WO2018058804A1 - 通用型包含恒功率和下垂控制的微电网群分布式控制方法 - Google Patents

通用型包含恒功率和下垂控制的微电网群分布式控制方法 Download PDF

Info

Publication number
WO2018058804A1
WO2018058804A1 PCT/CN2016/110479 CN2016110479W WO2018058804A1 WO 2018058804 A1 WO2018058804 A1 WO 2018058804A1 CN 2016110479 W CN2016110479 W CN 2016110479W WO 2018058804 A1 WO2018058804 A1 WO 2018058804A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
power
agent
distributed power
droop
Prior art date
Application number
PCT/CN2016/110479
Other languages
English (en)
French (fr)
Inventor
顾伟
曹戈
柳伟
楼冠男
陈明
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US15/763,733 priority Critical patent/US10644506B2/en
Publication of WO2018058804A1 publication Critical patent/WO2018058804A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach

Definitions

  • the invention belongs to the field of micro-grid operation control, and in particular relates to a general-purpose distributed control method for micro-grid groups including constant power and droop control.
  • the microgrid is an energy system that includes distributed generation equipment, energy storage devices, and local loads, and has certain self-regulation and control capabilities.
  • the microgrid group is an effective way to solve the problems caused by the high-density access of distributed power sources, and will play an important role in the future smart distribution network.
  • Control strategies based on multi-agent systems are recognized to play an important role in maintaining microgrid stability, including centralized and distributed control.
  • centralized control which is used to process a large amount of data and is prone to failure.
  • the advantages of distributed control include anti-indetermination interference and distributed information update capabilities, so that information can be effectively shared, ultimately making decision making and implementation more rapid.
  • the containment control is an effective distributed control method for multi-agent systems. By pinning some nodes, the control can reduce the number of controllers of large complex control systems. Usually, such systems are difficult to implement by adding controllers to all nodes.
  • the technical problem to be solved by the present invention is to provide a general-purpose distributed control method for a micro-grid group including constant power and droop control, the control method including a distributed power supply of two methods: droop control and constant power control
  • the control method including a distributed power supply of two methods: droop control and constant power control
  • the method eliminates the need for the central controller and the complicated communication topology, and only needs to be controlled. Part of the agent is pinned, and the remaining agents are synchronized with the pinning agent through communication coupling, thereby reducing the number of controllers.
  • Distributed power control and mutual information interaction are handled by the multi-agent system, each distributed power source corresponds to a proxy, distribution The number of the power source is the same as the number of the agent corresponding to the distributed power source; wherein, some of the agents are controlled pinning agents, and the remaining agents track the synchronization in a distributed manner through communication with the pinning agent;
  • the control method includes The following steps:
  • Step 10 performing a control to maintain the power balance of the microgrid group
  • Step 20 determining a predefined group consistency convergence value of the pinning agent
  • Step 30 The agent other than the agent is seeking group consistency through the communication coupling and the pinning agent;
  • Step 40 Adjust the output power to complete the secondary control.
  • the step 10) specifically includes: in the island mode, when the microgrid group is disturbed, the distributed power cluster of the droop control automatically performs the primary control as shown in the formula (1), and the distribution of the droop control
  • the power supply operates in a peer-to-peer control mode to maintain the power balance of the microgrid group:
  • f i represents the frequency of the i-th droop controlled distributed power source
  • f n,i represents the initial value of the distributed power frequency of the i-th droop control
  • m P,i represents the distributed power of the i-th droop control Active droop coefficient
  • P i represents the active power of the distributed power output of the i-th droop control
  • P 0,i represents the initial value of the active power of the distributed power supply of the i-th droop control
  • U i represents the i-th droop control voltage distributed power
  • U n, i denotes an i-th reference voltage distributed power droop control
  • n Q, i represents the i th coefficient reactive droop droop control of distributed power sources
  • Q i denotes The reactive power output of the distributed power supply of the droop control
  • Q 0,i represents the initial value of the reactive power of the distributed power supply of the i-th d
  • the step 20) specifically includes: determining, under an uncertain communication topology, a predefined group consistency convergence value of the pinning agent, including a pinning agent pre-defined group consistency value based on the droop control, and based on constant power control.
  • the pinning agent pre-defined group consistency value includes: determining, under an uncertain communication topology, a predefined group consistency convergence value of the pinning agent, including a pinning agent pre-defined group consistency value based on the droop control, and based on constant power control.
  • the active preset group consistency value of the kth droop-controlled distributed power cluster Represents the active deficit in the entire microgrid group, ⁇ k, D represents the total number of non-zero participation factors in the kth droop control distributed power cluster, Representing the k-th reactive preset group consistency value based on the droop control distributed power cluster, Represents the lack of power in the entire microgrid group, Representing the kth frequency preset group consistency value based on the droop control distributed power cluster, Indicates the voltage pre-group consistency value of the kth droop-controlled distributed power cluster, m P,i represents the active droop coefficient, and n Q,i represents the reactive droop coefficient;
  • the step 30) specifically includes: causing distributed power clusters and clusters by pinning control Other agents in the same time track the synchronization with the pinning agent, seeking to achieve predefined group consistency;
  • e fk,i denotes the frequency control error of the droop control distributed power agent i
  • e Uk,i denotes the voltage control error of the droop control distributed power agent i
  • ⁇ f n,i denotes the droop control distributed power agent i
  • the correction amount of the frequency in the secondary control, ⁇ U n,i represents the correction amount of the voltage of the distributed power source agent i in the secondary control;
  • e Pk,i represents the active power control error of the constant power control distributed power agent i
  • e Qk,i represents the reactive power control error of the constant power control distributed power agent i
  • ⁇ P ref,i represents the constant power control distribution
  • ⁇ Q ref, i represents the correction amount of the reactive power of the distributed power source agent i in the secondary control
  • the k-th droop control controls the pinning control of the agent i in the distributed power cluster:
  • e fUk,i Representing a set of agents adjacent to agent i in the kth distributed power cluster at time t m , Indicates the communication coupling coefficient between agent i and other agents in the cluster at time t m . If there is a communication line connection, otherwise, e fk,j represents the frequency control error of the droop control distributed power agent j, Representing a set of agents adjacent to the agent i in the lth distributed power cluster at time t m ; Indicates the communication coupling coefficient between agent i and the agents in other clusters at time t m .
  • the step 40) specifically includes: each distributed power agent adjusts the output power based on the predefined power group consistency value based on the distributed power supply of the constant power control, and the distributed power recovery system frequency based on the droop control And voltage, together to complete the secondary control of the microgrid group;
  • Represents a distributed power droop control agent i by the secondary control reference value of the frequency adjustment, f n, i represents the reference value of the distributed power droop control agent i in the primary frequency control, ⁇ f n, i denotes a distributed power supply droop control
  • the amount of correction of the frequency of the agent i in the secondary control Denotes the reference value of the voltage that the distributed power agent i adjusts by the secondary control
  • U n,i denotes the reference value of the droop control distributed power agent i in one control
  • ⁇ U n,i denotes the droop control distributed power
  • P ref, i represents the initial active reference value of the constant power control distributed power agent i
  • ⁇ P ref, i represents the constant power control distributed
  • the correction amount of the active power of the power agent i in the secondary control Represents the reactive power reference value of the constant power control distributed power agent i adjusted by the secondary control
  • Q ref, i represents the initial reactive power reference value of the constant power control distributed power agent i
  • ⁇ Q ref, i represents constant power control
  • the universal type of the present invention includes a micro power grid group distributed control method for constant power and droop control, and is applicable to a micro power grid group and a distributed power cluster, and can be in a system Control when disturbance occurs, restore system frequency and voltage, and maintain system stability.
  • the embodiment of the present invention is based on the hierarchical control of primary control and secondary control, and adopts the concept of cluster to implement the control of the multi-agent system based on the control.
  • the cloth control method eliminates the need of the central controller and the complex communication topology, reduces the number of controllers, and satisfies the requirements of distributed power plug and play.
  • the control method proposed by the invention performs a group-based consistency process in a distributed power supply cluster and between clusters, controls the frequency and voltage of the distributed power supply cluster cooperative recovery system, and the constant power control distributed power supply cluster cooperatively shares the power shortage. It can realize global coordination and local autonomy of distributed power clusters, and improve the reliability and adaptability of microgrid groups.
  • the method of the invention can realize global coordinated control and local autonomous control of the micro grid group and the distributed power cluster, and includes two control modes of constant power control and droop control, which is a general-purpose method.
  • Figure 1 is a flow chart of the present invention
  • FIG. 2 is a schematic structural diagram of a microgrid group simulation system in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a topology of a microgrid group communication in an embodiment of the present invention.
  • FIG. 4 is a control effect diagram of a simulation scenario 1 in an embodiment of the present invention.
  • FIG. 5 is a control effect diagram of a simulation scenario 2 in an embodiment of the present invention.
  • FIG. 6 is a control effect diagram of the simulation scene 3 in the embodiment of the present invention.
  • the micro-grid group includes m droop-controlled distributed power clusters and n constant-power controlled distributed power clusters; the distributed power control in the micro-grid group and the mutual information interaction between them
  • the agent system is responsible for each distributed power source corresponding to an agent, the number of the distributed power source is the same as the number of the agent corresponding to the distributed power source; wherein, some of the agents are controlled by the pinning agent, and the remaining agents are through the agent Communication coupling, tracking synchronization in a distributed manner.
  • a general-purpose distributed control method for a micro-grid group including constant power and droop control includes the following steps:
  • Step 10 Perform a control to maintain the power balance of the microgrid group.
  • the step 10) specifically includes: in the island mode, when the microgrid group is disturbed, the distribution of the droop control
  • the power supply cluster automatically performs the primary control as shown in equation (1), and the distributed power supply of the droop control operates in the peer-to-peer control mode to maintain the power balance of the micro-grid group:
  • f i represents the frequency of the i-th droop controlled distributed power source
  • f n,i represents the initial value of the distributed power frequency of the i-th droop control
  • m P,i represents the distributed power of the i-th droop control Active droop coefficient
  • P i represents the active power of the distributed power output of the i-th droop control
  • P 0,i represents the initial value of the active power of the distributed power supply of the i-th droop control
  • U i represents the i-th droop control voltage distributed power
  • U n, i denotes an i-th reference voltage distributed power droop control
  • n Q, i represents the i th coefficient reactive droop droop control of distributed power sources
  • Q i denotes The reactive power output of the distributed power supply of the droop control
  • Q 0,i represents the initial value of the reactive power of the distributed power supply of the i-th d
  • Step 20 Determine a predefined group consistency convergence value of the pinning agent.
  • the step 20) specifically includes: determining, under an uncertain communication topology, a predefined group consistency convergence value of the pinning agent, including a pinning agent pre-defined group consistency value based on the droop control and a pinning agent pre-based based on constant power control Define group consistency values;
  • the active preset group consistency value of the kth droop-controlled distributed power cluster Represents the active deficit in the entire microgrid group, ⁇ k, D represents the total number of non-zero participation factors in the kth droop control distributed power cluster, Representing the k-th reactive preset group consistency value based on the droop control distributed power cluster, Represents the lack of power in the entire microgrid group, Representing the kth frequency preset group consistency value based on the droop control distributed power cluster, Indicates the voltage pre-group consistency value of the kth droop-controlled distributed power cluster, m P,i represents the active droop coefficient, and n Q,i represents the reactive droop coefficient;
  • Step 30 The agent other than the agent is seeking group consistency through the communication coupling and the pinning agent.
  • the step 30) specifically includes: through the pinning control, synchronizing the other agents in the distributed power cluster with the other agents in the cluster, and seeking to achieve predefined group consistency;
  • e fk,i denotes the frequency control error of the droop control distributed power agent i
  • e Uk,i denotes the voltage control error of the droop control distributed power agent i
  • ⁇ f n,i denotes the droop control distributed power agent i
  • the correction amount of the frequency in the secondary control, ⁇ U n,i represents the correction amount of the voltage of the distributed power source agent i in the secondary control;
  • e Pk,i represents the active power control error of the constant power control distributed power agent i
  • e Qk,i represents the reactive power control error of the constant power control distributed power agent i
  • ⁇ P ref,i represents the constant power control distribution
  • ⁇ Q ref, i represents the correction amount of the reactive power of the distributed power source agent i in the secondary control
  • the k-th droop control controls the pinning control of the agent i in the distributed power cluster:
  • e fUk,i Representing a set of agents adjacent to agent i in the kth distributed power cluster at time t m , Indicates the communication coupling coefficient between agent i and other agents in the cluster at time t m . If there is a communication line connection, otherwise, e fk,j represents the frequency control error of the droop control distributed power agent j, Representing a set of agents adjacent to the agent i in the lth distributed power cluster at time t m ; Indicates the communication coupling coefficient between agent i and the agents in other clusters at time t m .
  • Step 40 Adjust the output power to complete the secondary control.
  • the step 40) specifically includes: each distributed power agent is based on the predefined predefined group consistency value, based on the constant
  • the power control distributed power supply adjusts the output power, and the distributed power supply based on the droop control restores the system frequency and voltage to jointly complete the secondary control of the micro grid group;
  • f n,i denotes the reference value of the droop control distributed power agent i in the frequency of one control
  • ⁇ f n,i denotes the droop control distributed power source
  • U n,i denotes the reference value of the droop control distributed power agent i in one control
  • ⁇ U n,i denotes the droop control distributed power
  • P ref, i represents the initial active reference value of the constant power control distributed power agent i
  • ⁇ P ref, i represents the constant power control distributed
  • the correction amount of the active power of the power agent i in the secondary control Represents the reactive power reference value of the constant power control distributed power agent i adjusted by the secondary control
  • Q ref, i represents the initial reactive power reference value of the constant power control distributed power agent i
  • ⁇ Q ref, i represents constant power control
  • the control method of the present invention is directed to a microgrid group and a distributed power cluster, and based on the hierarchical control of primary control and secondary control, adopts the concept of cluster to implement the containment control based on the multi-agent system.
  • the distribution-based group consistency process in the distributed power cluster and between the clusters drooping controls the frequency and voltage of the distributed power cluster cooperative recovery system, and the constant power control distributed power cluster cooperatively shares the power shortage, enabling distributed power clusters Global coordination and local autonomy reduce the number of controllers and complex communication topologies, improving the reliability and adaptability of the microgrid group.
  • FIG. 2 is a schematic structural diagram of a micro grid group used in the embodiment.
  • the simulation model consists of 10 distributed power supplies (referred to as DG) and 5 load cells (Load1, Load2, Load3, Load4, Load5). Each distributed power supply is connected to the 0.4kV low-voltage distribution network by power electronic components.
  • the system has two constant power control distributed power clusters and one droop control distributed power cluster, corresponding to microgrid 1, microgrid 2 and microgrid 3.
  • Agents There are 10 distributed power agents (Agents), which are represented by A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, respectively, where A4 is constant
  • A5 is the pinning agent of the constant power control cluster 2
  • A8 is the pinning agent of the droop control cluster 3.
  • An agent can only communicate with its agents that are directly adjacent to the communication topology.
  • PSCAD/EMTDC power system/DC electromagnetic transient simulation
  • the simulation micro-grid model is built, and the multi-agent system is simulated in the matrix laboratory (MATLAB), and the multi-agent system is established based on the control group.
  • the micro-grid group distributed control algorithm program uses the user-defined interface (UDI) model in PSACD to jointly run the algorithm in MATLAB with the computer-aided design (PSCAD) model of power system to realize the joint simulation technology. Simulation verification of the control method of the present invention.
  • UMI user-defined interface
  • PSCAD computer-aided design
  • the simulation of the disturbance of the microgrid group in the island mode is carried out to verify the control effect of the method of the invention.
  • A1 to A7 work in the PQ control mode
  • A8 to A10 work in the Droop control mode.
  • This embodiment sets three simulation scenarios:
  • the first scenario is that the microgrid group is switched from the grid-connected mode to the island mode.
  • Each microgrid operates independently, and the distributed power supply with droop control maintains the power balance of the microgrid through one control.
  • the power coordination of the microgrid group is first converted into the pre-defined consistency value of the distributed power cluster by the global coordination of the distributed power cluster containment control; then the agents in each distributed power cluster seek and The agent tracking synchronization is achieved to achieve a predefined group consistency value; finally, the distributed power cluster adjusts the output power according to the predefined group consistency value.
  • the simulation results are shown in Figure 4.
  • Fig. 4(a) shows the active power variation of each distributed power source in the microgrid 1
  • Fig. 4(b) shows the reactive power variation of each distributed power source in the microgrid 1
  • Fig. 4(c) shows the distributed in the microgrid 1
  • FIG. 4(d) shows the frequency change of the microgrid 1. It can be seen from Fig. 4(a) to Fig. 4(d) that the constant power control microgrid 1 can maintain power balance in the island mode and basically restore the distributed power supply voltage and system frequency.
  • Fig. 4(e) shows the active power variation of each distributed power source in the microgrid 2
  • Fig. 4(f) shows the reactive power variation of each distributed power source in the microgrid 2
  • Fig. 4(e) shows the active power variation of each distributed power source in the microgrid 2
  • Fig. 4(f) shows the reactive power variation of each distributed power source in the microgrid 2
  • Fig. 4(e) shows the active power variation of
  • FIG. 4(g) shows the distributed in the microgrid 2
  • the power supply voltage changes
  • FIG. 4(h) shows the frequency change of the microgrid 2.
  • the constant power control microgrid 2 can maintain power balance in the island mode and basically restore the distributed power supply voltage and system frequency.
  • Fig. 4(i) shows the active power variation of each distributed power source in the microgrid 3
  • Fig. 4(j) shows the reactive power variation of each distributed power source in the microgrid 3
  • Fig. 4(k) shows the distributed in the microgrid 3
  • the power supply voltage changes
  • FIG. 4(l) shows the frequency variation of the microgrid 3.
  • the droop control microgrid 3 can maintain power balance in the island mode, and substantially restore the distributed power supply voltage and system frequency.
  • Scenario 2 is for local autonomous control to eliminate local disturbances.
  • the microgrid group operates in the island mode.
  • the corresponding output power is changed, while the micro grid 2 and the micro grid 3 remain unchanged, and the simulation results are shown in Fig. 5.
  • Fig. 5(a) shows the active power variation of each distributed power source in the island microgrid 1
  • Fig. 5(b) shows the reactive power variation of each distributed power source in the island microgrid
  • Fig. 5(c) shows the island microgrid
  • Fig. 5(d) shows the frequency variation of the island microgrid 1.
  • the distributed power sources can coordinately adjust the output power to keep the system frequency substantially unchanged.
  • Scenario 3 is for uncertain communication topology changes.
  • the microgrid group operates in island mode.
  • the predefined group of the microgrid 1 The consistency value changes, A1 and A2 track the synchronization pinning agent A4 in a distributed manner, increase the output power to maintain the power balance, and restore the system voltage and frequency.
  • the simulation results are shown in Fig. 6.
  • Fig. 6(a) shows the active power variation of each distributed power source in the island microgrid 1
  • Fig. 6(b) shows the reactive power variation of each distributed power source in the island microgrid 1
  • FIG. 6(c) shows the island microgrid
  • the voltage variation of each distributed power source in Fig. 6 (d) shows the frequency variation of the island microgrid 1. It can be seen from Fig. 6 that after the DG3 is removed in the microgrid 1, the remaining distributed power sources can cooperate to reduce the power reduced by the DG3 cutoff, so that the system frequency remains unchanged.
  • the microgrid group can perform effective distributed cooperative control, and each distributed power cluster maintains power balance of the system and restores system frequency through primary control and secondary control. And voltage, indicating that the method proposed by the present invention has a good control effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种通用型包含恒功率和下垂控制的微电网群分布式控制方法,包括以下步骤:步骤10)进行一次控制,维持微电网群的功率平衡;步骤20)确定牵制代理的预定义群一致性收敛值;步骤30)牵制代理以外的其他代理通过通信耦合与牵制代理寻求群一致性;步骤40)调整输出功率,完成二次控制。该控制方法采用分层控制,以牵制控制为基础,包含了恒功率控制和下垂控制两种控制方式的分布式电源集群,是一种分布式的控制方法。该方法消除了对中央控制器和复杂通信拓扑的需求,减少了控制器的数量,能够适应微电网群中通信拓扑变化,满足分布式电源即插即用的需求。

Description

通用型包含恒功率和下垂控制的微电网群分布式控制方法 技术领域
本发明属于微电网运行控制领域,具体来说,涉及一种通用型包含恒功率和下垂控制的微电网群分布式控制方法。
背景技术
随着环境问题和能源问题的日益严峻,使用可再生能源的分布式发电技术在电力***中得到了广泛的应用。微电网是包含有分布式发电装置、储能装置和本地负荷,并具有一定的自我调节和控制能力的能源***。而微电网群是一种解决由分布式电源的高密度接入所引起有关问题的有效方式,将在未来的智能配电网中起到重要的作用。
微电网群的稳定和优化控制,近来得到了特别的关注。基于多代理***的控制策略被认识到能够在维持微电网稳定方面发挥重要作用,其控制方式包括集中式和分布式控制。其中,集中式控制存在一个中央控制器,用来处理大量的数据,容易发生故障。分布式控制的优点包括抗不确定干扰和分布式信息更新能力,从而使信息有效共享,最终使得决策制定和实施更加迅速。牵制控制是一种多代理***有效的分布式控制方式,通过牵制部分节点,牵制控制可以减少大型复杂控制***的控制器数量,通常这种***通过给所有节点添加控制器是难以实现的。
发明内容
技术问题:本发明所要解决的技术问题是:提供一种通用型包含恒功率和下垂控制的微电网群分布式控制方法,该控制方法包含了下垂控制和恒功率控制两种方式的分布式电源,在微电网群产生扰动时,消除传统下垂控制所产生的频率和电压误差,实现分布式电源集群的功率分配;同时该方法消除了对中央控制器的需求和复杂的通信拓扑,仅需控制一部分牵制代理,其余代理通过通信耦合与牵制代理跟踪同步,进而减少了控制器的数量。
技术方案:为解决上述技术问题,本发明采用如下的技术方案:
一种通用型包含恒功率和下垂控制的微电网群分布式控制方法,所述微电网群包含m个下垂控制的分布式电源集群和n个恒功率控制的分布式电源集群;微电网群中分布式电源的控制及相互间的信息交互由多代理体***负责,每个分布式电源对应一个代理,分布 式电源的编号和与该分布式电源对应的代理的编号相同;其中,一部分代理是被控制的牵制代理,其余代理通过与牵制代理的通信耦合,以分布的方式跟踪同步;所述控制方法包括以下步骤:
步骤10)进行一次控制,维持微电网群的功率平衡;
步骤20)确定牵制代理的预定义群一致性收敛值;
步骤30)牵制代理以外的其他代理通过通信耦合与牵制代理寻求群一致性;
步骤40)调整输出功率,完成二次控制。
作为优选例,所述的步骤10)具体包括:在孤岛模式下,当微电网群发生扰动时,下垂控制的分布式电源集群自动进行如式(1)所示的一次控制,下垂控制的分布式电源运行在对等控制模式,维持微电网群的功率平衡:
Figure PCTCN2016110479-appb-000001
式中,fi表示第i个下垂控制的分布式电源的频率,fn,i表示第i个下垂控制的分布式电源频率初始值,mP,i表示第i个下垂控制的分布式电源的有功下垂系数,Pi表示第i个下垂控制的分布式电源输出的有功功率,P0,i表示第i个下垂控制的分布式电源的有功功率初始值,Ui表示第i个下垂控制的分布式电源的电压;Un,i表示第i个下垂控制的分布式电源电压的参考值;nQ,i表示第i个下垂控制的分布式电源的无功下垂系数;Qi表示第i个下垂控制的分布式电源输出的无功功率;Q0,i表示第i个下垂控制的分布式电源的无功功率初始值。
作为优选例,所述的步骤20)具体包括:在不确定通信拓扑下,确定牵制代理的预定义群一致性收敛值,包括基于下垂控制的牵制代理预定义群一致性值以及基于恒功率控制的牵制代理预定义群一致性值;
根据式(2)确定下垂控制分布式电源集群的分配系数:
Figure PCTCN2016110479-appb-000002
其中,
Figure PCTCN2016110479-appb-000003
表示第k个下垂控制分布式电源集群的有功分配系数;ωk,D,i表示第k个下垂控制分布式电源集群中代理i的参与因子,如果与代理i对应的分布式电源参与二次控制,则ωk,D,i=1,否则ωk,D,i=0;
Figure PCTCN2016110479-appb-000004
表示第k个下垂控制分布式电源集群中代理i的有功容量,ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果与代理i对应的的分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
Figure PCTCN2016110479-appb-000005
表示第k个恒功 率控制分布式电源集群中代理i的有功容量,
Figure PCTCN2016110479-appb-000006
表示第k个下垂控制分布式电源集群的无功分配系数,
Figure PCTCN2016110479-appb-000007
表示第k个下垂控制分布式电源集群中代理i的无功容量,
Figure PCTCN2016110479-appb-000008
表示第k个恒功率控制分布式电源集群中代理i的无功容量;
根据式(3)确定恒功率控制分布式电源集群的分配系数:
Figure PCTCN2016110479-appb-000009
其中,
Figure PCTCN2016110479-appb-000010
表示第k个恒功率控制分布式电源集群的有功分配系数;ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果该分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
Figure PCTCN2016110479-appb-000011
表示第k个恒功率控制分布式电源集群中代理i的有功容量,
Figure PCTCN2016110479-appb-000012
表示第k个恒功率控制分布式电源集群的无功分配系数,
Figure PCTCN2016110479-appb-000013
表示第k个恒功率控制分布式电源集群中代理i的无功容量;
根据式(4)确定基于下垂控制的牵制代理预定义的群一致性值:
Figure PCTCN2016110479-appb-000014
式中,
Figure PCTCN2016110479-appb-000015
表示第k个基于下垂控制分布式电源集群的有功预设群一致性值,
Figure PCTCN2016110479-appb-000016
表示整个微电网群中有功缺额,ηk,D表示第k个下垂控制分布式电源集群中非零参与因子的总数,
Figure PCTCN2016110479-appb-000017
表示第k个基于下垂控制分布式电源集群的无功预设群一致性值,
Figure PCTCN2016110479-appb-000018
表示整个微电网群中无功缺额,
Figure PCTCN2016110479-appb-000019
表示第k个基于下垂控制分布式电源集群的频率预设群一致性值,
Figure PCTCN2016110479-appb-000020
表示第k个基于下垂控制分布式电源集群的电压预设群一致性值,mP,i表示有功下垂系数,nQ,i表示无功下垂系数;
根据式(5)确定基于恒功率控制的牵制代理预定义的群一致性值:
Figure PCTCN2016110479-appb-000021
式中,
Figure PCTCN2016110479-appb-000022
表示第k个恒功率控制分布式电源集群的有功预设群一致性值,
Figure PCTCN2016110479-appb-000023
整个微电网群中有功缺额,ηk,PQ表示第k个恒功率控制分布式电源集群中非零参与因子的总数;
Figure PCTCN2016110479-appb-000024
表示第k个恒功率控制分布式电源集群的无功预设群一致性值,
Figure PCTCN2016110479-appb-000025
表示整个微电网群中无功缺额。
作为优选例,所述的步骤30)具体包括:通过牵制控制,使分布式电源集群内与集群 间的其他代理同牵制代理跟踪同步,寻求达到预定义的群一致性;
按照式(6)确定下垂控制分布式电源代理i的控制误差efUk,i
Figure PCTCN2016110479-appb-000026
式中,efk,i表示下垂控制分布式电源代理i的频率控制误差,eUk,i表示下垂控制分布式电源代理i的电压控制误差,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
按照式(7)确定恒功率控制分布式电源代理i的控制误差ePQk,i
Figure PCTCN2016110479-appb-000027
其中,ePk,i表示恒功率控制分布式电源代理i的有功功率控制误差,eQk,i表示恒功率控制分布式电源代理i的无功功率控制误差,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,ΔQref,i表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量;
通过式(8)进行第k个下垂控制分布式电源集群中代理i的牵制控制:
Figure PCTCN2016110479-appb-000028
式中,
Figure PCTCN2016110479-appb-000029
表示对efUk,i进行求导,
Figure PCTCN2016110479-appb-000030
表示tm时刻第k个分布式电源集群中与代理i相邻的代理的集合,
Figure PCTCN2016110479-appb-000031
表示在tm时刻代理i和该集群内的其他代理之间的通信耦合系数,若存在通信线路连接,
Figure PCTCN2016110479-appb-000032
否则,
Figure PCTCN2016110479-appb-000033
efk,j表示下垂控制分布式电源代理j的频率控制误差,
Figure PCTCN2016110479-appb-000034
表示tm时刻第l个分布式电源集群中与代理i相邻的代理的集合;
Figure PCTCN2016110479-appb-000035
表示在tm时刻代理i和其他集群中的代理之间的通信耦合系数,若存在通信线路连接,
Figure PCTCN2016110479-appb-000036
否则,
Figure PCTCN2016110479-appb-000037
表示在tm时刻代理i的牵制控制增益,
Figure PCTCN2016110479-appb-000038
Figure PCTCN2016110479-appb-000039
表示没有针对代理i的牵制控制;eUk,j表示下垂控制分布式电源代理j的电压控制误差;
通过式(9)进行第k个恒功率控制分布式电源集群中代理i的牵制控制:
Figure PCTCN2016110479-appb-000040
式中,
Figure PCTCN2016110479-appb-000041
表示对ePQk,i进行求导,ePk,j表示恒功率控制分布式电源代理j的有功功率控制误差,eQk,j表示恒功率控制分布式电源代理j的无功功率控制误差。
作为优选例,所述的步骤40)具体包括:各分布式电源代理根据达到的预定义群一致性值,基于恒功率控制的分布式电源调整输出功率,基于下垂控制的分布式电源恢复***频率和电压,共同完成微电网群的二次控制;
按照式(10)进行下垂控制分布式电源代理i的二次控制:
Figure PCTCN2016110479-appb-000042
式中,
Figure PCTCN2016110479-appb-000043
表示下垂控制分布式电源代理i通过二次控制调整的频率的参考值,fn,i表示下垂控制分布式电源代理i在一次控制中频率的参考值,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,
Figure PCTCN2016110479-appb-000044
表示下垂控制分布式电源代理i通过二次控制调整的电压的参考值,Un,i表示下垂控制分布式电源代理i在一次控制中电压的参考值,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
按照式(11)进行恒功率控制分布式电源代理i的二次控制:
Figure PCTCN2016110479-appb-000045
式中,
Figure PCTCN2016110479-appb-000046
表示恒功率控制分布式电源代理i通过二次控制调整的有功的参考值,Pref,i表示恒功率控制分布式电源代理i初始的有功的参考值,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,
Figure PCTCN2016110479-appb-000047
表示恒功率控制分布式电源代理i通过二次控制调整的无功的参考值,Qref,i表示恒功率控制分布式电源代理i初始的无功的参考值,ΔQref,i表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量。
有益效果:与现有技术相比,本发明具有以下有益效果:本发明的通用型包含恒功率和下垂控制的微电网群分布式控制方法,面向微电网群和分布式电源集群,能够在***出现扰动时进行控制,恢复***频率和电压,维持***稳定。本发明实施例以一次控制和二次控制的分层控制为基础,采用集群的概念来实施基于多代理***的牵制控制,是一种分 布式的控制方法,消除了中央控制器的需求和复杂的通信拓扑,减少了控制器的数量,满足分布式电源即插即用的需求。本发明所提的控制方法通过分布式电源集群内和集群间进行基于牵制的群一致性过程,下垂控制分布式电源集群协同恢复***的频率和电压,恒功率控制分布式电源集群协同分担功率缺额,能够实现分布式电源集群的全局协调和本地自治,改善了微电网群的可靠性和适应性。本发明的方法能够实现微电网群和分布式电源集群的全局协调控制和本地自治控制,并包含恒功率控制和下垂控制两种控制方式,是一种通用型的方法。
附图说明
图1是本发明的流程框图;
图2是本发明实施例中微电网群仿真***的结构示意图;
图3是本发明实施例中微电网群通信拓扑示意图;
图4是本发明实施例中仿真场景一的控制效果图;
图5是本发明实施例中仿真场景二的控制效果图;
图6是本发明实施例中仿真场景三的控制效果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施案例对本发明进行深入地详细说明。应当理解,此处所描述的具体实施案例仅仅用以解释本发明,并不用于限定发明。
本发明实施例中,所述微电网群包含m个下垂控制的分布式电源集群和n个恒功率控制的分布式电源集群;微电网群中分布式电源的控制及相互间的信息交互由多代理体***负责,每个分布式电源对应一个代理,分布式电源的编号和与该分布式电源对应的代理的编号相同;其中,一部分代理是被控制的牵制代理,其余代理通过与牵制代理的通信耦合,以分布的方式跟踪同步。
如图1所示,本发明实施例的通用型包含恒功率和下垂控制的微电网群分布式控制方法,所述控制方法包括以下步骤:
步骤10)进行一次控制,维持微电网群的功率平衡。
所述的步骤10)具体包括:在孤岛模式下,当微电网群发生扰动时,下垂控制的分布 式电源集群自动进行如式(1)所示的一次控制,下垂控制的分布式电源运行在对等控制模式,维持微电网群的功率平衡:
Figure PCTCN2016110479-appb-000048
式中,fi表示第i个下垂控制的分布式电源的频率,fn,i表示第i个下垂控制的分布式电源频率初始值,mP,i表示第i个下垂控制的分布式电源的有功下垂系数,Pi表示第i个下垂控制的分布式电源输出的有功功率,P0,i表示第i个下垂控制的分布式电源的有功功率初始值,Ui表示第i个下垂控制的分布式电源的电压;Un,i表示第i个下垂控制的分布式电源电压的参考值;nQ,i表示第i个下垂控制的分布式电源的无功下垂系数;Qi表示第i个下垂控制的分布式电源输出的无功功率;Q0,i表示第i个下垂控制的分布式电源的无功功率初始值。
步骤20)确定牵制代理的预定义群一致性收敛值。
所述的步骤20)具体包括:在不确定通信拓扑下,确定牵制代理的预定义群一致性收敛值,包括基于下垂控制的牵制代理预定义群一致性值以及基于恒功率控制的牵制代理预定义群一致性值;
根据式(2)确定下垂控制分布式电源集群的分配系数:
Figure PCTCN2016110479-appb-000049
其中,
Figure PCTCN2016110479-appb-000050
表示第k个下垂控制分布式电源集群的有功分配系数;ωk,D,i表示第k个下垂控制分布式电源集群中代理i的参与因子,如果与代理i对应的分布式电源参与二次控制,则ωk,D,i=1,否则ωk,D,i=0;
Figure PCTCN2016110479-appb-000051
表示第k个下垂控制分布式电源集群中代理i的有功容量,ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果与代理i对应的的分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
Figure PCTCN2016110479-appb-000052
表示第k个恒功率控制分布式电源集群中代理i的有功容量,
Figure PCTCN2016110479-appb-000053
表示第k个下垂控制分布式电源集群的无功分配系数,
Figure PCTCN2016110479-appb-000054
表示第k个下垂控制分布式电源集群中代理i的无功容量,
Figure PCTCN2016110479-appb-000055
表示第k个恒功率控制分布式电源集群中代理i的无功容量;
根据式(3)确定恒功率控制分布式电源集群的分配系数:
Figure PCTCN2016110479-appb-000056
其中,
Figure PCTCN2016110479-appb-000057
表示第k个恒功率控制分布式电源集群的有功分配系数;ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果该分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
Figure PCTCN2016110479-appb-000058
表示第k个恒功率控制分布式电源集群中代理i的有功容量,
Figure PCTCN2016110479-appb-000059
表示第k个恒功率控制分布式电源集群的无功分配系数,
Figure PCTCN2016110479-appb-000060
表示第k个恒功率控制分布式电源集群中代理i的无功容量;
根据式(4)确定基于下垂控制的牵制代理预定义的群一致性值:
Figure PCTCN2016110479-appb-000061
式中,
Figure PCTCN2016110479-appb-000062
表示第k个基于下垂控制分布式电源集群的有功预设群一致性值,
Figure PCTCN2016110479-appb-000063
表示整个微电网群中有功缺额,ηk,D表示第k个下垂控制分布式电源集群中非零参与因子的总数,
Figure PCTCN2016110479-appb-000064
表示第k个基于下垂控制分布式电源集群的无功预设群一致性值,
Figure PCTCN2016110479-appb-000065
表示整个微电网群中无功缺额,
Figure PCTCN2016110479-appb-000066
表示第k个基于下垂控制分布式电源集群的频率预设群一致性值,
Figure PCTCN2016110479-appb-000067
表示第k个基于下垂控制分布式电源集群的电压预设群一致性值,mP,i表示有功下垂系数,nQ,i表示无功下垂系数;
根据式(5)确定基于恒功率控制的牵制代理预定义的群一致性值:
Figure PCTCN2016110479-appb-000068
式中,
Figure PCTCN2016110479-appb-000069
表示第k个恒功率控制分布式电源集群的有功预设群一致性值,
Figure PCTCN2016110479-appb-000070
整个微电网群中有功缺额,ηk,PQ表示第k个恒功率控制分布式电源集群中非零参与因子的总数;
Figure PCTCN2016110479-appb-000071
表示第k个恒功率控制分布式电源集群的无功预设群一致性值,
Figure PCTCN2016110479-appb-000072
表示整个微电网群中无功缺额。
步骤30)牵制代理以外的其他代理通过通信耦合与牵制代理寻求群一致性。
所述的步骤30)具体包括:通过牵制控制,使分布式电源集群内与集群间的其他代理同牵制代理跟踪同步,寻求达到预定义的群一致性;
按照式(6)确定下垂控制分布式电源代理i的控制误差efUk,i
Figure PCTCN2016110479-appb-000073
式中,efk,i表示下垂控制分布式电源代理i的频率控制误差,eUk,i表示下垂控制分布式 电源代理i的电压控制误差,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
按照式(7)确定恒功率控制分布式电源代理i的控制误差ePQk,i
Figure PCTCN2016110479-appb-000074
其中,ePk,i表示恒功率控制分布式电源代理i的有功功率控制误差,eQk,i表示恒功率控制分布式电源代理i的无功功率控制误差,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,ΔQref,i表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量;
通过式(8)进行第k个下垂控制分布式电源集群中代理i的牵制控制:
Figure PCTCN2016110479-appb-000075
式中,
Figure PCTCN2016110479-appb-000076
表示对efUk,i进行求导,
Figure PCTCN2016110479-appb-000077
表示tm时刻第k个分布式电源集群中与代理i相邻的代理的集合,
Figure PCTCN2016110479-appb-000078
表示在tm时刻代理i和该集群内的其他代理之间的通信耦合系数,若存在通信线路连接,
Figure PCTCN2016110479-appb-000079
否则,
Figure PCTCN2016110479-appb-000080
efk,j表示下垂控制分布式电源代理j的频率控制误差,
Figure PCTCN2016110479-appb-000081
表示tm时刻第l个分布式电源集群中与代理i相邻的代理的集合;
Figure PCTCN2016110479-appb-000082
表示在tm时刻代理i和其他集群中的代理之间的通信耦合系数,若存在通信线路连接,
Figure PCTCN2016110479-appb-000083
否则,
Figure PCTCN2016110479-appb-000084
表示在tm时刻代理i的牵制控制增益,
Figure PCTCN2016110479-appb-000085
Figure PCTCN2016110479-appb-000086
表示没有针对代理i的牵制控制;eUk,j表示下垂控制分布式电源代理j的电压控制误差;
通过式(9)进行第k个恒功率控制分布式电源集群中代理i的牵制控制:
Figure PCTCN2016110479-appb-000087
式中,
Figure PCTCN2016110479-appb-000088
表示对ePQk,i进行求导,ePk,j表示恒功率控制分布式电源代理j的有功功率控制误差,eQk,j表示恒功率控制分布式电源代理j的无功功率控制误差。
步骤40)调整输出功率,完成二次控制。
所述的步骤40)具体包括:各分布式电源代理根据达到的预定义群一致性值,基于恒 功率控制的分布式电源调整输出功率,基于下垂控制的分布式电源恢复***频率和电压,共同完成微电网群的二次控制;
按照式(10)进行下垂控制分布式电源代理i的二次控制:
Figure PCTCN2016110479-appb-000089
式中,
Figure PCTCN2016110479-appb-000090
表示下垂控制分布式电源代理i通过二次控制调整的频率的参考值,fn,i表示下垂控制分布式电源代理i在一次控制中频率的参考值,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,
Figure PCTCN2016110479-appb-000091
表示下垂控制分布式电源代理i通过二次控制调整的电压的参考值,Un,i表示下垂控制分布式电源代理i在一次控制中电压的参考值,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
按照式(11)进行恒功率控制分布式电源代理i的二次控制:
Figure PCTCN2016110479-appb-000092
式中,
Figure PCTCN2016110479-appb-000093
表示恒功率控制分布式电源代理i通过二次控制调整的有功的参考值,Pref,i表示恒功率控制分布式电源代理i初始的有功的参考值,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,
Figure PCTCN2016110479-appb-000094
表示恒功率控制分布式电源代理i通过二次控制调整的无功的参考值,Qref,i表示恒功率控制分布式电源代理i初始的无功的参考值,ΔQref,i表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量。
本发明的控制方法面向微电网群和分布式电源集群,以一次控制和二次控制的分层控制为基础,采用集群的概念来实施基于多代理***的牵制控制。通过分布式电源集群内和集群间进行基于牵制的群一致性过程,下垂控制分布式电源集群协同恢复***的频率和电压,恒功率控制分布式电源集群协同分担功率缺额,能够实现分布式电源集群的全局协调和本地自治,减少了控制器的数量和复杂的通信拓扑,改善了微电网群的可靠性和适应性。
下面例举一个实施例。
图2为本实施例采用的微电网群仿真结构图。该仿真模型由10个分布式电源(简称DG)和5个负荷单元(Load1、Load2、Load3、Load4、Load5)组成,各分布式电源由电力电子元件接入0.4kV低压配电网。***有2个恒功率控制分布式电源集群和1个下垂控制分布式电源集群,分别对应微电网1,微电网2和微电网3。共有10个分布式电源代理(Agent),分别用A1,A2,A3,A4,A5,A6,A7,A8,A9,A10表示,其中A4为恒 功率控制集群1的牵制代理,A5为恒功率控制集群2的牵制代理,A8为下垂控制集群3的牵制代理。一个代理只能与其在通信拓扑上直接相邻的代理进行通信。基于电力***计算机辅助设计/含直流电磁暂态仿真(英文简称:PSCAD/EMTDC)平台搭建仿真微电网模型,在矩阵实验室(英文简称MATLAB)中模拟多代理***,建立多代理***基于牵制群的微电网群分布式控制算法程序,利用PSACD中的用户自定义接口(英文简称UDI)模型将MATLAB中的算法与电力***计算机辅助设计(英文简称PSCAD)模型联合运行,从而利用联合仿真技术实现本发明的控制方法的仿真验证。
针对孤岛模式的微电网群发生扰动的情况进行仿真,验证本发明方法的控制效果。在仿真***中,A1到A7工作在恒功率控制(PQ control)模式,A8到A10工作在下垂控制(Droop control)模式。本实施例设定三个仿真场景:
场景一是微电网群从并网模式转为孤岛模式。仿真开始时,微电网群运行在并网模式,在t=1s时微电网群与主网断开。每个微电网均独立运行,下垂控制的分布式电源通过一次控制维持微电网的功率平衡。在二次控制中,首先通过分布式电源集群牵制控制的全局协调,将微电网群的功率缺额转化为分布式电源集群的牵制预定义一致性值;然后各分布式电源集群中的代理寻求与牵制代理跟踪同步,达到预定义群一致性值;最后分布式电源集群根据预定义群一致性值调整输出功率。仿真结果如图4所示。图4(a)表示微电网1中各分布式电源有功功率变化,图4(b)表示微电网1中各分布式电源无功功率变化,图4(c)表示微电网1中各分布式电源电压变化,图4(d)表示微电网1的频率变化。从图4(a)到图4(d)可以看出,恒功率控制微电网1在孤岛模式下能够维持功率平衡,基本恢复分布式电源电压和***频率。图4(e)表示微电网2中各分布式电源有功功率变化,图4(f)表示微电网2中各分布式电源无功功率变化,图4(g)表示微电网2中各分布式电源电压变化,图4(h)表示微电网2的频率变化。从图4(e)到图4(h)可以看出,恒功率控制微电网2在孤岛模式下能够维持功率平衡,基本恢复分布式电源电压和***频率。图4(i)表示微电网3中各分布式电源有功功率变化,图4(j)表示微电网3中各分布式电源无功功率变化,图4(k)表示微电网3中各分布式电源电压变化,图4(l)表示微电网3的频率变化。从图4(i)到图4(l)可以看出,下垂控制微电网3在孤岛模式下能够维持功率平衡,基本恢复分布式电源电压和***频率。
场景二是针对本地自治控制,消除本地扰动。仿真开始时,微电网群运行在孤岛模式,在t=1s时,孤岛微电网1发生负荷突然减少,A1,A2和A3通过跟踪同步牵制代理A4, 改变相应的输出功率,而微电网2和微电网3均保持不变,仿真结果如图5所示。图5(a)表示孤岛微电网1中各分布式电源的有功功率变化,图5(b)表示孤岛微电网1中各分布式电源的无功功率变化,图5(c)表示孤岛微电网1中各分布式电源的电压变化,图5(d)表示孤岛微电网1的频率变化。从图5中可以看出,微电网1在负荷突然减少时,各分布式电源能够协同调整输出功率,保持***频率基本不变。
场景三是针对不确定通信拓扑变化。仿真开始时,微电网群运行在孤岛模式,在t=1s时,孤岛微电网1中DG3由于故障而被切除,相应的通信拓扑发生改变,如图2所示,微电网1的预定义群一致性值改变,A1和A2以分布的方式跟踪同步牵制代理A4,增加输出功率以维持功率平衡,恢复***电压和频率,仿真结果如图6所示。图6(a)表示孤岛微电网1中各分布式电源的有功功率变化,图6(b)表示孤岛微电网1中各分布式电源的无功功率变化,图6(c)表示孤岛微电网1中各分布式电源的电压变化,图6(d)表示孤岛微电网1的频率变化。从图6中可以看出,微电网1中DG3切除后,其余分布式电源能够协同承担由DG3切除而减少的功率,使***频率保持不变。
从本实施例可以看出,采用本发明的控制方法后,微电网群可以进行有效的分布式协同控制,各分布式电源集群通过一次控制和二次控制,维持***的功率平衡,恢复***频率和电压,说明本发明提出的方法有很好地控制效果。

Claims (5)

  1. 一种通用型包含恒功率和下垂控制的微电网群分布式控制方法,其特征在于,所述微电网群包含m个下垂控制的分布式电源集群和n个恒功率控制的分布式电源集群;微电网群中分布式电源的控制及相互间的信息交互由多代理体***负责,每个分布式电源对应一个代理,分布式电源的编号和与该分布式电源对应的代理的编号相同;其中,一部分代理是被控制的牵制代理,其余代理通过与牵制代理的通信耦合,以分布的方式跟踪同步;所述控制方法包括以下步骤:
    步骤10)进行一次控制,维持微电网群的功率平衡;
    步骤20)确定牵制代理的预定义群一致性收敛值;
    步骤30)牵制代理以外的其他代理通过通信耦合与牵制代理寻求群一致性;
    步骤40)调整输出功率,完成二次控制。
  2. 按照权利要求1所述的通用型包含恒功率和下垂控制的微电网群分布式控制方法,其特征在于,所述的步骤10)具体包括:在孤岛模式下,当微电网群发生扰动时,下垂控制的分布式电源集群自动进行如式(1)所示的一次控制,下垂控制的分布式电源运行在对等控制模式,维持微电网群的功率平衡:
    Figure PCTCN2016110479-appb-100001
    式中,fi表示第i个下垂控制的分布式电源的频率,fn,i表示第i个下垂控制的分布式电源频率初始值,mP,i表示第i个下垂控制的分布式电源的有功下垂系数,Pi表示第i个下垂控制的分布式电源输出的有功功率,P0,i表示第i个下垂控制的分布式电源的有功功率初始值,Ui表示第i个下垂控制的分布式电源的电压;Un,i表示第i个下垂控制的分布式电源电压的参考值;nQ,i表示第i个下垂控制的分布式电源的无功下垂系数;Qi表示第i个下垂控制的分布式电源输出的无功功率;Q0,i表示第i个下垂控制的分布式电源的无功功率初始值。
  3. 按照权利要求1所述的通用型包含恒功率和下垂控制的微电网群分布式控制方法,其特征在于,所述的步骤20)具体包括:在不确定通信拓扑下,确定牵制代理的预定义群一致性收敛值,包括基于下垂控制的牵制代理预定义群一致性值以及基于恒功率控制的牵制代理预定义群一致性值;
    根据式(2)确定下垂控制分布式电源集群的分配系数:
    Figure PCTCN2016110479-appb-100002
    其中,
    Figure PCTCN2016110479-appb-100003
    表示第k个下垂控制分布式电源集群的有功分配系数;ωk,D,i表示第k个下垂控制分布式电源集群中代理i的参与因子,如果与代理i对应的分布式电源参与二次控制,则ωk,D,i=1,否则ωk,D,i=0;
    Figure PCTCN2016110479-appb-100004
    表示第k个下垂控制分布式电源集群中代理i的有功容量,ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果与代理i对应的的分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
    Figure PCTCN2016110479-appb-100005
    表示第k个恒功率控制分布式电源集群中代理i的有功容量,
    Figure PCTCN2016110479-appb-100006
    表示第k个下垂控制分布式电源集群的无功分配系数,
    Figure PCTCN2016110479-appb-100007
    表示第k个下垂控制分布式电源集群中代理i的无功容量,
    Figure PCTCN2016110479-appb-100008
    表示第k个恒功率控制分布式电源集群中代理i的无功容量;
    根据式(3)确定恒功率控制分布式电源集群的分配系数:
    Figure PCTCN2016110479-appb-100009
    其中,
    Figure PCTCN2016110479-appb-100010
    表示第k个恒功率控制分布式电源集群的有功分配系数;ωk,PQ,i表示第k个恒功率控制分布式电源集群中代理i的参与因子,如果该分布式电源参与二次控制,则ωk,PQ,i=1,否则ωk,PQ,i=0;
    Figure PCTCN2016110479-appb-100011
    表示第k个恒功率控制分布式电源集群中代理i的有功容量,
    Figure PCTCN2016110479-appb-100012
    表示第k个恒功率控制分布式电源集群的无功分配系数,
    Figure PCTCN2016110479-appb-100013
    表示第k个恒功率控制分布式电源集群中代理i的无功容量;
    根据式(4)确定基于下垂控制的牵制代理预定义的群一致性值:
    Figure PCTCN2016110479-appb-100014
    式中,
    Figure PCTCN2016110479-appb-100015
    表示第k个基于下垂控制分布式电源集群的有功预设群一致性值,
    Figure PCTCN2016110479-appb-100016
    表示整个微电网群中有功缺额,ηk,D表示第k个下垂控制分布式电源集群中非零参与因子的总数,
    Figure PCTCN2016110479-appb-100017
    表示第k个基于下垂控制分布式电源集群的无功预设群一致性值,
    Figure PCTCN2016110479-appb-100018
    表示整个微电网群中无功缺额,
    Figure PCTCN2016110479-appb-100019
    表示第k个基于下垂控制分布式电源集群的频率预设群一致性值,
    Figure PCTCN2016110479-appb-100020
    表示第k个基于下垂控制分布式电源集群的电压预设群一致性值,mP,i表示有功下垂系数,nQ,i表示无功下垂系数;
    根据式(5)确定基于恒功率控制的牵制代理预定义的群一致性值:
    Figure PCTCN2016110479-appb-100021
    式中,
    Figure PCTCN2016110479-appb-100022
    表示第k个恒功率控制分布式电源集群的有功预设群一致性值,
    Figure PCTCN2016110479-appb-100023
    整个微电网群中有功缺额,ηk,PQ表示第k个恒功率控制分布式电源集群中非零参与因子的总数;
    Figure PCTCN2016110479-appb-100024
    表示第k个恒功率控制分布式电源集群的无功预设群一致性值,
    Figure PCTCN2016110479-appb-100025
    表示整个微电网群中无功缺额。
  4. 按照权利要求1所述的通用型包含恒功率和下垂控制的微电网群分布式控制方法,其特征在于,所述的步骤30)具体包括:通过牵制控制,使分布式电源集群内与集群间的其他代理同牵制代理跟踪同步,寻求达到预定义的群一致性;
    按照式(6)确定下垂控制分布式电源代理i的控制误差efUk,i
    Figure PCTCN2016110479-appb-100026
    式中,efk,i表示下垂控制分布式电源代理i的频率控制误差,eUk,i表示下垂控制分布式电源代理i的电压控制误差,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
    按照式(7)确定恒功率控制分布式电源代理i的控制误差ePQk,i
    Figure PCTCN2016110479-appb-100027
    其中,ePk,i表示恒功率控制分布式电源代理i的有功功率控制误差,eQk,i表示恒功率控制分布式电源代理i的无功功率控制误差,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,ΔQref,i表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量;
    通过式(8)进行第k个下垂控制分布式电源集群中代理i的牵制控制:
    Figure PCTCN2016110479-appb-100028
    式中,
    Figure PCTCN2016110479-appb-100029
    表示对efUk,i进行求导,
    Figure PCTCN2016110479-appb-100030
    表示tm时刻第k个分布式电源集群中与代理i相邻的代理的集合,
    Figure PCTCN2016110479-appb-100031
    表示在tm时刻代理i和该集群内的其他代理之间的通信耦合系数,若存在通信线路连接,
    Figure PCTCN2016110479-appb-100032
    否则,
    Figure PCTCN2016110479-appb-100033
    efk,j表示下垂控制分布式电源代理j的频率控制误差,
    Figure PCTCN2016110479-appb-100034
    表示tm时刻第l个分布式电源集群中与代理i相邻的代理的集合;
    Figure PCTCN2016110479-appb-100035
    表示在tm时刻代理i和其他集群中的代理之间的通信耦合系数,若存在通信 线路连接,
    Figure PCTCN2016110479-appb-100036
    否则,
    Figure PCTCN2016110479-appb-100037
    表示在tm时刻代理i的牵制控制增益,
    Figure PCTCN2016110479-appb-100038
    Figure PCTCN2016110479-appb-100039
    表示没有针对代理i的牵制控制;eUk,j表示下垂控制分布式电源代理j的电压控制误差;
    通过式(9)进行第k个恒功率控制分布式电源集群中代理i的牵制控制:
    Figure PCTCN2016110479-appb-100040
    式中,
    Figure PCTCN2016110479-appb-100041
    表示对ePQk,i进行求导,ePk,j表示恒功率控制分布式电源代理j的有功功率控制误差,eQk,j表示恒功率控制分布式电源代理j的无功功率控制误差。
  5. 按照权利要求1所述的通用型包含恒功率和下垂控制的微电网群分布式控制方法,其特征在于,所述的步骤40)具体包括:各分布式电源代理根据达到的预定义群一致性值,基于恒功率控制的分布式电源调整输出功率,基于下垂控制的分布式电源恢复***频率和电压,共同完成微电网群的二次控制;
    按照式(10)进行下垂控制分布式电源代理i的二次控制:
    Figure PCTCN2016110479-appb-100042
    式中,
    Figure PCTCN2016110479-appb-100043
    表示下垂控制分布式电源代理i通过二次控制调整的频率的参考值,fn,i表示下垂控制分布式电源代理i在一次控制中频率的参考值,Δfn,i表示下垂控制分布式电源代理i在二次控制中频率的修正量,
    Figure PCTCN2016110479-appb-100044
    表示下垂控制分布式电源代理i通过二次控制调整的电压的参考值,Un,i表示下垂控制分布式电源代理i在一次控制中电压的参考值,ΔUn,i表示下垂控制分布式电源代理i在二次控制中电压的修正量;
    按照式(11)进行恒功率控制分布式电源代理i的二次控制:
    Figure PCTCN2016110479-appb-100045
    式中,
    Figure PCTCN2016110479-appb-100046
    表示恒功率控制分布式电源代理i通过二次控制调整的有功的参考值,Pref,i表示恒功率控制分布式电源代理i初始的有功的参考值,ΔPref,i表示恒功率控制分布式电源代理i在二次控制中有功功率的修正量,
    Figure PCTCN2016110479-appb-100047
    表示恒功率控制分布式电源代理i通过二次控制调整的无功的参考值,Qref,i表示恒功率控制分布式电源代理i初始的无功的参考值,ΔQref,i 表示恒功率控制分布式电源代理i在二次控制中无功功率的修正量。
PCT/CN2016/110479 2016-09-27 2016-12-16 通用型包含恒功率和下垂控制的微电网群分布式控制方法 WO2018058804A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/763,733 US10644506B2 (en) 2016-09-27 2016-12-16 General distributed control method for multi-microgrids with PQ control and droop control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610856013.8A CN106410808B (zh) 2016-09-27 2016-09-27 包含恒功率和下垂控制的通用型微电网群分布式控制方法
CN201610856013.8 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018058804A1 true WO2018058804A1 (zh) 2018-04-05

Family

ID=57998274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110479 WO2018058804A1 (zh) 2016-09-27 2016-12-16 通用型包含恒功率和下垂控制的微电网群分布式控制方法

Country Status (3)

Country Link
US (1) US10644506B2 (zh)
CN (1) CN106410808B (zh)
WO (1) WO2018058804A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832655A (zh) * 2018-06-14 2018-11-16 广西电网有限责任公司电力科学研究院 一种微电网和微电网群的控制方法
CN110460112A (zh) * 2019-09-18 2019-11-15 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579543B (zh) * 2017-10-09 2021-09-14 燕山大学 一种基于分层控制策略的孤岛微电网分布式协调控制方法
WO2020121362A1 (ja) * 2018-12-10 2020-06-18 三菱電機株式会社 電力変換システム及びその管理装置、並びに、分散電源装置
CN110048450A (zh) * 2019-03-21 2019-07-23 国网浙江省电力有限公司电力科学研究院 孤岛微电网光伏-储能自主协调控制策略和控制***
CN110544960B (zh) * 2019-09-23 2023-03-31 国网河北省电力有限公司 一种提升孤岛微电网无功均分能力的分布式控制方法
CN110768289B (zh) * 2019-09-29 2023-09-19 哈尔滨工程大学 一种孤岛式微电网电压和频率的自适应牵制控制方法
CN110807712B (zh) * 2019-11-01 2023-05-05 云南电网有限责任公司电力科学研究院 电力自动化终端的自治控制方法及***
CN110854862B (zh) * 2019-12-03 2023-05-05 哈尔滨工程大学 一种含下垂特性电源的船舶电网潮流计算方法
CN111509762B (zh) * 2020-05-25 2021-08-06 华北电力大学 一种多端柔性直流换流站的pmt控制方法和***
CN111987712B (zh) * 2020-07-29 2021-11-12 浙江大学 多电压等级直流配电网储能下垂系数分布式控制方法
CN112564167B (zh) * 2020-12-04 2022-03-29 太原理工大学 一种基于一致性算法的改进下垂控制方法
CN115333143B (zh) * 2022-07-08 2024-05-07 国网黑龙江省电力有限公司大庆供电公司 基于双神经网络的深度学习多智能体微电网协同控制方法
CN115528667B (zh) * 2022-11-28 2023-04-07 西华大学 一种直流微电网集群控制***及其多级协同控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081942A (ja) * 2007-09-26 2009-04-16 Yanmar Co Ltd 分散電源システム
US20130073109A1 (en) * 2011-09-16 2013-03-21 Po-Tai Cheng Droop control system for grid-connected synchronization
CN104578179A (zh) * 2014-12-31 2015-04-29 浙江大学 孤岛微网的基于功率控制的全分布式自趋优控制方法
CN104659810A (zh) * 2015-01-28 2015-05-27 东南大学 一种用于不确定通信拓扑的微电网协同控制方法
CN104659811A (zh) * 2015-01-28 2015-05-27 东南大学 一种基于牵制的微电网分布式协同控制方法
CN105119283A (zh) * 2015-09-15 2015-12-02 东南大学 面向对等模式下微电网的基于牵制的分布式协同控制方法
CN105391094A (zh) * 2015-12-17 2016-03-09 东南大学 孤立微电网分布式控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078318B2 (en) * 2013-08-26 2018-09-18 Ecole Polytechnique Federale De Lausanne (Epfl) Composable method for explicit power flow control in electrical grids
CN205945057U (zh) * 2016-07-28 2017-02-08 新疆农业大学 一种含分布式电源的微电网***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081942A (ja) * 2007-09-26 2009-04-16 Yanmar Co Ltd 分散電源システム
US20130073109A1 (en) * 2011-09-16 2013-03-21 Po-Tai Cheng Droop control system for grid-connected synchronization
CN104578179A (zh) * 2014-12-31 2015-04-29 浙江大学 孤岛微网的基于功率控制的全分布式自趋优控制方法
CN104659810A (zh) * 2015-01-28 2015-05-27 东南大学 一种用于不确定通信拓扑的微电网协同控制方法
CN104659811A (zh) * 2015-01-28 2015-05-27 东南大学 一种基于牵制的微电网分布式协同控制方法
CN105119283A (zh) * 2015-09-15 2015-12-02 东南大学 面向对等模式下微电网的基于牵制的分布式协同控制方法
CN105391094A (zh) * 2015-12-17 2016-03-09 东南大学 孤立微电网分布式控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832655A (zh) * 2018-06-14 2018-11-16 广西电网有限责任公司电力科学研究院 一种微电网和微电网群的控制方法
CN110460112A (zh) * 2019-09-18 2019-11-15 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法
CN110460112B (zh) * 2019-09-18 2023-02-28 东北大学 一种基于功率偏差量一致性控制的微电网下垂控制方法

Also Published As

Publication number Publication date
CN106410808A (zh) 2017-02-15
CN106410808B (zh) 2018-04-24
US10644506B2 (en) 2020-05-05
US20190074691A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2018058804A1 (zh) 通用型包含恒功率和下垂控制的微电网群分布式控制方法
CN108363306B (zh) 基于线性二次型优化的微电网分布式控制器参数确定方法
Huang et al. Distributed voltage control based on ADMM for large-scale wind farm cluster connected to VSC-HVDC
Li et al. A distributed coordination control based on finite-time consensus algorithm for a cluster of DC microgrids
CN108075487B (zh) 自适应下垂和一致性相结合的孤岛微电网的分层控制方法
CN108134401B (zh) 交直流混合***多目标潮流优化及控制方法
CN106129999B (zh) 基于有限时间一致性的直流微电网分布式协同控制方法
CN104659810B (zh) 一种用于不确定通信拓扑的微电网协同控制方法
CN104659811B (zh) 一种基于牵制的微电网分布式协同控制方法
Bidram et al. Finite-time frequency synchronization in microgrids
CN110071514B (zh) 一种用于功率分配和电压频率恢复的一致性下垂控制方法
CN110401232B (zh) 一种分布式混合微电网的改进型优化控制方法
CN110932288B (zh) 一种基于分布式发电集群的去中心化电压优化方法
Zhang et al. Distributed secondary control for island microgrids with expected dynamic performance under communication delays
CN109066765B (zh) 基于一致性策略的孤岛微电网自适应同步频率控制方法
CN110544960A (zh) 一种提升孤岛微电网无功均分能力的分布式控制方法
CN107332353B (zh) 基于通信约束和时变负荷的孤岛微电网分布式经济协调方法
CN107508313B (zh) 一种微电网并离网控制方法及装置
CN106786812B (zh) 虚拟发电厂分布式无功补偿***及其补偿方法
CN109088441A (zh) 电力电子变压器并机最优负载功率分配计算方法及装置
CN110518641A (zh) 一种交流微电网实现功率分配的分布式分层协调控制方法
CN108494017B (zh) 一种基于逆变器的自治型微电网***分布式协调控制方法
CN110994692A (zh) 一种基于同步相量测量装置的孤岛同步并网方法
Zhang et al. Consensus-based economic hierarchical control strategy for islanded MG considering communication path reconstruction
CN114884115A (zh) 基于动态一致性的交直流混合微电网分布式二次控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917549

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16917549

Country of ref document: EP

Kind code of ref document: A1