containing monomer include (meth) acrylonitrile.
Examples thereof include trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate.
Among these, alkyl (meth) acrylates are preferable because the Tg of the homopolymer is low and the deformation amount when a 1 g load is applied can be increased.
また、架橋構造を持たせるため、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、イソシアヌル酸骨格トリ(メタ)アクリレート等の多官能単量体を用いてもよい。なかでも、架橋点間分子量が大きく、1g荷重を加えたときの変形量を大きくすることができることから、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレンジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートが好ましい。 Moreover, in order to give a crosslinked structure, tetramethylol methane tetra (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate, trimethylol propane tri (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, isocyanuric acid skeleton tri (meth) It may be used polyfunctional monomers acrylate. Especially, since the molecular weight between cross-linking points is large and the deformation amount when a 1 g load is applied can be increased, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, ( Poly) tetramethylene di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate are preferred.
上記架橋性単量体の使用量は、上記(メタ)アクリル粒子を形成するための原料となる単量体全体において、好ましい下限は1重量%、好ましい上限は90重量%である。上記架橋性単量体の使用量が1重量%以上であることにより、耐溶剤性が上がり、種々のシール剤原料と混練したときに膨潤等の問題を引き起こさず、均一に分散しやすい。上記架橋性単量体の使用量が90重量%以下であることにより、回復率を低くすることができる。上記架橋性単量体の使用量のより好ましい下限は3重量%、より好ましい上限は80重量%である。 With respect to the use amount of the crosslinkable monomer, the preferable lower limit is 1% by weight and the preferable upper limit is 90% by weight in the whole monomer as a raw material for forming the (meth) acrylic particles. When the amount of the crosslinkable monomer used is 1% by weight or more, the solvent resistance is improved, and when kneaded with various sealant raw materials, problems such as swelling do not occur and the particles are easily dispersed uniformly. When the amount of the crosslinkable monomer used is 90% by weight or less, the recovery rate can be lowered. A more preferable lower limit of the amount of the crosslinkable monomer used is 3% by weight, and a more preferable upper limit is 80% by weight.
更に、これらのアクリル系の単量体に加えて、スチレン系単量体、ビニルエーテル類、カルボン酸ビニルエステル類、不飽和炭化水素、ハロゲン含有単量体、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の単量体を用いてもよい。
上記スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、トリメトキシシリルスチレン等が挙げられる。
上記ビニルエーテル類としては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等が挙げられる。
上記カルボン酸ビニルエステル類としては、例えば、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等が挙げられる。
上記不飽和炭化水素としては、例えば、エチレン、プロピレン、イソプレン、ブタジエン等が挙げられる。
上記ハロゲン含有単量体としては、例えば、塩化ビニル、フッ化ビニル、クロルスチレン等が挙げられる。
In addition to these acrylic monomers, styrene monomers, vinyl ethers, carboxylic acid vinyl esters, unsaturated hydrocarbons, halogen-containing monomers, triallyl cyanurate, triallyl isocyanurate, Monomers such as triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, vinyltrimethoxysilane may be used.
Examples of the styrene monomer include styrene, α-methylstyrene, trimethoxysilylstyrene, and the like.
Examples of the vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and the like.
Examples of the carboxylic acid vinyl esters include vinyl acetate, vinyl butyrate, vinyl laurate, and vinyl stearate.
Examples of the unsaturated hydrocarbon include ethylene, propylene, isoprene, butadiene and the like.
Examples of the halogen-containing monomer include vinyl chloride, vinyl fluoride, chlorostyrene, and the like.
上記(メタ)アクリル粒子としては、コアシェル(メタ)アクリレート共重合体微粒子も好適に用いられる。
上記コアシェル(メタ)アクリレート共重合体微粒子のうち市販されているものとしては、例えば、F351(ゼオン化成社製)等が挙げられる。
As the (meth) acrylic particles, core-shell (meth) acrylate copolymer fine particles are also preferably used.
Examples of commercially available core-shell (meth) acrylate copolymer fine particles include F351 (manufactured by Zeon Kasei Co., Ltd.).
また、上記ビニル系粒子としては、例えば、ポリジビニルベンゼン粒子、ポリクロロプレン粒子、ブタジエンゴム粒子等を用いてもよい。 Further, as the vinyl particles, for example, polydivinylbenzene particles, polychloroprene particles, butadiene rubber particles and the like may be used.
上記柔軟粒子の平均粒子径の好ましい下限は0.01μm、好ましい上限は10μmである。上記柔軟粒子の平均粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の平均粒子径のより好ましい下限は0.1μm、より好ましい上限は8μmである。
なお、本明細書において、上記柔軟粒子の平均粒子径は、シール剤に配合する前の粒子について、レーザー回折式粒度分布測定装置を用いて測定することにより得られる値を意味する。上記レーザー回折式粒度分布測定装置としては、マスターサイザー2000(マルバーン社製)等を用いることができる。
The preferable lower limit of the average particle diameter of the flexible particles is 0.01 μm, and the preferable upper limit is 10 μm. When the average particle diameter of the flexible particles is within this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is excellent. The more preferable lower limit of the average particle diameter of the flexible particles is 0.1 μm, and the more preferable upper limit is 8 μm.
In addition, in this specification, the average particle diameter of the said flexible particle means the value obtained by measuring using the laser diffraction type particle size distribution measuring apparatus about the particle | grains before mix | blending with a sealing compound. As the laser diffraction particle size distribution measuring device, Mastersizer 2000 (manufactured by Malvern) or the like can be used.
上記柔軟粒子の硬度の好ましい下限は10、好ましい上限は50である。上記柔軟粒子の硬度がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の硬度のより好ましい下限は20、より好ましい上限は40である。
なお、本明細書において上記柔軟粒子の硬度は、JIS K 6253に準拠した方法により測定されるデュロメータA硬さを意味する。
The preferable lower limit of the hardness of the flexible particles is 10, and the preferable upper limit is 50. When the hardness of the flexible particles is in this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is improved. The more preferable lower limit of the hardness of the soft particles is 20, and the more preferable upper limit is 40.
In addition, in this specification, the hardness of the said flexible particle means the durometer A hardness measured by the method based on JISK6253.
本発明の液晶表示素子用シール剤100重量部中における上記柔軟粒子の含有量の好ましい下限は5重量部、好ましい上限は50重量部である。上記柔軟粒子の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の硬化物の柔軟性や接着性を向上させる効果により優れるものとなる。上記柔軟粒子の含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。 The preferable lower limit of the content of the flexible particles in 100 parts by weight of the sealing agent for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 50 parts by weight. When the content of the flexible particles is within this range, the effect of improving the flexibility and adhesiveness of the cured product of the obtained sealing agent for liquid crystal display elements is improved. The minimum with more preferable content of the said flexible particle | grain is 10 weight part, and a more preferable upper limit is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
上記充填剤としては、例えば、無機充填剤や上記柔軟粒子に含まれる以外の有機充填剤が挙げられる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
Examples of the filler include inorganic fillers and organic fillers other than those contained in the flexible particles.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is within this range, the effect of improving adhesiveness and the like is improved without deteriorating applicability and the like. The minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 It is preferable that the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができる。 As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesion to a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin.
本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The minimum with preferable content of the said silane coupling agent in 100 weight part of sealing compounds for liquid crystal display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the occurrence of liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。また、上記無機充填剤として挙げた酸化鉄や酸化チタン等は、上記遮光剤として用いることもできる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Moreover, the iron oxide, titanium oxide, etc. which were mentioned as said inorganic filler can also be used as said light-shielding agent. Of these, titanium black is preferable.
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. The light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
Although the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between the board | substrates of a liquid crystal display element, a preferable minimum is 1 nm and a preferable upper limit is 5000 nm. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
The primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の基板に対する接着性や硬化後の強度や描画性を低下させることなくより優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for liquid crystal display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without lowering the adhesion to the substrate, the strength after curing, and the drawability. it can. The more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention further contains additives such as a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、マレイミド化合物と、ラジカル重合開始剤と、必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。 Examples of the method for producing the sealing agent for liquid crystal display elements of the present invention include a curable resin and a maleimide using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll. The method etc. which mix a compound, a radical polymerization initiator, the silane coupling agent etc. which are added as needed are mentioned.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の基板の一方に、本発明の液晶表示素子用シール剤を、スクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で別の基板を重ね合わせる工程を行う。その後、本発明の液晶表示素子用シール剤のシールパターン部分に紫外線等の光を照射してシール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
As a method for producing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used. Specific examples include a method having the following steps.
First, the sealant for liquid crystal display element of the present invention is applied to one of two substrates such as a glass substrate with an electrode such as an ITO thin film or a polyethylene terephthalate substrate by screen printing, dispenser application, etc. A step of forming a pattern is performed. Next, in a state where the sealant for a liquid crystal display element of the present invention is uncured, a step of applying droplets of liquid crystals into the frame of the seal pattern of the substrate and superimposing another substrate under vacuum is performed. Then, a liquid crystal display element can be obtained by the method of irradiating light, such as an ultraviolet-ray, to the seal pattern part of the sealing agent for liquid crystal display elements of this invention, and photocuring a sealing agent. In addition to the step of photocuring the sealant, a step of heating and thermosetting the sealant may be performed.
本発明によれば、硬化性及び減圧下での安定性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in sclerosis | hardenability and stability under reduced pressure can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1~9及び比較例1~6)
表1、2に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~9及び比較例1~6の液晶表示素子用シール剤を調製した。
なお、マレイミド化合物として表中に記載したポリテトラメチレンエーテルグリコールのジマレイミド酢酸エステル(DIC社製、「LUMICURE MIA200」)は、上記式(1)で表される化合物である。
(Examples 1 to 9 and Comparative Examples 1 to 6)
According to the blending ratios described in Tables 1 and 2, each material was mixed using a planetary stirrer ("Shinky", "Awatori Nertaro"), and then mixed by using three rolls. Sealants for liquid crystal display elements of Examples 1 to 9 and Comparative Examples 1 to 6 were prepared.
Note that dimaleimide acetate of polytetramethylene ether glycol (manufactured by DIC, “LUMICURE MIA200”) described in the table as a maleimide compound is a compound represented by the above formula (1).
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(減圧下での安定性(真空安定性))
実施例及び比較例で得られた各液晶表示素子用シール剤を、ディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いてガラス基板上に長方形の枠を描く様にシール剤を塗布し、真空貼り合わせ装置内にて0.1Paの減圧下にて5分間保持した後、別のガラス基板を貼り合わせてセルを得た。真空貼り合わせ装置内を大気圧に戻してセルを取り出し、セル内のシール部の形状(シール剤の直線性)を顕微鏡にて観察した。
シール幅の最大値に対するシール幅の最小値が90%以上であった場合を「○」、80%以上90%未満であった場合を「△」、80%未満であった場合を「×」として減圧下での安定性(真空安定性)を評価した。
(Stability under reduced pressure (vacuum stability))
The sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples were filled in a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Next, using a dispenser (manufactured by Musashi Engineering Co., Ltd., “SHOTMASTER 300”), a sealing agent is applied so as to draw a rectangular frame on the glass substrate. After holding, another glass substrate was bonded to obtain a cell. The inside of the vacuum bonding apparatus was returned to atmospheric pressure, the cell was taken out, and the shape of the seal part in the cell (the linearity of the sealant) was observed with a microscope.
The case where the minimum value of the seal width relative to the maximum value of the seal width is 90% or more is “◯”, the case where it is 80% or more and less than 90% is “△”, and the case where it is less than 80% is “×”. The stability under reduced pressure (vacuum stability) was evaluated.
(硬化性)
実施例及び比較例で得られた各液晶表示素子用シール剤をガラス基板上に約5μm塗布した後、同サイズのガラス基板を重ね合わせた。次いで、メタルハライドランプを波長365nmの紫外線を3000mJ/cm照射した。赤外分光装置(BIORAD社製、「FTS3000」)を用い、(メタ)アクリロイル基由来ピークの光照射前後での変化量(減少率)を測定した。
光照射後の(メタ)アクリロイル基由来のピークの減少率が95%以上であった場合を「◎」、85%以上95%未満であった場合を「○」、75%以上85%未満であった場合を「△」、75%未満であった場合を「×」として硬化性を評価した。
(Curable)
About 5 μm of each liquid crystal display element sealing agent obtained in Examples and Comparative Examples was applied on a glass substrate, and then a glass substrate of the same size was overlaid. Next, the metal halide lamp was irradiated with 3000 mJ / cm 2 of ultraviolet light having a wavelength of 365 nm. The amount of change (decrease rate) of the (meth) acryloyl group-derived peak before and after light irradiation was measured using an infrared spectrometer (manufactured by BIORAD, “FTS3000”).
When the reduction rate of the peak derived from the (meth) acryloyl group after light irradiation is 95% or more, “◎”, when it is 85% or more and less than 95%, “◯”, or 75% or more and less than 85% The curability was evaluated as “Δ” when it was present and “×” when it was less than 75%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明によれば、硬化性及び減圧下での安定性に優れる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in sclerosis | hardenability and stability under reduced pressure can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (6)

  1. 硬化性樹脂とマレイミド化合物とラジカル重合開始剤とを含有し、
    前記硬化性樹脂は、分子量が500~1500の化合物を含有し、
    前記硬化性樹脂100重量部中における前記分子量が500~1500の化合物の含有量が10~50重量部である
    ことを特徴とする液晶表示素子用シール剤。
    Containing a curable resin, a maleimide compound and a radical polymerization initiator,
    The curable resin contains a compound having a molecular weight of 500-1500,
    A sealing agent for a liquid crystal display element, wherein the content of the compound having a molecular weight of 500 to 1500 in 10 parts by weight of the curable resin is 10 to 50 parts by weight.
  2. 分子量が500~1500の化合物は、分子量が500~1500の(メタ)アクリル化合物であることを特徴とする請求項1記載の液晶表示素子用シール剤。 2. The sealing agent for a liquid crystal display element according to claim 1, wherein the compound having a molecular weight of 500 to 1500 is a (meth) acryl compound having a molecular weight of 500 to 1500.
  3. マレイミド化合物は、1分子中に2個以上のマレイミド基を有する多官能マレイミド化合物であることを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealing compound for liquid crystal display elements according to claim 1 or 2, wherein the maleimide compound is a polyfunctional maleimide compound having two or more maleimide groups in one molecule.
  4. マレイミド化合物は、分子量が400以上であることを特徴とする請求項1、2又は3記載の液晶表示素子用シール剤。 The sealing compound for liquid crystal display elements according to claim 1, 2 or 3, wherein the maleimide compound has a molecular weight of 400 or more.
  5. 請求項1、2、3又は4記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for liquid crystal display elements according to claim 1, and conductive fine particles.
  6. 請求項1、2、3若しくは4記載の液晶表示素子用シール剤又は請求項5記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealant for a liquid crystal display element according to claim 1, 2, 3, or 4, or the vertical conduction material according to claim 5.
PCT/JP2017/034711 2016-09-29 2017-09-26 Sealing agent for liquid crystal display device, vertical conduction material, and liquid crystal display device WO2018062164A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017553431A JP7007196B2 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR1020187025323A KR102466030B1 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element
CN201780014067.2A CN108780247A (en) 2016-09-29 2017-09-26 Sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191492 2016-09-29
JP2016191492 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062164A1 true WO2018062164A1 (en) 2018-04-05

Family

ID=61759690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034711 WO2018062164A1 (en) 2016-09-29 2017-09-26 Sealing agent for liquid crystal display device, vertical conduction material, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP7007196B2 (en)
KR (1) KR102466030B1 (en)
CN (1) CN108780247A (en)
TW (1) TWI731173B (en)
WO (1) WO2018062164A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010020286A (en) * 2008-06-13 2010-01-28 Henkel Corp Sealing agent for liquid crystal dropping technology and method of manufacturing liquid crystal display
WO2015123824A1 (en) * 2014-02-19 2015-08-27 Ablestik (Shanghai) Ltd. Curable resin composition for sealing liquid crystal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
MY124944A (en) * 2000-02-09 2006-07-31 Hitachi Chemical Co Ltd Resin composition, adhesives prepared therewith for bonding circuit members,and circuits boards
KR100906926B1 (en) 2001-05-16 2009-07-10 세키스이가가쿠 고교가부시키가이샤 Curing Resin Composition and Sealants and End-Sealing Materials for Displays
JP2002338946A (en) 2001-05-22 2002-11-27 Nippon Kayaku Co Ltd Sealant resin composition and cured product thereof
WO2003107084A1 (en) * 2002-06-14 2003-12-24 大日本インキ化学工業株式会社 Photocurable composition for liquid-crystal panel sealing and liquid-crystal panel
US7160946B2 (en) * 2004-04-01 2007-01-09 National Starch And Chemical Investment Holding Corporation Method to improve high temperature cohesive strength with adhesive having multi-phase system
JP2006176576A (en) 2004-12-21 2006-07-06 Dainippon Ink & Chem Inc Photocurable composition for liquid crystal panel sealing and liquid crystal panel
JP5262097B2 (en) 2007-12-12 2013-08-14 Dic株式会社 Monolithic decorative sheet and decorative molded product for sheet molding compound
KR101599068B1 (en) 2008-06-13 2016-03-02 헨켈 아이피 앤드 홀딩 게엠베하 Sealing agent for liquid-crystal-one-drop-filling process and method for manufacturing liquid crystal display
EP2756050A4 (en) * 2011-09-15 2015-06-03 Henkel Ag & Co Kgaa Sealant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010020286A (en) * 2008-06-13 2010-01-28 Henkel Corp Sealing agent for liquid crystal dropping technology and method of manufacturing liquid crystal display
WO2015123824A1 (en) * 2014-02-19 2015-08-27 Ablestik (Shanghai) Ltd. Curable resin composition for sealing liquid crystal

Also Published As

Publication number Publication date
TW201819530A (en) 2018-06-01
KR20190058378A (en) 2019-05-29
CN108780247A (en) 2018-11-09
KR102466030B1 (en) 2022-11-10
JPWO2018062164A1 (en) 2019-07-11
JP7007196B2 (en) 2022-01-24
TWI731173B (en) 2021-06-21

Similar Documents

Publication Publication Date Title
JP6244058B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2014185374A1 (en) Sealing agent for one drop fill process, vertically conducting material, and liquid crystal display element
WO2018207730A1 (en) Sealant for liquid crystal display element, top-bottom conductive material, and liquid crystal display element
JP6795400B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
TWI745437B (en) Sealant for liquid crystal display element, vertical conduction material and liquid crystal display element
JP6386377B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JPWO2015178357A1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6235766B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6666682B2 (en) Sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
WO2017130786A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2019221027A1 (en) Liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
WO2018062164A1 (en) Sealing agent for liquid crystal display device, vertical conduction material, and liquid crystal display device
JPWO2018062168A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN110325904B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6114892B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6588825B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017553431

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025323

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856114

Country of ref document: EP

Kind code of ref document: A1