WO2010046962A1 - Prime mover system - Google Patents

Prime mover system Download PDF

Info

Publication number
WO2010046962A1
WO2010046962A1 PCT/JP2008/068991 JP2008068991W WO2010046962A1 WO 2010046962 A1 WO2010046962 A1 WO 2010046962A1 JP 2008068991 W JP2008068991 W JP 2008068991W WO 2010046962 A1 WO2010046962 A1 WO 2010046962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
magnetic energy
voltage
generator
switch
Prior art date
Application number
PCT/JP2008/068991
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 志賀
忠幸 北原
諭 神子
小島 直人
志郎 福田
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/068991 priority Critical patent/WO2010046962A1/en
Publication of WO2010046962A1 publication Critical patent/WO2010046962A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/01AC-AC converter stage controlled to provide a defined AC voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a prime mover system including a heat engine, a generator, and an electric motor.
  • the present invention relates to a prime mover system that can improve the power generation efficiency of a generator at a high load.
  • a prime mover system that propels a train or a ship by driving an electric motor using electric power generated by a generator driven by a heat engine such as a diesel engine as a power source is known.
  • This method is based on a configuration in which an AC motor is driven via rectification (AC / DC conversion) and DC / AC conversion of AC power generated by a generator.
  • This system is economical because it has only a few electrical connections between the generator and the motor, so the degree of freedom of arrangement is high, and a power engine such as a diesel engine can be operated in its most efficient rotation range, and the engine is almost constant. Since it can be used for rotation, it has the advantage that noise and vibration countermeasures and exhaust gas purification are relatively easy.
  • this system is easy to control a plurality of vehicles in the case of a railway vehicle, etc., and has the advantage that the rotation speed control of the propeller (screw) can be performed by a switchboard in the case of a ship or the like. Have.
  • Patent Document 1 a vehicle drive system that collects regenerative energy at the time of braking and centrally manages a plurality of vehicles by providing generators and motors.
  • Patent Document 2 JP2007-37369 JP 2006-141162 A
  • a heat engine such as a diesel engine generally has high output efficiency at high output
  • a generator connected to the heat engine is operated in a high output state.
  • the output voltage of the generator decreases with an increase in output current due to an inductive component (that is, inductive reactance) included in the generator coil
  • the generator power generation efficiency decreases at high output, and thus the diesel engine.
  • An object of the present invention is to provide a prime mover system composed of a heat engine, a generator, and an electric motor that can reduce switching loss in (AC / DC conversion).
  • a prime mover system including a heat engine, a generator, and an electric motor as an exemplary aspect of the present invention is driven by a heat engine such as a diesel engine and the heat engine to generate AC power.
  • a generator a rectifier that rectifies AC power to generate DC power, an inverter that converts DC power to driving AC power of a predetermined frequency, an electric motor driven by the driving AC power, a rectifier and an inverter, And a smoothing capacitor connected to the direct current path between the generator and the rectifier, and a power source power adjustment switch connected between the generator and the rectifier.
  • the voltage sensor to be measured, and the magnitude of the output voltage of the power supply power adjustment switch connected to the voltage sensor and the power supply power adjustment switch according to the voltage signal from the voltage sensor Comprising by changing the phase of the flow, as well as compensate for the voltage drop of the AC power by inductive component included in the generator, and control means for adjusting a DC voltage of a DC path to a predetermined value.
  • the apparatus further includes excitation adjusting means connected to the generator and the voltage sensor, and adjusting the DC voltage of the DC path to a predetermined value by changing the field of the generator in accordance with a voltage signal from the voltage sensor. Good.
  • the adjustment of the DC voltage of the DC path by the control means may be configured to have priority over the adjustment of the DC voltage of the DC path by the excitation adjusting means.
  • a power source power adjustment switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and a DC terminal of the bridge circuit, and stores a magnetic energy storage capacitor that stores the magnetic energy of the current when the current is interrupted
  • a magnetic energy regenerative switch wherein the AC terminal of the bridge circuit is connected to the generator and the rectifier, respectively, and the control means provides a control signal to the gate of each reverse conducting semiconductor switch and is located on the diagonal line
  • the operation of turning on the reverse conducting semiconductor switch of the pair and turning off the reverse conducting semiconductor switch of the other pair simultaneously, and turning on the reverse conducting semiconductor switch in synchronization with the frequency of the internal induced electromotive voltage of the generator Controls the switching operation to alternately switch between the pair and the pair to be turned off, and the voltage signal from the voltage sensor
  • the magnetic energy regenerative switch that changes the magnitude of the input voltage and the current phase of the power supply power adjustment switch by changing the gate phase of each reverse conducting semiconductor switch and changing the phase of the switching operation with respect to the AC power. There may be.
  • a magnetic energy regenerative switch is connected in parallel to each of the two reverse conducting semiconductor switches and a bridge circuit composed of two diodes facing the reverse conducting semiconductor switch and the two diodes. It may be replaced with a configuration having two magnetic energy storage capacitors connected in series.
  • the magnetic energy regenerative switch is connected in parallel with two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series. It may be replaced with a configuration having a midpoint of the semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors.
  • the magnetic energy regeneration switch may be arranged in each of the U, V, and W phases of the AC power.
  • a configuration may further include an electric motor load sensor that is connected to the electric motor and measures a load of the electric motor, and further includes a heat engine control unit that controls the output of the heat engine in accordance with an output signal from the electric motor output sensor.
  • the inverter connected to the electric motor can return the regenerative power from the electric motor to the DC path side, and further includes a secondary battery connected to the DC path via the secondary battery adjusting means, and the secondary battery adjusting means Is connected to the heat engine control means, and the secondary battery adjustment means supplies power to the secondary battery from the DC path to charge the secondary battery, or conversely supplies power from the secondary battery to the DC path to
  • the heat engine control means may be configured to correct the output of the heat engine in accordance with the charge of the secondary battery adjustment means or the adjustment of the discharge.
  • the battery further includes a charge state sensor connected to the secondary battery for measuring the charge state of the secondary battery, and the secondary battery adjustment means adjusts charging or discharging according to a charge state signal from the charge state sensor. It can also be configured to do.
  • the electric motor may drive an electric locomotive, an electric vehicle, an electric vehicle, or a hybrid car, and may drive a floating body, an electric propulsion ship, or an electric propulsion submarine. Further, the electric motor may drive a machine, equipment, or workpiece installed in a building, factory, construction site, base, ship, train, aircraft, or truck.
  • a prime mover system that does not lower the power generation efficiency of a generator even in a high output state is provided, and switching loss in rectification (AC / DC conversion) is reduced with respect to the power obtained by the generator. Can be made.
  • FIG. 2A and FIG. 2B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40.
  • FIGS. 3A and 3B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40.
  • FIG. 4A and FIG. 4B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40.
  • 5 (a), 5 (b), 5 (c), and 5 (d) are diagrams for explaining the operation result of the AC power supply device incorporating the magnetic energy regenerative switch (MERS) 30.
  • FIG. 8A, 8B, 8C, 8D, and 8E show the MERS circuit 38 under the condition that the load voltage Vload is lower than the voltage E0 of the AC signal source 43.
  • FIG. 9 (a), 9 (b), 9 (c), 9 (d), and 9 (e) are conditions under which the voltage E0 of the AC signal source 43 and the load voltage Vload are substantially equal. It is a figure which simulates generator operation at the time of controlling MERS circuit 38.
  • FIG. 1 is a diagram showing a configuration of a prime mover system 100.
  • FIG. FIG. 16A is a graph showing the output power with respect to the output current of the generator.
  • FIG.16 (b) is a graph which shows the output voltage with respect to the output current of a generator.
  • FIG.16 (c) is a graph which shows the loss with respect to the output electric power of a generator. It is a figure which shows the example which improves the power factor of a generator using the magnetic energy regeneration switch (MERS) based on Embodiment 1 of this invention for the current path of a three-phase alternating current.
  • MERS magnetic energy regeneration switch
  • the power supply adjustment switch included in the prime mover system according to the present embodiment is, for example, a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS).
  • MERS magnetic energy regenerative switch
  • Magnetic energy regenerative switch for example, does not have reverse blocking capability, that is, it is possible to turn on / off current in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements and cut off the current.
  • This is a switch that can regenerate magnetic energy without loss by storing the magnetic energy of the current in the magnetic energy storage capacitor and releasing it to the load side through the semiconductor element provided with an on-gate. It is a magnetic energy regenerative switch with low loss that can be controlled.
  • a full bridge type MERS is disclosed.
  • the magnetic energy regenerative switch As a reverse conduction type semiconductor element, for example, a semiconductor element capable of forward control such as a power MOSFET, a transistor having an IGBT or a diode connected in reverse parallel (hereinafter referred to as a reverse conduction type semiconductor switch). Is used).
  • the magnetic energy regenerative switch (MERS) is configured by connecting a bridge circuit composed of the four reverse conducting semiconductor switches and a magnetic energy storage capacitor that absorbs and releases magnetic energy to the positive and negative electrodes of the bridge circuit. .
  • the magnetic energy regenerative switch (MERS) can flow current in either direction by controlling the gate phase of these four reverse conducting semiconductor switches.
  • the magnetic energy regenerative switch is a pair of two reverse conducting semiconductor switches located on a diagonal line among four reverse conducting semiconductor switches connected in a bridge, and the two pairs are turned on / off.
  • the switching operation is performed in synchronization with the frequency of the power source, and when one pair is on, the other pair is turned off.
  • the magnetic energy storage capacitor repeatedly charges and discharges magnetic energy in accordance with the on / off switching timing.
  • the charge of the magnetic energy storage capacitor is discharged to the load side through the reverse conducting semiconductor switch that is turned on, and the magnetic energy stored in the magnetic energy storage capacitor is discharged. Is regenerated as an induction component.
  • the magnetic energy regenerative switch controls the on / off gate phase of two pairs of two reverse conducting semiconductor switches located on the diagonal line among the four reverse conducting semiconductor switches.
  • MERS magnetic energy regenerative switch
  • the control unit changes the gate phase of the magnetic energy regenerative switch (MERS) in accordance with the smoothed DC voltage (detection voltage).
  • MERS magnetic energy regenerative switch
  • a magnetic energy regenerative switch as a power source power adjustment switch
  • a magnetic energy regenerative power source will be described as an example.
  • a magnetic energy regenerative load can also comprise a magnetic energy regenerative load by incorporating in an inductive load.
  • a magnetic energy regenerative switch can be connected in series between an AC power source and an inductive load to constitute a magnetic energy regenerative system.
  • FIG. 1 is a diagram showing a basic configuration of a magnetic energy regenerative power source 10 according to the present embodiment.
  • a magnetic energy regenerative power source 10 shown in FIG. 1 includes a magnetic energy regenerative switch (MERS) 30 that is a power source power adjustment switch, a generator 120, and a load 50.
  • the generator 120 corresponds to a generator driven by a heat engine such as a diesel engine, for example.
  • the generator 120 includes an AC power supply 20 and an inductive component 21 (or L component) due to the inductance of a coil constituting the generator 120 as an equivalent circuit thereof.
  • FIG. 1 is a diagram showing a basic configuration of a magnetic energy regenerative power source 10 according to the present embodiment.
  • a magnetic energy regenerative power source 10 shown in FIG. 1 includes a magnetic energy regenerative switch (MERS) 30 that is a power source power adjustment switch, a generator 120, and a load 50.
  • the generator 120 corresponds to a generator driven by a heat engine such as a diesel
  • the present invention is not limited to this. It is possible to use a generator that generates a plurality of phases of alternating current such as three phases in synchronism with the generator 120, and the magnetic energy regenerative switch (MERS) 30 is used by connecting to the alternating current path of each phase. be able to.
  • the load 50 includes a rectifier or the like to which AC power that has passed through the magnetic energy regenerative switch (MERS) 30 is supplied.
  • the magnetic energy regenerative switch (MERS) 30 is connected to a control unit 40 that controls the switching operation of the gate of the magnetic energy regenerative switch (MERS) 30.
  • rotational position detection means (not shown) for detecting the rotational position connected to the generator is connected to the control unit 40, and is synchronized with the frequency of the internal induced electromotive voltage of the generator as described later.
  • the AC power is controlled according to the voltage of the rectified DC power.
  • the magnetic energy regenerative switch (MERS) 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the inductive component 21 without loss.
  • the magnetic energy regenerative switch (MERS) 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and magnetic energy of a current that flows through the circuit when the reverse conducting semiconductor switch of the bridge circuit is cut off. And a magnetic energy storage capacitor 32 that absorbs.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the magnetic energy storage capacitor 32 is connected to the DC terminal DC (P) at the connection point between the reverse conducting semiconductor switch SW1 and the reverse conducting semiconductor switch SW3, and between the reverse conducting semiconductor switch SW2 and the reverse conducting semiconductor switch SW4. It is connected to a DC terminal DC (N) at a point.
  • a load 50 is connected to an AC terminal AC at a connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4, and an AC current is present at a connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3.
  • the AC power source 20 of the generator 120 is connected in series to the terminal AC.
  • the second pair is alternately turned on / off in synchronization with the power supply frequency. That is, when one pair is on, the other pair is off. Then, for example, when an off-gate is given to the first pair and an on-gate is given to the second pair, the current that has been conducted in the forward direction becomes the reverse conduction type semiconductor switch SW3-magnetic energy storage capacitor of the second pair.
  • 32--reverse conduction type semiconductor switch SW4 flows through the path, whereby the magnetic energy storage capacitor 32 is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor 32.
  • the magnetic energy of the current at the time of current interruption is accumulated in the magnetic energy storage capacitor until the voltage of the magnetic energy storage capacitor 32 increases and the current becomes zero, and the voltage of the magnetic energy storage capacitor 32 is increased until the capacitor current becomes zero.
  • the current interruption is completed.
  • the second pair has already been turned on, so that the charge of the magnetic energy storage capacitor 32 is discharged to the load 50 through the turned-on reverse conducting semiconductor switches SW3 and SW4, and the magnetic energy storage capacitor 32 Is regenerated to the inductive component 21 of the generator 120 through the load 50.
  • a pulse voltage is applied to the inductive component 21, and the magnitude of the voltage depends on the capacitance of the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switches SW 1 to SW 4 and the inductive component 21. It can be within the allowable withstand voltage range. Unlike the conventional series power factor correction capacitor, a DC capacitor can be used for the magnetic energy regenerative switch (MERS) 30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in reverse parallel can be used.
  • the control unit 40 controls the switching operation of the reverse conducting semiconductor switches SW1 to SW4 of the magnetic energy regenerative switch (MERS) 30. Specifically, it includes an on / off operation of a pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line in a bridge circuit of the magnetic energy regenerative switch (MERS) 30 and reverse conducting semiconductor switches SW3 and SW4. A control signal is transmitted to the gates G1 to G4 so that the pair is turned on and off simultaneously every half cycle so that when one is turned on, the other is turned off.
  • a predetermined timing before the polarity of the AC voltage of the generator is reversed, for example, about 6.94 ms before when the generator AC frequency of the generator 120 is 60 Hz, about 75 ° before the phase angle ⁇ ,
  • the current is reverse conducting semiconductor switch SW3-magnetic energy storage capacitor 32-reverse. It flows through a path that passes through the conductive semiconductor switch SW4.
  • magnetic energy is absorbed (charged) in the magnetic energy storage capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG.
  • the reverse conduction type semiconductor switch SW4 flows through a path passing through the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switch SW3. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1, the magnetic energy storage capacitor 32, and the reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the magnetic energy regenerative switch (MERS) 30 can cause a current to flow in both directions by alternately bringing two opposing pairs of reverse conducting semiconductor switches into a conducting state.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D illustrate the operation results of the AC power supply apparatus incorporating the magnetic energy regenerative switch (MERS) 30 when the power generation frequency of the generator is 60 Hz.
  • FIG. 5A shows power supply voltage and current waveforms when the magnetic energy regenerative switch (MERS) 30 is not incorporated.
  • FIG. 5B shows the magnetic energy regenerative switch (MERS) 30 incorporated.
  • FIG. 5C shows the waveform of the magnetic energy storage capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1
  • FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • FIG. 5D is a diagram in which the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch included in the magnetic energy regenerative power source 10 according to the present invention and the internal induced electromotive voltage of the generator are overlapped.
  • the phase of the gate signal needs to be advanced by 90 degrees with respect to the phase of the generator output voltage (without MERS) when there is no load.
  • this phase advance may cause a phase delay (for example, ⁇ ) due to an inductance component (L component) included in the load.
  • the phase ⁇ ′ (advance) of the gate signal with respect to the phase of the generator output voltage (without MERS) is about 75 deg.
  • FIG. 5D shows the relationship between the phase ⁇ set in this way, the internal induced electromotive voltage, and the gate-on signal in the aforementioned SW1.
  • SW2 performs switching in the same phase as SW1, and SW3 and SW4 perform switching in opposite phase to these.
  • phase ⁇ ′ (advance) of the gate signal with respect to the crest (or the bottom of the trough) of the internal induced electromotive voltage.
  • the values of ⁇ and ⁇ ′ are almost the same value.
  • the magnetic energy regenerative switch (MERS) 30 stores the magnetic energy of the alternating current in the magnetic energy storage capacitor 32 by adjusting the gate phases of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4. By advancing the phase of the current and regenerating the magnetic energy of the stored alternating current in the inductive component 21, it is possible to compensate the reactance of the generator and suppress a decrease in the output voltage of the generator. Thereby, the magnetic energy regenerative switch (MERS) 30 can bring the power factor of the AC power supply 20 close to 1. Further, the magnetic energy regenerative switch (MERS) 30 can arbitrarily control the phase of the current as well as advance the phase of the current, and can arbitrarily adjust the power factor. Furthermore, by storing the magnetic energy of the alternating current in the magnetic energy storage capacitor 32 and regenerating the stored magnetic energy in the inductive component 21, it is possible to increase or decrease the output voltage of the magnetic energy regenerative power supply 10 steplessly.
  • the internal induced electromotive voltage of the generator shown in FIG. 5 (d) exceeds ⁇ 250V, and an AC voltage of about 180V or more is generated as an execution value.
  • FIG. 5A when the magnetic energy regenerative switch (MERS) 30 is not incorporated, the output voltage of the generator decreases to, for example, less than ⁇ 30V due to the influence of the inductive component 21 described above. .
  • the generator output voltage can be recovered to about ⁇ 250 V as a peak value and to about 180 V as an execution value. It is.
  • the magnetic energy storage capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1. Is the current that flows through the diode of the reverse conducting semiconductor switch SW1 during parallel conduction.
  • the magnetic energy storage capacitor voltage is 0 even at the timing when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are obtained when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 75 deg when the AC frequency is 60 Hz.
  • the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of the magnetic energy regenerative switch (MERS) 30 should be continuously controlled from 0 deg to 360 deg. Can do.
  • FIG. 6 shows measured values of the output power of the magnetic energy regenerative power supply 10 incorporating the magnetic energy regenerative switch (MERS) 30 when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is changed.
  • FIG. 6A shows an example of the characteristics of the output power with respect to the gate phase angle ⁇ .
  • a permanent magnet type synchronous generator rated output power 1.2 kW, 87.5 Hz, rated voltage 130.6 V, rated current 5.5 A, 6 poles, rated rotational speed 1750 rpm
  • the output current is 4
  • the relationship between the gate phase angle ⁇ and the output voltage when measured at a constant value of 5 A was measured.
  • FIG. 6B is a diagram plotting the value of the gate phase angle ⁇ to be set against the output power. As the output power increases, the load angle ⁇ increases, thereby reducing the value of the gate phase angle ⁇ .
  • the magnetic energy regenerative power source 10 can extract the maximum power from the generator by controlling the gate phase angle ⁇ to an appropriate value. That is, in the magnetic energy regenerative power supply 10 according to the present embodiment, the gate phase angle ⁇ of the magnetic energy regenerative switch (MERS) 30 can be continuously controlled.
  • MERS magnetic energy regenerative switch
  • the gate phase angle ⁇ is controlled in the range from 180 deg to 360 deg, the result is the same as when the direction is changed from 180 deg to 0 deg.
  • an “advance region” in the range of 0 deg to 180 deg or a “lag region” in the range of 180 deg to 360 deg can be used.
  • the gate phase angle ⁇ can be controlled with less distortion, and an “advance region” in which the effect of the phase advance action is effective can be used.
  • the charging / discharging cycle of the magnetic energy storage capacitor 32 is a half cycle of the resonance cycle determined by the inductance of the inductive component 21 and the dielectric capacitance of the magnetic energy storage capacitor 32.
  • the magnetic energy regenerative switch ( MERS) 30 can always perform zero voltage zero current switching, that is, soft switching, regardless of the gate phase angle ⁇ .
  • the magnetic energy storage capacitor 32 used for the magnetic energy regenerative switch (MERS) 30 is only for storing the magnetic energy for a half period of the power source frequency of the inductive component 21 in the circuit. Is. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the dielectric capacity of the magnetic energy storage capacitor is selected so that the resonance period with the inductive component 21 is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the magnetic energy regenerative switch (MERS) 30. Therefore, the adverse effect of harmonic noise on precision instruments, measuring instruments, etc.
  • the magnetic energy regenerative switch (MERS) 30 can be used safely in hospitals and the like. it can.
  • soft switching since soft switching is used, power loss in the switching element is small and heat generation is small.
  • the magnetic energy regenerative switch (MERS) 30 when used as a gate pulse generator, a unique ID number can be assigned to each magnetic energy regenerative switch (MERS) 30, and a control signal from the outside can be used using this. Can be received and each magnetic energy regeneration switch (MERS) 30 can be controlled. For example, it is possible to wirelessly control the magnetic energy regenerative switch (MERS) 30 by sending a control signal wirelessly using a communication line such as the Internet.
  • FIG. 7 shows a MERS circuit 38 as a calculation model for simulating the operation of the magnetic energy regenerative switch (MERS) 30.
  • the MERS circuit 38 includes four of the above-described reverse conducting semiconductor switches, and U, V, X, and Y terminals that are input of control signals are provided at the gates of the switches.
  • the gate control unit 42 includes output terminals U, V, X, and Y for outputting control signals to these gates.
  • the same reference numerals are connected to the output terminal of the gate control unit 42 and the gate input of the MERS circuit 38, respectively.
  • the same signal is output from the output terminals X and V, and the same signal is output from the output terminals Y and U.
  • the relationship between the former and the latter is opposite in phase. It is in. That is, in the MERS circuit 38, a pair of reverse conducting semiconductor switches located on the opposite side receives the same control signal having an opposite phase relationship with the other pair.
  • These control modes are the same as those of the aforementioned magnetic energy regenerative switch (MERS) 30 which is a corresponding electronic circuit.
  • the AC signal source 44 provided in the gate control unit 42 is set to the same frequency as the AC signal source 43 assumed as a generator. Further, the AC power that has passed through the MERS circuit 38 is consumed by the load resistor 58.
  • the load resistor 58 may be composed of two resistors connected in parallel, or may be composed of one resistor, and can be arbitrarily set.
  • E0 is the voltage of the AC signal source 43, which assumes an internal induced electromotive voltage of the generator.
  • XsDrop and RDdrop are voltage drops of the AC signal source 43 due to the inductance component and resistance component of the generator.
  • a dropped AC voltage appears in Vout.
  • Vmers the voltage between the electrodes of the magnetic energy storage capacitor 32 inside the MERS circuit 38 appears.
  • Vload a voltage applied to the load resistor 58 appears.
  • Iout may be provided in order to monitor the current flowing through the load resistor 58.
  • the AC signal source 43 was a single-phase AC with a frequency of 60 Hz and a voltage of 254 V, and the inductance component and resistance component of the generator were 20 mH and 10 m ⁇ , respectively. Further, the magnetic energy storage capacitor 32 was set to 350 ⁇ F, and two 2 ⁇ resistors were connected in parallel as the load resistor 58.
  • FIG. 8 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled under the condition that the load voltage Vload is lower than the voltage E0 of the AC signal source 43.
  • the operating condition in which the load voltage Vload is lower than the voltage E0 corresponding to the internal induced electromotive voltage of the generator as shown in FIG. 8A is a state where the reactance of the generator is not completely compensated.
  • one 2 ⁇ resistor is used as the load resistor 58, and the value of the current appearing at the current monitor point 56 (Iout) is overwritten using the same scale as the voltage.
  • XsDrop was within ⁇ 1000 V
  • RDrop was within ⁇ 1 V
  • Vout was within ⁇ 600 V
  • Vmers was in the range of 0 to 600 V. .
  • FIG. 9 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled under the condition that the voltage E0 of the AC signal source 43 and the load voltage Vload are substantially equal. From the simulation results, as shown in FIG. 9A, the voltage drop due to the reactance of the generator is compensated, and the load voltage Vload can create a state substantially equal to the voltage E0 corresponding to the internal induced electromotive voltage of the generator. That is, in the present invention, it is possible to create a state where the power factor viewed from the generator is 1. The residual is considered to be an influence of RDrop which is a voltage drop of the AC signal source 43 due to the resistance component of the generator.
  • FIG. 10 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled by changing the load resistor 58 to a parallel connection (1 ⁇ ) of two resistors under the conditions of FIG. From the result of the simulation, as shown in FIG. 10A, as in FIG. 9A, the voltage drop due to the reactance of the generator is compensated, and the load voltage Vload corresponds to the internal induced electromotive voltage of the generator. A state almost equal to E0 can be created. However, the calculated current value appearing at the current monitor point 56 (Iout) is larger than that in FIG. Further, for other voltage monitoring points, as shown in FIGS.
  • XsDrop is within ⁇ 3000V
  • RDrop is within ⁇ 4V
  • Vout is within ⁇ 3000V
  • Vmers is within a range of 0 to 3000V. Increased and computationally dangerous conditions with high operating voltages occurred.
  • FIG. 11 is a diagram showing the voltage at each voltage monitoring point when MERS control is not performed, as a comparison with FIGS. 9 and 10.
  • the voltage E0 corresponding to the internal induced electromotive voltage of the generator is in the range of about ⁇ 250V, while the load voltage Vload is less than about ⁇ 30V, The voltage cannot be secured.
  • XsDrop is ⁇ 300 or less
  • RDrop is ⁇ 0.4 V or less
  • Vout is ⁇ 30 V or less
  • most of E0 generates power. It was suggested that it was taken into the voltage drop by the inductance component of the machine.
  • FIG. 12 is a diagram illustrating the voltage at each voltage monitoring point when the MERS circuit 38 is operated in a part of each AC cycle, that is, between the states shown in FIGS. 8 and 11.
  • the characteristic of the load voltage Vload without MERS control shown in FIG. 12A is the same as that shown in FIG. 11A and is less than about ⁇ 30V.
  • the load voltage Vload in the case of MERS control could be secured over a range of about ⁇ 250 V (about 180 V as an execution value) as a peak.
  • XsDrop is within ⁇ 600V
  • RDrop is within ⁇ 0.6V
  • Vout is within ⁇ 250V
  • Vmers is within a range of 0 to 250V. there were.
  • a magnetic energy regenerative switch (MERS) 30 that is a power source power adjustment switch is between a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a DC terminal of the bridge circuit.
  • the magnetic energy storage capacitor 32 is connected, but the magnetic energy regenerative switch (MERS) 30 may be configured as follows.
  • FIGS. 13 and 14 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS) 30.
  • a magnetic energy regenerative switch (MERS) 30 shown in FIG. 13 is a full-bridge magnetic energy regenerative switch (MERS) 30 including the above-described four reverse conducting semiconductor switches SW1 to SW4 and one magnetic energy storage capacitor 32.
  • MERS magnetic energy regenerative switch
  • it is a vertical half-bridge type composed of two reverse conducting semiconductor switches, two diodes, and two magnetic energy storage capacitors.
  • this vertical half-bridge magnetic energy regenerative switch (MERS) 30 includes two reverse conducting semiconductor switches SW5 and SW6 connected in series, and two reverse conducting semiconductor switches SW5, Two magnetic energy storage capacitors 33 and 34 connected in series and provided in parallel with SW6, and two diodes D1 and D2 connected in parallel with the two magnetic energy storage capacitors 33 and 34, respectively, Contains.
  • the magnetic energy regenerative switch (MERS) 30 shown in FIG. 14 is a horizontal half-bridge type.
  • the horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two magnetic energy storage capacitors.
  • the horizontal half-bridge structure magnetic energy regenerative switch (MERS) 30 includes a reverse conduction type semiconductor switch SW7 and a magnetic energy storage capacitor 35 provided in series on the first path, and a first path.
  • a reverse conducting semiconductor switch SW8 and a magnetic energy storage capacitor 36 provided in series on a second path parallel to the first path, and a wiring connected in parallel to the first and second paths. .
  • FIG. 15 is a diagram showing a configuration of the prime mover system 100 according to the present embodiment.
  • a prime mover system 100 shown in FIG. 15 includes a heat engine 110, a generator 120, a magnetic energy regenerative switch (MERS) 30, a rectifier 130, a smoothing capacitor 140, a secondary battery 180, an inverter 160, and an electric motor (AC electric motor) 170.
  • the prime mover system 100 further includes a voltage sensor 210, excitation adjustment means 250, electric motor output sensor 270, and heat engine control means 280.
  • the secondary battery 180 is connected to a secondary battery adjusting unit 184 and a charge state sensor 182.
  • the heat engine 110 drives the generator 120, and the generator 120 generates AC power.
  • a suitable generator 120 is, for example, a 440 V, 60 Hz specification 12-pole three-phase synchronous generator, but various types such as a 690 V, 60 Hz specification three-phase synchronous generator can be used.
  • the magnetic energy regeneration switch (MERS) 30 is arrange
  • the magnetic energy regenerative power source 10 is configured by the control unit 40 to be controlled.
  • the rectifier 130 is connected to a magnetic energy regenerative switch (MERS) 30 and converts AC power into DC power by rectification.
  • the rectifier 130 is a rectifier circuit using a rectifier element such as a silicon diode or a thyristor.
  • a smoothing capacitor 140 is connected to the rectifier 130 via a DC path 150, and the smoothing capacitor 140 removes a pulsating flow component of the DC power rectified by the rectifier 130.
  • the DC path 150 extends to the inverter 160 and supplies DC power to the inverter 160.
  • the inverter 160 converts DC power into AC power having a frequency corresponding to the output state, and generates driving AC power for driving the electric motor 170, and the electric motor 170 generates power by the driving AC power.
  • the voltage and frequency are, for example, about 0 to 440 V and several tens of Hz to about 400 Hz in a 12-pole three-phase synchronous motor.
  • the 12-pole three-phase synchronous motor can typically rotate at about 1000 rpm, but the motor type, drive frequency, etc. are not limited to this, and depend on the application. Can be selected as appropriate.
  • a DC motor (not shown) driven by DC power may be used instead of the inverter 160 and the motor 170.
  • a voltage sensor 210 is connected to the DC path 150, and the voltage sensor 210 measures the voltage of DC power flowing through the DC path 150.
  • the control unit 40 changes the gate phase of the magnetic energy regenerative switch (MERS) 30 so that the voltage of the DC path 150 becomes a “predetermined value” according to the voltage measured by the voltage sensor 210.
  • the gate phase angle ⁇ is selected from the range of 50 deg to 75 deg, or the gate phase angle ⁇ is selected from the range of 75 deg to 90 deg. Can change. For example, as shown in FIG.
  • the gate phase angle ⁇ when the gate phase angle ⁇ is in the control range from 50 deg to 75 deg, the output power of the magnetic energy regenerative power supply 10 increases as the gate phase angle ⁇ increases. Therefore, for example, when the AC power is 60 Hz, the voltage measured by the voltage sensor 210 is compared with the “predetermined value” about every 8.3 ms, and the voltage measured by the voltage sensor 210 is larger than the “predetermined value”.
  • the gate phase angle ⁇ is small and, conversely, when the voltage measured by the voltage sensor 210 is smaller than the “predetermined value”, the gate phase angle ⁇ is increased to control the voltage of the DC path 150 as “ It can be maintained at a “predetermined value”.
  • the gate phase angle ⁇ when set to a control range from 75 deg to 90 deg, it may be controlled in the reverse direction.
  • the control range of the gate phase angle ⁇ is preferably in the vicinity of 75 deg, which has the greatest effect of advancing the phase of the current and thereby bringing the power factor of the AC power supply 20 close to 1.
  • the control center (gate phase angle ⁇ at which the voltage of the DC path 150 becomes “predetermined value”) is set to a control range centered on 75 deg (in the above example, 50 deg). To 90 deg) is desirable.
  • the prime mover system 100 also includes excitation adjustment means 250 that adjusts excitation of the generator 120 according to the voltage of the DC path 150 measured by the voltage sensor 210.
  • the excitation adjustment means 250 compares the voltage measured by the voltage sensor 210 with a “predetermined value”. When the voltage measured by the voltage sensor 210 is greater than the “predetermined value”, the excitation is weakened and the output of the generator is reduced. On the contrary, when the voltage measured by the voltage sensor 210 is smaller than the “predetermined value”, the excitation is strengthened to increase the capacity of the generator, and the control of maintaining the voltage of the DC path 150 at the “predetermined value” is performed. .
  • the control by the control unit 40 that changes the gate phase ⁇ of the magnetic energy regenerative switch (MERS) 30 according to the voltage of the DC path 150 measured by the voltage sensor 210 and the excitation adjustment that changes the excitation of the generator 120.
  • the control by means 250 coexists, it is desirable to share the role of control. That is, in this case, the momentary change in the voltage of the DC path 150 is corrected by the control of the gate phase ⁇ of the magnetic energy regenerative switch (MERS) 30 by the control unit 40, and the change in the voltage of the DC path 150 over the medium to long term. Is preferably corrected by controlling excitation of the generator 120 by the excitation adjusting means 250.
  • the prime mover system 100 can measure information regarding the output status of the electric motor 170 using the electric motor output sensor 270.
  • the information related to the operation status of the electric motor 170 may include, for example, information on the output voltage or output current of the inverter 160 that drives the electric motor 170, including the rotation speed, torque, counter electromotive voltage, and the like of the electric motor 170.
  • the heat engine control means 280 may control the output of the heat engine 110 according to the output signal from the electric motor output sensor 270.
  • the output control of the heat engine 110 includes fuel injection amount control, injection timing control, rotation speed control, and the like. Alternatively, these controls may include control of a speed governor (not shown) provided between the heat engine 110 and the generator 120.
  • the secondary battery 180 is connected to the DC path 150 via the secondary battery adjusting means 184.
  • the secondary battery adjustment means 184 is connected to the heat engine control means 280, and when the secondary battery adjustment means 184 supplies power to the secondary battery 180 from the DC path 150 to charge the secondary battery 180, or vice versa.
  • a signal is sent to the heat engine control means 280, and the heat engine control means 280 causes the secondary battery adjustment means 184 to connect the secondary battery 180.
  • the output of the diesel engine is larger than the amount corresponding to the output signal from the motor output sensor 270.
  • the motor output sensor 270 The output of the diesel engine can be controlled to be smaller than the amount corresponding to the output signal from the engine. If the inverter 160 connected to the electric motor can return the regenerative electric power from the electric motor to the DC path side, the regenerated electric power can be used for charging the secondary battery 180.
  • a charge state sensor 182 that is connected to the secondary battery 180 and measures the charge state of the secondary battery 180 may be provided.
  • the secondary battery adjustment means 184 can also be configured to adjust charging or discharging according to the charging state signal from the charging state sensor 182. Further, the secondary battery adjustment unit 184 charges the secondary battery 180 based on a charge state signal detected by the charge state sensor 182, for example, indicating that the secondary battery 180 needs to be charged. A request for increasing the output of the heat engine 110 by a predetermined amount may be transmitted to the heat engine control means 280. On the contrary, when the secondary battery 180 may be discharged, the secondary battery 180 is discharged, and a request to reduce the output of the heat engine 110 by a predetermined amount is transmitted to the heat engine control means 280. May be.
  • the secondary battery adjustment unit 184 may perform trickle charging to compensate for the spontaneous discharge of the secondary battery 180.
  • FIG. 16 is a graph showing the generator output characteristics of the prime mover system according to the present invention.
  • a 30 kW class three-phase synchronous generator was used as the AC power supply 20, and the generated power was consumed by the resistor bank.
  • a circuit was prepared by replacing the magnetic energy regenerative switch (MERS) with a rectifier circuit using a diode bridge, and the characteristics in this case were used as the generator output characteristics according to the prior art.
  • MERS magnetic energy regenerative switch
  • FIG. 16A is a graph showing the output power with respect to the output current of the generator.
  • FIG.16 (b) is a graph which shows the output voltage with respect to the output current of a generator.
  • FIG.16 (c) is a graph which shows the loss with respect to the output electric power of a generator.
  • the generator output characteristic 310 using the magnetic energy regenerative switch (MERS) reaches 30 kW which is the rated power of the generator in the region where the generator output current exceeds 50 [A]. It is possible to control the operation of the generator so as to maintain this rated power. Therefore, in the present invention, the stable operation of the generator can be maintained safely without creating an excessive operating state exceeding the rated power.
  • the generator output characteristic 320 according to the conventional technique the output power characteristic is saturated in the region where the output current of the generator reaches 50 [A], and the output can be reduced temporarily. It can be said that the output of the generator cannot be maintained in response to a typical load change.
  • the generator output characteristic 340 using the magnetic energy regenerative switch (MERS) has an output voltage characteristic of approximately 300 [V] even in a region where the generator output current exceeds 100 [A]. ] Can be maintained. Furthermore, when the phase angle for controlling the switching of the magnetic energy regenerative switch (MERS) is adjusted and the inductive reactance of the generator is compensated for operation, the magnetic energy regenerative switch (MERS) as shown in the compensation characteristic 330 is operated. It was possible to obtain an output voltage exceeding the generator output characteristic 340 using However, in the generator output characteristic 350 according to the prior art, the output voltage decreased with an increase in the generator output current, and the output voltage for the output current 80 [A] was less than 200 [V].
  • the generator output characteristics 370 using the magnetic energy regenerative switch (MERS) showed a tendency that the generator loss gradually increases with the increase in the generator output power.
  • the generator loss rapidly increased when the generator output power exceeded 25 [kW]. That is, in the prior art, even if more power is supplied for the operation of the generator, consumption due to loss increases and the output power tends to saturate. Under an operating condition where the generator output power is 30 [kW], the generator loss of the generator output characteristic 370 using the magnetic energy regenerative switch (MERS) according to the present invention is smaller than the generator output characteristic 360 according to the prior art. The value decreased by about 33%.
  • the generator output power is increased (about 62% increase), and the high output It is possible to stabilize the generator output voltage at the time and reduce the generator loss (about 33% reduction).
  • FIG. 17 shows a case where the magnetic energy regenerative switch (MERS) according to Embodiment 1 of the present invention is used in a three-phase AC current path.
  • MERS magnetic energy regenerative switch
  • FIG. 17 is an excerpt of a part of the configuration including the generator and the rectifier in the prime mover system according to the present invention. That is, in FIG. 17, a three-phase alternating current generator that generates three-phase alternating current is used as the generator 120, and this is driven by a heat engine 110 such as a diesel engine. A configuration for obtaining a direct current by wave rectification is shown.
  • the magnetic energy regenerative power supply 10 shown in FIG. 15 corresponds to the current paths of the three-phase alternating currents U, V, and W in FIG. 17, corresponding to magnetic energy regenerative switches (MERS) 30-U, 30-V, Contains 30-W as a whole.
  • MERS magnetic energy regenerative switches
  • MERS magnetic energy regenerative switches
  • the prime mover system uses a three-phase AC generator as the generator 120 and operates magnetic energy regenerative switches (MERS) 30-U, 30-V, 30-W. Similarly, it is possible to advance the phase of the current even in three-phase alternating current, thereby making it possible to bring the power factor of the alternating current power supply 20 close to 1, and to compensate for the decrease in the output voltage due to the inductive component of the generator 120. .
  • MERS magnetic energy regenerative switches
  • FIG. 18 is a block configuration diagram showing a schematic configuration of the prime mover system 200 according to Embodiment 2 of the present invention.
  • the prime mover system 200 is included in a moving unit or a transporting unit that includes one or more electric motors in a propulsion mechanism such as an electric locomotive, an electric vehicle, an electric vehicle, a hybrid car, an electric propulsion ship, or an electric propulsion submarine.
  • a propulsion mechanism such as an electric locomotive, an electric vehicle, an electric vehicle, a hybrid car, an electric propulsion ship, or an electric propulsion submarine.
  • These moving means convert the power obtained by driving the electric motor with the electric power generated by the generator in the prime mover system according to the present invention into frictional force, lift force, thrust force or arbitrary force for movement or transportation. Anything can be used as long as it is a power source.
  • the prime mover system 200 shown in FIG. 18 includes DC power supply units 500, 510, and 520, a power distribution device 600, electric motors 705 and 710, and the like. Although FIG. 18 shows three DC power supply units and two electric motors, the motor system 200 can independently include any number of DC power supply units and any number of electric motors.
  • the DC power supply unit 500 includes a heat engine 110-1, a generator 120-1, a magnetic energy regenerative switch (MERS) 30-1, and a rectifier 130-1.
  • the control unit for controlling the magnetic energy regenerative switch (MERS) 30-1 is the same as the control unit 40 for controlling the switching operation of the magnetic energy regenerative switch (MERS) 30 shown in FIG. Is omitted.
  • a smoothing capacitor and a DC path may be provided after the rectifier 130-1, and the voltage thereof may be measured by a voltage sensor (not shown) and input to the control unit 40.
  • the DC power supply unit 500 may be provided with an excitation adjuster for adjusting the excitation of the generator 120-1. Therefore, the DC power supply unit 500 reduces the power factor of the generator 120-1 by performing reactance (inductive component) compensation using the magnetic energy regenerative switch (MERS) 30-1 in the operation of the generator 120-1. It is possible to generate DC power while suppressing the above.
  • the other DC power supply units 510 and 520 can operate in the same manner.
  • the power distribution apparatus 600 can receive the DC power generated by the DC power supply units 500, 510, and 520 as an input, synthesize these DC powers as appropriate, and output the power as power for driving the motors 705 and 710. Specifically, the power distribution apparatus 600 can arbitrarily adjust a predetermined voltage, waveform, current phase, and the like for driving the electric motors 705 and 710. Furthermore, the power distribution apparatus 600 may include a secondary battery, and may include a means for recovering regenerative power from the electric motors 705 and 710.
  • the motors 705 and 710 are AC motors, and the power distribution apparatus 600 can supply AC power of a predetermined voltage to these motors.
  • the motors 705 and 710 may be DC motors, and the power distribution apparatus 600 may supply DC power of a predetermined voltage to these motors.
  • a suitable aspect of the power distribution apparatus 600 can be appropriately set according to the style of the electric motors 705 and 710.
  • the power distribution apparatus 600 uses an AC current for driving the motors 705 and 710 with reactance (inductive component) compensation with high efficiency by using a magnetic energy regenerative switch (MERS).
  • MERS magnetic energy regenerative switch
  • the power distribution device 600 is provided with components equivalent to the motor output sensor 270 and the heat engine control means 280 shown in FIG. 15, and the heat engines 110-1, 110 are based on the operating conditions of the motors 705, 710. -2 and 110-3 may be increased or decreased.
  • the prime mover system 200 uses a DC power supply unit that can suppress a power factor reduction of the generator using a magnetic energy regenerative switch (MERS), in order to obtain necessary power.
  • the power for driving any number of motors can be generated at the same time.
  • the generator is compensated for reactance (inductive component) to reduce the counter electromotive force
  • the motor is compensated for reactance (inductive component) for high torque operation.
  • the generator and the motor can be downsized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A prime mover system (100) comprises a heat engine (110) such as a diesel engine or the like; an electric generator (120); a rectifier (130) for rectifying an AC power; a smoothing capacitor (140) for smoothing a DC power produced by the rectifier (130); an inverter (160); and an electric motor (170). Between the electric generator (120) and the rectifier (130), there is connected a magnetic energy regeneration switch (MERS) (30) that serves as a power supply power adjusting switch. Moreover, a control part (40) changes the gate phase angle α of the magnetic energy regeneration switch (MERS) (30) in accordance with the voltage of a DC power and changes both the magnitude of the output voltage of the power supply power adjusting switch and the phase of the current thereof, thereby compensating for the voltage reduction of the AC power caused by the inductive component included in the electric generator and further adjusting the voltage of the DC power to a predetermined value.

Description

原動機システムPrime mover system
 本発明は、熱機関-発電機-電動機で構成される原動機システムに関する。特に、高負荷における発電機の発電効率を改良し得る原動機システムに関するものである。 The present invention relates to a prime mover system including a heat engine, a generator, and an electric motor. In particular, the present invention relates to a prime mover system that can improve the power generation efficiency of a generator at a high load.
 従来より、ディーゼルエンジン等の熱機関により駆動される発電機によって発電した電力を動力源として電動機を駆動することにより、列車、あるいは船舶を推進させる原動機システムが知られている。この方式は、発電機で発電した交流電力を整流(交流/直流変換)、及び直流/交流変換を介して、交流電動機を駆動する構成を基本とする。この方式は、発電機と電動機の間は電気配線のみのため配置の自由度が高く、ディーゼルエンジン等の動力機をその最も効率の良い回転域で運転できるため経済的であり、またエンジンをほぼ一定回転で使えるため騒音・振動対策や排気ガス浄化が比較的容易であるという利点を有する。また、この方式は、鉄道車両等の場合に複数台の車両の総括制御が容易であり、船舶等の場合にプロペラ(スクリュー)の回転数制御を配電盤で行うことが可能である等の利点も有する。 Conventionally, a prime mover system that propels a train or a ship by driving an electric motor using electric power generated by a generator driven by a heat engine such as a diesel engine as a power source is known. This method is based on a configuration in which an AC motor is driven via rectification (AC / DC conversion) and DC / AC conversion of AC power generated by a generator. This system is economical because it has only a few electrical connections between the generator and the motor, so the degree of freedom of arrangement is high, and a power engine such as a diesel engine can be operated in its most efficient rotation range, and the engine is almost constant. Since it can be used for rotation, it has the advantage that noise and vibration countermeasures and exhaust gas purification are relatively easy. In addition, this system is easy to control a plurality of vehicles in the case of a railway vehicle, etc., and has the advantage that the rotation speed control of the propeller (screw) can be performed by a switchboard in the case of a ship or the like. Have.
 また、原動機システムのうちディーゼルエレクトリックシステムにおいてエネルギー効率を改善する例として、制動時の回生エネルギーを回収し、複数車両に発電機及び電動機を設けて集中管理する車両駆動システム(特許文献1)等が知られている。 Moreover, as an example of improving energy efficiency in a diesel electric system of a prime mover system, there is a vehicle drive system (Patent Document 1) that collects regenerative energy at the time of braking and centrally manages a plurality of vehicles by providing generators and motors. Are known.
 更に、主として風力発電機とインバータとの間を磁気エネルギー回生回路により連系し、効率的な電力の回生によってエネルギーを有効取得する発電電力の系統連系装置が知られている(特許文献2)。
特開2007-37369 特開2006-141162
Furthermore, a system interconnection device for generated power is known in which a wind power generator and an inverter are mainly linked by a magnetic energy regeneration circuit, and energy is effectively acquired by efficient power regeneration (Patent Document 2). .
JP2007-37369 JP 2006-141162 A
 ディーゼルエンジン等の熱機関は、一般に高出力において出力効率が高いため、熱機関に接続された発電機は、高出力状態で運転される。しかしながら、発電機の出力電圧は、発電機のコイルが有する誘導成分(すなわち誘導性リアクタンス)のため出力電流の増加と共に低下するので、高出力時に発電機発電効率が低下し、このためディーゼルエンジン、及び発電機の両方から成るディーゼルエレクトリックシステムとして発電機発電効率を向上させて高効率で運転することは困難である。 Since a heat engine such as a diesel engine generally has high output efficiency at high output, a generator connected to the heat engine is operated in a high output state. However, since the output voltage of the generator decreases with an increase in output current due to an inductive component (that is, inductive reactance) included in the generator coil, the generator power generation efficiency decreases at high output, and thus the diesel engine, As a diesel electric system composed of both a generator and a generator, it is difficult to operate with high efficiency by improving generator power generation efficiency.
 また、従来技術に係るディーゼルエレクトリックシステムにおいて、ディーゼルエンジンを用いて駆動される発電機から得られる交流電力は、PWM制御方式等のコンバータにより直流に変換されていた。コンバータとしては、一般にPWM制御方式のものが用いられるが、この方式はコンバータにおけるスイッチング損失が大きく、ディーゼルエレクトリックシステムとしても、スイッチング損失が大きいという問題がある。 Also, in the diesel electric system according to the prior art, AC power obtained from a generator driven using a diesel engine has been converted to DC by a converter such as a PWM control system. As a converter, a PWM control system is generally used. However, this system has a problem that a switching loss in the converter is large, and a diesel electric system has a large switching loss.
 本発明は、上記の事情に鑑みてなされたもので、発電機により得られる交流電力に対して、発電機のコイルが有する誘導成分の影響を補償し発電機の発電効率を向上させ、また整流(交流/直流変換)におけるスイッチング損失を低減できる熱機関-発電機-電動機で構成される原動機システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and compensates for the influence of the inductive component of the generator coil on the AC power obtained by the generator, improves the power generation efficiency of the generator, and rectifies. An object of the present invention is to provide a prime mover system composed of a heat engine, a generator, and an electric motor that can reduce switching loss in (AC / DC conversion).
 上記課題を解決するために、本発明の例示的側面としての熱機関-発電機-電動機で構成される原動機システムは、ディーゼルエンジン等の熱機関と、熱機関により駆動され、交流電力を生成する発電機と、交流電力を整流して直流電力を生成する整流器と、直流電力を所定の周波数の駆動用交流電力に変換するインバータと、駆動用交流電力により駆動される電動機と、整流器とインバータとの間の直流経路に接続された平滑コンデンサと、を備える原動機システムであって、発電機と整流器との間に接続された電源電力調整スイッチと、直流経路に接続され、直流経路の直流電圧を計測する電圧センサと、電圧センサと電源電力調整スイッチに接続され、電圧センサからの電圧信号に応じて電源電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、発電機に含まれる誘導成分による交流電力の電圧低下を補償すると共に、直流経路の直流電圧を所定値に調整する制御手段と、を備える。 In order to solve the above-described problems, a prime mover system including a heat engine, a generator, and an electric motor as an exemplary aspect of the present invention is driven by a heat engine such as a diesel engine and the heat engine to generate AC power. A generator, a rectifier that rectifies AC power to generate DC power, an inverter that converts DC power to driving AC power of a predetermined frequency, an electric motor driven by the driving AC power, a rectifier and an inverter, And a smoothing capacitor connected to the direct current path between the generator and the rectifier, and a power source power adjustment switch connected between the generator and the rectifier. The voltage sensor to be measured, and the magnitude of the output voltage of the power supply power adjustment switch connected to the voltage sensor and the power supply power adjustment switch according to the voltage signal from the voltage sensor Comprising by changing the phase of the flow, as well as compensate for the voltage drop of the AC power by inductive component included in the generator, and control means for adjusting a DC voltage of a DC path to a predetermined value.
 また、発電機と電圧センサに接続され、電圧センサからの電圧信号に応じて発電機の界磁を変化させることにより、直流経路の直流電圧を所定値に調整する励磁調整手段を更に備えてもよい。 Further, the apparatus further includes excitation adjusting means connected to the generator and the voltage sensor, and adjusting the DC voltage of the DC path to a predetermined value by changing the field of the generator in accordance with a voltage signal from the voltage sensor. Good.
 更に、制御手段による直流経路の直流電圧の調整は、励磁調整手段による直流経路の直流電圧の調整に優先するように構成してもよい。 Furthermore, the adjustment of the DC voltage of the DC path by the control means may be configured to have priority over the adjustment of the DC voltage of the DC path by the excitation adjusting means.
 電源電力調整スイッチは、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサを備えた磁気エネルギー回生スイッチであって、ブリッジ回路の交流端子が発電機と整流器にそれぞれ接続され、制御手段が各逆導通型半導体スイッチのゲートに制御信号を与えて、対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に、かつ発電機の内部誘導起電圧の周波数に同期して逆導通型半導体スイッチをオンにするペアとオフにするペアとを交互に切り替えるスイッチング動作をするように制御すると共に、電圧センサからの電圧信号に応じて、各逆導通型半導体スイッチのゲート位相を変化させ、交流電力に対するスイッチング動作の位相を変化させることにより、電源電力調整スイッチの入力電圧の大きさと電流の位相を変化させる磁気エネルギー回生スイッチであってもよい。 A power source power adjustment switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and a DC terminal of the bridge circuit, and stores a magnetic energy storage capacitor that stores the magnetic energy of the current when the current is interrupted A magnetic energy regenerative switch, wherein the AC terminal of the bridge circuit is connected to the generator and the rectifier, respectively, and the control means provides a control signal to the gate of each reverse conducting semiconductor switch and is located on the diagonal line The operation of turning on the reverse conducting semiconductor switch of the pair and turning off the reverse conducting semiconductor switch of the other pair simultaneously, and turning on the reverse conducting semiconductor switch in synchronization with the frequency of the internal induced electromotive voltage of the generator Controls the switching operation to alternately switch between the pair and the pair to be turned off, and the voltage signal from the voltage sensor The magnetic energy regenerative switch that changes the magnitude of the input voltage and the current phase of the power supply power adjustment switch by changing the gate phase of each reverse conducting semiconductor switch and changing the phase of the switching operation with respect to the AC power. There may be.
 また、磁気エネルギー回生スイッチが、2個の逆導通型半導体スイッチ及び逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成で置き換えたものであってもよい。 In addition, a magnetic energy regenerative switch is connected in parallel to each of the two reverse conducting semiconductor switches and a bridge circuit composed of two diodes facing the reverse conducting semiconductor switch and the two diodes. It may be replaced with a configuration having two magnetic energy storage capacitors connected in series.
 更に、磁気エネルギー回生スイッチが、逆直列に接続された2個の逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、2個の逆導通型半導体スイッチの中点と2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成で置き換えたものであってもよい。 Further, the magnetic energy regenerative switch is connected in parallel with two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series. It may be replaced with a configuration having a midpoint of the semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors.
 発電機が三相交流発電機のとき、磁気エネルギー回生スイッチが、交流電力のU、V、W各相にそれぞれ配置される構成でよい。 When the generator is a three-phase AC generator, the magnetic energy regeneration switch may be arranged in each of the U, V, and W phases of the AC power.
 また、電動機に接続され、電動機の負荷を計測する電動機負荷センサを更に備え、電動機出力センサからの出力信号に応じて熱機関の出力を制御する熱機関制御手段を備えた構成であってもよい。 In addition, a configuration may further include an electric motor load sensor that is connected to the electric motor and measures a load of the electric motor, and further includes a heat engine control unit that controls the output of the heat engine in accordance with an output signal from the electric motor output sensor. .
 また、電動機に接続されたインバータが電動機からの回生電力を直流経路側に還流できるもので、直流経路に二次電池調整手段を介して接続された二次電池を更に備え、二次電池調整手段は熱機関制御手段に接続され、二次電池調整手段が直流経路から二次電池に電力を供給し二次電池を充電するとき、又は逆に二次電池から直流経路に電力を供給し二次電池を放電するとき、熱機関制御手段は、二次電池調整手段の充電、又は放電の調整に応じて、熱機関の出力を補正するように構成してもよい。 The inverter connected to the electric motor can return the regenerative power from the electric motor to the DC path side, and further includes a secondary battery connected to the DC path via the secondary battery adjusting means, and the secondary battery adjusting means Is connected to the heat engine control means, and the secondary battery adjustment means supplies power to the secondary battery from the DC path to charge the secondary battery, or conversely supplies power from the secondary battery to the DC path to When discharging the battery, the heat engine control means may be configured to correct the output of the heat engine in accordance with the charge of the secondary battery adjustment means or the adjustment of the discharge.
 更に、二次電池に接続され、二次電池の充電状態を計測する充電状態センサを更に備え、二次電池調整手段は、充電状態センサからの充電状態信号に応じて充電、又は放電の調整を行うように構成することもできる。 The battery further includes a charge state sensor connected to the secondary battery for measuring the charge state of the secondary battery, and the secondary battery adjustment means adjusts charging or discharging according to a charge state signal from the charge state sensor. It can also be configured to do.
 ここで、インバータ、及び電動機に替えて、直流電力により駆動される電動機を備えた構成でもよい。 Here, instead of the inverter and the electric motor, a configuration including an electric motor driven by DC power may be used.
 なお、電動機は、電気機関車、電動車両、電気自動車、又はハイブリッドカーを駆動するものでよく、浮遊体、電気推進船、又は電気推進潜水艦を駆動するものでもよい。また、電動機は、建物、工場、工事現場、基地、船舶、列車、航空機、トラックに設置された機械、機器、工作物を駆動するものでもよい。 The electric motor may drive an electric locomotive, an electric vehicle, an electric vehicle, or a hybrid car, and may drive a floating body, an electric propulsion ship, or an electric propulsion submarine. Further, the electric motor may drive a machine, equipment, or workpiece installed in a building, factory, construction site, base, ship, train, aircraft, or truck.
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。 Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、高出力状態においても発電機の発電効率を低下させることのない原動機システムを提供すると共に、発電機により得られる電力に対して整流(交流/直流変換)におけるスイッチング損失を低減させることができる。 According to the present invention, a prime mover system that does not lower the power generation efficiency of a generator even in a high output state is provided, and switching loss in rectification (AC / DC conversion) is reduced with respect to the power obtained by the generator. Can be made.
本実施形態に係る、磁気エネルギー回生電源10の基本構成を示す図である。It is a figure which shows the basic composition of the magnetic energy regeneration power supply 10 based on this embodiment. 図2(a)、図2(b)は、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御を説明するための図である。FIG. 2A and FIG. 2B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40. 図3(a)、図3(b)は、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御を説明するための図である。FIGS. 3A and 3B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40. FIG. 図4(a)、図4(b)は、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御を説明するための図である。FIG. 4A and FIG. 4B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40. 図5(a)、図5(b)、図5(c)、図5(d)は、磁気エネルギー回生スイッチ(MERS)30を組み込んだ交流電源装置の動作結果を説明するための図である。5 (a), 5 (b), 5 (c), and 5 (d) are diagrams for explaining the operation result of the AC power supply device incorporating the magnetic energy regenerative switch (MERS) 30. FIG. . ゲート位相角αを変化させたときの、磁気エネルギー回生スイッチ(MERS)30が組み込まれた磁気エネルギー回生電源10の出力電力の実測値を示す図である。It is a figure which shows the actual value of the output electric power of the magnetic energy regeneration power supply 10 with which the magnetic energy regeneration switch (MERS) 30 was integrated when changing gate phase angle (alpha). MERS回路38の動作をシミュレーションするためのモデル回路である。This is a model circuit for simulating the operation of the MERS circuit 38. 図8(a)、図8(b)、図8(c)、図8(d)、図8(e)は、交流信号源43の電圧E0よりも負荷電圧Vloadが低い条件でMERS回路38を制御した場合の発電機動作をシミュレーションする図である。8A, 8B, 8C, 8D, and 8E show the MERS circuit 38 under the condition that the load voltage Vload is lower than the voltage E0 of the AC signal source 43. FIG. It is a figure which simulates generator operation at the time of controlling. 図9(a)、図9(b)、図9(c)、図9(d)、図9(e)は、交流信号源43の電圧E0と負荷電圧Vloadが実質的に等しくなる条件でMERS回路38を制御した場合の発電機動作をシミュレーションする図である。9 (a), 9 (b), 9 (c), 9 (d), and 9 (e) are conditions under which the voltage E0 of the AC signal source 43 and the load voltage Vload are substantially equal. It is a figure which simulates generator operation at the time of controlling MERS circuit 38. 図10(a)、図10(b)、図10(c)、図10(d)、図10(e)は、負荷抵抗58を2個の抵抗器の並列接続(1Ω)に変更して、負荷を2倍としたMERS回路38を制御した場合の発電機動作をシミュレーションする図である。10 (a), 10 (b), 10 (c), 10 (d), and 10 (e), the load resistor 58 is changed to a parallel connection (1Ω) of two resistors. It is a figure which simulates generator operation | movement at the time of controlling the MERS circuit 38 which made load twice. MERSの制御を行わない場合の発電機動作をシミュレーションする図である。It is a figure which simulates the generator operation | movement when not controlling MERS. MERS回路38を交流の各周期の一部において動作させた場合の発電機動作をシミュレーションする図である。It is a figure which simulates a generator operation | movement at the time of operating the MERS circuit 38 in a part of each period of alternating current. 磁気エネルギー回生スイッチ(MERS)30の他の態様を示す図である。It is a figure which shows the other aspect of the magnetic energy regeneration switch (MERS) 30. FIG. 磁気エネルギー回生スイッチ(MERS)30の他の態様を示す図である。It is a figure which shows the other aspect of the magnetic energy regeneration switch (MERS) 30. FIG. 原動機システム100の構成を示す図である1 is a diagram showing a configuration of a prime mover system 100. FIG. 図16(a)は発電機の出力電流に対する出力電力を示すグラフである。図16(b)は発電機の出力電流に対する出力電圧を示すグラフである。図16(c)は発電機の出力電力に対する損失を示すグラフである。FIG. 16A is a graph showing the output power with respect to the output current of the generator. FIG.16 (b) is a graph which shows the output voltage with respect to the output current of a generator. FIG.16 (c) is a graph which shows the loss with respect to the output electric power of a generator. 本発明の実施の形態1に係る、磁気エネルギー回生スイッチ(MERS)を三相交流の電流路に用いて発電機の力率を改善する例を示す図である。It is a figure which shows the example which improves the power factor of a generator using the magnetic energy regeneration switch (MERS) based on Embodiment 1 of this invention for the current path of a three-phase alternating current. 本発明の実施の形態2に係る、原動機システム200の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the motor | power_engine system 200 based on Embodiment 2 of this invention.
符号の説明Explanation of symbols
α:ゲート位相角
SW1~SW8:逆導通型半導体スイッチ
G1~G4:逆導通型半導体スイッチSW1~SW4のゲート
D1、D2:ダイオード
DC(P)、DC(N):直流端子
AC:交流端子
10:磁気エネルギー回生電源
20:交流電源
21:誘導成分
30、30-U、30-V、30-W、30-1、30-2、30-3:磁気エネルギー回生スイッチ(MERS)
32、33、34、35、36:磁気エネルギー蓄積コンデンサ
38:MERS回路
40:制御部
42:ゲート制御部
50:負荷
51、52、53、54、55、57:電圧モニタ点
56:電流モニタ点
100、200:原動機システム
110、110-1、110-2、110-3:熱機関
120、120-1、120-2、120-3:発電機
130、130-1、130-2、130-3:整流器
140:平滑コンデンサ
150:直流経路
160:インバータ
170、705、710:電動機
180:二次電池
182:充電状態センサ
184:二次電池調整手段
210:電圧センサ
250:励磁調整手段
270:電動機出力センサ
280:熱機関制御手段
310、340、370:磁気エネルギー回生スイッチ(MERS)を用いる発電機出力特性
320、350、360:従来技術に係る発電機出力特性
330:過剰特性
500、510、520:直流電源部
600:配電装置
α: Gate phase angles SW1 to SW8: Reverse conducting semiconductor switches G1 to G4: Gates D1 and D2 of the reverse conducting semiconductor switches SW1 to SW4: Diodes DC (P), DC (N): DC terminal AC: AC terminal 10 : Magnetic energy regenerative power supply 20: AC power supply 21: Inductive components 30, 30-U, 30-V, 30-W, 30-1, 30-2, 30-3: Magnetic energy regenerative switch (MERS)
32, 33, 34, 35, 36: Magnetic energy storage capacitor 38: MERS circuit 40: Control unit 42: Gate control unit 50: Loads 51, 52, 53, 54, 55, 57: Voltage monitoring point 56: Current monitoring point 100, 200: prime mover systems 110, 110-1, 110-2, 110-3: heat engines 120, 120-1, 120-2, 120-3: generators 130, 130-1, 130-2, 130- 3: Rectifier 140: Smoothing capacitor 150: DC path 160: Inverters 170, 705, 710: Electric motor 180: Secondary battery 182: Charge state sensor 184: Secondary battery adjustment means 210: Voltage sensor 250: Excitation adjustment means 270: Electric motor Output sensor 280: heat engine control means 310, 340, 370: generation using magnetic energy regenerative switch (MERS) Machine output characteristics 320,350,360: generator output characteristic according to the prior art 330: excess Characteristics 500, 510, 520: DC power supply unit 600: distribution devices
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明に係る好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Further, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本実施形態に係る原動機システムに含まれる電源電力調整スイッチは、例えば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)である。 The power supply adjustment switch included in the prime mover system according to the present embodiment is, for example, a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS).
 磁気エネルギー回生スイッチ(MERS)は、例えば、逆阻止能力を持たない、すなわち逆導通型の半導体素子を4個用いて順逆両方向の電流をゲート制御のみでオン・オフ可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーを磁気エネルギー蓄積コンデンサに蓄積し、オンゲートが与えられた半導体素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチであり、このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチである。(例えば、特許第3634982号公報を参照。本特許公報では、フルブリッジ型のMERSを開示している。)。 Magnetic energy regenerative switch (MERS), for example, does not have reverse blocking capability, that is, it is possible to turn on / off current in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements and cut off the current. This is a switch that can regenerate magnetic energy without loss by storing the magnetic energy of the current in the magnetic energy storage capacitor and releasing it to the load side through the semiconductor element provided with an on-gate. It is a magnetic energy regenerative switch with low loss that can be controlled. (For example, refer to Japanese Patent No. 3634882. In this patent publication, a full bridge type MERS is disclosed.)
 磁気エネルギー回生スイッチ(MERS)には、逆導通型の半導体素子として、例えば、パワーMOSFET、IGBTやダイオードを逆並列接続したトランジスタ等の順方向制御が可能な半導体素子(以下、逆導通型半導体スイッチと称する)が用いられている。磁気エネルギー回生スイッチ(MERS)は、この逆導通型半導体スイッチ4個で構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出する磁気エネルギー蓄積コンデンサを接続して構成される。そして、磁気エネルギー回生スイッチ(MERS)は、これら4個の逆導通型半導体スイッチのゲート位相を制御することで、電流をどちらの方向にも流すことが可能となっている。 For the magnetic energy regenerative switch (MERS), as a reverse conduction type semiconductor element, for example, a semiconductor element capable of forward control such as a power MOSFET, a transistor having an IGBT or a diode connected in reverse parallel (hereinafter referred to as a reverse conduction type semiconductor switch). Is used). The magnetic energy regenerative switch (MERS) is configured by connecting a bridge circuit composed of the four reverse conducting semiconductor switches and a magnetic energy storage capacitor that absorbs and releases magnetic energy to the positive and negative electrodes of the bridge circuit. . The magnetic energy regenerative switch (MERS) can flow current in either direction by controlling the gate phase of these four reverse conducting semiconductor switches.
 また、磁気エネルギー回生スイッチ(MERS)は、ブリッジ接続された4個の逆導通型半導体スイッチのうち、対角線上に位置する2個の逆導通型半導体スイッチがペアとなり、2つのペアのオン・オフのスイッチング動作を電源の周波数に同期して行い、一方のペアがオンの時は他方のペアがオフとなるように動作する。また、このオン・オフのスイッチングタイミングに合わせて、磁気エネルギー蓄積コンデンサは磁気エネルギーの充放電を繰り返す。 The magnetic energy regenerative switch (MERS) is a pair of two reverse conducting semiconductor switches located on a diagonal line among four reverse conducting semiconductor switches connected in a bridge, and the two pairs are turned on / off. The switching operation is performed in synchronization with the frequency of the power source, and when one pair is on, the other pair is turned off. The magnetic energy storage capacitor repeatedly charges and discharges magnetic energy in accordance with the on / off switching timing.
 そして、一方のペアにオフゲートが与えられ、他方のペアにオンゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-磁気エネルギー蓄積コンデンサ-他方のペアの第2のダイオードという経路で流れ、これにより磁気エネルギー蓄積コンデンサに電荷を充電する。すなわち、電流の磁気エネルギーが磁気エネルギー蓄積コンデンサに蓄積される。電流遮断時の電流の磁気エネルギーは、磁気エネルギー蓄積コンデンサの電圧が上昇して電流がゼロになるまで磁気エネルギー蓄積コンデンサに蓄積される。磁気エネルギー蓄積コンデンサ電流がゼロになるまで磁気エネルギー蓄積コンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にオンゲートが与えられているため、オンしている逆導通型半導体スイッチを通して磁気エネルギー蓄積コンデンサの電荷が負荷側に放電され、磁気エネルギー蓄積コンデンサに蓄積された磁気エネルギーが誘導成分に回生される。 When an off-gate is applied to one pair and an on-gate is applied to the other pair, the current conducted in the forward direction is changed to the first diode of the other pair—the magnetic energy storage capacitor—the second of the other pair. In this way, the magnetic energy storage capacitor is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor. The magnetic energy of the current at the time of current interruption is stored in the magnetic energy storage capacitor until the voltage of the magnetic energy storage capacitor rises and the current becomes zero. When the voltage of the magnetic energy storage capacitor increases until the magnetic energy storage capacitor current becomes zero, the current interruption is completed. At this point, since the other pair has already been turned on, the charge of the magnetic energy storage capacitor is discharged to the load side through the reverse conducting semiconductor switch that is turned on, and the magnetic energy stored in the magnetic energy storage capacitor is discharged. Is regenerated as an induction component.
 このように、磁気エネルギー回生スイッチ(MERS)は、4個の逆導通型半導体スイッチのうち対角線上に位置する2個の逆導通型半導体スイッチからなるペア2つのオン・オフのゲート位相を制御することで、磁気エネルギー回生スイッチ(MERS)の出力電圧の大きさと電流の位相を任意に制御することが可能である。 Thus, the magnetic energy regenerative switch (MERS) controls the on / off gate phase of two pairs of two reverse conducting semiconductor switches located on the diagonal line among the four reverse conducting semiconductor switches. Thus, it is possible to arbitrarily control the magnitude of the output voltage of the magnetic energy regenerative switch (MERS) and the phase of the current.
 制御部は、平滑後の直流電圧(検出電圧)に応じて磁気エネルギー回生スイッチ(MERS)のゲート位相を変化させる。 The control unit changes the gate phase of the magnetic energy regenerative switch (MERS) in accordance with the smoothed DC voltage (detection voltage).
 まず、電源電力調整スイッチとしての磁気エネルギー回生スイッチ(MERS)の構成及び動作を説明する。本実施形態では、磁気エネルギー回生電源を例として説明する。なお、磁気エネルギー回生スイッチ(MERS)は誘導性負荷に組み込むことで磁気エネルギー回生負荷を構成することもできる。更に、磁気エネルギー回生スイッチ(MERS)は、交流電源と誘導性負荷との間に直列に接続して磁気エネルギー回生システムを構成することも可能である。 First, the configuration and operation of a magnetic energy regenerative switch (MERS) as a power source power adjustment switch will be described. In this embodiment, a magnetic energy regenerative power source will be described as an example. In addition, a magnetic energy regenerative load (MERS) can also comprise a magnetic energy regenerative load by incorporating in an inductive load. Further, a magnetic energy regenerative switch (MERS) can be connected in series between an AC power source and an inductive load to constitute a magnetic energy regenerative system.
 図1は、本実施形態に係る、磁気エネルギー回生電源10の基本構成を示す図である。図1に示す磁気エネルギー回生電源10は、電源電力調整スイッチである磁気エネルギー回生スイッチ(MERS)30、発電機120、及び負荷50を含む。発電機120としては、例えばディーゼルエンジン等の熱機関により駆動される発電機等が対応する。発電機120は、交流電源20、及び発電機120を構成するコイルのインダクタンスによる誘導成分21(又はL成分と呼称)をその等価回路として有する。図1においては、簡潔な記載のために単相の交流に磁気エネルギー回生スイッチ(MERS)30を1個接続する構成を示すが、これに限定されない。発電機120には三相等の複数の位相の交流を同期して発生する発電機を用いることが可能であり、磁気エネルギー回生スイッチ(MERS)30はそれぞれの相の交流電流路に接続して用いることができる。負荷50には、磁気エネルギー回生スイッチ(MERS)30を通過した交流電力が供給される整流器等が含まれる。更に、磁気エネルギー回生スイッチ(MERS)30には、磁気エネルギー回生スイッチ(MERS)30のゲートのスイッチング動作を制御する制御部40が接続される。スイッチング動作は、発電機に接続された回転位置を検出する回転位置検出手段(図示されていない)を制御部40に接続し、発電機の内部誘導起電圧の周波数に同期して、後述の通り、交流電力が整流された直流電力の電圧に応じて制御される。 FIG. 1 is a diagram showing a basic configuration of a magnetic energy regenerative power source 10 according to the present embodiment. A magnetic energy regenerative power source 10 shown in FIG. 1 includes a magnetic energy regenerative switch (MERS) 30 that is a power source power adjustment switch, a generator 120, and a load 50. The generator 120 corresponds to a generator driven by a heat engine such as a diesel engine, for example. The generator 120 includes an AC power supply 20 and an inductive component 21 (or L component) due to the inductance of a coil constituting the generator 120 as an equivalent circuit thereof. Although FIG. 1 shows a configuration in which one magnetic energy regenerative switch (MERS) 30 is connected to a single-phase alternating current for the sake of brevity, the present invention is not limited to this. It is possible to use a generator that generates a plurality of phases of alternating current such as three phases in synchronism with the generator 120, and the magnetic energy regenerative switch (MERS) 30 is used by connecting to the alternating current path of each phase. be able to. The load 50 includes a rectifier or the like to which AC power that has passed through the magnetic energy regenerative switch (MERS) 30 is supplied. Further, the magnetic energy regenerative switch (MERS) 30 is connected to a control unit 40 that controls the switching operation of the gate of the magnetic energy regenerative switch (MERS) 30. In the switching operation, rotational position detection means (not shown) for detecting the rotational position connected to the generator is connected to the control unit 40, and is synchronized with the frequency of the internal induced electromotive voltage of the generator as described later. The AC power is controlled according to the voltage of the rectified DC power.
 磁気エネルギー回生スイッチ(MERS)30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく誘導成分21に回生できる磁気エネルギー回生スイッチである。磁気エネルギー回生スイッチ(MERS)30は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路の逆導通型半導体スイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収する磁気エネルギー蓄積コンデンサ32とを備える。 The magnetic energy regenerative switch (MERS) 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the inductive component 21 without loss. The magnetic energy regenerative switch (MERS) 30 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and magnetic energy of a current that flows through the circuit when the reverse conducting semiconductor switch of the bridge circuit is cut off. And a magnetic energy storage capacitor 32 that absorbs.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
 磁気エネルギー蓄積コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子ACには負荷50が、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子ACには発電機120の交流電源20が、それぞれ直列接続されている。 The magnetic energy storage capacitor 32 is connected to the DC terminal DC (P) at the connection point between the reverse conducting semiconductor switch SW1 and the reverse conducting semiconductor switch SW3, and between the reverse conducting semiconductor switch SW2 and the reverse conducting semiconductor switch SW4. It is connected to a DC terminal DC (N) at a point. In addition, a load 50 is connected to an AC terminal AC at a connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4, and an AC current is present at a connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3. The AC power source 20 of the generator 120 is connected in series to the terminal AC.
 磁気エネルギー回生スイッチ(MERS)30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にオン・オフされる。すなわち、片方のペアがオンのとき他方のペアはオフとなる。そして、例えば、第1のペアにオフゲートが与えられ、第2のペアにオンゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これにより磁気エネルギー蓄積コンデンサ32が充電される。すなわち、電流の磁気エネルギーが磁気エネルギー蓄積コンデンサ32に蓄積される。 A first pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line disposed in a magnetic energy regenerative switch (MERS) 30 and a reverse conducting semiconductor switch SW3 and SW4 also located on the diagonal line The second pair is alternately turned on / off in synchronization with the power supply frequency. That is, when one pair is on, the other pair is off. Then, for example, when an off-gate is given to the first pair and an on-gate is given to the second pair, the current that has been conducted in the forward direction becomes the reverse conduction type semiconductor switch SW3-magnetic energy storage capacitor of the second pair. 32--reverse conduction type semiconductor switch SW4 flows through the path, whereby the magnetic energy storage capacitor 32 is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor 32.
 電流遮断時の電流の磁気エネルギーは、磁気エネルギー蓄積コンデンサ32の電圧が上昇して電流がゼロになるまで磁気エネルギー蓄積コンデンサに蓄積され、コンデンサ電流がゼロになるまで磁気エネルギー蓄積コンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にオンゲートが与えられているため、オンしている逆導通型半導体スイッチSW3、SW4を通して磁気エネルギー蓄積コンデンサ32の電荷が負荷50に放電され、磁気エネルギー蓄積コンデンサ32に蓄積された磁気エネルギーが負荷50を介して発電機120の誘導成分21に回生される。 The magnetic energy of the current at the time of current interruption is accumulated in the magnetic energy storage capacitor until the voltage of the magnetic energy storage capacitor 32 increases and the current becomes zero, and the voltage of the magnetic energy storage capacitor 32 is increased until the capacitor current becomes zero. When it rises, the current interruption is completed. At this time, the second pair has already been turned on, so that the charge of the magnetic energy storage capacitor 32 is discharged to the load 50 through the turned-on reverse conducting semiconductor switches SW3 and SW4, and the magnetic energy storage capacitor 32 Is regenerated to the inductive component 21 of the generator 120 through the load 50.
 電流のオン・オフ時、誘導成分21にはパルス電圧が印加されるが、電圧の大きさは磁気エネルギー蓄積コンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導成分21の耐電圧許容範囲内とすることができる。また、磁気エネルギー回生スイッチ(MERS)30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、例えば、パワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオード(寄生ダイオード)が並列接続されている。 When the current is turned on / off, a pulse voltage is applied to the inductive component 21, and the magnitude of the voltage depends on the capacitance of the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switches SW 1 to SW 4 and the inductive component 21. It can be within the allowable withstand voltage range. Unlike the conventional series power factor correction capacitor, a DC capacitor can be used for the magnetic energy regenerative switch (MERS) 30. The reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
 磁気エネルギー回生スイッチ(MERS)30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、例えば、IGBTやトランジスタ等の素子にダイオードを逆並列接続したものを用いることもできる。 In the magnetic energy regenerative switch (MERS) 30, in addition to the body diode, a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4. As the reverse conducting semiconductor switches SW1 to SW4, for example, an element such as an IGBT or a transistor having a diode connected in reverse parallel can be used.
 制御部40は、磁気エネルギー回生スイッチ(MERS)30の逆導通型半導体スイッチSW1~SW4のスイッチング動作を制御する。具体的には、磁気エネルギー回生スイッチ(MERS)30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのオン・オフ動作と、逆導通型半導体スイッチSW3、SW4からなるペアのオン・オフ動作とを、一方がオンのとき他方がオフとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。 The control unit 40 controls the switching operation of the reverse conducting semiconductor switches SW1 to SW4 of the magnetic energy regenerative switch (MERS) 30. Specifically, it includes an on / off operation of a pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line in a bridge circuit of the magnetic energy regenerative switch (MERS) 30 and reverse conducting semiconductor switches SW3 and SW4. A control signal is transmitted to the gates G1 to G4 so that the pair is turned on and off simultaneously every half cycle so that when one is turned on, the other is turned off.
 続いて、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、交流電源20が生成する単相の交流電力に基づく、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御を説明するための図である。 Subsequently, switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40 will be described in detail. 2 (a), 2 (b), 3 (a), 3 (b), 4 (a), and 4 (b) are magnetic fields generated by the control unit 40 based on single-phase AC power generated by the AC power supply 20. It is a figure for demonstrating switching control of energy regeneration switch (MERS) 30.
 まず、磁気エネルギー蓄積コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をオンにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。 First, when the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the magnetic energy storage capacitor 32 has no charging voltage, as shown in FIG. A path that passes through SW3 and SW1 and a path that passes through reverse conducting semiconductor switches SW2 and SW4 flow in parallel.
 次に、発電機の交流電圧の極性が反転する前の所定のタイミング、例えば、発電機120の発電交流周波数が60Hzの場合約6.94ms前、位相角αで言えば約75°前に、制御部40は逆導通型半導体スイッチSW1、SW2をオフにする。(これは、内部誘導起電圧に対して位相角α=90degに相当する。)これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、磁気エネルギー蓄積コンデンサ32に磁気エネルギーが吸収(充電)される。なお、逆導通型半導体スイッチSW1、SW2をオフにするタイミングで、逆導通型半導体スイッチSW3、SW4はオンにされる。 Next, a predetermined timing before the polarity of the AC voltage of the generator is reversed, for example, about 6.94 ms before when the generator AC frequency of the generator 120 is 60 Hz, about 75 ° before the phase angle α, The controller 40 turns off the reverse conducting semiconductor switches SW1 and SW2. (This corresponds to a phase angle α = 90 deg with respect to the internal induced electromotive voltage.) As a result, as shown in FIG. 2 (b), the current is reverse conducting semiconductor switch SW3-magnetic energy storage capacitor 32-reverse. It flows through a path that passes through the conductive semiconductor switch SW4. As a result, magnetic energy is absorbed (charged) in the magnetic energy storage capacitor 32. Note that the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
 磁気エネルギー蓄積コンデンサ32の充電が完了すると、すなわち磁気エネルギー蓄積コンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にオンであり、また磁気エネルギー蓄積コンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、磁気エネルギー蓄積コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。 When the charging of the magnetic energy storage capacitor 32 is completed, that is, when the voltage of the magnetic energy storage capacitor 32 exceeds a predetermined value, the current is cut off. Then, when the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW3 and SW4 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG. The reverse conduction type semiconductor switch SW4 flows through a path passing through the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switch SW3. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is released (discharged).
 次に、磁気エネルギー蓄積コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。 Next, when the discharge from the magnetic energy storage capacitor 32 is completed, as shown in FIG. 3B, the current passes through the reverse conducting semiconductor switches SW1 and SW3 and the reverse conducting semiconductor switches SW4 and SW2. It flows through the path and becomes a parallel conduction state.
 次に、交流電源20の電圧が反転する前の所定のタイミング(例えば、同様に位相角で約75°前)で、制御部40は逆導通型半導体スイッチSW3、SW4をオフにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、磁気エネルギー蓄積コンデンサ32に磁気エネルギーが吸収される。同様に、逆導通型半導体スイッチSW3、SW4をオフにするタイミングで、逆導通型半導体スイッチSW1、SW2はオンにされる。 Next, at a predetermined timing before the voltage of the AC power supply 20 is inverted (for example, the phase angle is also approximately 75 degrees before), the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4. As a result, as shown in FIG. 4 (a), the current flows through a path passing through the reverse conducting semiconductor switch SW1, the magnetic energy storage capacitor 32, and the reverse conducting semiconductor switch SW2. As a result, magnetic energy is absorbed by the magnetic energy storage capacitor 32. Similarly, the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
 磁気エネルギー蓄積コンデンサ32の充電が完了すると電流は遮断され、そして交流電源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にオンであり、また磁気エネルギー蓄積コンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、磁気エネルギー蓄積コンデンサ32に蓄積した磁気エネルギーが放電される。磁気エネルギー蓄積コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、磁気エネルギー回生スイッチ(MERS)30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。 When the charging of the magnetic energy storage capacitor 32 is completed, the current is cut off, and when the voltage of the AC power supply 20 is reversed, the reverse conducting semiconductor switches SW1 and SW2 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG. 4B, the current flows through a path passing through the reverse conducting semiconductor switch SW2-the magnetic energy storage capacitor 32-the reverse conducting semiconductor switch SW1. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is discharged. When the discharge from the magnetic energy storage capacitor 32 is completed, the parallel conduction state shown in FIG. As described above, the magnetic energy regenerative switch (MERS) 30 can cause a current to flow in both directions by alternately bringing two opposing pairs of reverse conducting semiconductor switches into a conducting state.
 このような磁気エネルギー回生スイッチ(MERS)30のスイッチング制御により、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、発電機の発電周波数が60Hzの場合において、磁気エネルギー回生スイッチ(MERS)30を組み込んだ交流電源装置の動作結果を説明すると共に、当該交流電源装置の動作の一実施形態において、各部の電圧の実測値を示す。図5(a)は、磁気エネルギー回生スイッチ(MERS)30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、磁気エネルギー回生スイッチ(MERS)30が組み込まれた場合の電源電圧、電流、磁気エネルギー回生電源10の出力電圧の波形を示している。また、図5(c)は磁気エネルギー蓄積コンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がオンになるタイミングを示している。 The following effects are obtained by the switching control of the magnetic energy regenerative switch (MERS) 30 as described above. FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D illustrate the operation results of the AC power supply apparatus incorporating the magnetic energy regenerative switch (MERS) 30 when the power generation frequency of the generator is 60 Hz. In addition, in one embodiment of the operation of the AC power supply device, actual measurement values of voltages of respective units are shown. FIG. 5A shows power supply voltage and current waveforms when the magnetic energy regenerative switch (MERS) 30 is not incorporated. FIG. 5B shows the magnetic energy regenerative switch (MERS) 30 incorporated. The waveforms of the power supply voltage, current, and output voltage of the magnetic energy regenerative power supply 10 are shown. 5C shows the waveform of the magnetic energy storage capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
 図5(d)は、本発明に係る磁気エネルギー回生電源10が有する逆導通型半導体スイッチを制御するゲート位相角αと発電機の内部誘導起電圧とを重ねた図である。簡潔な記載のために、単相交流の場合を説明する。発電機出力の力率を1近くにするためには、ゲート信号の位相は、無負荷時は、発電機出力電圧(MERSなし)の位相に対して90deg進んだ位相にする必要がある。しかしながら、発電機に負荷を接続すると、この位相の進み分は負荷に含まれるインダクタンス成分(L成分)のために位相の遅れ(例えば、δ)を生じる場合がある。この実施形態においては、発電機出力電圧(MERSなし)の位相に対するゲート信号の位相α’(進み分)は、約75degになっている。図5(d)には、このようにして設定された位相αと、内部誘導起電圧、前述のSW1におけるゲートオン信号との関係を示している。なお、磁気エネルギー回生スイッチ(MERS)30に含まれる他のゲートスイッチングについては、前述のようにSW2はSW1と同位相のスイッチングを実施し、SW3及びSW4はこれらと逆位相のスイッチングを実施する。ここで、実際の制御においては、ゲート信号の位相の基準として、計測の容易な内部誘導起電圧を用いることが好ましい。この場合、内部誘導起電圧の山の頂部(又は、谷の底部)に対するゲート信号の位相α´(進み分)と定義してもよい。いずれの場合もα、及びα´の値はほぼ同様の値になる。 FIG. 5D is a diagram in which the gate phase angle α for controlling the reverse conducting semiconductor switch included in the magnetic energy regenerative power source 10 according to the present invention and the internal induced electromotive voltage of the generator are overlapped. For the sake of concise description, the case of single-phase alternating current will be described. In order to make the power factor of the generator output close to 1, the phase of the gate signal needs to be advanced by 90 degrees with respect to the phase of the generator output voltage (without MERS) when there is no load. However, when a load is connected to the generator, this phase advance may cause a phase delay (for example, δ) due to an inductance component (L component) included in the load. In this embodiment, the phase α ′ (advance) of the gate signal with respect to the phase of the generator output voltage (without MERS) is about 75 deg. FIG. 5D shows the relationship between the phase α set in this way, the internal induced electromotive voltage, and the gate-on signal in the aforementioned SW1. As for the other gate switching included in the magnetic energy regenerative switch (MERS) 30, as described above, SW2 performs switching in the same phase as SW1, and SW3 and SW4 perform switching in opposite phase to these. Here, in actual control, it is preferable to use an internal induced electromotive voltage that can be easily measured as a reference for the phase of the gate signal. In this case, it may be defined as the phase α ′ (advance) of the gate signal with respect to the crest (or the bottom of the trough) of the internal induced electromotive voltage. In either case, the values of α and α ′ are almost the same value.
 すなわち、磁気エネルギー回生スイッチ(MERS)30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、交流電流の磁気エネルギーを磁気エネルギー蓄積コンデンサ32に蓄えて電流の位相を進ませると共に、蓄えた交流電流の磁気エネルギーを誘導成分21に回生することにより、発電機をリアクタンス補償して発電機の出力電圧の低下を抑制することが可能である。これにより、磁気エネルギー回生スイッチ(MERS)30は、交流電源20の力率を1に近づけることが可能である。また、磁気エネルギー回生スイッチ(MERS)30は、電流の位相を進ませるだけでなく電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。更に、交流電流の磁気エネルギーを磁気エネルギー蓄積コンデンサ32に貯え、蓄えた磁気エネルギーを誘導成分21に回生することにより、磁気エネルギー回生電源10の出力電圧を無段階に増減させることが可能である。 That is, the magnetic energy regenerative switch (MERS) 30 stores the magnetic energy of the alternating current in the magnetic energy storage capacitor 32 by adjusting the gate phases of the two pairs on the diagonal line of the reverse conducting semiconductor switches SW1 to SW4. By advancing the phase of the current and regenerating the magnetic energy of the stored alternating current in the inductive component 21, it is possible to compensate the reactance of the generator and suppress a decrease in the output voltage of the generator. Thereby, the magnetic energy regenerative switch (MERS) 30 can bring the power factor of the AC power supply 20 close to 1. Further, the magnetic energy regenerative switch (MERS) 30 can arbitrarily control the phase of the current as well as advance the phase of the current, and can arbitrarily adjust the power factor. Furthermore, by storing the magnetic energy of the alternating current in the magnetic energy storage capacitor 32 and regenerating the stored magnetic energy in the inductive component 21, it is possible to increase or decrease the output voltage of the magnetic energy regenerative power supply 10 steplessly.
 図5(d)に示す発電機の内部誘導起電圧は±250Vを超え、実行値として約180V以上の交流電圧を発生している。しかしながら、図5(a)に示すように、磁気エネルギー回生スイッチ(MERS)30が組み込まれていない場合は、前述の誘導成分21の影響により、発電機の出力電圧は例えば±30V未満に低下する。本発明に係る磁気エネルギー回生スイッチ(MERS)30を用いることにより、図5(b)に示すように、発電機出力電圧をピーク値として約±250V、実行値として約180Vに回復することが可能である。 The internal induced electromotive voltage of the generator shown in FIG. 5 (d) exceeds ± 250V, and an AC voltage of about 180V or more is generated as an execution value. However, as shown in FIG. 5A, when the magnetic energy regenerative switch (MERS) 30 is not incorporated, the output voltage of the generator decreases to, for example, less than ± 30V due to the influence of the inductive component 21 described above. . By using the magnetic energy regenerative switch (MERS) 30 according to the present invention, as shown in FIG. 5B, the generator output voltage can be recovered to about ± 250 V as a peak value and to about 180 V as an execution value. It is.
 また、図5(c)及び図5(d)に示すように、逆導通型半導体スイッチSW1がオンになるタイミングでは、磁気エネルギー蓄積コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がオフになるタイミングにおいても磁気エネルギー蓄積コンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。 Further, as shown in FIGS. 5C and 5D, at the timing when the reverse conducting semiconductor switch SW1 is turned on, the magnetic energy storage capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1. Is the current that flows through the diode of the reverse conducting semiconductor switch SW1 during parallel conduction. The magnetic energy storage capacitor voltage is 0 even at the timing when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
 上記の通り、図5(a)、(b)、(c)、(d)は、交流の周波数が60Hzの場合に、逆導通型半導体スイッチを制御するゲート位相角αが約75degの場合における磁気エネルギー回生スイッチ(MERS)30の動作結果を示しているが、磁気エネルギー回生スイッチ(MERS)30の逆導通型半導体スイッチを制御するゲート位相角αは、0degから360degまで連続的に制御することができる。 As described above, FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are obtained when the gate phase angle α for controlling the reverse conducting semiconductor switch is about 75 deg when the AC frequency is 60 Hz. Although the operation result of the magnetic energy regenerative switch (MERS) 30 is shown, the gate phase angle α for controlling the reverse conducting semiconductor switch of the magnetic energy regenerative switch (MERS) 30 should be continuously controlled from 0 deg to 360 deg. Can do.
 図6に、逆導通型半導体スイッチを制御するゲート位相角αを変化させたときの、磁気エネルギー回生スイッチ(MERS)30が組み込まれた磁気エネルギー回生電源10の出力電力の実測値を示す。図6(a)は、出力電力のゲート位相角αに対する特性の一例である。発電機としては、永久磁石式同期発電機(定格出力電力1.2kW、87.5Hz、定格電圧130.6V、定格電流5.5A、6極、定格回転数1750rpm)を用い、出力電流を4.5Aで一定としたときのゲート位相角αと出力電圧との関係を測定した。結果として、α=75[deg]において1.12kWの最大出力電力が得られた。このゲート位相角αの値は、前述のように負荷角δによる遅れのために90degよりも小さい値となっている。図6(b)は、出力電力に対して設定すべきゲート位相角αの値をプロットした図である。出力電力が大きくなるほど、負荷角δが大きくなり、これによってゲート位相角αの値は小さくなる。 FIG. 6 shows measured values of the output power of the magnetic energy regenerative power supply 10 incorporating the magnetic energy regenerative switch (MERS) 30 when the gate phase angle α for controlling the reverse conducting semiconductor switch is changed. FIG. 6A shows an example of the characteristics of the output power with respect to the gate phase angle α. As the generator, a permanent magnet type synchronous generator (rated output power 1.2 kW, 87.5 Hz, rated voltage 130.6 V, rated current 5.5 A, 6 poles, rated rotational speed 1750 rpm) is used, and the output current is 4 The relationship between the gate phase angle α and the output voltage when measured at a constant value of 5 A was measured. As a result, a maximum output power of 1.12 kW was obtained at α = 75 [deg]. The value of the gate phase angle α is smaller than 90 deg because of the delay due to the load angle δ as described above. FIG. 6B is a diagram plotting the value of the gate phase angle α to be set against the output power. As the output power increases, the load angle δ increases, thereby reducing the value of the gate phase angle α.
 図6に示すように、本発明に係る磁気エネルギー回生電源10は、ゲート位相角αを適切な値に制御することにより、発電機から最大の電力を取り出すことが可能である。すなわち、本実施形態に係る磁気エネルギー回生電源10においては、磁気エネルギー回生スイッチ(MERS)30のゲート位相角αは連続的に制御することができる。 As shown in FIG. 6, the magnetic energy regenerative power source 10 according to the present invention can extract the maximum power from the generator by controlling the gate phase angle α to an appropriate value. That is, in the magnetic energy regenerative power supply 10 according to the present embodiment, the gate phase angle α of the magnetic energy regenerative switch (MERS) 30 can be continuously controlled.
 なお、ゲート位相角αを180degから360degまでの範囲で制御すると、180degから0degの向きに変化させたときの結果と同じになる。ゲート位相角αは、0degから180degの範囲の「進み領域」又は180degから360degの範囲の「遅れ領域」を用い得る。好適には、ゲート位相角αは、より歪みの少ない制御が可能で、進相作用の効果が有効な「進み領域」を用い得る。 When the gate phase angle α is controlled in the range from 180 deg to 360 deg, the result is the same as when the direction is changed from 180 deg to 0 deg. As the gate phase angle α, an “advance region” in the range of 0 deg to 180 deg or a “lag region” in the range of 180 deg to 360 deg can be used. Preferably, the gate phase angle α can be controlled with less distortion, and an “advance region” in which the effect of the phase advance action is effective can be used.
 磁気エネルギー蓄積コンデンサ32の充放電周期は、誘導成分21のインダクタンスと磁気エネルギー蓄積コンデンサ32の誘電容量で決まる共振周期の半周期分であり、スイッチング周期が共振周期より長い時には、磁気エネルギー回生スイッチ(MERS)30はゲート位相角αに関係なく常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。 The charging / discharging cycle of the magnetic energy storage capacitor 32 is a half cycle of the resonance cycle determined by the inductance of the inductive component 21 and the dielectric capacitance of the magnetic energy storage capacitor 32. When the switching cycle is longer than the resonance cycle, the magnetic energy regenerative switch ( MERS) 30 can always perform zero voltage zero current switching, that is, soft switching, regardless of the gate phase angle α.
 磁気エネルギー回生スイッチ(MERS)30に用いられる磁気エネルギー蓄積コンデンサ32は、従来の電圧型インバータと異なり、回路にある誘導成分21の電源周波数の半周期分の時間の磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。磁気エネルギー蓄積コンデンサの誘電容量は、誘導成分21との共振周期がスイッチング周波数より短くなるように選定する。そのため、従来の電圧型インバータで問題となりやすい高調波ノイズは、磁気エネルギー回生スイッチ(MERS)30におけるスイッチングでは殆ど発生しない。従って、精密機器や計測機器等に対する高調波ノイズによる悪影響が、磁気エネルギー回生スイッチ(MERS)30においては殆ど発生せず、磁気エネルギー回生スイッチ(MERS)30を病院等においても安心して使用することができる。また、ソフトスイッチングであることから、スイッチング用素子での電力損失が少なく、発熱も少ない。 Unlike the conventional voltage type inverter, the magnetic energy storage capacitor 32 used for the magnetic energy regenerative switch (MERS) 30 is only for storing the magnetic energy for a half period of the power source frequency of the inductive component 21 in the circuit. Is. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter. The dielectric capacity of the magnetic energy storage capacitor is selected so that the resonance period with the inductive component 21 is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the magnetic energy regenerative switch (MERS) 30. Therefore, the adverse effect of harmonic noise on precision instruments, measuring instruments, etc. hardly occurs in the magnetic energy regenerative switch (MERS) 30, and the magnetic energy regenerative switch (MERS) 30 can be used safely in hospitals and the like. it can. In addition, since soft switching is used, power loss in the switching element is small and heat generation is small.
 また、磁気エネルギー回生スイッチ(MERS)30をゲートパルス発生装置として用いた場合、各磁気エネルギー回生スイッチ(MERS)30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各磁気エネルギー回生スイッチ(MERS)30を制御することができる。例えば、インターネット等の通信回線を利用して無線で制御信号を送り、磁気エネルギー回生スイッチ(MERS)30を無線制御できる。 In addition, when the magnetic energy regenerative switch (MERS) 30 is used as a gate pulse generator, a unique ID number can be assigned to each magnetic energy regenerative switch (MERS) 30, and a control signal from the outside can be used using this. Can be received and each magnetic energy regeneration switch (MERS) 30 can be controlled. For example, it is possible to wirelessly control the magnetic energy regenerative switch (MERS) 30 by sending a control signal wirelessly using a communication line such as the Internet.
 上述のような磁気エネルギー回生スイッチ(MERS)30のスイッチング制御による発電機のリアクタンス補償は、電子回路の動作をシミュレーションする計算技法を用いて、更に詳細に検討することが可能である。図7に、磁気エネルギー回生スイッチ(MERS)30の動作をシミュレーションするための計算モデルとしてのMERS回路38を示す。MERS回路38は、前述の逆導通型半導体スイッチを4個含み、スイッチのそれぞれのゲートには制御信号の入力であるU、V、X、及びYの端子が設けられている。ゲート制御部42は、これらのゲートに対して制御信号を出力するための出力端子U、V、X、及びYを備える。ゲート制御部42の出力端子及びMERS回路38のゲート入力は、それぞれ同じ符号同士が連結される。ゲート制御部42においては、図7に示すように、出力端子X及びVは同一の信号が出力され、かつ出力端子Y及びUは同一の信号が出力され、前者と後者とは逆位相の関係にある。すなわち、MERS回路38においては、対角に位置する1組の逆導通型半導体スイッチの対は、他の対とは逆位相の関係にある同一の制御信号を入力される。これらの制御の態様は、対応する電子回路である前述の磁気エネルギー回生スイッチ(MERS)30と同様である。ゲート制御部42に設けられる交流信号源44は、発電機として想定する交流信号源43と同一の周波数に設定される。更に、MERS回路38を通過した交流電力は、負荷抵抗58により消費される。負荷抵抗58は、図示のように、2個の抵抗器の並列接続で構成してもよく、1個の抵抗器で構成してもよく、任意に設定可能である。 The reactance compensation of the generator by the switching control of the magnetic energy regenerative switch (MERS) 30 as described above can be examined in more detail using a calculation technique for simulating the operation of the electronic circuit. FIG. 7 shows a MERS circuit 38 as a calculation model for simulating the operation of the magnetic energy regenerative switch (MERS) 30. The MERS circuit 38 includes four of the above-described reverse conducting semiconductor switches, and U, V, X, and Y terminals that are input of control signals are provided at the gates of the switches. The gate control unit 42 includes output terminals U, V, X, and Y for outputting control signals to these gates. The same reference numerals are connected to the output terminal of the gate control unit 42 and the gate input of the MERS circuit 38, respectively. In the gate control unit 42, as shown in FIG. 7, the same signal is output from the output terminals X and V, and the same signal is output from the output terminals Y and U. The relationship between the former and the latter is opposite in phase. It is in. That is, in the MERS circuit 38, a pair of reverse conducting semiconductor switches located on the opposite side receives the same control signal having an opposite phase relationship with the other pair. These control modes are the same as those of the aforementioned magnetic energy regenerative switch (MERS) 30 which is a corresponding electronic circuit. The AC signal source 44 provided in the gate control unit 42 is set to the same frequency as the AC signal source 43 assumed as a generator. Further, the AC power that has passed through the MERS circuit 38 is consumed by the load resistor 58. As shown in the figure, the load resistor 58 may be composed of two resistors connected in parallel, or may be composed of one resistor, and can be arbitrarily set.
 図7に示す回路には、電圧モニタ点51、52、53、54、55、57が設けられ、それぞれE0、XsDrop、RDrop、Vout、Vmers、Vloadと呼称する。E0は交流信号源43の電圧であり、これは発電機の内部誘導起電圧を想定している。XsDrop及びRDropは、発電機が有するインダクタンス成分及び抵抗成分による交流信号源43の電圧降下である。Voutには降下した交流電圧が表れる。Vmersには、MERS回路38内部の磁気エネルギー蓄積コンデンサ32の電極間電圧が表れる。Vloadには、負荷抵抗58に印加される電圧が表れる。更に、負荷抵抗58に流れる電流をモニタするために電流モニタ点56(Iout)を設けてもよい。 7 is provided with voltage monitor points 51, 52, 53, 54, 55, and 57, which are referred to as E0, XsDrop, RDdrop, Vout, Vmers, and Vload, respectively. E0 is the voltage of the AC signal source 43, which assumes an internal induced electromotive voltage of the generator. XsDrop and RDdrop are voltage drops of the AC signal source 43 due to the inductance component and resistance component of the generator. A dropped AC voltage appears in Vout. In Vmers, the voltage between the electrodes of the magnetic energy storage capacitor 32 inside the MERS circuit 38 appears. In Vload, a voltage applied to the load resistor 58 appears. Furthermore, a current monitoring point 56 (Iout) may be provided in order to monitor the current flowing through the load resistor 58.
 シミュレーションの条件として、交流信号源43を周波数60Hz、電圧254Vの単相交流とし、発電機が有するインダクタンス成分及び抵抗成分をそれぞれ20mH、10mΩとした。また、磁気エネルギー蓄積コンデンサ32を350μFとし、負荷抵抗58としては2Ωの抵抗器を2個並列に接続した。 As the simulation conditions, the AC signal source 43 was a single-phase AC with a frequency of 60 Hz and a voltage of 254 V, and the inductance component and resistance component of the generator were 20 mH and 10 mΩ, respectively. Further, the magnetic energy storage capacitor 32 was set to 350 μF, and two 2Ω resistors were connected in parallel as the load resistor 58.
 図8は、交流信号源43の電圧E0よりも負荷電圧Vloadが低い条件でMERS回路38を制御した場合の、各電圧モニタ点の電圧を示す図である。図8(a)に示すような、発電機の内部誘導起電圧に相当する電圧E0よりも負荷電圧Vloadが低い動作条件は、発電機が有するリアクタンスを完全には補償していない状態である。図8(a)においては、負荷抵抗58として2Ωの抵抗器1個を用い、図中には電流モニタ点56(Iout)に表れる電流の値を、電圧と同じスケールを用いて重ね書きした。他の電圧モニタ点については、図8(b)乃至(e)に示すように、XsDropは±1000V以内、RDropは±1V以内、Voutは±600V以内、Vmersは0~600Vの範囲であった。 FIG. 8 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled under the condition that the load voltage Vload is lower than the voltage E0 of the AC signal source 43. The operating condition in which the load voltage Vload is lower than the voltage E0 corresponding to the internal induced electromotive voltage of the generator as shown in FIG. 8A is a state where the reactance of the generator is not completely compensated. In FIG. 8A, one 2Ω resistor is used as the load resistor 58, and the value of the current appearing at the current monitor point 56 (Iout) is overwritten using the same scale as the voltage. As for other voltage monitoring points, as shown in FIGS. 8B to 8E, XsDrop was within ± 1000 V, RDrop was within ± 1 V, Vout was within ± 600 V, and Vmers was in the range of 0 to 600 V. .
 図9は、交流信号源43の電圧E0と負荷電圧Vloadが実質的に等しくなる条件でMERS回路38を制御した場合の、各電圧モニタ点の電圧を示す図である。シミュレーションの結果から、図9(a)に示すように、発電機が有するリアクタンスによる電圧降下が補償され、負荷電圧Vloadが発電機の内部誘導起電圧に相当する電圧E0とほぼ等しい状態を作り出せる。すなわち、本発明においては、発電機から見た力率が1となる状態を作り出すことが可能である。残差は、発電機が有する抵抗成分による交流信号源43の電圧降下であるRDropの影響であると考えられる。電流モニタ点56(Iout)に表れる電流の値を、電圧と同じスケールを用いて重ね書きしたところVoutと一致していた。他の電圧モニタ点については、図9(b)乃至(e)に示すように、XsDropは±2000V以内、RDropは±3V以内、Voutは±2000V以内、Vmersは0~2000Vの範囲であった。 FIG. 9 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled under the condition that the voltage E0 of the AC signal source 43 and the load voltage Vload are substantially equal. From the simulation results, as shown in FIG. 9A, the voltage drop due to the reactance of the generator is compensated, and the load voltage Vload can create a state substantially equal to the voltage E0 corresponding to the internal induced electromotive voltage of the generator. That is, in the present invention, it is possible to create a state where the power factor viewed from the generator is 1. The residual is considered to be an influence of RDrop which is a voltage drop of the AC signal source 43 due to the resistance component of the generator. When the value of the current appearing at the current monitor point 56 (Iout) was overwritten using the same scale as the voltage, it matched with Vout. For other voltage monitoring points, as shown in FIGS. 9B to 9E, XsDrop was within ± 2000V, RDrop was within ± 3V, Vout was within ± 2000V, and Vmers was in the range of 0 to 2000V. .
 図10は、図9の条件において負荷抵抗58を2個の抵抗器の並列接続(1Ω)に変更してMERS回路38を制御した場合の、各電圧モニタ点の電圧を示す図である。シミュレーションの結果から、図9(a)と同様に図10(a)に示すように、発電機が有するリアクタンスによる電圧降下が補償され、負荷電圧Vloadが発電機の内部誘導起電圧に相当する電圧E0とほぼ等しい状態を作り出せる。しかしながら、電流モニタ点56(Iout)に表れる計算上の電流の値は前述の図9(a)よりも大きい。更に、他の電圧モニタ点についても、図10(b)乃至(e)に示すように、XsDropは±3000V以内、RDropは±4V以内、Voutは±3000V以内、Vmersは0~3000Vの範囲に増大し、計算上は高い動作電圧を伴う危険な状態が発生した。 FIG. 10 is a diagram showing the voltage at each voltage monitoring point when the MERS circuit 38 is controlled by changing the load resistor 58 to a parallel connection (1Ω) of two resistors under the conditions of FIG. From the result of the simulation, as shown in FIG. 10A, as in FIG. 9A, the voltage drop due to the reactance of the generator is compensated, and the load voltage Vload corresponds to the internal induced electromotive voltage of the generator. A state almost equal to E0 can be created. However, the calculated current value appearing at the current monitor point 56 (Iout) is larger than that in FIG. Further, for other voltage monitoring points, as shown in FIGS. 10B to 10E, XsDrop is within ± 3000V, RDrop is within ± 4V, Vout is within ± 3000V, and Vmers is within a range of 0 to 3000V. Increased and computationally dangerous conditions with high operating voltages occurred.
 図11は、図9及び図10との比較として、MERSの制御を行わない場合の各電圧モニタ点の電圧を示す図である。図11(a)から明らかであるように、発電機の内部誘導起電圧に相当する電圧E0が約±250Vの範囲である一方、負荷電圧Vloadは約±30V未満であり、負荷抵抗58への電圧を確保することはできない。他の電圧モニタ点については、図11(b)乃至(d)に示すように、XsDropは±300以下、RDropは±0.4V以下、Voutは±30V以下であり、E0の大部分は発電機のインダクタンス成分による電圧降下に取り込まれていることが示唆された。 FIG. 11 is a diagram showing the voltage at each voltage monitoring point when MERS control is not performed, as a comparison with FIGS. 9 and 10. As apparent from FIG. 11A, the voltage E0 corresponding to the internal induced electromotive voltage of the generator is in the range of about ± 250V, while the load voltage Vload is less than about ± 30V, The voltage cannot be secured. As for other voltage monitoring points, as shown in FIGS. 11B to 11D, XsDrop is ± 300 or less, RDrop is ± 0.4 V or less, Vout is ± 30 V or less, and most of E0 generates power. It was suggested that it was taken into the voltage drop by the inductance component of the machine.
 図12は、図8と図11の中間の状態、すなわちMERS回路38を交流の各周期の一部において動作させた場合の、各電圧モニタ点の電圧を示す図である。図12(a)に示すMERS制御のない場合の負荷電圧Vloadの特性は、図11(a)に示したものと同様であり、約±30V未満にすぎない。これに対して、MERS制御のある場合の負荷電圧Vloadは、ピークとして約±250Vの範囲(実行値として約180V)を超えて確保することが可能だった。他の電圧モニタ点については、図12(b)乃至(e)に示すように、XsDropは±600V以内、RDropは±0.6V以内、Voutは±250V以内、Vmersは0~250Vの範囲であった。このように、本発明に従いMERS回路38を、交流周期の部分的な制御に用いることにより、回路内部の電圧の増大を回避しながら、発電機が有するリアクタンス成分による電圧降下を効果的に補償することが可能になる。 FIG. 12 is a diagram illustrating the voltage at each voltage monitoring point when the MERS circuit 38 is operated in a part of each AC cycle, that is, between the states shown in FIGS. 8 and 11. The characteristic of the load voltage Vload without MERS control shown in FIG. 12A is the same as that shown in FIG. 11A and is less than about ± 30V. On the other hand, the load voltage Vload in the case of MERS control could be secured over a range of about ± 250 V (about 180 V as an execution value) as a peak. As for other voltage monitoring points, as shown in FIGS. 12B to 12E, XsDrop is within ± 600V, RDrop is within ± 0.6V, Vout is within ± 250V, and Vmers is within a range of 0 to 250V. there were. Thus, by using the MERS circuit 38 in accordance with the present invention for partial control of the AC cycle, the voltage drop due to the reactance component of the generator is effectively compensated while avoiding an increase in the voltage inside the circuit. It becomes possible.
 上述の磁気エネルギー回生電源10では、電源電力調整スイッチである、磁気エネルギー回生スイッチ(MERS)30は4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続された磁気エネルギー蓄積コンデンサ32とからなる構成であったが、磁気エネルギー回生スイッチ(MERS)30は次のような構成であってもよい。 In the magnetic energy regenerative power source 10 described above, a magnetic energy regenerative switch (MERS) 30 that is a power source power adjustment switch is between a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a DC terminal of the bridge circuit. The magnetic energy storage capacitor 32 is connected, but the magnetic energy regenerative switch (MERS) 30 may be configured as follows.
 図13及び図14は、磁気エネルギー回生スイッチ(MERS)30の他の態様を示す図である。図13に示す磁気エネルギー回生スイッチ(MERS)30は、上述の4つの逆導通型半導体スイッチSW1~SW4と1つの磁気エネルギー蓄積コンデンサ32とからなるフルブリッジ型の磁気エネルギー回生スイッチ(MERS)30に対して、2つの逆導通型半導体スイッチと2つのダイオード、及び2つの磁気エネルギー蓄積コンデンサで構成される縦型のハーフブリッジ型となっている。 FIGS. 13 and 14 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS) 30. A magnetic energy regenerative switch (MERS) 30 shown in FIG. 13 is a full-bridge magnetic energy regenerative switch (MERS) 30 including the above-described four reverse conducting semiconductor switches SW1 to SW4 and one magnetic energy storage capacitor 32. On the other hand, it is a vertical half-bridge type composed of two reverse conducting semiconductor switches, two diodes, and two magnetic energy storage capacitors.
 より詳細には、この縦型のハーフブリッジ構造の磁気エネルギー回生スイッチ(MERS)30は、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つの磁気エネルギー蓄積コンデンサ33、34と、この2つの磁気エネルギー蓄積コンデンサ33、34それぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。 More specifically, this vertical half-bridge magnetic energy regenerative switch (MERS) 30 includes two reverse conducting semiconductor switches SW5 and SW6 connected in series, and two reverse conducting semiconductor switches SW5, Two magnetic energy storage capacitors 33 and 34 connected in series and provided in parallel with SW6, and two diodes D1 and D2 connected in parallel with the two magnetic energy storage capacitors 33 and 34, respectively, Contains.
 図14に示す磁気エネルギー回生スイッチ(MERS)30は、横型のハーフブリッジ型である。横型のハーフブリッジ型MERSは、2つの逆導通型半導体スイッチと2つの磁気エネルギー蓄積コンデンサで構成されている。 The magnetic energy regenerative switch (MERS) 30 shown in FIG. 14 is a horizontal half-bridge type. The horizontal half-bridge MERS is composed of two reverse conducting semiconductor switches and two magnetic energy storage capacitors.
 より詳細には、この横型のハーフブリッジ構造磁気エネルギー回生スイッチ(MERS)30は、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7及び磁気エネルギー蓄積コンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8及び磁気エネルギー蓄積コンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。 More specifically, the horizontal half-bridge structure magnetic energy regenerative switch (MERS) 30 includes a reverse conduction type semiconductor switch SW7 and a magnetic energy storage capacitor 35 provided in series on the first path, and a first path. A reverse conducting semiconductor switch SW8 and a magnetic energy storage capacitor 36 provided in series on a second path parallel to the first path, and a wiring connected in parallel to the first and second paths. .
 図15は、本実施形態に係る、原動機システム100の構成を示す図である。図15に示す原動機システム100は、熱機関110、発電機120、磁気エネルギー回生スイッチ(MERS)30、整流器130、平滑コンデンサ140、二次電池180、インバータ160、電動機(交流電動機)170を備える。更に、原動機システム100は、電圧センサ210、励磁調整手段250、電動機出力センサ270、熱機関制御手段280を備える。また、二次電池180には、二次電池調整手段184、充電状態センサ182が接続される。 FIG. 15 is a diagram showing a configuration of the prime mover system 100 according to the present embodiment. A prime mover system 100 shown in FIG. 15 includes a heat engine 110, a generator 120, a magnetic energy regenerative switch (MERS) 30, a rectifier 130, a smoothing capacitor 140, a secondary battery 180, an inverter 160, and an electric motor (AC electric motor) 170. The prime mover system 100 further includes a voltage sensor 210, excitation adjustment means 250, electric motor output sensor 270, and heat engine control means 280. Further, the secondary battery 180 is connected to a secondary battery adjusting unit 184 and a charge state sensor 182.
 図15に示す原動機システム100においては、熱機関110は発電機120を駆動し、発電機120は交流電力を生成する。好適な発電機120は、例えば440V、60Hz仕様の12極三相同期発電機等であるが、690V、60Hz仕様の三相同期発電機等、種々の型式が使用可能である。本発明に係る原動機システム100においては、発電機120と、交流直流変換のための整流器130との間に、磁気エネルギー回生スイッチ(MERS)30が配置される。図1に示した通り、交流電源20及び誘導成分21を等価回路とする発電機120、電源電力調整スイッチである磁気エネルギー回生スイッチ(MERS)30、及び磁気エネルギー回生スイッチ(MERS)のスイッチング動作を制御する制御部40により、磁気エネルギー回生電源10が構成される。 In the prime mover system 100 shown in FIG. 15, the heat engine 110 drives the generator 120, and the generator 120 generates AC power. A suitable generator 120 is, for example, a 440 V, 60 Hz specification 12-pole three-phase synchronous generator, but various types such as a 690 V, 60 Hz specification three-phase synchronous generator can be used. In the motor | power_engine system 100 which concerns on this invention, the magnetic energy regeneration switch (MERS) 30 is arrange | positioned between the generator 120 and the rectifier 130 for AC / DC conversion. As shown in FIG. 1, the switching operation of a generator 120 having an AC power supply 20 and an inductive component 21 as an equivalent circuit, a magnetic energy regenerative switch (MERS) 30 that is a power supply adjustment switch, and a magnetic energy regenerative switch (MERS) is performed. The magnetic energy regenerative power source 10 is configured by the control unit 40 to be controlled.
 整流器130は、磁気エネルギー回生スイッチ(MERS)30に接続され、整流により交流電力を直流電力に変換する。整流器130は、シリコンダイオードやサイリスタ等の整流素子を用いた整流回路である。整流器130には直流経路150を介して平滑コンデンサ140が接続され、平滑コンデンサ140は整流器130により整流された直流電力の脈流分を取り除く。直流経路150は、インバータ160まで延び、インバータ160に直流電力を供給する。 The rectifier 130 is connected to a magnetic energy regenerative switch (MERS) 30 and converts AC power into DC power by rectification. The rectifier 130 is a rectifier circuit using a rectifier element such as a silicon diode or a thyristor. A smoothing capacitor 140 is connected to the rectifier 130 via a DC path 150, and the smoothing capacitor 140 removes a pulsating flow component of the DC power rectified by the rectifier 130. The DC path 150 extends to the inverter 160 and supplies DC power to the inverter 160.
 インバータ160は、直流電力を出力状態に応じた周波数の交流電力に変換し、電動機170を駆動するための駆動用交流電力を生成し、電動機170はこの駆動用交流電力により動力を発生する。この電圧と周波数は、例えば、12極三相同期電動機において0~440V、数10Hz~約400Hz程度である。インバータ160が発生する周波数が150Hzであるときに、典型的には12極三相同期電動機は約1000rpmで回転し得るが、電動機の型式、駆動周波数、等はこれに限定されず、用途に応じて適宜選択することができる。変形例として、インバータ160及び電動機170に替えて直流電力で駆動される直流電動機(図示せず)を用いてもよい。 The inverter 160 converts DC power into AC power having a frequency corresponding to the output state, and generates driving AC power for driving the electric motor 170, and the electric motor 170 generates power by the driving AC power. The voltage and frequency are, for example, about 0 to 440 V and several tens of Hz to about 400 Hz in a 12-pole three-phase synchronous motor. When the frequency generated by the inverter 160 is 150 Hz, the 12-pole three-phase synchronous motor can typically rotate at about 1000 rpm, but the motor type, drive frequency, etc. are not limited to this, and depend on the application. Can be selected as appropriate. As a modification, a DC motor (not shown) driven by DC power may be used instead of the inverter 160 and the motor 170.
 また、直流経路150には電圧センサ210が接続され、電圧センサ210は直流経路150を流れる直流電力の電圧を計測する。制御部40は、電圧センサ210で計測された電圧に応じて、直流経路150の電圧が「所定値」になるように、磁気エネルギー回生スイッチ(MERS)30のゲート位相を変化させる。具体的には、例えば図5及び図6を用いて前述のように、「進み領域」である、ゲート位相角αを50degから75degまで、又はゲート位相角αを75degから90degの範囲を選んで変化できる。例えば、前述の図6(a)に示したように、ゲート位相角αを50degから75degまでの制御範囲とした場合、ゲート位相角αが大きくなると磁気エネルギー回生電源10の出力電力は大きくなる。従って、例えば、交流電力が60Hzの場合、約8.3ms毎に電圧センサ210で計測された電圧と「所定値」とを比較し、電圧センサ210で計測された電圧が「所定値」より大きいときは、ゲート位相角αを小さく、逆に電圧センサ210で計測された電圧が「所定値」より小さいときは、ゲート位相角αを大きくする制御を行うことにより、直流経路150の電圧を「所定値」に維持できる。 Also, a voltage sensor 210 is connected to the DC path 150, and the voltage sensor 210 measures the voltage of DC power flowing through the DC path 150. The control unit 40 changes the gate phase of the magnetic energy regenerative switch (MERS) 30 so that the voltage of the DC path 150 becomes a “predetermined value” according to the voltage measured by the voltage sensor 210. Specifically, for example, as described above with reference to FIGS. 5 and 6, the gate phase angle α is selected from the range of 50 deg to 75 deg, or the gate phase angle α is selected from the range of 75 deg to 90 deg. Can change. For example, as shown in FIG. 6A described above, when the gate phase angle α is in the control range from 50 deg to 75 deg, the output power of the magnetic energy regenerative power supply 10 increases as the gate phase angle α increases. Therefore, for example, when the AC power is 60 Hz, the voltage measured by the voltage sensor 210 is compared with the “predetermined value” about every 8.3 ms, and the voltage measured by the voltage sensor 210 is larger than the “predetermined value”. When the gate phase angle α is small and, conversely, when the voltage measured by the voltage sensor 210 is smaller than the “predetermined value”, the gate phase angle α is increased to control the voltage of the DC path 150 as “ It can be maintained at a “predetermined value”.
 また、例えば、ゲート位相角αを75degから90degまでの制御範囲とした場合は、逆方向に制御すればよい。 Further, for example, when the gate phase angle α is set to a control range from 75 deg to 90 deg, it may be controlled in the reverse direction.
 ゲート位相角αの制御範囲は、電流の位相を進ませ、これにより交流電源20の力率を1に近づける効果の最も大きい75degの近傍が好適である。制御範囲としてはまた、制御中心(直流経路150の電圧が「所定値」になるゲート位相角α)は、有効な制御を行うためには75degを中心とした制御範囲(上述の例では、50degから90deg)に選択することが望ましい。 The control range of the gate phase angle α is preferably in the vicinity of 75 deg, which has the greatest effect of advancing the phase of the current and thereby bringing the power factor of the AC power supply 20 close to 1. As the control range, the control center (gate phase angle α at which the voltage of the DC path 150 becomes “predetermined value”) is set to a control range centered on 75 deg (in the above example, 50 deg). To 90 deg) is desirable.
 また、原動機システム100は、電圧センサ210が計測した直流経路150の電圧に応じて、発電機120の励磁を調整する励磁調整手段250を備える。励磁調整手段250は、電圧センサ210で計測された電圧と「所定値」とを比較し、電圧センサ210で計測された電圧が「所定値」より大きいときは、励磁を弱めて発電機の出力を弱め、逆に電圧センサ210で計測された電圧が「所定値」より小さいときは、励磁を強めて発電機の能力を強め、直流経路150の電圧を「所定値」に維持する制御を行う。 The prime mover system 100 also includes excitation adjustment means 250 that adjusts excitation of the generator 120 according to the voltage of the DC path 150 measured by the voltage sensor 210. The excitation adjustment means 250 compares the voltage measured by the voltage sensor 210 with a “predetermined value”. When the voltage measured by the voltage sensor 210 is greater than the “predetermined value”, the excitation is weakened and the output of the generator is reduced. On the contrary, when the voltage measured by the voltage sensor 210 is smaller than the “predetermined value”, the excitation is strengthened to increase the capacity of the generator, and the control of maintaining the voltage of the DC path 150 at the “predetermined value” is performed. .
 ここで、電圧センサ210が計測した直流経路150の電圧に応じて、磁気エネルギー回生スイッチ(MERS)30のゲート位相αを変化する制御部40による制御と、発電機120の励磁を変化させる励磁調整手段250による制御が並存するが、制御の役割分担を行うことが望ましい。すなわち、この場合は、直流経路150の電圧の時々刻々の変化は、制御部40による磁気エネルギー回生スイッチ(MERS)30のゲート位相αの制御によって補正し、直流経路150の電圧の中長期の変化は、励磁調整手段250による発電機120の励磁の制御によって補正するとよい。 Here, the control by the control unit 40 that changes the gate phase α of the magnetic energy regenerative switch (MERS) 30 according to the voltage of the DC path 150 measured by the voltage sensor 210 and the excitation adjustment that changes the excitation of the generator 120. Although the control by means 250 coexists, it is desirable to share the role of control. That is, in this case, the momentary change in the voltage of the DC path 150 is corrected by the control of the gate phase α of the magnetic energy regenerative switch (MERS) 30 by the control unit 40, and the change in the voltage of the DC path 150 over the medium to long term. Is preferably corrected by controlling excitation of the generator 120 by the excitation adjusting means 250.
 更に、原動機システム100は、電動機出力センサ270を用いて電動機170の出力状況に関する情報を計測できる。当該電動機170の動作状況に関する情報には、例えば電動機170の回転数、トルク、逆起電圧等を含み、電動機170を駆動するインバータ160の出力電圧、又は出力電流の情報であってもよい。熱機関制御手段280は、電動機出力センサ270からの出力信号に応じて、熱機関110の出力を制御してもよい。熱機関110の出力制御には、燃料噴射量の制御、噴射タイミングの制御、回転数の制御等を含む。あるいはこれらの制御は熱機関110と発電機120の間に設けた調速機(図示せず)の制御を含んでもよい。 Furthermore, the prime mover system 100 can measure information regarding the output status of the electric motor 170 using the electric motor output sensor 270. The information related to the operation status of the electric motor 170 may include, for example, information on the output voltage or output current of the inverter 160 that drives the electric motor 170, including the rotation speed, torque, counter electromotive voltage, and the like of the electric motor 170. The heat engine control means 280 may control the output of the heat engine 110 according to the output signal from the electric motor output sensor 270. The output control of the heat engine 110 includes fuel injection amount control, injection timing control, rotation speed control, and the like. Alternatively, these controls may include control of a speed governor (not shown) provided between the heat engine 110 and the generator 120.
 直流経路150には、二次電池調整手段184を介して二次電池180が接続される。二次電池調整手段184は、熱機関制御手段280に接続され、二次電池調整手段184が直流経路150から二次電池180に電力を供給し二次電池180を充電するとき、又は逆に二次電池180から直流経路150に電力を供給し二次電池180を放電するとき、熱機関制御手段280に信号を送り、熱機関制御手段280は、二次電池調整手段184が二次電池180を充電するときは、電動機出力センサ270からの出力信号に応じた量よりもディーゼルエンジンの出力を大きく、逆に、二次電池調整手段184が二次電池180を放電するときは、電動機出力センサ270からの出力信号に応じた量よりもディーゼルエンジンの出力を小さくなるように制御できる。電動機に接続されたインバータ160が電動機からの回生電力を直流経路側に還流できるものであれば、回生された電力を二次電池180の充電に使用することができる。 The secondary battery 180 is connected to the DC path 150 via the secondary battery adjusting means 184. The secondary battery adjustment means 184 is connected to the heat engine control means 280, and when the secondary battery adjustment means 184 supplies power to the secondary battery 180 from the DC path 150 to charge the secondary battery 180, or vice versa. When power is supplied from the secondary battery 180 to the DC path 150 and the secondary battery 180 is discharged, a signal is sent to the heat engine control means 280, and the heat engine control means 280 causes the secondary battery adjustment means 184 to connect the secondary battery 180. When charging, the output of the diesel engine is larger than the amount corresponding to the output signal from the motor output sensor 270. Conversely, when the secondary battery adjusting means 184 discharges the secondary battery 180, the motor output sensor 270 The output of the diesel engine can be controlled to be smaller than the amount corresponding to the output signal from the engine. If the inverter 160 connected to the electric motor can return the regenerative electric power from the electric motor to the DC path side, the regenerated electric power can be used for charging the secondary battery 180.
 更に、二次電池180に接続され、二次電池180の充電状態を計測する充電状態センサ182を備えてもよい。二次電池調整手段184は、充電状態センサ182からの充電状態信号に応じて充電、又は放電の調整を行うように構成することもできる。また、二次電池調整手段184は、充電状態センサ182が検出する、例えば、二次電池180が充電を必要とする状態である旨の充電状態信号に基づき、二次電池180の充電を行うと共に、熱機関制御手段280に、熱機関110の出力を所定量増加する要求を送信してもよい。これとは逆に、二次電池180が放電してもよいときは、二次電池180の放電を行うと共に、熱機関制御手段280に、熱機関110の出力を所定量低下する要求を送信してもよい。二次電池調整手段184は、二次電池180の自然放電を補うためにトリクル充電を実施してもよい。 Furthermore, a charge state sensor 182 that is connected to the secondary battery 180 and measures the charge state of the secondary battery 180 may be provided. The secondary battery adjustment means 184 can also be configured to adjust charging or discharging according to the charging state signal from the charging state sensor 182. Further, the secondary battery adjustment unit 184 charges the secondary battery 180 based on a charge state signal detected by the charge state sensor 182, for example, indicating that the secondary battery 180 needs to be charged. A request for increasing the output of the heat engine 110 by a predetermined amount may be transmitted to the heat engine control means 280. On the contrary, when the secondary battery 180 may be discharged, the secondary battery 180 is discharged, and a request to reduce the output of the heat engine 110 by a predetermined amount is transmitted to the heat engine control means 280. May be. The secondary battery adjustment unit 184 may perform trickle charging to compensate for the spontaneous discharge of the secondary battery 180.
 図16は、本発明に係る原動機システムの発電機出力特性を示すグラフである。図15に示した回路を用い、交流電源20として30kWクラスの三相同期発電機を用い、発生した電力は抵抗器バンクにより消費させた。従来技術との比較のために、磁気エネルギー回生スイッチ(MERS)をダイオードブリッジによる整流回路で置き換えた回路を用意し、この場合の特性を従来技術に係る発電機出力特性とした。 FIG. 16 is a graph showing the generator output characteristics of the prime mover system according to the present invention. Using the circuit shown in FIG. 15, a 30 kW class three-phase synchronous generator was used as the AC power supply 20, and the generated power was consumed by the resistor bank. For comparison with the prior art, a circuit was prepared by replacing the magnetic energy regenerative switch (MERS) with a rectifier circuit using a diode bridge, and the characteristics in this case were used as the generator output characteristics according to the prior art.
 図16(a)は発電機の出力電流に対する出力電力を示すグラフである。図16(b)は発電機の出力電流に対する出力電圧を示すグラフである。図16(c)は発電機の出力電力に対する損失を示すグラフである。これらのグラフは、従来技術に係るダイオードブリッジによる整流回路を用いた結果と、本発明に係る磁気エネルギー回生スイッチ(MERS)を用いた結果とを比較して示す。 FIG. 16A is a graph showing the output power with respect to the output current of the generator. FIG.16 (b) is a graph which shows the output voltage with respect to the output current of a generator. FIG.16 (c) is a graph which shows the loss with respect to the output electric power of a generator. These graphs compare and show the result using the rectifier circuit by the diode bridge according to the prior art and the result using the magnetic energy regenerative switch (MERS) according to the present invention.
 図16(a)を参照すると、磁気エネルギー回生スイッチ(MERS)を用いる発電機出力特性310は、発電機出力電流が50[A]を超える領域において、発電機の定格電力である30kWに達すると、この定格電力を維持するように発電機の動作を制御することが可能である。従って、本発明においては、定格電力を超えて過剰な動作状態を作り出さずに、安全に安定した発電機の動作を維持することができる。しかしながら、従来技術に係る発電機出力特性320においては、発電機の出力電流が50[A]に達する領域では出力電力の特性が飽和しており、出力を低下させることは可能であるが、一時的な負荷の変化等に対して発電機の出力を維持することはできないと言える。 Referring to FIG. 16A, when the generator output characteristic 310 using the magnetic energy regenerative switch (MERS) reaches 30 kW which is the rated power of the generator in the region where the generator output current exceeds 50 [A]. It is possible to control the operation of the generator so as to maintain this rated power. Therefore, in the present invention, the stable operation of the generator can be maintained safely without creating an excessive operating state exceeding the rated power. However, in the generator output characteristic 320 according to the conventional technique, the output power characteristic is saturated in the region where the output current of the generator reaches 50 [A], and the output can be reduced temporarily. It can be said that the output of the generator cannot be maintained in response to a typical load change.
 図16(b)においては、磁気エネルギー回生スイッチ(MERS)を用いる発電機出力特性340は、発電機出力電流が100[A]を超える領域においても、出力電圧の特性はほぼ一定の300[V]を維持することが可能である。更に、磁気エネルギー回生スイッチ(MERS)のスイッチングを制御するための位相角を調節して発電機の誘導性リアクタンスを補償して動作させたところ、補償特性330のように、磁気エネルギー回生スイッチ(MERS)を用いる発電機出力特性340を上回る出力電圧を得ることが可能であった。しかしながら、従来技術に係る発電機出力特性350においては、発電機出力電流の増加と共に出力電圧は低下し、出力電流80[A]に対する出力電圧は200[V]を下回った。 In FIG. 16B, the generator output characteristic 340 using the magnetic energy regenerative switch (MERS) has an output voltage characteristic of approximately 300 [V] even in a region where the generator output current exceeds 100 [A]. ] Can be maintained. Furthermore, when the phase angle for controlling the switching of the magnetic energy regenerative switch (MERS) is adjusted and the inductive reactance of the generator is compensated for operation, the magnetic energy regenerative switch (MERS) as shown in the compensation characteristic 330 is operated. It was possible to obtain an output voltage exceeding the generator output characteristic 340 using However, in the generator output characteristic 350 according to the prior art, the output voltage decreased with an increase in the generator output current, and the output voltage for the output current 80 [A] was less than 200 [V].
 図16(c)においては、磁気エネルギー回生スイッチ(MERS)を用いる発電機出特性370は、発電機出力電力の増加と共に発電機損失が徐々に増加する傾向を示した。一方、従来技術に係る発電機出力特性360においては、発電機出力電力が25[kW]を超えると発電機損失が急激に増加した。すなわち、従来技術においては、発電機の動作のためにより多くの動力を供給しても損失による消費が増し、出力電力は飽和する傾向が見られた。発電機出力電力が30[kW]の動作条件において、本発明に係る磁気エネルギー回生スイッチ(MERS)を用いる発電機出特性370の発電機損失は、従来技術に係る発電機出力特性360に対して約33%減少した値を示した。 In FIG. 16 (c), the generator output characteristics 370 using the magnetic energy regenerative switch (MERS) showed a tendency that the generator loss gradually increases with the increase in the generator output power. On the other hand, in the generator output characteristic 360 according to the prior art, the generator loss rapidly increased when the generator output power exceeded 25 [kW]. That is, in the prior art, even if more power is supplied for the operation of the generator, consumption due to loss increases and the output power tends to saturate. Under an operating condition where the generator output power is 30 [kW], the generator loss of the generator output characteristic 370 using the magnetic energy regenerative switch (MERS) according to the present invention is smaller than the generator output characteristic 360 according to the prior art. The value decreased by about 33%.
 このように、磁気エネルギー回生スイッチ(MERS)によりリアクタンス(誘導成分)補償した発電機を用いることにより、本発明に係る原動機システムにおいては、発電機出力電力の増大(約62%増加)、高出力時における発電機出力電圧の安定化、及び発電機損失の低減(約33%低減)が可能である。 Thus, by using the generator compensated for reactance (inductive component) by the magnetic energy regenerative switch (MERS), in the prime mover system according to the present invention, the generator output power is increased (about 62% increase), and the high output It is possible to stabilize the generator output voltage at the time and reduce the generator loss (about 33% reduction).
  [実施の形態1]
 続いて本発明の実施の形態1に係る原動機システムについて説明する。
[Embodiment 1]
Next, the prime mover system according to Embodiment 1 of the present invention will be described.
 図17は、本発明の実施の形態1に係る、磁気エネルギー回生スイッチ(MERS)を三相交流の電流路に用いる場合を示す。 FIG. 17 shows a case where the magnetic energy regenerative switch (MERS) according to Embodiment 1 of the present invention is used in a three-phase AC current path.
 図17は、本発明に係る原動機システムにおける、発電機及び整流器を含む一部の構成を抜粋したものである。すなわち、図17においては、発電機120として三相交流を発生する三相交流発電機を用い、これをディーゼルエンジン等の熱機関110で駆動し、発生した三相交流を整流器130により三相全波整流して直流を得る構成が示される。図15に示した磁気エネルギー回生電源10は、図17においては三相交流のU、V、W各相の電流路に対応して、磁気エネルギー回生スイッチ(MERS)30-U、30-V、30-Wを全体として3個含む。三相交流のU、V、W各相の電流路におけるそれぞれの磁気エネルギー回生スイッチ(MERS)30-U、30-V、30-Wの動作は、単相交流について前述した動作と同様であり、それぞれ120deg位相を違えて制御される。 FIG. 17 is an excerpt of a part of the configuration including the generator and the rectifier in the prime mover system according to the present invention. That is, in FIG. 17, a three-phase alternating current generator that generates three-phase alternating current is used as the generator 120, and this is driven by a heat engine 110 such as a diesel engine. A configuration for obtaining a direct current by wave rectification is shown. The magnetic energy regenerative power supply 10 shown in FIG. 15 corresponds to the current paths of the three-phase alternating currents U, V, and W in FIG. 17, corresponding to magnetic energy regenerative switches (MERS) 30-U, 30-V, Contains 30-W as a whole. The operations of the magnetic energy regenerative switches (MERS) 30-U, 30-V, and 30-W in the current paths of the U, V, and W phases of the three-phase AC are the same as those described above for the single-phase AC. , Each 120 deg phase is controlled differently.
 このように構成することにより、本発明に係る原動機システムは、発電機120として三相交流発電機を用い、磁気エネルギー回生スイッチ(MERS)30-U、30-V、30-Wを動作させることにより、同様に、三相交流においても電流の位相を進ませ、これにより交流電源20の力率を1に近づけることが可能であり、発電機120が有する誘導成分による出力電圧の低下を補償できる。 With this configuration, the prime mover system according to the present invention uses a three-phase AC generator as the generator 120 and operates magnetic energy regenerative switches (MERS) 30-U, 30-V, 30-W. Similarly, it is possible to advance the phase of the current even in three-phase alternating current, thereby making it possible to bring the power factor of the alternating current power supply 20 close to 1, and to compensate for the decrease in the output voltage due to the inductive component of the generator 120. .
  [実施の形態2]
 続いて本発明の実施の形態2に係る原動機システムについて説明する。
[Embodiment 2]
Next, the prime mover system according to Embodiment 2 of the present invention will be described.
 図18は、本発明の実施の形態2に係る、原動機システム200の概略構成を示すブロック構成図である。具体的には、原動機システム200は、電気機関車、電動車両、電気自動車、ハイブリッドカー、電気推進船又は電気推進潜水艦等の、1以上の電動機を推進機構に備える移動手段又は運搬手段等に含まれ得る。これらの移動手段は、本発明に係る原動機システム内の発電機で生成する電力により電動機を駆動して得られる動力を、摩擦力、揚力、推力又は任意の力に変換して移動又は運搬のための動力とするものであれば、何でもよい。 FIG. 18 is a block configuration diagram showing a schematic configuration of the prime mover system 200 according to Embodiment 2 of the present invention. Specifically, the prime mover system 200 is included in a moving unit or a transporting unit that includes one or more electric motors in a propulsion mechanism such as an electric locomotive, an electric vehicle, an electric vehicle, a hybrid car, an electric propulsion ship, or an electric propulsion submarine. Can be. These moving means convert the power obtained by driving the electric motor with the electric power generated by the generator in the prime mover system according to the present invention into frictional force, lift force, thrust force or arbitrary force for movement or transportation. Anything can be used as long as it is a power source.
 図18に示す原動機システム200は、直流電源部500、510、520、配電装置600、電動機705、710等を含む。図18には、3個の直流電源部及び2個の電動機を示すが、これらに限定せず、原動機システム200は任意の数の直流電源部及び任意の数の電動機を独立に含み得る。 The prime mover system 200 shown in FIG. 18 includes DC power supply units 500, 510, and 520, a power distribution device 600, electric motors 705 and 710, and the like. Although FIG. 18 shows three DC power supply units and two electric motors, the motor system 200 can independently include any number of DC power supply units and any number of electric motors.
 直流電源部500は、熱機関110-1、発電機120-1、磁気エネルギー回生スイッチ(MERS)30-1、整流器130-1を含む。磁気エネルギー回生スイッチ(MERS)30-1を制御するための制御部については、図15に示した磁気エネルギー回生スイッチ(MERS)30のスイッチング動作を制御するための制御部40と同様であり、記載を省略する。同様に、整流器130-1の後段に平滑コンデンサ及び直流経路を備えて、その電圧を電圧センサ(図示せず)で計測し、制御部40への入力としてもよい。更に、平滑コンデンサの後段に二次電池等を含む充放電部を備えてもよい。更に、直流電源部500には、発電機120-1の励磁を調整するための励磁調整器を備えてもよい。従って、直流電源部500は、発電機120-1の動作において磁気エネルギー回生スイッチ(MERS)30-1を用いてリアクタンス(誘導成分)補償を実施することにより、発電機120-1の力率低下を抑制して直流電力を生成することが可能である。他の直流電源部510及び520も同様に動作し得る。 The DC power supply unit 500 includes a heat engine 110-1, a generator 120-1, a magnetic energy regenerative switch (MERS) 30-1, and a rectifier 130-1. The control unit for controlling the magnetic energy regenerative switch (MERS) 30-1 is the same as the control unit 40 for controlling the switching operation of the magnetic energy regenerative switch (MERS) 30 shown in FIG. Is omitted. Similarly, a smoothing capacitor and a DC path may be provided after the rectifier 130-1, and the voltage thereof may be measured by a voltage sensor (not shown) and input to the control unit 40. Furthermore, you may provide the charging / discharging part containing a secondary battery etc. in the back | latter stage of a smoothing capacitor. Further, the DC power supply unit 500 may be provided with an excitation adjuster for adjusting the excitation of the generator 120-1. Therefore, the DC power supply unit 500 reduces the power factor of the generator 120-1 by performing reactance (inductive component) compensation using the magnetic energy regenerative switch (MERS) 30-1 in the operation of the generator 120-1. It is possible to generate DC power while suppressing the above. The other DC power supply units 510 and 520 can operate in the same manner.
 配電装置600は、直流電源部500、510、520が生成した直流電力を入力として受け付け、これらの直流電力を適宜合成し、電動機705、710を駆動するための電力として出力し得る。具体的には、配電装置600は、電動機705、710を駆動するための所定の電圧、波形、電流位相等を任意に調整し得る。更に、配電装置600は、二次電池を備えてもよく、電動機705、710からの回生電力を回収する手段を備えてもよい。 The power distribution apparatus 600 can receive the DC power generated by the DC power supply units 500, 510, and 520 as an input, synthesize these DC powers as appropriate, and output the power as power for driving the motors 705 and 710. Specifically, the power distribution apparatus 600 can arbitrarily adjust a predetermined voltage, waveform, current phase, and the like for driving the electric motors 705 and 710. Furthermore, the power distribution apparatus 600 may include a secondary battery, and may include a means for recovering regenerative power from the electric motors 705 and 710.
 典型的には電動機705、710は交流電動機であり、配電装置600はこれらの電動機に所定の電圧の交流電力を供給し得る。変形例としては、電動機705、710は直流電動機であり、配電装置600はこれらの電動機に所定の電圧の直流電力を供給してもよい。これらの形態において、配電装置600の好適な態様は、電動機705、710の様式に従って適宜設定し得る。電動機705、710として交流電動機を用いる場合に、配電装置600には、磁気エネルギー回生スイッチ(MERS)を用いて電動機705、710をリアクタンス(誘導成分)補償して高効率に駆動するための交流電流を生成する回路を設けてもよい。更に、配電装置600には、図15に示した電動機出力センサ270及び熱機関制御手段280と同等の構成部品を設けて、電動機705、710の動作状況に基づいて、熱機関110-1、110-2、110-3等の回転数を増減してもよい。 Typically, the motors 705 and 710 are AC motors, and the power distribution apparatus 600 can supply AC power of a predetermined voltage to these motors. As a modification, the motors 705 and 710 may be DC motors, and the power distribution apparatus 600 may supply DC power of a predetermined voltage to these motors. In these forms, a suitable aspect of the power distribution apparatus 600 can be appropriately set according to the style of the electric motors 705 and 710. When an AC motor is used as the motors 705 and 710, the power distribution apparatus 600 uses an AC current for driving the motors 705 and 710 with reactance (inductive component) compensation with high efficiency by using a magnetic energy regenerative switch (MERS). There may be provided a circuit for generating. Further, the power distribution device 600 is provided with components equivalent to the motor output sensor 270 and the heat engine control means 280 shown in FIG. 15, and the heat engines 110-1, 110 are based on the operating conditions of the motors 705, 710. -2 and 110-3 may be increased or decreased.
 このように構成することにより、本発明に係る原動機システム200は、磁気エネルギー回生スイッチ(MERS)を用いて発電機の力率低下を抑制し得る直流電源部を、必要な電力を得るために任意の数において同時に動作させ、任意の数の電動機を駆動するための電力を生成することができる。発電機をリアクタンス(誘導成分)補償して逆起電力を削減することにより、また、電動機をリアクタンス(誘導成分)補償して高トルク運転することにより、本発明に係る原動機システム200においては、従来技術と比較して発電機及び電動機を小型化することが可能になる。従って、従来技術と比較して、電気設備全体の小型軽量化、電気機関車又は船舶等の軽量化、軽量化に伴う燃料効率の向上による省エネルギー化及び環境負荷の低減等の効果を得ることが可能である。 By configuring in this way, the prime mover system 200 according to the present invention uses a DC power supply unit that can suppress a power factor reduction of the generator using a magnetic energy regenerative switch (MERS), in order to obtain necessary power. The power for driving any number of motors can be generated at the same time. In the prime mover system 200 according to the present invention, the generator is compensated for reactance (inductive component) to reduce the counter electromotive force, and the motor is compensated for reactance (inductive component) for high torque operation. Compared to the technology, the generator and the motor can be downsized. Therefore, compared with the prior art, it is possible to obtain effects such as a reduction in the size and weight of the entire electrical equipment, a reduction in the weight of an electric locomotive or a ship, energy savings due to an increase in fuel efficiency associated with a reduction in weight, and a reduction in environmental load. Is possible.
 なお、本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれ得るものである。 The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Forms can also be included within the scope of the present invention.

Claims (14)

  1.  熱機関と、
     前記熱機関により駆動され、交流電力を生成する発電機と、
     前記交流電力を整流して直流電力を生成する整流器と、
     前記直流電力を所定の周波数の駆動用交流電力に変換するインバータと、
     前記駆動用交流電力により駆動される電動機と、
     前記整流器と前記インバータとの間の直流経路に接続された平滑コンデンサと、を備える原動機システムであって、
     前記発電機と前記整流器との間に接続された電源電力調整スイッチと、
     前記直流経路に接続され、前記直流経路の直流電圧を計測する電圧センサと、
     前記電圧センサと前記電源電力調整スイッチに接続され、前記電圧センサからの電圧信号に応じて前記電源電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、前記発電機に含まれる誘導成分による前記交流電力の電圧低下を補償すると共に、前記直流経路の前記直流電圧を所定値に調整する制御手段と、を備えた原動機システム。
    A heat engine,
    A generator driven by the heat engine to generate AC power;
    A rectifier that rectifies the AC power to generate DC power;
    An inverter that converts the DC power into driving AC power of a predetermined frequency;
    An electric motor driven by the driving AC power;
    A prime mover system comprising a smoothing capacitor connected to a DC path between the rectifier and the inverter,
    A power supply adjustment switch connected between the generator and the rectifier;
    A voltage sensor connected to the DC path and measuring a DC voltage of the DC path;
    The induction included in the generator is connected to the voltage sensor and the power supply power adjustment switch, and changes the magnitude of the output voltage and the phase of the current of the power supply power adjustment switch according to a voltage signal from the voltage sensor. And a control unit that compensates for a voltage drop of the AC power due to a component and adjusts the DC voltage of the DC path to a predetermined value.
  2.  前記発電機と前記電圧センサに接続され、前記電圧センサからの電圧信号に応じて前記発電機の励磁を変化させることにより、前記直流経路の前記直流電圧を所定値に調整する励磁調整手段を更に備えた、請求の範囲第1項に記載の原動機システム。 Excitation adjustment means connected to the generator and the voltage sensor, and adjusting the DC voltage of the DC path to a predetermined value by changing excitation of the generator in accordance with a voltage signal from the voltage sensor. The motor | power_engine system of Claim 1 provided.
  3.  前記制御手段による前記直流経路の前記直流電圧の調整は、前記励磁調整手段による前記直流経路の前記直流電圧の調整に優先する、請求の範囲第2項に記載の原動機システム。 3. The motor system according to claim 2, wherein the adjustment of the DC voltage of the DC path by the control unit has priority over the adjustment of the DC voltage of the DC path by the excitation adjustment unit.
  4.  前記電源電力調整スイッチは、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサを備えた磁気エネルギー回生スイッチであって、前記ブリッジ回路の交流端子が前記発電機と前記整流器にそれぞれ接続され、前記制御手段が前記各逆導通型半導体スイッチのゲートに制御信号を与えて、対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に、かつ前記交流電力に同期して前記逆導通型半導体スイッチをオンにするペアとオフにするペアとを交互に切り替えるスイッチング動作をするように制御すると共に、前記電圧センサからの電圧信号に応じて、前記各逆導通型半導体スイッチのゲート位相を変化させ、前記交流電力に対する前記スイッチング動作の位相を変化させることにより、前記電源電力調整スイッチの入力電圧の大きさと電流の位相を変化させる磁気エネルギー回生スイッチである、請求の範囲第1項乃至第3項のいずれか1項に記載の原動機システム。 The power source power adjustment switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and a DC terminal of the bridge circuit, and stores magnetic energy of current at the time of current interruption. A magnetic energy regenerative switch comprising a capacitor, wherein the AC terminal of the bridge circuit is connected to the generator and the rectifier, respectively, and the control means provides a control signal to the gate of each reverse conducting semiconductor switch, An operation of turning on the reverse conducting semiconductor switch of one pair located on the diagonal line and turning off the reverse conducting semiconductor switch of the other pair simultaneously, and synchronizing the reverse conducting semiconductor switch with the AC power The switching is performed so that the pair to be turned on and the pair to be turned off are alternately switched. In response to a voltage signal from the sensor, the gate phase of each of the reverse conducting semiconductor switches is changed, and the phase of the switching operation with respect to the AC power is changed, whereby the magnitude and current of the input voltage of the power supply power adjustment switch are changed. The prime mover system according to any one of claims 1 to 3, wherein the prime mover system is a magnetic energy regenerative switch that changes the phase of the motor.
  5.  前記磁気エネルギー回生スイッチが、2個の前記逆導通型半導体スイッチ及び該逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、前記2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成で置き換えた請求の範囲第4項に記載の原動機システム。 The magnetic energy regenerative switch is connected in parallel to each of the two diodes, and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. The prime mover system according to claim 4, wherein the prime mover system is replaced with a configuration having two magnetic energy storage capacitors connected in series and connected in series.
  6.  前記磁気エネルギー回生スイッチが、逆直列に接続された2個の前記逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、該2個の逆導通型半導体スイッチの中点と該2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成で置き換えた請求の範囲第4項に記載の原動機システム。 The magnetic energy regenerative switch connects two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series in parallel, and the two reverse conducting switches The prime mover system according to claim 4, wherein the motor system is replaced with a configuration having a middle point of the type semiconductor switch and a wiring line connected to the middle points of the two magnetic energy storage capacitors.
  7.  前記発電機が三相交流発電機のとき、前記磁気エネルギー回生スイッチが、前記交流電力のU、V、W各相にそれぞれ配置された請求の範囲第4項乃至第6項のいずれか1項に記載の原動機システム。 The said magnetic energy regeneration switch is any one of the Claims 4 thru | or 6 arrange | positioned at each U, V, W phase of the said alternating current power, when the said generator is a three-phase alternating current generator. The prime mover system described in 1.
  8.  前記電動機に接続され、前記電動機の出力を計測する電動機負荷センサを更に備え、前記電動機負荷センサからの出力信号に応じて前記熱機関の出力を制御する熱機関制御手段を備えた請求の範囲第1項乃至第7項のいずれか1項に記載の原動機システム。 An electric motor load sensor connected to the electric motor and measuring an output of the electric motor, further comprising a heat engine control means for controlling the output of the heat engine in accordance with an output signal from the electric motor load sensor. The prime mover system according to any one of items 1 to 7.
  9.  前記直流経路に二次電池調整手段を介して接続された二次電池を更に備え、前記二次電池調整手段は前記熱機関制御手段に接続され、前記二次電池調整手段が前記直流経路から前記二次電池に電力を供給し前記二次電池を充電するとき、又は逆に前記二次電池から前記直流経路に電力を供給し前記二次電池を放電するとき、前記熱機関制御手段は、前記二次電池調整手段の充電、又は放電の調整に応じて、前記原動機の出力を補正する請求の範囲第8項に記載の原動機システム。 The battery further comprises a secondary battery connected to the DC path via a secondary battery adjustment means, the secondary battery adjustment means is connected to the heat engine control means, and the secondary battery adjustment means is connected to the DC path from the DC path. When supplying power to the secondary battery and charging the secondary battery, or conversely, supplying power from the secondary battery to the DC path and discharging the secondary battery, the heat engine control means, The prime mover system according to claim 8, wherein the output of the prime mover is corrected in accordance with charge or discharge adjustment of the secondary battery adjustment means.
  10.  前記二次電池に接続され、前記二次電池の充電状態を計測する充電状態センサを更に備え、前記二次電池調整手段は、前記充電状態センサからの充電状態信号に応じて充電、又は放電の調整を行う請求の範囲第9項に記載の原動機システム。 The battery further includes a charge state sensor connected to the secondary battery and measuring a charge state of the secondary battery, wherein the secondary battery adjustment unit is configured to charge or discharge according to a charge state signal from the charge state sensor. The prime mover system according to claim 9, wherein adjustment is performed.
  11.  前記インバータ、及び前記電動機に替えて、前記直流電力により駆動される電動機を備えた、請求の範囲第1項乃至第10項のいずれか1項に記載の原動機システム。 The prime mover system according to any one of claims 1 to 10, further comprising an electric motor driven by the DC power instead of the inverter and the electric motor.
  12.  前記電動機は、電気機関車、電動車両、電気自動車、又はハイブリッドカーを駆動する請求の範囲第1項乃至第11項のいずれか1項に記載の原動機システム。 The motor system according to any one of claims 1 to 11, wherein the electric motor drives an electric locomotive, an electric vehicle, an electric vehicle, or a hybrid car.
  13.  前記電動機は、浮遊体、電気推進船、又は電気推進潜水艦を駆動する請求の範囲第1項乃至第11項のいずれか1項に記載の原動機システム。 The motor system according to any one of claims 1 to 11, wherein the electric motor drives a floating body, an electric propulsion ship, or an electric propulsion submarine.
  14.  前記電動機は、建物、工場、工事現場、基地、船舶、列車、航空機、トラックに設置された機械、機器、工作物を駆動する請求の範囲第1項乃至第11項のいずれか1項に記載の原動機システム。 The said electric motor drives the machine, apparatus, and workpiece | work installed in the building, the factory, the construction site, a base, a ship, a train, an aircraft, and a truck, The range of any one of Claim 1 thru | or 11 Prime mover system.
PCT/JP2008/068991 2008-10-20 2008-10-20 Prime mover system WO2010046962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068991 WO2010046962A1 (en) 2008-10-20 2008-10-20 Prime mover system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068991 WO2010046962A1 (en) 2008-10-20 2008-10-20 Prime mover system

Publications (1)

Publication Number Publication Date
WO2010046962A1 true WO2010046962A1 (en) 2010-04-29

Family

ID=42119023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068991 WO2010046962A1 (en) 2008-10-20 2008-10-20 Prime mover system

Country Status (1)

Country Link
WO (1) WO2010046962A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142440A1 (en) * 2010-05-13 2011-11-17 株式会社MERSTech Inductive power-supply system, power-receiving device, and control method
WO2011158947A1 (en) * 2010-06-18 2011-12-22 株式会社MERSTech Power conversion device, power conversion control device, power conversion method, and program
WO2016074008A1 (en) * 2014-11-10 2016-05-19 Technische Universität Graz Method for operating a device for supplying energy to an electrical load in island operation
JP2018052458A (en) * 2016-09-30 2018-04-05 株式会社小松製作所 Power transmission device of work vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591678A (en) * 1991-09-24 1993-04-09 Nikko Denki Kogyo Kk Ac generator for vehicle
JPH06245322A (en) * 1993-02-12 1994-09-02 Toshiba F Ee Syst Eng Kk Power generation controller for hybrid car
JP2006141162A (en) * 2004-11-12 2006-06-01 Fuji Electric Device Technology Co Ltd Apparatus for interconnecting generated power
JP2007174723A (en) * 2005-12-19 2007-07-05 Tokyo Institute Of Technology Ac/dc converting power supply and light emitting diode driving system using the same
JP2008092745A (en) * 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply device for induction heating
JP2008193817A (en) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology Ac/dc power conversion equipment using magnetic energy regenerating switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591678A (en) * 1991-09-24 1993-04-09 Nikko Denki Kogyo Kk Ac generator for vehicle
JPH06245322A (en) * 1993-02-12 1994-09-02 Toshiba F Ee Syst Eng Kk Power generation controller for hybrid car
JP2006141162A (en) * 2004-11-12 2006-06-01 Fuji Electric Device Technology Co Ltd Apparatus for interconnecting generated power
JP2007174723A (en) * 2005-12-19 2007-07-05 Tokyo Institute Of Technology Ac/dc converting power supply and light emitting diode driving system using the same
JP2008092745A (en) * 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply device for induction heating
JP2008193817A (en) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology Ac/dc power conversion equipment using magnetic energy regenerating switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142440A1 (en) * 2010-05-13 2011-11-17 株式会社MERSTech Inductive power-supply system, power-receiving device, and control method
WO2011158947A1 (en) * 2010-06-18 2011-12-22 株式会社MERSTech Power conversion device, power conversion control device, power conversion method, and program
WO2016074008A1 (en) * 2014-11-10 2016-05-19 Technische Universität Graz Method for operating a device for supplying energy to an electrical load in island operation
JP2018052458A (en) * 2016-09-30 2018-04-05 株式会社小松製作所 Power transmission device of work vehicle
WO2018061578A1 (en) * 2016-09-30 2018-04-05 株式会社小松製作所 Power transmission device for work vehicle

Similar Documents

Publication Publication Date Title
CN110382286B (en) Drive system for reducing DC link current ripple and method of operating the same
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US8110948B2 (en) Power conversion apparatus and method
EP1246353B1 (en) Multi-output power conversion circuit
US7417393B2 (en) Load driver capable of suppressing overcurrent
KR102380810B1 (en) On-board bi-directional AC fast charger for electric vehicles
JP5377604B2 (en) Power converter
US20110115417A1 (en) Pm motor drive power supply apparatus
JP5377603B2 (en) Power converter
KR101834571B1 (en) Method for controlling switches of switching arms, in particular in view of charging accumulation means, and corresponding charging device
JP5437334B2 (en) Power converter
WO2012168983A1 (en) Charging device
JP2001211645A (en) Direct-current power supply
JP2013055868A5 (en)
JP2013055866A5 (en)
JP2013055864A5 (en)
JP4735188B2 (en) Power converter
JP5067617B2 (en) Power conversion system and electric drive vehicle
US20140070736A1 (en) Power electronics apparatus and control method for an electric machine and for electrical energy stores
WO2010046962A1 (en) Prime mover system
EP1126589B1 (en) Power unit including a three-phase generator and a cycloconverter having three-phase input voltage and single phase output voltage
JP2014176164A (en) Onboard charger
JP2017189053A (en) Motor device
JP2013150412A (en) Variable output charger
JP5546052B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.07.2011)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08877528

Country of ref document: EP

Kind code of ref document: A1