WO2018060179A1 - Elektrisches energiespeichersystem mit einer über eine diode mit einem stromerfassungsmittel elektrisch leitend verbundenen querverbindung mehrerer paralleler energiespeicherstränge und verfahren zur detektion eines leitungsfehlers - Google Patents

Elektrisches energiespeichersystem mit einer über eine diode mit einem stromerfassungsmittel elektrisch leitend verbundenen querverbindung mehrerer paralleler energiespeicherstränge und verfahren zur detektion eines leitungsfehlers Download PDF

Info

Publication number
WO2018060179A1
WO2018060179A1 PCT/EP2017/074328 EP2017074328W WO2018060179A1 WO 2018060179 A1 WO2018060179 A1 WO 2018060179A1 EP 2017074328 W EP2017074328 W EP 2017074328W WO 2018060179 A1 WO2018060179 A1 WO 2018060179A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
electrical energy
connection
electrically conductive
storage system
Prior art date
Application number
PCT/EP2017/074328
Other languages
English (en)
French (fr)
Inventor
Chrysanthos Tzivanopoulos
Sven Bergmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201780059253.8A priority Critical patent/CN109791184B/zh
Priority to US16/336,925 priority patent/US10981451B2/en
Publication of WO2018060179A1 publication Critical patent/WO2018060179A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention is based on an electrical energy storage system, a method for detecting a line fault, a device and a use of the electrical energy storage system according to the preamble of the independent claims.
  • electrical energy storage systems are usually constructed by means of a series connection of a plurality of individual electrical energy storage units.
  • a parallel connection of several individual cells is performed.
  • the individual electrical energy storage units are individually monitored in series with respect to specific physical quantities, such as current and voltage. If now a parallel connection of several strands, i. a parallel connection of several series circuits of a plurality of individual electrical energy storage units, carried out so also a reliable and the safety requirements fulfilling monitoring of the individual cells is to ensure.
  • the document DE 10 2011 115 550 AI describes a lithium-ion battery having a plurality of arranged in parallel strands cells with an overcurrent protection device, the overcurrent protection device comprises a plurality of electronic switches, which in transverse to the parallel
  • the document FR 3 013 902 describes a device comprising a battery, wherein power switches are installed in cross connections of battery cells.
  • An electrical energy storage system comprising at least two strings connected in parallel, the strings each having at least two series-connected electrical energy storage units, a method for detecting a line fault, a device and a use of the electrical energy storage system having the characterizing features of the independent claims ,
  • At least one first electrically conductive cross connection between electrical energy storage units in a parallel connection to the same first electrical potential is electrically conductively connected via at least one diode to a means for detecting an electric current and a controllable electrical energy source. wherein the diode is not incorporated in the first electrically conductive cross-connection.
  • the first electrically conductive cross connection can be monitored for various fault cases, for example a break in the first electrically conductive cross connection.
  • the at least one first electrically conductive cross-connection is electrically conductively connected to at least one second electrically conductive cross-connection between electrical energy storage units located at a same second electrical potential in the strings connected in parallel via the at least one diode, wherein the first electrical potential and the second electrical potential are different.
  • the two cross connections can be easily monitored for a possible line fault. If appropriate, this can be continued in the same way for further electrically conductive cross-connections.
  • the at least one second electrically conductive cross-connection is at a higher electrical potential than the at least one first electrically conductive cross-connection with respect to a defined reference potential.
  • the at least one diode is installed in the forward direction between the at least one first electrically conductive cross connection and the at least one second electrically conductive cross connection.
  • the diode and the electrically conductive connection with the means for detecting a current at different ends of the second electrically conductive cross-connection.
  • the controllable electrical energy source is a power source.
  • the electrically conductive cross-connections are monitored by generating a low current, for example in the range of 0 mA to 20 mA, preferably in the range 0 mA to 10 mA, for example, a line fault, in particular a line break.
  • the use of a power source reduces the unwanted influence of electromagnetic radiation.
  • the electric energy storage unit can be understood in particular to be an electrochemical battery cell and / or a battery module having at least one electrochemical battery cell and / or a battery pack having at least one battery module.
  • the electric energy storage unit may be a lithium-based battery cell or a lithium-based battery module or a lithium-based battery pack.
  • the electrical energy storage unit may be a lithium-ion battery cell or a lithium-ion battery module or a lithium-ion battery pack.
  • the disclosure of a method for detecting a line fault in an electrical energy storage system wherein at least a first current waveform is detected with a means for detecting a current, the detected at least a first current waveform is compared with a predetermined by a controllable electrical energy source second current waveform and generating a signal on the detection of a line fault in the electrical energy storage system when a predefined signal deviation threshold is exceeded.
  • the signal deviation threshold values can be calculated, for example, from a shift of extreme points, for example, high, low or inflection points, in the first current signal course or else by the difference between the first current signal course and the second current signal course defined by the energy source over one or more periods ,
  • the second current waveform it is not necessary that the second current waveform be detected with a means for detecting a current, since it is assumed to be known and therefore can be used simply, for example "internally" in a calculation unit.
  • the controllable electrical energy source is controlled in the method such that it generates a pulse-shaped second current waveform. As a result, in particular changes in the current waveform are clearly visible.
  • the method is expediently carried out for at least one predefined period of time.
  • the predefined period can be an integer multiple of a period of the current signal.
  • the subject matter of the disclosure is a device comprising an inventive electrical energy storage system and an electronic control unit which is set up to perform all the steps of the method according to the invention.
  • the subject matter of the disclosure is a use of the electrical energy storage system according to the invention in electrically driven vehicles and stationary electrical energy storage units and electrically operated hand tools.
  • the electrical energy storage system according to the invention can therefore be used flexibly and is not restricted to a specific field of application. Thus, the above advantages are transferred to the indicated uses.
  • Figure 1 is a schematic representation of the electrical energy storage system according to the invention according to a first embodiment
  • Figure 2 is a schematic representation of the electrical energy storage system according to the invention according to a second embodiment
  • Figure 3 is a schematic representation of the electrical according to the invention
  • FIG. 4 shows a flowchart of the method according to the invention according to an embodiment
  • FIG. 5 is a schematic representation of the current waveforms used in the method according to the invention according to a first embodiment; and FIG. 6 shows a schematic representation of the current signal profiles used within the method according to the invention in accordance with a second embodiment.
  • Figure 1 shows a schematic representation of the electrical energy storage system 1 according to the invention according to a first embodiment.
  • the electrical energy storage system 1 comprises two strands STR1, STR2 connected in parallel, the strands STR1, STR2 each having two electrical energy storage units 15 connected in series.
  • the electrical energy storage units 15 in the parallel-connected strands STR1, STR2 are electrically conductively connected via a diode 12 to a current sensor 13, for example a Hall sensor or a shunt-based current sensor, as well as to an electrical energy source 14.
  • FIG. 2 shows a schematic representation of the electrical energy storage system 1 according to the invention according to a second embodiment.
  • the electrical energy storage system 1 comprises the two strands STR1, STR2 connected in parallel, wherein the strands STR1, STR2 have each been supplemented by an electrical energy storage unit 15 and thus have three electrical energy storage units 15 connected in series.
  • the first electrically conductive cross-connection 11 is present.
  • the first electrically conductive cross-connection 11 is electrically conductively connected to a second electrically conductive cross-connection 21, which connects electrical energy storage units 15 located at a second electrical potential, via the diode 12.
  • the second electrically conductive cross-connection 21 is connected to the current sensor 13 and the electrical energy source 14.
  • the diode 12 and the electrically conductive connection to the current sensor 13 are located at different ends of the second electrically conductive cross-connection 21.
  • Figure 3 shows a schematic representation of the inventive electrical energy storage system 1 according to a third embodiment.
  • the electrical energy storage system 1 three parallel strands STR1, STR2, STR3.
  • the dashed lines in the representation of the strands STR1, STR2, STR3 indicate that the principle illustrated in FIG. 1 and in FIG. 2 can in principle be extended to strands with a more or less arbitrary number of electrical energy storage units 15.
  • FIG. 4 shows a flowchart of the method according to the invention according to an embodiment.
  • the detected current waveform is compared with a predetermined by the power source 14 current waveform.
  • a signal is then optionally generated when a predefined signal deviation threshold value is exceeded via the detection of a line fault in the electrical energy storage system 1 or in the circuit described above.
  • the user of the electrical energy storage system 1 can be made aware of a fault in the electrical energy storage system 1.
  • FIG. 5 shows a schematic representation of the current signal profiles SIG1, SIG2 used within the method according to the invention in accordance with a first embodiment.
  • the first current waveform SIG1 shows that through the
  • the second current signal course SIG2 shows the current signal waveform predetermined by the electrical energy source 14, which is known, for example because it is predetermined by suitable programming on an electronic control unit. Both current waveforms are pulse shaped between a first current value II and a second current value 12.
  • a time difference ⁇ tl2 between a first time tl, which sets a beginning of a current signal period, and a second time t2, which defines an end of the current signal period, represents the period of the second current signal
  • a signal deviation value can be calculated, which is compared with a predefined signal deviation threshold, wherein when the predefined signal deviation threshold value is exceeded, a signal via the detection of a Line error is generated.
  • FIG. 6 shows a schematic representation of the current-time courses SIG1, SIG2 used within the method according to the invention in accordance with a second embodiment.
  • the current signal waveforms are also pulse-shaped, wherein the second current value 12 0 mA.
  • a difference between the two current signal profiles SIG1, SIG2 is shown hatched in FIG. 6, just as in FIG.
  • a time difference Et34 between a third time t3 and a fourth time t4 defines a period of the first current signal.
  • a Fourier transformation of the first current waveform SIG1 and the second current waveform SIG2 may alternatively be performed, in which case the predefined signal deviation threshold is determined, for example, as a measure in the phase space of the Fourier transformation, for example a power density.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Elektrisches Energiespeichersystem (1), umfassend mindestens zwei in Parallelschaltung verschaltete Stränge (STR1, STR2, STR3), wobei die Stränge jeweils mindestens zwei in Serienschaltung verschaltete elektrische Energiespeichereinheiten (15) aufweisen, dadurch gekennzeichnet, dass mindestens eine erste elektrisch leitfähige Querverbindung (11) zwischen sich auf einem gleichen ersten elektrischen Potential befindenden elektrischen Energiespeichereinheiten (15) in den in Parallelschaltung verschalteten Strängen (STR1, STR2, STR3) über mindestens eine Diode (12) mit einem Mittel zur Erfassung eines elektrischen Stromes (13) und einer steuerbaren elektrischen Energiequelle (14) elektrisch leitend verbunden ist, wobei die Diode (12) nicht in die erste elektrisch leitfähige Querverbindung (11) eingebaut ist.

Description

Beschreibung Titel
Elektrisches Energiespeichersystem mit einer über eine Diode mit einem
Stromerfassungsmittel elektrisch leitend verbundenen Querverbindung mehrerer paralleler Energiespeicherstränge und Verfahren zur Detektion eines Leitungsfehlers
Die vorliegende Erfindung geht aus von einem elektrischen Energiespeichersystem, einem Verfahren zur Detektion eines Leitungsfehlers, einer Vorrichtung und einer Verwendung des elektrischen Energiespeichersystems gemäß dem Oberbegriff der unabhängigen Patentansprüche.
Stand der Technik
Heutzutage werden, insbesondere im Bereich des automobilen Fahrzeugbaus, elektrische Energiespeichersysteme meist mittels einer Serienschaltung einer Vielzahl von einzelnen elektrischen Energiespeichereinheiten aufgebaut. Gegebenenfalls wird, um beispielsweise die Reichweite oder Leistung zu erhöhen, eine Parallelschaltung mehrerer einzelner Zellen durchgeführt.
Aufgrund von Anforderungen an die Sicherheit eines elektrischen Energiespeichersystems werden die einzelnen elektrischen Energiespeichereinheiten in ei- ner Serienschaltung einzeln bezüglich bestimmter physikalischer Größen, beispielsweise Strom und Spannung, überwacht. Wird nun eine Parallelschaltung mehrerer Stränge, d.h. eine Parallelschaltung von mehreren Serienschaltungen einer Vielzahl von einzelnen elektrischen Energiespeichereinheiten, durchgeführt, so ist auch eine zuverlässige und die Sicherheitsanforderungen erfüllende Überwachung der einzelnen Zellen zu gewährleisten.
In der Druckschrift DE 10 2011 115 550 AI wird eine Lithium-Ionen-Batterie beschrieben, die eine Mehrzahl von in parallelen Strängen angeordneten Zellen aufweist mit einer Überstromschutzeinrichtung, wobei die Überstromschutzein- richtung mehrere elektronische Schalter aufweist, die in quer zu den parallelen
Strängen verlaufenden Querverbindungen eingebaut sind. In der Druckschrift FR 3 013 902 wird eine Vorrichtung umfassend eine Batterie beschrieben, wobei in Querverbindungen von Batteriezellen Leistungsschalter eingebaut sind.
Offenbarung der Erfindung Vorteile der Erfindung
Es wird ein elektrisches Energiespeichersystem, umfassend mindestens zwei in Parallelschaltung verschaltete Stränge, wobei die Stränge jeweils mindestens zwei in Serienschaltung verschaltete elektrische Energiespeichereinheiten aufweisen, ein Verfahren zur Detektion eines Leitungsfehlers, eine Vorrichtung und eine Verwendung des elektrischen Energiespeichersystems mit den kennzeichnenden Merkmalen der unabhängigen Patentansprüche bereitgestellt.
Dabei ist in dem elektrischen Energiespeichersystem mindestens eine erste elektrisch leitfähige Querverbindung zwischen sich auf einem gleichen ersten elektrischen Potenzial befindenden elektrischen Energiespeichereinheiten in den in Parallelschaltung verschalteten Strängen über mindestens eine Diode mit einem Mittel zur Erfassung eines elektrischen Stromes und einer steuerbaren elektrischen Energiequelle elektrisch leitend verbunden, wobei die Diode nicht in die erste elektrisch leitfähige Querverbindung eingebaut ist. Dadurch kann die erste elektrisch leitfähige Querverbindung auf verschiedene Fehlerfälle, beispielsweise einen Bruch in der ersten elektrisch leitfähigen Querverbindung, überwacht werden. Dies ist vorteilhaft, da durch die erste elektrisch leitfähige Querverbindung auch ohne eine Einzelzellüberwachung der über die erste Querverbindung elektrisch leitend verbundenen Energiespeichereinheiten die Anfor- derungen an die Sicherheit erfüllt werden, weshalb eine korrekte Funktion der ersten elektrisch leitfähigen Querverbindung für die Sicherheit des elektrischen Energiespeichersystems sehr relevant ist.
Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung sind Gegen- stand der Unteransprüche. Zweckmäßigerweise ist die mindestens eine erste elektrisch leitfähige Querverbindung mit mindestens einer zweiten elektrisch leitfähigen Querverbindung zwischen sich auf einem gleichen zweiten elektrischen Potenzial befindenden elektrischen Energiespeichereinheiten in den in Parallelschaltung verschalteten Strängen über die mindestens eine Diode elektrisch leitend verbunden, wobei das erste elektrische Potenzial und das zweite elektrische Potenzial unterschiedlich sind. Durch die elektrische Verbindung über die Diode können die beiden Querverbindungen auf einfache Weise auf einen möglichen Leitungsfehler überwacht werden. Dies kann gegebenenfalls auf gleiche Weise für weitere elektrisch leitfähige Querverbindungen fortgeführt werden.
Zweckmäßigerweise befindet sich die mindestens eine zweite elektrisch leitfähige Querverbindung bezogen auf ein definiertes Bezugspotenzial auf einem höheren elektrischen Potenzial als die mindestens eine erste elektrisch leitfähige Querverbindung. Dabei ist die mindestens eine Diode in Durchlassrichtung zwischen der mindestens einen ersten elektrisch leitfähigen Querverbindung und der mindestens einen zweiten elektrisch leitfähigen Querverbindung eingebaut. Somit ist ein Stromfluss von der ersten elektrisch leitfähigen Querverbindung zu der zweiten elektrisch leitfähigen Querverbindung möglich, ohne dass es zu einem Kurzschluss und in der Folge zu einem ungewollten Entladen der elektrischen
Energiespeichereinheiten kommt.
Zweckmäßigerweise befinden sich die Diode und die elektrisch leitfähige Verbindung mit dem Mittel zur Erfassung eines Stromes an unterschiedlichen Enden der zweiten elektrisch leitfähigen Querverbindung. Somit ist insbesondere sichergestellt, dass sowohl die erste als auch die zweite Querverbindung überwacht werden können, da der elektrische Pfad zu dem Mittel zur Erfassung eines Stromes immer beide elektrisch leitfähige Querverbindungen einschließt. Zweckmäßigerweise ist die steuerbare elektrische Energiequelle eine Stromquelle. Somit werden die elektrisch leitfähigen Querverbindungen durch Erzeugung eines geringen Stromes, zum Beispiel im Bereich von 0 mA bis 20 mA, bevorzugt im Bereich 0 mA bis 10 mA, beispielsweise auf einen Leitungsfehler, insbesondere auf einen Leitungsbruch, überwacht. Durch den Einsatz einer Strom- quelle wird der unerwünschte Einfluss elektromagnetischer Strahlung reduziert. Vorteilhafterweise kann unter der elektrischen Energiespeichereinheit insbesondere eine elektrochemische Batteriezelle und/oder ein Batteriemodul mit mindestens einer elektrochemischen Batteriezelle und/oder ein Batteriepack mit mindestens einem Batteriemodul verstanden werden. Zum Beispiel kann die elektrische Energiespeichereinheit eine lithiumbasierte Batteriezelle oder ein lithiumbasiertes Batteriemodul oder ein lithiumbasiertes Batteriepack sein. Insbesondere kann die elektrische Energiespeichereinheit eine Lithium-Ionen-Batteriezelle oder ein Lithium-Ionen-Batteriemodul oder ein Lithium-Ionen-Batteriepack sein. Weiterhin kann die Batteriezelle vom Typ Lithium-Polymer-Akkumulator, Nickel-Metallhydrid-Akkumulator, Blei-Säure-Akkumulator, Lithium-Luft-Akkumulator oder Lithium- Schwefel-Akkumulator beziehungsweise ganz allgemein ein Akkumulator beliebiger elektrochemischer Zusammensetzung sein.
Weiterhin ist Gegenstand der Offenbarung ein Verfahren zur Detektion eines Leitungsfehlers in einem erfindungsgemäßen elektrischen Energiespeichersystem, wobei mindestens ein erster Stromsignalverlauf mit einem Mittel zur Erfassung eines Stromes erfasst wird, der erfasste mindestens eine erste Stromsignalverlauf mit einem durch eine steuerbare elektrische Energiequelle vorgegebenen zweiten Stromsignalverlauf verglichen wird und ein Signal über die Detektion eines Leitungsfehlers in dem elektrischen Energiespeichersystem bei Überschreiten eines vordefinierten Signalabweichungsschwellenwertes erzeugt wird. Durch Auswertung der Stromsignalverläufe werden neben einer einfachen Leitungs- bruchdetektion weitergehende Diagnosemöglichkeiten ermöglicht. Beispielsweise können potentielle Fehler bereits vor ihrem eigentlichen Auftreten detektiert werden durch Vergleich mit geeigneten Signalabweichungsschwellenwerten. Die Signalabweichungsschwellenwerte können dabei zum Beispiel aus einem Verschieben von Extrempunkten, beispielsweise Hoch-, Tief- oder Wendepunkten, in dem ersten Stromsignalverlauf oder auch durch die über eine oder mehrere Perioden integrierte Differenz zwischen dem ersten Stromsignalverlauf und dem durch die Energiequelle vorgegebenen zweiten Stromsignalverlauf berechnet werden. Dabei ist es nicht erforderlich, dass der zweiten Stromsignalverlauf mit einem Mittel zur Erfassung eines Stromes erfasst wird, da er als bekannt vorausgesetzt wird und daher einfach, beispielsweise„intern" in einer Berechnungseinheit, verwendet werden kann. Zweckmäßigerweise wird die steuerbare elektrische Energiequelle in dem Verfahren derart angesteuert, dass sie einen pulsförmigen zweiten Stromsignalverlauf erzeugt. Dadurch sind insbesondere Änderungen im Stromsignalverlauf gut erkennbar.
Zweckmäßigerweise wird das Verfahren für mindestens einen vordefinierten Zeitraum durchgeführt. Der vordefinierte Zeitraum kann dabei ein ganzzahliges Vielfaches einer Periodendauer des Stromsignals sein. Somit lassen sich Veränderungen in der Position von Extrempunkten im Stromsignalverlauf einfach erken- nen und es ist nicht notwendig, das Verfahren kontinuierlich, d.h. in Endlosschleife durchzuführen. Somit kann das Verfahren mit relativ geringen Rechenzeit- und Speicheranforderungen durchgeführt werden.
Weiterhin ist Gegenstand der Offenbarung eine Vorrichtung, die ein erfindungs- gemäßes elektrisches Energiespeichersystem und eine elektronische Steuereinheit, die eingerichtet ist, alle Schritte des erfindungsgemäßen Verfahrens durchzuführen, umfasst. Somit können sowohl die Vorteile des erfindungsgemäßen Verfahrens beziehungsweise seiner Umsetzung in einer elektronischen Steuereinheit als auch die Vorteile des erfindungsgemäßen elektrischen Energiespei- chersystems erzielt werden. Die Kombination erzielt den Systemvorteil, dass das
Verfahren auf den vom dem Mittel zur Erfassung eines Stromes erfassten Stromsignalverlauf angewendet werden kann und dadurch in dem erfindungsgemäßen elektrischen Energiespeichersystem ein Leitungsfehler detektiert werden kann. Weiterhin ist Gegenstand der Offenbarung eine Verwendung des erfindungsgemäßen elektrischen Energiespeichersystems in elektrisch angetriebenen Fahrzeugen und stationären elektrischen Energiespeichereinheiten sowie elektrisch betriebenen Handwerkzeugen. Das erfindungsgemäße elektrische Energiespeichersystem ist somit flexibel einsetzbar und nicht auf einen bestimmten Anwen- dungsbereich festgelegt. Somit werden die oben genannten Vorteile auf die angegebenen Verwendungsbereiche übertragen.
Kurze Beschreibung der Zeichnungen Vorteilhafte Ausführungsformen der Erfindung sind in den Figuren dargestellt und in der nachfolgenden Beschreibung näher ausgeführt. Es zeigen:
Figur 1 eine schematische Darstellung des erfindungsgemäßen elektrischen Energiespeichersystem gemäß einer ersten Ausführungsform;
Figur 2 eine schematische Darstellung des erfindungsgemäßen elektrischen Energiespeichersystems gemäß einer zweiten Ausführungsform; Figur 3 eine schematische Darstellung des erfindungsgemäßen elektrischen
Energiespeichersystems gemäß einer dritten Ausführungsform;
Figur 4 ein Flussdiagramm des erfindungsgemäßen Verfahrens gemäß einer Ausführungsform;
Figur 5 eine schematische Darstellung der innerhalb des erfindungsgemäßen Verfahrens verwendeten Stromsignalverläufe gemäß einer ersten Ausführungsform; und Figur 6 eine schematische Darstellung der innerhalb des erfindungsgemäßen Verfahrens verwendeten Stromsignalverläufe gemäß einer zweiten Ausführungsform.
Ausführungsformen der Erfindung
Gleiche Bezugszeichen bezeichnen in allen Figuren gleiche Vorrichtungskomponenten oder gleiche Verfahrensschritte. Figur 1 zeigt eine schematische Darstellung des erfindungsgemäßen elektrischen Energiespeichersystems 1 gemäß einer ersten Ausführungsform. Das elektrische Energiespeichersystem 1 umfasst dabei zwei in Parallelschaltung verschaltete Stränge STR1, STR2, wobei die Stränge STR1, STR2 jeweils zwei in Serienschaltung verschaltete elektrische Energiespeichereinheiten 15 aufweisen. Eine erste elektrisch leitfähige Querverbindung 11 zwischen sich auf einem glei- chen ersten elektrischen Potenzial befindenden elektrischen Energiespeichereinheiten 15 in den in Parallelschaltung verschalteten Strängen STR1, STR2 ist über eine Diode 12 mit einem Stromsensor 13, beispielsweise einem Hallsensor oder einem shuntbasierten Stromsensor, sowie einer elektrischen Energiequelle 14 elektrisch leitend verbunden.
Figur 2 zeigt eine schematische Darstellung des erfindungsgemäßen elektrischen Energiespeichersystems 1 gemäß einer zweiten Ausführungsform. Das elektrische Energiespeichersystem 1 umfasst dabei die zwei in Parallelschaltung verschalteten Strängen STR1, STR2, wobei die Stränge STR1, STR2 jeweils um eine elektrische Energiespeichereinheit 15 ergänzt wurden und somit drei in Serienschaltung verschalteten elektrische Energiespeichereinheiten 15 aufweisen. Zwischen sich auf einem gleichen ersten elektrischen Potenzial befindenden Energiespeichereinheiten 15 ist die erste elektrisch leitfähige Querverbindung 11 vorhanden. Die erste elektrisch leitfähige Querverbindung 11 ist mit einer zweiten elektrisch leitfähigen Querverbindung 21, welche sich auf einem zweiten elektrischen Potenzial befindende elektrische Energiespeichereinheiten 15 verbindet, über die Diode 12 elektrisch leitend verbunden. Die zweite elektrisch leitfähige Querverbindung 21 ist mit dem Stromsensor 13 und der elektrischen Energie- quelle 14 verbunden. Die Diode 12 und die elektrisch leitfähige Verbindung mit dem Stromsensor 13 befinden sich dabei an unterschiedlichen Enden der zweiten elektrisch leitfähigen Querverbindung 21.
Figur 3 zeigt eine schematische Darstellung des erfindungsgemäßen elektri- sehen Energiespeichersystems 1 gemäß einer dritten Ausführungsform. Dabei weist das elektrische Energiespeichersystem 1 drei parallel geschaltete Stränge STR1, STR2, STR3 auf. Die gestrichelten Linien in der Darstellung der Stränge STR1, STR2, STR3 zeigen dabei an, dass das in der Figur 1 und in der Figur 2 dargestellte Prinzip prinzipiell auf Stränge mit einer mehr oder weniger beliebigen Anzahl an elektrischen Energiespeichereinheiten 15 erweitert werden kann.
Elektrisch leitfähige Querverbindungen 11, 21, 31 verbinden die sich auf einem gleichen Potenzial befindenden elektrischen Energiespeichereinheiten 15. In die elektrisch leitfähigen Querverbindungen 11, 21, 31 sind elektrische Widerstandselemente 32 eingebaut, um potenziell fließende Ausgleichsströme zwischen den elektrischen Energiespeichereinheiten 15 zu begrenzen. Figur 4 zeigt ein Flussdiagramm des erfindungsgemäßen Verfahrens gemäß einer Ausführungsform. In einem ersten Schritt Sl wird ein Stromsignalverlauf innerhalb des Stromkreises, der durch die Komponenten elektrisch leitfähige Querverbindung 11, Diode 12, Stromsensor 13, elektrische Energiequelle 14 und ei- nen entsprechenden elektrisch leitfähige Rückverbindung zu der elektrisch leitfähigen Querverbindung 11 gebildet wird, mittels des Stromsensors 13 erfasst. In einem zweiten Schritt S2 wird der erfasste Stromsignalverlauf mit einem durch die Energiequelle 14 vorgegebenen Stromsignalverlauf verglichen. Sofern keine Fehler in dem oben beschriebenen Stromkreis vorliegen, werden sich diese Stromsignalverläufe stark ähneln. In einem dritten Schritt S3 wird gegebenenfalls anschließend bei Überschreiten eines vordefinierten Signalabweichungsschwellenwertes ein Signal über die Detektion eines Leitungsfehlers in dem elektrischen Energiespeichersystem 1 beziehungsweise in dem oben beschriebenen Stromkreis erzeugt. Somit kann beispielsweise der Benutzer des elektrischen Energie- speichersystems 1 auf einen Fehler im elektrischen Energiespeichersystem 1 aufmerksam gemacht werden.
Figur 5 zeigt eine schematische Darstellung der innerhalb des erfindungsgemäßen Verfahrens verwendeten Stromsignalverläufe SIG1, SIG2 gemäß einer ers- ten Ausführungsform. Der erste Stromsignalverlauf SIG1 zeigt den durch den
Stromsensor 13 erfassten Stromsignalverlauf. Der zweite Stromsignalverlauf SIG2 zeigt dabei den durch die elektrische Energiequelle 14 vorgegebenen Stromsignalverlauf, der bekannt ist, beispielsweise weil er durch eine geeignete Programmierung auf einer elektronischen Steuereinheit vorgegeben wird. Beide Stromsignalverläufe verlaufen pulsförmigen zwischen einem ersten Stromwert II und einem zweiten Stromwert 12. Eine Zeitdifferenz Ätl2 zwischen einem ersten Zeitpunkt tl, der einen Beginn einer Stromsignalperiode festlegt, und einem zweiten Zeitpunkt t2, der ein Ende der Stromsignalperiode festlegt, stellt die Periodendauer des zweiten Stromsignals dar. Mittels des Integrals des Betrages der Differenz des ersten Stromsignalverlaufs SIG1 und des zweiten Stromsignalverlaufs SIG2 über eine Periodendauer des zweiten Stromsignals kann ein Signalabweichungswert berechnet werden, der mit einem vordefinierten Signalabweichungsschwellenwert verglichen wird, wobei bei Überschreiten des vordefinierten Signalabweichungsschwellenwertes ein Signal über die Detektion eines Lei- tungsfehlers erzeugt wird. Figur 6 zeigt eine schematische Darstellung der innerhalb des erfindungsgemä- ßen Verfahrens verwendeten Stromslgnalverläufe SIGl, SIG2 gemäß einer zweiten Ausführungsform. Hierbei sind die Stromsignalverläufe ebenfalls pulsförmi- gen, wobei der zweite Stromwert 12 0 mA beträgt. Eine Differenz zwischen den beiden Stromsignalverläufen SIGl, SIG2 ist in Figur 6, genauso wie in Figur 5, schraffiert dargestellt. Eine Zeitdifferenz Ät34 zwischen einem dritten Zeitpunkt t3 und einem vierten Zeitpunkt t4 legt eine Periodendauer des ersten Stromsignals fest. Anstelle des oben erwähnten Integrals als Signalabweichungswert kann alternativ eine Fouriertransformation des ersten Stromsignalverlaufs SIGl und des zweiten Stromsignalverlaufs SIG2 durchgeführt werden, wobei dann der vordefinierte Signalabweichungsschwellenwert beispielsweise als ein Maß im Phasenraum der Fouriertransformation, beispielsweise eine Leistungsdichte, festgelegt wird.

Claims

Ansprüche
1. Elektrisches Energiespeichersystem (1), umfassend mindestens zwei in Parallelschaltung verschaltete Stränge (STRl, STR2, STR3), wobei die Stränge (STRl, STR2, STR3) jeweils mindestens zwei in Serienschaltung verschaltete elektrische Energiespeichereinheiten (15) aufweisen, dadurch gekennzeichnet, dass mindestens eine erste elektrisch leitfähige Querverbindung
(11) zwischen sich auf einem gleichen ersten elektrischen Potential befindenden elektrischen Energiespeichereinheiten (15) in den in Parallelschaltung verschalteten Strängen (STRl, STR2, STR3) über mindestens eine Diode
(12) mit einem Mittel zur Erfassung eines elektrischen Stromes (13) und einer steuerbaren elektrischen Energiequelle (14) elektrisch leitend verbunden ist, wobei die Diode (12) nicht in die erste elektrisch leitfähige Querverbindung (11) eingebaut ist.
2. Elektrisches Energiespeichersystem (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine erste elektrisch leitfähige Querverbindung
(11) mit mindestens einer zweiten elektrisch leitfähigen Querverbindung (21) zwischen sich auf einem gleichen zweiten elektrischen Potential befindenden elektrischen Energiespeichereinheiten (15) in den in Parallelschaltung verschalteten Strängen (STRl, STR2, STR3) über die mindestens eine Diode
(12) elektrisch leitend verbunden ist, wobei das erste elektrische Potential und das zweite elektrische Potential unterschiedlich sind.
3. Elektrisches Energiespeichersystem (1) gemäß einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass sich die mindestens eine zweite elektrisch leitfähige Querverbindung (21) bezogen auf ein definiertes Bezugspotential auf einem höheren elektrischen Potential befindet als die mindestens eine erste elektrisch leitfähige Querverbindung (11) und die mindestens eine Diode (12) in Durchlassrichtung zwischen der mindestens einen ersten elektrisch leitfähigen Querverbindung (11) und der mindestens einen zweiten elektrisch leitfähigen Querverbindung (21) eingebaut ist.
4. Elektrisches Energiespeichersystem (1) gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass sich die Diode (12) und die elektrisch leitfähige Verbindung mit dem Mittel zur Erfassung eines Stromes (13) an unterschiedlichen Enden der zweiten elektrisch leitfähigen Querverbindung (21) befinden.
5. Elektrisches Energiespeichersystem (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die steuerbare elektrische Energiequelle (14) eine Stromquelle ist.
6. Verfahren zur Detektion eines Leitungsfehlers in einem elektrischen Energiespeichersystem (1) gemäß einem der Ansprüche 1 bis 5, wobei das Verfahren folgende Schritte umfasst:
a) Erfassen mindestens eines ersten Stromsignalverlaufs (SIG1) mit einem Mittel zur Erfassung eines Stromes (13);
b) Vergleichen des erfassten mindestens einen ersten Stromsignalverlaufs (SIG1) mit einem durch eine steuerbare elektrische Energiequelle (14) vorgegebenen zweiten Stromsignalverlauf (SIG2);
c) Erzeugen eines Signals über die Detektion eines Leitungsfehlers in dem elektrischen Energiespeichersystem (1) bei Überschreiten eines vordefinierten Signalabweichungsschwellenwertes.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die steuerbare elektrische Energiequelle (14) derart angesteuert wird, dass sie einen pulsför- migen Stromsignalverlauf (SIG1, SIG2) erzeugt.
8. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Verfahren für mindestens einen vordefinierten Zeitraum (Δί12, Ät34), insbesondere für ein ganzzahliges Vielfaches einer Periodendauer ((Δί12, Ät34) des zweiten Stromsignals, durchgeführt wird.
9. Vorrichtung, umfassend ein elektrisches Energiespeichersystem (1) gemäß einem der Ansprüche 1 bis 5 und eine elektronische Steuereinheit, die eingerichtet ist, alle Schritte des Verfahrens nach einem der Ansprüche 6 bis 8 durchzuführen.
10. Verwendung eines elektrischen Energiespeichersystems (1) gemäß einem der Ansprüche 1 bis 5 in elektrisch angetriebenen Fahrzeugen einschließlich Hybridfahrzeugen und stationären elektrischen Energiespeicheranlagen sowie elektrisch betriebenen Handwerkzeugen.
PCT/EP2017/074328 2016-09-27 2017-09-26 Elektrisches energiespeichersystem mit einer über eine diode mit einem stromerfassungsmittel elektrisch leitend verbundenen querverbindung mehrerer paralleler energiespeicherstränge und verfahren zur detektion eines leitungsfehlers WO2018060179A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059253.8A CN109791184B (zh) 2016-09-27 2017-09-26 电能量存储***以及用于探测线路故障的方法
US16/336,925 US10981451B2 (en) 2016-09-27 2017-09-26 Electrical energy storage system comprising a cross-connection of a plurality of parallel energy storage strings that is electrically conductively connected to a current detection means via a diode, and method for detecting a conduction fault

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016218516.0A DE102016218516A1 (de) 2016-09-27 2016-09-27 Elektrisches Energiespeichersystem mit einer über eine Diode mit einem Stromerfassungsmittel elektrisch leitend verbundenen Querverbindung mehrerer paralleler Energiespeicherstränge und Verfahren zur Detektion eines Leitungsfehlers
DE102016218516.0 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018060179A1 true WO2018060179A1 (de) 2018-04-05

Family

ID=59966769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/074328 WO2018060179A1 (de) 2016-09-27 2017-09-26 Elektrisches energiespeichersystem mit einer über eine diode mit einem stromerfassungsmittel elektrisch leitend verbundenen querverbindung mehrerer paralleler energiespeicherstränge und verfahren zur detektion eines leitungsfehlers

Country Status (4)

Country Link
US (1) US10981451B2 (de)
CN (1) CN109791184B (de)
DE (1) DE102016218516A1 (de)
WO (1) WO2018060179A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361334B1 (ko) * 2018-05-09 2022-02-09 주식회사 엘지에너지솔루션 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031268A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池
DE102011115550A1 (de) 2011-10-10 2013-04-11 Audi Ag Lithium-Ionen-Batterie
DE102011115452A1 (de) * 2011-10-08 2013-04-11 Audi Ag Lithium-Ionen-Batterie
US20140203654A1 (en) * 2013-01-21 2014-07-24 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, secondary battery module, method for charging the secondary battery and the secondary battery module, method for discharging the secondary battery and the secondary battery module, method for operating the secondary battery and the secondary battery module, power storage system, and method for operating the power storage system
FR3013902A1 (fr) 2013-11-28 2015-05-29 Commissariat Energie Atomique Detection de deconnexion d'une cellule dans une batterie electrique
EP2994341A1 (de) * 2013-05-09 2016-03-16 Commissariat à l'Energie Atomique et aux Energies Alternatives Sicherheitssystem für ein akkumulatorbatteriemodul und entsprechendes verfahren zum auswuchten eines batteriemoduls

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936383A (en) * 1998-04-02 1999-08-10 Lucent Technologies, Inc. Self-correcting and adjustable method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
US8823323B2 (en) * 2009-04-16 2014-09-02 Valence Technology, Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
KR101256952B1 (ko) * 2010-03-05 2013-04-25 주식회사 엘지화학 셀 밸런싱부의 고장 진단 장치 및 방법
WO2012075172A2 (en) * 2010-11-30 2012-06-07 Ideal Power Converters Inc. Photovoltaic array systems, methods, and devices and improved diagnostics and monitoring
GB2486408A (en) * 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
DE102011011798A1 (de) 2011-02-19 2012-08-23 Volkswagen Ag Verfahren zum Betreiben eines Energiespeichers für ein Fahrzeug sowie entsprechender Energiespeicher, Spannungsversorgung und Fahrzeug
US8937822B2 (en) * 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
WO2013177360A1 (en) * 2012-05-25 2013-11-28 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031268A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池
DE102011115452A1 (de) * 2011-10-08 2013-04-11 Audi Ag Lithium-Ionen-Batterie
DE102011115550A1 (de) 2011-10-10 2013-04-11 Audi Ag Lithium-Ionen-Batterie
US20140203654A1 (en) * 2013-01-21 2014-07-24 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, secondary battery module, method for charging the secondary battery and the secondary battery module, method for discharging the secondary battery and the secondary battery module, method for operating the secondary battery and the secondary battery module, power storage system, and method for operating the power storage system
EP2994341A1 (de) * 2013-05-09 2016-03-16 Commissariat à l'Energie Atomique et aux Energies Alternatives Sicherheitssystem für ein akkumulatorbatteriemodul und entsprechendes verfahren zum auswuchten eines batteriemoduls
FR3013902A1 (fr) 2013-11-28 2015-05-29 Commissariat Energie Atomique Detection de deconnexion d'une cellule dans une batterie electrique

Also Published As

Publication number Publication date
CN109791184A (zh) 2019-05-21
US20200033392A1 (en) 2020-01-30
US10981451B2 (en) 2021-04-20
CN109791184B (zh) 2021-07-13
DE102016218516A1 (de) 2018-03-29

Similar Documents

Publication Publication Date Title
DE19960761C1 (de) Verfahren zur Überwachung der Restladung und der Leistungsfähigkeit einer Batterie
DE102014214840A1 (de) Vorrichtung zur Überwachung eines Hochvolt-Bordnetzes eines elektrisch betriebenen Fahrzeugs auf das Vorliegen einer Überlastung
EP2617095B1 (de) Batteriesystem mit zellspannungserfassungseinheiten
DE102007046483A1 (de) Schaltungsanordnung zur Überwachung einer elektrischen Isolation
DE102007061729A1 (de) Verfahren zur Erkennung eines elektrischen Fehlers in einem elektrischen Netzwerk eines Kraftfahrzeugs
DE102015008831A1 (de) Hochvolt-Netz und Verfahren zum Lokalisieren eines Isolationsfehlers in einem Hochvolt-Netz für ein Kraftfahrzeug
EP2619844B1 (de) Batteriesystem und verfahren zur bestimmung von batteriemodulspannungen
DE10257588B3 (de) Verfahren zur Vorhersage einer Spannung einer Batterie
EP2887081A2 (de) Vorrichtung zur Isolationsüberwachung
DE102014208680A1 (de) Verfahren zur Überwachung von Stromsensoren
DE102020106210A1 (de) Energieversorgungssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben des Energieversorgungssystems für ein Kraftfahrzeug
DE102020212414A1 (de) Verfahren zum Überwachen eines Bordnetzes eines Kraftfahrzeugs
EP4377703A1 (de) Verfahren zur eigendiagnose einer schaltung zur isolationswiderstandsmessung eines hochspannungssystems
DE102011105971A1 (de) Bordnetzanordnung für ein Kraftfahrzeug
WO2018060179A1 (de) Elektrisches energiespeichersystem mit einer über eine diode mit einem stromerfassungsmittel elektrisch leitend verbundenen querverbindung mehrerer paralleler energiespeicherstränge und verfahren zur detektion eines leitungsfehlers
WO2013091745A1 (de) Stromsensor
DE102011115243A1 (de) Schutzglied mit integriertem Distanzschutz mit einer Echtzeitanpassung der Auslösezeit zur Detektion und Separierung von hochohmigen Fehlern in vermaschten Netzen
WO2017050404A1 (de) Vorhersage eines spannungseinbruchs in einem kraftfahrzeug
DE102017116009B3 (de) Verfahren und vorrichtung zum erkennen von lichtbögen
WO2022179724A1 (de) Verfahren zum überwachen der energieversorgung eines kraftfahrzeugs
WO2018007106A1 (de) Verfahren zum erkennen eines fehlerfalls in einem bordnetz
DE102011115707A1 (de) Verfahren und Vorrichtung zur Bestromung eines Bedienelementes einer Bordelektronik eines Fahrzeuges mit einem Korrosionsschutzstrom
DE102019219840A1 (de) Verfahren zur Bestimmung einer elektrischen Größe
DE102021205161B4 (de) Verfahren und Steuergerät zum Bestimmen einer Maximalstromgrenze eines Batteriesystems mit mindestens zwei Batterien
DE102018112299B4 (de) Einrichtung, Verfahren und Steuermodul zur Überwachung einer Zweidrahtleitung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17772426

Country of ref document: EP

Kind code of ref document: A1