WO2018061578A1 - Power transmission device for work vehicle - Google Patents

Power transmission device for work vehicle Download PDF

Info

Publication number
WO2018061578A1
WO2018061578A1 PCT/JP2017/030986 JP2017030986W WO2018061578A1 WO 2018061578 A1 WO2018061578 A1 WO 2018061578A1 JP 2017030986 W JP2017030986 W JP 2017030986W WO 2018061578 A1 WO2018061578 A1 WO 2018061578A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
voltage
switching element
modulation circuit
command value
Prior art date
Application number
PCT/JP2017/030986
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 伊藤
貞一郎 千葉
尾畑 功治
明浩 永松
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2018061578A1 publication Critical patent/WO2018061578A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power transmission device for a work vehicle.
  • a generator such as an alternator is configured to generate a voltage in a coil. For this reason, in the electric power generated by the generator, the phase of the current is delayed with respect to the phase of the voltage, and the power factor is reduced. Due to this power factor decrease, the output of the generator decreases and the transmission efficiency of the power transmission device decreases.
  • the present invention has been made in view of the above, and an object thereof is to provide a power transmission device for a work vehicle capable of suppressing a decrease in transmission efficiency.
  • FIG. 1 is a side view showing a work vehicle according to the present embodiment.
  • FIG. 2 is a side view showing the configuration of the power transmission device of the dump truck and the vicinity thereof.
  • FIG. 3 is a circuit diagram showing an example of one phase modulation circuit.
  • FIG. 4 is a diagram illustrating an operation example of the phase modulation circuit.
  • FIG. 5 is a diagram illustrating an operation example of the phase modulation circuit.
  • FIG. 6 is a diagram illustrating an operation example of the phase modulation circuit.
  • FIG. 7 is a diagram illustrating an operation example of the phase modulation circuit.
  • FIG. 8 is a functional block diagram showing the configuration of the control device.
  • FIG. 9 is a block diagram illustrating an example of information stored in the storage unit.
  • FIG. 9 is a block diagram illustrating an example of information stored in the storage unit.
  • FIG. 17 is a graph showing examples of voltage, current, and power factor generated by the generator and output from the connection portion of the phase modulation circuit when the phase modulation circuit is provided.
  • FIG. 18 is a graph showing an example of DC voltage command value calculation information.
  • FIG. 19 is a graph showing an example of a DC voltage value detected by the voltage sensor.
  • FIG. 20 is a graph showing an example of engine rotation speed command value calculation information.
  • FIG. 21 is a graph showing the relationship between the engine speed command value and time.
  • FIG. 22 is a graph showing the relationship between engine rotation speed and engine torque.
  • the vehicle body 5 includes a cab 8, a power generation device 9, and a control device 30.
  • the cab 8 is disposed at the upper part on the front side of the vehicle body 5.
  • the cab 8 has an accelerator pedal 8a.
  • the accelerator pedal 8a defines the output of the internal combustion engine 11 (see FIG. 2 and the like).
  • the operator operates the dump truck 1 by getting on the cab 8 and operating the accelerator pedal 8a and the like.
  • regulates the output of an internal combustion engine based on the accelerator opening degree command from the outside of a vehicle body, such as dump truck 1 of an unmanned vehicle, without operation of an accelerator pedal may be sufficient.
  • the control device 30 comprehensively controls each part of the dump truck 1.
  • the control device 30 is disposed around the cab 8, for example.
  • the generator 12 is driven by the internal combustion engine 11 to generate electric power.
  • the generator 12 is an alternator.
  • the generator 12 has a stator and a rotor.
  • a coil (armature) is disposed on one of the stator and the rotor, and an electromagnet (field) is disposed on the other.
  • the rotor of the generator 12 is connected to the power transmission shaft 17.
  • the rotor rotates with the rotation of the power transmission shaft 17, and an induced electromotive force and an induced current are generated in the coil by electromagnetic induction.
  • the generator 12 generates a three-phase AC voltage and AC current.
  • the generator 12 includes a rotation sensor 12s that detects a generator rotation speed that is the rotation speed of the rotor.
  • a rotation sensor 12s that detects a generator rotation speed that is the rotation speed of the rotor.
  • the rotational speed of the internal combustion engine 11 and the rotational speed of the generator 12 are the same. For this reason, it is good also as a structure which excluded one of the rotation sensor 11s and the rotation sensor 12s.
  • the detection result of the rotation sensor 11s or the rotation sensor 12s can be used as the rotation speed of the internal combustion engine 11 and the rotation speed of the generator 12.
  • the generator 12 has an excitation device 19.
  • the exciter 19 adjusts the magnetic force of the field-side electromagnet by adjusting the excitation current that flows through the field-side electromagnet, thereby adjusting the amount of power generated by the generator 12.
  • it is not limited to the structure which uses the field side of the generator 12 as an electromagnet, For example, it is good also considering a field side as a permanent magnet.
  • the phase modulation circuit 13 modulates the phase of the current generated by the generator 12.
  • the phase modulation circuit 13 is a magnetic energy regenerative phase modulation circuit.
  • the phase modulation circuit 13 is connected in series between the generator 12 and the rectifier 14.
  • the generator 12 since the generator 12 generates three-phase AC voltage and AC current, three phase modulation circuits 13 are arranged in parallel so as to correspond to the AC voltage and AC current of each phase.
  • the phase modulation circuit 13 will be described later.
  • the three phase modulation circuits 13 include a rectifier 13a that rectifies the AC voltage output from each phase modulation circuit 13, and a voltage sensor that detects a value obtained by adding a DC voltage value for each phase rectified by the rectifier 13a. 13s.
  • the rectifier 13a has the same configuration as the rectifier 14.
  • the electric motor 16 is driven by the electric power output from the inverter 15 to generate a rotational force.
  • the electric motor 16 is a motor.
  • the electric motor 16 includes, for example, a front wheel side motor disposed on the front wheel 6F side and a rear wheel side motor disposed on the rear wheel 6R side.
  • the electric motor 16 is connected to the transmission mechanism 22.
  • the transmission mechanism 22 transmits the rotational force generated by the generator 12 to the wheels 6 (6F, 6R) via the axle 7 (7F, 7R).
  • the electric motor 16 includes a rotation sensor 16s that detects a motor rotation speed.
  • FIG. 3 is an electric circuit diagram showing an example of one phase modulation circuit 13.
  • the phase modulation circuit 13 includes connection portions P1 and P2, four switching elements, a first switching element S1, a second switching element S2, a third switching element S3, and a fourth switching element S4. And a capacitor C.
  • the first switching element S1, the second switching element S2, the third switching element S3, and the fourth switching element S4 are referred to as a switching element S1, a switching element S2, a switching element S3, and a switching element S4, respectively.
  • the connection part P1 is connected to the generator 12.
  • the connection part P2 is connected to the rectifier 14.
  • the switching element S4 and the switching element S1 are connected in series in this order from the connection portion P1 to the connection portion P2 (first portion A1).
  • the emitter terminal of the switching element S4 is connected to the connection part P1.
  • the collector terminal of the switching element S4 is connected to the collector terminal of the switching element S4.
  • the emitter terminal of the switching element S1 is connected to the connection part P2.
  • the switching element S3 and the switching element S2 are connected in series in this order from the connection portion P1 to the connection portion P2 (second portion A2).
  • the collector terminal of the switching element S3 is connected to the connection part P1.
  • the emitter terminal of the switching element S3 is connected to the emitter terminal of the switching element S3.
  • the collector terminal of the switching element S2 is connected to the connection part P2.
  • the capacitor C includes a connection between the switching element S4 and the switching element S1 in the first part A1 (connection part P3) and a connection between the switching element S3 and the switching element S2 in the second part A2 (connection part P4). Connecting.
  • a bridge circuit is configured by the connection relationship between the switching elements S1, S2, S3, S4 and the capacitor C as described above.
  • switching elements S1, S2, S3, and S4 are turned on and off by, for example, switching elements S1 and S3 and switching elements S2 and S4 as a set. Specifically, when switching elements S1 and S3 are turned on, switching elements S2 and S4 are turned off. When switching elements S1 and S3 are turned off, switching elements S2 and S4 are turned on.
  • FIG. 4 shows the operation when the switching elements S1 and S3 are turned on and the switching elements S2 and S4 are turned off, and the voltage at the connection portion P1 is negative.
  • a current flows from the connection part P2 side to the positive electrode side of the capacitor C via the switching element S1
  • the capacitor C is charged.
  • FIG. 5 shows the operation when the switching elements S1 and S3 are turned on and the switching elements S2 and S4 are turned off, and the voltage at the connection portion P1 is positive.
  • a current flows from the connection part P1 side to the negative electrode side of the capacitor C via the switching element S3, and a current flows from the positive electrode side of the capacitor C to the connection part P2 side via the switching element S1. In this case, the capacitor C is discharged.
  • FIG. 6 shows the operation when the switching elements S1 and S3 are turned off and the switching elements S2 and S4 are turned on, and the voltage at the connection portion P1 is positive.
  • a current flows from the connection part P1 side to the positive electrode side of the capacitor C via the switching element S4, and a current flows from the negative electrode side of the capacitor C to the connection part P2 side via the switching element S2. In this case, the capacitor C is charged.
  • FIG. 8 is a functional block diagram showing the configuration of the control device 30.
  • the control device 30 includes an internal combustion engine control unit 31, a generator control unit 32, an electric motor control unit 33, a phase modulation circuit control unit 34, and a storage unit 35.
  • the internal combustion engine control unit 31 controls the operation of the internal combustion engine 11.
  • the generator control unit 32 controls the operation of the generator 12.
  • the electric motor control unit 33 controls the operation of the electric motor 16.
  • the phase modulation circuit control unit 34 controls the operation of the phase modulation circuit 13.
  • the storage unit 35 is, for example, at least one of various types of non-volatile or volatile memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and various disks such as a magnetic disk.
  • the storage unit 35 is used when the control units 31 to 34 execute the control according to the embodiment, and the computer program for causing the control units 31 to 34 to control the dump truck 1 according to the embodiment.
  • FIG. 9 is a block diagram illustrating an example of information stored in the storage unit 35.
  • the storage unit 35 includes, for example, engine rotation speed command value calculation information D1, DC voltage command value calculation information (motor drive speed) D2, output designation value calculation information D3, motor torque command value calculation information D4, Switching command value calculation information D5 is stored.
  • Each of the control units 31 to 34 implements the control according to the embodiment by reading and executing the above-described computer program from the storage unit 35.
  • the generator control unit 32 detects the engine rotation speed of the internal combustion engine 11 detected by the rotation sensor 11s, the motor rotation speed of the electric motor 16 detected by the rotation sensor 16s, and the alternating current output from the phase modulation circuit 13.
  • An excitation current command value is calculated based on the voltage value obtained by converting the voltage into direct current by the rectifier 13 a and detected by the voltage sensor 13 s or the like, and the excitation current command value is output to the generator 12.
  • the electric motor control unit 33 calculates a motor torque command value based on the accelerator opening command value, the engine rotation speed, and the motor rotation speed, and outputs the motor torque command to the electric motor 16.
  • the phase modulation circuit control unit 34 calculates a switching command value based on the rotation speed (generator rotation speed) of the generator 12 detected by the rotation sensor 12s and outputs the switching command value to the phase modulation circuit 13. . Thereby, the phase modulation circuit control unit 34 switches the switching elements S1, S2, S3, and S4 to switch the charging state and the discharging state of the capacitor C, thereby changing the phase of the current supplied from the generator 12 to the motor 16. Modulate.
  • FIG. 11 is a diagram illustrating an example of processing contents performed by the internal combustion engine control unit 31.
  • the internal combustion engine control unit 31 includes an engine rotation speed command value calculation unit 51.
  • the engine speed command value calculation unit 51 receives an accelerator opening command value.
  • the engine rotation speed command value calculation unit 51 calculates an engine rotation speed command value based on the input accelerator opening command value and the engine rotation speed command value calculation information D1 stored in the storage unit 35.
  • the engine speed command value calculation information D1 is data that defines the relationship between the accelerator opening command value and the engine speed command value using a map or the like. In the engine speed command value calculation information D1, the engine speed command value increases as the accelerator opening command value increases.
  • FIG. 12 is a diagram illustrating an example of processing contents performed by the generator control unit 32.
  • the generator control unit 32 includes a DC voltage command value calculation unit 52, a calculation unit 53, and an AVR 54.
  • the DC voltage command value calculation unit 52 receives the engine rotation speed and the motor rotation speed.
  • the DC voltage command value calculation unit 52 uses the DC voltage command value calculation information (map) D2 stored in the storage unit 35 to derive a DC voltage command value from the input engine rotation speed and motor rotation speed, The derived DC voltage command value is output.
  • the DC voltage command value calculation information D2 is data that defines the relationship among the engine rotation speed, the motor rotation speed, and the DC voltage command value with a map or the like.
  • the DC voltage command value calculation information D2 there is a contour relationship in which the DC voltage command value increases with each increase in the engine rotation speed and the motor rotation speed. Regions for four voltage values V1, V2, V3, and V4 are set with contour lines as boundaries. The relationship between the four voltage values is V1> V2> V3> V4.
  • the voltage value to be set is an example, and the change in size can be set arbitrarily.
  • the calculation unit 53 receives the DC voltage command value output from the DC voltage command value calculation unit 52 and the DC voltage value detected by the voltage sensor 13s.
  • the computing unit 53 calculates a voltage value obtained by subtracting the DC voltage value from the DC voltage command value, and outputs the calculation result.
  • the AVR 54 receives a voltage value that is a calculation result output from the calculation unit 53.
  • the AVR 54 outputs an excitation current command value for the excitation current supplied from the excitation device 19 to the generator 12 based on the calculated voltage value.
  • FIG. 13 is a diagram illustrating an example of processing contents performed by the motor control unit 33.
  • the motor control unit 33 includes a motor output command calculation unit 56, an output specified value calculation unit 57, an addition / subtraction unit 58, a limit motor output value calculation unit 59, an output adjustment limiter 60, and a motor.
  • a torque command value calculation unit 61 is a diagram illustrating an example of processing contents performed by the motor control unit 33.
  • the motor output command calculation unit 56 receives an accelerator opening command value and a motor rotation speed.
  • the motor output command calculation unit 56 outputs a motor output command value based on the input accelerator opening command value and the motor rotation speed.
  • the motor output command value defines an equal output line of motor torque command value calculation information D4 used in a motor torque command output unit 61 described later.
  • the output specified value calculation unit 57 receives the engine speed.
  • the designated output value calculation unit 57 uses the input engine rotation speed and the output designation value calculation information D3 stored in the storage unit 35 to calculate the engine output with respect to the engine rotation speed, and outputs the calculated engine output.
  • the output designation value calculation information D3 is data that defines the relationship between the engine rotation speed and the engine torque with a map or the like.
  • the addition / subtraction unit 58 receives the engine rotation speed and the engine rotation speed command value.
  • the addition / subtraction unit 58 outputs an engine rotation speed difference obtained by subtracting the engine rotation speed command value from the input engine rotation speed.
  • the limit motor output value calculation unit 59 receives the engine output output from the output designation value calculation unit 57 and the engine rotation speed difference output from the addition / subtraction unit 58.
  • the limit motor output value calculation unit 59 obtains an output addition from the input engine speed difference, and calculates a limit motor output value from the output addition and the engine output.
  • the limit motor output value calculation unit 59 outputs the calculated limit motor output value.
  • the limit motor output value is the maximum value of the motor output value that can be allowed with respect to the engine rotation speed.
  • the output adjustment limiter 60 receives the motor output command value output from the motor output command calculation unit 56 and the limit motor output value output from the limit motor output value calculation unit 59.
  • the output adjustment limiter 60 compares the input output command value with the limited motor output value and outputs a small value. When the output command value is larger than the limit motor output value, the limit motor output value is output as the motor output command value. When the input output command value is smaller than the limit motor output value, the output adjustment limiter 60 outputs the input output command value as a motor output command value.
  • the motor torque command value calculation unit 61 receives the adjustment output command value output from the output adjustment limiter 60 and the motor rotation speed.
  • the motor torque command value calculation unit 61 calculates and calculates a motor torque command value based on the input adjustment output command value and motor rotation speed, and the motor torque command value calculation information D4 stored in the storage unit 35. Outputs the motor torque command value.
  • the motor torque command value calculation information D4 is data that defines the relationship between the motor rotation speed and the motor torque command value.
  • the motor torque command value calculation information D4 has a relationship in which the motor output command, which is a relationship between the rotation speed of the motor and the motor torque command, increases as the motor output command value increases.
  • FIG. 15 is a graph showing changes in the accelerator opening.
  • the vertical axis in FIG. 15 indicates the magnitude (relative value) of the accelerator opening, and the horizontal axis in FIG. 15 indicates time.
  • the accelerator opening 101 when the phase modulation circuit 13 is not provided and the accelerator opening 102 when the phase modulation circuit 13 is provided are set to a constant value and the same value. The case will be described. A case where the sizes of the internal combustion engine 11 and the generator 12 are the same in the case where the phase modulation circuit 13 is not provided and in the case where the phase modulation circuit 13 is provided will be described.
  • FIG. 16 is a graph showing comparative examples of voltage, current, and power factor generated by the generator 12 when the phase modulation circuit 13 is not provided.
  • FIG. 16A shows the voltage
  • FIG. 16B shows the current
  • FIG. 16C shows the power factor.
  • the power factor is a value represented by active power / (active power ⁇ 2 + reactive power ⁇ 2) ⁇ 1/2.
  • “voltage” and “current” refer to an effective voltage and an effective current, respectively.
  • FIG. 16D shows a graph of the DC voltage value output from the generator 12 and detected by the voltage sensor 13s. 16A to 16D, the horizontal axis represents time, and the vertical axis represents voltage magnitude (relative value), current magnitude (relative value), power factor, and DC voltage magnitude, respectively. It shows.
  • the phase modulation circuit 13 when the phase modulation circuit 13 is not provided, the electric power generated in the generator 12 changes to the voltage phase due to the reactance of the coil provided in the generator 12. On the other hand, the phase of the current is delayed by the phase ⁇ . For this reason, as shown in FIG.16 (c), the value of a power factor becomes a value smaller than one. In this case, the DC voltage detected by the voltage sensor 13s becomes V P.
  • FIG. 17 is a graph showing examples of voltage, current, and power factor generated by the generator 12 and output from the connection portion P2 of the phase modulation circuit 13 when the phase modulation circuit 13 is provided.
  • FIG. 17B shows the voltage
  • FIG. 17C shows the current
  • FIG. 17D shows the power factor.
  • the overlapping voltage V acout output from the phase modulation circuit 13 a voltage V acin output from the generator 12, the voltage V C output from the capacitor C of the phase modulation circuit 13, a It shows. 17 for each of the voltage a voltage V acout at (b) the dotted line shows the voltage V acin solid, the voltage V C by the one-dot chain line.
  • FIG. 17A shows a timing chart showing the ON / OFF timings of the switching elements S1 and S3 of the phase modulation circuit 13 and the ON / OFF timings of the switching elements S2 and S4.
  • FIG. 17E shows a graph of the DC voltage value output from the phase modulation circuit 13 and detected by the voltage sensor 13s.
  • the horizontal axis represents time
  • the vertical axis represents ON / OFF position, voltage magnitude (relative value), current magnitude (relative value), and power factor.
  • the magnitude of the DC voltage is the magnitude of the DC voltage.
  • the phase modulation circuit control unit 34 controls the timing of charging and discharging of the capacitor C by switching the switching elements S1, S2, S3, and S4 of the phase modulation circuit 13 on and off.
  • Output voltage V acin of the generator 12 becomes an output voltage V acout from the phase modulation circuit 13, a value obtained by adding the voltage V C output from the capacitor C.
  • the phase of the voltage V acin is equal to the phase of the current output from the phase modulation circuit 13.
  • the DC voltage value output from the phase modulation circuit 13 becomes V Q.
  • the DC voltage value V Q is a value larger than the DC voltage value V P when the phase modulation circuit 13 is not provided.
  • 22 (a) and 22 (b) are graphs showing the relationship between the engine rotation speed and the engine torque, and are graphs showing an example of output command value calculation information.
  • 22A and 22B the vertical axis represents engine torque, and the horizontal axis in FIG. 22 represents engine rotation speed.
  • Output lines 111 in FIGS. 22A and 22B are output lines when the phase modulation circuit 13 is not provided.
  • Output lines 112 in FIGS. 22A and 22B are output lines when the phase modulation circuit 13 is provided.
  • the control device 30 adjusts the timing of switching between the charged state and the discharged state of the capacitor C according to the frequency of the voltage and current, that is, the rotational speed of the generator 12. Therefore, the phase delay can be flexibly improved in accordance with the fluctuation of the engine speed of the internal combustion engine 11. Thereby, the fall of the power factor of the generator 12 can be suppressed more reliably.
  • the power transmission device 10 since the power transmission device 10 according to the present embodiment has a value corresponding to the accelerator opening, the phase delay can be flexibly improved in accordance with fluctuations in the engine rotation speed of the internal combustion engine 11 based on the operation of the operator. Is possible. Thereby, the fall of the power factor of the generator 12 can be suppressed more reliably.
  • the phase modulation circuit 13 has four switching elements S1, S2, S3, and S4.
  • the phase modulation circuit 13 includes a first part A1 in which a switching element S4 and a switching element S1 are connected in series in this order from the generator 12 side to the electric motor 16 side, and in parallel with the first part A1.
  • a second portion A2 in which the switching element S3 and the switching element S2 are connected in series in this order from the generator 12 side toward the electric motor 16 side.
  • the capacitor C has a positive electrode side connected to a portion between the switching element S4 and the switching element S1 in the first portion A1, and a negative electrode side connected to a portion between the switching element S3 and the switching element S2 in the second portion A2. Is done. Thereby, the charging state and discharging state of the capacitor C can be efficiently switched.
  • the generator 12 includes an excitation device 19 that adjusts the amount of generated electric power.
  • the control device 30 calculates a DC voltage command value based on the engine speed of the internal combustion engine 11 and the DC voltage command value calculation information D2, and calculates the calculated DC voltage command value and the voltage output from the phase modulation circuit 13.
  • the excitation device 19 is controlled based on the difference from the detected value converted into a DC voltage by the rectifier 13a. Thereby, the electric power generated in the generator 12 can be appropriately adjusted by the excitation device 19.
  • the DC voltage command value calculation information D2 includes a voltage value V1 that is a detection result by the voltage sensor 13s and a voltage input from the generator 12 to the phase modulation circuit 13 as a rectifier. Since it is set based on the difference from the voltage value V2, which is a comparison value when converted to a DC voltage by 13a, the power generated in the generator 12 can be more appropriately adjusted by the excitation device 19.
  • the power transmission device 10 further includes a variable displacement hydraulic pump 18 that drives a predetermined hydraulic actuator by the driving force of the internal combustion engine 11.
  • a variable displacement hydraulic pump 18 that drives a predetermined hydraulic actuator by the driving force of the internal combustion engine 11.
  • the output efficiency of the generator 12 is improved as compared with the configuration in which the phase modulation circuit 13 is not provided. For this reason, the motive power generated in the internal combustion engine 11 can be efficiently used for applications such as the hydraulic pump 18.
  • the dump truck 1 includes a vehicle body 5, a traveling device 4 provided in the vehicle body 5, and a power transmission device 10 provided in the vehicle body 5 and generating power for driving the traveling device 4.
  • a dump truck for a mine travels a long distance when transporting a load from loading to discharging of the transported material. At this time, the vehicle is often driven in a state where the speed of the vehicle is stable. Under such circumstances, the power transmission device 10 is provided with the phase modulation circuit 13, so that a further effect can be obtained.
  • one switching element may be provided on at least one of the positive electrode side and the negative electrode side of the capacitor C.
  • Engine rotation speed command value calculation unit 52 ... DC voltage command value calculation unit 53 ... Calculation unit 54 ... AVR 56 ... Motor output command calculation unit, 57 ... Output specified value calculation unit, 58 ... Addition / subtraction unit, 59 ... Limit motor output value calculation unit, 60 ... Output adjustment limiter, 61 ... Motor torque command value calculation unit, 62 ... Switching command value Calculation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

This power transmission device for a work vehicle comprises: a generator which generates electric power using the power of an internal combustion engine; an electric motor which generates drive power using the electric power generated by the generator; a travel device which travels using the drive power generated by the electric motor; a phase-modulation circuit which has capacitors that are connected in series between the generator and the electric motor and switching elements that are connected to the positive electrode side and the negative electrode side of the capacitors; and a control device which modulates the phase of the current to be supplied to the electric motor from the generator by switching the switching elements and switching between the charged state and the discharged state of the capacitors.

Description

作業車両の動力伝達装置Power transmission device for work vehicle
 本発明は、作業車両の動力伝達装置に関する。 The present invention relates to a power transmission device for a work vehicle.
 土木作業現場又は鉱山の採石現場では、ダンプトラック等の作業車両が稼働する。ダンプトラックは、例えばエンジンの動力を走行装置に伝達する動力伝達装置を有する。このような動力伝達装置は、例えばエンジンの動力によりオルタネータ等の発電機を駆動し、発電機で発電された電力で電動機を駆動し、電動機の駆動力で走行装置を走行させる。 Work vehicles such as dump trucks operate at civil engineering work sites or quarrying sites in mines. The dump truck has, for example, a power transmission device that transmits engine power to the traveling device. Such a power transmission device, for example, drives a generator such as an alternator with the power of the engine, drives the electric motor with the electric power generated by the generator, and causes the traveling device to run with the driving force of the electric motor.
米国特許第8386131号明細書US Pat. No. 8,386,131
 オルタネータ等の発電機は、コイルにおいて電圧を発生する構成である。このため、発電機で生じた電力においては、電圧の位相に対して電流の位相が遅れた状態となり、力率の低下が発生する。この力率低下により、発電機の出力が減少し、動力伝達装置の伝達効率が低下する。 A generator such as an alternator is configured to generate a voltage in a coil. For this reason, in the electric power generated by the generator, the phase of the current is delayed with respect to the phase of the voltage, and the power factor is reduced. Due to this power factor decrease, the output of the generator decreases and the transmission efficiency of the power transmission device decreases.
 本発明は、上記に鑑みてなされたものであり、伝達効率の低下を抑制することが可能な作業車両の動力伝達装置を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a power transmission device for a work vehicle capable of suppressing a decrease in transmission efficiency.
 本発明の態様に従えば、内燃機関の動力により電力を発生させる発電機と、前記発電機で発生した電力により駆動力を発生する電動機と、前記電動機で発生した駆動力により走行する走行装置と、前記発電機と前記電動機との間に直列に接続されるコンデンサと、前記コンデンサの正極側及び負極側にそれぞれ接続されるスイッチング素子とを有する位相変調回路と、前記スイッチング素子を切り替えて前記コンデンサの帯電状態と放電状態とを切り替えることで前記発電機から前記電動機に供給される電流の位相を変調する制御装置とを備える作業車両の動力伝達装置が提供される。 According to an aspect of the present invention, a generator that generates electric power by the power of an internal combustion engine, an electric motor that generates a driving force by the electric power generated by the generator, and a traveling device that travels by the driving force generated by the electric motor; A phase modulation circuit having a capacitor connected in series between the generator and the motor, and a switching element connected to each of a positive electrode side and a negative electrode side of the capacitor, and switching the switching element to switch the capacitor There is provided a power transmission device for a work vehicle including a control device that modulates a phase of a current supplied from the generator to the electric motor by switching between a charged state and a discharged state.
 本発明によれば、伝達効率の低下を抑制することが可能な作業車両の動力伝達装置を提供することができる。 According to the present invention, it is possible to provide a power transmission device for a work vehicle that can suppress a decrease in transmission efficiency.
図1は、本実施形態に係る作業車両を示す側面図である。FIG. 1 is a side view showing a work vehicle according to the present embodiment. 図2は、ダンプトラックの動力伝達装置及びその近傍の構成を示す側面図である。FIG. 2 is a side view showing the configuration of the power transmission device of the dump truck and the vicinity thereof. 図3は、1つの位相変調回路の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of one phase modulation circuit. 図4は、位相変調回路の動作例を示す図である。FIG. 4 is a diagram illustrating an operation example of the phase modulation circuit. 図5は、位相変調回路の動作例を示す図である。FIG. 5 is a diagram illustrating an operation example of the phase modulation circuit. 図6は、位相変調回路の動作例を示す図である。FIG. 6 is a diagram illustrating an operation example of the phase modulation circuit. 図7は、位相変調回路の動作例を示す図である。FIG. 7 is a diagram illustrating an operation example of the phase modulation circuit. 図8は、制御装置の構成を示す機能ブロック図である。FIG. 8 is a functional block diagram showing the configuration of the control device. 図9は、記憶部に記憶される情報の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of information stored in the storage unit. 図10は、制御装置の全体的な制御体系の一例を示すブロック図である。FIG. 10 is a block diagram illustrating an example of the overall control system of the control device. 図11は、内燃機関制御部による処理内容の一例を示す図である。FIG. 11 is a diagram illustrating an example of processing contents performed by the internal combustion engine control unit. 図12は、発電機制御部による処理内容の一例を示す図である。FIG. 12 is a diagram illustrating an example of processing contents by the generator control unit. 図13は、電動機制御部による処理内容の一例を示す図である。FIG. 13 is a diagram illustrating an example of processing contents performed by the motor control unit. 図14は、位相変調回路制御部による処理内容の一例を示す図である。FIG. 14 is a diagram illustrating an example of processing contents performed by the phase modulation circuit control unit. 図15は、アクセル開度の変化を示すグラフである。FIG. 15 is a graph showing changes in the accelerator opening. 図16は、位相変調回路が設けられない場合において、発電機で発生した電圧、電流及び力率の比較例をそれぞれ示すグラフである。FIG. 16 is a graph showing comparative examples of voltage, current, and power factor generated in the generator when no phase modulation circuit is provided. 図17は、位相変調回路が設けられる場合において、発電機で発生し、位相変調回路の接続部から出力される電圧、電流及び力率の実施例をそれぞれ示すグラフである。FIG. 17 is a graph showing examples of voltage, current, and power factor generated by the generator and output from the connection portion of the phase modulation circuit when the phase modulation circuit is provided. 図18は、直流電圧指令値算出情報の一例を示すグラフである。FIG. 18 is a graph showing an example of DC voltage command value calculation information. 図19は、電圧センサで検出される直流電圧値の一例を示すグラフである。FIG. 19 is a graph showing an example of a DC voltage value detected by the voltage sensor. 図20は、エンジン回転速度指令値算出情報の一例を示すグラフである。FIG. 20 is a graph showing an example of engine rotation speed command value calculation information. 図21は、エンジン回転速度指令値と時刻との関係を示すグラフである。FIG. 21 is a graph showing the relationship between the engine speed command value and time. 図22は、エンジン回転速度とエンジントルクとの関係を示すグラフである。FIG. 22 is a graph showing the relationship between engine rotation speed and engine torque.
 以下、本発明に係る作業車両の実施形態を図面に基づいて説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。以下に説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Hereinafter, an embodiment of a work vehicle according to the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same. The components of the embodiments described below can be combined as appropriate. Some components may not be used.
 [作業車両]
 図1は、本実施形態に係る作業車両1を示す側面図である。本実施形態において、作業車両1は、例えば、鉱山の採掘現場において、土砂や砕石等の積荷を運搬するダンプトラックである。以下の説明においては、作業車両1をダンプトラック1と表記する。なお、本実施形態において、ダンプトラック1は、キャブ(運転室)8に搭乗した運転者(オペレータ)に操作される有人ダンプトラックであるが、これに限定されない。さらに、本実施形態において、ダンプトラック1は、例えばリジッド式のダンプトラック1であるが、アーティキュレート式のダンプトラックに適用されてもよくこれに限定されない。
[Work vehicle]
FIG. 1 is a side view showing a work vehicle 1 according to the present embodiment. In the present embodiment, the work vehicle 1 is, for example, a dump truck that transports loads such as earth and sand and crushed stone at a mining site. In the following description, the work vehicle 1 is referred to as a dump truck 1. In the present embodiment, the dump truck 1 is a manned dump truck operated by a driver (operator) who has boarded the cab (operator's cab) 8, but is not limited thereto. Further, in the present embodiment, the dump truck 1 is a rigid dump truck 1, for example, but may be applied to an articulated dump truck, and is not limited thereto.
 ダンプトラック1は、車両本体2と、車両本体2に設けられるベッセル3とを備える。車両本体2は、走行装置4と、走行装置4に支持された車体5とを有する。走行装置4は、車輪6と、車輪6を回転可能に支持する車軸7とを有する。車輪6は、前輪6Fと後輪6Rとを含む。車軸7は、前輪6Fを回転可能に支持する車軸7Fと、後輪6Rを回転可能に支持する車軸7Rとを含む。 The dump truck 1 includes a vehicle body 2 and a vessel 3 provided on the vehicle body 2. The vehicle body 2 includes a traveling device 4 and a vehicle body 5 supported by the traveling device 4. The traveling device 4 includes a wheel 6 and an axle 7 that rotatably supports the wheel 6. Wheel 6 includes a front wheel 6F and a rear wheel 6R. The axle 7 includes an axle 7F that rotatably supports the front wheel 6F, and an axle 7R that rotatably supports the rear wheel 6R.
 ベッセル3は、積荷が積載される構造物である。ベッセル3は、昇降装置により、車両本体2に対して上下に昇降可能である。昇降装置は、ベッセル3と車体5との間に配置された図示しない油圧シリンダ(ホイストシリンダ)のようなアクチュエータを含む。昇降装置によりベッセル3が上昇することによって、ベッセル3の積荷が排出される。 The vessel 3 is a structure on which a load is loaded. The vessel 3 can be moved up and down with respect to the vehicle body 2 by a lifting device. The lifting device includes an actuator such as a hydraulic cylinder (a hoist cylinder) (not shown) disposed between the vessel 3 and the vehicle body 5. By raising the vessel 3 by the lifting device, the load of the vessel 3 is discharged.
 車体5は、キャブ8と、動力発生装置9と、制御装置30とを有する。キャブ8は、車体5の前側の上部に配置される。キャブ8は、アクセルペダル8aを有する。アクセルペダル8aは、内燃機関11(図2等参照)の出力を規定する。オペレータは、キャブ8に搭乗して、アクセルペダル8a等を操作することにより、ダンプトラック1を操作する。なお、無人車両のダンプトラック1等、アクセルペダルの操作によらず車体の外からのアクセル開度指令に基づき内燃機関の出力を規定する構成であってもよい。制御装置30は、ダンプトラック1の各部を統括的に制御する。制御装置30は、例えばキャブ8の周辺に配置される。 The vehicle body 5 includes a cab 8, a power generation device 9, and a control device 30. The cab 8 is disposed at the upper part on the front side of the vehicle body 5. The cab 8 has an accelerator pedal 8a. The accelerator pedal 8a defines the output of the internal combustion engine 11 (see FIG. 2 and the like). The operator operates the dump truck 1 by getting on the cab 8 and operating the accelerator pedal 8a and the like. In addition, the structure which prescribe | regulates the output of an internal combustion engine based on the accelerator opening degree command from the outside of a vehicle body, such as dump truck 1 of an unmanned vehicle, without operation of an accelerator pedal may be sufficient. The control device 30 comprehensively controls each part of the dump truck 1. The control device 30 is disposed around the cab 8, for example.
 動力発生装置9は、電気駆動方式により動力を発生させて走行装置4を駆動する。図2は、ダンプトラック1の動力発生装置9の構成を示す図である。図2に示すように、動力発生装置9は、内燃機関11と、動力伝達装置10とを有する。動力伝達装置10の詳細な構成については、後述する。 The power generating device 9 drives the traveling device 4 by generating power by an electric drive system. FIG. 2 is a diagram illustrating a configuration of the power generation device 9 of the dump truck 1. As shown in FIG. 2, the power generation device 9 includes an internal combustion engine 11 and a power transmission device 10. The detailed configuration of the power transmission device 10 will be described later.
 内燃機関11は、ダンプトラック1の動力源である。本実施形態において、内燃機関11は、ディーゼルエンジンである。内燃機関11は、動力伝達シャフト17に連結されている。内燃機関11は、燃料の供給量に応じた回転速度で動力伝達シャフト17を回転させる。動力伝達シャフト17には、後述する動力伝達装置10の発電機12及び油圧ポンプ18が連結されている。油圧ポンプ18は、油圧機器に作動油を供給する。油圧機器はベッセル3を昇降する図示しない油圧シリンダを含む。本実施形態において、油圧ポンプ18は、例えば、斜板式油圧ポンプのような可変容量型油圧ポンプが用いられる。油圧ポンプ18は、入力部が動力伝達シャフト17に連結されており、この構成により内燃機関11によって駆動される。内燃機関11は、エンジン回転速度を検出する回転センサ11sを有する。 The internal combustion engine 11 is a power source for the dump truck 1. In the present embodiment, the internal combustion engine 11 is a diesel engine. The internal combustion engine 11 is connected to the power transmission shaft 17. The internal combustion engine 11 rotates the power transmission shaft 17 at a rotation speed corresponding to the amount of fuel supplied. The power transmission shaft 17 is connected to a generator 12 and a hydraulic pump 18 of the power transmission device 10 to be described later. The hydraulic pump 18 supplies hydraulic oil to the hydraulic equipment. The hydraulic equipment includes a hydraulic cylinder (not shown) that moves up and down the vessel 3. In the present embodiment, for example, a variable displacement hydraulic pump such as a swash plate hydraulic pump is used as the hydraulic pump 18. The hydraulic pump 18 has an input connected to the power transmission shaft 17 and is driven by the internal combustion engine 11 with this configuration. The internal combustion engine 11 has a rotation sensor 11s that detects the engine rotation speed.
 [動力伝達装置]
 次に、動力伝達装置10の構成を説明する。動力伝達装置10は、内燃機関11の動力を走行装置4に伝達する。動力伝達装置10は、発電機12と、位相変調回路13と、整流器14と、インバータ15と、電動機16とを有する。
[Power transmission device]
Next, the configuration of the power transmission device 10 will be described. The power transmission device 10 transmits the power of the internal combustion engine 11 to the traveling device 4. The power transmission device 10 includes a generator 12, a phase modulation circuit 13, a rectifier 14, an inverter 15, and an electric motor 16.
 発電機12は、内燃機関11により駆動されて電力を発生する。本実施形態において、発電機12は、オルタネータである。発電機12は、ステータ及びロータを有する。発電機12は、ステータ及びロータの一方にコイル(電機子)が配置され、他方に電磁石(界磁)が配置される。発電機12のロータは、動力伝達シャフト17に連結されている。発電機12は、動力伝達シャフト17の回転に伴ってロータが回転し、電磁誘導によりコイルに誘導起電力及び誘導電流が生じるようになっている。本実施形態において、発電機12は、三相の交流電圧及び交流電流を発生させる。発電機12は、ロータの回転速度である発電機回転速度を検出する回転センサ12sを有する。本実施形態においては、発電機12のロータが動力伝達シャフト17に連結されているため、内燃機関11の回転速度と発電機12の回転速度とは同一である。このため、回転センサ11s及び回転センサ12sの一方を省いた構成としてもよい。この場合、回転センサ11s又は回転センサ12sの検出結果を、内燃機関11の回転速度及び発電機12の回転速度として用いることができる。なお、内燃機関11と発電機12とがPTO等を介して連結される場合、内燃機関11の回転速度と発電機12の回転速度とは、PTO等のギア比等に基づく比例関係になる。この場合、内燃機関11の回転速度及び発電機12の回転速度は、回転センサ11s又は回転センサ12sの検出結果とギア比とに基づいて算出可能である。 The generator 12 is driven by the internal combustion engine 11 to generate electric power. In the present embodiment, the generator 12 is an alternator. The generator 12 has a stator and a rotor. In the generator 12, a coil (armature) is disposed on one of the stator and the rotor, and an electromagnet (field) is disposed on the other. The rotor of the generator 12 is connected to the power transmission shaft 17. In the generator 12, the rotor rotates with the rotation of the power transmission shaft 17, and an induced electromotive force and an induced current are generated in the coil by electromagnetic induction. In the present embodiment, the generator 12 generates a three-phase AC voltage and AC current. The generator 12 includes a rotation sensor 12s that detects a generator rotation speed that is the rotation speed of the rotor. In the present embodiment, since the rotor of the generator 12 is connected to the power transmission shaft 17, the rotational speed of the internal combustion engine 11 and the rotational speed of the generator 12 are the same. For this reason, it is good also as a structure which excluded one of the rotation sensor 11s and the rotation sensor 12s. In this case, the detection result of the rotation sensor 11s or the rotation sensor 12s can be used as the rotation speed of the internal combustion engine 11 and the rotation speed of the generator 12. When the internal combustion engine 11 and the generator 12 are connected via a PTO or the like, the rotational speed of the internal combustion engine 11 and the rotational speed of the generator 12 have a proportional relationship based on a gear ratio of the PTO or the like. In this case, the rotation speed of the internal combustion engine 11 and the rotation speed of the generator 12 can be calculated based on the detection result of the rotation sensor 11s or the rotation sensor 12s and the gear ratio.
 発電機12は、励磁装置19を有する。励磁装置19は、界磁側の電磁石に流す励磁電流を調整することにより、界磁側の電磁石の磁力を調整し、これにより発電機12における発電量を調整する。なお、発電機12の界磁側を電磁石とする構成に限定するものではなく、例えば界磁側を永久磁石としてもよい。 The generator 12 has an excitation device 19. The exciter 19 adjusts the magnetic force of the field-side electromagnet by adjusting the excitation current that flows through the field-side electromagnet, thereby adjusting the amount of power generated by the generator 12. In addition, it is not limited to the structure which uses the field side of the generator 12 as an electromagnet, For example, it is good also considering a field side as a permanent magnet.
 位相変調回路13は、発電機12によって生じた電流の位相を変調する。本実施形態において、位相変調回路13は、磁気エネルギー回生位相変調回路である。位相変調回路13は、発電機12と整流器14との間に直列に接続される。本実施形態において、発電機12が三相の交流電圧及び交流電流を発生させるため、位相変調回路13は、各相の交流電圧及び交流電流に対応するように、3つ並列に配置される。位相変調回路13については、後述する。なお、3つの位相変調回路13は、各位相変調回路13から出力される交流電圧を整流する整流器13aと、整流器13aにより整流された各相についての直流電圧値を加算した値を検出する電圧センサ13sとを有する。整流器13aは、整流器14と同等の構成が用いられる。 The phase modulation circuit 13 modulates the phase of the current generated by the generator 12. In the present embodiment, the phase modulation circuit 13 is a magnetic energy regenerative phase modulation circuit. The phase modulation circuit 13 is connected in series between the generator 12 and the rectifier 14. In the present embodiment, since the generator 12 generates three-phase AC voltage and AC current, three phase modulation circuits 13 are arranged in parallel so as to correspond to the AC voltage and AC current of each phase. The phase modulation circuit 13 will be described later. The three phase modulation circuits 13 include a rectifier 13a that rectifies the AC voltage output from each phase modulation circuit 13, and a voltage sensor that detects a value obtained by adding a DC voltage value for each phase rectified by the rectifier 13a. 13s. The rectifier 13a has the same configuration as the rectifier 14.
 整流器14は、位相変調回路13から出力された交流電圧を整流し、直流電圧を出力する。整流器14とインバータ15との間には、平滑コンデンサ20が設けられる。平滑コンデンサ20は、整流器14から出力された直流電流を平滑化する。また、整流器14とインバータ15との間には、リターダ21等の負荷機器を配置することができる。リターダ21は、ダンプトラック1の制動時に運動エネルギーを吸収する。 The rectifier 14 rectifies the AC voltage output from the phase modulation circuit 13 and outputs a DC voltage. A smoothing capacitor 20 is provided between the rectifier 14 and the inverter 15. The smoothing capacitor 20 smoothes the direct current output from the rectifier 14. Further, a load device such as the retarder 21 can be arranged between the rectifier 14 and the inverter 15. The retarder 21 absorbs kinetic energy when the dump truck 1 is braked.
 インバータ15は、整流器14から出力され、平滑コンデンサ20により平滑された直流電圧を交流電圧に変換して出力する。インバータ15は、前輪6F側に交流電圧を出力する前輪側出力部と、後輪6R側に交流電圧を出力する後輪側出力部とを有する。前輪側出力部及び後輪側出力部は、発電機12及び電動機16に対応して三相の交流電圧を出力可能となるように、それぞれ三相に対応する部分が並列に設けられている。 The inverter 15 converts the DC voltage output from the rectifier 14 and smoothed by the smoothing capacitor 20 into an AC voltage and outputs the AC voltage. The inverter 15 includes a front wheel side output unit that outputs an AC voltage to the front wheel 6F side, and a rear wheel side output unit that outputs an AC voltage to the rear wheel 6R side. The front wheel side output unit and the rear wheel side output unit are provided in parallel with portions corresponding to three phases so as to be able to output a three-phase AC voltage corresponding to the generator 12 and the electric motor 16.
 電動機16は、インバータ15から出力される電力により駆動されて回転力を発生させる。本実施形態において、電動機16は、モータである。電動機16は、例えば前輪6F側に配置される前輪側電動機と、後輪6R側に配置される後輪側電動機とを有する。電動機16は、伝達機構22に接続される。伝達機構22は、発電機12で発生した回転力を車軸7(7F、7R)を介して車輪6(6F、6R)に伝達する。電動機16は、モータ回転速度を検出する回転センサ16sを有する。 The electric motor 16 is driven by the electric power output from the inverter 15 to generate a rotational force. In the present embodiment, the electric motor 16 is a motor. The electric motor 16 includes, for example, a front wheel side motor disposed on the front wheel 6F side and a rear wheel side motor disposed on the rear wheel 6R side. The electric motor 16 is connected to the transmission mechanism 22. The transmission mechanism 22 transmits the rotational force generated by the generator 12 to the wheels 6 (6F, 6R) via the axle 7 (7F, 7R). The electric motor 16 includes a rotation sensor 16s that detects a motor rotation speed.
 次に、位相変調回路13について説明する。図3は、1つの位相変調回路13の一例を示す電気回路図である。図3に示すように、位相変調回路13は、接続部P1、P2と、4つのスイッチング素子である第1スイッチング素子S1、第2スイッチング素子S2、第3スイッチング素子S3、第4スイッチング素子S4と、コンデンサCと、を有する。以下、第1スイッチング素子S1、第2スイッチング素子S2、第3スイッチング素子S3、第4スイッチング素子S4については、それぞれ、スイッチング素子S1、スイッチング素子S2、スイッチング素子S3、スイッチング素子S4と表記する。接続部P1は、発電機12に接続される。接続部P2は、整流器14に接続される。 Next, the phase modulation circuit 13 will be described. FIG. 3 is an electric circuit diagram showing an example of one phase modulation circuit 13. As shown in FIG. 3, the phase modulation circuit 13 includes connection portions P1 and P2, four switching elements, a first switching element S1, a second switching element S2, a third switching element S3, and a fourth switching element S4. And a capacitor C. Hereinafter, the first switching element S1, the second switching element S2, the third switching element S3, and the fourth switching element S4 are referred to as a switching element S1, a switching element S2, a switching element S3, and a switching element S4, respectively. The connection part P1 is connected to the generator 12. The connection part P2 is connected to the rectifier 14.
 スイッチング素子S1、S2、S3、S4は、例えばMOSFET(metal-oxide-semiconductor field-effect transistor)又はIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子である。スイッチング素子S1、S2、S3、S4としては、上記に限定するものではなく、他の種類のスイッチであってもよい。以降はスイッチング素子にIGBTを用いた実施形態で説明を行う。 Switching elements S1, S2, S3, and S4 are switching elements such as a MOSFET (metal-oxide-semiconductor field-effect transistor) or an IGBT (Insulated Gate Bipolar Transistor). The switching elements S1, S2, S3, and S4 are not limited to the above, and may be other types of switches. Hereinafter, description will be made in an embodiment using an IGBT as a switching element.
 スイッチング素子S4とスイッチング素子S1とは、接続部P1から接続部P2に向けてこの順に直列に接続される(第1部分A1)。スイッチング素子S4のエミッタ端子は接続部P1に接続される。スイッチング素子S4のコレクタ端子はスイッチング素子S1のコレクタ端子が接続される。スイッチング素子S1のエミッタ端子は接続部P2に接続される。スイッチング素子S3とスイッチング素子S2とは、接続部P1から接続部P2に向けてこの順に直列に接続される(第2部分A2)。スイッチング素子S3のコレクタ端子は接続部P1に接続される。スイッチング素子S3のエミッタ端子はスイッチング素子S2のエミッタ端子が接続される。スイッチング素子S2のコレクタ端子は接続部P2に接続される。また、2つのスイッチング素子S4、S1と、2つのスイッチング素子S3、S2とは、並列に接続される。コンデンサCは、第1部分A1のうちスイッチング素子S4とスイッチング素子S1との間(接続部P3)と、第2部分A2のうちスイッチング素子S3とスイッチング素子S2との間(接続部P4)とを接続する。上記の様なスイッチング素子S1、S2、S3、S4およびコンデンサCに接続関係によりブリッジ回路を構成する。 The switching element S4 and the switching element S1 are connected in series in this order from the connection portion P1 to the connection portion P2 (first portion A1). The emitter terminal of the switching element S4 is connected to the connection part P1. The collector terminal of the switching element S4 is connected to the collector terminal of the switching element S4. The emitter terminal of the switching element S1 is connected to the connection part P2. The switching element S3 and the switching element S2 are connected in series in this order from the connection portion P1 to the connection portion P2 (second portion A2). The collector terminal of the switching element S3 is connected to the connection part P1. The emitter terminal of the switching element S3 is connected to the emitter terminal of the switching element S3. The collector terminal of the switching element S2 is connected to the connection part P2. Also, the two switching elements S4 and S1 and the two switching elements S3 and S2 are connected in parallel. The capacitor C includes a connection between the switching element S4 and the switching element S1 in the first part A1 (connection part P3) and a connection between the switching element S3 and the switching element S2 in the second part A2 (connection part P4). Connecting. A bridge circuit is configured by the connection relationship between the switching elements S1, S2, S3, S4 and the capacitor C as described above.
 図4から図7は、位相変調回路13の動作例を示す図である。本実施形態において、スイッチング素子S1、S2、S3、S4のON、OFFは、例えばスイッチング素子S1、S3と、スイッチング素子S2、S4と、をそれぞれ組にして行う。具体的には、スイッチング素子S1、S3をONにする場合には、スイッチング素子S2、S4をOFFにする。また、スイッチング素子S1、S3をOFFにする場合には、スイッチング素子S2、S4をONにする。 4 to 7 are diagrams showing an operation example of the phase modulation circuit 13. In the present embodiment, the switching elements S1, S2, S3, and S4 are turned on and off by, for example, switching elements S1 and S3 and switching elements S2 and S4 as a set. Specifically, when switching elements S1 and S3 are turned on, switching elements S2 and S4 are turned off. When switching elements S1 and S3 are turned off, switching elements S2 and S4 are turned on.
 図4は、スイッチング素子S1、S3をONにし、スイッチング素子S2、S4をOFFにした場合であって、接続部P1の電圧が負である場合の動作を示す。図4に示す場合、接続部P2側からスイッチング素子S1を介してコンデンサCの正極側に電流が流れ、コンデンサCの負極側からスイッチング素子S3を介して接続部P1側に電流が流れる。この場合、コンデンサCは帯電する。 FIG. 4 shows the operation when the switching elements S1 and S3 are turned on and the switching elements S2 and S4 are turned off, and the voltage at the connection portion P1 is negative. In the case shown in FIG. 4, a current flows from the connection part P2 side to the positive electrode side of the capacitor C via the switching element S1, and a current flows from the negative electrode side of the capacitor C to the connection part P1 side via the switching element S3. In this case, the capacitor C is charged.
 図5は、スイッチング素子S1、S3をONにし、スイッチング素子S2、S4をOFFにした場合であって、接続部P1の電圧が正である場合の動作を示す。図5に示す場合、接続部P1側からスイッチング素子S3を介してコンデンサCの負極側に電流が流れ、コンデンサCの正極側からスイッチング素子S1を介して接続部P2側に電流が流れる。この場合、コンデンサCは放電する。 FIG. 5 shows the operation when the switching elements S1 and S3 are turned on and the switching elements S2 and S4 are turned off, and the voltage at the connection portion P1 is positive. In the case shown in FIG. 5, a current flows from the connection part P1 side to the negative electrode side of the capacitor C via the switching element S3, and a current flows from the positive electrode side of the capacitor C to the connection part P2 side via the switching element S1. In this case, the capacitor C is discharged.
 図6は、スイッチング素子S1、S3をOFFにし、スイッチング素子S2、S4をONにした場合であって、接続部P1の電圧が正である場合の動作を示す。図6に示す場合、接続部P1側からスイッチング素子S4を介してコンデンサCの正極側に電流が流れ、コンデンサCの負極側からスイッチング素子S2を介して接続部P2側に電流が流れる。この場合、コンデンサCは帯電する。 FIG. 6 shows the operation when the switching elements S1 and S3 are turned off and the switching elements S2 and S4 are turned on, and the voltage at the connection portion P1 is positive. In the case shown in FIG. 6, a current flows from the connection part P1 side to the positive electrode side of the capacitor C via the switching element S4, and a current flows from the negative electrode side of the capacitor C to the connection part P2 side via the switching element S2. In this case, the capacitor C is charged.
 図7は、スイッチング素子S1、S3をOFFにし、スイッチング素子S2、S4をONにした場合であって、接続部P1の電圧が負である場合の動作を示す。図7に示す場合、接続部P2側からスイッチング素子S2を介してコンデンサCの負極側に電流が流れ、コンデンサCの正極側からスイッチング素子S4を介して接続部P1側に電流が流れる。この場合、コンデンサCは放電する。 FIG. 7 shows the operation when the switching elements S1 and S3 are turned off and the switching elements S2 and S4 are turned on, and the voltage at the connection portion P1 is negative. In the case shown in FIG. 7, a current flows from the connection part P2 side to the negative electrode side of the capacitor C via the switching element S2, and a current flows from the positive electrode side of the capacitor C to the connection part P1 side via the switching element S4. In this case, the capacitor C is discharged.
 図8は、制御装置30の構成を示す機能ブロック図である。図8に示すように、制御装置30は、内燃機関制御部31と、発電機制御部32と、電動機制御部33と、位相変調回路制御部34と、記憶部35とを有する。内燃機関制御部31は、内燃機関11の動作を制御する。発電機制御部32は、発電機12の動作を制御する。電動機制御部33は、電動機16の動作を制御する。位相変調回路制御部34は、位相変調回路13の動作を制御する。 FIG. 8 is a functional block diagram showing the configuration of the control device 30. As shown in FIG. 8, the control device 30 includes an internal combustion engine control unit 31, a generator control unit 32, an electric motor control unit 33, a phase modulation circuit control unit 34, and a storage unit 35. The internal combustion engine control unit 31 controls the operation of the internal combustion engine 11. The generator control unit 32 controls the operation of the generator 12. The electric motor control unit 33 controls the operation of the electric motor 16. The phase modulation circuit control unit 34 controls the operation of the phase modulation circuit 13.
 記憶部35は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等の不揮発性又は揮発性の各種メモリ、磁気ディスク等の各種ディスクの少なくとも1つが用いられる。記憶部35は、実施形態に係るダンプトラック1の制御を各制御部31~34に実行させるためのコンピュータプログラム、及び各制御部31~34が実施形態に係る制御を実行する際に使用される情報を記憶する。図9は、記憶部35に記憶される情報の一例を示すブロック図である。記憶部35には、例えば、エンジン回転速度指令値算出情報D1と、直流電圧指令値算出情報(電動機の駆動速度)D2と、出力指定値算出情報D3と、モータトルク指令値算出情報D4と、スイッチング指令値算出情報D5とが記憶される。各制御部31~34は、記憶部35から前述したコンピュータプログラムを読み込んで実行することにより、実施形態に係る制御を実現する。 The storage unit 35 is, for example, at least one of various types of non-volatile or volatile memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and various disks such as a magnetic disk. The storage unit 35 is used when the control units 31 to 34 execute the control according to the embodiment, and the computer program for causing the control units 31 to 34 to control the dump truck 1 according to the embodiment. Store information. FIG. 9 is a block diagram illustrating an example of information stored in the storage unit 35. The storage unit 35 includes, for example, engine rotation speed command value calculation information D1, DC voltage command value calculation information (motor drive speed) D2, output designation value calculation information D3, motor torque command value calculation information D4, Switching command value calculation information D5 is stored. Each of the control units 31 to 34 implements the control according to the embodiment by reading and executing the above-described computer program from the storage unit 35.
 図10は、制御装置30の全体的な制御体系の一例を示すブロック図である。図10に示すように、内燃機関制御部31は、アクセル開度指令値に基づいてエンジン回転速度指令値を算出し、エンジン回転速度指令値を内燃機関11に出力する。 FIG. 10 is a block diagram illustrating an example of the overall control system of the control device 30. As shown in FIG. 10, the internal combustion engine control unit 31 calculates an engine rotation speed command value based on the accelerator opening command value, and outputs the engine rotation speed command value to the internal combustion engine 11.
 発電機制御部32は、例えば回転センサ11s等で検出される内燃機関11のエンジン回転速度と、回転センサ16s等で検出される電動機16のモータ回転速度と、位相変調回路13から出力された交流電圧を整流器13aで直流に変換した電圧値であって電圧センサ13s等で検出された直流電圧値とに基づいて、励磁電流指令値を算出し、励磁電流指令値を発電機12に出力する。 For example, the generator control unit 32 detects the engine rotation speed of the internal combustion engine 11 detected by the rotation sensor 11s, the motor rotation speed of the electric motor 16 detected by the rotation sensor 16s, and the alternating current output from the phase modulation circuit 13. An excitation current command value is calculated based on the voltage value obtained by converting the voltage into direct current by the rectifier 13 a and detected by the voltage sensor 13 s or the like, and the excitation current command value is output to the generator 12.
 電動機制御部33は、アクセル開度指令値と、エンジン回転速度と、モータ回転速度とに基づいて、モータトルク指令値を算出し、モータトルク指令を電動機16に出力する。 The electric motor control unit 33 calculates a motor torque command value based on the accelerator opening command value, the engine rotation speed, and the motor rotation speed, and outputs the motor torque command to the electric motor 16.
 位相変調回路制御部34は、回転センサ12s等で検出される発電機12の回転速度(発電機回転速度)に基づいて、スイッチング指令値を算出し、スイッチング指令値を位相変調回路13に出力する。これにより、位相変調回路制御部34は、スイッチング素子S1、S2、S3、S4を切り替えてコンデンサCの帯電状態と放電状態とを切り替えることで発電機12から電動機16に供給される電流の位相を変調する。 The phase modulation circuit control unit 34 calculates a switching command value based on the rotation speed (generator rotation speed) of the generator 12 detected by the rotation sensor 12s and outputs the switching command value to the phase modulation circuit 13. . Thereby, the phase modulation circuit control unit 34 switches the switching elements S1, S2, S3, and S4 to switch the charging state and the discharging state of the capacitor C, thereby changing the phase of the current supplied from the generator 12 to the motor 16. Modulate.
 図11は、内燃機関制御部31による処理内容の一例を示す図である。図11に示すように、内燃機関制御部31は、エンジン回転速度指令値算出部51を有する。エンジン回転速度指令値算出部51は、アクセル開度指令値が入力される。エンジン回転速度指令値算出部51は、入力されたアクセル開度指令値と、記憶部35に記憶されるエンジン回転速度指令値算出情報D1とに基づいて、エンジン回転速度指令値を算出する。エンジン回転速度指令値算出情報D1は、アクセル開度指令値とエンジン回転速度指令値との関係をマップ等で規定するデータである。エンジン回転速度指令値算出情報D1においては、アクセル開度指令値の増加に従い、エンジン回転速度指令値が増加する関係となっている。 FIG. 11 is a diagram illustrating an example of processing contents performed by the internal combustion engine control unit 31. As shown in FIG. 11, the internal combustion engine control unit 31 includes an engine rotation speed command value calculation unit 51. The engine speed command value calculation unit 51 receives an accelerator opening command value. The engine rotation speed command value calculation unit 51 calculates an engine rotation speed command value based on the input accelerator opening command value and the engine rotation speed command value calculation information D1 stored in the storage unit 35. The engine speed command value calculation information D1 is data that defines the relationship between the accelerator opening command value and the engine speed command value using a map or the like. In the engine speed command value calculation information D1, the engine speed command value increases as the accelerator opening command value increases.
 図12は、発電機制御部32による処理内容の一例を示す図である。図12に示すように、発電機制御部32は、直流電圧指令値算出部52と、演算部53と、AVR54とを有する。直流電圧指令値算出部52は、エンジン回転速度と、モータ回転速度とが入力される。直流電圧指令値算出部52は、記憶部35に記憶される直流電圧指令値算出情報(マップ)D2を使用して、入力されたエンジン回転速度及びモータ回転速度から直流電圧指令値を導出し、導出した直流電圧指令値を出力する。直流電圧指令値算出情報D2は、エンジン回転速度と、モータ回転速度と、直流電圧指令値との関係をマップ等で規定するデータである。直流電圧指令値算出情報D2においては、エンジン回転速度及びモータ回転速度のそれぞれの増加に対して直流電圧指令値が増加する等高線上の関係となっている。それぞれ4つの電圧値V1、V2、V3、V4についての領域が等高線を境界として設定されている。4つの電圧値の大小関係は、V1>V2>V3>V4である。設定される電圧値は一例で大きさの変化は任意に設定することが出来る。 FIG. 12 is a diagram illustrating an example of processing contents performed by the generator control unit 32. As shown in FIG. 12, the generator control unit 32 includes a DC voltage command value calculation unit 52, a calculation unit 53, and an AVR 54. The DC voltage command value calculation unit 52 receives the engine rotation speed and the motor rotation speed. The DC voltage command value calculation unit 52 uses the DC voltage command value calculation information (map) D2 stored in the storage unit 35 to derive a DC voltage command value from the input engine rotation speed and motor rotation speed, The derived DC voltage command value is output. The DC voltage command value calculation information D2 is data that defines the relationship among the engine rotation speed, the motor rotation speed, and the DC voltage command value with a map or the like. In the DC voltage command value calculation information D2, there is a contour relationship in which the DC voltage command value increases with each increase in the engine rotation speed and the motor rotation speed. Regions for four voltage values V1, V2, V3, and V4 are set with contour lines as boundaries. The relationship between the four voltage values is V1> V2> V3> V4. The voltage value to be set is an example, and the change in size can be set arbitrarily.
 演算部53は、直流電圧指令値算出部52から出力された直流電圧指令値と、電圧センサ13sで検出された直流電圧値とが入力される。演算部53は、直流電圧指令値から直流電圧値を減算した電圧値を算出し、算出結果を出力する。AVR54は、演算部53から出力された算出結果である電圧値が入力される。AVR54は、算出結果の電圧値に基づいて、励磁装置19から発電機12に供給される励磁電流についての励磁電流指令値を出力する。 The calculation unit 53 receives the DC voltage command value output from the DC voltage command value calculation unit 52 and the DC voltage value detected by the voltage sensor 13s. The computing unit 53 calculates a voltage value obtained by subtracting the DC voltage value from the DC voltage command value, and outputs the calculation result. The AVR 54 receives a voltage value that is a calculation result output from the calculation unit 53. The AVR 54 outputs an excitation current command value for the excitation current supplied from the excitation device 19 to the generator 12 based on the calculated voltage value.
 図13は、電動機制御部33による処理内容の一例を示す図である。図13に示すように、電動機制御部33は、モータ出力指令演算部56と、出力指定値算出部57と、加減算部58と、制限モータ出力値算出部59と、出力調整リミッター60と、モータトルク指令値算出部61とを有する。 FIG. 13 is a diagram illustrating an example of processing contents performed by the motor control unit 33. As shown in FIG. 13, the motor control unit 33 includes a motor output command calculation unit 56, an output specified value calculation unit 57, an addition / subtraction unit 58, a limit motor output value calculation unit 59, an output adjustment limiter 60, and a motor. A torque command value calculation unit 61.
 モータ出力指令演算部56は、アクセル開度指令値と、モータ回転速度とが入力される。モータ出力指令演算部56は、入力されたアクセル開度指令値とモータ回転速度とに基づいてモータ出力指令値を出力する。モータ出力指令値は、後述のモータトルク指令出力部61で用いられるモータトルク指令値算出情報D4の等出力線を規定する。 The motor output command calculation unit 56 receives an accelerator opening command value and a motor rotation speed. The motor output command calculation unit 56 outputs a motor output command value based on the input accelerator opening command value and the motor rotation speed. The motor output command value defines an equal output line of motor torque command value calculation information D4 used in a motor torque command output unit 61 described later.
 出力指定値算出部57は、エンジン回転速度が入力される。出力指定値算出部57は、入力されたエンジン回転速度と、記憶部35に記憶される出力指定値算出情報D3を使用し、エンジン回転速度に対するエンジン出力を算出し、算出したエンジン出力を出力する。出力指定値算出情報D3は、エンジン回転速度とエンジントルクとの関係をマップ等で規定するデータである。 The output specified value calculation unit 57 receives the engine speed. The designated output value calculation unit 57 uses the input engine rotation speed and the output designation value calculation information D3 stored in the storage unit 35 to calculate the engine output with respect to the engine rotation speed, and outputs the calculated engine output. . The output designation value calculation information D3 is data that defines the relationship between the engine rotation speed and the engine torque with a map or the like.
 加減算部58は、エンジン回転速度と、エンジン回転速度指令値とが入力される。加減算部58は、入力されたエンジン回転速度からエンジン回転速度指令値を減算したエンジン回転速度差を出力する。制限モータ出力値算出部59は、出力指定値算出部57から出力されたエンジン出力と、加減算部58から出力されたエンジン回転速度差とが入力される。制限モータ出力値算出部59は、入力されたエンジン回転速度差から出力加算分を求め、出力加算分とエンジン出力より制限モータ出力値を算出する。制限モータ出力値算出部59は、算出した制限モータ出力値を出力する。制限モータ出力値は、エンジン回転速度に対して許容できるモータ出力値の最大値である。 The addition / subtraction unit 58 receives the engine rotation speed and the engine rotation speed command value. The addition / subtraction unit 58 outputs an engine rotation speed difference obtained by subtracting the engine rotation speed command value from the input engine rotation speed. The limit motor output value calculation unit 59 receives the engine output output from the output designation value calculation unit 57 and the engine rotation speed difference output from the addition / subtraction unit 58. The limit motor output value calculation unit 59 obtains an output addition from the input engine speed difference, and calculates a limit motor output value from the output addition and the engine output. The limit motor output value calculation unit 59 outputs the calculated limit motor output value. The limit motor output value is the maximum value of the motor output value that can be allowed with respect to the engine rotation speed.
 出力調整リミッター60は、モータ出力指令演算部56から出力されたモータ出力指令値と、制限モータ出力値算出部59から出力された制限モータ出力値とが入力される。出力調整リミッター60は、入力された出力指令値と制限モータ出力値とを比較し小さい値を出力する。出力指令値が制限モータ出力値よりも大きい場合には、制限モータ出力値をモータ出力指令値として出力する。出力調整リミッター60は、入力された出力指令値が制限モータ出力値よりも小さい場合、入力された出力指令値をモータ出力指令値として出力する。 The output adjustment limiter 60 receives the motor output command value output from the motor output command calculation unit 56 and the limit motor output value output from the limit motor output value calculation unit 59. The output adjustment limiter 60 compares the input output command value with the limited motor output value and outputs a small value. When the output command value is larger than the limit motor output value, the limit motor output value is output as the motor output command value. When the input output command value is smaller than the limit motor output value, the output adjustment limiter 60 outputs the input output command value as a motor output command value.
 モータトルク指令値算出部61は、出力調整リミッター60から出力された調整出力指令値と、モータ回転速度とが入力される。モータトルク指令値算出部61は、入力された調整出力指令値及びモータ回転速度と、記憶部35に記憶されるモータトルク指令値算出情報D4とに基づいてモータトルク指令値を算出し、算出したモータトルク指令値を出力する。モータトルク指令値算出情報D4は、モータ回転速度と、モータトルク指令値との関係を規定するデータである。モータトルク指令値算出情報D4は、モータ出力指令値の増加に対してモータの回転速度とモータトルク指令の乗算の関係になるモータ出力指令が増加する関係となっている。これは、出力調整リミッター60からアクセル開度指令値に基づく出力指令値が入力される場合においては、アクセル開度指令値の増加に基づきモータ出力指令値が大きくなる関係にあることと対応する。モータトルク指令値算出情報D4においては、入力されたモータ出力指令値及びモータ回転速度に基づいて、モータトルク指令値が決定される。 The motor torque command value calculation unit 61 receives the adjustment output command value output from the output adjustment limiter 60 and the motor rotation speed. The motor torque command value calculation unit 61 calculates and calculates a motor torque command value based on the input adjustment output command value and motor rotation speed, and the motor torque command value calculation information D4 stored in the storage unit 35. Outputs the motor torque command value. The motor torque command value calculation information D4 is data that defines the relationship between the motor rotation speed and the motor torque command value. The motor torque command value calculation information D4 has a relationship in which the motor output command, which is a relationship between the rotation speed of the motor and the motor torque command, increases as the motor output command value increases. This corresponds to the fact that, when an output command value based on the accelerator opening command value is input from the output adjustment limiter 60, the motor output command value increases as the accelerator opening command value increases. In the motor torque command value calculation information D4, the motor torque command value is determined based on the input motor output command value and the motor rotation speed.
 図14は、位相変調回路制御部34による処理内容の一例を示す図である。図14に示すように、位相変調回路制御部34は、スイッチング指令値算出部62を有する。スイッチング指令値算出部62は、発電機回転速度が入力される。スイッチング指令値算出部62は、入力された発電機回転速度と、記憶部35に記憶されるスイッチング指令値算出情報D5とに基づいて、スイッチング指令値を算出する。スイッチング指令値算出情報D5は、発電機回転速度、すなわち、発電機12で発生する電圧及び電流の周波数と、スイッチング指令値との関係を規定するデータである。スイッチング指令値算出部62は、発電機12の回転速度に基づいてスイッチング素子S1、S2、S3、S4のオンとオフとのタイミングが調整される。スイッチング素子S1、S2、S3、S4のオンとオフとのタイミングの調整により、位相変調回路13のコンデンサCの帯電状態と放電状態とが切り替えられる。 FIG. 14 is a diagram illustrating an example of processing contents performed by the phase modulation circuit control unit 34. As shown in FIG. 14, the phase modulation circuit control unit 34 includes a switching command value calculation unit 62. The switching command value calculation unit 62 receives the generator rotational speed. The switching command value calculation unit 62 calculates a switching command value based on the input generator rotation speed and the switching command value calculation information D5 stored in the storage unit 35. The switching command value calculation information D5 is data that defines the relationship between the generator rotation speed, that is, the frequency of the voltage and current generated in the generator 12, and the switching command value. The switching command value calculation unit 62 adjusts the timing of turning on and off the switching elements S1, S2, S3, and S4 based on the rotational speed of the generator 12. The charging state and the discharging state of the capacitor C of the phase modulation circuit 13 are switched by adjusting the timing of turning on and off the switching elements S1, S2, S3, and S4.
 次に、発電機12から出力される電圧及び電流について、位相変調回路13が設けられない場合と、位相変調回路13が設けられる場合とを比較して説明する。図15は、アクセル開度の変化を示すグラフである。図15の縦軸はアクセル開度の大きさ(相対値)を示し、図15の横軸は時刻を示す。以下、図15に示すように、位相変調回路13が設けられない場合のアクセル開度101と、位相変調回路13が設けられる場合のアクセル開度102とを一定値とし、かつ同一の値とした場合について説明する。また、位相変調回路13が設けられない場合と、位相変調回路13が設けられる場合とで、内燃機関11及び発電機12のサイズが同一である場合について説明する。 Next, the voltage and current output from the generator 12 will be described by comparing the case where the phase modulation circuit 13 is not provided with the case where the phase modulation circuit 13 is provided. FIG. 15 is a graph showing changes in the accelerator opening. The vertical axis in FIG. 15 indicates the magnitude (relative value) of the accelerator opening, and the horizontal axis in FIG. 15 indicates time. Hereinafter, as shown in FIG. 15, the accelerator opening 101 when the phase modulation circuit 13 is not provided and the accelerator opening 102 when the phase modulation circuit 13 is provided are set to a constant value and the same value. The case will be described. A case where the sizes of the internal combustion engine 11 and the generator 12 are the same in the case where the phase modulation circuit 13 is not provided and in the case where the phase modulation circuit 13 is provided will be described.
 図16は、位相変調回路13が設けられない場合において、発電機12で発生する電圧、電流、力率の比較例をそれぞれ示すグラフである。図16(a)は電圧を示し、図16(b)は電流を示し、図16(c)は力率を示す。なお、力率は、有効電力/(有効電力^2+無効電力^2)^1/2で表される値である。本実施形態において「電圧」「電流」と記載する場合は、それぞれ有効電圧及び有効電流を意味する。また、図16(d)として、発電機12から出力され電圧センサ13sで検出される直流電圧値のグラフを示している。図16(a)~(d)の各グラフの横軸は時刻を示し、縦軸はそれぞれ電圧の大きさ(相対値)、電流の大きさ(相対値)、力率、及び直流電圧の大きさを示す。 FIG. 16 is a graph showing comparative examples of voltage, current, and power factor generated by the generator 12 when the phase modulation circuit 13 is not provided. FIG. 16A shows the voltage, FIG. 16B shows the current, and FIG. 16C shows the power factor. The power factor is a value represented by active power / (active power ^ 2 + reactive power ^ 2) ^ 1/2. In this embodiment, “voltage” and “current” refer to an effective voltage and an effective current, respectively. FIG. 16D shows a graph of the DC voltage value output from the generator 12 and detected by the voltage sensor 13s. 16A to 16D, the horizontal axis represents time, and the vertical axis represents voltage magnitude (relative value), current magnitude (relative value), power factor, and DC voltage magnitude, respectively. It shows.
 図16(a)及び(b)に示すように、位相変調回路13が設けられない場合、発電機12で発生した電力は、発電機12に設けられるコイルのリアクタンスの影響により、電圧の位相に対して電流の位相が位相αだけ遅れる。このため、図16(c)に示すように、力率の値が1よりも小さい値となる。この場合、電圧センサ13sで検出される直流電圧値はVとなる。 As shown in FIGS. 16A and 16B, when the phase modulation circuit 13 is not provided, the electric power generated in the generator 12 changes to the voltage phase due to the reactance of the coil provided in the generator 12. On the other hand, the phase of the current is delayed by the phase α. For this reason, as shown in FIG.16 (c), the value of a power factor becomes a value smaller than one. In this case, the DC voltage detected by the voltage sensor 13s becomes V P.
 図17は、位相変調回路13が設けられる場合において、発電機12で発生し、位相変調回路13の接続部P2から出力される電圧、電流及び力率の実施例をそれぞれ示すグラフである。図17(b)は、電圧を示し、図17(c)は電流を示し、図17(d)は力率を示す。図17(b)では、位相変調回路13から出力される電圧Vacoutと、発電機12から出力される電圧Vacinと、位相変調回路13のコンデンサCから出力される電圧Vと、を重ねて示している。図17(b)にてそれぞれの電圧について電圧Vacoutを点線、電圧Vacinを実線、電圧Vを一点鎖線で示す。また、図17(a)として、位相変調回路13のスイッチング素子S1、S3のON、OFFのタイミングと、スイッチング素子S2、S4のON、OFFのタイミングとを表すタイミングチャートを示している。また、図17(e)として、位相変調回路13から出力され電圧センサ13sで検出される直流電圧値のグラフを示している。図17(a)~(e)の各グラフの横軸は時刻を示し、縦軸はそれぞれON/OFFの位置、電圧の大きさ(相対値)、電流の大きさ(相対値)、力率、及び直流電圧の大きさを示す。 FIG. 17 is a graph showing examples of voltage, current, and power factor generated by the generator 12 and output from the connection portion P2 of the phase modulation circuit 13 when the phase modulation circuit 13 is provided. FIG. 17B shows the voltage, FIG. 17C shows the current, and FIG. 17D shows the power factor. In FIG. 17 (b), the overlapping voltage V acout output from the phase modulation circuit 13, a voltage V acin output from the generator 12, the voltage V C output from the capacitor C of the phase modulation circuit 13, a It shows. 17 for each of the voltage a voltage V acout at (b) the dotted line shows the voltage V acin solid, the voltage V C by the one-dot chain line. FIG. 17A shows a timing chart showing the ON / OFF timings of the switching elements S1 and S3 of the phase modulation circuit 13 and the ON / OFF timings of the switching elements S2 and S4. FIG. 17E shows a graph of the DC voltage value output from the phase modulation circuit 13 and detected by the voltage sensor 13s. In each graph of FIGS. 17A to 17E, the horizontal axis represents time, and the vertical axis represents ON / OFF position, voltage magnitude (relative value), current magnitude (relative value), and power factor. , And the magnitude of the DC voltage.
 位相変調回路13が設けられる場合、例えば、図17(a)の区間(1)で示される時刻では、発電機12で発生した電圧の値が最小値(負の値)となった場合、位相変調回路制御部34は、スイッチング素子S1、S3をONにし、スイッチング素子S2、S4をOFFにする。この場合、位相変調回路13の接続部P1の電圧が負であるため、コンデンサCが帯電する。 When the phase modulation circuit 13 is provided, for example, at the time indicated by the section (1) in FIG. 17A, when the value of the voltage generated in the generator 12 becomes the minimum value (negative value), the phase The modulation circuit control unit 34 turns on the switching elements S1 and S3 and turns off the switching elements S2 and S4. In this case, since the voltage at the connection portion P1 of the phase modulation circuit 13 is negative, the capacitor C is charged.
 その後、区間(2)に示すように、電圧の値が徐々に増加して正に切り替わるタイミングまで、位相変調回路制御部34は、スイッチング素子S1、S3がON、スイッチング素子S2、S4がOFFの状態を維持する。この場合、位相変調回路13の接続部P1の電圧が正であるため、位相変調回路13のコンデンサCが放電する。 Thereafter, as shown in the section (2), until the voltage value gradually increases and switches to positive, the phase modulation circuit control unit 34 turns on the switching elements S1 and S3 and turns off the switching elements S2 and S4. Maintain state. In this case, since the voltage at the connection portion P1 of the phase modulation circuit 13 is positive, the capacitor C of the phase modulation circuit 13 is discharged.
 その後、区間(3)に示すように、電圧の値が最大値(正の値)となるタイミングで、位相変調回路制御部34は、スイッチング素子S1、S3をOFFに切り替え、スイッチング素子S2、S4をONに切り替える。この場合、位相変調回路13の接続部P1の電圧が正であるため、コンデンサCが帯電する。 Thereafter, as shown in the section (3), at the timing when the voltage value becomes the maximum value (positive value), the phase modulation circuit control unit 34 switches the switching elements S1 and S3 to OFF and the switching elements S2 and S4. To ON. In this case, since the voltage at the connection portion P1 of the phase modulation circuit 13 is positive, the capacitor C is charged.
 その後、区間(4)に示すように、電圧の値が徐々に増加して負に切り替わるタイミングまで、位相変調回路制御部34は、スイッチング素子S1、S3がOFF、スイッチング素子S2、S4がONの状態を維持する。この場合、位相変調回路13の接続部P1の電圧が負であるため、位相変調回路13のコンデンサCが放電する。 Thereafter, as shown in the section (4), until the voltage value gradually increases and switches to negative, the phase modulation circuit control unit 34 turns off the switching elements S1 and S3 and turns on the switching elements S2 and S4. Maintain state. In this case, since the voltage at the connection portion P1 of the phase modulation circuit 13 is negative, the capacitor C of the phase modulation circuit 13 is discharged.
 このように、位相変調回路制御部34が位相変調回路13のスイッチング素子S1、S2、S3、S4のONとOFFとを切り替えることにより、コンデンサCの帯電と放電とのタイミングを制御する。発電機12の出力電圧Vacinは、位相変調回路13からの出力電圧Vacoutと、コンデンサCから出力される電圧Vを加算した値となる。この電圧Vacinの位相は、位相変調回路13から出力される電流の位相と等しくなる。これにより、位相変調回路13から出力される電力において電圧と電流との位相が等しくなるため、力率は1になる。図17(e)に示すように、位相変調回路13から出力される直流電圧値はVとなる。この直流電圧値Vは、位相変調回路13が設けられない場合の直流電圧値Vよりも大きな値である。 In this manner, the phase modulation circuit control unit 34 controls the timing of charging and discharging of the capacitor C by switching the switching elements S1, S2, S3, and S4 of the phase modulation circuit 13 on and off. Output voltage V acin of the generator 12 becomes an output voltage V acout from the phase modulation circuit 13, a value obtained by adding the voltage V C output from the capacitor C. The phase of the voltage V acin is equal to the phase of the current output from the phase modulation circuit 13. Thereby, in the electric power output from the phase modulation circuit 13, the phase of the voltage and the current becomes equal, so that the power factor becomes 1. As shown in FIG. 17 (e), the DC voltage value output from the phase modulation circuit 13 becomes V Q. The DC voltage value V Q is a value larger than the DC voltage value V P when the phase modulation circuit 13 is not provided.
 このように、位相変調回路13が設けられることにより、発電機12の力率が改善される。力率の改善により、動力伝達装置10は、内燃機関11及び発電機12のサイズが同一であり、アクセル開度を同一とする場合、位相変調回路13が設けられることにより、位相変調回路13が設けられない構成に比べて、発電機12の出力が高められることになる。このため、動力伝達装置10の伝達効率が向上することになる。 Thus, by providing the phase modulation circuit 13, the power factor of the generator 12 is improved. By improving the power factor, in the power transmission device 10, when the internal combustion engine 11 and the generator 12 are the same size and the accelerator opening is the same, the phase modulation circuit 13 is provided by providing the phase modulation circuit 13. The output of the generator 12 is increased as compared with the configuration in which the generator 12 is not provided. For this reason, the transmission efficiency of the power transmission device 10 is improved.
 この場合、本実施形態における動力伝達装置10では、位相変調回路13が設けられない構成に比べて、電圧センサ13sで検出され演算部53に入力される直流電圧値が大きい値となる。したがって、エンジン回転速度(又はモータ回転速度)の値がそれほど大きくなくても、電圧センサ13sで検出される直流電圧値は大きくなる。そこで、直流電圧指令値算出部52から出力される直流電圧指令値が位相変調回路13による電圧の上昇を予め見込んだ値となるように、直流電圧指令算出情報D2を設定することができる。 In this case, in the power transmission device 10 according to the present embodiment, the DC voltage value detected by the voltage sensor 13s and input to the calculation unit 53 is larger than that in the configuration in which the phase modulation circuit 13 is not provided. Therefore, even if the value of the engine rotation speed (or motor rotation speed) is not so large, the DC voltage value detected by the voltage sensor 13s is large. Therefore, the DC voltage command calculation information D2 can be set so that the DC voltage command value output from the DC voltage command value calculation unit 52 is a value that anticipates a voltage increase by the phase modulation circuit 13 in advance.
 図18は、直流電圧指令値算出情報の一例を示すグラフである。図18(a)は、位相変調回路13が設けられない場合の直流電圧指令値算出情報103を示すグラフである。図18(b)は、位相変調回路13が設けられる場合の直流電圧指令値算出情報104を示すグラフである。なお、図18(b)に示す直流電圧指令値算出情報104は、上記の直流電圧指令値算出情報D2と同一であってもよい。図18(a)及び(b)に示すように、直流電圧指令値算出情報103、104は、横軸をエンジン回転速度とし、縦軸をモータ回転速度とするグラフにおいて、対応する直流電圧指令値を示す領域が設定されたものである。 FIG. 18 is a graph showing an example of DC voltage command value calculation information. FIG. 18A is a graph showing the DC voltage command value calculation information 103 when the phase modulation circuit 13 is not provided. FIG. 18B is a graph showing the DC voltage command value calculation information 104 when the phase modulation circuit 13 is provided. Note that the DC voltage command value calculation information 104 shown in FIG. 18B may be the same as the DC voltage command value calculation information D2. As shown in FIGS. 18 (a) and 18 (b), the DC voltage command value calculation information 103, 104 has a corresponding DC voltage command value in a graph in which the horizontal axis is the engine rotation speed and the vertical axis is the motor rotation speed. Is set.
 図18(a)及び(b)に示す直流電圧指令値算出情報103、104では、それぞれ4つの電圧値V1、V2、V3、V4についての領域が等高線を境界として設定されている。4つの電圧値の大小関係は、V1>V2>V3>V4である。例えば、エンジン回転速度及びモータ回転速度が小さい場合、直流電圧指令値は、最も小さい値である電圧値V4に設定される。また、エンジン回転速度及びモータ回転速度の一方または双方が大きくなりいずれかの回転速度が所定値を超えると、直流電圧指令値は、電圧値V4よりも大きい電圧値V3に設定される。同様にエンジン回転速度及びモータ回転速度の一方または双方が大きくなりいずれかの回転数が所定の回転速度を超えると電圧値V3より大きい電圧値V2、電圧値V2より大きい電圧値V1と設定される。 In the DC voltage command value calculation information 103 and 104 shown in FIGS. 18A and 18B, regions for four voltage values V1, V2, V3, and V4 are set with contour lines as boundaries. The relationship between the four voltage values is V1> V2> V3> V4. For example, when the engine rotation speed and the motor rotation speed are small, the DC voltage command value is set to the voltage value V4 that is the smallest value. Further, when one or both of the engine rotation speed and the motor rotation speed increase and one of the rotation speeds exceeds a predetermined value, the DC voltage command value is set to a voltage value V3 larger than the voltage value V4. Similarly, when one or both of the engine rotation speed and the motor rotation speed increase and any one of the rotation speeds exceeds a predetermined rotation speed, a voltage value V2 greater than the voltage value V3 and a voltage value V1 greater than the voltage value V2 are set. .
 図18(a)に示す直流電圧指令値算出情報103は、等高線の勾配が緩やかであり、4つの領域で比較的大きい電圧値である電圧値V1、V2の範囲が高回転速度側に配置されている。これに対して、図18(b)に示す直流電圧指令値算出情報104は、図18(a)に示す直流電圧指令値算出情報103に比べて、電圧値V1、V2の範囲が低回転速度側に亘って広範囲に設定されている。このように、直流電圧指令値算出情報D2が電圧上昇を見込んだ値を出力するように設定されることにより、発電機12で生じる電力が励磁装置19によって適切に調整されることになる。なお、直流電圧指令値算出情報D2は、予め実験やシミュレーションを行うことで独自に設定されてもよい。 In the DC voltage command value calculation information 103 shown in FIG. 18A, the contour gradient is gentle, and the ranges of voltage values V1 and V2, which are relatively large voltage values in four regions, are arranged on the high rotation speed side. ing. On the other hand, in the DC voltage command value calculation information 104 shown in FIG. 18B, the range of the voltage values V1 and V2 is lower than the DC voltage command value calculation information 103 shown in FIG. Widely set across the sides. In this way, the DC voltage command value calculation information D2 is set so as to output a value that anticipates a voltage increase, so that the power generated in the generator 12 is appropriately adjusted by the excitation device 19. Note that the DC voltage command value calculation information D2 may be uniquely set by performing an experiment or simulation in advance.
 図19は、電圧センサ13sで検出される直流電圧値の一例を示すグラフである。図19の電圧値105は、位相変調回路13が設けられない場合の値である。図19の電圧値106は、位相変調回路13が設けられる場合の値である。図19に示すように、位相変調回路13が設けられる場合においても、位相変調回路13が設けられない場合と同等の出力を得ることができる。 FIG. 19 is a graph showing an example of a DC voltage value detected by the voltage sensor 13s. The voltage value 105 in FIG. 19 is a value when the phase modulation circuit 13 is not provided. A voltage value 106 in FIG. 19 is a value when the phase modulation circuit 13 is provided. As shown in FIG. 19, even when the phase modulation circuit 13 is provided, an output equivalent to the case where the phase modulation circuit 13 is not provided can be obtained.
 例えば、動力伝達装置10は、発電機12のサイズを小さくしても、位相変調回路13が設けられない構成と同一の出力を得ることができる。また、動力伝達装置10は、発電機12及び内燃機関11のサイズを変更することなく、例えば内燃機関11で発生した動力を、発電機12の駆動とは異なる他の用途に利用することにより、内燃機関11から発電機12に供給される出力を少なくしても、位相変調回路13が設けられない構成と同一の出力を得ることができる。 For example, the power transmission device 10 can obtain the same output as the configuration in which the phase modulation circuit 13 is not provided even if the size of the generator 12 is reduced. Further, the power transmission device 10 does not change the sizes of the generator 12 and the internal combustion engine 11, for example, by using the power generated in the internal combustion engine 11 for other purposes different from the driving of the generator 12, Even if the output supplied from the internal combustion engine 11 to the generator 12 is reduced, the same output as the configuration in which the phase modulation circuit 13 is not provided can be obtained.
 また、動力伝達装置10は、内燃機関11及び発電機12のサイズが同一である場合には、エンジン回転速度指令値算出情報D1のエンジン回転速度を下げた状態で運転しても、位相変調回路13が設けられない構成と同一の出力を得ることができる。図20は、エンジン回転速度指令値算出情報の一例を示すグラフである。図20の縦軸はエンジン回転速度指令値の大きさ(相対値)を示し、図20の横軸はアクセル開度の大きさ(相対値)を示す。図20の指令値107は、位相変調回路13が設けられない場合におけるエンジン回転速度指令値を示す。図20の指令値108は、位相変調回路13が設けられる場合のエンジン回転速度指令値を示す。図20に示すように、位相変調回路13が設けられる場合、同一のアクセル開度に対する指令値108の大きさが、位相変調回路13が設けられない場合の指令値107よりも小さくなるように設定されている。 Further, when the sizes of the internal combustion engine 11 and the generator 12 are the same, the power transmission device 10 can be operated even when the engine rotation speed of the engine rotation speed command value calculation information D1 is lowered and the phase modulation circuit. The same output as that of the configuration in which 13 is not provided can be obtained. FIG. 20 is a graph showing an example of engine rotation speed command value calculation information. The vertical axis in FIG. 20 indicates the magnitude (relative value) of the engine speed command value, and the horizontal axis in FIG. 20 indicates the magnitude (relative value) of the accelerator opening. A command value 107 in FIG. 20 indicates an engine speed command value when the phase modulation circuit 13 is not provided. A command value 108 in FIG. 20 indicates an engine rotation speed command value when the phase modulation circuit 13 is provided. As shown in FIG. 20, when the phase modulation circuit 13 is provided, the command value 108 for the same accelerator opening is set to be smaller than the command value 107 when the phase modulation circuit 13 is not provided. Has been.
 図21は、エンジン回転速度指令値と時刻との関係を示すグラフである。図21の縦軸はエンジン回転速度指令値を示し、図21の横軸は時刻を示す。図21のエンジン回転速度指令値109は、位相変調回路13が設けられない場合のエンジン回転速度指令値を示す。図21のエンジン回転速度指令値110は、位相変調回路13が設けられる場合のエンジン回転速度指令値を示す。上記のように指令値108が設定されることにより、位相変調回路13が設けられる場合のエンジン回転速度指令値110は、位相変調回路13が設けられない場合のエンジン回転速度指令値109に比べて小さい値となる。この場合、位相変調回路13が設けられない場合と同一のアクセル開度指令を受けた場合でも、同一の走行特性を実現することができる。また、内燃機関11がより低回転で駆動する事になるため、エンジン低回転化による内燃機関11の燃費の改善を図ることができる。 FIG. 21 is a graph showing the relationship between the engine speed command value and time. The vertical axis in FIG. 21 indicates the engine speed command value, and the horizontal axis in FIG. 21 indicates time. An engine rotation speed command value 109 in FIG. 21 indicates an engine rotation speed command value when the phase modulation circuit 13 is not provided. An engine rotation speed command value 110 in FIG. 21 indicates an engine rotation speed command value when the phase modulation circuit 13 is provided. By setting the command value 108 as described above, the engine speed command value 110 when the phase modulation circuit 13 is provided is compared with the engine speed command value 109 when the phase modulation circuit 13 is not provided. Small value. In this case, even when the same accelerator opening command is received as when the phase modulation circuit 13 is not provided, the same running characteristics can be realized. Further, since the internal combustion engine 11 is driven at a lower rotation, the fuel consumption of the internal combustion engine 11 can be improved by reducing the engine rotation.
 図22(a)及び(b)は、エンジン回転速度とエンジントルクとの関係を示すグラフであり、出力指令値算出情報の一例を示すグラフである。図22(a)及び(b)の縦軸はエンジントルクを示し、図22の横軸はエンジン回転速度を示す。図22(a)及び(b)の出力線111は、位相変調回路13が設けられない場合の出力線を示す。図22(a)及び(b)の出力線112は、位相変調回路13が設けられる場合の出力線を示す。 22 (a) and 22 (b) are graphs showing the relationship between the engine rotation speed and the engine torque, and are graphs showing an example of output command value calculation information. 22A and 22B, the vertical axis represents engine torque, and the horizontal axis in FIG. 22 represents engine rotation speed. Output lines 111 in FIGS. 22A and 22B are output lines when the phase modulation circuit 13 is not provided. Output lines 112 in FIGS. 22A and 22B are output lines when the phase modulation circuit 13 is provided.
 図22(a)に示すように、位相変調回路13が設けられる場合の出力線112を低回転側に設定することにより、内燃機関11及び発電機12のサイズが同一であり、かつ、アクセル開度指令が同一である場合でも、よりエンジントルクが高出力となる側のモータトルク指令を許容することができる。これにより、直流電圧指令算出情報D2を変更してエンジン回転速度を低下させた環境とした場合でも、モータ出力値を増加させた状態とすることができる。 As shown in FIG. 22A, by setting the output line 112 when the phase modulation circuit 13 is provided to the low rotation side, the sizes of the internal combustion engine 11 and the generator 12 are the same, and the accelerator is opened. Even when the degree command is the same, the motor torque command on the side where the engine torque becomes higher can be permitted. As a result, even when the DC voltage command calculation information D2 is changed and the engine speed is reduced, the motor output value can be increased.
 図22(b)は、位相変調回路13が設けられない場合の出力指令値算出情報と、位相変調回路13が設けられかつ内燃機関11を小型化した場合の出力指令値算出情報とを比較して示す図である。図22(b)に示すように、内燃機関11を小型化することにより、エンジン出力制限値が低下する。このような場合でも、位相変調回路13が設けられない場合と同じ発電機12の出力を実現できる。この場合、内燃機関11の小型化により、燃費の向上を図ることができる。 FIG. 22B compares the output command value calculation information when the phase modulation circuit 13 is not provided with the output command value calculation information when the phase modulation circuit 13 is provided and the internal combustion engine 11 is downsized. FIG. As shown in FIG. 22B, the engine output limit value is reduced by downsizing the internal combustion engine 11. Even in such a case, the same output of the generator 12 as when the phase modulation circuit 13 is not provided can be realized. In this case, fuel efficiency can be improved by downsizing the internal combustion engine 11.
 以上のように、本実施形態に係る動力伝達装置10は、内燃機関11の動力により電力を発生させる発電機12と、発電機12で発生した電力により、駆動力を発生する電動機16と、電動機16で発生した駆動力により走行する走行装置4と、発電機12と電動機16との間に直列に接続されるコンデンサCと、コンデンサCの正極側及び負極側にそれぞれ接続されるスイッチング素子S1、S2、S3、S4とを有する位相変調回路13と、スイッチング素子S1、S2、S3、S4を切り替えてコンデンサCの帯電状態と放電状態とを切り替えることで発電機12から電動機16に供給される電流の位相を変調する制御装置30とを備える。この構成により、発電機12で発生する電圧の位相に対する電流の位相の遅れを改善することが可能となる。これにより、発電機12の力率の低下を抑制することができるため、動力伝達装置10の伝達効率の低下を抑制することができる。 As described above, the power transmission device 10 according to the present embodiment includes the generator 12 that generates electric power by the power of the internal combustion engine 11, the electric motor 16 that generates driving force by the electric power generated by the electric generator 12, and the electric motor. 16, the traveling device 4 that travels by the driving force generated in 16, the capacitor C connected in series between the generator 12 and the motor 16, and the switching element S1 connected to the positive electrode side and the negative electrode side of the capacitor C, The current supplied from the generator 12 to the motor 16 by switching the charging state and the discharging state of the capacitor C by switching the phase modulation circuit 13 having S2, S3, S4 and the switching elements S1, S2, S3, S4. And a control device 30 that modulates the phase. With this configuration, it is possible to improve the phase delay of the current with respect to the phase of the voltage generated in the generator 12. Thereby, since the fall of the power factor of the generator 12 can be suppressed, the fall of the transmission efficiency of the power transmission device 10 can be suppressed.
 また、本実施形態に係る動力伝達装置10において、制御装置30は、発電機12で生じた電圧の位相に対する電流の位相の遅れを補償させるため、発電機12で発生する電圧の位相に対する電流の位相の遅れを確実に改善することが可能となる。これにより、発電機12の力率の低下を抑制することができる。 Further, in the power transmission device 10 according to the present embodiment, the control device 30 compensates for the phase delay of the current with respect to the phase of the voltage generated in the generator 12, so that the current with respect to the phase of the voltage generated in the generator 12 is It becomes possible to reliably improve the phase delay. Thereby, the fall of the power factor of the generator 12 can be suppressed.
 また、本実施形態に係る動力伝達装置10において、制御装置30は、電圧及び電流の周波数、すなわち、発電機12の回転速度に応じてコンデンサCの帯電状態と放電状態とを切り替えるタイミングを調整するため、内燃機関11のエンジン回転速度の変動に応じて、柔軟に位相遅れを改善することが可能となる。これにより、発電機12の力率の低下をより確実に抑制することができる。 Further, in the power transmission device 10 according to the present embodiment, the control device 30 adjusts the timing of switching between the charged state and the discharged state of the capacitor C according to the frequency of the voltage and current, that is, the rotational speed of the generator 12. Therefore, the phase delay can be flexibly improved in accordance with the fluctuation of the engine speed of the internal combustion engine 11. Thereby, the fall of the power factor of the generator 12 can be suppressed more reliably.
 また、本実施形態に係る動力伝達装置10は、アクセル開度に応じた値であるため、オペレータの操作に基づく内燃機関11のエンジン回転速度の変動に応じて、柔軟に位相遅れを改善することが可能となる。これにより、発電機12の力率の低下をより確実に抑制することができる。 Moreover, since the power transmission device 10 according to the present embodiment has a value corresponding to the accelerator opening, the phase delay can be flexibly improved in accordance with fluctuations in the engine rotation speed of the internal combustion engine 11 based on the operation of the operator. Is possible. Thereby, the fall of the power factor of the generator 12 can be suppressed more reliably.
 また、本実施形態に係る動力伝達装置10において、位相変調回路13は、スイッチング素子S1、S2、S3、S4の4つのスイッチング素子を有する。位相変調回路13は、発電機12側から電動機16側に向けて、スイッチング素子S4とスイッチング素子S1とがこの順で直列に接続された第1部分A1と、第1部分A1に対して並列に設けられ、発電機12側から電動機16側に向けて、スイッチング素子S3とスイッチング素子S2とがこの順で直列に接続された第2部分A2と、を有する。コンデンサCは、正極側が第1部分A1のうちスイッチング素子S4とスイッチング素子S1との間の部分に接続され、負極側が第2部分A2のうちスイッチング素子S3とスイッチング素子S2との間の部分に接続される。これにより、コンデンサCの帯電状態と放電状態とを効率的に切り替えることができる。 Further, in the power transmission device 10 according to the present embodiment, the phase modulation circuit 13 has four switching elements S1, S2, S3, and S4. The phase modulation circuit 13 includes a first part A1 in which a switching element S4 and a switching element S1 are connected in series in this order from the generator 12 side to the electric motor 16 side, and in parallel with the first part A1. And a second portion A2 in which the switching element S3 and the switching element S2 are connected in series in this order from the generator 12 side toward the electric motor 16 side. The capacitor C has a positive electrode side connected to a portion between the switching element S4 and the switching element S1 in the first portion A1, and a negative electrode side connected to a portion between the switching element S3 and the switching element S2 in the second portion A2. Is done. Thereby, the charging state and discharging state of the capacitor C can be efficiently switched.
 また、本実施形態に係る動力伝達装置10において、発電機12は、生成される電力量を調整する励磁装置19を有する。制御装置30は、内燃機関11のエンジン回転速度と直流電圧指令値算出情報D2とに基づいて直流電圧指令値を算出し、算出した直流電圧指令値と、位相変調回路13から出力された電圧を整流器13aにより直流電圧に変換した検出値との差に基づいて、励磁装置19を制御する。これにより、発電機12で生じる電力が励磁装置19によって適切に調整することができる。 Moreover, in the power transmission device 10 according to the present embodiment, the generator 12 includes an excitation device 19 that adjusts the amount of generated electric power. The control device 30 calculates a DC voltage command value based on the engine speed of the internal combustion engine 11 and the DC voltage command value calculation information D2, and calculates the calculated DC voltage command value and the voltage output from the phase modulation circuit 13. The excitation device 19 is controlled based on the difference from the detected value converted into a DC voltage by the rectifier 13a. Thereby, the electric power generated in the generator 12 can be appropriately adjusted by the excitation device 19.
 また、本実施形態に係る動力伝達装置10において、直流電圧指令値算出情報D2は、電圧センサ13sによる検出結果である電圧値V1と、発電機12から位相変調回路13に入力される電圧を整流器13aにより直流電圧に変換した場合の比較値である電圧値V2との差に基づいて設定されるため、発電機12で生じる電力が励磁装置19によってより適切に調整することができる。 Further, in the power transmission device 10 according to the present embodiment, the DC voltage command value calculation information D2 includes a voltage value V1 that is a detection result by the voltage sensor 13s and a voltage input from the generator 12 to the phase modulation circuit 13 as a rectifier. Since it is set based on the difference from the voltage value V2, which is a comparison value when converted to a DC voltage by 13a, the power generated in the generator 12 can be more appropriately adjusted by the excitation device 19.
 また、本実施形態に係る動力伝達装置10は、内燃機関11の駆動力により所定の油圧アクチュエータを駆動する可変容量型の油圧ポンプ18をさらに備える。本実施形態に係る動力伝達装置10は、位相変調回路13が設けられない構成に比べて、発電機12の出力効率が高められることになる。このため、内燃機関11で発生した動力を、油圧ポンプ18等の用途に効率的に利用することができる。 The power transmission device 10 according to this embodiment further includes a variable displacement hydraulic pump 18 that drives a predetermined hydraulic actuator by the driving force of the internal combustion engine 11. In the power transmission device 10 according to the present embodiment, the output efficiency of the generator 12 is improved as compared with the configuration in which the phase modulation circuit 13 is not provided. For this reason, the motive power generated in the internal combustion engine 11 can be efficiently used for applications such as the hydraulic pump 18.
 また、本実施形態に係るダンプトラック1は、車体5と、車体5に設けられる走行装置4と、車体5に設けられ、走行装置4を駆動する動力を発生させる動力伝達装置10とを備えるため、動力の伝達効率に優れ、または燃費の面で優れたダンプトラック1を得ることができる。一般的に、鉱山用のダンプトラックは搬送物の積込から排出までの積載物搬送時には長距離を走行する。この時、車両の速度が安定した状況で走行されることが多くなる。このような状況で、動力伝達装置10に位相変調回路13が設けられることにより、一層効果を得ることができる。 Further, the dump truck 1 according to the present embodiment includes a vehicle body 5, a traveling device 4 provided in the vehicle body 5, and a power transmission device 10 provided in the vehicle body 5 and generating power for driving the traveling device 4. Thus, it is possible to obtain the dump truck 1 which is excellent in power transmission efficiency or excellent in fuel efficiency. In general, a dump truck for a mine travels a long distance when transporting a load from loading to discharging of the transported material. At this time, the vehicle is often driven in a state where the speed of the vehicle is stable. Under such circumstances, the power transmission device 10 is provided with the phase modulation circuit 13, so that a further effect can be obtained.
 以上、実施形態を説明したが、前述した内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 As mentioned above, although embodiment was described, embodiment is not limited by the content mentioned above. In addition, the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the above-described components can be appropriately combined. Furthermore, various omissions, substitutions, or changes of the components can be made without departing from the scope of the embodiment.
 例えば、上記実施形態では、コンデンサCの正極側及び負極側に、スイッチング素子が2つずつ、合計4つ設けられた構成が記載されていたが、これに限定するものではない。例えば、コンデンサCの正極側及び負極側の少なくとも一方においてスイッチング素子が1つであってもよい。また、コンデンサCの正極側及び負極側の少なくとも一方においてスイッチング素子が3つ以上であってもよい。 For example, in the above embodiment, a configuration in which a total of four switching elements are provided on each of the positive electrode side and the negative electrode side of the capacitor C is described, but the present invention is not limited to this. For example, one switching element may be provided on at least one of the positive electrode side and the negative electrode side of the capacitor C. Further, there may be three or more switching elements on at least one of the positive electrode side and the negative electrode side of the capacitor C.
 A1…第1部分、A2…第2部分、C…コンデンサ、D1…エンジン回転速度指令値算出情報、D2…直流電圧指令値算出情報、D3…出力指定値算出情報、D4…モータトルク指令値算出情報、D5…スイッチング指令値算出情報、S1…第1スイッチング素子(スイッチング素子)、S2…第2スイッチング素子(スイッチング素子)、S3…第3スイッチング素子(スイッチング素子)、S4…第4スイッチング素子(スイッチング素子)
V1,V2,V3,V4…電圧値、1…ダンプトラック(作業車両)、2…車両本体、3…ベッセル、4…走行装置、5…車体、6…車輪、7,7R,7F…車軸、8…キャブ、8a…アクセルペダル、10…動力伝達装置、11…内燃機関、11s,12s,16s…回転センサ、12…発電機、13…位相変調回路、13a,14…整流器、13s…電圧センサ、15…インバータ、16…電動機、17…動力伝達シャフト、18…油圧ポンプ、19…励磁装置、20…平滑コンデンサ、22…伝達機構、30…制御装置、31…内燃機関制御部、32…発電機制御部、33…電動機制御部、34…位相変調回路制御部、35…記憶部、51…エンジン回転速度指令値算出部、52…直流電圧指令値算出部、53…演算部、54…AVR、56…モータ出力指令演算部、57…出力指定値算出部、58…加減算部、59…制限モータ出力値算出部、60…出力調整リミッター、61…モータトルク指令値算出部、62…スイッチング指令値算出部。
A1 ... first part, A2 ... second part, C ... capacitor, D1 ... engine rotation speed command value calculation information, D2 ... DC voltage command value calculation information, D3 ... output specified value calculation information, D4 ... motor torque command value calculation Information, D5: Switching command value calculation information, S1: First switching element (switching element), S2: Second switching element (switching element), S3: Third switching element (switching element), S4: Fourth switching element ( Switching element)
V1, V2, V3, V4 ... voltage value, 1 ... dump truck (work vehicle), 2 ... vehicle body, 3 ... vessel, 4 ... traveling device, 5 ... vehicle body, 6 ... wheel, 7, 7R, 7F ... axle, DESCRIPTION OF SYMBOLS 8 ... Cab, 8a ... Accelerator pedal, 10 ... Power transmission device, 11 ... Internal combustion engine, 11s, 12s, 16s ... Rotation sensor, 12 ... Generator, 13 ... Phase modulation circuit, 13a, 14 ... Rectifier, 13s ... Voltage sensor DESCRIPTION OF SYMBOLS 15 ... Inverter, 16 ... Electric motor, 17 ... Power transmission shaft, 18 ... Hydraulic pump, 19 ... Excitation device, 20 ... Smoothing capacitor, 22 ... Transmission mechanism, 30 ... Control device, 31 ... Internal combustion engine control part, 32 ... Power generation Machine control unit 33 ... Motor control unit 34 ... Phase modulation circuit control unit 35 ... Storage unit 51 ... Engine rotation speed command value calculation unit 52 ... DC voltage command value calculation unit 53 ... Calculation unit 54 ... AVR 56 ... Motor output command calculation unit, 57 ... Output specified value calculation unit, 58 ... Addition / subtraction unit, 59 ... Limit motor output value calculation unit, 60 ... Output adjustment limiter, 61 ... Motor torque command value calculation unit, 62 ... Switching command value Calculation unit.

Claims (8)

  1.  内燃機関の動力により電力を発生させる発電機と、
     前記発電機で発生した電力により駆動力を発生する電動機と、
     前記電動機で発生した駆動力により走行する走行装置と、
     前記発電機と前記電動機との間に直列に接続されるコンデンサと、前記コンデンサの正極側及び負極側にそれぞれ接続されるスイッチング素子とを有する位相変調回路と、
     前記スイッチング素子を切り替えて前記コンデンサの帯電状態と放電状態とを切り替えることで前記発電機から前記電動機に供給される電流の位相を変調する制御装置と
     を備える作業車両の動力伝達装置。
    A generator for generating electric power by the power of the internal combustion engine;
    An electric motor that generates a driving force by the electric power generated by the generator;
    A traveling device that travels by the driving force generated by the electric motor;
    A phase modulation circuit having a capacitor connected in series between the generator and the motor, and a switching element connected to each of a positive electrode side and a negative electrode side of the capacitor;
    A power transmission device for a work vehicle, comprising: a control device that modulates a phase of a current supplied from the generator to the motor by switching the switching element to switch between a charged state and a discharged state of the capacitor.
  2.  前記制御装置は、前記発電機で生じた電圧の位相に対する前記電流の位相の遅れを補償させる
     請求項1に記載の作業車両の動力伝達装置。
    The power transmission device for a work vehicle according to claim 1, wherein the control device compensates for a phase delay of the current with respect to a phase of a voltage generated in the generator.
  3.  前記制御装置は、前記電圧及び前記電流の周波数に応じて前記コンデンサの帯電状態と放電状態とを切り替えるタイミングを調整する
     請求項2に記載の作業車両の動力伝達装置。
    The power transmission device for a work vehicle according to claim 2, wherein the control device adjusts a timing for switching between a charged state and a discharged state of the capacitor according to the frequency of the voltage and the current.
  4.  前記電流の周波数は、アクセル開度に応じた値である
     請求項3に記載の作業車両の動力伝達装置。
    The power transmission device for a work vehicle according to claim 3, wherein the frequency of the current is a value corresponding to an accelerator opening.
  5.  前記位相変調回路は、第1スイッチング素子、第2スイッチング素子、第3スイッチング素子及び第4スイッチング素子の4つの前記スイッチング素子を有し、
     前記位相変調回路は、
     前記発電機側から前記電動機側に向けて、前記第4スイッチング素子と前記第1スイッチング素子とがこの順で直列に接続された第1部分と、
     前記第1部分に対して並列に設けられ、前記発電機側から前記電動機側に向けて、前記第3スイッチング素子と前記第2スイッチング素子とがこの順で直列に接続された第2部分と、を有し、
     前記コンデンサは、正極側が前記第1部分のうち前記第4スイッチング素子と前記第1スイッチング素子との間の部分に接続され、負極側が前記第2部分のうち前記第3スイッチング素子と前記第2スイッチング素子との間の部分に接続される
     請求項1から請求項4のいずれか一項に記載の作業車両の動力伝達装置。
    The phase modulation circuit includes the four switching elements of a first switching element, a second switching element, a third switching element, and a fourth switching element,
    The phase modulation circuit includes:
    A first portion in which the fourth switching element and the first switching element are connected in series in this order from the generator side toward the motor side;
    A second part provided in parallel to the first part, wherein the third switching element and the second switching element are connected in series in this order from the generator side toward the motor side; Have
    The capacitor has a positive electrode side connected to a portion between the fourth switching element and the first switching element in the first portion, and a negative electrode side connected to the third switching element and the second switching in the second portion. The power transmission device for a work vehicle according to any one of claims 1 to 4, wherein the power transmission device is connected to a portion between the device and the element.
  6.  前記発電機は、生成される電力量を調整する励磁装置を有し、
     前記制御装置は、前記内燃機関の駆動速度と前記電動機の駆動速度とに基づいて直流電圧指令値を算出し、算出した前記直流電圧指令値と、前記位相変調回路から出力された電圧を整流器により直流電圧に変換した検出値との差に基づいて、前記励磁装置を制御する
     請求項1から請求項5のいずれか一項に記載の作業車両の動力伝達装置。
    The generator has an excitation device that adjusts the amount of power generated;
    The control device calculates a DC voltage command value based on the driving speed of the internal combustion engine and the driving speed of the electric motor, and the calculated DC voltage command value and the voltage output from the phase modulation circuit by a rectifier The power transmission device for a work vehicle according to any one of claims 1 to 5, wherein the excitation device is controlled based on a difference from a detection value converted into a DC voltage.
  7.  前記電動機の駆動速度は、前記検出値と、前記発電機から前記位相変調回路に入力される電圧を前記整流器により直流電圧に変換した場合の比較値との差に基づいて設定される
     請求項6に記載の作業車両の動力伝達装置。
    The drive speed of the electric motor is set based on a difference between the detected value and a comparison value when a voltage input from the generator to the phase modulation circuit is converted into a DC voltage by the rectifier. A power transmission device for a work vehicle according to claim 1.
  8.  前記内燃機関の駆動力により所定の油圧アクチュエータを駆動する可変容量型の油圧ポンプをさらに備える
     請求項1から請求項7のいずれか一項に記載の作業車両の動力伝達装置。
    The power transmission device for a work vehicle according to any one of claims 1 to 7, further comprising a variable displacement hydraulic pump that drives a predetermined hydraulic actuator by a driving force of the internal combustion engine.
PCT/JP2017/030986 2016-09-30 2017-08-29 Power transmission device for work vehicle WO2018061578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194528 2016-09-30
JP2016194528A JP6697823B2 (en) 2016-09-30 2016-09-30 Power transmission device for work vehicle

Publications (1)

Publication Number Publication Date
WO2018061578A1 true WO2018061578A1 (en) 2018-04-05

Family

ID=61762733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030986 WO2018061578A1 (en) 2016-09-30 2017-08-29 Power transmission device for work vehicle

Country Status (2)

Country Link
JP (1) JP6697823B2 (en)
WO (1) WO2018061578A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141162A (en) * 2004-11-12 2006-06-01 Fuji Electric Device Technology Co Ltd Apparatus for interconnecting generated power
WO2010046962A1 (en) * 2008-10-20 2010-04-29 株式会社MERSTech Prime mover system
JP2013166482A (en) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd Hybrid work vehicle
JP2015101290A (en) * 2013-11-27 2015-06-04 日立建機株式会社 Industrial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141162A (en) * 2004-11-12 2006-06-01 Fuji Electric Device Technology Co Ltd Apparatus for interconnecting generated power
WO2010046962A1 (en) * 2008-10-20 2010-04-29 株式会社MERSTech Prime mover system
JP2013166482A (en) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd Hybrid work vehicle
JP2015101290A (en) * 2013-11-27 2015-06-04 日立建機株式会社 Industrial vehicle

Also Published As

Publication number Publication date
JP2018052458A (en) 2018-04-05
JP6697823B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US7923953B2 (en) Linearity for field weakening in an interior permanent magnet machine
US8505464B2 (en) Control strategy for providing regenerative electrical power to trolley line in trolley capable mining truck
US8228016B2 (en) Gain adjustment to improve torque linearity in a field weakening region
JP4984236B2 (en) Electric vehicle control device
JP5201192B2 (en) Rotating machine control device
US8624543B2 (en) Switching strategy for switched reluctance machine
US5030898A (en) Variable voltage limit control for an electric propulsion system
JP6998717B2 (en) Variable magnetic force motor control method and control device
JP3914857B2 (en) Large transport vehicle
JP4697603B2 (en) Electric vehicle control device
US7511449B2 (en) Electric motor system implementing vector and slip control
US10014813B2 (en) Methods for switching on and for switching off an N-phase electric machine in a motor vehicle
WO2018061578A1 (en) Power transmission device for work vehicle
JP2020104818A (en) Power transmission device for work vehicle
US9621098B2 (en) Voltage control device and voltage control method
AU2015253763B2 (en) Current profile strategy for minimizing torque ripple and current
CN104995357B (en) Have the DC terminal voltage control device and its method of the engineering machinery of motor
JP4827017B2 (en) Electric vehicle control device
US8941346B2 (en) Switching frequency modulation utilizing rotor position
JP5099579B2 (en) Electric vehicle control device
JP5067604B2 (en) Electric vehicle control device
JP2020104819A (en) Power transmission device for work vehicle
JP2010011687A (en) Electric driving controller, electric vehicle, and overvoltage prevention method
JP6280950B2 (en) Induction motor control system
US20130140100A1 (en) Control Strategy For Powering Auxiliary Device In Trolley Capable Mining Truck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855536

Country of ref document: EP

Kind code of ref document: A1