WO2018062040A1 - Silver ink composition and laminate - Google Patents

Silver ink composition and laminate Download PDF

Info

Publication number
WO2018062040A1
WO2018062040A1 PCT/JP2017/034296 JP2017034296W WO2018062040A1 WO 2018062040 A1 WO2018062040 A1 WO 2018062040A1 JP 2017034296 W JP2017034296 W JP 2017034296W WO 2018062040 A1 WO2018062040 A1 WO 2018062040A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silver
ink composition
silver ink
carbon atoms
Prior art date
Application number
PCT/JP2017/034296
Other languages
French (fr)
Japanese (ja)
Inventor
関口 卓也
Original Assignee
トッパン・フォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トッパン・フォームズ株式会社 filed Critical トッパン・フォームズ株式会社
Publication of WO2018062040A1 publication Critical patent/WO2018062040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment

Definitions

  • the present invention relates to a silver ink composition and a laminate.
  • silver ink compositions containing an organic silver compound those using silver ⁇ -ketocarboxylate as the organic silver compound (see Patent Document 1) are excellent in conductivity and gloss by heat treatment.
  • the utility value is high because a dense film made of metallic silver can be formed.
  • such a silver ink composition is suitable for application to, for example, an ink jet printing method because the viscosity can be easily adjusted and particulate insoluble matter can be reduced or eliminated.
  • the ink composition used in the ink jet printing method usually has a low viscosity, it tends to bleed when printed on a printing object. Therefore, in the ink jet printing method, a method of volatilizing the solvent component in the ink composition by heating the printing object before the printed ink composition bleeds is disclosed (see Patent Document 2). .
  • the present invention is a silver ink composition in which an organic silver compound is blended, and is a silver ink composition capable of forming metallic silver having high gloss even when printing is performed while heating an object to be printed It is an object of the present invention to provide a laminate including a metallic silver layer having high gloss and formed using the silver ink composition.
  • the present invention provides a silver ink composition
  • a silver ink composition comprising an organic silver compound and a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms.
  • the organic silver compound is a silver ⁇ -ketocarboxylate represented by the following general formula (1), an organic silver complex represented by the following general formula (95) -1, or the following general silver It may be an organic silver complex represented by the formula (95) -2.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • R 101 to R 111 each independently represents a hydrogen atom, an aliphatic or alicyclic alkyl group or aryl group having 1 to 30 carbon atoms, an alkyl group or aryl group substituted with a functional group, and hetero A group selected from the group consisting of cyclic groups, provided that R 101 to R 111 are not all hydrogen atoms; m 101 and m 102 are each independently 0.5 to 1.5 is there.)
  • the branched saturated aliphatic carboxylic acid may be a monocarboxylic acid represented by the following general formula (6).
  • R 31 —C ( ⁇ O) —OH (6) (In the formula, R 31 is a branched alkyl group having 7 to 9 carbon atoms.)
  • the amount of the branched saturated aliphatic carboxylic acid is 0.03 to 0.4 mol per mol of the silver atom in the organic silver compound. Also good.
  • the present invention comprises a base material and a metal silver layer formed on the base material, and the metal silver layer is formed using the silver ink composition, and the metal silver layer Provided is a laminate in which the reflectance of light having a wavelength of 550 nm is 50% or more.
  • the silver ink composition of the present invention which is formulated with an organic silver compound, even when printing is performed while heating an object to be printed, metallic silver with high gloss can be formed and gloss is achieved.
  • a laminate having a high metallic silver layer can be provided.
  • the silver ink composition of the present invention is abbreviated as an organic silver compound and a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms (in this specification, “branched saturated aliphatic carboxylic acid”). And).
  • the silver ink composition of the present invention contains metallic silver having a high glossiness even when printing is performed while heating the printing object because the branched saturated aliphatic carboxylic acid is blended. Can be formed.
  • the application target of the silver ink composition of the present invention is not limited to the printing method, and includes a coating (coating) method described later. And even if it is a case where it apply
  • the organic silver compound is a compound that has an organic group and a silver atom in one molecule and generates metallic silver by a structural change such as decomposition.
  • Examples of such organic silver compounds include silver salts of organic acids and organic silver complexes.
  • the organic silver compound may be used singly or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted. .
  • Preferred silver ink compositions include the silver ink composition (I) and silver ink composition (II) shown below. These silver ink compositions will be described below.
  • the silver ink composition (I) preferably contains silver carboxylate (a silver salt of carboxylic acid) as the organic silver compound. That is, as a preferable silver ink composition (I), a mixture of silver carboxylate and the branched saturated aliphatic carboxylic acid can be mentioned.
  • the silver carboxylate has a group represented by the formula “—COOAg”.
  • silver carboxylate may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is represented by the following general formula (1) ⁇ -ketocarboxylate silver (hereinafter sometimes abbreviated as “ ⁇ -ketocarboxylate (1)”) and the following general formula (4). It is preferable that it is 1 type (s) or 2 or more types selected from the group which consists of silver carboxylate (Hereinafter, it may abbreviate as "a silver carboxylate (4).”).
  • ⁇ -ketocarboxylate (1) 1 type (s) or 2 or more types selected from the group which consists of silver carboxylate
  • a silver carboxylate (4) the simple description of “silver carboxylate” is not limited to “silver ⁇ -ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C ( ⁇ O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.
  • the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
  • R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • linear or branched alkyl group in R examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • N-pentyl group isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3- Ethylbutyl group, 1-ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group Group, 4-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylp
  • Examples of the cyclic alkyl group in R include, for example, a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group and a tricyclodecyl group.
  • Examples of the alkenyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a double bond (C ⁇ C).
  • Examples of the alkenyl group include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH 3 ), isopropenyl group (—C (CH 3 ) ⁇ CH 2 ), 1-butenyl group (—CH ⁇ CH—CH 2 —CH 3 ), 2-butenyl group (—CH 2 —CH ⁇ CH) —CH 3 ), 3-butenyl group (—CH 2 —CH 2 —CH ⁇ CH 2 ), cyclohexenyl group, cyclopentenyl group and the like.
  • alkynyl group in R examples include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a triple bond (C ⁇ C).
  • alkynyl group examples include ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), and the like.
  • one or more hydrogen atoms may be substituted with a substituent.
  • Preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • the number and position of the substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • one or more hydrogen atoms may be substituted with a substituent.
  • the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, fluorine An atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—C 6 H 5 ), and the like.
  • the number and position of the substituent are not particularly limited.
  • the plural substituents may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group which is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
  • a plurality of Y 1 may be the same as each other. May be different.
  • R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —). Examples of the aliphatic hydrocarbon group for R 1 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms.
  • R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include the same as the aliphatic hydrocarbon group in R.
  • R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms. Examples of the aliphatic hydrocarbon group for R 3 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same or different from each other, and the aliphatic hydrocarbon group in R 4 and R 5 is, for example, the above in R except that it has 1 to 18 carbon atoms. The thing similar to an aliphatic hydrocarbon group is mentioned.
  • R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group, or a group represented by the formula “AgO—”. Examples of the aliphatic hydrocarbon group for R 6 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19.
  • R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 1 2 —”, a hydroxyl group, or a phenyl group.
  • R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
  • each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C ( ⁇ O) — ”or“ R 7 —C ( ⁇ O) —O— ”.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
  • the halogen atom in X 1 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • one or more hydrogen atoms may be substituted with a substituent.
  • Preferred examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), nitro group (—NO 2 ) and the like.
  • the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —);
  • Examples of the aliphatic hydrocarbon group for R 7 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 10.
  • the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 is a thienyl group or a diphenyl group, there are no particular limitations on the bonding position of these groups with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X 1 .
  • the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
  • two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
  • Examples of such X 1 include a group represented by the formula “ ⁇ CH—C 6 H 4 —NO 2 ”.
  • X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
  • the conductor light reflector, metallic silver formed by solidification treatment such as drying treatment or heating (firing) treatment of silver ink composition (I) using silver ⁇ -ketocarboxylate (1)
  • the concentration of raw materials and impurities can be further reduced.
  • the smaller the raw materials and impurities for example, the better the contact between the formed metal silvers, the easier the conduction, and the lower the resistivity.
  • the ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. Metal silver can be formed.
  • the silver ⁇ -ketocarboxylate (1) is decomposed at a lower temperature to form metallic silver when used in combination with a reducing agent.
  • the ⁇ -ketocarboxylate (1) may be used alone or in combination of two or more.
  • the combination and ratio thereof are as follows: Can be adjusted arbitrarily.
  • the silver carboxylate (4) is represented by the general formula (4).
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C ( ⁇ O) —OAg”.
  • Examples of the aliphatic hydrocarbon group for R 8 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —)
  • one or more of the methylene groups may be substituted with a carbonyl group.
  • the number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group.
  • the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
  • Silver carboxylate (4) includes silver pyruvate (CH 3 —C ( ⁇ O) —C ( ⁇ O) —OAg), silver acetate (CH 3 —C ( ⁇ O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C ( ⁇ O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C ( ⁇ O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C ( ⁇ O) —OAg), silver neodecanoate, silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg), or silver malonate ( AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg) is preferable.
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) and silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg)
  • silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • —COOAg one of the groups represented by the formula “—COOH” (HO—C ( ⁇ O) —C ( ⁇ O) —OAg, HO)
  • —C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg is —COOH
  • silver carboxylate (4) When silver carboxylate (4) is used, as with the case of using silver ⁇ -ketocarboxylate (1), solidification treatment such as drying treatment or heating (firing) treatment of silver ink composition (I) is performed. In the formed conductor (light reflector, metallic silver), the concentration of the remaining raw materials and impurities can be further reduced. And silver carboxylate (4) is decomposed
  • silver carboxylate (4) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios are arbitrary. Can be adjusted.
  • the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferable that it is 1 type, or 2 or more types selected from the group which consists of silver acid silver and silver malonate.
  • silver 2-methylacetoacetate, silver acetoacetate, silver isobutyrylacetate and silver pivaloylacetate are excellent in compatibility with nitrogen-containing compounds (among others amine compounds) described later, and are silver ink compositions. This is particularly suitable for increasing the concentration of (I).
  • the content of silver derived from the organic silver compound is preferably 5% by mass or more, and more preferably 8% by mass or more.
  • the formed conductor light reflector, metallic silver
  • the upper limit of the silver content is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 25% by mass in consideration of the handleability of the silver ink composition (I).
  • silver derived from an organic silver compound is synonymous with silver in the organic silver compound compounded at the time of production of the silver ink composition (I), unless otherwise specified.
  • the silver ink composition (I) is composed of a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in addition to the organic silver compound. Since the silver ink composition (I) contains the branched chain saturated aliphatic carboxylic acid, metallic silver having high gloss can be obtained even when printing is performed while heating the printing object. Can be formed.
  • the branched saturated aliphatic carboxylic acid has a structure in which one or two or more hydrogen atoms of a branched saturated aliphatic hydrocarbon having 8 to 10 carbon atoms are substituted with a carboxy group.
  • the branched saturated aliphatic carboxylic acid has 8 to 10 carbon atoms in one molecule, and one or more carboxy groups are bonded to the branched saturated aliphatic hydrocarbon group. It is a compound.
  • the branched saturated aliphatic carboxylic acid is either a monovalent (mono) carboxylic acid having only one carboxy group in one molecule or a polyvalent carboxylic acid having two or more carboxy groups in one molecule. May be.
  • the number of carboxy groups in one molecule of the branched saturated aliphatic carboxylic acid is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1. .
  • the position of the carbon atom to which the carboxy group is bonded is not particularly limited.
  • the carbon atom to which the carboxy group is bonded may be the carbon atom at the end of the molecule, or may be a carbon atom other than the end of the molecule.
  • the branched saturated aliphatic carboxylic acid is a polyvalent carboxylic acid, all carboxy groups may be bonded to different carbon atoms, or two or three carboxy groups may be the same carbon atom. May be bonded to.
  • the position of the carbon atom in the main chain to which the branched chain is bonded is not particularly limited.
  • the carbon atom to which the branched chain is bonded may be the terminal carbon atom to which the carboxy group of the main chain is bonded, or the side to which the carboxy group of the main chain is bonded. It may be a carbon atom adjacent to the carbon atom at the terminal on the opposite side (second carbon atom from the terminal at the opposite side), or the carbon atom at the terminal to which the above carboxy group is bonded;
  • the carbon atom in the main chain located between the carbon atom adjacent to the terminal carbon atom opposite to the side to which the carboxy group is bonded may be used.
  • the “main chain” means a chain structure in the branched saturated aliphatic carboxylic acid having the maximum carbon number. When there are a plurality of chain structures having the maximum number of carbon atoms, any chain structure may be handled as the main chain.
  • the carbon number of the main chain is always greater than or equal to the carbon number of the branched chain.
  • the branched saturated aliphatic carboxylic acid is preferably a monocarboxylic acid represented by the following general formula (6) (in this specification, sometimes abbreviated as “monocarboxylic acid (6)”). .
  • R 31 —C ( ⁇ O) —OH (6) In the formula, R 31 is a branched alkyl group having 7 to 9 carbon atoms.
  • Examples of the branched alkyl group having 7 to 9 carbon atoms (monovalent saturated aliphatic hydrocarbon group) of R 31 include 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4 -Methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propylbutyl group, etc.
  • a branched alkyl group having 7 carbon atoms Isooctyl, 1-methylheptyl, 2-methylheptyl, 3-methylheptyl, 4-methylheptyl, 5-methylheptyl, 1-ethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4- Ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3-dimethylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1, 2,3-trimethylpentyl group, 1,2,4-trimethylpentyl group, 2,3,4-trimethylpentyl group, 2,4,4-trimethylpentyl group, 1,4,4-trimethylpentyl group, 4,4-trimethylpentyl group, 1,1,2-trimethylpentyl group, 1,1,3
  • the number of branched chains in one molecule of the branched saturated aliphatic carboxylic acid is preferably 1 to 3 without being limited to the monocarboxylic acid (6).
  • the number of carbon atoms in one branched chain of the branched saturated aliphatic carboxylic acid is preferably 1 to 3 without being limited to the monocarboxylic acid (6).
  • the branched saturated aliphatic carboxylic acid is not limited to the monocarboxylic acid (6), and the branched saturated aliphatic carboxylic acid satisfies both of these conditions, that is, the number of branched chains in one molecule is 1 to 3, and 1 More preferably, the branched chain has 1 to 3 carbon atoms.
  • the branched saturated aliphatic carboxylic acid has an appropriate reactivity for suppressing a decrease in glossiness of metallic silver and hardly volatilizes from the silver ink composition (I), while the silver ink composition ( It has an appropriate boiling point that is easy to vaporize during the solidification treatment of I), and has particularly suitable characteristics as an effect of the present invention.
  • the boiling point of the branched saturated aliphatic carboxylic acid is preferably 180 to 270 ° C., more preferably 200 to 260 ° C., and particularly preferably 215 to 255 ° C.
  • the boiling point of the branched saturated aliphatic carboxylic acid is not less than the lower limit, volatilization of the branched saturated aliphatic carboxylic acid from the silver ink composition (I) is suppressed, and the branched saturated fatty acid is reduced. The effect obtained by using the group carboxylic acid is more remarkably obtained.
  • the boiling point of the branched saturated aliphatic carboxylic acid is not more than the above upper limit, the branched saturated aliphatic carboxylic acid in the metallic silver obtained by the solidification treatment of the silver ink composition (I) Residue is suppressed, and metallic silver having more favorable characteristics such as high glossiness and conductivity is obtained.
  • Particularly preferable branched saturated aliphatic carboxylic acids include neodecanoic acid (C 9 H 19 COOH), 2-propylvaleric acid (2-propylpentanoic acid, (CH 3 CH 2 CH 2 CH (CH 3 CH 2 CH 2 ) COOH), 3,5,5-trimethylhexanoic acid ((CH 3 ) 3 CCH 2 CH (CH 3 ) CH 2 COOH) and the like.
  • neodecanoic acid means a mixture of isomers of a saturated aliphatic monocarboxylic acid having 10 carbon atoms, and the branched saturated aliphatic monocarboxylic acid having 10 carbon atoms is always contained in the mixture. included. Thus, neodecanoic acid does not mean only one compound. And the combination and ratio of 2 or more types of C10 saturated aliphatic monocarboxylic acids in neodecanoic acid can be arbitrarily adjusted.
  • a branched saturated aliphatic carboxylic acid may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio are arbitrarily adjusted. it can.
  • the silver ink composition (I) contains the branched saturated aliphatic carboxylic acid, so that it is glossy even when printing is performed while heating the printing object. High metal silver can be formed.
  • silver ions (Ag + ) are generated from the organic silver compound.
  • oxygen is coordinated to silver ions by heating the printing object (Ag + ... O).
  • silver oxide (Ag 2 O) is generated from silver ions coordinated with oxygen by solidification treatment such as drying treatment or heating (firing) treatment of the silver ink composition (I) for forming metallic silver.
  • the by-produced silver oxide is contained in the metallic silver finally produced by the solidification treatment of the silver ink composition. It is presumed that the gloss of metallic silver is deteriorated due to contamination as impurities.
  • the silver ink composition (I) in which a branched saturated aliphatic carboxylic acid is blended the branched saturated aliphatic carboxylic acid reacts with silver oxide, so 10 branched-chain saturated aliphatic carboxylic acid silver salts (sometimes abbreviated as “branched saturated aliphatic carboxylic acid silver” in the present specification).
  • This branched chain saturated aliphatic carboxylic acid silver is the above-mentioned silver carboxylic acid (4), that is, an organic silver compound, and solidifies the silver ink composition (I) in the same manner as the organic silver compound that has been blended from the beginning.
  • the process ultimately produces metallic silver.
  • the silver ink composition (I) of the present invention the silver oxide generated due to the heating of the printing object is converted into the gloss of metallic silver by the action of the branched saturated aliphatic carboxylic acid. It is presumed that metallic silver having high gloss can be formed by converting to metallic silver itself, not the impurity that causes the deterioration of the property.
  • the amount of the branched saturated aliphatic carboxylic acid is preferably 0.01 to 1 mole per mole of the silver atom in the organic silver compound.
  • the amount is more preferably 0.02 to 0.7 mol, and particularly preferably 0.03 to 0.4 mol. Even if the amount of the branched saturated aliphatic carboxylic acid is in such a range, even when printing is performed while heating the object to be printed, the effect of forming metallic silver with high gloss is obtained. Get higher.
  • Metallic silver other than branched saturated aliphatic carboxylic acid has high glossiness even when printing is performed while heating the printing object, similarly to branched saturated aliphatic carboxylic acid. Some of them enable the formation of Such a carboxylic acid other than the branched saturated aliphatic carboxylic acid (sometimes referred to as “other carboxylic acid” in this specification) may be a monovalent carboxylic acid, or a divalent or higher valent acid. It may be a polyvalent carboxylic acid, an aliphatic carboxylic acid, or an aromatic carboxylic acid.
  • the other carboxylic acid preferably does not contain a reducing group such as a formyl group (—C ( ⁇ O) —H).
  • the silver ink composition (I) formed by blending with other carboxylic acid that does not contain such a group suppresses the generation of insoluble matter derived from the organic silver compound during its storage, and has higher handleability during printing. .
  • the carbon number of the other carboxylic acid is preferably 5 to 17, and may be any of 5 to 15, 5 to 13, and 5 to 11, for example.
  • the boiling point of the other carboxylic acid is preferably 150 to 290 ° C., and may be any of 155 to 280 ° C., 160 to 270 ° C., and 160 to 260 ° C., for example.
  • the boiling point of the other carboxylic acid is equal to or higher than the lower limit, volatilization of the other carboxylic acid from the silver ink composition (I) is suppressed, and the effect of using the other carboxylic acid is more remarkable. Is obtained.
  • the boiling point of the other carboxylic acid is not more than the above upper limit, the remaining of the other carboxylic acid in the metallic silver obtained by the solidification treatment of the silver ink composition (I) is suppressed, and the glossiness, Metal silver having more favorable characteristics such as high conductivity can be obtained.
  • the other carboxylic acids may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
  • the blending amount of the other carboxylic acid can be the same as the blending amount of the branched saturated aliphatic carboxylic acid.
  • the silver ink composition (I) is preferably one in which a nitrogen-containing compound is further blended in addition to the organic silver compound, particularly when the organic silver compound is the silver carboxylate.
  • the nitrogen-containing compound is an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter abbreviated as “quaternary ammonium salt”).
  • Ammonia an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid.
  • ammonium salts derived from ammonia may be only one type, or two or more types, and when two or more types are used in combination, their combination and ratio can be arbitrarily adjusted.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
  • Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples of such an alkyl group include the same alkyl groups as those described above for R.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 19 carbon atoms or a cyclic alkyl group having 3 to 7 carbon atoms.
  • preferable monoalkylamines include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3 -Aminopentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, 1,2-dimethyl-n-propylamine and the like.
  • Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aryl group preferably has 6 to 10 carbon atoms.
  • the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton.
  • the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, A boron atom etc. are mentioned.
  • the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
  • the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
  • Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include, for example, pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, Examples include a tetrazolyl group, a pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, a piperazinyl group, and the like.
  • Such a heteroaryl group is preferably a 3- to 8-membered ring, and preferably a 5- to 6-membered ring. More preferred.
  • Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, and such a heteroaryl group is preferably a 3- to 8-membered ring. More preferably, it is a member ring.
  • Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group.
  • the heteroaryl group is preferably a 3- to 8-membered ring, and preferably from 5 to 6 More preferably, it is a member ring.
  • Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
  • the heteroaryl group is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, a thiazolidinyl group, and the like.
  • the polyaryl group having 1 to 5 nitrogen atoms as the heteroaryl group include, for example, indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group A tetrazolopyridyl group, a tetrazolopyridazinyl group, a dihydrotriazolopyridazinyl group, and the like.
  • Such a heteroaryl group is preferably a 7-12 membered ring, preferably a 9-10 membered ring. More preferably, it is a ring.
  • Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithianaphthalenyl group and a benzothiophenyl group. Such a heteroaryl group has 7 to 12 members. A ring is preferable, and a 9- to 10-membered ring is more preferable.
  • Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzoxdiazolyl group.
  • the heteroaryl group is preferably a 7-12 membered ring, more preferably a 9-10 membered ring.
  • Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group, a benzothiadiazolyl group, and the like. Is preferably a 7 to 12-membered ring, more preferably a 9 to 10-membered ring.
  • the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
  • the preferred diamine for example, in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group. And the like.
  • the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, and the like.
  • secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
  • a cyclic alkyl group is preferred.
  • Two alkyl groups in one molecule of dialkylamine may be the same or different from each other.
  • Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
  • the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
  • the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
  • Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
  • tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
  • the cyclic alkyl group is preferably.
  • the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
  • Specific examples of the preferable trialkylamine include N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine and the like.
  • the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
  • the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
  • examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
  • the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
  • halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine, iodine and the like.
  • Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
  • the chain amine compound and the quaternary organic ammonium salt have been mainly described.
  • the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
  • the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, as a preferable thing, a pyridine etc. will be mentioned, for example.
  • the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
  • the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
  • the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
  • Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example.
  • the alkyl group constituting the monoalkylamine has a substituent
  • the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
  • a cyclic alkyl group having 3 to 7 carbon atoms and an alkyl group having 1 to 5 carbon atoms is preferable.
  • Specific examples of the monoalkylamine having such a substituent include 2-phenylethylamine, benzylamine, 2,3-dimethylcyclohexylamine and the like.
  • one or more hydrogen atoms may be further substituted with a halogen atom.
  • Examples of the monoalkylamine having a substituent substituted with a halogen atom include 2-bromobenzylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group constituting the monoarylamine has a substituent
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as a substituent.
  • Specific examples of the monoarylamine having such a substituent include bromophenylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the dialkylamine has a substituent
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent
  • Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
  • the amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclo
  • 2-ethylhexylamine is excellent in compatibility with the above-mentioned silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition (I), and further has a surface roughness of metallic silver. It is mentioned as being particularly suitable for reduction.
  • ammonium salts derived from amine compounds is an ammonium salt formed by reacting the amine compound with an acid.
  • the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid, or may be an organic acid such as acetic acid, and the type of acid is not particularly limited.
  • the ammonium salt derived from the amine compound include n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride, and the like. It is not limited.
  • ammonium salt derived from ammonia is an ammonium salt formed by reacting ammonia with an acid.
  • examples of the acid include the same acids as in the case of the ammonium salt derived from the amine compound.
  • examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
  • the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used alone or in combination of two or more.
  • those combinations and ratios can be adjusted arbitrarily.
  • you may use individually 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from amine compound, and ammonium salt derived from ammonia Two or more kinds may be used in combination, and when two or more kinds are used in combination, their combination and ratio can be arbitrarily adjusted.
  • a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms may be used in combination.
  • the ratio of the amount of the second nitrogen-containing compound to the amount of the first nitrogen-containing compound in the silver ink composition (I) is 0 mol%. More preferably, it is less than 18 mol%, more preferably 1 to 17 mol%. When the ratio is in such a range, for example, a thin-line silver layer can be formed more stably.
  • the amount of the nitrogen-containing compound in the silver ink composition (I) is preferably 0.3 to 15 mol per mol of the organic silver compound. It is more preferably 3 to 12 mol, particularly preferably 0.3 to 8 mol, for example, any of 1 to 8 mol, 2.5 to 8 mol, and 4 to 8 mol. Good.
  • the blending amount of the nitrogen-containing compound is within such a range, the silver ink composition (I) is further improved in stability and the quality of metallic silver is further improved.
  • the silver ink composition (I) is preferably one in which an alcohol is further blended in addition to the organic silver compound.
  • the alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the acetylene alcohol (2) is represented by the general formula (2).
  • R ′ and R ′′ each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group having 1 to 20 carbon atoms in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ′′ include the same alkyl groups as in R.
  • substituents in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include, for example, a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic group A monovalent group formed by bonding an aromatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like.
  • substituents are the same as the substituents in which the hydrogen atom of the phenyl group in R may be substituted.
  • the number and position of the substituents are not particularly limited, and when the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R ′ and R ′′ are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms. More preferred.
  • Preferred acetylene alcohols (2) include, for example, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, -Propin-1-ol, 4-ethyl-1-octin-3-ol, 3-ethyl-1-heptin-3-ol and the like.
  • the amount of acetylene alcohol (2) in the silver ink composition (I) is 0.01 to 0.7 mol per mol of the organic silver compound.
  • the amount is preferably 0.02 to 0.5 mol, more preferably 0.02 to 0.3 mol.
  • the stability of the silver ink composition (I) is further improved.
  • the alcohol may be used alone or in combination of two or more. When two or more alcohols are used in combination, the combination and ratio thereof can be arbitrarily adjusted.
  • the silver ink composition (I) may contain other components other than the organic silver compound, branched saturated aliphatic carboxylic acid, nitrogen-containing compound and alcohol.
  • the other components in the silver ink composition (I) can be arbitrarily selected according to the purpose and are not particularly limited. Preferred examples of the other components include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of the compounding components.
  • the other components in the silver ink composition (I) may be used singly or in combination of two or more, and when two or more are used in combination, their combinations and ratios are as follows: Can be adjusted arbitrarily.
  • the solvent is not particularly limited as long as it is other than alcohol (having no hydroxyl group). However, the solvent is preferably a liquid at room temperature.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the solvent examples include aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene; pentane, hexane, cyclohexane, heptane, octane, cyclooctane, nonane, decane, undecane, dodecane, tridecane, Aliphatic hydrocarbons such as tetradecane, pentadecane and decahydronaphthalene; halogenated hydrocarbons such as dichloromethane and chloroform; esters such as ethyl acetate, monomethyl glutarate and dimethyl glutarate; diethyl ether, tetrahydrofuran (THF), 1,2- Ethers such as dimethoxyethane (dimethyl cellosolve); ketones such as acetone, methyl ethyl ketone (MEK), cyclohexanone; nitriles such
  • the compounding quantity of the said other component in silver ink composition (I) is selected according to the kind of said other component.
  • the blending amount of the solvent may be selected according to the purpose such as the viscosity of the silver ink composition (I).
  • the ratio of the amount of the solvent to the total amount of the components is preferably 25% by mass or less, more preferably 20% by mass or less, and 15% by mass. % Or less is particularly preferable.
  • the ratio of the blending amount of the other component to the total amount of the blending component is preferably 10% by mass or less. More preferably, it is 5 mass% or less.
  • the ratio of the blended amount of the other components to the total amount of the blended components is 0 mass, that is, the silver ink composition (I) sufficiently exhibits its effect even when the other components are not blended.
  • all the compounding components may be dissolved, or some or all of the components may be dispersed without dissolving, but all the compounding components are dissolved.
  • the undissolved component is preferably dispersed uniformly.
  • the said silver ink composition (I) mix
  • the obtained product may be used as it is as the silver ink composition (I), or a product obtained by performing a known refining operation if necessary as a silver ink (I) composition. Also good.
  • ⁇ -ketocarboxylate (1) is used as the organic silver compound, impurities that reduce glossiness and conductivity are not generated at the time of blending the above components, or such The amount of impurities generated can be suppressed to an extremely small amount. Therefore, even when the silver ink composition (I) that has not been purified is used, metallic silver having sufficient gloss and conductivity can be obtained.
  • each component is not particularly limited.
  • a method of blending a branched saturated aliphatic carboxylic acid at the end can be mentioned. That is, as an example of a preferable production method of the silver ink composition (I), the production of blending all the components other than the branched saturated aliphatic carboxylic acid and then blending the branched saturated aliphatic carboxylic acid last. A method is mentioned.
  • each component may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially.
  • the mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
  • the silver ink composition (I) when the undissolved component is uniformly dispersed, it is preferable to apply a method of dispersing using, for example, the above three roll, kneader or bead mill.
  • the temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C. And the temperature at the time of mixing
  • the silver ink composition (I) may be further supplied with carbon dioxide.
  • Such a silver ink composition (I) has a high viscosity, and for example, printing that requires thickening of ink, such as flexographic printing, screen printing, gravure printing, gravure offset printing, pad printing, etc. Suitable for law application.
  • Carbon dioxide may be supplied at any time during the production of the silver ink composition (I).
  • Carbon dioxide (CO 2 ) to be supplied may be either gaseous or solid (dry ice), or both gaseous and solid. It is presumed that the supplied carbon dioxide dissolves in the supply object and acts on any of the components to increase the viscosity of the resulting silver ink composition (I).
  • the carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in a supply object, the other end is connected to a carbon dioxide gas supply source, and carbon dioxide gas is supplied to the supply object through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply carbon dioxide gas, stirring a supply target object. By doing in this way, carbon dioxide can be supplied efficiently.
  • the supply amount of carbon dioxide gas may be appropriately adjusted according to the amount of the supply object, the viscosity of the target silver ink composition (I), and the like, and is not particularly limited.
  • the viscosity at 20 to 25 ° C. of the silver ink composition (I) has been described, but the temperature at the time of use of the silver ink composition (I) is not limited to 20 to 25 ° C. Can be selected.
  • “viscosity” in the present specification means a value measured using an ultrasonic vibration viscometer unless otherwise specified.
  • the flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the supply object, and is 1 mL / min or more. More preferably.
  • the upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the supply object in consideration of handling properties and the like.
  • the carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
  • the temperature of the supply object at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C., more preferably 7 to 60 ° C., and particularly preferably 10 to 50 ° C.
  • carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, the silver ink composition (I) having better quality with fewer impurities can be obtained. can get.
  • the flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. Composition (I) can be obtained efficiently.
  • the supply of carbon dioxide gas is preferably performed while stirring the supply object. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the supply object, and carbon dioxide can be supplied more efficiently.
  • the stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition (I) not using carbon dioxide.
  • the supply of dry ice may be performed by adding dry ice to the supply object.
  • the total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed). What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
  • the temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas. Moreover, what is necessary is just to adjust stirring time suitably according to stirring temperature.
  • the silver ink composition (I) when the silver ink composition (I) is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method, the silver ink composition (I) to which carbon dioxide is supplied is used.
  • the viscosity at 20 to 25 ° C. is preferably 1 Pa ⁇ s or more.
  • metallic silver may be formed from at least a part of the organic silver compound, and this metallic silver may precipitate.
  • the viscosity of the silver ink composition (I) is high, aggregation of the precipitated metal silver is suppressed, and the dispersibility of the metal silver in the obtained silver ink composition (I) is improved.
  • Metallic silver obtained by forming metallic silver by a method described later using such a silver ink composition (I) has a low viscosity, that is, no silver dioxide is supplied to the silver ink composition (I).
  • the gloss is higher, the conductivity is higher (volume resistivity is lower), the surface roughness is lower, and more preferable characteristics are obtained.
  • the silver ink composition (II) contains an organic silver complex as the organic silver compound, and further has a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms (the branched saturated aliphatic carboxylic acid).
  • a nitrogen-containing compound is blended.
  • an organic silver complex is formed by a reaction between a precursor compound of an organic silver complex and another nitrogen-containing compound, and an excess of the nitrogen-containing compound. In which the reaction solution in which the residual water remains and the branched saturated aliphatic carboxylic acid are included.
  • examples of such a silver ink composition (II) include those obtained by further blending a branched saturated aliphatic carboxylic acid with the one described in Japanese Patent No. 5243409. That is, as the silver ink composition (II), for example, a silver compound represented by the following general formula (91) (in this specification, sometimes abbreviated as “silver compound (91)”), A compound represented by the general formula (92) (in this specification, it may be abbreviated as “nitrogen-containing compound (92)”) and a compound represented by the following general formula (93) (in this specification) An organic silver complex obtained by reacting with one or more nitrogen-containing compounds selected from the group consisting of “nitrogen-containing compound (93)”), and And a liquid composition containing the nitrogen-containing compound and a branched saturated aliphatic carboxylic acid.
  • a silver compound represented by the following general formula (91) in this specification, sometimes abbreviated as “silver compound (91)”
  • a compound represented by the general formula (92) in this specification, it may
  • n 101 is an integer of 1 to 3;
  • X 101 is an oxygen atom, sulfur atom, halogen atom, cyano group, cyanate group, carbonate group, nitrate group, nitrite group, sulfate group, phosphate group, A group selected from the group consisting of a thiocyanate group, a chlorate group, a perchlorate group, a tetrafluoroborate group, an acetylacetonate group, a carboxylate group, and derivatives thereof;
  • R 101 to R 111 are each independently , A hydrogen atom, an aliphatic or alicyclic alkyl group having 1 to 30 carbon atoms or an aryl group, a functional group-substituted alkyl group or aryl group, and a group selected from a heterocyclic group, (However, R 101 to R 111 are not all hydrogen atoms.)
  • organic silver complex examples include a compound represented by the following general formula (95) -1 (sometimes abbreviated as “organic silver complex (95) -1” in this specification), and And a compound represented by the formula (95) -2 (in this specification, sometimes abbreviated as “organic silver complex (95) -2”).
  • R 101 to R 111 are the same as above; m 101 and m 102 are each independently 0.5 to 1.5.
  • silver compound (91) examples include silver oxide, silver thiocyanate, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, Examples include silver acetylacetonate, silver acetate, silver lactate, and silver oxalate.
  • a silver compound (91) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
  • the content of silver derived from the silver compound (91) is preferably 2% by mass or more, and more preferably 4% by mass or more.
  • the formed conductor light reflector, metallic silver
  • the upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired.
  • silver derived from the silver compound (91) has the same meaning as silver in the silver compound (91) blended at the time of producing the silver ink composition (II) unless otherwise specified.
  • the silver constituting the silver compound (91), the silver in the reaction product produced by the reaction of the silver compound (91) after the blending, and the silver produced by the reaction of the silver compound (91) after the blending It is a concept that includes all of itself (metal silver).
  • the nitrogen-containing compound (92) is an ammonium carbamate compound.
  • R 101 to R 105 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl Group, hexyl group, heptyl group, octyl group, isooctyl group, ethylhexyl group, nonyl group, decyl group, dodecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, methoxyethyl group, methoxypropyl group, cyanoethyl group, methoxyethoxyethyl Group, methoxyethoxyethoxyethyl group, hexamethyleneiminyl
  • nitrogen-containing compound (92) examples include ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, n-butylammonium n-butylcarbamate, isobutylammonium isobutylcarbamate, tert-butylammonium tert-butylcarbamate, 2-ethylhexylammonium 2- Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl decyl carbamate, methyl
  • 2-ethylhexylammonium 2-ethylhexyl carbamate is excellent in compatibility with the silver compound (91) and is particularly suitable for increasing the concentration of the silver ink composition (II). Furthermore, it is mentioned as being particularly suitable for reducing the surface roughness of metallic silver.
  • the nitrogen-containing compound (92) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
  • the nitrogen-containing compound (92) can be produced by a known method, for example, by the method described in US Pat. No. 4,542,214.
  • the nitrogen-containing compound (93) is an ammonium carbonate compound.
  • R 106 to R 111 are the same as R 101 to R 105 in the nitrogen-containing compound (92). However, R 106 to R 111 are not all hydrogen atoms.
  • nitrogen-containing compound (93) examples include ethyl ammonium ethyl carbonate, isopropyl ammonium isopropyl carbonate, n-butyl ammonium n-butyl carbonate, isobutyl ammonium isobutyl carbonate, tert-butyl ammonium tert-butyl carbonate, 2-ethylhexyl ammonium 2- Ethyl hexyl carbonate, 2-methoxyethyl ammonium 2-methoxyethyl carbonate, 2-cyanoethyl ammonium 2-cyanoethyl carbonate, octadecyl ammonium octadecyl carbonate, dibutyl ammonium dibutyl carbonate, dioctadecyl ammonium dioctadecyl carbonate, methyl decyl ammonium methyl decyl Boneto, hexamethylene iminyl ammoni
  • the nitrogen-containing compound (93) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
  • the nitrogen-containing compound (93) can be produced by a known method, for example, the method described in US Pat. No. 4,542,214.
  • the nitrogen-containing compound to be reacted with the silver compound (91) may be only one type or two or more types of nitrogen-containing compounds (92), or only one type or two or more types of nitrogen-containing compounds (93). It may be both one type or two or more types of nitrogen-containing compounds (92) and one type or two or more types of nitrogen-containing compounds (93).
  • the reaction between the silver compound (91) and one or more selected from the group consisting of the nitrogen-containing compound (92) and the nitrogen-containing compound (93) is, for example, in a normal pressure state in a nitrogen atmosphere Or in a pressurized state without using a solvent.
  • the reaction may be performed using a solvent.
  • the solvent at this time include water; alcohols such as methanol, ethanol, isopropanol, and butanol; glycols such as ethylene glycol and glycerin; acetates such as ethyl acetate, butyl acetate, and carbitol acetate; diethyl ether, tetrahydrofuran, dioxane, and the like.
  • Ethers such as methyl ethyl ketone and acetone; aliphatic hydrocarbons such as hexane and heptane; aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as chloroform, methylene chloride and carbon tetrachloride.
  • a solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
  • the solvent may be a component of the silver ink composition (II).
  • the total amount of the nitrogen-containing compound (92) and the nitrogen-containing compound (93) used is 1 to 4 times the molar amount of the silver atom in the silver compound (91) to be used ( [Total amount of nitrogen-containing compound (92) and nitrogen-containing compound (93) used (mol)] / [Amount of silver atom (mol) in silver compound (91) used] is 1 to 4) It is preferable.
  • the branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in the silver ink composition (II) is the branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in the silver ink composition (I).
  • the branched saturated aliphatic carboxylic acid in the silver ink composition (II) is presumed to exhibit the same action as the branched saturated aliphatic carboxylic acid in the silver ink composition (I).
  • the blended amount of the branched saturated aliphatic carboxylic acid is preferably 0.01 to 1 mole per mole of the silver atom in the organic silver complex.
  • the amount is more preferably 0.02 to 0.7 mol, and particularly preferably 0.03 to 0.4 mol. Even if the amount of the branched saturated aliphatic carboxylic acid is in such a range, even when printing is performed while heating the object to be printed, the effect of forming metallic silver with high gloss is obtained. Get higher.
  • the branched saturated aliphatic carboxylic acid per mole of silver atoms in the precursor compound is used. A compounding quantity can be made into the above-mentioned numerical range.
  • the silver ink composition (II) is blended with the branched saturated aliphatic carboxylic acid, so that it is glossy even when printing is performed while heating an object to be printed. High metal silver can be formed. Although the reason is not certain, it is assumed that it is the same as the case of the above-mentioned silver ink composition (I).
  • the silver ink composition of the present invention is as described above.
  • the organic silver compound is silver ⁇ -ketocarboxylate (1), organic silver complex (95) -1, or organic silver complex (95) -2. Can be mentioned. Next, a method for using the silver ink composition will be described.
  • the present invention is not limited to the silver ink composition (I) and the silver ink composition (II), and the silver ink composition is suitable for applying a printing method as a method for adhering to a target object. It is also suitable to apply a method other than the printing method such as the method.
  • the silver ink composition is particularly suitable for application to a method that requires heating of the object to be adhered (object) among the methods of adhering to the object.
  • the printing method examples include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, jet dispenser printing method, gravure printing method, gravure offset printing method, The pad printing method etc. are mentioned.
  • the printing method is preferably an ink jet printing method.
  • Examples of the coating method include various coaters such as a spin coater, an air knife coater, a curtain coater, a die coater, a blade coater, a roll coater, a gate roll coater, a bar coater, a rod coater, a gravure coater, and a wire bar. Methods and the like.
  • the silver ink composition on the printing object The thickness of the metallic silver can be adjusted by adjusting the amount or the blending amount of the organic silver compound in the silver ink composition.
  • the coating method is employed instead of the printing method, the amount of the silver ink composition on the object to be coated or the blending amount of the organic silver compound in the silver ink composition can be adjusted to obtain metallic silver. Can adjust the thickness.
  • the drying treatment may be performed, for example, under normal pressure, reduced pressure, or air blowing conditions, and may be performed under air or an inert gas atmosphere.
  • the drying temperature is not particularly limited, and may be either heat drying or room temperature drying.
  • a preferable drying method when the heat treatment is unnecessary for example, a method of drying in the atmosphere at 18 to 30 ° C. can be mentioned.
  • the conditions may be adjusted as appropriate according to the type of ingredients of the silver ink composition.
  • the heating temperature is preferably 60 to 370 ° C., more preferably 70 to 280 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 24 hours, and more preferably 1 minute to 12 hours.
  • the silver carboxylate, particularly ⁇ -ketocarboxylate (1) is different from a metal silver forming material such as silver oxide, for example, without using a reducing agent known in the art. Also decomposes at low temperatures. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C or less. It is particularly preferred that
  • the method for heat treatment of the silver ink composition is not particularly limited.
  • the heat treatment can be performed by, for example, heating with an electric furnace, heating with a thermal head, heating with far-infrared irradiation, or heating by blowing a hot gas. Further, the heat treatment may be performed in the atmosphere, in an inert gas atmosphere, or may be performed under humidified conditions. The heat treatment may be performed under normal pressure, reduced pressure, or increased pressure.
  • humidity means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
  • the relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
  • the heat treatment of the silver ink composition may be performed in two stages.
  • the first stage heat treatment there is a method in which the silver ink composition is mainly dried rather than the formation of metallic silver, and in the second stage heat treatment, the formation of metallic silver is performed to the end.
  • the first stage heat treatment includes, for example, the heating of the silver ink composition by the printing object when the printing object is printed with the silver ink composition while heating the printing object, as described above. May be applicable.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 120 ° C, and may be 70 to 110 ° C. .
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is formed satisfactorily, but it should be 60 to 280 ° C.
  • the temperature is 70 to 260 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
  • the heating temperature in the first and second stage heat treatment is preferably less than 130 ° C. More preferably, it is not higher than 120 ° C, particularly preferably not higher than 120 ° C.
  • the heat treatment of the silver ink composition described so far is performed in the gas phase.
  • the heat treatment in the second step is performed in the gas phase.
  • the silver ink composition that has been completely or partially dried through the first stage heat treatment can be subjected to the second stage heat treatment without impairing its shape by contacting with the heated liquid.
  • the heating temperature and heating time in the heat treatment in the liquid phase are the same as the heating temperature and heating time in the second-stage heat treatment described above.
  • the heated liquid is preferably hot water (heated water), and the second stage heat treatment is performed by immersing the silver ink composition subjected to the first stage heat treatment in hot water, that is, by hot water bathing. Preferably it is done.
  • the metallic silver formed by this heat treatment may be further dried.
  • the first stage heat treatment of the silver ink composition is preferably performed under non-humidified conditions.
  • non-humidification means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
  • the silver ink composition When heat treatment under humidified conditions is employed, it is particularly preferable to perform the heat treatment of the silver ink composition by the following two-step method. That is, in the first stage heat treatment, the silver ink composition is mainly dried under the non-humidified condition as described above, rather than the formation of metallic silver, and in the second stage heat treatment, under the humidified condition, As described above, it is particularly preferable to heat-treat the silver ink composition by forming metal silver to the end.
  • the heating temperature during the heat treatment under the first stage non-humidified conditions is preferably 60 to 120 ° C., even if it is 70 to 110 ° C. Good.
  • the heating time is preferably 5 seconds to 1 hour, more preferably 30 seconds to 30 minutes, and particularly preferably 30 seconds to 15 minutes.
  • the heating temperature during the heat treatment under the second-stage humidification condition, which is performed after the heat treatment under the first-stage non-humidification conditions is preferably 60 to 140 ° C, and preferably 70 to 130 ° C. Is more preferable.
  • the heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and particularly preferably 120 ° C or less.
  • the material of the target object (base material) to be attached (printed) to the silver ink composition is not particularly limited, and can be arbitrarily selected according to the purpose.
  • examples of preferable materials of the target product include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), Acrylic resins such as polyvinyl acetate (PVAc) and polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide, polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate ( PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulf
  • the thickness of the target object (base material) to be attached (printed) to the silver ink composition is not particularly limited, but is preferably 10 to 5000 ⁇ m, and more preferably 10 to 3000 ⁇ m.
  • the silver ink composition of the present invention can form a light reflector having high glossiness by solidification treatment such as drying treatment or heating (firing) treatment.
  • This light reflector is mainly composed of metallic silver produced from the organic silver compound. That is, metallic silver having high gloss can be formed by using the silver ink composition of the present invention. And even if it prints, heating this printing object using this silver ink composition, metallic silver with high glossiness can be formed.
  • the silver ink composition of the present invention is a laminate comprising a base material and a metallic silver layer formed on the base material, in order to produce a laminated body having a high glossiness of the metallic silver layer. Suitable for use in
  • Metallic silver obtained using the silver ink composition of the present invention is excellent in light reflectance, for example, reflectance of light having a wavelength of 400 to 700 nm.
  • the reflectance of metal silver having a wavelength of 550 nm can be preferably 50% or more, for example, 55% or more, 60%. Although it can be any of 65% or more, 70% or more, 75% or more, etc., these are examples.
  • the upper limit value of the reflectance of light having a wavelength of 550 nm of the above-described metallic silver is not particularly limited and can be set to 90%, for example, but this is an example.
  • the reflectance of light with a wavelength of 550 nm of the metallic silver is Any of the above-described preferred lower and upper limit values can be appropriately adjusted so as to be within a range set by arbitrarily combining them.
  • the reflectance of the light can be preferably 50 to 90%, and any of 55 to 90%, 60 to 90%, 65 to 90%, 70 to 90%, 75 to 90%, and the like. can do. However, these are examples.
  • the ratio of metallic silver can be made sufficiently high so that the light reflector can be considered to be composed solely of metallic silver.
  • the ratio of metallic silver in the body is preferably 97% by mass or more, more preferably 98% by mass or more, and particularly preferably 99% by mass or more.
  • the upper limit of the ratio of metallic silver in the light reflector is, for example, 100% by mass, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, although it can be set to either 99.4 mass%, 99.3 mass%, 99.2 mass%, or 99.1 mass%, it is not limited to these.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the laminate of the present invention.
  • the laminated body 1 shown here includes a base material 11 and a metal silver layer 12 formed on the base material 11.
  • the metallic silver layer 12 is formed using the above-described silver ink composition of the present invention.
  • the reflectance of light with a wavelength of 550 nm of the metallic silver layer 12 is 50% or more.
  • the metallic silver layer 12 is laminated only on one surface (which may be referred to as “first surface” in this specification) 11 a of the substrate 11.
  • a metallic silver layer is formed on the surface 11b (which may be referred to as “second surface” in this specification) opposite to the first surface 11a of the substrate 11. (Not shown) is not laminated, but a metallic silver layer may be laminated on the second surface 11b.
  • the metallic silver layer on the second surface 11b of the substrate 11 may be formed using the silver ink composition of the present invention, or a silver ink composition different from the present invention is used. It may be formed.
  • the metallic silver layer 12 on the 1st surface 11a of the base material 11 and the metallic silver layer on the 2nd surface 11b of the base material 11 may mutually be the same, and may differ.
  • the silver ink composition of the present invention even when printing is performed while heating the printing object, or when application is performed while heating the application object.
  • metallic silver a metallic silver layer having high gloss can be formed.
  • the heating temperature of the object to be printed at the time of printing or the object to be applied at the time of application is not particularly limited, but is preferably 45 to 70 ° C, and more preferably 55 to 65 ° C.
  • the heating temperature is equal to or higher than the lower limit, bleeding of the silver ink composition during printing or coating is further suppressed.
  • the heating temperature is equal to or lower than the upper limit value, deterioration of the print object or the application object is further suppressed.
  • the heating time of the printing object or the application object is not particularly limited, and can be appropriately adjusted according to the heating temperature, for example. Usually, the heating time is preferably 5 seconds to 10 minutes.
  • the printing with the above-described silver ink composition or application of the silver ink composition performed while heating the object may be performed in an air atmosphere or in an inert gas atmosphere.
  • the inert gas include nitrogen gas, helium gas, and argon gas.
  • metallic silver (a metallic silver layer) with higher gloss may be obtained by performing the printing or coating in an inert gas atmosphere.
  • the thickness of the metallic silver layer formed on the substrate using the silver ink composition of the present invention can be arbitrarily set according to the purpose, and is not particularly limited.
  • the thickness of the metallic silver layer is preferably 0.04 to 1 ⁇ m, and more preferably 0.05 to 0.5 ⁇ m.
  • the thickness of the metal silver layer is not less than the lower limit, the light reflectance of the metal silver layer is further increased.
  • a metallic silver layer having a thickness equal to or less than the upper limit can be formed more easily.
  • Laminates obtained by forming a metallic silver layer (metallic silver) on a substrate using the silver ink composition of the present invention can be used in various applications utilizing the high gloss property of the metallic silver layer. Available at. For example, if the metal silver layer is patterned, the laminate is useful as a component of various products for decoration or decoration. If the metallic silver layer is a film, the laminate is useful as a component of various products using the surface of the film as a mirror surface. Examples of the preferable laminate including a metal silver layer on a substrate include those described above (for example, those having a reflectance of light having a wavelength of 550 nm of the metal silver layer of 50% or more). .
  • Example 1 ⁇ Manufacture of silver ink composition>
  • 2-ethylhexylamine 78.18 g, 6.53 times the molar amount of silver 2-methylacetoacetate described later
  • 3,5-dimethyl-1-hexyn-3-ol hereinafter “DMHO”
  • Silver 2-methylacetoacetate (20.65 g) was added so that the temperature would be 40 ° C. or less to dissolve each compounding component, and stirring was continued for one day at room temperature.
  • neodecanoic acid (0.13-fold molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature is 30 ° C. or lower, whereby a silver ink composition is obtained.
  • Ink composition (I) was obtained.
  • “Surfinol 61” manufactured by Nissin Chemical Co., Ltd. was used as DMHO, and “Versatic 10” manufactured by Japan Chemtech Co., Ltd. was used as neodecanoic acid. This also applies to the following examples, reference examples and comparative examples.
  • Table 1 shows the types and blending ratios of each blending component.
  • nitrogen-containing compound (molar ratio) means the compounding amount (number of moles) of the nitrogen-containing compound per mol of the organic silver compound ([number of moles of nitrogen-containing compound] / [organic silver compound] Number of moles]).
  • Alcohol (molar ratio) also means the blending amount (number of moles) of alcohol per mole of blending organic silver compound ([number of moles of alcohol] / [number of moles of organic silver compound]).
  • the “molar ratio of the branched saturated aliphatic carboxylic acid” is the blended amount (number of moles) of the branched saturated aliphatic carboxylic acid per mole of the organic silver compound. Number of moles of carboxylic acid] / [number of moles of organic silver compound]).
  • the description of “-” in the column of the blending component / blending amount of the silver ink composition means that the component is not blended. The same applies to the tables after Table 1 showing the types and blending ratios of the blending components.
  • organic silver compound means “silver ⁇ -ketocarboxylate (1)”.
  • the coated material (coating film) on the heated substrate is heated (baked) at 100 ° C. for 15 minutes.
  • a metal silver layer (metal silver film) (1) -1 was formed.
  • the metallic silver layer (1) -1R was formed in the same manner as the metallic silver layer (1) -1, except that the substrate was not heated after the silver ink composition was separately applied. did.
  • the same method as in the case of the metallic silver layer (1) -1 except that the heating (firing) treatment condition of the coated material was changed to 15 minutes at 120 ° C. instead of 15 minutes at 100 ° C.
  • a metallic silver layer (1) -2 was formed.
  • the metallic silver layer (1) -2R was formed in the same manner as the metallic silver layer (1) -2, except that the substrate was not heated after the silver ink composition was separately applied. did.
  • Table 2 shows the heating conditions of the base material after coating and the heating (firing) treatment conditions of the coated product, respectively.
  • the description of “-” in the column of the process condition means that the process is not performed. The same applies to the tables after Table 2 showing the heating conditions for the base material and the heating (firing) treatment conditions for the coated material.
  • Example 2 ⁇ Manufacture of silver ink composition>
  • 2-ethylhexylamine 75.61 g, 6.32 times mol amount based on silver pivaloyl acetate described later
  • DMHO 1.17 g, 0.10 times mol amount based on silver pivaloyl acetate
  • silver pivaloyl acetate 23.23 g was added to the solution so that the liquid temperature was 40 ° C. or lower to dissolve each compounding component, Stirring was continued for one day at room temperature.
  • neodecanoic acid (0.13 times mole amount with respect to silver pivaloyl acetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature is 30 ° C. or lower, whereby a silver ink composition is obtained as a silver ink composition.
  • Product (I) was obtained.
  • a metal silver layer (metal silver film) (2) -1 was formed.
  • Table 2 shows the heating conditions of the substrate after coating and the heating (firing) treatment conditions of the coated product, respectively.
  • the reflectance of light having a wavelength of 550 nm was measured by the same method as in Example 1, and the average value was calculated. The results are shown in Table 2.
  • a metal silver layer (metal silver film) (R1) -1 was formed. Further, the metallic silver layer (R1) -1R is formed in the same manner as the metallic silver layer (R1) -1, except that the base material after the silver ink composition is not heated. did. In addition, except that the heating conditions of the base material after coating with the silver ink composition were changed to 60 ° C. for 5 minutes and changed to 40 ° C. for 5 minutes and 30 ° C. for 5 minutes. Metal silver layers (R1) -2 and (R1) -3 were formed by the same method as that for silver layer (R1) -1.
  • Example 2 ⁇ Production and Evaluation of Silver Ink Composition> A silver ink composition was obtained in the same manner as in Example 2 except that neodecanoic acid was not dropped. That is, a silver ink composition was obtained as it was by adding silver pivaloyl acetate and continuing stirring at room temperature for 1 day. Then, using the obtained silver ink composition, a metallic silver layer (R2) -1 was formed in the same manner as in Example 2, and evaluation was performed in the same manner as in Example 2. The results are shown in Table 2.
  • the thickness of the formed metal silver layer was about 0.1 ⁇ m.
  • Example 3 ⁇ Manufacture of silver ink composition> In a beaker, 2-ethylhexylamine (78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later) and DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate). 10-fold molar amount), and stirring, rotating the mechanical stirrer, and further stirring here, silver 2-methylacetoacetate (20.65 parts by mass) so that the liquid temperature is 40 °C or less Was added to dissolve each compounding component, and stirring was continued for one day at room temperature.
  • 2-propylvaleric acid (1.00 parts by mass, 0.07 times the molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring solution and stirred so that the temperature of the solution becomes 30 ° C. or lower.
  • a silver ink composition (I) was obtained as a silver ink composition.
  • 2-propylvaleric acid a product manufactured by Tokyo Chemical Industry Co., Ltd. was used. Table 3 shows the types and mixing ratios of the respective components.
  • the column “Carboxylic acid” lists the branched saturated aliphatic carboxylic acid 2-propylvaleric acid and its molar ratio. The same applies to the following embodiments.
  • a metal silver layer (metal silver film) (3) -1 was formed.
  • the metallic silver layer (3) -1R was formed in the same manner as the metallic silver layer (3) -1, except that the substrate was not heated after the silver ink composition was separately applied. did.
  • Table 4 shows the heating conditions of the substrate after coating and the heating (firing) treatment conditions of the coated product, respectively.
  • the reflectance of light having a wavelength of 550 nm was measured by the same method as in Example 1, and the average value was calculated. The results are shown in Table 4.
  • Example 4 ⁇ Production and Evaluation of Silver Ink Composition> Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of production of the silver ink composition, 2.00 A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 3 except that the amount was 0.1 part by mass (0.15 times the molar amount with respect to silver 2-methylacetoacetate). Then, using the obtained silver ink composition, metallic silver layers (4) -1 and (4) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
  • Example 5 ⁇ Production and Evaluation of Silver Ink Composition> Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of producing the silver ink composition, 3.00 A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 3 except that the amount was 0.2 parts by mass (0.22 times the molar amount with respect to silver 2-methylacetoacetate). Then, using the obtained silver ink composition, metallic silver layers (5) -1 and (5) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
  • Example 6 ⁇ Production and Evaluation of Silver Ink Composition> Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of production of the silver ink composition, 4.00 A silver ink composition (I) was obtained as a silver ink composition by the same method as in Example 3 except that the amount was 0.3 parts by mass (0.30 times the molar amount with respect to silver 2-methylacetoacetate). Then, using the obtained silver ink composition, metallic silver layers (6) -1 and (6) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
  • Example 7 ⁇ Production and Evaluation of Silver Ink Composition>
  • 2-ethylhexylamine 78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later
  • DMHO DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate. 10-fold molar amount)
  • silver 2-methylacetoacetate 20.65 parts by mass
  • Example 8 ⁇ Production and Evaluation of Silver Ink Composition> Instead of setting the amount of 3,5,5-trimethylhexanoic acid in the production of the silver ink composition to 1.00 parts by mass (0.07 times the molar amount with respect to silver 2-methylacetoacetate) A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 7, except that the amount was 2.00 parts by mass (0.14 times the molar amount of silver 2-methylacetoacetate). It was. Then, using the obtained silver ink composition, metallic silver layers (8) -1 and (8) -1R were formed by the same method as in Example 7, and evaluated by the same method as in Example 7. . The results are shown in Table 4.
  • n-hexanoic acid (1.00 part by mass, 0.09-fold molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature becomes 30 ° C. or lower.
  • n-hexanoic acid a product manufactured by Tokyo Chemical Industry Co., Ltd. was used. Table 3 shows the types and mixing ratios of the respective components.
  • Table 3 in the column of “carboxylic acid”, n-hexanoic acid which is not a branched saturated aliphatic carboxylic acid and its molar ratio are described. The same applies to the following reference examples.
  • metallic silver layers (1 ′)-1 and (1 ′)-1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. went. The results are shown in Table 4.
  • cyclopropanecarboxylic acid (1.00 parts by mass, 0.13 times the molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature becomes 30 ° C. or lower.
  • a silver ink composition was obtained.
  • a cyclopropane carboxylic acid the thing by Tokyo Chemical Industry Co., Ltd. was used. Table 3 shows the types and mixing ratios of the respective components.
  • a metallic silver layer having high glossiness could not be formed by heating the substrate at 60 ° C. for 5 minutes after applying the silver ink composition.
  • Reference Examples 2 to 12 in the first place, even if a metallic silver layer is formed without heating the substrate after coating the silver ink composition, a metallic silver layer with high glossiness cannot be formed, and branched saturated Other compounds used in place of the aliphatic carboxylic acid were not suitable for forming the metallic silver layer.
  • the light reflectance of the metallic silver layer when the substrate was heated after the silver ink composition was applied was 36% or less.
  • the effects of the present invention can be obtained only when a silver ink composition in which an organic silver compound and the branched saturated aliphatic carboxylic acid are blended is used.
  • a silver ink composition in which an organic silver compound and the branched saturated aliphatic carboxylic acid are blended is used.
  • the results of Reference Example 10 are compared with the results of Examples 1 and 2 described above, the importance of the branched saturated aliphatic carboxylic acid being an essential blending component is clearly evident.
  • the thickness of the formed metal silver layer was about 0.1 ⁇ m.
  • Example 9 ⁇ Manufacture of silver ink composition>
  • a silver ink composition was produced by the following procedure. That is, 2-ethylhexylammonium 2-ethylhexylcarbamate (45.5 g, 150.41 mmol) was dissolved in 2-propanol (105 g) at room temperature, and silver oxide (14 g, 60.41 mmol) was added thereto. And reacted at room temperature. The reaction solution at this time was initially a black suspension, and the color gradually faded as the target organic silver complex was formed. At the stage of reaction for 4 hours, a slight amount of silver oxide precipitate remained in the reaction solution. By centrifuging the reaction solution, the precipitate was removed to obtain a transparent reaction solution (reaction solution). It was.
  • the transparent reaction liquid obtained above was heat-treated at 400 ° C. for 3.5 hours, and the mass change before and after the heat treatment (the mass of the reaction liquid before the heat treatment and the reaction liquid)
  • the silver content of the reaction solution was measured from the difference of the mass of the processed product obtained by heat treatment of 5.8% by mass.
  • the coated material (coating film) on the heated substrate is heated (baked) at 150 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (9) -1 was formed. In addition, the metal silver layer (9) -1R was formed in the same manner as for the metal silver layer (9) -1, except that the substrate was not heated after the silver ink composition was separately applied. did. Table 5 shows the heating conditions of the base material after coating and the heating (firing) treatment conditions of the coated product, respectively.
  • Example 10 ⁇ Production and Evaluation of Silver Ink Composition> At the time of manufacturing the silver ink composition, the amount of neodecanoic acid with respect to the transparent reaction liquid (30 g) was changed to 0.3 g (1.74 mmol) instead of 0.48 g (2.79 mmol). A silver ink composition (II) was obtained as a silver ink composition in the same manner as in Example 9 except for the above. Then, using the obtained silver ink composition, metallic silver layers (10) -1 and (10) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. . The results are shown in Table 5.
  • Example 11 ⁇ Production and Evaluation of Silver Ink Composition>
  • the amount of neodecanoic acid with respect to the transparent reaction liquid (30 g) was changed to 0.3 g (1.74 mmol) and 0.9 g (5.22 mmol).
  • a silver ink composition (II) was obtained as a silver ink composition in the same manner as in Example 9 except for the above.
  • metallic silver layers (11) -1 and (11) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. .
  • the results are shown in Table 5.
  • Example 3 ⁇ Production and Evaluation of Silver Ink Composition> A silver ink composition was obtained in the same manner as in Example 9 except that neodecanoic acid was not added. That is, a transparent reaction liquid (reaction solution) obtained by adding silver oxide and centrifuging was directly used as a silver ink composition. Then, using the obtained silver ink composition, metallic silver layers (R3) -1 and (R3) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. . The results are shown in Table 5.
  • the branched saturated aliphatic carboxylic acid in the silver ink composition was used when the substrate was heated after the silver ink composition was applied and when the substrate was not heated.
  • the amount of the acid (neodecanoic acid) increases (in the order of the metallic silver layers (9) -1R, (10) -1R and (11) -1R), the metallic silver layers (9) -1, (10) -1 and (11) -1), the gloss of the metallic silver layer tended to improve.
  • the thickness of the formed metal silver layer was about 0.1 ⁇ m.
  • the present invention can be used for various products using a metallic silver pattern for decoration or decoration. Furthermore, the present invention can be used for various products that have a metallic silver layer on a substrate and use the metallic silver layer surface as a mirror surface.
  • SYMBOLS 1 Laminated body, 11 ... Base material, 11a ... 1st surface of a base material, 11b ... 2nd surface of a base material, 12 ... Metal silver layer

Abstract

This silver ink composition is obtained by blending an organic silver compound and a C8-10 branched saturated aliphatic carboxylic acid. In a laminate provided with a base material and also provided with a metallic silver layer formed using the silver ink composition on the base material, the reflectance of the metallic silver layer with respect to light having a wavelength of 550 nm is 50% or higher.

Description

銀インク組成物及び積層体Silver ink composition and laminate
 本発明は、銀インク組成物及び積層体に関する。
 本願は、2016年9月29日に、日本に出願された特願2016-190549号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a silver ink composition and a laminate.
This application claims priority on September 29, 2016 based on Japanese Patent Application No. 2016-190549 filed in Japan, the contents of which are incorporated herein by reference.
 有機銀化合物が配合されてなる銀インク組成物のうち、有機銀化合物としてβ-ケトカルボン酸銀を用いたもの(特許文献1参照)は、加熱処理によって導電性に優れ、光沢性にも優れた、金属銀からなる緻密な膜を形成できる点から、利用価値が高い。
 また、このような銀インク組成物は、粘度の調節も容易であり、粒子状の不溶物を低減又は解消できる点から、例えば、インクジェット式印刷法への適用にも好適である。
Among silver ink compositions containing an organic silver compound, those using silver β-ketocarboxylate as the organic silver compound (see Patent Document 1) are excellent in conductivity and gloss by heat treatment. The utility value is high because a dense film made of metallic silver can be formed.
In addition, such a silver ink composition is suitable for application to, for example, an ink jet printing method because the viscosity can be easily adjusted and particulate insoluble matter can be reduced or eliminated.
 しかし、インクジェット式印刷法で用いるインク組成物は、通常、低粘度であることから、印刷対象物に印刷したときに滲み易い。そこで、インクジェット式印刷法において、印刷対象物を加熱することにより、印刷されたインク組成物が滲む前に、インク組成物中の溶媒成分を揮発させる方法が開示されている(特許文献2参照)。 However, since the ink composition used in the ink jet printing method usually has a low viscosity, it tends to bleed when printed on a printing object. Therefore, in the ink jet printing method, a method of volatilizing the solvent component in the ink composition by heating the printing object before the printed ink composition bleeds is disclosed (see Patent Document 2). .
 しかし、本発明者らは、インクジェット式印刷法において、有機銀化合物が配合されてなる銀インク組成物を用いて、印刷対象物を加熱しながら印刷を行うと、確かに銀インク組成物の滲みを抑制できるものの、銀インク組成物の加熱処理によって最終的に形成された金属銀膜は、印刷対象物を加熱しなかった場合よりも、光沢性に劣ることを見出した。 However, when the present inventors perform printing while heating a printing object using a silver ink composition containing an organic silver compound in an ink jet printing method, the bleeding of the silver ink composition surely occurs. However, it was found that the metallic silver film finally formed by the heat treatment of the silver ink composition is inferior in gloss to the case where the printing object is not heated.
特許第5393988号公報Japanese Patent No. 5393988 特許第4889059号公報Japanese Patent No. 4889059
 本発明は、有機銀化合物が配合されてなる銀インク組成物であって、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成可能な銀インク組成物、及び前記銀インク組成物を用いて形成された、光沢性が高い金属銀層を備えた積層体を提供することを課題とする。 The present invention is a silver ink composition in which an organic silver compound is blended, and is a silver ink composition capable of forming metallic silver having high gloss even when printing is performed while heating an object to be printed It is an object of the present invention to provide a laminate including a metallic silver layer having high gloss and formed using the silver ink composition.
 本発明は、有機銀化合物と、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸と、が配合されてなる銀インク組成物を提供する。
 本発明の銀インク組成物においては、前記有機銀化合物が、下記一般式(1)で表わされるβ-ケトカルボン酸銀、下記一般式(95)-1で表される有機銀錯体、又は下記一般式(95)-2で表される有機銀錯体であってもよい。
The present invention provides a silver ink composition comprising an organic silver compound and a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms.
In the silver ink composition of the present invention, the organic silver compound is a silver β-ketocarboxylate represented by the following general formula (1), an organic silver complex represented by the following general formula (95) -1, or the following general silver It may be an organic silver complex represented by the formula (95) -2.
Figure JPOXMLDOC01-appb-C000003
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
Figure JPOXMLDOC01-appb-C000003
(Wherein R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”;
Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom; R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group; R 2 is an aliphatic having 1 to 20 carbon atoms R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is An aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”;
X 1 is independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group or benzyl group in which one or more hydrogen atoms may be substituted with a substituent, a cyano group, N -Phthaloyl-3-aminopropyl group, 2-ethoxyvinyl group, or “R 7 O—”, “R 7 S—”, “R 7 —C (═O) —” or “R 7 —C ( ═O) —O— ”;
R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group, or a phenyl group or diphenyl group in which one or more hydrogen atoms may be substituted with a substituent. )
Figure JPOXMLDOC01-appb-C000004
 (式中、R101~R111は、それぞれ独立に、水素原子、炭素数1~30の脂肪族若しくは脂環族アルキル基又はアリール基、官能基が置換されたアルキル基又はアリール基、及びヘテロ環式基からなる群から選択される基であり、ただし、R101~R111がすべて水素原子になることはなく;m101及びm102は、それぞれ独立に、0.5~1.5である。)
Figure JPOXMLDOC01-appb-C000004
(Wherein R 101 to R 111 each independently represents a hydrogen atom, an aliphatic or alicyclic alkyl group or aryl group having 1 to 30 carbon atoms, an alkyl group or aryl group substituted with a functional group, and hetero A group selected from the group consisting of cyclic groups, provided that R 101 to R 111 are not all hydrogen atoms; m 101 and m 102 are each independently 0.5 to 1.5 is there.)
 本発明の銀インク組成物においては、前記分岐鎖状飽和脂肪族カルボン酸が、下記一般式(6)で表されるモノカルボン酸であってもよい。
 R31-C(=O)-OH ・・・・(6)
 (式中、R31は、炭素数7~9の分岐鎖状のアルキル基である。)
In the silver ink composition of the present invention, the branched saturated aliphatic carboxylic acid may be a monocarboxylic acid represented by the following general formula (6).
R 31 —C (═O) —OH (6)
(In the formula, R 31 is a branched alkyl group having 7 to 9 carbon atoms.)
 本発明の銀インク組成物においては、前記分岐鎖状飽和脂肪族カルボン酸の配合量が、前記有機銀化合物中の銀原子の配合量1モルあたり、0.03~0.4モルであってもよい。
 また、本発明は、基材と、前記基材上に形成された金属銀層と、を備え、前記金属銀層は、前記銀インク組成物を用いて形成されたものであり、前記金属銀層の、波長550nmの光の反射率が50%以上である、積層体を提供する。
In the silver ink composition of the present invention, the amount of the branched saturated aliphatic carboxylic acid is 0.03 to 0.4 mol per mol of the silver atom in the organic silver compound. Also good.
Further, the present invention comprises a base material and a metal silver layer formed on the base material, and the metal silver layer is formed using the silver ink composition, and the metal silver layer Provided is a laminate in which the reflectance of light having a wavelength of 550 nm is 50% or more.
 有機銀化合物が配合されてなる、本発明の銀インク組成物を用いることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成でき、光沢性が高い金属銀層を備えた積層体を提供できる。 By using the silver ink composition of the present invention, which is formulated with an organic silver compound, even when printing is performed while heating an object to be printed, metallic silver with high gloss can be formed and gloss is achieved. A laminate having a high metallic silver layer can be provided.
本発明の積層体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the laminated body of this invention.
<<銀インク組成物>>
 本発明の銀インク組成物は、有機銀化合物と、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸(本明細書においては、「分岐鎖状飽和脂肪族カルボン酸」と略記することがある)と、が配合されてなる。
 本発明の銀インク組成物は、前記分岐鎖状飽和脂肪族カルボン酸が配合されていることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成できる。
<< Silver ink composition >>
The silver ink composition of the present invention is abbreviated as an organic silver compound and a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms (in this specification, “branched saturated aliphatic carboxylic acid”). And).
The silver ink composition of the present invention contains metallic silver having a high glossiness even when printing is performed while heating the printing object because the branched saturated aliphatic carboxylic acid is blended. Can be formed.
 なお、本明細書においては、金属銀層(金属銀)の形成を、銀インク組成物の印刷によって行う場合だけでなく、塗布(塗工)によって行う場合についても記載している。すなわち、本発明の銀インク組成物の適用対象は、印刷法に限定されず、後述する塗布(塗工)法も挙げられる。そして、本発明の銀インク組成物は、塗布対象物を加熱しながら塗布を行った場合であっても、印刷法の場合と同様に、光沢性が高い金属銀を形成できる。 In addition, in this specification, not only the case where formation of a metal silver layer (metal silver) is performed by printing of a silver ink composition but the case where it performs by application | coating (coating) is described. That is, the application target of the silver ink composition of the present invention is not limited to the printing method, and includes a coating (coating) method described later. And even if it is a case where it apply | coats, heating the application target object, the silver ink composition of this invention can form metallic silver with high glossiness similarly to the case of the printing method.
 前記有機銀化合物は、一分子中に有機基及び銀原子を有し、分解等の構造変化によって金属銀を生じる化合物である。
 このような有機銀化合物としては、例えば、有機酸の銀塩、有機銀錯体等が挙げられる。
 本発明において、有機銀化合物は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
The organic silver compound is a compound that has an organic group and a silver atom in one molecule and generates metallic silver by a structural change such as decomposition.
Examples of such organic silver compounds include silver salts of organic acids and organic silver complexes.
In the present invention, the organic silver compound may be used singly or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted. .
 好ましい銀インク組成物としては、以下に示す銀インク組成物(I)及び銀インク組成物(II)が挙げられる、以下、これら銀インク組成物について説明する。 Preferred silver ink compositions include the silver ink composition (I) and silver ink composition (II) shown below. These silver ink compositions will be described below.
〇銀インク組成物(I)
 銀インク組成物(I)は、前記有機銀化合物として、カルボン酸銀(カルボン酸の銀塩)が配合されてなるものが好ましい。すなわち、好ましい銀インク組成物(I)としては、カルボン酸銀と、前記分岐鎖状飽和脂肪族カルボン酸と、が配合されてなるものが挙げられる。
* Silver ink composition (I)
The silver ink composition (I) preferably contains silver carboxylate (a silver salt of carboxylic acid) as the organic silver compound. That is, as a preferable silver ink composition (I), a mixture of silver carboxylate and the branched saturated aliphatic carboxylic acid can be mentioned.
[カルボン酸銀]
 前記カルボン酸銀は、式「-COOAg」で表される基を有する。
 本発明において、カルボン酸銀は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
 前記カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。
[Silver carboxylate]
The silver carboxylate has a group represented by the formula “—COOAg”.
In this invention, silver carboxylate may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily. .
The silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”. For example, the number of groups represented by the formula “—COOAg” may be one, or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
 前記カルボン酸銀は、下記一般式(1)で表わされるβ-ケトカルボン酸銀(以下、「β-ケトカルボン酸銀(1)」と略記することがある)及び下記一般式(4)で表されるカルボン酸銀(以下、「カルボン酸銀(4)」と略記することがある)からなる群から選択される1種又は2種以上であることが好ましい。
 なお、本明細書においては、単なる「カルボン酸銀」との記載は、特に断りの無い限り、「β-ケトカルボン酸銀(1)」及び「カルボン酸銀(4)」だけではなく、これらを包括する、「式「-COOAg」で表される基を有するカルボン酸銀」を意味するものとする。
The silver carboxylate is represented by the following general formula (1) β-ketocarboxylate silver (hereinafter sometimes abbreviated as “β-ketocarboxylate (1)”) and the following general formula (4). It is preferable that it is 1 type (s) or 2 or more types selected from the group which consists of silver carboxylate (Hereinafter, it may abbreviate as "a silver carboxylate (4).").
In this specification, the simple description of “silver carboxylate” is not limited to “silver β-ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
Figure JPOXMLDOC01-appb-C000005
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”;
Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom; R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group; R 2 is an aliphatic having 1 to 20 carbon atoms R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is An aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”;
X 1 is independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group or benzyl group in which one or more hydrogen atoms may be substituted with a substituent, a cyano group, N -Phthaloyl-3-aminopropyl group, 2-ethoxyvinyl group, or “R 7 O—”, “R 7 S—”, “R 7 —C (═O) —” or “R 7 —C ( ═O) —O— ”;
R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group, or a phenyl group or diphenyl group in which one or more hydrogen atoms may be substituted with a substituent. )
Figure JPOXMLDOC01-appb-C000006
 (式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基又は式「-C(=O)-OAg」で表される基であり、前記脂肪族炭化水素基がメチレン基を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C (═O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.)
(β-ケトカルボン酸銀(1))
 β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
 式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基である。
(Silver β-ketocarboxylate (1))
The silver β-ketocarboxylate (1) is represented by the general formula (1).
In the formula, R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent. 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”.
 Rにおける炭素数1~20の脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状(脂肪族環式基)のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。また、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。そして、前記脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6であることがより好ましい。Rにおける好ましい前記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。 The aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
 Rにおける直鎖状又は分枝鎖状の前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1,2,3-トリメチルペンチル基、1,2,4-トリメチルペンチル基、2,3,4-トリメチルペンチル基、2,4,4-トリメチルペンチル基、1,4,4-トリメチルペンチル基、3,4,4-トリメチルペンチル基、1,1,2-トリメチルペンチル基、1,1,3-トリメチルペンチル基、1,1,4-トリメチルペンチル基、1,2,2-トリメチルペンチル基、2,2,3-トリメチルペンチル基、2,2,4-トリメチルペンチル基、1,3,3-トリメチルペンチル基、2,3,3-トリメチルペンチル基、3,3,4-トリメチルペンチル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
 Rにおける環状の前記アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
Examples of the linear or branched alkyl group in R include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. N-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3- Ethylbutyl group, 1-ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group Group, 4-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3 -Dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propyl Butyl group, n-octyl group, isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group 3-ethylhexyl group, 4-ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl 3,3-dimethylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1,2,3-trimethylpentyl group, 1,2,4-trimethylpentyl group, 2,3,4 -Trimethylpentyl group, 2,4,4-trimethylpentyl group, 1,4,4-trimethylpentyl group, 3,4,4-trimethylpentyl group, 1,1,2-trimethylpentyl group, 1,1,3 -Trimethylpentyl group, 1,1,4-trimethylpentyl group, 1,2,2-trimethylpentyl group, 2,2,3-trimethylpentyl group, 2,2,4-trimethylpentyl group, 1,3,3 -Trimethylpentyl group, 2,3,3-trimethylpentyl group, 3,3,4-trimethylpentyl group, 1-propylpentyl group, 2-propylpentyl group, nonyl group, decyl group, Examples include ndecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group and the like.
Examples of the cyclic alkyl group in R include, for example, a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group and a tricyclodecyl group.
 Rにおける前記アルケニル基としては、例えば、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換された基等が挙げられる。
 このような前記アルケニル基としては、例えば、ビニル基(エテニル基、-CH=CH)、アリル基(2-プロペニル基、-CH-CH=CH)、1-プロペニル基(-CH=CH-CH)、イソプロペニル基(-C(CH)=CH)、1-ブテニル基(-CH=CH-CH-CH)、2-ブテニル基(-CH-CH=CH-CH)、3-ブテニル基(-CH-CH-CH=CH)、シクロヘキセニル基、シクロペンテニル基等が挙げられる。
Examples of the alkenyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a double bond (C═C).
Examples of the alkenyl group include a vinyl group (ethenyl group, —CH═CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH═CH 2 ), and a 1-propenyl group (—CH═ CH—CH 3 ), isopropenyl group (—C (CH 3 ) ═CH 2 ), 1-butenyl group (—CH═CH—CH 2 —CH 3 ), 2-butenyl group (—CH 2 —CH═CH) —CH 3 ), 3-butenyl group (—CH 2 —CH 2 —CH═CH 2 ), cyclohexenyl group, cyclopentenyl group and the like.
 Rにおける前記アルキニル基としては、例えば、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基等が挙げられる。
 このような前記アルキニル基としては、例えば、エチニル基(-C≡CH)、プロパルギル基(-CH-C≡CH)等が挙げられる。
Examples of the alkynyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a triple bond (C≡C).
Examples of such alkynyl group include ethynyl group (—C≡CH), propargyl group (—CH 2 —C≡CH), and the like.
 Rにおける炭素数1~20の脂肪族炭化水素基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。また、前記脂肪族炭化水素基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一であってもよいし、すべての置換基が異なっていてもよく、一部の置換基のみが異なっていてもよい。 In the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R, one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom. In the aliphatic hydrocarbon group, the number and position of the substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
 Rにおけるフェニル基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基(-OH)、シアノ基(-C≡N)、フェノキシ基(-O-C)等が挙げられる。置換基を有する前記フェニル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 置換基である前記脂肪族炭化水素基としては、例えば、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
In the phenyl group in R, one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, fluorine An atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C≡N), a phenoxy group (—O—C 6 H 5 ), and the like. In the phenyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
Examples of the aliphatic hydrocarbon group which is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
 RにおけるYは、それぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子である。そして、一般式「R-CY -」、「CY -」及び「R-C(=O)-CY -」においては、それぞれ複数個のYは、互いに同一でも異なっていてもよい。 Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom. In the general formulas “R 1 —CY 1 2 —”, “CY 1 3 —” and “R 6 —C (═O) —CY 1 2 —”, a plurality of Y 1 may be the same as each other. May be different.
 RにおけるRは、炭素数1~19の脂肪族炭化水素基又はフェニル基(C-)である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~20の脂肪族炭化水素基であり、例えば、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~16の脂肪族炭化水素基である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるR及びRは、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R及びRは、互いに同一でも異なっていてもよく、R及びRにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —). Examples of the aliphatic hydrocarbon group for R 1 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms.
R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include the same as the aliphatic hydrocarbon group in R.
R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms. Examples of the aliphatic hydrocarbon group for R 3 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same or different from each other, and the aliphatic hydrocarbon group in R 4 and R 5 is, for example, the above in R except that it has 1 to 18 carbon atoms. The thing similar to an aliphatic hydrocarbon group is mentioned.
R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group, or a group represented by the formula “AgO—”. Examples of the aliphatic hydrocarbon group for R 6 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19.
 Rは、上記の中でも、直鎖状若しくは分枝鎖状のアルキル基、一般式「R-C(=O)-CY -」で表される基、水酸基又はフェニル基であることが好ましい。そして、Rは、直鎖状若しくは分枝鎖状のアルキル基、水酸基又は式「AgO-」で表される基であることが好ましい。 Among them, R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C (═O) —CY 1 2 —”, a hydroxyl group, or a phenyl group. preferable. R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
 一般式(1)において、Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基(C-CH-)、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基(C-O-CH=CH-)、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基である。
 Xにおける炭素数1~20の脂肪族炭化水素基としては、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
In the general formula (1), each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH═CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C (═O) — ”or“ R 7 —C (═O) —O— ”.
Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
 Xにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Xにおけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO)等が挙げられる。置換基を有する前記フェニル基及びベンジル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
The halogen atom in X 1, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the phenyl group and benzyl group in X 1 , one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), nitro group (—NO 2 ) and the like. In the phenyl group and benzyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
 XにおけるRは、炭素数1~10の脂肪族炭化水素基、チエニル基(CS-)、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基(ビフェニル基、C-C-)である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~10である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。また、Rにおけるフェニル基及びジフェニル基が有する前記置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。置換基を有する前記フェニル基及びジフェニル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 Rがチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —); Examples of the aliphatic hydrocarbon group for R 7 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 10. Further, examples of the substituent having a phenyl group and a diphenyl group in R 7, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. In the phenyl group and diphenyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
When R 7 is a thienyl group or a diphenyl group, there are no particular limitations on the bonding position of these groups with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X 1 . For example, the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
 一般式(1)において、2個のXは、2個のカルボニル基で挟まれた炭素原子と二重結合を介して1個の基として結合していてもよい。このようなXとしては、例えば、式「=CH-C-NO」で表される基等が挙げられる。 In the general formula (1), two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups. Examples of such X 1 include a group represented by the formula “═CH—C 6 H 4 —NO 2 ”.
 Xは、上記の中でも、水素原子、直鎖状若しくは分枝鎖状のアルキル基、ベンジル基、又は一般式「R-C(=O)-」で表される基であることが好ましく、少なくとも一方のXが水素原子であることが好ましい。 X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C (═O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
 β-ケトカルボン酸銀(1)は、2-メチルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、アセト酢酸銀(CH-C(=O)-CH-C(=O)-OAg)、2-エチルアセト酢酸銀(CH-C(=O)-CH(CHCH)-C(=O)-OAg)、プロピオニル酢酸銀(CHCH-C(=O)-CH-C(=O)-OAg)、イソブチリル酢酸銀((CHCH-C(=O)-CH-C(=O)-OAg)、ピバロイル酢酸銀((CHC-C(=O)-CH-C(=O)-OAg)、カプロイル酢酸銀(CH(CHCH-C(=O)-CH-C(=O)-OAg)、2-n-ブチルアセト酢酸銀(CH-C(=O)-CH(CHCHCHCH)-C(=O)-OAg)、2-ベンジルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、ベンゾイル酢酸銀(C-C(=O)-CH-C(=O)-OAg)、ピバロイルアセト酢酸銀((CHC-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、イソブチリルアセト酢酸銀((CHCH-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、2-アセチルピバロイル酢酸銀((CHC-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、2-アセチルイソブチリル酢酸銀((CHCH-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、又はアセトンジカルボン酸銀(AgO-C(=O)-CH-C(=O)-CH-C(=O)-OAg)であることが好ましい。 Silver β-ketocarboxylate (1) is silver 2-methylacetoacetate (CH 3 —C (═O) —CH (CH 3 ) —C (═O) —OAg), silver acetoacetate (CH 3 —C (= O) —CH 2 —C (═O) —OAg), silver 2-ethylacetoacetate (CH 3 —C (═O) —CH (CH 2 CH 3 ) —C (═O) —OAg), silver propionyl acetate (CH 3 CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyryl acetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) — OAg), silver pivaloyl acetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —OAg), silver caproyl acetate (CH 3 (CH 2 ) 3 CH 2 —C (═O ) —CH 2 —C (═O) —OAg), silver 2-n-butylacetoacetate (CH 3 —C (═O) —CH (C H 2 CH 2 CH 2 CH 3 ) —C (═O) —OAg), silver 2-benzylacetoacetate (CH 3 —C (═O) —CH (CH 2 C 6 H 5 ) —C (═O) —OAg), silver benzoyl acetate (C 6 H 5 —C (═O) —CH 2 —C (═O) —OAg), silver pivaloyl acetoacetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyrylacetoacetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) —CH 2 -C (= O) -OAg), silver 2-acetylpivaloyl acetate ((CH 3 ) 3 CC (= O) -CH (-C (= O) -CH 3 ) -C (= O) -OAg), 2- acetyl isobutyryl silver acetate ((CH 3) 2 CH- C (= O) -CH (-C (= O) -CH 3) -C (= O) - Ag), or is preferably acetone dicarboxylic silver (AgO-C (= O) -CH 2 -C (= O) -CH 2 -C (= O) -OAg).
 β-ケトカルボン酸銀(1)を用いて、銀インク組成物(I)の乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(光反射体、金属銀)においては、残存する原料や不純物の濃度をより低減できる。このような導電体においては、原料や不純物が少ない程、例えば、形成された金属銀同士の接触が良好となり、導通が容易となり、抵抗率が低下する。 In the conductor (light reflector, metallic silver) formed by solidification treatment such as drying treatment or heating (firing) treatment of silver ink composition (I) using silver β-ketocarboxylate (1), the residual The concentration of raw materials and impurities can be further reduced. In such a conductor, the smaller the raw materials and impurities, for example, the better the contact between the formed metal silvers, the easier the conduction, and the lower the resistivity.
 β-ケトカルボン酸銀(1)は、後述するように、当該分野で公知の還元剤等を使用しなくても、好ましくは60~210℃、より好ましくは60~200℃という低温で分解し、金属銀を形成できる。そして、β-ケトカルボン酸銀(1)は、還元剤と併用することで、より低温で分解して金属銀を形成する。 The β-ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. Metal silver can be formed. The silver β-ketocarboxylate (1) is decomposed at a lower temperature to form metallic silver when used in combination with a reducing agent.
 本発明において、β-ケトカルボン酸銀(1)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 In the present invention, the β-ketocarboxylate (1) may be used alone or in combination of two or more. When two or more are used in combination, the combination and ratio thereof are as follows: Can be adjusted arbitrarily.
(カルボン酸銀(4))
 カルボン酸銀(4)は、前記一般式(4)で表される。
 式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基(-COOH)又は式「-C(=O)-OAg」で表される基である。
 Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。ただし、Rにおける前記脂肪族炭化水素基は、炭素数が1~15であることが好ましく、1~10であることがより好ましい。
(Silver carboxylate (4))
The silver carboxylate (4) is represented by the general formula (4).
In the formula, R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C (═O) —OAg”.
Examples of the aliphatic hydrocarbon group for R 8 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
 Rにおける前記脂肪族炭化水素基がメチレン基(-CH-)を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。カルボニル基で置換されていてもよいメチレン基の数及び位置は特に限定されず、すべてのメチレン基がカルボニル基で置換されていてもよい。ここで「メチレン基」とは、単独の式「-CH-」で表される基だけでなく、式「-CH-」で表される基が複数個連なったアルキレン基中の1個の式「-CH-」で表される基も含むものとする。 When the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —), one or more of the methylene groups may be substituted with a carbonyl group. The number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group. Here, the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
 カルボン酸銀(4)は、ピルビン酸銀(CH-C(=O)-C(=O)-OAg)、酢酸銀(CH-C(=O)-OAg)、酪酸銀(CH-(CH-C(=O)-OAg)、イソ酪酸銀((CHCH-C(=O)-OAg)、2-エチルへキサン酸銀(CH-(CH-CH(CHCH)-C(=O)-OAg)、ネオデカン酸銀、シュウ酸銀(AgO-C(=O)-C(=O)-OAg)、又はマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)であることが好ましい。また、上記のシュウ酸銀(AgO-C(=O)-C(=O)-OAg)及びマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)の2個の式「-COOAg」で表される基のうち、1個が式「-COOH」で表される基となったもの(HO-C(=O)-C(=O)-OAg、HO-C(=O)-CH-C(=O)-OAg)も好ましい。 Silver carboxylate (4) includes silver pyruvate (CH 3 —C (═O) —C (═O) —OAg), silver acetate (CH 3 —C (═O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C (═O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C (═O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C (═O) —OAg), silver neodecanoate, silver oxalate (AgO—C (═O) —C (═O) —OAg), or silver malonate ( AgO—C (═O) —CH 2 —C (═O) —OAg) is preferable. Further, silver oxalate (AgO—C (═O) —C (═O) —OAg) and silver malonate (AgO—C (═O) —CH 2 —C (═O) —OAg) Of the groups represented by the formula “—COOAg”, one of the groups represented by the formula “—COOH” (HO—C (═O) —C (═O) —OAg, HO) Also preferred is —C (═O) —CH 2 —C (═O) —OAg).
 カルボン酸銀(4)を用いた場合にも、β-ケトカルボン酸銀(1)を用いた場合と同様に、銀インク組成物(I)の乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(光反射体、金属銀)において、残存する原料や不純物の濃度をより低減できる。そして、カルボン酸銀(4)は、還元剤と併用することで、より低温で分解して金属銀を形成する。 When silver carboxylate (4) is used, as with the case of using silver β-ketocarboxylate (1), solidification treatment such as drying treatment or heating (firing) treatment of silver ink composition (I) is performed. In the formed conductor (light reflector, metallic silver), the concentration of the remaining raw materials and impurities can be further reduced. And silver carboxylate (4) is decomposed | disassembled at lower temperature by using together with a reducing agent, and forms metallic silver.
 本発明において、カルボン酸銀(4)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 In this invention, silver carboxylate (4) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios are arbitrary. Can be adjusted.
 前記カルボン酸銀は、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、カプロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、アセトンジカルボン酸銀、ピルビン酸銀、酢酸銀、酪酸銀、イソ酪酸銀、2-エチルへキサン酸銀、ネオデカン酸銀、シュウ酸銀及びマロン酸銀からなる群から選択される1種又は2種以上であることが好ましい。
 そして、これらカルボン酸銀の中でも、2-メチルアセト酢酸銀、アセト酢酸銀、イソブチリル酢酸銀及びピバロイル酢酸銀は、後述する含窒素化合物(なかでもアミン化合物)との相溶性に優れ、銀インク組成物(I)の高濃度化に、特に適したものとして挙げられる。
The silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferable that it is 1 type, or 2 or more types selected from the group which consists of silver acid silver and silver malonate.
Among these silver carboxylates, silver 2-methylacetoacetate, silver acetoacetate, silver isobutyrylacetate and silver pivaloylacetate are excellent in compatibility with nitrogen-containing compounds (among others amine compounds) described later, and are silver ink compositions. This is particularly suitable for increasing the concentration of (I).
 銀インク組成物(I)において、前記有機銀化合物に由来する銀の含有量は、5質量%以上であることが好ましく、8質量%以上であることがより好ましい。前記銀の含有量がこのような範囲であることで、形成された導電体(光反射体、金属銀)は品質により優れたものとなる。前記銀の含有量の上限値は、本発明の効果を損なわない限り特に限定されないが、銀インク組成物(I)の取り扱い性等を考慮すると、25質量%であることが好ましい。
 なお、本明細書において、「有機銀化合物に由来する銀」とは、特に断りの無い限り、銀インク組成物(I)の製造時に配合された有機銀化合物中の銀と同義であり、配合後も引き続き有機銀化合物を構成している銀と、配合後に有機銀化合物の分解で生じた分解物中の銀と、配合後に有機銀化合物の分解で生じた銀そのもの(金属銀)と、のすべてを含む概念とする。
In the silver ink composition (I), the content of silver derived from the organic silver compound is preferably 5% by mass or more, and more preferably 8% by mass or more. When the silver content is in such a range, the formed conductor (light reflector, metallic silver) becomes more excellent in quality. The upper limit of the silver content is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 25% by mass in consideration of the handleability of the silver ink composition (I).
In this specification, “silver derived from an organic silver compound” is synonymous with silver in the organic silver compound compounded at the time of production of the silver ink composition (I), unless otherwise specified. After that, the silver constituting the organic silver compound, the silver in the decomposition product generated by the decomposition of the organic silver compound after blending, and the silver itself (metal silver) generated by the decomposition of the organic silver compound after blending The concept includes everything.
<炭素数8~10の分岐鎖状飽和脂肪族カルボン酸>
 銀インク組成物(I)は、有機銀化合物以外に、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸が配合されてなる。銀インク組成物(I)は、前記分岐鎖状飽和脂肪族カルボン酸が配合されていることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成できる。
<Branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms>
The silver ink composition (I) is composed of a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in addition to the organic silver compound. Since the silver ink composition (I) contains the branched chain saturated aliphatic carboxylic acid, metallic silver having high gloss can be obtained even when printing is performed while heating the printing object. Can be formed.
 前記分岐鎖状飽和脂肪族カルボン酸は、炭素数8~10の分岐鎖状飽和脂肪族炭化水素の1個又は2個以上の水素原子が、カルボキシ基で置換された構造を有する。換言すると、分岐鎖状飽和脂肪族カルボン酸は、1分子中の炭素数が8~10で、かつ、1個又は2個以上のカルボキシ基が分岐鎖状飽和脂肪族炭化水素基に結合している化合物である。 The branched saturated aliphatic carboxylic acid has a structure in which one or two or more hydrogen atoms of a branched saturated aliphatic hydrocarbon having 8 to 10 carbon atoms are substituted with a carboxy group. In other words, the branched saturated aliphatic carboxylic acid has 8 to 10 carbon atoms in one molecule, and one or more carboxy groups are bonded to the branched saturated aliphatic hydrocarbon group. It is a compound.
 分岐鎖状飽和脂肪族カルボン酸は、1分子中にカルボキシ基を1個のみ有する一価(モノ)カルボン酸、及び1分子中にカルボキシ基を2個以上有する多価カルボン酸、のいずれであってもよい。
 分岐鎖状飽和脂肪族カルボン酸が1分子中に有するカルボキシ基の数は、1~3個であることが好ましく、1個又は2個であることがより好ましく、1個であることが特に好ましい。
The branched saturated aliphatic carboxylic acid is either a monovalent (mono) carboxylic acid having only one carboxy group in one molecule or a polyvalent carboxylic acid having two or more carboxy groups in one molecule. May be.
The number of carboxy groups in one molecule of the branched saturated aliphatic carboxylic acid is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1. .
 分岐鎖状飽和脂肪族カルボン酸において、カルボキシ基が結合している炭素原子の位置は、特に限定されない。例えば、カルボキシ基が結合している炭素原子は、分子の末端の炭素原子であってもよいし、分子の末端以外の炭素原子であってもよい。
 分岐鎖状飽和脂肪族カルボン酸が多価カルボン酸である場合、すべてのカルボキシ基が、互いに異なる炭素原子に結合していてもよいし、2個又は3個のカルボキシ基が、同一の炭素原子に結合していてもよい。
In the branched saturated aliphatic carboxylic acid, the position of the carbon atom to which the carboxy group is bonded is not particularly limited. For example, the carbon atom to which the carboxy group is bonded may be the carbon atom at the end of the molecule, or may be a carbon atom other than the end of the molecule.
When the branched saturated aliphatic carboxylic acid is a polyvalent carboxylic acid, all carboxy groups may be bonded to different carbon atoms, or two or three carboxy groups may be the same carbon atom. May be bonded to.
 分岐鎖状飽和脂肪族カルボン酸において、分岐鎖が結合している、主鎖中の炭素原子の位置は、特に限定されない。例えば、分岐鎖が結合している前記炭素原子は、主鎖のカルボキシ基が結合している側の末端の炭素原子であってもよいし、主鎖のカルボキシ基が結合している側とは反対側の末端の炭素原子に隣接する炭素原子(前記反対側の末端から2番目の炭素原子)であってもよいし、上述のカルボキシ基が結合している側の末端の炭素原子と、上述のカルボキシ基が結合している側とは反対側の末端の炭素原子に隣接する炭素原子と、の間に位置する主鎖中の炭素原子であってもよい。
 ここで、「主鎖」とは、分岐鎖状飽和脂肪族カルボン酸中の鎖状構造のうち、炭素数が最大であるものを意味する。炭素数が最大である鎖状構造が複数ある場合には、いずれの鎖状構造を主鎖として取り扱ってもよい。主鎖の炭素数は、必ず分岐鎖の炭素数以上となる。
In the branched saturated aliphatic carboxylic acid, the position of the carbon atom in the main chain to which the branched chain is bonded is not particularly limited. For example, the carbon atom to which the branched chain is bonded may be the terminal carbon atom to which the carboxy group of the main chain is bonded, or the side to which the carboxy group of the main chain is bonded. It may be a carbon atom adjacent to the carbon atom at the terminal on the opposite side (second carbon atom from the terminal at the opposite side), or the carbon atom at the terminal to which the above carboxy group is bonded; The carbon atom in the main chain located between the carbon atom adjacent to the terminal carbon atom opposite to the side to which the carboxy group is bonded may be used.
Here, the “main chain” means a chain structure in the branched saturated aliphatic carboxylic acid having the maximum carbon number. When there are a plurality of chain structures having the maximum number of carbon atoms, any chain structure may be handled as the main chain. The carbon number of the main chain is always greater than or equal to the carbon number of the branched chain.
 分岐鎖状飽和脂肪族カルボン酸は、下記一般式(6)で表されるモノカルボン酸(本明細書においては、「モノカルボン酸(6)」と略記することがある)であることが好ましい。
 R31-C(=O)-OH ・・・・(6)
 (式中、R31は、炭素数7~9の分岐鎖状のアルキル基である。)
The branched saturated aliphatic carboxylic acid is preferably a monocarboxylic acid represented by the following general formula (6) (in this specification, sometimes abbreviated as “monocarboxylic acid (6)”). .
R 31 —C (═O) —OH (6)
(In the formula, R 31 is a branched alkyl group having 7 to 9 carbon atoms.)
 R31の炭素数7~9の分岐鎖状のアルキル基(一価の飽和脂肪族炭化水素基)としては、例えば、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基等の炭素数7の分岐鎖状のアルキル基;
 イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1,2,3-トリメチルペンチル基、1,2,4-トリメチルペンチル基、2,3,4-トリメチルペンチル基、2,4,4-トリメチルペンチル基、1,4,4-トリメチルペンチル基、3,4,4-トリメチルペンチル基、1,1,2-トリメチルペンチル基、1,1,3-トリメチルペンチル基、1,1,4-トリメチルペンチル基、1,2,2-トリメチルペンチル基、2,2,3-トリメチルペンチル基、2,2,4-トリメチルペンチル基、1,3,3-トリメチルペンチル基、2,3,3-トリメチルペンチル基、3,3,4-トリメチルペンチル基、1-プロピルペンチル基、2-プロピルペンチル基等の炭素数8の分岐鎖状のアルキル基;
 1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、7-メチルオクチル基、6,6-ジメチルヘプチル基、5,5-ジメチルヘプチル基、4,4-ジメチルヘプチル基、3,3-ジメチルヘプチル基、2,2-ジメチルヘプチル基、1,1-ジメチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、1,4-ジメチルヘプチル基、1,5-ジメチルヘプチル基、1,6-ジメチルヘプチル基、2,3-ジメチルヘプチル基、2,4-ジメチルヘプチル基、2,5-ジメチルヘプチル基、2,6-ジメチルヘプチル基、3,4-ジメチルヘプチル基、3,5-ジメチルヘプチル基、3,6-ジメチルヘプチル基、4,5-ジメチルヘプチル基、4,6-ジメチルヘプチル基、5,6-ジメチルヘプチル基、1,2,3-トリメチルヘキシル基、1,2,4-トリメチルヘキシル基、1,2,5-トリメチルヘキシル基、2,3,4-トリメチルヘキシル基、2,3,5-トリメチルヘキシル基、3,4,5-トリメチルヘキシル基、1,1,2-トリメチルヘキシル基、1,1,3-トリメチルヘキシル基、1,1,4-トリメチルヘキシル基、1,1,5-トリメチルヘキシル基、1,2,2-トリメチルヘキシル基、2,2,3-トリメチルヘキシル基、2,2,4-トリメチルヘキシル基、2,2,5-トリメチルヘキシル基、1,3,3-トリメチルヘキシル基、2,3,3-トリメチルヘキシル基、3,3,4-トリメチルヘキシル基、3,3,5-トリメチルヘキシル基、1,4,4-トリメチルヘキシル基、2,4,4-トリメチルヘキシル基、3,4,4-トリメチルヘキシル基、4,4,5-トリメチルヘキシル基、1,5,5-トリメチルヘキシル基、2,5,5-トリメチルヘキシル基、3,5,5-トリメチルヘキシル基、4,5,5-トリメチルヘキシル基、1,2,3,4-テトラメチルペンチル基、1,1,2,3-テトラメチルペンチル基、1,1,2,4-テトラメチルペンチル基、1,1,3,4-テトラメチルペンチル基、1,2,2,3-テトラメチルペンチル基、1,2,2,4-テトラメチルペンチル基、2,2,3,4-テトラメチルペンチル基、1,2,3,3-テトラメチルペンチル基、2,3,3,4-テトラメチルペンチル基、1,3,3,4-テトラメチルペンチル基、1,2,4,4-テトラメチルペンチル基、2,3,4,4-テトラメチルペンチル基、1,3,4,4-テトラメチルペンチル基、1-エチル-1-メチルヘキシル基、1-エチル-2-メチルヘキシル基、1-エチル-3-メチルヘキシル基、1-エチル-4-メチルヘキシル基、1-エチル-5-メチルヘキシル基、2-エチル-1-メチルヘキシル基、2-エチル-2-メチルヘキシル基、2-エチル-3-メチルヘキシル基、2-エチル-4-メチルヘキシル基、2-エチル-5-メチルヘキシル基、3-エチル-1-メチルヘキシル基、3-エチル-2-メチルヘキシル基、3-エチル-3-メチルヘキシル基、3-エチル-4-メチルヘキシル基、3-エチル-5-メチルヘキシル基、4-エチル-1-メチルヘキシル基、4-エチル-2-メチルヘキシル基、4-エチル-3-メチルヘキシル基、4-エチル-4-メチルヘキシル基、4-エチル-5-メチルヘキシル基、1,1-ジエチルペンチル基、1,2-ジエチルペンチル基、1,3-ジエチルペンチル基、2,2-ジエチルペンチル基、2,3-ジエチルペンチル基、3,3-ジエチルペンチル基、1-エチル-1-プロピルブチル基、2-エチル-1-プロピルブチル基等の炭素数9の分岐鎖状のアルキル基が挙げられる。
Examples of the branched alkyl group having 7 to 9 carbon atoms (monovalent saturated aliphatic hydrocarbon group) of R 31 include 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4 -Methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propylbutyl group, etc. A branched alkyl group having 7 carbon atoms;
Isooctyl, 1-methylheptyl, 2-methylheptyl, 3-methylheptyl, 4-methylheptyl, 5-methylheptyl, 1-ethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4- Ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3-dimethylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1, 2,3-trimethylpentyl group, 1,2,4-trimethylpentyl group, 2,3,4-trimethylpentyl group, 2,4,4-trimethylpentyl group, 1,4,4-trimethylpentyl group, 4,4-trimethylpentyl group, 1,1,2-trimethylpentyl group, 1,1,3-trimethylpentyl group, 1,1,4-trimethyl Rupentyl group, 1,2,2-trimethylpentyl group, 2,2,3-trimethylpentyl group, 2,2,4-trimethylpentyl group, 1,3,3-trimethylpentyl group, 2,3,3-trimethyl A branched alkyl group having 8 carbon atoms such as a pentyl group, 3,3,4-trimethylpentyl group, 1-propylpentyl group, 2-propylpentyl group;
1-methyloctyl group, 2-methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5-methyloctyl group, 6-methyloctyl group, 7-methyloctyl group, 6,6-dimethylheptyl group, 5,5-dimethylheptyl group, 4,4-dimethylheptyl group, 3,3-dimethylheptyl group, 2,2-dimethylheptyl group, 1,1-dimethylheptyl group, 1,2-dimethylheptyl group, 1, 3-dimethylheptyl group, 1,4-dimethylheptyl group, 1,5-dimethylheptyl group, 1,6-dimethylheptyl group, 2,3-dimethylheptyl group, 2,4-dimethylheptyl group, 2,5- Dimethylheptyl group, 2,6-dimethylheptyl group, 3,4-dimethylheptyl group, 3,5-dimethylheptyl group, 3,6-dimethylheptyl group, 4,5- Methylheptyl group, 4,6-dimethylheptyl group, 5,6-dimethylheptyl group, 1,2,3-trimethylhexyl group, 1,2,4-trimethylhexyl group, 1,2,5-trimethylhexyl group, 2,3,4-trimethylhexyl group, 2,3,5-trimethylhexyl group, 3,4,5-trimethylhexyl group, 1,1,2-trimethylhexyl group, 1,1,3-trimethylhexyl group, 1,1,4-trimethylhexyl group, 1,1,5-trimethylhexyl group, 1,2,2-trimethylhexyl group, 2,2,3-trimethylhexyl group, 2,2,4-trimethylhexyl group, 2,2,5-trimethylhexyl group, 1,3,3-trimethylhexyl group, 2,3,3-trimethylhexyl group, 3,3,4-trimethylhexyl group, 3,3,5- Limethylhexyl group, 1,4,4-trimethylhexyl group, 2,4,4-trimethylhexyl group, 3,4,4-trimethylhexyl group, 4,4,5-trimethylhexyl group, 1,5,5- Trimethylhexyl group, 2,5,5-trimethylhexyl group, 3,5,5-trimethylhexyl group, 4,5,5-trimethylhexyl group, 1,2,3,4-tetramethylpentyl group, 1,1 , 2,3-tetramethylpentyl group, 1,1,2,4-tetramethylpentyl group, 1,1,3,4-tetramethylpentyl group, 1,2,2,3-tetramethylpentyl group, 2,2,4-tetramethylpentyl group, 2,2,3,4-tetramethylpentyl group, 1,2,3,3-tetramethylpentyl group, 2,3,3,4-tetramethylpentyl group 1, 3, 3, 4 -Tetramethylpentyl group, 1,2,4,4-tetramethylpentyl group, 2,3,4,4-tetramethylpentyl group, 1,3,4,4-tetramethylpentyl group, 1-ethyl-1 -Methylhexyl group, 1-ethyl-2-methylhexyl group, 1-ethyl-3-methylhexyl group, 1-ethyl-4-methylhexyl group, 1-ethyl-5-methylhexyl group, 2-ethyl-1 -Methylhexyl group, 2-ethyl-2-methylhexyl group, 2-ethyl-3-methylhexyl group, 2-ethyl-4-methylhexyl group, 2-ethyl-5-methylhexyl group, 3-ethyl-1 -Methylhexyl group, 3-ethyl-2-methylhexyl group, 3-ethyl-3-methylhexyl group, 3-ethyl-4-methylhexyl group, 3-ethyl-5-methylhexyl group, 4-ethyl 1-methylhexyl group, 4-ethyl-2-methylhexyl group, 4-ethyl-3-methylhexyl group, 4-ethyl-4-methylhexyl group, 4-ethyl-5-methylhexyl group, 1,1- Diethylpentyl group, 1,2-diethylpentyl group, 1,3-diethylpentyl group, 2,2-diethylpentyl group, 2,3-diethylpentyl group, 3,3-diethylpentyl group, 1-ethyl-1- Examples thereof include branched alkyl groups having 9 carbon atoms such as propylbutyl group and 2-ethyl-1-propylbutyl group.
 モノカルボン酸(6)に限定されず、分岐鎖状飽和脂肪族カルボン酸1分子中の分岐鎖の数は、1~3本であることが好ましい。
 モノカルボン酸(6)に限定されず、分岐鎖状飽和脂肪族カルボン酸の1本の分岐鎖の炭素数は、1~3であることが好ましい。
 モノカルボン酸(6)に限定されず、分岐鎖状飽和脂肪族カルボン酸は、これらの条件をともに満たすもの、すなわち、1分子中の分岐鎖の数が1~3本であり、かつ1本の分岐鎖の炭素数が1~3個であるものがより好ましい。
The number of branched chains in one molecule of the branched saturated aliphatic carboxylic acid is preferably 1 to 3 without being limited to the monocarboxylic acid (6).
The number of carbon atoms in one branched chain of the branched saturated aliphatic carboxylic acid is preferably 1 to 3 without being limited to the monocarboxylic acid (6).
The branched saturated aliphatic carboxylic acid is not limited to the monocarboxylic acid (6), and the branched saturated aliphatic carboxylic acid satisfies both of these conditions, that is, the number of branched chains in one molecule is 1 to 3, and 1 More preferably, the branched chain has 1 to 3 carbon atoms.
 分岐鎖状飽和脂肪族カルボン酸は、金属銀の光沢性の低下を抑制する適度な反応性を有し、かつ、銀インク組成物(I)中から揮発し難い一方で、銀インク組成物(I)の固化処理時には気化し易い、適度な沸点を有しており、本発明の効果を奏するものとして、特に適した特性を有する。
 例えば、分岐鎖状飽和脂肪族カルボン酸の沸点は、180~270℃であることが好ましく、200~260℃であることがより好ましく、215~255℃であることが特に好ましい。分岐鎖状飽和脂肪族カルボン酸の沸点が前記下限値以上であることで、銀インク組成物(I)中からの分岐鎖状飽和脂肪族カルボン酸の揮発が抑制されて、分岐鎖状飽和脂肪族カルボン酸を用いたことによる効果がより顕著に得られる。また、分岐鎖状飽和脂肪族カルボン酸の沸点が前記上限値以下であることで、銀インク組成物(I)の固化処理によって得られた金属銀中での分岐鎖状飽和脂肪族カルボン酸の残存が抑制され、光沢性、導電性等が高いなど、より好ましい特性の金属銀が得られる。
The branched saturated aliphatic carboxylic acid has an appropriate reactivity for suppressing a decrease in glossiness of metallic silver and hardly volatilizes from the silver ink composition (I), while the silver ink composition ( It has an appropriate boiling point that is easy to vaporize during the solidification treatment of I), and has particularly suitable characteristics as an effect of the present invention.
For example, the boiling point of the branched saturated aliphatic carboxylic acid is preferably 180 to 270 ° C., more preferably 200 to 260 ° C., and particularly preferably 215 to 255 ° C. Since the boiling point of the branched saturated aliphatic carboxylic acid is not less than the lower limit, volatilization of the branched saturated aliphatic carboxylic acid from the silver ink composition (I) is suppressed, and the branched saturated fatty acid is reduced. The effect obtained by using the group carboxylic acid is more remarkably obtained. In addition, since the boiling point of the branched saturated aliphatic carboxylic acid is not more than the above upper limit, the branched saturated aliphatic carboxylic acid in the metallic silver obtained by the solidification treatment of the silver ink composition (I) Residue is suppressed, and metallic silver having more favorable characteristics such as high glossiness and conductivity is obtained.
 分岐鎖状飽和脂肪族カルボン酸(例えば、モノカルボン酸(6))で特に好ましいものとしては、ネオデカン酸(C19COOH)、2-プロピル吉草酸(2-プロピルペンタン酸、(CHCHCHCH(CHCHCH)COOH)、3,5,5-トリメチルヘキサン酸((CHCCHCH(CH)CHCOOH)等が挙げられる。
 なお、本明細書において、ネオデカン酸とは、炭素数10の飽和脂肪族モノカルボン酸の異性体の混合物を意味し、前記混合物には炭素数10の分岐鎖状飽和脂肪族モノカルボン酸が必ず含まれる。このように、ネオデカン酸とは、1種の化合物だけを意味するものではない。
 そして、ネオデカン酸中の、2種以上の炭素数10の飽和脂肪族モノカルボン酸の組み合わせ及び比率は、任意に調節できる。
Particularly preferable branched saturated aliphatic carboxylic acids (for example, monocarboxylic acid (6)) include neodecanoic acid (C 9 H 19 COOH), 2-propylvaleric acid (2-propylpentanoic acid, (CH 3 CH 2 CH 2 CH (CH 3 CH 2 CH 2 ) COOH), 3,5,5-trimethylhexanoic acid ((CH 3 ) 3 CCH 2 CH (CH 3 ) CH 2 COOH) and the like.
In the present specification, neodecanoic acid means a mixture of isomers of a saturated aliphatic monocarboxylic acid having 10 carbon atoms, and the branched saturated aliphatic monocarboxylic acid having 10 carbon atoms is always contained in the mixture. included. Thus, neodecanoic acid does not mean only one compound.
And the combination and ratio of 2 or more types of C10 saturated aliphatic monocarboxylic acids in neodecanoic acid can be arbitrarily adjusted.
 分岐鎖状飽和脂肪族カルボン酸は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 A branched saturated aliphatic carboxylic acid may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio are arbitrarily adjusted. it can.
 上述のとおり、前記銀インク組成物(I)は、前記分岐鎖状飽和脂肪族カルボン酸が配合されていることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成できる。その理由は定かではないが、以下のように推測される。
 すなわち、印刷対象物上に印刷された前記銀インク組成物(I)中においては、有機銀化合物から銀イオン(Ag)が生じる。この場合、印刷対象物の加熱によって、銀イオンに酸素が配位する(Ag・・・O)。次いで、金属銀を形成するための、銀インク組成物(I)の乾燥処理や加熱(焼成)処理等の固化処理によって、酸素が配位した銀イオンから酸化銀(AgO)が生じる。ここで、分岐鎖状飽和脂肪族カルボン酸が配合されていない銀インク組成物の場合には、この銀インク組成物の固化処理によって最終的に生成した金属銀中に、副生した酸化銀が不純物として混入し、金属銀の光沢性が低下してしまうと推測される。一方で、分岐鎖状飽和脂肪族カルボン酸が配合されている銀インク組成物(I)の場合には、この分岐鎖状飽和脂肪族カルボン酸が酸化銀と反応することで、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸の銀塩(本明細書においては、「分岐鎖状飽和脂肪族カルボン酸銀」と略記することがある)が生じる。この分岐鎖状飽和脂肪族カルボン酸銀は、上述のカルボン酸銀(4)、すなわち有機銀化合物であり、当初から配合されている有機銀化合物と同様に、銀インク組成物(I)の固化処理によって最終的に金属銀を生成する。このように本発明の銀インク組成物(I)を用いることにより、印刷対象物の加熱が原因となって生じた酸化銀が、分岐鎖状飽和脂肪族カルボン酸の作用によって、金属銀の光沢性の低下原因である不純物ではなく、金属銀そのものに転換されることによって、光沢性が高い金属銀を形成できると推測される。
As described above, the silver ink composition (I) contains the branched saturated aliphatic carboxylic acid, so that it is glossy even when printing is performed while heating the printing object. High metal silver can be formed. The reason is not clear, but is presumed as follows.
That is, in the silver ink composition (I) printed on the printing object, silver ions (Ag + ) are generated from the organic silver compound. In this case, oxygen is coordinated to silver ions by heating the printing object (Ag + ... O). Next, silver oxide (Ag 2 O) is generated from silver ions coordinated with oxygen by solidification treatment such as drying treatment or heating (firing) treatment of the silver ink composition (I) for forming metallic silver. Here, in the case of a silver ink composition not containing a branched saturated aliphatic carboxylic acid, the by-produced silver oxide is contained in the metallic silver finally produced by the solidification treatment of the silver ink composition. It is presumed that the gloss of metallic silver is deteriorated due to contamination as impurities. On the other hand, in the case of the silver ink composition (I) in which a branched saturated aliphatic carboxylic acid is blended, the branched saturated aliphatic carboxylic acid reacts with silver oxide, so 10 branched-chain saturated aliphatic carboxylic acid silver salts (sometimes abbreviated as “branched saturated aliphatic carboxylic acid silver” in the present specification). This branched chain saturated aliphatic carboxylic acid silver is the above-mentioned silver carboxylic acid (4), that is, an organic silver compound, and solidifies the silver ink composition (I) in the same manner as the organic silver compound that has been blended from the beginning. The process ultimately produces metallic silver. As described above, by using the silver ink composition (I) of the present invention, the silver oxide generated due to the heating of the printing object is converted into the gloss of metallic silver by the action of the branched saturated aliphatic carboxylic acid. It is presumed that metallic silver having high gloss can be formed by converting to metallic silver itself, not the impurity that causes the deterioration of the property.
 銀インク組成物(I)において、分岐鎖状飽和脂肪族カルボン酸の配合量は、前記有機銀化合物中の銀原子の配合量1モルあたり、0.01~1モルであることが好ましく、0.02~0.7モルであることがより好ましく、0.03~0.4モルであることが特に好ましい。分岐鎖状飽和脂肪族カルボン酸の前記配合量がこのような範囲であることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成する効果がより高くなる。 In the silver ink composition (I), the amount of the branched saturated aliphatic carboxylic acid is preferably 0.01 to 1 mole per mole of the silver atom in the organic silver compound. The amount is more preferably 0.02 to 0.7 mol, and particularly preferably 0.03 to 0.4 mol. Even if the amount of the branched saturated aliphatic carboxylic acid is in such a range, even when printing is performed while heating the object to be printed, the effect of forming metallic silver with high gloss is obtained. Get higher.
 分岐鎖状飽和脂肪族カルボン酸以外のカルボン酸にも、分岐鎖状飽和脂肪族カルボン酸と同様に、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀の形成を可能とするものがある。
 このような分岐鎖状飽和脂肪族カルボン酸以外のカルボン酸(本明細書においては「他のカルボン酸」と称することがある)は、一価カルボン酸であってもよいし、二価以上の多価カルボン酸であってもよく、脂肪族カルボン酸であってもよいし、芳香族カルボン酸であってもよい。
Metallic silver other than branched saturated aliphatic carboxylic acid has high glossiness even when printing is performed while heating the printing object, similarly to branched saturated aliphatic carboxylic acid. Some of them enable the formation of
Such a carboxylic acid other than the branched saturated aliphatic carboxylic acid (sometimes referred to as “other carboxylic acid” in this specification) may be a monovalent carboxylic acid, or a divalent or higher valent acid. It may be a polyvalent carboxylic acid, an aliphatic carboxylic acid, or an aromatic carboxylic acid.
 前記他のカルボン酸は、ホルミル基(-C(=O)-H)等の還元力を有する基を含まないものが好ましい。このような基を含まない他のカルボン酸が配合されてなる銀インク組成物(I)は、その保存中に有機銀化合物由来の不溶物の生成が抑制され、印刷時の取り扱い性がより高い。 The other carboxylic acid preferably does not contain a reducing group such as a formyl group (—C (═O) —H). The silver ink composition (I) formed by blending with other carboxylic acid that does not contain such a group suppresses the generation of insoluble matter derived from the organic silver compound during its storage, and has higher handleability during printing. .
 前記他のカルボン酸の炭素数は、5~17であることが好ましく、例えば、5~15、5~13及び5~11のいずれかであってもよい。 The carbon number of the other carboxylic acid is preferably 5 to 17, and may be any of 5 to 15, 5 to 13, and 5 to 11, for example.
 前記他のカルボン酸の沸点は、150~290℃であることが好ましく、例えば、155~280℃、160~270℃及び160~260℃のいずれかであってもよい。他のカルボン酸の沸点が前記下限値以上であることで、銀インク組成物(I)中からの他のカルボン酸の揮発が抑制されて、他のカルボン酸を用いたことによる効果がより顕著に得られる。また、他のカルボン酸の沸点が前記上限値以下であることで、銀インク組成物(I)の固化処理によって得られた金属銀中での他のカルボン酸の残存が抑制され、光沢性、導電性等が高いなど、より好ましい特性の金属銀が得られる。 The boiling point of the other carboxylic acid is preferably 150 to 290 ° C., and may be any of 155 to 280 ° C., 160 to 270 ° C., and 160 to 260 ° C., for example. When the boiling point of the other carboxylic acid is equal to or higher than the lower limit, volatilization of the other carboxylic acid from the silver ink composition (I) is suppressed, and the effect of using the other carboxylic acid is more remarkable. Is obtained. Further, when the boiling point of the other carboxylic acid is not more than the above upper limit, the remaining of the other carboxylic acid in the metallic silver obtained by the solidification treatment of the silver ink composition (I) is suppressed, and the glossiness, Metal silver having more favorable characteristics such as high conductivity can be obtained.
 前記他のカルボン酸は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 The other carboxylic acids may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
 銀インク組成物(I)において、前記他のカルボン酸の配合量は、上述の分岐鎖状飽和脂肪族カルボン酸の配合量と同じとすることができる。 In the silver ink composition (I), the blending amount of the other carboxylic acid can be the same as the blending amount of the branched saturated aliphatic carboxylic acid.
<含窒素化合物>
 銀インク組成物(I)は、特に前記有機銀化合物が前記カルボン酸銀である場合、前記有機銀化合物以外に、さらに含窒素化合物が配合されてなるものが好ましい。
 前記含窒素化合物は、炭素数25以下のアミン化合物(以下、「アミン化合物」と略記することがある)、炭素数25以下の第4級アンモニウム塩(以下、「第4級アンモニウム塩」と略記することがある)、アンモニア、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩(以下、「アミン化合物由来のアンモニウム塩」と略記することがある)、及びアンモニアが酸と反応してなるアンモニウム塩(以下、「アンモニア由来のアンモニウム塩」と略記することがある)からなる群から選択される1種又は2種以上のものである。すなわち、配合される含窒素化合物は、1種のみでよいし、2種以上でもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
<Nitrogen-containing compounds>
The silver ink composition (I) is preferably one in which a nitrogen-containing compound is further blended in addition to the organic silver compound, particularly when the organic silver compound is the silver carboxylate.
The nitrogen-containing compound is an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter abbreviated as “quaternary ammonium salt”). Ammonia, an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid. Or one or more selected from the group consisting of ammonium salts (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”). That is, the nitrogen-containing compound to be blended may be only one type, or two or more types, and when two or more types are used in combination, their combination and ratio can be arbitrarily adjusted.
[アミン化合物、第4級アンモニウム塩]
 前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
[Amine compound, quaternary ammonium salt]
The amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine. The quaternary ammonium salt has 4 to 25 carbon atoms. The amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
 前記第1級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、モノアリールアミン、モノ(ヘテロアリール)アミン、ジアミン等が挙げられる。 Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
 前記モノアルキルアミンを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、このようなアルキル基としては、例えば、Rにおける前記アルキル基と同様のものが挙げられる。前記アルキル基は、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。
 好ましい前記モノアルキルアミンとして、具体的には、例えば、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン(2-アミノヘプタン)、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミン等が挙げられる。
The alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples of such an alkyl group include the same alkyl groups as those described above for R. The alkyl group is preferably a linear or branched alkyl group having 1 to 19 carbon atoms or a cyclic alkyl group having 3 to 7 carbon atoms.
Specific examples of preferable monoalkylamines include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3 -Aminopentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, 1,2-dimethyl-n-propylamine and the like.
 前記モノアリールアミンを構成するアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。前記アリール基の炭素数は、6~10であることが好ましい。 Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. The aryl group preferably has 6 to 10 carbon atoms.
 前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基は、芳香族環骨格を構成する原子として、ヘテロ原子を有するものであり、前記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、ホウ素原子等が挙げられる。また、芳香族環骨格を構成する前記へテロ原子の数は特に限定されず、1個でもよいし、2個以上でもよい。2個以上である場合、これらへテロ原子は互いに同一でも異なっていてもよい。すなわち、これらへテロ原子は、すべて同じでもよいし、すべて異なっていてもよく、一部だけ異なっていてもよい。
 前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
The heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton. Examples of the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, A boron atom etc. are mentioned. Moreover, the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
The heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
 前記ヘテロアリール基で、窒素原子を1~4個有する単環状のものとしては、例えば、ピロリル基、ピロリニル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、ピロリジニル基、イミダゾリジニル基、ピペリジニル基、ピラゾリジニル基、ピペラジニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、例えば、フラニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、例えば、チエニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、例えば、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、例えば、チアゾリル基、チアジアゾリル基、チアゾリジニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、例えば、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、例えば、ジチアナフタレニル基、ベンゾチオフェニル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、例えば、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、例えば、ベンゾチアゾリル基、ベンゾチアジアゾリル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include, for example, pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, Examples include a tetrazolyl group, a pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, a piperazinyl group, and the like. Such a heteroaryl group is preferably a 3- to 8-membered ring, and preferably a 5- to 6-membered ring. More preferred.
Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, and such a heteroaryl group is preferably a 3- to 8-membered ring. More preferably, it is a member ring.
Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group. The heteroaryl group is preferably a 3- to 8-membered ring, and preferably from 5 to 6 More preferably, it is a member ring.
Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group. The heteroaryl group is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
Examples of the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, a thiazolidinyl group, and the like. Is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
Examples of the polyaryl group having 1 to 5 nitrogen atoms as the heteroaryl group include, for example, indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group A tetrazolopyridyl group, a tetrazolopyridazinyl group, a dihydrotriazolopyridazinyl group, and the like. Such a heteroaryl group is preferably a 7-12 membered ring, preferably a 9-10 membered ring. More preferably, it is a ring.
Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithianaphthalenyl group and a benzothiophenyl group. Such a heteroaryl group has 7 to 12 members. A ring is preferable, and a 9- to 10-membered ring is more preferable.
Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzoxdiazolyl group. The heteroaryl group is preferably a 7-12 membered ring, more preferably a 9-10 membered ring.
Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group, a benzothiadiazolyl group, and the like. Is preferably a 7 to 12-membered ring, more preferably a 9 to 10-membered ring.
 前記ジアミンは、アミノ基を2個有していればよく、2個のアミノ基の位置関係は特に限定されない。好ましい前記ジアミンとしては、例えば、前記モノアルキルアミン、モノアリールアミン又はモノ(ヘテロアリール)アミンにおいて、アミノ基(-NH)を構成する水素原子以外の1個の水素原子が、アミノ基で置換されたもの等が挙げられる。
 前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン等が挙げられる。
The diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited. As the preferred diamine, for example, in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group. And the like.
The diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, and the like.
 前記第2級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいジアルキルアミン、ジアリールアミン、ジ(ヘテロアリール)アミン等が挙げられる。 Examples of the secondary amine include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
 前記ジアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 好ましい前記ジアルキルアミンとして、具体的には、例えば、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミン等が挙げられる。
The alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms. A cyclic alkyl group is preferred. Two alkyl groups in one molecule of dialkylamine may be the same or different from each other.
Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
 前記ジアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。また、ジアリールアミン一分子中の2個のアリール基は、互いに同一でも異なっていてもよい。 The aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
 前記ジ(ヘテロアリール)アミンを構成するヘテロアリール基は、前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基と同様であり、6~12員環であることが好ましい。また、ジ(ヘテロアリール)アミン一分子中の2個のヘテロアリール基は、互いに同一でも異なっていてもよい。 The heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring. Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
 前記第3級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、ジアルキルモノアリールアミン等が挙げられる。 Examples of the tertiary amine include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
 前記トリアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、トリアルキルアミン一分子中の3個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、3個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 好ましい前記トリアルキルアミンとして、具体的には、例えば、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミン等が挙げられる。
The alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms. The cyclic alkyl group is preferably. Further, the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
Specific examples of the preferable trialkylamine include N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine and the like.
 前記ジアルキルモノアリールアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~6の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルモノアリールアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
The alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
The aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
 本発明において、前記第4級アンモニウム塩としては、例えば、1個以上の水素原子が置換基で置換されていてもよいハロゲン化テトラアルキルアンモニウム等が挙げられる。
 前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、例えば、ドデシルトリメチルアンモニウムブロミド等が挙げられる。
In the present invention, examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms. Further, the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
Examples of the halogen constituting the halogenated tetraalkylammonium include fluorine, chlorine, bromine, iodine and the like.
Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
 ここまでは、主に鎖状のアミン化合物及び第4級有機アンモニウム塩について説明したが、前記アミン化合物及び第4級アンモニウム塩は、アミン部位又はアンモニウム塩部位を構成する窒素原子が環骨格構造(複素環骨格構造)の一部であるようなヘテロ環化合物であってもよい。すなわち、前記アミン化合物は環状アミンでもよく、前記第4級アンモニウム塩は環状アンモニウム塩でもよい。この時の環(アミン部位又はアンモニウム塩部位を構成する窒素原子を含む環)構造は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されず、脂肪族環及び芳香族環のいずれでもよい。
 環状アミンであれば、好ましいものとして、例えば、ピリジン等が挙げられる。
So far, the chain amine compound and the quaternary organic ammonium salt have been mainly described. However, in the amine compound and the quaternary ammonium salt, the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt. At this time, the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient.
If it is a cyclic amine, as a preferable thing, a pyridine etc. will be mentioned, for example.
 前記第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム塩において、「置換基で置換されていてもよい水素原子」とは、アミン部位又はアンモニウム塩部位を構成する窒素原子に結合している水素原子以外の水素原子である。この時の置換基の数は特に限定されず、1個でもよいし、2個以上でもよく、前記水素原子のすべてが置換基で置換されていてもよい。置換基の数が複数の場合には、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、複数個の置換基はすべて同じでもよいし、すべて異なっていてもよく、一部だけが異なっていてもよい。また、置換基の位置も特に限定されない。 In the primary amine, secondary amine, tertiary amine and quaternary ammonium salt, the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety. A hydrogen atom other than a hydrogen atom bonded to. The number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
 前記アミン化合物及び第4級アンモニウム塩における前記置換基としては、例えば、アルキル基、アリール基、ハロゲン原子、シアノ基、ニトロ基、水酸基、トリフルオロメチル基(-CF)等が挙げられる。ここで、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ). Here, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example.
 前記モノアルキルアミンを構成するアルキル基が置換基を有する場合、前記アルキル基は、置換基としてアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は置換基として好ましくは炭素数が1~5のアルキル基を有する、炭素数が3~7の環状のアルキル基であることが好ましい。このような置換基を有するモノアルキルアミンとして、具体的には、例えば、2-フェニルエチルアミン、ベンジルアミン、2,3-ジメチルシクロヘキシルアミン等が挙げられる。
 また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよい。このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、例えば、2-ブロモベンジルアミン等が挙げられる。ここで、前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
When the alkyl group constituting the monoalkylamine has a substituent, the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent A cyclic alkyl group having 3 to 7 carbon atoms and an alkyl group having 1 to 5 carbon atoms is preferable. Specific examples of the monoalkylamine having such a substituent include 2-phenylethylamine, benzylamine, 2,3-dimethylcyclohexylamine and the like.
In the aryl group and alkyl group which are substituents, one or more hydrogen atoms may be further substituted with a halogen atom. Examples of the monoalkylamine having a substituent substituted with a halogen atom include 2-bromobenzylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記モノアリールアミンを構成するアリール基が置換基を有する場合、前記アリール基は、置換基としてハロゲン原子を有する、炭素数が6~10のアリール基であることが好ましい。このような置換基を有するモノアリールアミンとして、具体的には、例えば、ブロモフェニルアミン等が挙げられる。ここで、前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 When the aryl group constituting the monoarylamine has a substituent, the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as a substituent. Specific examples of the monoarylamine having such a substituent include bromophenylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記ジアルキルアミンを構成するアルキル基が置換基を有する場合、前記アルキル基は、置換基として水酸基又はアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基が好ましく、このような置換基を有するジアルキルアミンとして、具体的には、例えば、ジエタノールアミン、N-メチルベンジルアミン等が挙げられる。 When the alkyl group constituting the dialkylamine has a substituent, the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent, Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
 前記アミン化合物は、n-プロピルアミン、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、2-フェニルエチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、N-メチルベンジルアミン、ジ(2-エチルへキシル)アミン、1,2-ジメチル-n-プロピルアミン、N,N-ジメチル-n-オクタデシルアミン又はN,N-ジメチルシクロヘキシルアミンであることが好ましい。
 そして、これらアミン化合物の中でも、2-エチルヘキシルアミンは、前記カルボン酸銀との相溶性に優れ、銀インク組成物(I)の高濃度化に特に適しており、さらに金属銀の表面粗さの低減に特に適したものとして挙げられる。
The amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclohexylamine It is preferable.
Among these amine compounds, 2-ethylhexylamine is excellent in compatibility with the above-mentioned silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition (I), and further has a surface roughness of metallic silver. It is mentioned as being particularly suitable for reduction.
[アミン化合物由来のアンモニウム塩]
 本発明において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩である。前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。
 前記アミン化合物由来のアンモニウム塩としては、例えば、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が挙げられるが、これらに限定されない。
[Ammonium salts derived from amine compounds]
In the present invention, the ammonium salt derived from the amine compound is an ammonium salt formed by reacting the amine compound with an acid. The acid may be an inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid, or may be an organic acid such as acetic acid, and the type of acid is not particularly limited.
Examples of the ammonium salt derived from the amine compound include n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride, and the like. It is not limited.
[アンモニア由来のアンモニウム塩]
 本発明において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩である。ここで酸としては、前記アミン化合物由来のアンモニウム塩の場合と同じものが挙げられる。
 前記アンモニア由来のアンモニウム塩としては、例えば、塩化アンモニウム等が挙げられるが、これに限定されない。
[Ammonium salt derived from ammonia]
In the present invention, the ammonium salt derived from ammonia is an ammonium salt formed by reacting ammonia with an acid. Here, examples of the acid include the same acids as in the case of the ammonium salt derived from the amine compound.
Examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
 本発明においては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩は、それぞれ1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
 そして、前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
In the present invention, the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used alone or in combination of two or more. Well, when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
And as said nitrogen-containing compound, you may use individually 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from amine compound, and ammonium salt derived from ammonia, Two or more kinds may be used in combination, and when two or more kinds are used in combination, their combination and ratio can be arbitrarily adjusted.
 本発明においては、例えば、前記含窒素化合物として、炭素数が8以上の第1含窒素化合物と、炭素数が7以下の第2含窒素化合物と、を併用してもよい。
 前記第1含窒素化合物及び第2含窒素化合物を併用する場合、銀インク組成物(I)において、第1含窒素化合物の配合量に対する第2含窒素化合物の配合量の割合は、0モル%より大きく、18モル%未満であることが好ましく、1~17モル%であることがより好ましい。前記割合がこのような範囲であることで、例えば、細線状の銀層をより安定して形成できる。
In the present invention, for example, as the nitrogen-containing compound, a first nitrogen-containing compound having 8 or more carbon atoms and a second nitrogen-containing compound having 7 or less carbon atoms may be used in combination.
When the first nitrogen-containing compound and the second nitrogen-containing compound are used in combination, the ratio of the amount of the second nitrogen-containing compound to the amount of the first nitrogen-containing compound in the silver ink composition (I) is 0 mol%. More preferably, it is less than 18 mol%, more preferably 1 to 17 mol%. When the ratio is in such a range, for example, a thin-line silver layer can be formed more stably.
 前記含窒素化合物を用いる場合、銀インク組成物(I)において、前記含窒素化合物の配合量は、前記有機銀化合物の配合量1モルあたり0.3~15モルであることが好ましく、0.3~12モルであることがより好ましく、0.3~8モルであることが特に好ましく、例えば、1~8モル、2.5~8モル、及び4~8モルのいずれかであってもよい。前記含窒素化合物の前記配合量がこのような範囲であることで、銀インク組成物(I)は安定性がより向上し、金属銀の品質がより向上する。 When the nitrogen-containing compound is used, the amount of the nitrogen-containing compound in the silver ink composition (I) is preferably 0.3 to 15 mol per mol of the organic silver compound. It is more preferably 3 to 12 mol, particularly preferably 0.3 to 8 mol, for example, any of 1 to 8 mol, 2.5 to 8 mol, and 4 to 8 mol. Good. When the blending amount of the nitrogen-containing compound is within such a range, the silver ink composition (I) is further improved in stability and the quality of metallic silver is further improved.
<アルコール>
 銀インク組成物(I)は、前記有機銀化合物以外に、さらにアルコールが配合されてなるものが好ましい。
<Alcohol>
The silver ink composition (I) is preferably one in which an alcohol is further blended in addition to the organic silver compound.
 前記アルコールは、下記一般式(2)で表されるアセチレンアルコール類(以下、「アセチレンアルコール(2)」と略記することがある)であることが好ましい。 The alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
Figure JPOXMLDOC01-appb-C000007
 (式中、R’及びR’’は、それぞれ独立に水素原子、炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R ′ and R ″ are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.)
[アセチレンアルコール(2)]
 アセチレンアルコール(2)は、前記一般式(2)で表される。
 式中、R’及びR’’は、それぞれ独立に水素原子、炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。
 R’及びR’’における炭素数1~20のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。R’及びR’’における前記アルキル基としては、Rにおける前記アルキル基と同様のものが挙げられる。
[Acetylene alcohol (2)]
The acetylene alcohol (2) is represented by the general formula (2).
In the formula, R ′ and R ″ each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group having 1 to 20 carbon atoms in R ′ and R ″ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ″ include the same alkyl groups as in R.
 R’及びR’’におけるフェニル基の水素原子が置換されていてもよい前記置換基としては、例えば、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基、シアノ基、フェノキシ基等が挙げられる。これら前記置換基は、Rにおけるフェニル基の水素原子が置換されていてもよい前記置換基と同様のものである。そして、置換基を有する前記フェニル基において、前記置換基の数及び位置は特に限定されず、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。 Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ″ may be substituted include, for example, a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic group A monovalent group formed by bonding an aromatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like. These substituents are the same as the substituents in which the hydrogen atom of the phenyl group in R may be substituted. In the phenyl group having a substituent, the number and position of the substituents are not particularly limited, and when the number of substituents is plural, the plural substituents may be the same as or different from each other.
 R’及びR’’は、水素原子、又は炭素数1~20のアルキル基であることが好ましく、水素原子、又は炭素数1~10の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。 R ′ and R ″ are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms. More preferred.
 好ましいアセチレンアルコール(2)としては、例えば、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、2-プロピン-1-オール、4-エチル-1-オクチン-3-オール、3-エチル-1-ヘプチン-3-オール等が挙げられる。 Preferred acetylene alcohols (2) include, for example, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, -Propin-1-ol, 4-ethyl-1-octin-3-ol, 3-ethyl-1-heptin-3-ol and the like.
 アセチレンアルコール(2)を用いる場合、銀インク組成物(I)において、アセチレンアルコール(2)の配合量は、前記有機銀化合物の配合量1モルあたり0.01~0.7モルであることが好ましく、0.02~0.5モルであることがより好ましく、0.02~0.3モルであることが特に好ましい。アセチレンアルコール(2)の前記配合量がこのような範囲であることで、銀インク組成物(I)の安定性がより向上する。 When acetylene alcohol (2) is used, the amount of acetylene alcohol (2) in the silver ink composition (I) is 0.01 to 0.7 mol per mol of the organic silver compound. The amount is preferably 0.02 to 0.5 mol, more preferably 0.02 to 0.3 mol. When the amount of the acetylene alcohol (2) is within such a range, the stability of the silver ink composition (I) is further improved.
 前記アルコールは、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 The alcohol may be used alone or in combination of two or more. When two or more alcohols are used in combination, the combination and ratio thereof can be arbitrarily adjusted.
<その他の成分>
 銀インク組成物(I)は、前記有機銀化合物、分岐鎖状飽和脂肪族カルボン酸、含窒素化合物及びアルコール以外の、その他の成分が配合されてなるものでもよい。
 銀インク組成物(I)における前記その他の成分は、目的に応じて任意に選択でき、特に限定されない。前記その他の成分で、好ましいものとしては、例えば、アルコール以外の溶媒等が挙げられ、配合成分の種類や量に応じて任意に選択できる。
 銀インク組成物(I)における前記その他の成分は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
<Other ingredients>
The silver ink composition (I) may contain other components other than the organic silver compound, branched saturated aliphatic carboxylic acid, nitrogen-containing compound and alcohol.
The other components in the silver ink composition (I) can be arbitrarily selected according to the purpose and are not particularly limited. Preferred examples of the other components include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of the compounding components.
The other components in the silver ink composition (I) may be used singly or in combination of two or more, and when two or more are used in combination, their combinations and ratios are as follows: Can be adjusted arbitrarily.
[溶媒]
 前記溶媒は、アルコール以外のもの(水酸基を有しないもの)であれば、特に限定されない。
 ただし、前記溶媒は、常温で液状であるものが好ましい。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
[solvent]
The solvent is not particularly limited as long as it is other than alcohol (having no hydroxyl group).
However, the solvent is preferably a liquid at room temperature. In the present specification, “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 前記溶媒としては、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン等の芳香族炭化水素;ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、シクロオクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、デカヒドロナフタレン等の脂肪族炭化水素;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;酢酸エチル、グルタル酸モノメチル、グルタル酸ジメチル等のエステル;ジエチルエーテル、テトラヒドロフラン(THF)、1,2-ジメトキシエタン(ジメチルセロソルブ)等のエーテル;アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン;アセトニトリル等のニトリル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等のアミド等が挙げられる。 Examples of the solvent include aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene; pentane, hexane, cyclohexane, heptane, octane, cyclooctane, nonane, decane, undecane, dodecane, tridecane, Aliphatic hydrocarbons such as tetradecane, pentadecane and decahydronaphthalene; halogenated hydrocarbons such as dichloromethane and chloroform; esters such as ethyl acetate, monomethyl glutarate and dimethyl glutarate; diethyl ether, tetrahydrofuran (THF), 1,2- Ethers such as dimethoxyethane (dimethyl cellosolve); ketones such as acetone, methyl ethyl ketone (MEK), cyclohexanone; nitriles such as acetonitrile; N, N-dimethylformamide (DMF), N, N-dimethyl Amides such as acetamide can be mentioned.
 銀インク組成物(I)における前記その他の成分の配合量は、前記その他の成分の種類に応じて、適宜選択すればよい。
 例えば、前記その他の成分がアルコール以外の溶媒である場合、前記溶媒の配合量は、銀インク組成物(I)の粘度等、目的に応じて選択すればよい。ただし通常は、銀インク組成物(I)において、配合成分の総量に対する前記溶媒の配合量の割合は、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。
 また、前記その他の成分が前記溶媒以外の成分である場合、銀インク組成物(I)において、配合成分の総量に対する前記その他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 配合成分の総量に対する前記その他の成分の配合量の割合が0質量、すなわちその他の成分を配合しなくても、銀インク組成物(I)は十分にその効果を発現する。
What is necessary is just to select suitably the compounding quantity of the said other component in silver ink composition (I) according to the kind of said other component.
For example, when the other component is a solvent other than alcohol, the blending amount of the solvent may be selected according to the purpose such as the viscosity of the silver ink composition (I). However, usually, in the silver ink composition (I), the ratio of the amount of the solvent to the total amount of the components is preferably 25% by mass or less, more preferably 20% by mass or less, and 15% by mass. % Or less is particularly preferable.
Further, when the other component is a component other than the solvent, in the silver ink composition (I), the ratio of the blending amount of the other component to the total amount of the blending component is preferably 10% by mass or less. More preferably, it is 5 mass% or less.
The ratio of the blended amount of the other components to the total amount of the blended components is 0 mass, that is, the silver ink composition (I) sufficiently exhibits its effect even when the other components are not blended.
 銀インク組成物(I)においては、配合成分がすべて溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。 In the silver ink composition (I), all the compounding components may be dissolved, or some or all of the components may be dispersed without dissolving, but all the compounding components are dissolved. The undissolved component is preferably dispersed uniformly.
○銀インク組成物(I)の製造方法
 前記銀インク組成物(I)は、前記有機銀化合物、分岐鎖状飽和脂肪族カルボン酸、及び必要に応じて、これら以外の成分を配合することで得られる。各成分の配合後は、得られたものをそのまま銀インク組成物(I)としてもよいし、必要に応じて引き続き公知の精製操作を行って得られたものを銀インク(I)組成物としてもよい。本発明においては、特に前記有機銀化合物としてβ-ケトカルボン酸銀(1)を用いた場合、上記の各成分の配合時において、光沢性及び導電性を低下させる不純物が生成しないか、又はこのような不純物の生成量を極めて少量に抑制できる。したがって、精製操作を行っていない銀インク組成物(I)を用いても、十分な光沢性及び導電性を有する金属銀が得られる。
-Manufacturing method of silver ink composition (I) The said silver ink composition (I) mix | blends the said organic silver compound, a branched saturated aliphatic carboxylic acid, and components other than these as needed. can get. After the blending of each component, the obtained product may be used as it is as the silver ink composition (I), or a product obtained by performing a known refining operation if necessary as a silver ink (I) composition. Also good. In the present invention, in particular, when β-ketocarboxylate (1) is used as the organic silver compound, impurities that reduce glossiness and conductivity are not generated at the time of blending the above components, or such The amount of impurities generated can be suppressed to an extremely small amount. Therefore, even when the silver ink composition (I) that has not been purified is used, metallic silver having sufficient gloss and conductivity can be obtained.
 各成分の配合順序は、特に限定されない。各成分の好ましい配合方法の一例としては、分岐鎖状飽和脂肪族カルボン酸を最後に配合する方法が挙げられる。すなわち、前記銀インク組成物(I)の好ましい製造方法の一例としては、分岐鎖状飽和脂肪族カルボン酸以外の成分をすべて配合した後、分岐鎖状飽和脂肪族カルボン酸を最後に配合する製造方法が挙げられる。 The blending order of each component is not particularly limited. As an example of a preferable blending method of each component, a method of blending a branched saturated aliphatic carboxylic acid at the end can be mentioned. That is, as an example of a preferable production method of the silver ink composition (I), the production of blending all the components other than the branched saturated aliphatic carboxylic acid and then blending the branched saturated aliphatic carboxylic acid last. A method is mentioned.
 各成分の配合時には、すべての成分を添加してからこれらを混合してもよいし、一部の成分を順次添加しながら混合してもよく、すべての成分を順次添加しながら混合してもよい。
 混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 銀インク組成物(I)において、溶解していない成分を均一に分散させる場合には、例えば、上記の三本ロール、ニーダー又はビーズミル等を用いて分散させる方法を適用することが好ましい。
At the time of blending each component, all the components may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially. Good.
The mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
In the silver ink composition (I), when the undissolved component is uniformly dispersed, it is preferable to apply a method of dispersing using, for example, the above three roll, kneader or bead mill.
 配合時の温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。そして、配合時の温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。
 また、配合時間も、各配合成分が劣化しない限り特に限定されないが、10分~36時間であることが好ましい。
The temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably −5 to 60 ° C. And the temperature at the time of mixing | blending is good to adjust suitably so that the mixture obtained by mix | blending may become the viscosity which is easy to stir according to the kind and quantity of a mixing | blending component.
Also, the blending time is not particularly limited as long as each blending component does not deteriorate, but it is preferably 10 minutes to 36 hours.
<二酸化炭素>
 銀インク組成物(I)は、さらに二酸化炭素が供給されてなるものでもよい。このような銀インク組成物(I)は高粘度となり、例えば、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等の、インクを厚盛りすることが必要な印刷法への適用に好適である。
<CO2>
The silver ink composition (I) may be further supplied with carbon dioxide. Such a silver ink composition (I) has a high viscosity, and for example, printing that requires thickening of ink, such as flexographic printing, screen printing, gravure printing, gravure offset printing, pad printing, etc. Suitable for law application.
 二酸化炭素は、銀インク組成物(I)製造時のいずれの時期に供給してもよい。
 供給される二酸化炭素(CO)は、ガス状及び固形状(ドライアイス)のいずれでもよく、ガス状及び固形状の両方でもよい。供給された二酸化炭素は、供給対象物に溶け込み、いずれかの含有成分に作用することで、得られる銀インク組成物(I)の粘度が上昇すると推測される。
Carbon dioxide may be supplied at any time during the production of the silver ink composition (I).
Carbon dioxide (CO 2 ) to be supplied may be either gaseous or solid (dry ice), or both gaseous and solid. It is presumed that the supplied carbon dioxide dissolves in the supply object and acts on any of the components to increase the viscosity of the resulting silver ink composition (I).
 二酸化炭素ガスの供給は、液体中にガスを吹き込む公知の各種方法で行えばよく、適した供給方法を適宜選択すればよい。例えば、配管の一端を供給対象物中に浸漬し、他端を二酸化炭素ガスの供給源に接続して、この配管を通じて二酸化炭素ガスを供給対象物に供給する方法等が挙げられる。この時、配管の端部から直接二酸化炭素ガスを供給してもよいが、例えば、多孔質性のものなど、ガスの流路となり得る空隙部が多数設けられ、導入されたガスを拡散させて微小な気泡として放出することが可能なガス拡散部材を配管の端部に接続し、このガス拡散部材を介して二酸化炭素ガスを供給してもよい。また、供給対象物を撹拌しながら二酸化炭素ガスを供給してもよい。このようにすることで、効率的に二酸化炭素を供給できる。 The carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in a supply object, the other end is connected to a carbon dioxide gas supply source, and carbon dioxide gas is supplied to the supply object through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply carbon dioxide gas, stirring a supply target object. By doing in this way, carbon dioxide can be supplied efficiently.
 二酸化炭素ガスの供給量は、供給対象物の量や、目的とする銀インク組成物(I)の粘度等に応じて適宜調節すればよく、特に限定されない。例えば、20~25℃における粘度が5Pa・s以上である銀インク組成物(I)を100~1000g程度得るためには、二酸化炭素ガスを100L以上供給することが好ましく、200L以上供給することがより好ましい。なお、ここでは銀インク組成物(I)の20~25℃における粘度について説明したが、銀インク組成物(I)の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。また、なお、本明細書において「粘度」とは、特に断りのない限り、超音波振動式粘度計を用いて測定したものを意味する。 The supply amount of carbon dioxide gas may be appropriately adjusted according to the amount of the supply object, the viscosity of the target silver ink composition (I), and the like, and is not particularly limited. For example, in order to obtain about 100 to 1000 g of silver ink composition (I) having a viscosity at 20 to 25 ° C. of 5 Pa · s or more, it is preferable to supply 100 L or more of carbon dioxide gas, and supply 200 L or more. More preferred. Here, the viscosity at 20 to 25 ° C. of the silver ink composition (I) has been described, but the temperature at the time of use of the silver ink composition (I) is not limited to 20 to 25 ° C. Can be selected. In addition, “viscosity” in the present specification means a value measured using an ultrasonic vibration viscometer unless otherwise specified.
 二酸化炭素ガスの流量は、必要とされる二酸化炭素ガスの供給量を考慮して適宜調節すればよいが、供給対象物1gあたり0.5mL/分以上であることが好ましく、1mL/分以上であることがより好ましい。前記流量の上限値は特に限定されないが、取り扱い性等を考慮すると、供給対象物1gあたり40mL/分であることが好ましい。
 そして、二酸化炭素ガスの供給時間は、必要とされる二酸化炭素ガスの供給量や、流量を考慮して適宜調節すればよい。
The flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the supply object, and is 1 mL / min or more. More preferably. The upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the supply object in consideration of handling properties and the like.
The carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
 二酸化炭素ガス供給時の供給対象物の温度は、5~70℃であることが好ましく、7~60℃であることがより好ましく、10~50℃であることが特に好ましい。前記温度が前記下限値以上であることで、より効率的に二酸化炭素を供給でき、前記温度が前記上限値以下であることで、不純物が少ないより良好な品質の銀インク組成物(I)が得られる。 The temperature of the supply object at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C., more preferably 7 to 60 ° C., and particularly preferably 10 to 50 ° C. When the temperature is equal to or higher than the lower limit value, carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, the silver ink composition (I) having better quality with fewer impurities can be obtained. can get.
 二酸化炭素ガスの流量及び供給時間、並びに二酸化炭素ガス供給時の前記温度は、それぞれの値を相互に考慮しながら適した範囲に調節すればよい。例えば、前記温度を低めに設定しても、二酸化炭素ガスの流量を多めに設定するか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。また、二酸化炭素ガスの流量を少なめに設定しても、前記温度を高めにするか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。すなわち、二酸化炭素ガスの流量、二酸化炭素ガス供給時の前記温度として例示した上記数値範囲の中の数値を、二酸化炭素ガスの供給時間も考慮しつつ柔軟に組み合わせることで、良好な品質の銀インク組成物(I)が効率的に得られる。 The flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. Composition (I) can be obtained efficiently.
 二酸化炭素ガスの供給は、供給対象物を撹拌しながら行うことが好ましい。このようにすることで、供給した二酸化炭素ガスがより均一に供給対象物中に拡散し、より効率的に二酸化炭素を供給できる。
 この時の撹拌方法は、二酸化炭素を用いない上記の銀インク組成物(I)の製造時における前記混合方法の場合と同様でよい。
The supply of carbon dioxide gas is preferably performed while stirring the supply object. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the supply object, and carbon dioxide can be supplied more efficiently.
The stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition (I) not using carbon dioxide.
 ドライアイス(固形状二酸化炭素)の供給は、供給対象物中にドライアイスを添加することで行えばよい。ドライアイスは、全量を一括して添加してもよいし、分割して段階的に(添加を行わない時間帯を挟んで連続的に)添加してもよい。
 ドライアイスの使用量は、上記の二酸化炭素ガスの供給量を考慮して調節すればよい。
 ドライアイスの添加中及び添加後は、供給対象物を撹拌することが好ましく、例えば、二酸化炭素を用いない上記の銀インク組成物(I)の製造時と同様の方法で撹拌することが好ましい。このようにすることで、効率的に二酸化炭素を供給できる。
 撹拌時の温度は、二酸化炭素ガス供給時と同様でよい。また、撹拌時間は、撹拌温度に応じて適宜調節すればよい。
The supply of dry ice (solid carbon dioxide) may be performed by adding dry ice to the supply object. The total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed).
What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
During and after the addition of dry ice, it is preferable to stir the supply object. For example, it is preferable to stir in the same manner as in the production of the silver ink composition (I) without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
The temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas. Moreover, what is necessary is just to adjust stirring time suitably according to stirring temperature.
 例えば、銀インク組成物(I)をスクリーン印刷法、フレキソ印刷法等の、高粘度インクを使用する印刷法へ適用する場合には、二酸化炭素が供給されてなる銀インク組成物(I)の、20~25℃における粘度は、1Pa・s以上であることが好ましい。 For example, when the silver ink composition (I) is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method, the silver ink composition (I) to which carbon dioxide is supplied is used. The viscosity at 20 to 25 ° C. is preferably 1 Pa · s or more.
 なお、上記のように二酸化炭素の供給によって、粘度が通常よりも高い銀インク組成物(I)において、有機銀化合物の少なくとも一部から金属銀が形成され、この金属銀が析出することがある。このとき、銀インク組成物(I)の粘度が高い場合には、析出した金属銀の凝集が抑制され、得られた銀インク組成物(I)中での金属銀の分散性が向上する。このような銀インク組成物(I)を用いて、後述する方法で金属銀を形成して得られた金属銀は、粘度が低い、すなわち二酸化炭素が供給されていない銀インク組成物(I)を用いた場合の金属銀よりも、光沢性が高く、導電性が高く(体積抵抗率が低く)、表面粗さも小さくなり、より好ましい特性を有するものとなる。 In addition, in the silver ink composition (I) whose viscosity is higher than usual by supplying carbon dioxide as described above, metallic silver may be formed from at least a part of the organic silver compound, and this metallic silver may precipitate. . At this time, when the viscosity of the silver ink composition (I) is high, aggregation of the precipitated metal silver is suppressed, and the dispersibility of the metal silver in the obtained silver ink composition (I) is improved. Metallic silver obtained by forming metallic silver by a method described later using such a silver ink composition (I) has a low viscosity, that is, no silver dioxide is supplied to the silver ink composition (I). As compared with metallic silver, the gloss is higher, the conductivity is higher (volume resistivity is lower), the surface roughness is lower, and more preferable characteristics are obtained.
〇銀インク組成物(II)
 銀インク組成物(II)は、前記有機銀化合物として、有機銀錯体が配合され、さらに、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸(前記分岐鎖状飽和脂肪族カルボン酸)及び含窒素化合物が配合されてなる。
 このような銀インク組成物(II)としては、例えば、有機銀錯体の前駆体化合物と、これ以外の含窒素化合物と、の反応によって、有機銀錯体が形成され、かつ余剰の前記含窒素化合物が残存している反応液と、分岐鎖状飽和脂肪族カルボン酸と、を含むものが挙げられる。このような銀インク組成物(II)として、より具体的には、特許第5243409号公報に記載のものに、さらに分岐鎖状飽和脂肪族カルボン酸が配合されてなるものが挙げられる。
 すなわち、銀インク組成物(II)としては、例えば、下記一般式(91)で表される銀化合物(本明細書においては、「銀化合物(91)」と略記することがある)と、下記一般式(92)で表される化合物(本明細書においては、「含窒素化合物(92)」と略記することがある)及び下記一般式(93)で表される化合物(本明細書においては、「含窒素化合物(93)」と略記することがある)からなる群から選択される1種又は2種以上の含窒素化合物と、を反応させて得られた有機銀錯体を含有し、さらに、前記含窒素化合物と、分岐鎖状飽和脂肪族カルボン酸と、を含有する液状組成物が挙げられる。
* Silver ink composition (II)
The silver ink composition (II) contains an organic silver complex as the organic silver compound, and further has a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms (the branched saturated aliphatic carboxylic acid). A nitrogen-containing compound is blended.
As such a silver ink composition (II), for example, an organic silver complex is formed by a reaction between a precursor compound of an organic silver complex and another nitrogen-containing compound, and an excess of the nitrogen-containing compound. In which the reaction solution in which the residual water remains and the branched saturated aliphatic carboxylic acid are included. More specifically, examples of such a silver ink composition (II) include those obtained by further blending a branched saturated aliphatic carboxylic acid with the one described in Japanese Patent No. 5243409.
That is, as the silver ink composition (II), for example, a silver compound represented by the following general formula (91) (in this specification, sometimes abbreviated as “silver compound (91)”), A compound represented by the general formula (92) (in this specification, it may be abbreviated as “nitrogen-containing compound (92)”) and a compound represented by the following general formula (93) (in this specification) An organic silver complex obtained by reacting with one or more nitrogen-containing compounds selected from the group consisting of “nitrogen-containing compound (93)”), and And a liquid composition containing the nitrogen-containing compound and a branched saturated aliphatic carboxylic acid.
Figure JPOXMLDOC01-appb-C000008
 (式中、n101は、1~3の整数であり;X101は、酸素原子、硫黄原子、ハロゲン原子、シアノ基、シアネート基、カーボネート基、ニトレート基、ニトライト基、サルフェート基、ホスフェート基、チオシアネート基、クロレート基、パークロレート基、テトラフルオロボレート基、アセチルアセトネート基、カルボキシレート基、及びこれらの誘導体からなる群よから選択される基であり;R101~R111は、それぞれ独立に、水素原子、炭素数1~30の脂肪族若しくは脂環族アルキル基又はアリール基、官能基が置換されたアルキル基又はアリール基、及びヘテロ環式基からなる群から選択される基であり、ただし、R101~R111がすべて水素原子になることはない。)
Figure JPOXMLDOC01-appb-C000008
(Wherein n 101 is an integer of 1 to 3; X 101 is an oxygen atom, sulfur atom, halogen atom, cyano group, cyanate group, carbonate group, nitrate group, nitrite group, sulfate group, phosphate group, A group selected from the group consisting of a thiocyanate group, a chlorate group, a perchlorate group, a tetrafluoroborate group, an acetylacetonate group, a carboxylate group, and derivatives thereof; R 101 to R 111 are each independently , A hydrogen atom, an aliphatic or alicyclic alkyl group having 1 to 30 carbon atoms or an aryl group, a functional group-substituted alkyl group or aryl group, and a group selected from a heterocyclic group, (However, R 101 to R 111 are not all hydrogen atoms.)
 前記有機銀錯体としては、例えば、下記一般式(95)-1で表される化合物(本明細書においては、「有機銀錯体(95)-1」と略記することがある)、及び下記一般式(95)-2で表される化合物(本明細書においては、「有機銀錯体(95)-2」と略記することがある)が挙げられる。 Examples of the organic silver complex include a compound represented by the following general formula (95) -1 (sometimes abbreviated as “organic silver complex (95) -1” in this specification), and And a compound represented by the formula (95) -2 (in this specification, sometimes abbreviated as “organic silver complex (95) -2”).
Figure JPOXMLDOC01-appb-C000009
 (式中、R101~R111は、上記と同じであり;m101及びm102は、それぞれ独立に、0.5~1.5である。)
Figure JPOXMLDOC01-appb-C000009
(Wherein R 101 to R 111 are the same as above; m 101 and m 102 are each independently 0.5 to 1.5.)
[銀化合物(91)]
 銀化合物(91)としては、例えば、酸化銀、チオシアネート化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、シュウ酸銀等が挙げられる。
[Silver compound (91)]
Examples of the silver compound (91) include silver oxide, silver thiocyanate, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, Examples include silver acetylacetonate, silver acetate, silver lactate, and silver oxalate.
 銀化合物(91)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 A silver compound (91) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
 銀インク組成物(II)において、銀化合物(91)に由来する銀の含有量は、2質量%以上であることが好ましく、4質量%以上であることがより好ましい。前記銀の含有量がこのような範囲であることで、形成された導電体(光反射体、金属銀)は品質により優れたものとなる。前記銀の含有量の上限値は、本発明の効果を損なわない限り特に限定されないが、銀インク組成物(II)の取り扱い性等を考慮すると、20質量%であることが好ましい。
 なお、ここで、「銀化合物(91)に由来する銀」とは、特に断りの無い限り、銀インク組成物(II)の製造時に配合された銀化合物(91)中の銀と同義であり、配合後も引き続き銀化合物(91)を構成している銀と、配合後に銀化合物(91)の反応で生じた反応物中の銀と、配合後に銀化合物(91)の反応で生じた銀そのもの(金属銀)と、のすべてを含む概念とする。
In the silver ink composition (II), the content of silver derived from the silver compound (91) is preferably 2% by mass or more, and more preferably 4% by mass or more. When the silver content is in such a range, the formed conductor (light reflector, metallic silver) becomes more excellent in quality. The upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired.
Here, “silver derived from the silver compound (91)” has the same meaning as silver in the silver compound (91) blended at the time of producing the silver ink composition (II) unless otherwise specified. After the blending, the silver constituting the silver compound (91), the silver in the reaction product produced by the reaction of the silver compound (91) after the blending, and the silver produced by the reaction of the silver compound (91) after the blending It is a concept that includes all of itself (metal silver).
[含窒素化合物(92)]
 含窒素化合物(92)は、アンモニウムカルバメート系化合物である。
 含窒素化合物(92)において、R101~R105は、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、エチルヘキシル基、ノニル基、デシル基、ドデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、メトキシエチル基、メトキシプロピル基、シアノエチル基、メトキシエトキシエチル基、メトキシエトキシエトキシエチル基、ヘキサメチレンイミニル基、モルホリノ基、ピペリジニル基、ピペラジニル基、ピロリル基、イミダゾリル基、ピリジニル基、カルボキシメチル基、トリメトキシシリルプロピル基、トリエトキシシリルプロピル基、フェニル基、メトキシフェニル基、シアノフェニル基、トリル基、ベンジル基、又はこれらの基において一部が置換された基であることが好ましい。ただし、R101~R105がすべて水素原子になることはない。
[Nitrogen-containing compound (92)]
The nitrogen-containing compound (92) is an ammonium carbamate compound.
In the nitrogen-containing compound (92), R 101 to R 105 are each independently a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl Group, hexyl group, heptyl group, octyl group, isooctyl group, ethylhexyl group, nonyl group, decyl group, dodecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, methoxyethyl group, methoxypropyl group, cyanoethyl group, methoxyethoxyethyl Group, methoxyethoxyethoxyethyl group, hexamethyleneiminyl group, morpholino group, piperidinyl group, piperazinyl group, pyrrolyl group, imidazolyl group, pyridinyl group, carboxymethyl group, trimethoxysilylpropyl group, triethoxysilylpropyl group, phenyl group Methoxyphenyl group, cyanophenyl group, a tolyl group, or a benzyl group, or a group which is partially substituted in these groups. However, R 101 to R 105 are not all hydrogen atoms.
 含窒素化合物(92)としては、例えば、エチルアンモニウム エチルカルバメート、イソプロピルアンモニウム イソプロピルカルバメート、n-ブチルアンモニウム n-ブチルカルバメート、イソブチルアンモニウム イソブチルカルバメート、tert-ブチルアンモニウム tert-ブチルカルバメート、2-エチルヘキシルアンモニウム 2-エチルヘキシルカルバメート、オクタデシルアンモニウム オクタデシルカルバメート、2-メトキシエチルアンモニウム 2-メトキシエチルカルバメート、2-シアノエチルアンモニウム 2-シアノエチルカルバメート、ジブチルアンモニウム ジブチルカルバメート、ジオクタデシルアンモニウム ジオクタデシルカルバメート、メチルデシルアンモニウム メチルデシルカルバメート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカルバメート、モルホリノアンモニウム モルホリノカルバメート、ピリジニウムエチルヘキシルカルバメート、ベンジルアンモニウム ベンジルカルバメート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカルバメート等が挙げられる。
 そして、これら含窒素化合物(92)の中でも、2-エチルヘキシルアンモニウム 2-エチルヘキシルカルバメートは、銀化合物(91)との相溶性に優れ、銀インク組成物(II)の高濃度化に特に適しており、さらに金属銀の表面粗さの低減に特に適したものとして挙げられる。
Examples of the nitrogen-containing compound (92) include ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, n-butylammonium n-butylcarbamate, isobutylammonium isobutylcarbamate, tert-butylammonium tert-butylcarbamate, 2-ethylhexylammonium 2- Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl decyl carbamate, hex Methyleneimine ammonium hexamethyleneimine carbamate, morpholino ammonium morpholino carbamate, pyridinium ethylhexylcarbamate, benzylammonium benzylcarbamate, triethoxysilylpropyl ammonium triethoxysilylpropyl carbamate, and the like.
Among these nitrogen-containing compounds (92), 2-ethylhexylammonium 2-ethylhexyl carbamate is excellent in compatibility with the silver compound (91) and is particularly suitable for increasing the concentration of the silver ink composition (II). Furthermore, it is mentioned as being particularly suitable for reducing the surface roughness of metallic silver.
 含窒素化合物(92)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 The nitrogen-containing compound (92) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
 含窒素化合物(92)は、公知の方法で製造でき、例えば、米国特許第4542214号明細書に記載の方法で製造できる。 The nitrogen-containing compound (92) can be produced by a known method, for example, by the method described in US Pat. No. 4,542,214.
[含窒素化合物(93)]
 含窒素化合物(93)は、アンモニウムカーボネート系化合物である。
 含窒素化合物(93)において、R106~R111は、含窒素化合物(92)におけるR101~R105と同様のものである。ただし、R106~R111がすべて水素原子になることはない。
[Nitrogen-containing compound (93)]
The nitrogen-containing compound (93) is an ammonium carbonate compound.
In the nitrogen-containing compound (93), R 106 to R 111 are the same as R 101 to R 105 in the nitrogen-containing compound (92). However, R 106 to R 111 are not all hydrogen atoms.
 含窒素化合物(93)としては、例えば、エチルアンモニウム エチルカーボネート、イソプロピルアンモニウム イソプロピルカーボネート、n-ブチルアンモニウム n-ブチルカーボネート、イソブチルアンモニウム イソブチルカーボネート、tert-ブチルアンモニウム tert-ブチルカーボネート、2-エチルヘキシルアンモニウム 2-エチルヘキシルカーボネート、2-メトキシエチルアンモニウム 2-メトキシエチルカーボネート、2-シアノエチルアンモニウム 2-シアノエチルカーボネート、オクタデシルアンモニウム オクタデシルカーボネート、ジブチルアンモニウム ジブチルカーボネート、ジオクタデシルアンモニウム ジオクタデシルカーボネート、メチルデシルアンモニウム メチルデシルカーボネート、ヘキサメチレンイミニルアンモニウム ヘキサメチレンイミニルカーボネート、モルホリノアンモニウム モルホリノカーボネート、ベンジルアンモニウム ベンジルカーボネート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカーボネート等が挙げられる。 Examples of the nitrogen-containing compound (93) include ethyl ammonium ethyl carbonate, isopropyl ammonium isopropyl carbonate, n-butyl ammonium n-butyl carbonate, isobutyl ammonium isobutyl carbonate, tert-butyl ammonium tert-butyl carbonate, 2-ethylhexyl ammonium 2- Ethyl hexyl carbonate, 2-methoxyethyl ammonium 2-methoxyethyl carbonate, 2-cyanoethyl ammonium 2-cyanoethyl carbonate, octadecyl ammonium octadecyl carbonate, dibutyl ammonium dibutyl carbonate, dioctadecyl ammonium dioctadecyl carbonate, methyl decyl ammonium methyl decyl Boneto, hexamethylene iminyl ammonium hexamethylene iminyl carbonate, morpholino ammonium morpholino carbonate, benzyl ammonium benzyl carbonate, triethoxysilylpropyl ammonium triethoxysilylpropyl carbonate.
 含窒素化合物(93)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。 The nitrogen-containing compound (93) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily adjusted.
 含窒素化合物(93)は、公知の方法で製造でき、例えば、米国特許第4542214号明細書に記載の方法で製造できる。 The nitrogen-containing compound (93) can be produced by a known method, for example, the method described in US Pat. No. 4,542,214.
 銀化合物(91)と反応させる含窒素化合物は、1種又は2種以上の含窒素化合物(92)のみであってもよいし、1種又は2種以上の含窒素化合物(93)のみであってもよいし、1種又は2種以上の含窒素化合物(92)と、1種又は2種以上の含窒素化合物(93)と、の両方であってもよい。 The nitrogen-containing compound to be reacted with the silver compound (91) may be only one type or two or more types of nitrogen-containing compounds (92), or only one type or two or more types of nitrogen-containing compounds (93). It may be both one type or two or more types of nitrogen-containing compounds (92) and one type or two or more types of nitrogen-containing compounds (93).
 銀化合物(91)と、含窒素化合物(92)及び含窒素化合物(93)からなる群から選択される1種又は2種以上と、の反応は、例えば、窒素雰囲気下において、常圧の状態で又は加圧した状態で、溶媒を用いずに行うことができる。 The reaction between the silver compound (91) and one or more selected from the group consisting of the nitrogen-containing compound (92) and the nitrogen-containing compound (93) is, for example, in a normal pressure state in a nitrogen atmosphere Or in a pressurized state without using a solvent.
[溶媒]
 前記反応は、溶媒を用いて行ってもよい。このときの溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール、ブタノール等のアルコール;エチレングリコール、グリセリン等のグリコール;エチルアセテート、ブチルアセテート、カルビトールアセテート等のアセテート;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル;メチルエチルケトン、アセトン等のケトン;ヘキサン、ヘプタン等の脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化水素;クロロホルム、メチレンクロライド、四塩化炭素等のハロゲン化炭化水素等が挙げられる。
 溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は、任意に調節できる。
[solvent]
The reaction may be performed using a solvent. Examples of the solvent at this time include water; alcohols such as methanol, ethanol, isopropanol, and butanol; glycols such as ethylene glycol and glycerin; acetates such as ethyl acetate, butyl acetate, and carbitol acetate; diethyl ether, tetrahydrofuran, dioxane, and the like. Ethers such as methyl ethyl ketone and acetone; aliphatic hydrocarbons such as hexane and heptane; aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as chloroform, methylene chloride and carbon tetrachloride.
A solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be adjusted arbitrarily.
 前記溶媒は、銀インク組成物(II)の配合成分であってもよい。 The solvent may be a component of the silver ink composition (II).
 前記反応時において、含窒素化合物(92)及び含窒素化合物(93)の合計使用量は、使用する銀化合物(91)中の銀原子の量に対して、1~4倍モル量である([含窒素化合物(92)及び含窒素化合物(93)の合計使用量(モル)]/[使用する銀化合物(91)中の銀原子の量(モル)]の値が1~4である)ことが好ましい。 During the reaction, the total amount of the nitrogen-containing compound (92) and the nitrogen-containing compound (93) used is 1 to 4 times the molar amount of the silver atom in the silver compound (91) to be used ( [Total amount of nitrogen-containing compound (92) and nitrogen-containing compound (93) used (mol)] / [Amount of silver atom (mol) in silver compound (91) used] is 1 to 4) It is preferable.
[炭素数8~10の分岐鎖状飽和脂肪族カルボン酸]
 銀インク組成物(II)における、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸は、銀インク組成物(I)における炭素数8~10の分岐鎖状飽和脂肪族カルボン酸(前記分岐鎖状飽和脂肪族カルボン酸)と同じである。
 銀インク組成物(II)における前記分岐鎖状飽和脂肪族カルボン酸は、銀インク組成物(I)における前記分岐鎖状飽和脂肪族カルボン酸と、同様の作用を示すと推測される。
[Branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms]
The branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in the silver ink composition (II) is the branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms in the silver ink composition (I). A chain saturated aliphatic carboxylic acid).
The branched saturated aliphatic carboxylic acid in the silver ink composition (II) is presumed to exhibit the same action as the branched saturated aliphatic carboxylic acid in the silver ink composition (I).
 銀インク組成物(II)において、分岐鎖状飽和脂肪族カルボン酸の配合量は、前記有機銀錯体中の銀原子の配合量1モルあたり、0.01~1モルであることが好ましく、0.02~0.7モルであることがより好ましく、0.03~0.4モルであることが特に好ましい。分岐鎖状飽和脂肪族カルボン酸の前記配合量がこのような範囲であることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成する効果がより高くなる。
 銀インク組成物(II)の製造時に、前記有機銀錯体の前駆体化合物を用いる場合には、前記前駆体化合物中の銀原子の配合量1モルあたりの、分岐鎖状飽和脂肪族カルボン酸の配合量を、上述の数値範囲とすることができる。
In the silver ink composition (II), the blended amount of the branched saturated aliphatic carboxylic acid is preferably 0.01 to 1 mole per mole of the silver atom in the organic silver complex. The amount is more preferably 0.02 to 0.7 mol, and particularly preferably 0.03 to 0.4 mol. Even if the amount of the branched saturated aliphatic carboxylic acid is in such a range, even when printing is performed while heating the object to be printed, the effect of forming metallic silver with high gloss is obtained. Get higher.
When a precursor compound of the organic silver complex is used during the production of the silver ink composition (II), the branched saturated aliphatic carboxylic acid per mole of silver atoms in the precursor compound is used. A compounding quantity can be made into the above-mentioned numerical range.
 上述のとおり、前記銀インク組成物(II)は、前記分岐鎖状飽和脂肪族カルボン酸が配合されていることで、印刷対象物を加熱しながら印刷を行った場合であっても、光沢性が高い金属銀を形成できる。その理由は定かではないが、上述の銀インク組成物(I)の場合と同じであると推測される。 As described above, the silver ink composition (II) is blended with the branched saturated aliphatic carboxylic acid, so that it is glossy even when printing is performed while heating an object to be printed. High metal silver can be formed. Although the reason is not certain, it is assumed that it is the same as the case of the above-mentioned silver ink composition (I).
 本発明の銀インク組成物については、以上のとおりである。
 本発明の銀インク組成物で好ましいものの一例としては、有機銀化合物が、β-ケトカルボン酸銀(1)、有機銀錯体(95)-1、又は有機銀錯体(95)-2であるものが挙げられる。
 次いで、前記銀インク組成物の使用方法について説明する。
The silver ink composition of the present invention is as described above.
As an example of a preferable silver ink composition of the present invention, the organic silver compound is silver β-ketocarboxylate (1), organic silver complex (95) -1, or organic silver complex (95) -2. Can be mentioned.
Next, a method for using the silver ink composition will be described.
<<銀インク組成物の使用方法>>
 銀インク組成物(I)及び銀インク組成物(II)の場合に限定されず、前記銀インク組成物は、目的物へ付着させる方法として、印刷法を適用するのに好適であるが、塗布法等の印刷法以外の方法を適用するのにも好適である。
 そして、前記銀インク組成物は、目的物へ付着させる方法のうち、付着対象物(目的物)の加熱を必要とする方法への適用に、特に好適である。
<< Usage method of silver ink composition >>
The present invention is not limited to the silver ink composition (I) and the silver ink composition (II), and the silver ink composition is suitable for applying a printing method as a method for adhering to a target object. It is also suitable to apply a method other than the printing method such as the method.
The silver ink composition is particularly suitable for application to a method that requires heating of the object to be adhered (object) among the methods of adhering to the object.
 前記印刷法としては、例えば、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、ジェットディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が挙げられる。
 これらの中でも、前記印刷法は、インクジェット式印刷法であることが好ましい。
Examples of the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, jet dispenser printing method, gravure printing method, gravure offset printing method, The pad printing method etc. are mentioned.
Among these, the printing method is preferably an ink jet printing method.
 前記塗布法としては、例えば、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法等が挙げられる。 Examples of the coating method include various coaters such as a spin coater, an air knife coater, a curtain coater, a die coater, a blade coater, a roll coater, a gate roll coater, a bar coater, a rod coater, a gravure coater, and a wire bar. Methods and the like.
 銀インク組成物の印刷と、印刷した銀インク組成物の乾燥処理や加熱(焼成)処理等の固化処理と、により金属銀を形成する場合には、印刷対象物上での銀インク組成物の量、又は銀インク組成物における前記有機銀化合物の配合量を調節することで、金属銀の厚さを調節できる。
 印刷法に代えて、塗布法を採用する場合も同様に、塗布対象物上での銀インク組成物の量、又は銀インク組成物における前記有機銀化合物の配合量を調節することで、金属銀の厚さを調節できる。
When metallic silver is formed by printing the silver ink composition and solidifying treatment such as drying treatment or heating (firing) treatment of the printed silver ink composition, the silver ink composition on the printing object The thickness of the metallic silver can be adjusted by adjusting the amount or the blending amount of the organic silver compound in the silver ink composition.
Similarly, when the coating method is employed instead of the printing method, the amount of the silver ink composition on the object to be coated or the blending amount of the organic silver compound in the silver ink composition can be adjusted to obtain metallic silver. Can adjust the thickness.
 銀インク組成物を乾燥処理する場合には、公知の方法で行えばよい。すなわち前記乾燥処理は、例えば、常圧下、減圧下及び送風条件下のいずれで行ってもよく、大気下及び不活性ガス雰囲気下のいずれでおこなってもよい。そして、乾燥温度も特に限定されず、加熱乾燥及び常温乾燥のいずれでもよい。加熱処理が不要な場合の好ましい乾燥方法としては、例えば、18~30℃で大気下において乾燥させる方法が挙げられる。 When the silver ink composition is dried, it may be performed by a known method. That is, the drying treatment may be performed, for example, under normal pressure, reduced pressure, or air blowing conditions, and may be performed under air or an inert gas atmosphere. Also, the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, for example, a method of drying in the atmosphere at 18 to 30 ° C. can be mentioned.
 銀インク組成物を加熱(焼成)処理する場合、その条件は、銀インク組成物の配合成分の種類に応じて適宜調節すればよい。通常は、加熱温度が60~370℃であることが好ましく、70~280℃であることがより好ましい。加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~24時間であることが好ましく、1分~12時間であることがより好ましい。前記有機銀化合物の中でも前記カルボン酸銀、特にβ-ケトカルボン酸銀(1)は、例えば、酸化銀等の金属銀の形成材料とは異なり、当該分野で公知の還元剤等を使用しなくても、低温で分解する。そして、このような分解温度を反映して、前記銀インク組成物は、上記のように、従来のものより極めて低温で金属銀を形成できる。 When the silver ink composition is heated (baked), the conditions may be adjusted as appropriate according to the type of ingredients of the silver ink composition. Usually, the heating temperature is preferably 60 to 370 ° C., more preferably 70 to 280 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 24 hours, and more preferably 1 minute to 12 hours. Among the organic silver compounds, the silver carboxylate, particularly β-ketocarboxylate (1) is different from a metal silver forming material such as silver oxide, for example, without using a reducing agent known in the art. Also decomposes at low temperatures. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
 銀インク組成物を耐熱性が低い目的物に付着させて加熱(焼成)処理する場合には、加熱温度は130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。 When the silver ink composition is attached to an object having low heat resistance and heated (baked), the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C or less. It is particularly preferred that
 銀インク組成物の加熱処理の方法は、特に限定されない。前記加熱処理は、例えば、電気炉による加熱、感熱方式の熱ヘッドによる加熱、遠赤外線照射による加熱、高熱ガスの吹き付けによる加熱等で行うことができる。また、前記加熱処理は、大気下で行ってもよいし、不活性ガス雰囲気下で行ってもよく、加湿条件下で行ってもよい。そして、前記加熱処理は、常圧下、減圧下及び加圧下のいずれで行ってもよい。 The method for heat treatment of the silver ink composition is not particularly limited. The heat treatment can be performed by, for example, heating with an electric furnace, heating with a thermal head, heating with far-infrared irradiation, or heating by blowing a hot gas. Further, the heat treatment may be performed in the atmosphere, in an inert gas atmosphere, or may be performed under humidified conditions. The heat treatment may be performed under normal pressure, reduced pressure, or increased pressure.
 本明細書において「加湿」とは、特に断りのない限り、湿度を人為的に増大させることを意味し、好ましくは相対湿度を5%以上とすることである。加熱処理時には、処理温度が高いことによって、処理環境での湿度が極めて低くなるため、5%という相対湿度は、明らかに人為的に増大されたものであるといえる。 In this specification, “humidification” means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
 銀インク組成物の加熱処理を加湿条件下で行う場合の相対湿度は、10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることが特に好ましく、90%以上であってもよいし、100%であってもよい。そして、加湿条件下での加熱処理は、100℃以上に加熱した高圧水蒸気の吹き付けにより行ってもよい。このように加湿条件下で加熱処理することにより、短時間でより高純度の金属銀を形成できる。 The relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
 銀インク組成物の加熱処理は、二段階で行ってもよい。例えば、一段階目の加熱処理では、金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理で、金属銀の形成を最後まで行う方法が挙げられる。この場合の一段階目の加熱処理には、例えば、先に説明した、印刷対象物を加熱しながら銀インク組成物で印刷を行ったときの、印刷対象物による銀インク組成物の加熱が、該当することがある。 The heat treatment of the silver ink composition may be performed in two stages. For example, in the first stage heat treatment, there is a method in which the silver ink composition is mainly dried rather than the formation of metallic silver, and in the second stage heat treatment, the formation of metallic silver is performed to the end. In this case, the first stage heat treatment includes, for example, the heating of the silver ink composition by the printing object when the printing object is printed with the silver ink composition while heating the printing object, as described above. May be applicable.
 一段階目の加熱処理において、加熱温度は、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~120℃であることが好ましく、70~110℃であってもよい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、5秒~12時間であることが好ましく、30秒~2時間であることがより好ましい。
 二段階目の加熱処理において、加熱温度は、金属銀が良好に形成されるように、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~280℃であることが好ましく、70~260℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~12時間であることが好ましく、1分~10時間であることがより好ましい。
 銀インク組成物を耐熱性が低い目的物に付着させて加熱(焼成)処理する場合には、一段階目及び二段階目の加熱処理における加熱温度は、130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
In the first-stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 120 ° C, and may be 70 to 110 ° C. . The heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
In the second stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is formed satisfactorily, but it should be 60 to 280 ° C. Preferably, the temperature is 70 to 260 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
When the silver ink composition is attached to an object having low heat resistance and is heated (baked), the heating temperature in the first and second stage heat treatment is preferably less than 130 ° C. More preferably, it is not higher than 120 ° C, particularly preferably not higher than 120 ° C.
 ここまでで説明した銀インク組成物の加熱処理は、いずれも気相中で行うものであるが、銀インク組成物の加熱処理を二段階で行う場合、二段階目の加熱処理は、気相中ではなく液相中で行ってもよい。一段階目の加熱処理を経て、完全に又はある程度乾燥した銀インク組成物は、加熱した液体と接触させることで、その形状を損なうことなく、二段階目の加熱処理を行うことができる。そして、銀インク組成物の、一段階目の加熱処理を行った後の二段階目の液相中での加熱処理は、加熱した液体に銀インク組成物を浸漬することで行うことが好ましい。この液相中での加熱処理における加熱温度及び加熱時間は、先に説明した二段階目の加熱処理における加熱温度及び加熱時間と同じである。
 上記の加熱した液体は湯(加熱した水)であることが好ましく、二段階目の加熱処理は、一段階目の加熱処理を行った銀インク組成物を湯中に浸漬すること、すなわち湯煎によって行うことが好ましい。
 二段階目の加熱処理を液相中で行った場合には、この加熱処理によって形成された金属銀を、さらに乾燥させればよい。
The heat treatment of the silver ink composition described so far is performed in the gas phase. However, when the heat treatment of the silver ink composition is performed in two steps, the heat treatment in the second step is performed in the gas phase. You may carry out in a liquid phase instead of inside. The silver ink composition that has been completely or partially dried through the first stage heat treatment can be subjected to the second stage heat treatment without impairing its shape by contacting with the heated liquid. And it is preferable to perform the heat processing in the liquid phase of the 2nd step after performing the heat processing of the 1st step of a silver ink composition by immersing a silver ink composition in the heated liquid. The heating temperature and heating time in the heat treatment in the liquid phase are the same as the heating temperature and heating time in the second-stage heat treatment described above.
The heated liquid is preferably hot water (heated water), and the second stage heat treatment is performed by immersing the silver ink composition subjected to the first stage heat treatment in hot water, that is, by hot water bathing. Preferably it is done.
When the second stage heat treatment is performed in the liquid phase, the metallic silver formed by this heat treatment may be further dried.
 銀インク組成物の二段階目の加熱処理を液相中で行う場合、銀インク組成物の一段階目の加熱処理は、非加湿条件下で行うことが好ましい。
 なお、本明細書において「非加湿」とは、上述の「加湿」を行わないこと、すなわち、湿度を人為的に増大させないことを意味し、好ましくは相対湿度を5%未満とすることである。
When the second stage heat treatment of the silver ink composition is performed in a liquid phase, the first stage heat treatment of the silver ink composition is preferably performed under non-humidified conditions.
In the present specification, “non-humidification” means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
 加湿条件下での加熱処理を採用する場合、銀インク組成物の加熱処理は、以下に示す二段階の方法で行うことが特に好ましい。すなわち、一段階目の加熱処理において、非加湿条件下で、上述のように金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理において、加湿条件下で、上述のように金属銀の形成を最後まで行うことにより、銀インク組成物の加熱処理を行うことが特に好ましい。 When heat treatment under humidified conditions is employed, it is particularly preferable to perform the heat treatment of the silver ink composition by the following two-step method. That is, in the first stage heat treatment, the silver ink composition is mainly dried under the non-humidified condition as described above, rather than the formation of metallic silver, and in the second stage heat treatment, under the humidified condition, As described above, it is particularly preferable to heat-treat the silver ink composition by forming metal silver to the end.
 二段階目の加熱処理を加湿条件下で行う場合、一段階目の非加湿条件下での加熱処理時の加熱温度は、60~120℃であることが好ましく、70~110℃であってもよい。また、加熱時間は、5秒~1時間であることが好ましく、30秒~30分であることがより好ましく、30秒~15分であることが特に好ましい。
 一段階目の非加湿条件下での加熱処理に次いで行う、二段階目の加湿条件下での加熱処理時の加熱温度は、60~140℃であることが好ましく、70~130℃であることがより好ましい。また、加熱時間は、1分~2時間であることが好ましく、1分~1時間であることがより好ましく、1分~30分であることが特に好ましい。
 銀インク組成物を耐熱性が低い目的物に付着させて加熱(焼成)処理する場合には、一段階目の非加湿条件下での加熱処理及び二段階目の加湿条件下での加熱処理における加熱温度は、いずれも130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
When the second stage heat treatment is performed under humidified conditions, the heating temperature during the heat treatment under the first stage non-humidified conditions is preferably 60 to 120 ° C., even if it is 70 to 110 ° C. Good. The heating time is preferably 5 seconds to 1 hour, more preferably 30 seconds to 30 minutes, and particularly preferably 30 seconds to 15 minutes.
The heating temperature during the heat treatment under the second-stage humidification condition, which is performed after the heat treatment under the first-stage non-humidification conditions, is preferably 60 to 140 ° C, and preferably 70 to 130 ° C. Is more preferable. The heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
When the silver ink composition is attached to an object having low heat resistance and heated (baked), the heat treatment under the first stage non-humidifying condition and the heat treatment under the second stage humidifying condition are performed. The heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and particularly preferably 120 ° C or less.
 銀インク組成物の付着(印刷)対象となる目的物(基材)の材質は、特に限定されず、目的に応じて任意に選択できる。
 目的物の好ましい材質としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリメチルペンテン(PMP)、ポリシクロオレフィン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂、AS樹脂、ABS樹脂、ポリアミド(PA)、ポリイミド、ポリアミドイミド(PAI)、ポリアセタール、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリフェニレンスルファイド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリウレタン、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル(m-PPE)、ポリアリレート、エポキシ樹脂、メラミン樹脂、フェノール樹脂、尿素樹脂等の合成樹脂が挙げられる。
 また、目的物の好ましい材質としては、上記以外にも、ガラス、シリコン等のセラミックスや、紙が挙げられる。
 また、目的物は、ガラスエポキシ樹脂、ポリマーアロイ等の、2種以上の材質を併用したものでもよい。
The material of the target object (base material) to be attached (printed) to the silver ink composition is not particularly limited, and can be arbitrarily selected according to the purpose.
Examples of preferable materials of the target product include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), Acrylic resins such as polyvinyl acetate (PVAc) and polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide, polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate ( PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulfone PES), polyether ketone (PEK), polyether ether ketone (PEEK), polycarbonate (PC), polyurethane, polyphenylene ether (PPE), modified polyphenylene ether (m-PPE), polyarylate, epoxy resin, melamine resin, phenol Examples thereof include synthetic resins such as resins and urea resins.
In addition to the above, preferred materials for the object include ceramics such as glass and silicon, and paper.
The target product may be a combination of two or more materials such as glass epoxy resin and polymer alloy.
 銀インク組成物の付着(印刷)対象となる目的物(基材)の厚さは、特に限定されないが、10~5000μmであることが好ましく、10~3000μmであることがより好ましい。 The thickness of the target object (base material) to be attached (printed) to the silver ink composition is not particularly limited, but is preferably 10 to 5000 μm, and more preferably 10 to 3000 μm.
<<金属銀、積層体>>
 本発明の銀インク組成物は、乾燥処理や加熱(焼成)処理等の固化処理によって、光沢性が高い光反射体を形成できる。この光反射体は、前記有機銀化合物から生じた金属銀を主成分とする。すなわち、本発明の銀インク組成物を用いることにより、光沢性が高い金属銀を形成できる。そして、この銀インク組成物を用いて、印刷対象物を加熱しながら印刷を行っても、光沢性が高い金属銀を形成できる。
 本発明の銀インク組成物は、基材と、前記基材上に形成された金属銀層と、を備えた積層体であって、前記金属銀層の光沢性が高い積層体を製造するために用いるものとして、好適である。
<< Metallic silver, laminate >>
The silver ink composition of the present invention can form a light reflector having high glossiness by solidification treatment such as drying treatment or heating (firing) treatment. This light reflector is mainly composed of metallic silver produced from the organic silver compound. That is, metallic silver having high gloss can be formed by using the silver ink composition of the present invention. And even if it prints, heating this printing object using this silver ink composition, metallic silver with high glossiness can be formed.
The silver ink composition of the present invention is a laminate comprising a base material and a metallic silver layer formed on the base material, in order to produce a laminated body having a high glossiness of the metallic silver layer. Suitable for use in
 本発明の銀インク組成物を用いて得られた金属銀は、光反射率、例えば、波長が400~700nmの光の反射率に優れる。
 例えば、印刷対象物を60℃で加熱しながら印刷を行った場合でも、金属銀の波長550nmの光の反射率を、好ましくは50%以上とすることができ、例えば、55%以上、60%以上、65%以上、70%以上及び75%以上等のいずれかとすることができるが、これらは一例である。
 また、上述の金属銀の、波長550nmの光の反射率の上限値は、特に限定されず、例えば、90%とすることができるが、これは一例である。
Metallic silver obtained using the silver ink composition of the present invention is excellent in light reflectance, for example, reflectance of light having a wavelength of 400 to 700 nm.
For example, even when printing is performed while heating an object to be printed at 60 ° C., the reflectance of metal silver having a wavelength of 550 nm can be preferably 50% or more, for example, 55% or more, 60%. Although it can be any of 65% or more, 70% or more, 75% or more, etc., these are examples.
In addition, the upper limit value of the reflectance of light having a wavelength of 550 nm of the above-described metallic silver is not particularly limited and can be set to 90%, for example, but this is an example.
 上述のように、本発明の銀インク組成物を用いて、印刷対象物を60℃で加熱しながら印刷を行い、金属銀を形成した場合の、この金属銀の波長550nmの光の反射率は、上述のいずれかの好ましい下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。例えば、前記光の反射率は、好ましくは50~90%とすることができ、55~90%、60~90%、65~90%、70~90%、及び75~90%等のいずれかとすることができる。ただし、これらは一例である。 As described above, when the silver ink composition of the present invention is used to perform printing while heating an object to be printed at 60 ° C. to form metallic silver, the reflectance of light with a wavelength of 550 nm of the metallic silver is Any of the above-described preferred lower and upper limit values can be appropriately adjusted so as to be within a range set by arbitrarily combining them. For example, the reflectance of the light can be preferably 50 to 90%, and any of 55 to 90%, 60 to 90%, 65 to 90%, 70 to 90%, 75 to 90%, and the like. can do. However, these are examples.
 本発明の銀インク組成物を用いて得られた光反射体において、金属銀の比率は、前記光反射体が見かけ上金属銀だけからなるとみなし得る程度に十分に高くすることができ、光反射体中の金属銀の比率は、好ましくは97質量%以上、より好ましくは98質量%以上、特に好ましくは99質量%以上である。光反射体中の金属銀の比率の上限値は、例えば、100質量%、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかとすることができるが、これらに限定されない。 In the light reflector obtained using the silver ink composition of the present invention, the ratio of metallic silver can be made sufficiently high so that the light reflector can be considered to be composed solely of metallic silver. The ratio of metallic silver in the body is preferably 97% by mass or more, more preferably 98% by mass or more, and particularly preferably 99% by mass or more. The upper limit of the ratio of metallic silver in the light reflector is, for example, 100% by mass, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, Although it can be set to either 99.4 mass%, 99.3 mass%, 99.2 mass%, or 99.1 mass%, it is not limited to these.
 図1は、本発明の積層体の一実施形態を模式的に示す断面図である。
 ここに示す積層体1は、基材11と、基材11上に形成された金属銀層12と、を備える。
 金属銀層12は、上述の本発明の銀インク組成物を用いて形成されたものである。金属銀層12の、波長550nmの光の反射率は、50%以上である。
 金属銀層12は、基材11の一方の表面(本明細書においては、「第1面」と称することがある)11a上のみに積層されている。
FIG. 1 is a cross-sectional view schematically showing one embodiment of the laminate of the present invention.
The laminated body 1 shown here includes a base material 11 and a metal silver layer 12 formed on the base material 11.
The metallic silver layer 12 is formed using the above-described silver ink composition of the present invention. The reflectance of light with a wavelength of 550 nm of the metallic silver layer 12 is 50% or more.
The metallic silver layer 12 is laminated only on one surface (which may be referred to as “first surface” in this specification) 11 a of the substrate 11.
 なお、ここに示す積層体1において、基材11の第1面11aとは反対側の表面(本明細書においては、「第2面」と称することがある)11b上には、金属銀層(図示略)が積層されていないが、前記第2面11b上に金属銀層が積層されていてもよい。
 この場合、基材11の第2面11b上の金属銀層は、本発明の銀インク組成物を用いて形成されたものであってもよいし、本発明とは異なる銀インク組成物を用いて形成されたものであってもよい。そして、基材11の第1面11a上の金属銀層12と、基材11の第2面11b上の金属銀層とは、互いに同一で異なっていてもよい。
In the laminated body 1 shown here, a metallic silver layer is formed on the surface 11b (which may be referred to as “second surface” in this specification) opposite to the first surface 11a of the substrate 11. (Not shown) is not laminated, but a metallic silver layer may be laminated on the second surface 11b.
In this case, the metallic silver layer on the second surface 11b of the substrate 11 may be formed using the silver ink composition of the present invention, or a silver ink composition different from the present invention is used. It may be formed. And the metallic silver layer 12 on the 1st surface 11a of the base material 11 and the metallic silver layer on the 2nd surface 11b of the base material 11 may mutually be the same, and may differ.
 上述のとおり、本発明の銀インク組成物を用いることで、印刷対象物を加熱しながら印刷を行った場合であっても、又は、塗布対象物を加熱しながら塗布を行った場合であっても、次いで別途、銀インク組成物の乾燥処理や加熱(焼成)処理等の固化処理を行うことによって、光沢性が高い金属銀(金属銀層)を形成できる。
 上述の印刷時の印刷対象物、又は塗布時の塗布対象物の加熱温度は、特に限定されないが、45~70℃であることが好ましく、55~65℃であることがより好ましい。前記加熱温度が前記下限値以上であることで、印刷時又は塗布時における銀インク組成物の滲みがより抑制される。前記加熱温度が前記上限値以下であることで、印刷対象物又は塗布対象物の劣化がより抑制される。
As described above, by using the silver ink composition of the present invention, even when printing is performed while heating the printing object, or when application is performed while heating the application object. However, by separately performing a solidification process such as a drying process or a heating (baking) process on the silver ink composition, metallic silver (a metallic silver layer) having high gloss can be formed.
The heating temperature of the object to be printed at the time of printing or the object to be applied at the time of application is not particularly limited, but is preferably 45 to 70 ° C, and more preferably 55 to 65 ° C. When the heating temperature is equal to or higher than the lower limit, bleeding of the silver ink composition during printing or coating is further suppressed. When the heating temperature is equal to or lower than the upper limit value, deterioration of the print object or the application object is further suppressed.
 前記印刷対象物又は塗布対象物の加熱時間は、特に限定されず、例えば、前記加熱温度に応じて適宜調節できる。通常、前記加熱時間は、5秒~10分であることが好ましい。 The heating time of the printing object or the application object is not particularly limited, and can be appropriately adjusted according to the heating temperature, for example. Usually, the heating time is preferably 5 seconds to 10 minutes.
 対象物を加熱しながら行う、上述の銀インク組成物による印刷、又は銀インク組成物の塗布は、空気雰囲気下で行ってもよいし、不活性ガス雰囲気下で行ってもよい。前記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。特に、前記印刷又は塗布を不活性ガス雰囲気下で行うことで、光沢性がより高い金属銀(金属銀層)が得られることがある。 The printing with the above-described silver ink composition or application of the silver ink composition performed while heating the object may be performed in an air atmosphere or in an inert gas atmosphere. Examples of the inert gas include nitrogen gas, helium gas, and argon gas. In particular, metallic silver (a metallic silver layer) with higher gloss may be obtained by performing the printing or coating in an inert gas atmosphere.
 本発明の銀インク組成物を用いて、基材上に形成された金属銀層の厚さは、目的に応じて、任意に設定でき、特に限定されない。
 例えば、前記金属銀層の厚さは、0.04~1μmであることが好ましく、0.05~0.5μmであることがより好ましい。金属銀層の厚さが前記下限値以上であることで、金属銀層の光の反射率がより高くなる。一方、厚さが前記上限値以下である金属銀層は、より容易に形成できる。
The thickness of the metallic silver layer formed on the substrate using the silver ink composition of the present invention can be arbitrarily set according to the purpose, and is not particularly limited.
For example, the thickness of the metallic silver layer is preferably 0.04 to 1 μm, and more preferably 0.05 to 0.5 μm. When the thickness of the metal silver layer is not less than the lower limit, the light reflectance of the metal silver layer is further increased. On the other hand, a metallic silver layer having a thickness equal to or less than the upper limit can be formed more easily.
 本発明の銀インク組成物を用いて、基材上に金属銀層(金属銀)を形成して得られた積層体は、金属銀層の光沢性が高い特性を利用して、種々の用途で利用できる。例えば、金属銀層がパターニングされたものであれば、前記積層体は、装飾用又は加飾用の各種製品の構成部材として有用である。また、金属銀層が膜状のものであれば、前記積層体は、その膜の表面を鏡面として用いる各種製品の構成部材として有用である。
 基材上に金属銀層を備えた、好ましい前記積層体としては、例えば、前記金属銀層の、波長550nmの光の反射率が、上述のもの(例えば50%以上であるもの)が挙げられる。
Laminates obtained by forming a metallic silver layer (metallic silver) on a substrate using the silver ink composition of the present invention can be used in various applications utilizing the high gloss property of the metallic silver layer. Available at. For example, if the metal silver layer is patterned, the laminate is useful as a component of various products for decoration or decoration. If the metallic silver layer is a film, the laminate is useful as a component of various products using the surface of the film as a mirror surface.
Examples of the preferable laminate including a metal silver layer on a substrate include those described above (for example, those having a reflectance of light having a wavelength of 550 nm of the metal silver layer of 50% or more). .
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
[実施例1]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(78.18g、後述する2-メチルアセト酢酸銀に対して6.53倍モル量)と、3,5-ジメチル-1-ヘキシン-3-オール(以下、「DMHO」と略記することがある)(1.17g、2-メチルアセト酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるように2-メチルアセト酢酸銀(20.65g)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、ネオデカン酸(2-メチルアセト酢酸銀に対して0.13倍モル量)を滴下して撹拌することにより、銀インク組成物として銀インク組成物(I)を得た。
 なお、DMHOとしては、日信化学社製「サーフィノール61」を用い、ネオデカン酸としては、ジャパンケムテック社製「バーサティック10」を用いた。これは、以降の実施例、参考例及び比較例でも同様である。
[Example 1]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (78.18 g, 6.53 times the molar amount of silver 2-methylacetoacetate described later), 3,5-dimethyl-1-hexyn-3-ol (hereinafter “DMHO”) (1.17 g, 0.10-fold molar amount with respect to silver 2-methylacetoacetate), and the mixture is further stirred while rotating the mechanical stirrer while stirring. Silver 2-methylacetoacetate (20.65 g) was added so that the temperature would be 40 ° C. or less to dissolve each compounding component, and stirring was continued for one day at room temperature.
Next, neodecanoic acid (0.13-fold molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature is 30 ° C. or lower, whereby a silver ink composition is obtained. Ink composition (I) was obtained.
In addition, “Surfinol 61” manufactured by Nissin Chemical Co., Ltd. was used as DMHO, and “Versatic 10” manufactured by Japan Chemtech Co., Ltd. was used as neodecanoic acid. This also applies to the following examples, reference examples and comparative examples.
 各配合成分の種類と配合比を表1に示す。表1中、「含窒素化合物(モル比)」とは、有機銀化合物の配合量1モルあたりの含窒素化合物の配合量(モル数)([含窒素化合物のモル数]/[有機銀化合物のモル数])を意味する。「アルコール(モル比)」も同様に、有機銀化合物の配合量1モルあたりのアルコールの配合量(モル数)([アルコールのモル数]/[有機銀化合物のモル数])を意味する。「分岐鎖状飽和脂肪族カルボン酸のモル比」も同様に、有機銀化合物の配合量1モルあたりの分岐鎖状飽和脂肪族カルボン酸の配合量(モル数)([分岐鎖状飽和脂肪族カルボン酸のモル数]/[有機銀化合物のモル数])を意味する。また、銀インク組成物の配合成分・配合量の欄の「-」との記載は、その成分が未配合であることを意味する。これらのことは、配合成分の種類と配合比を示した、表1以降の表においても同様である。
 なお、本実施例において「有機銀化合物」とは、「β-ケトカルボン酸銀(1)」のことである。
Table 1 shows the types and blending ratios of each blending component. In Table 1, “nitrogen-containing compound (molar ratio)” means the compounding amount (number of moles) of the nitrogen-containing compound per mol of the organic silver compound ([number of moles of nitrogen-containing compound] / [organic silver compound] Number of moles]). "Alcohol (molar ratio)" also means the blending amount (number of moles) of alcohol per mole of blending organic silver compound ([number of moles of alcohol] / [number of moles of organic silver compound]). Similarly, the “molar ratio of the branched saturated aliphatic carboxylic acid” is the blended amount (number of moles) of the branched saturated aliphatic carboxylic acid per mole of the organic silver compound. Number of moles of carboxylic acid] / [number of moles of organic silver compound]). In addition, the description of “-” in the column of the blending component / blending amount of the silver ink composition means that the component is not blended. The same applies to the tables after Table 1 showing the types and blending ratios of the blending components.
In this example, “organic silver compound” means “silver β-ketocarboxylate (1)”.
<銀インク組成物の評価>
(金属銀層の形成)
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工し、直ちにこの塗工後の基材をホットプレート上に載せて、60℃で5分加熱した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この加熱後の基材上の塗工物(塗工膜)を、100℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(1)-1を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(1)-1の場合と同じ方法で、金属銀層(1)-1Rを形成した。
 さらに、別途、塗工物の加熱(焼成)処理条件を、100℃で15分に代えて、120℃で15分とした点以外は、金属銀層(1)-1の場合と同じ方法で、金属銀層(1)-2を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(1)-2の場合と同じ方法で、金属銀層(1)-2Rを形成した。
 これら塗工後の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を、それぞれ表2に示す。なお、表2中、工程条件の欄の「-」との記載は、その工程を行っていないことを意味する。このことは、上述の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を示した、表2以降の表においても同様である。
<Evaluation of silver ink composition>
(Formation of metallic silver layer)
On one surface of a polyethylene terephthalate base material (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was applied using a spin coater. After coating, the substrate after coating was immediately placed on a hot plate and heated at 60 ° C. for 5 minutes. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coated material (coating film) on the heated substrate is heated (baked) at 100 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (1) -1 was formed.
Further, the metallic silver layer (1) -1R was formed in the same manner as the metallic silver layer (1) -1, except that the substrate was not heated after the silver ink composition was separately applied. did.
Furthermore, the same method as in the case of the metallic silver layer (1) -1, except that the heating (firing) treatment condition of the coated material was changed to 15 minutes at 120 ° C. instead of 15 minutes at 100 ° C. Then, a metallic silver layer (1) -2 was formed.
In addition, the metallic silver layer (1) -2R was formed in the same manner as the metallic silver layer (1) -2, except that the substrate was not heated after the silver ink composition was separately applied. did.
Table 2 shows the heating conditions of the base material after coating and the heating (firing) treatment conditions of the coated product, respectively. In Table 2, the description of “-” in the column of the process condition means that the process is not performed. The same applies to the tables after Table 2 showing the heating conditions for the base material and the heating (firing) treatment conditions for the coated material.
(金属銀層の光の反射率の測定)
 上記で得られた金属銀層(1)-1、(1)-1R、(1)-2及び(1)-2Rについて、それぞれの表面の異なる3箇所について、積分球分光測色計「X-Rite model SP60」を用いて、測定モードをSCI(正反射光を含む)とし、光源をD65として、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表2に示す。
(Measurement of light reflectance of metallic silver layer)
For the metallic silver layers (1) -1, (1) -1R, (1) -2 and (1) -2R obtained above, an integrating sphere spectrocolorimeter “X” -Rite model SP60 ", the measurement mode was SCI (including specular reflection light), the light source was D65, the reflectance of light having a wavelength of 550 nm was measured, and the average value was calculated. The results are shown in Table 2.
[実施例2]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(75.61g、後述するピバロイル酢酸銀に対して6.32倍モル量)と、DMHO(1.17g、ピバロイル酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるようにピバロイル酢酸銀(23.23g)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、ネオデカン酸(ピバロイル酢酸銀に対して0.13倍モル量)を滴下して撹拌することにより、銀インク組成物として銀インク組成物(I)を得た。
[Example 2]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (75.61 g, 6.32 times mol amount based on silver pivaloyl acetate described later), DMHO (1.17 g, 0.10 times mol amount based on silver pivaloyl acetate), In addition, while rotating and stirring the mechanical stirrer, silver pivaloyl acetate (23.23 g) was added to the solution so that the liquid temperature was 40 ° C. or lower to dissolve each compounding component, Stirring was continued for one day at room temperature.
Subsequently, neodecanoic acid (0.13 times mole amount with respect to silver pivaloyl acetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature is 30 ° C. or lower, whereby a silver ink composition is obtained as a silver ink composition. Product (I) was obtained.
<銀インク組成物の評価>
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工し、直ちにこの塗工後の基材をホットプレート上に載せて、60℃で5分加熱した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この加熱後の基材上の塗工物(塗工膜)を、120℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(2)-1を形成した。
 塗工後の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を、それぞれ表2に示す。
 そして、上記で得られた金属銀層(2)-1について、実施例1と同じ方法で、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表2に示す。
<Evaluation of silver ink composition>
On one surface of a polyethylene terephthalate base material (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was applied using a spin coater. After coating, the substrate after coating was immediately placed on a hot plate and heated at 60 ° C. for 5 minutes. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coated material (coated film) on the heated substrate is heated (baked) at 120 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (2) -1 was formed.
Table 2 shows the heating conditions of the substrate after coating and the heating (firing) treatment conditions of the coated product, respectively.
For the metallic silver layer (2) -1 obtained above, the reflectance of light having a wavelength of 550 nm was measured by the same method as in Example 1, and the average value was calculated. The results are shown in Table 2.
[比較例1]
<銀インク組成物の製造>
 ネオデカン酸の滴下を行わなかった点以外は、実施例1と同じ方法で銀インク組成物を得た。すなわち、2-メチルアセト酢酸銀を添加して、室温で1日撹拌を続けて得られたものを、そのまま銀インク組成物とした。
[Comparative Example 1]
<Manufacture of silver ink composition>
A silver ink composition was obtained in the same manner as in Example 1 except that neodecanoic acid was not dropped. That is, the silver ink composition was obtained as it was by adding silver 2-methylacetoacetate and continuing stirring at room temperature for 1 day.
<銀インク組成物の評価>
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工し、直ちにこの塗工後の基材をホットプレート上に載せて、60℃で5分加熱した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この加熱後の基材上の塗工物(塗工膜)を、100℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(R1)-1を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(R1)-1の場合と同じ方法で、金属銀層(R1)-1Rを形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱条件を60℃で5分に代えて、40℃で5分、30℃で5分、の2とおりとした点以外は、金属銀層(R1)-1の場合と同じ方法で、金属銀層(R1)-2、(R1)-3をそれぞれ形成した。
 さらに、別途、塗工物の加熱(焼成)処理条件を、100℃で15分に代えて、120℃で15分とした点以外は、金属銀層(R1)-1の場合と同じ方法で、金属銀層(R1)-4を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(R1)-4の場合と同じ方法で、金属銀層(R1)-2Rを形成した。
 これら塗工後の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を、それぞれ表2に示す。
 そして、上記で得られた金属銀層(R1)-1~(R1)~4、及び(R1)-1R~(R1)~2Rについて、実施例1と同じ方法で、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表2に示す。
<Evaluation of silver ink composition>
On one surface of a polyethylene terephthalate base material (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was applied using a spin coater. After coating, the substrate after coating was immediately placed on a hot plate and heated at 60 ° C. for 5 minutes. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coated material (coated film) on the heated substrate is heated (baked) at 100 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (R1) -1 was formed.
Further, the metallic silver layer (R1) -1R is formed in the same manner as the metallic silver layer (R1) -1, except that the base material after the silver ink composition is not heated. did.
In addition, except that the heating conditions of the base material after coating with the silver ink composition were changed to 60 ° C. for 5 minutes and changed to 40 ° C. for 5 minutes and 30 ° C. for 5 minutes. Metal silver layers (R1) -2 and (R1) -3 were formed by the same method as that for silver layer (R1) -1.
Furthermore, the same method as in the case of the metallic silver layer (R1) -1, except that the heating (firing) treatment condition of the coated material was changed to 15 minutes at 120 ° C. instead of 15 minutes at 100 ° C. Then, a metallic silver layer (R1) -4 was formed.
In addition, the metallic silver layer (R1) -2R is formed in the same manner as the metallic silver layer (R1) -4, except that the substrate is not heated after the silver ink composition is separately applied. did.
Table 2 shows the heating conditions of the base material after coating and the heating (firing) treatment conditions of the coated product, respectively.
Then, with respect to the metallic silver layers (R1) -1 to (R1) to 4 and (R1) -1R to (R1) to 2R obtained above, reflection of light having a wavelength of 550 nm was performed in the same manner as in Example 1. The rate was measured and the average value was calculated. The results are shown in Table 2.
[比較例2]
<銀インク組成物の製造及び評価>
 ネオデカン酸の滴下を行わなかった点以外は、実施例2と同じ方法で銀インク組成物を得た。すなわち、ピバロイル酢酸銀を添加して、室温で1日撹拌を続けて得られたものを、そのまま銀インク組成物とした。
 そして、得られた銀インク組成物を用いて、実施例2と同じ方法で金属銀層(R2)-1を形成し、実施例2と同じ方法で評価を行った。結果を表2に示す。
[Comparative Example 2]
<Production and Evaluation of Silver Ink Composition>
A silver ink composition was obtained in the same manner as in Example 2 except that neodecanoic acid was not dropped. That is, a silver ink composition was obtained as it was by adding silver pivaloyl acetate and continuing stirring at room temperature for 1 day.
Then, using the obtained silver ink composition, a metallic silver layer (R2) -1 was formed in the same manner as in Example 2, and evaluation was performed in the same manner as in Example 2. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例1の金属銀層(1)-1及び(1)-1Rの結果と、比較例1の金属銀層(R1)-1~(R1)-4の結果と、の比較から、実施例1の銀インク組成物を用いることで、基材を加熱しながら印刷を行っても、光沢性が高い金属銀層を形成できることが確認された。
 また、実施例1の金属銀層(1)-2及び(1)-2Rの結果と、比較例1の金属銀層(R1)-4及び(R1)-2Rの結果と、の比較からも、実施例1の銀インク組成物を用いることで、基材を加熱しながら印刷を行っても、光沢性が高い金属銀層を形成できることが確認された。
From the comparison between the results of the metallic silver layers (1) -1 and (1) -1R of Example 1 and the results of the metallic silver layers (R1) -1 to (R1) -4 of Comparative Example 1, It was confirmed that by using the silver ink composition 1, a metallic silver layer having high gloss can be formed even when printing is performed while heating the substrate.
Further, from the comparison between the results of the metallic silver layers (1) -2 and (1) -2R of Example 1 and the results of the metallic silver layers (R1) -4 and (R1) -2R of Comparative Example 1, It was confirmed that by using the silver ink composition of Example 1, a metallic silver layer having high gloss can be formed even when printing is performed while heating the substrate.
 実施例2の金属銀層(2)-1の結果と、比較例2の金属銀層(R2)-1Rの結果と、の比較から、実施例2の銀インク組成物を用いることで、基材を加熱しながら印刷を行っても、光沢性が高い金属銀層を形成できることが確認された。 From the comparison between the result of the metallic silver layer (2) -1 of Example 2 and the result of the metallic silver layer (R2) -1R of Comparative Example 2, the use of the silver ink composition of Example 2 revealed that It was confirmed that a metallic silver layer having high gloss can be formed even when printing is performed while heating the material.
 実施例1~2の結果から、銀インク組成物を塗工後に基材を加熱した場合、異なる種類の有機銀化合物を用いても、光沢性が高い金属銀層を形成できることが確認された。実施例1~2において、銀インク組成物を塗工後に基材を加熱した場合の金属銀層の光の反射率は、62%以上であった。 From the results of Examples 1 and 2, it was confirmed that when the substrate was heated after the silver ink composition was applied, a highly glossy metallic silver layer could be formed even if different types of organic silver compounds were used. In Examples 1 and 2, the light reflectance of the metallic silver layer when the substrate was heated after the silver ink composition was applied was 62% or more.
 なお、実施例1~2及び比較例1~2のいずれにおいても、形成した金属銀層の厚さは、約0.1μmであった。 In any of Examples 1 and 2 and Comparative Examples 1 and 2, the thickness of the formed metal silver layer was about 0.1 μm.
[実施例3]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(78.18質量部、後述する2-メチルアセト酢酸銀に対して6.53倍モル量)と、DMHO(1.17質量部、2-メチルアセト酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるように2-メチルアセト酢酸銀(20.65質量部)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、2-プロピル吉草酸(1.00質量部、2-メチルアセト酢酸銀に対して0.07倍モル量)を滴下して撹拌することにより、銀インク組成物として銀インク組成物(I)を得た。
 なお、2-プロピル吉草酸としては、東京化成工業社製のものを用いた。
 各配合成分の種類と配合比を表3に示す。なお、表3においては、「カルボン酸」の欄に、分岐鎖状飽和脂肪族カルボン酸である2-プロピル吉草酸とそのモル比を記載している。これは、以降の実施例においても同様である。
[Example 3]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later) and DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate). 10-fold molar amount), and stirring, rotating the mechanical stirrer, and further stirring here, silver 2-methylacetoacetate (20.65 parts by mass) so that the liquid temperature is 40 ℃ or less Was added to dissolve each compounding component, and stirring was continued for one day at room temperature.
Next, 2-propylvaleric acid (1.00 parts by mass, 0.07 times the molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring solution and stirred so that the temperature of the solution becomes 30 ° C. or lower. As a result, a silver ink composition (I) was obtained as a silver ink composition.
As 2-propylvaleric acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Table 3 shows the types and mixing ratios of the respective components. In Table 3, the column “Carboxylic acid” lists the branched saturated aliphatic carboxylic acid 2-propylvaleric acid and its molar ratio. The same applies to the following embodiments.
<銀インク組成物の評価>
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工し、直ちにこの塗工後の基材をホットプレート上に載せて、60℃で5分加熱した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この加熱後の基材上の塗工物(塗工膜)を、120℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(3)-1を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(3)-1の場合と同じ方法で、金属銀層(3)-1Rを形成した。
 これら塗工後の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を、それぞれ表4に示す。
 そして、上記で得られた金属銀層(3)-1、及び(3)-1Rについて、実施例1と同じ方法で、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表4に示す。
<Evaluation of silver ink composition>
On one surface of a polyethylene terephthalate base material (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was applied using a spin coater. After coating, the substrate after coating was immediately placed on a hot plate and heated at 60 ° C. for 5 minutes. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coated material (coated film) on the heated substrate is heated (baked) at 120 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (3) -1 was formed.
In addition, the metallic silver layer (3) -1R was formed in the same manner as the metallic silver layer (3) -1, except that the substrate was not heated after the silver ink composition was separately applied. did.
Table 4 shows the heating conditions of the substrate after coating and the heating (firing) treatment conditions of the coated product, respectively.
For the metallic silver layers (3) -1 and (3) -1R obtained above, the reflectance of light having a wavelength of 550 nm was measured by the same method as in Example 1, and the average value was calculated. The results are shown in Table 4.
[実施例4]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時における、2-プロピル吉草酸の配合量を、1.00質量部(2-メチルアセト酢酸銀に対して0.07倍モル量)とするのに代えて、2.00質量部(2-メチルアセト酢酸銀に対して0.15倍モル量)とした点以外は、実施例3と同じ方法で、銀インク組成物として銀インク組成物(I)を得た。
 そして、得られた銀インク組成物を用いて、実施例3と同じ方法で金属銀層(4)-1、及び(4)-1Rを形成し、実施例3と同じ方法で評価を行った。結果を表4に示す。
[Example 4]
<Production and Evaluation of Silver Ink Composition>
Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of production of the silver ink composition, 2.00 A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 3 except that the amount was 0.1 part by mass (0.15 times the molar amount with respect to silver 2-methylacetoacetate).
Then, using the obtained silver ink composition, metallic silver layers (4) -1 and (4) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
[実施例5]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時における、2-プロピル吉草酸の配合量を、1.00質量部(2-メチルアセト酢酸銀に対して0.07倍モル量)とするのに代えて、3.00質量部(2-メチルアセト酢酸銀に対して0.22倍モル量)とした点以外は、実施例3と同じ方法で、銀インク組成物として銀インク組成物(I)を得た。
 そして、得られた銀インク組成物を用いて、実施例3と同じ方法で金属銀層(5)-1、及び(5)-1Rを形成し、実施例3と同じ方法で評価を行った。結果を表4に示す。
[Example 5]
<Production and Evaluation of Silver Ink Composition>
Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of producing the silver ink composition, 3.00 A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 3 except that the amount was 0.2 parts by mass (0.22 times the molar amount with respect to silver 2-methylacetoacetate).
Then, using the obtained silver ink composition, metallic silver layers (5) -1 and (5) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
[実施例6]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時における、2-プロピル吉草酸の配合量を、1.00質量部(2-メチルアセト酢酸銀に対して0.07倍モル量)とするのに代えて、4.00質量部(2-メチルアセト酢酸銀に対して0.30倍モル量)とした点以外は、実施例3と同じ方法で、銀インク組成物として銀インク組成物(I)を得た。
 そして、得られた銀インク組成物を用いて、実施例3と同じ方法で金属銀層(6)-1、及び(6)-1Rを形成し、実施例3と同じ方法で評価を行った。結果を表4に示す。
[Example 6]
<Production and Evaluation of Silver Ink Composition>
Instead of setting the amount of 2-propylvaleric acid to 1.00 parts by mass (0.07 times the molar amount of silver 2-methylacetoacetate) at the time of production of the silver ink composition, 4.00 A silver ink composition (I) was obtained as a silver ink composition by the same method as in Example 3 except that the amount was 0.3 parts by mass (0.30 times the molar amount with respect to silver 2-methylacetoacetate).
Then, using the obtained silver ink composition, metallic silver layers (6) -1 and (6) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
[実施例7]
<銀インク組成物の製造及び評価>
 ビーカー中に2-エチルヘキシルアミン(78.18質量部、後述する2-メチルアセト酢酸銀に対して6.53倍モル量)と、DMHO(1.17質量部、2-メチルアセト酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるように2-メチルアセト酢酸銀(20.65質量部)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、3,5,5-トリメチルヘキサン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.07倍モル量)を滴下して撹拌することにより、銀インク組成物として銀インク組成物(I)を得た。
 なお、3,5,5-トリメチルヘキサン酸としては、東京化成工業社製のものを用いた。
 各配合成分の種類と配合比を表3に示す。
 そして、得られた銀インク組成物を用いて、実施例3と同じ方法で金属銀層(7)-1、及び(7)-1Rを形成し、実施例3と同じ方法で評価を行った。結果を表4に示す。
[Example 7]
<Production and Evaluation of Silver Ink Composition>
In a beaker, 2-ethylhexylamine (78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later) and DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate). 10-fold molar amount), and stirring, rotating the mechanical stirrer, and further stirring here, silver 2-methylacetoacetate (20.65 parts by mass) so that the liquid temperature is 40 ℃ or less Was added to dissolve each compounding component, and stirring was continued for one day at room temperature.
Next, 3,5,5-trimethylhexanoic acid (1.00 parts by mass, 0.07 times the molar amount with respect to silver 2-methylacetoacetate) was added dropwise to the stirring liquid so that the liquid temperature was 30 ° C. or lower. Then, a silver ink composition (I) was obtained as a silver ink composition by stirring.
As 3,5,5-trimethylhexanoic acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Table 3 shows the types and mixing ratios of the respective components.
Then, using the obtained silver ink composition, metallic silver layers (7) -1 and (7) -1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. . The results are shown in Table 4.
[実施例8]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時における、3,5,5-トリメチルヘキサン酸の配合量を、1.00質量部(2-メチルアセト酢酸銀に対して0.07倍モル量)とするのに代えて、2.00質量部(2-メチルアセト酢酸銀に対して0.14倍モル量)とした点以外は、実施例7と同じ方法で、銀インク組成物として銀インク組成物(I)を得た。
 そして、得られた銀インク組成物を用いて、実施例7と同じ方法で金属銀層(8)-1、及び(8)-1Rを形成し、実施例7と同じ方法で評価を行った。結果を表4に示す。
[Example 8]
<Production and Evaluation of Silver Ink Composition>
Instead of setting the amount of 3,5,5-trimethylhexanoic acid in the production of the silver ink composition to 1.00 parts by mass (0.07 times the molar amount with respect to silver 2-methylacetoacetate) A silver ink composition (I) was obtained as a silver ink composition in the same manner as in Example 7, except that the amount was 2.00 parts by mass (0.14 times the molar amount of silver 2-methylacetoacetate). It was.
Then, using the obtained silver ink composition, metallic silver layers (8) -1 and (8) -1R were formed by the same method as in Example 7, and evaluated by the same method as in Example 7. . The results are shown in Table 4.
[参考例1]
<銀インク組成物の製造及び評価>
 ビーカー中に2-エチルヘキシルアミン(78.18質量部、後述する2-メチルアセト酢酸銀に対して6.53倍モル量)と、DMHO(1.17質量部、2-メチルアセト酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるように2-メチルアセト酢酸銀(20.65質量部)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、n-ヘキサン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.09倍モル量)を滴下して撹拌することにより、銀インク組成物を得た。
 なお、n-ヘキサン酸としては、東京化成工業社製のものを用いた。
 各配合成分の種類と配合比を表3に示す。なお、表3においては、「カルボン酸」の欄に、分岐鎖状飽和脂肪族カルボン酸ではないn-ヘキサン酸とそのモル比を記載している。これは、以降の参考例においても同様である。
 そして、得られた銀インク組成物を用いて、実施例3と同じ方法で金属銀層(1’)-1、及び(1’)-1Rを形成し、実施例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 1]
<Production and Evaluation of Silver Ink Composition>
In a beaker, 2-ethylhexylamine (78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later) and DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate). 10-fold molar amount), and stirring, rotating the mechanical stirrer, and further stirring here, silver 2-methylacetoacetate (20.65 parts by mass) so that the liquid temperature is 40 ℃ or less Was added to dissolve each compounding component, and stirring was continued for one day at room temperature.
Next, n-hexanoic acid (1.00 part by mass, 0.09-fold molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature becomes 30 ° C. or lower. Thus, a silver ink composition was obtained.
As n-hexanoic acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Table 3 shows the types and mixing ratios of the respective components. In Table 3, in the column of “carboxylic acid”, n-hexanoic acid which is not a branched saturated aliphatic carboxylic acid and its molar ratio are described. The same applies to the following reference examples.
Then, using the obtained silver ink composition, metallic silver layers (1 ′)-1 and (1 ′)-1R were formed by the same method as in Example 3, and evaluated by the same method as in Example 3. went. The results are shown in Table 4.
[参考例2]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時における、n-ヘキサン酸の配合量を、1.00質量部(2-メチルアセト酢酸銀に対して0.09倍モル量)とするのに代えて、2.00質量部(2-メチルアセト酢酸銀に対して0.19倍モル量)とした点以外は、参考例1と同じ方法で銀インク組成物を得た。
 そして、得られた銀インク組成物を用いて、参考例1と同じ方法で金属銀層(1’)-2、及び(1’)-2Rを形成し、参考例1と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 2]
<Production and Evaluation of Silver Ink Composition>
Instead of setting the amount of n-hexanoic acid to 1.00 parts by mass (0.09-fold molar amount with respect to silver 2-methylacetoacetate) at the time of producing the silver ink composition, 2.00 parts by mass A silver ink composition was obtained in the same manner as in Reference Example 1 except that the amount was 0.19 parts by mole (0.19 times the molar amount of silver 2-methylacetoacetate).
Then, using the obtained silver ink composition, metal silver layers (1 ′)-2 and (1 ′)-2R were formed by the same method as in Reference Example 1, and evaluated by the same method as in Reference Example 1. went. The results are shown in Table 4.
[参考例3]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(78.18質量部、後述する2-メチルアセト酢酸銀に対して6.53倍モル量)と、DMHO(1.17質量部、2-メチルアセト酢酸銀に対して0.10倍モル量)と、を加えて混合し、メカニカルスターラーを回転させて撹拌しながら、さらにここへ、液温が40℃以下となるように2-メチルアセト酢酸銀(20.65質量部)を添加して、各配合成分を溶解させ、室温でそのまま1日撹拌を続けた。
 次いでこの撹拌液に、液温が30℃以下となるように、シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を滴下して撹拌することにより、銀インク組成物を得た。
 なお、シクロプロパンカルボン酸としては、東京化成工業社製のものを用いた。
 各配合成分の種類と配合比を表3に示す。
[Reference Example 3]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (78.18 parts by mass, 6.53 times the molar amount based on silver 2-methylacetoacetate described later) and DMHO (1.17 parts by mass, 0% relative to silver 2-methylacetoacetate). 10-fold molar amount), and stirring, rotating the mechanical stirrer, and further stirring here, silver 2-methylacetoacetate (20.65 parts by mass) so that the liquid temperature is 40 ℃ or less Was added to dissolve each compounding component, and stirring was continued for one day at room temperature.
Next, cyclopropanecarboxylic acid (1.00 parts by mass, 0.13 times the molar amount with respect to silver 2-methylacetoacetate) is added dropwise to the stirring liquid and stirred so that the liquid temperature becomes 30 ° C. or lower. Thus, a silver ink composition was obtained.
In addition, as a cyclopropane carboxylic acid, the thing by Tokyo Chemical Industry Co., Ltd. was used.
Table 3 shows the types and mixing ratios of the respective components.
<銀インク組成物の評価>
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この銀インク組成物を塗工後の基材上の塗工物(塗工膜)を、120℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(1’)-3Rを形成した。
 そして、上記で得られた金属銀層(1’)-3Rについて、実施例1と同じ方法で、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表4に示す。
<Evaluation of silver ink composition>
On one surface of a base material made of polyethylene terephthalate (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was used using a spin coater. Coated. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coating material (coating film) on the substrate after coating this silver ink composition was heated at 120 ° C. for 15 minutes ( By firing, a metal silver layer (metal silver film) (1 ′)-3R was formed.
For the metallic silver layer (1 ′)-3R obtained above, the reflectance of light having a wavelength of 550 nm was measured by the same method as in Example 1, and the average value was calculated. The results are shown in Table 4.
[参考例4]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、3-メチルクロトン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.11倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、3-メチルクロトン酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-4Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 4]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13 times the molar amount with respect to silver 2-methylacetoacetate), 3-methylcrotonic acid (1.00 parts by mass, 2-methylacetoacetic acid) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.11 times the molar amount of silver was blended.
As 3-methylcrotonic acid, one manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-4R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例5]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、2,2-ビス(ヒドロキシメチル)酪酸(1.00質量部、2-メチルアセト酢酸銀に対して0.07倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、2,2-ビス(ヒドロキシメチル)酪酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-5Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 5]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), 2,2-bis (hydroxymethyl) butyric acid (1.00 parts by mass) In addition, a silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.07 times the molar amount of silver 2-methylacetoacetate was added.
As 2,2-bis (hydroxymethyl) butyric acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-5R was formed by the same method as in Reference Example 3, and evaluation was performed by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例6]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、ヒドロキシピバル酸(1.00質量部、2-メチルアセト酢酸銀に対して0.09倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、ヒドロキシピバル酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-6Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 6]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), hydroxypivalic acid (1.00 parts by mass, silver 2-methylacetoacetate) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.09 molar amount) was added.
In addition, as the hydroxypivalic acid, the thing made by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-6R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例7]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、デヒドロ酢酸(1.00質量部、2-メチルアセト酢酸銀に対して0.06倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、デヒドロ酢酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-7Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 7]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), dehydroacetic acid (1.00 parts by mass with respect to silver 2-methylacetoacetate) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.06 mole amount) was added.
In addition, as dehydroacetic acid, the thing by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-7R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例8]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、2,2-ビス(ヒドロキシメチル)プロピオン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.08倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、2,2-ビス(ヒドロキシメチル)プロピオン酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-8Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 8]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), 2,2-bis (hydroxymethyl) propionic acid (1.00 parts by mass) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.08 times the molar amount of silver 2-methylacetoacetate was added.
As 2,2-bis (hydroxymethyl) propionic acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-8R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例9]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、DL-乳酸(1.00質量部、2-メチルアセト酢酸銀に対して0.12倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、DL-乳酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-9Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 9]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13 times the molar amount with respect to silver 2-methylacetoacetate), DL-lactic acid (1.00 parts by mass, with silver 2-methylacetoacetate) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.12 molar amount) was added.
As DL-lactic acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-9R was formed by the same method as in Reference Example 3, and evaluation was performed by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例10]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、n-デカン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.06倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、n-デカン酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-10Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 10]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), n-decanoic acid (1.00 parts by mass, silver 2-methylacetoacetate) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.06 molar amount) was added.
As n-decanoic acid, one manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-10R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例11]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、パルミチン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.04倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、パルミチン酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-11Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 11]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13-fold molar amount with respect to silver 2-methylacetoacetate), palmitic acid (1.00 parts by mass with respect to silver 2-methylacetoacetate) The silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.04 mol amount) was added.
In addition, as a palmitic acid, the thing made by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-11R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
[参考例12]
<銀インク組成物の製造及び評価>
 シクロプロパンカルボン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.13倍モル量)を配合するのに代えて、n-オクタン酸(1.00質量部、2-メチルアセト酢酸銀に対して0.07倍モル量)を配合した点以外は、参考例3と同じ方法で銀インク組成物を得た。
 なお、n-オクタン酸としては、東京化成工業社製のものを用いた。
 そして、得られた銀インク組成物を用いて、参考例3と同じ方法で金属銀層(1’)-12Rを形成し、参考例3と同じ方法で評価を行った。結果を表4に示す。
[Reference Example 12]
<Production and Evaluation of Silver Ink Composition>
Instead of blending cyclopropanecarboxylic acid (1.00 parts by mass, 0.13 times the molar amount with respect to silver 2-methylacetoacetate), n-octanoic acid (1.00 parts by mass, silver 2-methylacetoacetate) A silver ink composition was obtained in the same manner as in Reference Example 3 except that 0.07 times the molar amount) was added.
As n-octanoic acid, a product manufactured by Tokyo Chemical Industry Co., Ltd. was used.
Then, using the obtained silver ink composition, a metallic silver layer (1 ′)-12R was formed by the same method as in Reference Example 3, and evaluated by the same method as in Reference Example 3. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例3~8の結果から明らかなように、銀インク組成物を塗工後に基材を加熱した場合、異なる種類の分岐鎖状飽和脂肪族カルボン酸を用いても、光沢性が高い金属銀層を形成できることが確認された。実施例3~8において、銀インク組成物を塗工後に基材を加熱した場合の金属銀層の光の反射率は、56%以上であった。 As is apparent from the results of Examples 3 to 8, when the substrate is heated after the silver ink composition is applied, metallic silver having high glossiness can be obtained even when different types of branched saturated aliphatic carboxylic acids are used. It was confirmed that a layer could be formed. In Examples 3 to 8, the light reflectance of the metallic silver layer when the substrate was heated after the silver ink composition was applied was 56% or more.
 実施例3~6においては、銀インク組成物を塗工後に基材を加熱しなかった場合、銀インク組成物での分岐鎖状飽和脂肪族カルボン酸(2-プロピル吉草酸)の配合量が多くなるに従って(金属銀層(3)-1R、(4)-1R、(5)-1R及び(6)-1Rの順に)、金属銀層の光沢性が低下する傾向が見られた。ただし、銀インク組成物を塗工後に基材を加熱した場合(金属銀層(3)-1、(4)-1、(5)-1、及び(6)-1の場合)、分岐鎖状飽和脂肪族カルボン酸(2-プロピル吉草酸)の配合量によらず、金属銀層の光沢性は安定していた。
 一方、実施例7~8においては、銀インク組成物を塗工後に基材を加熱しなかった場合(金属銀層(7)-1R、及び(7)-2Rの場合)と、加熱した場合(金属銀層(7)-1、及び(7)-2の場合)と、のいずれにおいても、分岐鎖状飽和脂肪族カルボン酸(3,5,5-トリメチルヘキサン酸)の配合量によらず、金属銀層の光沢性は安定していた。さらに、実施例7~8においては、金属銀層のくすみが最も高度に抑制されていた。
In Examples 3 to 6, when the base material was not heated after the silver ink composition was applied, the amount of the branched saturated aliphatic carboxylic acid (2-propylvaleric acid) in the silver ink composition was As the amount increased (in the order of metallic silver layers (3) -1R, (4) -1R, (5) -1R and (6) -1R)), the glossiness of the metallic silver layers tended to decrease. However, when the substrate is heated after the silver ink composition is applied (in the case of the metallic silver layers (3) -1, (4) -1, (5) -1, and (6) -1), the branched chain The gloss of the metallic silver layer was stable irrespective of the amount of the saturated saturated aliphatic carboxylic acid (2-propylvaleric acid).
On the other hand, in Examples 7 to 8, when the substrate was not heated after the silver ink composition was applied (in the case of metallic silver layers (7) -1R and (7) -2R), and when heated (In the case of metallic silver layers (7) -1 and (7) -2), depending on the amount of branched saturated aliphatic carboxylic acid (3,5,5-trimethylhexanoic acid) The gloss of the metal silver layer was stable. Further, in Examples 7 to 8, the dullness of the metallic silver layer was most highly suppressed.
 これに対して、分岐鎖状飽和脂肪族カルボン酸ではなく、他の化合物(カルボン酸)を用いた参考例1~12においては、光沢性が高い金属銀層を形成できなかった。
 参考例1~2及び10~12では、分岐鎖状飽和脂肪族カルボン酸ではなく、直鎖状飽和脂肪族カルボン酸を用いており、参考例1~2ではn-ヘキサン酸を用い、参考例10ではn-デカン酸を用い、参考例11ではパルミチン酸を用い、参考例12ではn-オクタン酸を用いた。
 参考例3では、分岐鎖状飽和脂肪族カルボン酸ではなく、環状飽和脂肪族カルボン酸であるシクロプロパンカルボン酸を用いた。
 参考例4では、分岐鎖状飽和脂肪族カルボン酸ではなく、分岐鎖状不飽和脂肪族カルボン酸である3-メチルクロトン酸を用いた。
 参考例5、6及び8では、分岐鎖状飽和脂肪族カルボン酸ではなく、分岐鎖状飽和脂肪族ヒドロキシカルボン酸を用いており、参考例5では2,2-ビス(ヒドロキシメチル)酪酸を用い、参考例6ではヒドロキシピバル酸を用い、参考例8では2,2-ビス(ヒドロキシメチル)プロピオン酸を用いた。
 参考例7では、分岐鎖状飽和脂肪族カルボン酸ではなく、ケトカルボン酸であるデヒドロ酢酸を用いた。
 参考例9では、分岐鎖状飽和脂肪族カルボン酸ではなく、直鎖状飽和脂肪族ヒドロキシカルボン酸であるDL-乳酸を用いた。
In contrast, in Reference Examples 1 to 12 using other compounds (carboxylic acid) instead of the branched saturated aliphatic carboxylic acid, a metallic silver layer having high gloss could not be formed.
In Reference Examples 1-2 and 10-12, a linear saturated aliphatic carboxylic acid is used instead of a branched saturated aliphatic carboxylic acid, and in Reference Examples 1-2, n-hexanoic acid is used. In Example 10, n-decanoic acid was used. In Reference Example 11, palmitic acid was used. In Reference Example 12, n-octanoic acid was used.
In Reference Example 3, cyclopropanecarboxylic acid, which is a cyclic saturated aliphatic carboxylic acid, was used instead of the branched saturated aliphatic carboxylic acid.
In Reference Example 4, 3-methylcrotonic acid, which is a branched unsaturated aliphatic carboxylic acid, was used instead of the branched saturated aliphatic carboxylic acid.
In Reference Examples 5, 6, and 8, a branched saturated aliphatic hydroxycarboxylic acid is used instead of a branched saturated aliphatic carboxylic acid, and 2,2-bis (hydroxymethyl) butyric acid is used in Reference Example 5. In Reference Example 6, hydroxypivalic acid was used, and in Reference Example 8, 2,2-bis (hydroxymethyl) propionic acid was used.
In Reference Example 7, dehydroacetic acid, which is a ketocarboxylic acid, was used instead of the branched saturated aliphatic carboxylic acid.
In Reference Example 9, DL-lactic acid, which is a linear saturated aliphatic hydroxycarboxylic acid, was used instead of the branched saturated aliphatic carboxylic acid.
 参考例1においては、銀インク組成物を塗工後に基材を60℃で5分加熱することにより、光沢性が高い金属銀層を形成できなかった。
 参考例2~12においては、そもそも、銀インク組成物を塗工後に基材を加熱せずに金属銀層を形成しても、光沢性が高い金属銀層を形成できず、分岐鎖状飽和脂肪族カルボン酸に代えて用いた他の化合物が、金属銀層の形成に適していなかった。
 参考例1~2においては、銀インク組成物を塗工後に基材を加熱した場合の金属銀層の光の反射率は、36%以下であった。
In Reference Example 1, a metallic silver layer having high glossiness could not be formed by heating the substrate at 60 ° C. for 5 minutes after applying the silver ink composition.
In Reference Examples 2 to 12, in the first place, even if a metallic silver layer is formed without heating the substrate after coating the silver ink composition, a metallic silver layer with high glossiness cannot be formed, and branched saturated Other compounds used in place of the aliphatic carboxylic acid were not suitable for forming the metallic silver layer.
In Reference Examples 1 and 2, the light reflectance of the metallic silver layer when the substrate was heated after the silver ink composition was applied was 36% or less.
 このように、本発明の効果が得られるのは、有機銀化合物と、前記分岐鎖状飽和脂肪族カルボン酸と、が配合されてなる銀インク組成物を用いた場合だけであった。特に、参考例10の結果を、先に説明した実施例1~2の結果と比較すると、分岐鎖状飽和脂肪族カルボン酸が必須の配合成分であることの重要性が、ひときわ明らかである。 Thus, the effects of the present invention can be obtained only when a silver ink composition in which an organic silver compound and the branched saturated aliphatic carboxylic acid are blended is used. In particular, when the results of Reference Example 10 are compared with the results of Examples 1 and 2 described above, the importance of the branched saturated aliphatic carboxylic acid being an essential blending component is clearly evident.
 なお、実施例3~8及び参考例1~12のいずれにおいても、形成した金属銀層の厚さは、約0.1μmであった。 In all of Examples 3 to 8 and Reference Examples 1 to 12, the thickness of the formed metal silver layer was about 0.1 μm.
[実施例9]
<銀インク組成物の製造>
 特許第5243409号公報に記載の実施例4を参考にして、以下に示す手順で、銀インク組成物を製造した。
 すなわち、常温下において、2-エチルヘキシルアンモニウム 2-エチルヘキシルカルバメート(45.5g、150.41mmol)を、2-プロパノール(105g)に溶解させ、ここへ酸化銀(14g、60.41mmol)を添加した後、常温で反応させた。このときの反応液は、最初は黒色の懸濁液であり、目的とする有機銀錯体が生成するにつれて、徐々に色が薄くなった。4時間反応させた段階で、反応液中にわずかに酸化銀の沈殿が残存していたため、この反応液を遠心分離することにより、前記沈殿を取り除いて、透明な反応液(反応溶液)を得た。
[Example 9]
<Manufacture of silver ink composition>
With reference to Example 4 described in Japanese Patent No. 5243409, a silver ink composition was produced by the following procedure.
That is, 2-ethylhexylammonium 2-ethylhexylcarbamate (45.5 g, 150.41 mmol) was dissolved in 2-propanol (105 g) at room temperature, and silver oxide (14 g, 60.41 mmol) was added thereto. And reacted at room temperature. The reaction solution at this time was initially a black suspension, and the color gradually faded as the target organic silver complex was formed. At the stage of reaction for 4 hours, a slight amount of silver oxide precipitate remained in the reaction solution. By centrifuging the reaction solution, the precipitate was removed to obtain a transparent reaction solution (reaction solution). It was.
 電気炉を用いて、上記で得られた透明な反応液を400℃で3.5時間加熱処理し、この加熱処理前後での質量変化(加熱処理前の前記反応液の質量と、記反応液を加熱処理して得られた処理物の質量と、の差)から、前記反応液の銀含有量を測定したところ、5.8質量%であった。 Using the electric furnace, the transparent reaction liquid obtained above was heat-treated at 400 ° C. for 3.5 hours, and the mass change before and after the heat treatment (the mass of the reaction liquid before the heat treatment and the reaction liquid) The silver content of the reaction solution was measured from the difference of the mass of the processed product obtained by heat treatment of 5.8% by mass.
 次いで、上記で得られた透明な反応液(30g)に対して、常温下において、ネオデカン酸(0.3g、1.74mmol)を添加して撹拌することにより、銀インク組成物として銀インク組成物(II)を得た。 Next, by adding neodecanoic acid (0.3 g, 1.74 mmol) to the transparent reaction liquid (30 g) obtained above at room temperature and stirring, a silver ink composition is obtained as a silver ink composition. The product (II) was obtained.
<銀インク組成物の評価>
(金属銀層の形成)
 ポリエチレンテレフタレート製基材(東レ社製「ルミラー(登録商標)S10」、厚さ100μm、サイズ50mm×50mm)の一方の表面上に、スピンコーターを用いて、上記で得られた銀インク組成物を塗工し、直ちにこの塗工後の基材をホットプレート上に載せて、60℃で5分加熱した。スピンコーターによる塗工時の回転条件は、1000rpmで5秒、次いで2000rpmで10秒とした。
 次いで、直ちにドライヤー(竹綱製作所製「HAS-42」)を用いて、この加熱後の基材上の塗工物(塗工膜)を、150℃で15分加熱(焼成)処理することにより、金属銀層(金属銀膜)(9)-1を形成した。
 さらに、別途、銀インク組成物を塗工後の基材の加熱を行わなかった点以外は、金属銀層(9)-1の場合と同じ方法で、金属銀層(9)-1Rを形成した。
 これら塗工後の基材の加熱条件、及び塗工物の加熱(焼成)処理条件を、それぞれ表5に示す。
<Evaluation of silver ink composition>
(Formation of metallic silver layer)
On one surface of a polyethylene terephthalate base material (“Lumirror (registered trademark) S10” manufactured by Toray Industries, Inc., thickness 100 μm, size 50 mm × 50 mm), the silver ink composition obtained above was applied using a spin coater. After coating, the substrate after coating was immediately placed on a hot plate and heated at 60 ° C. for 5 minutes. The rotation conditions during coating with a spin coater were 1000 rpm for 5 seconds, and then 2000 rpm for 10 seconds.
Next, immediately using a dryer (“HAS-42” manufactured by Takezuna Seisakusho), the coated material (coating film) on the heated substrate is heated (baked) at 150 ° C. for 15 minutes. Then, a metal silver layer (metal silver film) (9) -1 was formed.
In addition, the metal silver layer (9) -1R was formed in the same manner as for the metal silver layer (9) -1, except that the substrate was not heated after the silver ink composition was separately applied. did.
Table 5 shows the heating conditions of the base material after coating and the heating (firing) treatment conditions of the coated product, respectively.
(金属銀層の反射率の測定)
 上記で得られた金属銀層(9)-1、及び(9)-1Rについて、実施例1の場合と同じ方法で、波長550nmの光の反射率を測定し、その平均値を算出した。結果を表5に示す。
(Measurement of reflectance of metallic silver layer)
For the metallic silver layers (9) -1 and (9) -1R obtained above, the reflectance of light having a wavelength of 550 nm was measured in the same manner as in Example 1, and the average value was calculated. The results are shown in Table 5.
[実施例10]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時において、透明な反応液(30g)に対する、ネオデカン酸の配合量を、0.3g(1.74mmol)とするのに代えて、0.48g(2.79mmol)とした点以外は、実施例9と同じ方法で、銀インク組成物として銀インク組成物(II)を得た。
 そして、得られた銀インク組成物を用いて、実施例9と同じ方法で金属銀層(10)-1、及び(10)-1Rを形成し、実施例9と同じ方法で評価を行った。結果を表5に示す。
[Example 10]
<Production and Evaluation of Silver Ink Composition>
At the time of manufacturing the silver ink composition, the amount of neodecanoic acid with respect to the transparent reaction liquid (30 g) was changed to 0.3 g (1.74 mmol) instead of 0.48 g (2.79 mmol). A silver ink composition (II) was obtained as a silver ink composition in the same manner as in Example 9 except for the above.
Then, using the obtained silver ink composition, metallic silver layers (10) -1 and (10) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. . The results are shown in Table 5.
[実施例11]
<銀インク組成物の製造及び評価>
 銀インク組成物の製造時において、透明な反応液(30g)に対する、ネオデカン酸の配合量を、0.3g(1.74mmol)とするのに代えて、0.9g(5.22mmol)とした点以外は、実施例9と同じ方法で、銀インク組成物として銀インク組成物(II)を得た。
 そして、得られた銀インク組成物を用いて、実施例9と同じ方法で金属銀層(11)-1、及び(11)-1Rを形成し、実施例9と同じ方法で評価を行った。結果を表5に示す。
[Example 11]
<Production and Evaluation of Silver Ink Composition>
At the time of producing the silver ink composition, the amount of neodecanoic acid with respect to the transparent reaction liquid (30 g) was changed to 0.3 g (1.74 mmol) and 0.9 g (5.22 mmol). A silver ink composition (II) was obtained as a silver ink composition in the same manner as in Example 9 except for the above.
Then, using the obtained silver ink composition, metallic silver layers (11) -1 and (11) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. . The results are shown in Table 5.
[比較例3]
<銀インク組成物の製造及び評価>
 ネオデカン酸の添加を行わなかった点以外は、実施例9と同じ方法で銀インク組成物を得た。すなわち、酸化銀を添加し、遠心分離して得られた透明な反応液(反応溶液)を、そのまま銀インク組成物とした。
 そして、得られた銀インク組成物を用いて、実施例9と同じ方法で金属銀層(R3)-1、及び(R3)-1Rを形成し、実施例9と同じ方法で評価を行った。結果を表5に示す。
[Comparative Example 3]
<Production and Evaluation of Silver Ink Composition>
A silver ink composition was obtained in the same manner as in Example 9 except that neodecanoic acid was not added. That is, a transparent reaction liquid (reaction solution) obtained by adding silver oxide and centrifuging was directly used as a silver ink composition.
Then, using the obtained silver ink composition, metallic silver layers (R3) -1 and (R3) -1R were formed by the same method as in Example 9, and evaluated by the same method as in Example 9. . The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例9~11の結果から明らかなように、銀インク組成物を塗工後に基材を加熱した場合であっても、光沢性が高い金属銀層を形成できることが確認された。実施例9~11において、銀インク組成物を塗工後に基材を加熱した場合の金属銀層の光の反射率は、51%以上であった。 As is clear from the results of Examples 9 to 11, it was confirmed that a metallic silver layer having high glossiness can be formed even when the substrate is heated after the silver ink composition is applied. In Examples 9 to 11, the light reflectance of the metallic silver layer when the substrate was heated after the silver ink composition was applied was 51% or more.
 実施例9~11においては、銀インク組成物を塗工後に基材を加熱した場合、及び加熱しなかった場合、のいずれであっても、銀インク組成物での分岐鎖状飽和脂肪族カルボン酸(ネオデカン酸)の配合量が多くなるに従って(金属銀層(9)-1R、(10)-1R及び(11)-1Rの順に、さらに、金属銀層(9)-1、(10)-1及び(11)-1の順に)、金属銀層の光沢性が向上する傾向が見られた。 In Examples 9 to 11, the branched saturated aliphatic carboxylic acid in the silver ink composition was used when the substrate was heated after the silver ink composition was applied and when the substrate was not heated. As the amount of the acid (neodecanoic acid) increases (in the order of the metallic silver layers (9) -1R, (10) -1R and (11) -1R), the metallic silver layers (9) -1, (10) -1 and (11) -1), the gloss of the metallic silver layer tended to improve.
 これに対して、比較例3においては、銀インク組成物を塗工後に基材を加熱した場合であっても、金属銀層の光沢性の低下をある程度抑制できたが、この場合の金属銀層の光の反射率は、47%にとどまった。 On the other hand, in Comparative Example 3, even when the base material was heated after the silver ink composition was applied, the reduction in gloss of the metallic silver layer could be suppressed to some extent. The light reflectivity of the layer was only 47%.
 なお、実施例9~11及び比較例3のいずれにおいても、形成した金属銀層の厚さは、約0.1μmであった。 In all of Examples 9 to 11 and Comparative Example 3, the thickness of the formed metal silver layer was about 0.1 μm.
 本発明は、金属銀のパターンを装飾用又は加飾用として用いる各種製品等に利用可能である。さらに、本発明は、基材上に金属銀層を備え、その金属銀層表面を鏡面として用いる各種製品等に利用可能である。 The present invention can be used for various products using a metallic silver pattern for decoration or decoration. Furthermore, the present invention can be used for various products that have a metallic silver layer on a substrate and use the metallic silver layer surface as a mirror surface.
 1・・・積層体、11・・・基材、11a・・・基材の第1面、11b・・・基材の第2面、12・・・金属銀層 DESCRIPTION OF SYMBOLS 1 ... Laminated body, 11 ... Base material, 11a ... 1st surface of a base material, 11b ... 2nd surface of a base material, 12 ... Metal silver layer

Claims (5)

  1.  有機銀化合物と、炭素数8~10の分岐鎖状飽和脂肪族カルボン酸と、が配合されてなる銀インク組成物。 A silver ink composition comprising an organic silver compound and a branched saturated aliphatic carboxylic acid having 8 to 10 carbon atoms.
  2.  前記有機銀化合物が、下記一般式(1)で表わされるβ-ケトカルボン酸銀、下記一般式(95)-1で表される有機銀錯体、又は下記一般式(95)-2で表される有機銀錯体である、請求項1に記載の銀インク組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
     Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
     Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
     Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
    Figure JPOXMLDOC01-appb-C000002
     (式中、R101~R111は、それぞれ独立に、水素原子、炭素数1~30の脂肪族若しくは脂環族アルキル基又はアリール基、官能基が置換されたアルキル基又はアリール基、及びヘテロ環式基からなる群から選択される基であり、ただし、R101~R111がすべて水素原子になることはなく;m101及びm102は、それぞれ独立に、0.5~1.5である。)
    The organic silver compound is represented by the following general formula (1) β-ketocarboxylate silver, the following general formula (95) -1 organic silver complex, or the following general formula (95) -2 The silver ink composition according to claim 1, which is an organic silver complex.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”;
    Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom; R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group; R 2 is an aliphatic having 1 to 20 carbon atoms R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is An aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”;
    X 1 is independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group or benzyl group in which one or more hydrogen atoms may be substituted with a substituent, a cyano group, N -Phthaloyl-3-aminopropyl group, 2-ethoxyvinyl group, or “R 7 O—”, “R 7 S—”, “R 7 —C (═O) —” or “R 7 —C ( ═O) —O— ”;
    R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group, or a phenyl group or diphenyl group in which one or more hydrogen atoms may be substituted with a substituent. )
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 101 to R 111 each independently represents a hydrogen atom, an aliphatic or alicyclic alkyl group or aryl group having 1 to 30 carbon atoms, an alkyl group or aryl group substituted with a functional group, and hetero A group selected from the group consisting of cyclic groups, provided that R 101 to R 111 are not all hydrogen atoms; m 101 and m 102 are each independently 0.5 to 1.5 is there.)
  3.  前記分岐鎖状飽和脂肪族カルボン酸が、下記一般式(6)で表されるモノカルボン酸である、請求項1又は2に記載の銀インク組成物。
     R31-C(=O)-OH ・・・・(6)
     (式中、R31は、炭素数7~9の分岐鎖状のアルキル基である。)
    The silver ink composition according to claim 1 or 2, wherein the branched saturated aliphatic carboxylic acid is a monocarboxylic acid represented by the following general formula (6).
    R 31 —C (═O) —OH (6)
    (In the formula, R 31 is a branched alkyl group having 7 to 9 carbon atoms.)
  4.  前記銀インク組成物において、前記分岐鎖状飽和脂肪族カルボン酸の配合量が、前記有機銀化合物中の銀原子の配合量1モルあたり、0.03~0.4モルである、請求項2又は3に記載の銀インク組成物。 3. In the silver ink composition, the amount of the branched saturated aliphatic carboxylic acid is 0.03 to 0.4 mol per mol of the silver atom in the organic silver compound. Or the silver ink composition of 3.
  5.  基材と、前記基材上に形成された金属銀層と、を備え、
     前記金属銀層は、請求項1~4のいずれか一項に記載の銀インク組成物を用いて形成されたものであり、
     前記金属銀層の、波長550nmの光の反射率が50%以上である、積層体。
    A base material, and a metal silver layer formed on the base material,
    The metallic silver layer is formed using the silver ink composition according to any one of claims 1 to 4,
    The laminated body whose reflectance of the light of wavelength 550nm of the said metal silver layer is 50% or more.
PCT/JP2017/034296 2016-09-29 2017-09-22 Silver ink composition and laminate WO2018062040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190549 2016-09-29
JP2016-190549 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062040A1 true WO2018062040A1 (en) 2018-04-05

Family

ID=61759643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034296 WO2018062040A1 (en) 2016-09-29 2017-09-22 Silver ink composition and laminate

Country Status (2)

Country Link
JP (1) JP6953241B2 (en)
WO (1) WO2018062040A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171229B2 (en) * 2018-05-10 2022-11-15 トッパン・フォームズ株式会社 laminate
JP7344737B2 (en) * 2019-09-30 2023-09-14 Toppanエッジ株式会社 laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197133A (en) * 2008-02-21 2009-09-03 Osaka Industrial Promotion Organization INK CONTAINING SILVER beta-KETOCARBOXYLATE
JP2009535661A (en) * 2006-04-29 2009-10-01 インクテック カンパニー リミテッド Reflective film coating liquid composition containing organic silver complex compound and method for producing reflective film using the same
JP2014080579A (en) * 2012-09-28 2014-05-08 Toppan Forms Co Ltd Silver ink composition, conductor and communication device
WO2014084275A1 (en) * 2012-11-30 2014-06-05 ナミックス株式会社 Conductive paste and method for producing same
JP2015508434A (en) * 2011-12-23 2015-03-19 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Ink composition for forming conductive silver structure
JP2015086304A (en) * 2013-10-31 2015-05-07 トッパン・フォームズ株式会社 Silver ink composition, conductor and electronic apparatus
JP2015189948A (en) * 2014-03-28 2015-11-02 トッパン・フォームズ株式会社 Silver ink composition and manufacturing method therefor
JP2016069484A (en) * 2014-09-29 2016-05-09 トッパン・フォームズ株式会社 Manufacturing method of silver ink composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2451636A1 (en) * 2001-06-28 2003-01-09 Parelec, Inc. Low temperature method and compositions for producing electrical conductors
US9540734B2 (en) * 2013-11-13 2017-01-10 Xerox Corporation Conductive compositions comprising metal carboxylates
JP2016190946A (en) * 2015-03-31 2016-11-10 桜宮化学株式会社 Coating liquid and reflection film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535661A (en) * 2006-04-29 2009-10-01 インクテック カンパニー リミテッド Reflective film coating liquid composition containing organic silver complex compound and method for producing reflective film using the same
JP2009197133A (en) * 2008-02-21 2009-09-03 Osaka Industrial Promotion Organization INK CONTAINING SILVER beta-KETOCARBOXYLATE
JP2015508434A (en) * 2011-12-23 2015-03-19 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ Ink composition for forming conductive silver structure
JP2014080579A (en) * 2012-09-28 2014-05-08 Toppan Forms Co Ltd Silver ink composition, conductor and communication device
WO2014084275A1 (en) * 2012-11-30 2014-06-05 ナミックス株式会社 Conductive paste and method for producing same
JP2015086304A (en) * 2013-10-31 2015-05-07 トッパン・フォームズ株式会社 Silver ink composition, conductor and electronic apparatus
JP2015189948A (en) * 2014-03-28 2015-11-02 トッパン・フォームズ株式会社 Silver ink composition and manufacturing method therefor
JP2016069484A (en) * 2014-09-29 2016-05-09 トッパン・フォームズ株式会社 Manufacturing method of silver ink composition

Also Published As

Publication number Publication date
JP6953241B2 (en) 2021-10-27
JP2018059058A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2015111715A1 (en) Wiring board
WO2014051066A1 (en) Silver ink composition, conductor and communication device
JP6289841B2 (en) Method for producing silver ink composition
WO2018062040A1 (en) Silver ink composition and laminate
JP6863715B2 (en) Laminated body and manufacturing method of laminated body
WO2015147124A1 (en) Laminated body
JP6821422B2 (en) Manufacturing method of metal thin film base material
JP6278659B2 (en) Silver ink composition, conductor and electronic device
JP7171229B2 (en) laminate
JP2019044241A (en) Method for manufacturing laminate
JP6712949B2 (en) Metallic silver, method for producing metallic silver, and laminate
JP6289840B2 (en) Silver ink composition, conductor and communication device
JP6802798B2 (en) Silver ink composition, its manufacturing method and laminate
JP7017451B2 (en) Conductive laminate
JP6644998B2 (en) Antenna structure
JP6851776B2 (en) Laminated body and its manufacturing method
JP2015181160A (en) Conducting pattern forming method, and conductive wiring line
JP6270587B2 (en) Silver ink composition and method for producing the same
JP6468776B2 (en) Method for producing silver ink composition
WO2014051083A1 (en) Silver ink composition and heat treatment product
JP7015198B2 (en) Laminate
JP2014089926A (en) Silver film
JP6081120B2 (en) Laminate, data transmitter / receiver, and communication equipment
JP2017179151A (en) Silver ink composition
JP6289988B2 (en) Method for producing silver ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855994

Country of ref document: EP

Kind code of ref document: A1