WO2018058606A1 - 超声血流运动谱的显示方法及其超声成像*** - Google Patents

超声血流运动谱的显示方法及其超声成像*** Download PDF

Info

Publication number
WO2018058606A1
WO2018058606A1 PCT/CN2016/101266 CN2016101266W WO2018058606A1 WO 2018058606 A1 WO2018058606 A1 WO 2018058606A1 CN 2016101266 W CN2016101266 W CN 2016101266W WO 2018058606 A1 WO2018058606 A1 WO 2018058606A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
interest
ultrasonic
velocity
flow velocity
Prior art date
Application number
PCT/CN2016/101266
Other languages
English (en)
French (fr)
Inventor
杜宜纲
董永强
陈志杰
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2016/101266 priority Critical patent/WO2018058606A1/zh
Priority to CN201680084093.8A priority patent/CN109414245B/zh
Publication of WO2018058606A1 publication Critical patent/WO2018058606A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow

Definitions

  • the invention relates to a blood flow information imaging display technology in an ultrasound system, in particular to a display method of an ultrasonic blood flow motion spectrum and an ultrasonic imaging system thereof.
  • Color Doppler flowmetry is the same as pulse wave and continuous wave Doppler, and is also imaged by Doppler effect between red blood cells and ultrasound.
  • Color Doppler flowmeter includes two-dimensional ultrasound imaging system, pulse Doppler (one-dimensional Doppler) blood flow analysis system, continuous wave Doppler blood flow measurement system and color Doppler (two-dimensional Doppler) Blood flow imaging system.
  • the oscillator generates two orthogonal signals with a phase difference of ⁇ /2, which are respectively multiplied by the Doppler blood flow signal, and the product is converted into a digital signal by an analog/digital (A/D) converter, and filtered by a comb filter.
  • A/D analog/digital
  • the autocorrelator After removing the low frequency component generated by the blood vessel wall or the valve, it is sent to the autocorrelator for autocorrelation detection. Since each sample contains Doppler blood flow information generated by many red blood cells, a mixed signal of multiple blood flow velocities is obtained after autocorrelation detection.
  • the autocorrelation test result is sent to the speed calculator and the variance calculator to obtain an average speed, and is stored in the digital scan converter (DSC) together with the FFT-processed blood flow spectrum information and the two-dimensional image information.
  • DSC digital scan converter
  • the blood flow data is encoded as a pseudo color by the color processor, and sent to the color display for color Doppler blood flow imaging.
  • Spectral Doppler is used for quantitative diagnosis of heart valve stenosis and arteriosclerotic lesions.
  • the traditional spectral Doppler obtains the spectrum of the velocity component of the blood flow along the direction of ultrasonic propagation. It is not the actual velocity spectrum distribution, and it is affected by the technique.
  • the angle between the blood vessel and the direction of ultrasonic propagation is difficult to keep consistent with each scan, which results in poor measurement accuracy and repeatability, and can not be more effectively reacted.
  • the speed value of the actual blood flow Although the true speed can be estimated by the angle correction method, this is limited to the case of laminar flow, and the angle of correction is also affected by the technique, which may cause some deviation.
  • the above-mentioned Doppler spectrum is not effective in responding to more realistic blood flow conditions, it is necessary to provide a more intuitive blood flow information display scheme.
  • One embodiment of the present invention provides a method of displaying an ultrasound blood flow motion spectrum, comprising:
  • an ultrasound imaging system comprising:
  • a transmitting circuit for exciting the probe to emit an ultrasonic beam to the scanning target
  • a receiving circuit and a beam combining module configured to receive an echo of the ultrasonic beam to obtain an ultrasonic signal from the scanning target
  • An image processing module configured to obtain, according to the ultrasonic signal, a blood flow velocity in a vessel within the scan target, and obtain an ultrasound image of at least a portion of the scan target according to the ultrasonic signal, and acquire an image located in the vessel The position of interest in the middle, in the display area to draw the speed and time associated coordinate system;
  • a display configured to display, in the associated coordinate system, a change in a value of a blood flow velocity at the position of interest in a temporally changing order, obtain a motion velocity profile associated with the focused location, and display an ultrasound image, Marking the location of interest on the ultrasound image.
  • FIG. 1 is a block diagram showing an ultrasonic imaging system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vertically emitted planar ultrasonic beam according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a deflected-emitting planar ultrasonic beam according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of multi-angle reception in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for screening a maximum blood flow velocity according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for screening a maximum blood flow velocity according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 11, FIG. 12, FIG. 13, FIG. 14 and FIG. 15 are respectively ultrasonic images in various embodiments of the present invention a schematic diagram showing a comparison with a moving speed curve
  • Figure 16 (a) is a schematic diagram of calculation of blood flow velocity vector information in a first mode in one embodiment of the present invention
  • Figure 16 (b) is a schematic diagram of calculation of blood flow velocity vector information in the second mode in one embodiment of the present invention.
  • Figure 17 is a schematic view showing the display of a motion velocity curve in one embodiment of the present invention.
  • FIG. 18 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the structure of an ultrasound imaging system according to an embodiment of the present invention.
  • the ultrasonic imaging system generally includes a probe 1, a transmitting circuit 2, a transmitting/receiving selection switch 3, a receiving circuit 4, a beam combining module 5, a signal processing module 6, an image processing module 7, and a display 8.
  • “Multiple” in this document means 2 or more.
  • the transmitting circuit 2 transmits a delayed-focused transmission pulse having a certain amplitude and polarity to the probe 1 through the transmission/reception selection switch 3.
  • the probe 1 is excited by a transmitting pulse to transmit an ultrasonic wave to a scanning target (for example, an organ, a tissue, a blood vessel, or the like in a human body or an animal body, not shown), and receives a reflection from the target area after a certain delay.
  • the ultrasound echo of the target information is scanned and the ultrasound echo is reconverted into an electrical signal.
  • the receiving circuit receives the electrical signals generated by the conversion of the probe 1 to obtain ultrasonic echo signals, and sends the ultrasonic echo signals to the beam combining module 5.
  • the beam synthesizing module 5 performs processing such as focus delay, weighting, and channel summation on the ultrasonic echo signal to obtain an ultrasonic signal, and then sends the ultrasonic signal to the signal processing module 6 for related signal processing, such as filtering.
  • the ultrasonic echo signals processed by the signal processing module 6 are sent to the image processing module 7.
  • the image processing module 7 performs different processing on the signals according to different imaging modes required by the user, obtains image data of different modes, and then forms ultrasonic images of different modes by logarithmic compression, dynamic range adjustment, digital scan conversion, etc., such as A two-dimensional image such as a B image, a C image, or a D image, and in addition, the ultrasonic image may further include a three-dimensional image.
  • the ultrasonic image generated by the image processing module 7 is sent to the display 8 for display.
  • the image processing module 7 can also calculate the blood flow velocity of the target point according to the ultrasonic echo signal, and output the blood flow velocity to the display for display.
  • the image processing module 7 and the signal processing module 6 are provided separately on different processors or integrated on the same processor 9.
  • the target point mentioned in this embodiment may be one pixel point on the ultrasound image or a region block containing at least two pixel points.
  • the blood flow velocity mentioned in this embodiment is used to characterize the flow velocity information of the blood flow motion state within the scan target, for example, may include a Doppler frequency of the target point within the scan target, or may be estimated to be used to represent the scan target.
  • the calculated blood flow velocity can be a velocity value or a velocity vector.
  • the velocity vector includes the velocity value and the velocity direction, usually expressed in terms of vectors.
  • the velocity value can be expressed in the form of a numerical value or a spectral expression.
  • the velocity value of the blood flow can be a Doppler frequency value or a Doppler spectrum expression. The relevant calculation of blood flow velocity will be explained in detail below.
  • Probe 1 typically includes an array of multiple array elements.
  • Each of the array elements of the probe 1 or a portion of all of the array elements participate in the transmission of the ultrasonic waves each time an ultrasonic wave is transmitted or an ultrasonic wave is received.
  • each of the array elements or each of the array elements participating in the ultrasonic transmission are respectively excited by the transmitting pulse, and respectively emit ultrasonic waves, and the ultrasonic waves respectively emitted by the array elements are superimposed during the propagation to form the emitted
  • the propagation direction of the synthetic ultrasonic beam is the emission angle of the ultrasonic wave mentioned herein.
  • the array elements participating in the ultrasonic transmission may be excited by the transmitting pulse at the same time; or, there may be a certain delay between the time when the array elements participating in the ultrasonic transmission are excited by the transmitting pulse.
  • the propagation direction of the above-described synthetic ultrasonic beam can be changed by controlling the delay between the time at which the element participating in the transmission of the ultrasonic wave is excited by the emission pulse, which will be specifically described below.
  • the ultrasonic waves emitted by the respective array elements participating in the transmission of the ultrasonic waves will not be focused during the propagation, nor will they completely diverge. It is a plane wave that is generally planar as a whole.
  • the ultrasonic beams emitted by the respective array elements can be superimposed at predetermined positions, so that the intensity of the ultrasonic waves is maximum at the predetermined position, that is, The ultrasonic waves emitted by the respective array elements are "focused" to the predetermined position, the predetermined position of the focus being referred to as the "focus", such that the resulting synthesized ultrasonic beam is a beam focused at the focus, referred to herein as " Focus on the ultrasound beam.”
  • the array elements participating in the transmission of the ultrasonic waves may operate in a manner that has a predetermined transmission delay (ie, there is a predetermined delay between the time when the array elements participating in the transmission of the ultrasonic waves are excited by the emission pulse), each The ultrasonic waves emitted by the array elements are focused at the focus to form a focused ultrasound beam.
  • the ultrasonic waves emitted by the respective array elements participating in the emission of the ultrasonic waves are diverged during the propagation, forming a substantially divergent overall. wave.
  • the ultrasonic wave of this divergent form is referred to as a "divergent ultrasonic beam.”
  • a plurality of array elements arranged linearly are simultaneously excited by an electric pulse signal, and each array element simultaneously emits ultrasonic waves, and the propagation direction of the synthesized ultrasonic beam is consistent with the normal direction of the array plane of the array elements.
  • the plane wave of the vertical emission at this time, there is no time delay between the respective array elements participating in the transmission of the ultrasonic wave (that is, there is no delay between the time when each array element is excited by the emission pulse), and each array element is The firing pulse is simultaneously excited.
  • the generated ultrasonic beam is a plane wave, that is, a plane ultrasonic beam, and the propagation direction of the plane ultrasonic beam is substantially perpendicular to the surface of the probe 1 from which the ultrasonic wave is emitted, that is, the propagation direction of the synthesized ultrasonic beam and the normal direction of the arrangement plane of the array element The angle between them is zero degrees.
  • each array element also sequentially transmits the ultrasonic beam according to the time delay, and the propagation direction of the synthesized ultrasonic beam has a certain angle with the normal direction of the array element array plane, that is, the emission angle of the combined beam,
  • the size of the emission angle of the composite beam and the direction of the emission in the normal direction of the array plane of the array element in the scanning plane of the combined beam can be adjusted.
  • FIG. 3 shows a plane wave that is deflected and emitted.
  • the respective array elements participating in the transmission of the ultrasonic wave that is, there is a predetermined time delay between the time when each array element is excited by the transmitting pulse
  • the array elements are excited by the transmitted pulses in a predetermined order.
  • the generated ultrasonic beam is a plane wave, that is, a plane ultrasonic beam, and the propagation direction of the plane ultrasonic beam is at an angle to the normal direction of the array arrangement plane of the probe 1 (for example, the angle a in FIG. 3), and the angle is The angle of emission of the ultrasonic beam of the plane.
  • the direction and the element of the combined beam can be adjusted by adjusting the delay between the time when the array element participating in the transmission of the ultrasonic wave is excited by the transmitted pulse.
  • the "emission angle" of the combined beam formed between the normal directions of the planes, which may be the planar ultrasonic beam, the focused ultrasonic beam or the divergent ultrasonic beam mentioned above, and the like.
  • the two-dimensional ultrasonic transducer can also participate in the ultrasonic wave by control.
  • the time interval between the time at which the transmitted array element is excited by the pulse is adjusted to adjust the "emission angle" of the composite beam formed between the composite beam and the normal direction of the array element array.
  • the ultrasonic probe includes the array unit 1, the array unit 2, the array unit 3, and the array unit 4.
  • the array unit 1, the array unit 2, the array unit 3, and the array unit 4 may be one array element or a plurality of array elements. A combination of one or more of the array unit 1, the array unit 2, the array unit 3, and the array unit 4 may be used as the receiving element.
  • the array element 1 when an ultrasonic beam of a transmission angle is transmitted to a scanning target including the target point position A, the array element 1 is used as a receiving element, and the ultrasonic beam reflected back from a certain target point position A in the scanning target is received.
  • the wave based on the line connecting the aperture position of the element unit 1 and the target point position A (marked as a solid line in Fig. 4), can determine the reception angle a1 of the echo of the ultrasonic beam received at the current time.
  • the echo of the ultrasonic beam reflected from a certain target point position A in the scanning target is received, according to the connection between the aperture position of the array unit 2 and the target point position A ( The dotted line in Fig. 4 can determine the reception angle a2 of the echo of the ultrasonic beam received at the current time.
  • the echo of the ultrasonic beam returned from the same target position A can obtain echoes of the ultrasonic beams of two different receiving angles. Therefore, the "receiving angle" of the echo of the ultrasonic beam is defined in accordance with the angle between the line connecting the aperture position of the receiving element and the position of the target point and the normal direction of the plane of the array of ultrasonic elements.
  • the receiving angle of the echo of the ultrasonic beam can be changed by changing the position of the aperture of the receiving element on the probe, thereby obtaining Ultrasonic signals corresponding to different receiving angles of the scanning target; can also change the emission angle of the ultrasonic beam by controlling the delay between the time when the array elements participating in the transmission of the ultrasonic waves are excited by the transmitting pulse, and the ultrasonic beams based on different emission angles Echo, obtaining ultrasonic signals corresponding to different emission angles of the scanning target.
  • the image processing module 7 can calculate the blood flow velocity of the plurality of target points in the region of interest in the scan target or in the scan target according to the ultrasonic signals of different angles.
  • the ultrasonic imaging system shown in FIG. 1 further includes an operation control module 10 for receiving an adjustment signal from an operation user input, the adjustment signal including imaging parameters such as an emission angle of the ultrasonic beam, a reception angle, and an ultrasonic beam type.
  • the adjustment may also include adjustments to the calculation of the image of the tissue image processing module, the region of interest, or the blood flow velocity vector.
  • the operation control module 10 can be a human-computer interaction interface, such as a keyboard, a scroll wheel, a touch gesture receiving and calculating module connected to a touch screen with a touch function, a mouse, a transceiver module for a gesture control signal, and the like.
  • the display 8 in FIG. 1 includes one or more display screens, and the display screen in this embodiment may be a touch display screen, an LED display screen, or the like.
  • the image data or the motion speed curve spectrum output by the image processing module may also be transmitted to the remote display through the wireless transmission module for display.
  • the solution of the embodiment is not limited to the desktop ultrasound device, and may also include all available in the medical internet system. A device that displays an ultrasound image.
  • FIG. 5 provides a method for displaying an ultrasound blood flow motion spectrum for generating a velocity motion profile spectrum for a period of time in a region of interest, which may indicate changes in the region of interest such as maximum blood flow velocity over time, or The change in blood flow velocity over time at multiple regions of interest selected by the cursor position.
  • the motion velocity curve spectrum can have two manifestations, one of which is a motion velocity curve, and the value of the blood flow velocity at the position of interest is recorded at the corresponding time; the second is the motion velocity map, which is recorded at the corresponding time.
  • a method for automatically detecting a velocity motion profile spectrum at a maximum blood flow velocity is provided, hereinafter referred to as a maximum motion velocity curve spectrum, which provides a curve profile different from the conventional one. It can reflect the influence of factors such as the scanning of the probe, the movement of the probe position, and the change of the angle between the blood vessel and the direction of the ultrasonic wave during each scan, and reflect the blood flow at the optimal position in the region of interest at all times in the map. Information and provide doctors with a better diagnostic basis.
  • the method of this embodiment can provide doctors with more accurate data support. It can also avoid the above problems, the execution process is simple, and the data is more accurate.
  • the specific method steps are as follows.
  • an ultrasonic blood flow imaging display method includes the following steps S100 to S600.
  • step S100 the ultrasonic signal from the scanning target is obtained by the probe 1 by the receiving circuit 4 and the beam combining module 5.
  • the probe 1 is excited by the transmitting circuit 2 to emit an ultrasonic beam to the scanning target, and the echo of the ultrasonic beam is received to obtain the ultrasonic signal.
  • the ultrasonic beam emitted to the scanning target in this embodiment may include: a focused ultrasonic beam and a non-focused ultrasonic beam, wherein the unfocused ultrasonic beam includes: a virtual source ultrasonic beam, a non-diffracting ultrasonic beam, a divergent ultrasonic beam, or a planar ultrasonic beam; At least one of beam types or a combination of at least two or more (herein "the above” includes the number, the same applies hereinafter).
  • the embodiment of the present embodiment is not limited to the above several types of ultrasonic beams. It can be seen that the ultrasonic signal in step S100 can be an echo signal of the ultrasonic beam.
  • the step S100 includes: Step 121: transmitting a focused ultrasound beam to the scanning target, receiving an echo of the focused ultrasound beam, obtaining a focused ultrasound echo signal for reconstructing the ultrasound image, or calculating the blood flow velocity. Wait.
  • step 122 is included: transmitting a planar ultrasonic beam to the scanning target, receiving an echo of the planar ultrasonic beam, obtaining a planar ultrasonic echo signal for reconstructing the ultrasonic image, or calculating the blood flow velocity, and the like.
  • step 121 and step 122 are included in step S100: transmitting a focused ultrasound beam to the scanning target to obtain a focused ultrasound echo signal; and transmitting a planar ultrasound beam to the scanning target to obtain a planar ultrasound echo signal.
  • the focused ultrasound echo signal can be used to reconstruct at least a portion of the ultrasound image of the scan target to obtain a better quality ultrasound image as the background image, and the planar ultrasound echo signal can be used to calculate the blood flow in step S200 in FIG. Speed image data base.
  • step S100 two kinds of ultrasonic beams are alternately emitted to the scanning target.
  • a process of emitting a focused ultrasonic beam to a scanning target is inserted during the process of transmitting a planar ultrasonic beam to the scanning target, that is, the above-described steps 121 and 122 are alternately performed. This can ensure the synchronization of the acquisition of the two ultrasound beam image data, and improve the accuracy of the blood flow velocity obtained by multi-beam angle transmission.
  • ultrasonic signals of a plurality of angles may be received in step S100 for calculating a blood flow velocity or an ultrasound image.
  • an ultrasonic beam of different emission angles may be transmitted to the scanning target in step S100 for receiving ultrasonic signals that obtain a plurality of angles.
  • ultrasonic signals of different reception angles are received from the scanning target. It can be seen that the ultrasonic signals of multiple angles can correspond to multiple emission angles or multiple reception angles. The details are as follows:
  • ultrasonic signals of multiple angles can be received along different transmission angles.
  • the method may include: transmitting an ultrasonic beam to the scanning target along a plurality of emission angles, and receiving an echo of the ultrasonic beam to obtain a plurality of ultrasonic echo signals as the step S100. Ultrasonic signal.
  • the ultrasonic beam is transmitted to the scanning target along a plurality of emission angles, and in the process, the process of transmitting the ultrasonic beam to the scanning target may be alternately performed in accordance with the difference in the emission angle. For example, if an ultrasonic beam is emitted to the scanning target along two emission angles, the ultrasonic beam is first transmitted to the scanning target along the first emission angle, and then the ultrasonic beam is emitted to the scanning target along the second emission angle to complete a scanning cycle. Finally, the above scanning cycle process is sequentially repeated.
  • the ultrasonic beam may be first transmitted to the scanning target along one emission angle, and then the ultrasonic beam is transmitted to the scanning target along another emission angle, and the scanning process is completed after all the emission angles are sequentially executed.
  • it can be obtained by changing the delay time of each array element or each partial array element in the array elements participating in the ultrasonic transmission, and can be specifically explained with reference to FIG. 2 or FIG.
  • a plurality of ultrasonic beams are transmitted to the scanning target at each of the emission angles to obtain a plurality of ultrasonic signals for subsequent processing of the ultrasonic image data.
  • a plurality of unfocused ultrasonic beams are respectively emitted to the scanning target at a plurality of emission angles, or a plurality of focused ultrasonic beams are respectively transmitted to the scanning target along a plurality of emission angles. And each time the ultrasonic beam is emitted, an ultrasonic signal is obtained.
  • the process of transmitting a plurality of ultrasonic beams to the scanning target is alternately performed according to the difference of the emission angles, so that the obtained echo data can approximate the blood flow velocity vector of the target point at the same time, and the calculation accuracy of the velocity vector information is improved. For example, if N times of ultrasonic beams are respectively transmitted to the scanning target along three emission angles, at least one ultrasonic beam may be transmitted to the scanning target along the first emission angle, and then at least one ultrasonic wave may be emitted to the scanning target along the second emission angle. The beam, secondly, transmits at least one ultrasonic beam to the scanning target along the third emission angle to complete one scanning cycle, and finally repeats the scanning cycle process until the number of scanning times at all emission angles is completed.
  • the number of times the ultrasonic beam is emitted at different emission angles in the same scanning period may be the same or different. For example, if the transmitted ultrasonic beam is along two emission angles, then according to A1 B1 A2 B2 A3 B3 A4 B4 ... Ai Bi, and so on. Where Ai is the ith transmission in the first transmission angle; Bi is the ith transmission in the second transmission angle. And if the ultrasonic beam is emitted along three emission angles, then according to A1 B1 B1C1 A2 B2 B2C2 A3 B3 B3C3 ... Ai Bi BiCi, and so on. Where Ai is the ith shot in the first launch angle; Bi is the ith shot in the second launch angle; Ci is the ith shot in the third launch angle.
  • the two ultrasonic beams may be alternately transmitted.
  • the step S100 includes: in step S101, the multi-focus ultrasonic beam is transmitted to the scanning target for Obtain image data of the reconstructed ultrasound image.
  • Step S102 transmitting a plurality of plane ultrasonic beams to the scanning target along one or more emission angles, to obtain calculation speed vector information. Image data.
  • the process of emitting a focused ultrasound beam to the scanning target may be inserted during the transmission of the planar ultrasound beam to the scanning target.
  • the multi-focus ultrasonic beam transmitted to the scanning target is uniformly inserted into the process of performing the above-described step S102.
  • any of the alternate transmission modes that enable at least a portion of the plurality of planar ultrasonic beams transmitted to the scanning target to be alternately executed with at least a portion of the plurality of focused ultrasonic beams transmitted to the scanning target.
  • a focused ultrasonic beam can be used to obtain a better quality ultrasonic image; and a high real-time velocity vector information can be obtained by using a high planar beam frame rate, and in order to have better synchronization in data acquisition.
  • Sexuality using two types of ultrasonic-shaped alternating emission.
  • the receiving circuit 4 and the beam combining module 5 receive the echo of the above-mentioned transmitted ultrasonic beam, and perform beam combining to obtain an ultrasonic signal. For example, when an echo of the focused ultrasound beam is received, a focused ultrasound signal is obtained; when an echo of the planar ultrasound beam is received, a planar ultrasound signal is obtained, and so on. Which type of ultrasonic beam is emitted in step S100, and corresponding type of ultrasonic signal is generated corresponding to the echo of which type of ultrasonic beam is received.
  • the focused ultrasonic beam corresponds to the focused ultrasonic signal
  • the planar ultrasonic beam corresponds to the planar ultrasonic signal
  • the divergent ultrasonic beam corresponds to the divergent ultrasonic signal, and the like, and is not enumerated here.
  • the transmitting and receiving functions can be received when each of the array elements participating in the ultrasonic transmission or each of the array elements is time-divisionally implemented.
  • the echo of the ultrasonic beam emitted in step S100, or dividing the array element on the probe into the receiving portion and the transmitting portion, and then receiving each of the array elements or each of the array elements participating in the ultrasonic receiving, in the above step S100 The echo of the transmitted ultrasonic beam, and so on.
  • the ultrasonic beam When the ultrasonic beam is emitted along one emission angle in step S100, the echo of the ultrasonic beam from the emission angle is received, correspondingly obtaining a set of ultrasonic signals.
  • the ultrasonic beam is transmitted along the plurality of emission angles in step S100, a plurality of sets of ultrasonic signals corresponding to the plurality of emission angles are obtained corresponding to the echoes of the ultrasonic beams that receive the plurality of emission angles. Based on different emission angles, multiple sets of ultrasonic signals corresponding to different emission angles can be received.
  • the set of ultrasonic signals includes a plurality of ultrasonic signals
  • the plurality of ultrasonic signals may correspond to receiving a plurality of echo signals of the plurality of ultrasonic beams emitted at each of the emission angles, wherein the transmission of the one ultrasonic beam corresponds to obtaining the ultrasonic signals.
  • step S100 multiple plane ultrasonic beams are respectively transmitted to the scanning target along a plurality of different emission angles, and then echoes of the plane ultrasonic beams corresponding to the plurality of emission angles are respectively received, and multiple groups of planes belonging to different emission angles are obtained.
  • each set of planar ultrasonic signals includes at least two planar ultrasonic signals, each of which is derived from an echo obtained by performing a step of transmitting an ultrasonic beam to the scanning target at a single emission angle.
  • an echo of the focused ultrasonic beam is received to obtain a plurality of focused ultrasonic signals.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam toward the scanning target along one or more emission angles in step S100
  • the ultrasonic beam from the scanning target can be received by adjusting the aperture position of the receiving array element on the probe. Waves, obtaining ultrasonic signals along different receiving angles, as ultrasonic signals of different angles obtained in step S100, as shown in FIG. 4 and related description.
  • the process of transmitting an ultrasonic beam to a scanning target along multiple emission angles is described in the foregoing.
  • step S100 when receiving an echo from the ultrasound beam on the scanning target, the aperture position of the receiving array element in the probe is adjusted to the first position for receiving the emission angle. Acquiring the ultrasonic beam to obtain a first set of ultrasonic signals belonging to the first receiving angle, adjusting the aperture of the receiving array element to the second position, and receiving the echo of the ultrasonic beam of the transmitting angle to obtain the second receiving angle.
  • the second set of ultrasonic signals is the same, so that multiple sets of ultrasonic signals are obtained based on different receiving angles.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target, and receives echoes of the ultrasonic beam respectively at a plurality of different receiving angles to obtain ultrasonic signals of different components at different receiving angles, wherein A receiving angle correspondingly receives an echo signal of a set of ultrasonic beams from the scanning target for subsequent beamforming, processing of the ultrasonic image data, and calculation of the blood flow velocity vector.
  • the echoes of the plurality of sets of ultrasonic beams are respectively received from the scanning target along a plurality of receiving angles.
  • a planar ultrasonic beam is transmitted to the scanning target, and an echo of the ultrasonic beam is received multiple times along a receiving angle to obtain a set of planar ultrasonic signals, wherein the set of planar ultrasonic signals includes multiple planar ultrasonic signals, along different
  • the receiving angle receives the echoes of the plurality of sets of planar ultrasonic beams, thereby obtaining a plurality of sets of planar ultrasonic signals belonging to different receiving angles.
  • the ultrasonic signal obtained based on a single emission angle or a reception angle may also be used to calculate the maximum value of the blood flow velocity in the subsequent steps and obtain an ultrasound image. For example, if a plane ultrasonic beam is transmitted to the scanning target along a transmission angle in step S100, the echo of the ultrasonic beam is received multiple times along a receiving angle to obtain a set of planar ultrasonic echo signals, which are in the set of planar ultrasonic echo signals. Includes multiple planar ultrasound echo signals.
  • this embodiment can also be replaced with the other ultrasonic shapes described above.
  • an ultrasonic signal along one or more angles may be obtained in step S100, where the angle may include an emission angle or a reception angle.
  • a set of ultrasonic signals is obtained corresponding to a single emission angle or a receiving angle, and a plurality of sets of ultrasonic signals are obtained corresponding to different emission angles or reception angles, and each set of ultrasonic signals includes at least one ultrasonic signal obtained along a transmission angle or a reception angle.
  • An ultrasound image of at least a portion of the scan target can be acquired based on any one of the sets of ultrasonic signals or a combination of more than two sets of ultrasonic signals.
  • the blood flow velocity of the target point in the region of interest can be obtained based on any one or more of the plurality of sets of ultrasonic signals.
  • step S100 in order to facilitate the calculation convenience and enhance the image display effect, the ultrasonic signals from the plurality of angles in the scanning target are obtained by the probe, and the ultrasonic signals of the plurality of angles belong to different receiving angles or emission angles, according to The different angles corresponding to the superwave signals are stored as at least one set of data frames related to the angle. That is, the set of ultrasonic signals obtained as described above is stored as a set of data frames related to the angle, and the data frame set includes at least one frame of image data.
  • step S200 the image processing module 7 obtains the blood flow velocity in the blood vessel in the scan target based on the ultrasonic signal obtained in step S100.
  • step S200 the blood flow velocity direction corresponding to all the target points in the entire imaging region of the scan target may be first calculated, and then the corresponding blood flow velocity is extracted according to the acquisition of the attention location for display processing.
  • the blood flow velocity can be calculated in a variety of ways, as shown below.
  • the first is to use Doppler imaging to calculate blood flow velocity.
  • an ultrasonic signal is acquired in the manner described above, and the ultrasonic signal may be an ultrasonic signal belonging to one or more angles. This angle can be the launch angle or the receive angle.
  • the following embodiment will be described by taking an ultrasonic beam emitted to a scanning target along one or more emission angles and receiving an echo signal of the ultrasonic beam as an ultrasonic signal in step S100.
  • a plurality of ultrasonic beams are continuously transmitted at the same emission angle for the scanning target; and the echoes of the multiple ultrasonic beams emitted are received, and multiple ultrasonic echo signals are obtained, and each ultrasonic echo signal is used.
  • the values correspond to values at a target position when scanning at an emission angle.
  • step S200 the calculation is performed as follows:
  • a plurality of ultrasonic signals in a set of ultrasonic signals are respectively Hilbert transformed in a direction in which the emission angle is located, thereby obtaining a plurality of image data representing a value on each target point by a complex number; after N times of transmitting and receiving, at each target point There are N complex values that vary with time. Then, according to the following two formulas (1) and (2), the velocity of the target point z in the direction of the emission angle is calculated:
  • V z is the calculated velocity value along the emission angle
  • c is the speed of sound
  • f 0 is the center frequency of the probe
  • T prf is the time interval between two shots
  • N is the number of shots
  • x(i) is The real part of the i-th shot
  • y(i) is the imaginary part of the ith shot.
  • the above formulas (1) and (2) are formulas for calculating the velocity values at a fixed position.
  • the velocity value at each target point can be found by the N complex values.
  • the Doppler velocity value Vz may be used to characterize the blood flow velocity at the target point, or the Doppler velocity value Vz may be included to represent the velocity at the target point.
  • the value and velocity directions are vector representations of the emission angle to characterize the blood flow velocity at the target point.
  • the expression of the blood flow velocity may be not limited, and of course, the blood flow velocity component in an angular direction obtained by the Doppler imaging technique is provided in the above embodiment.
  • the emission angle employed in the above embodiment is taken as an embodiment. If multiple ultrasonic echo signals are obtained along the receiving angle as mentioned in the foregoing, the above method can also be used for calculation, but the above-mentioned emission angle is replaced by Receiving angle, the speed direction is the receiving angle.
  • the speed values in the speed direction can be obtained at different angles respectively.
  • This paper can be simply referred to as the Doppler speed value, and the Doppler speed value can be used in Doppler. Frequency to characterize.
  • the Doppler velocity value can also be expressed in the form of a Doppler spectrum.
  • Doppler processing is performed on the ultrasonic signal by the Doppler principle, and the moving speed of the scanning target or the moving portion therein can be obtained.
  • the moving speed of the scanning target or the moving portion therein can be obtained from the ultrasonic signal by the autocorrelation estimation method or the cross-correlation estimation method.
  • the method of performing Doppler processing on the ultrasonic signal to obtain the velocity of motion of the scanning target or the moving portion therein may use any of the fields currently in use in the art or may be used in the future to calculate the scanning target or the ultrasonic signal therein. The method of the speed of the movement of the moving part will not be described in detail here.
  • the offset of the same spot between the two frames of images is used to obtain the blood flow velocity of the target point in the region of interest.
  • an ultrasonic signal is acquired in the manner described above, and the ultrasonic signal may include at least one set of ultrasonic signals.
  • a planar ultrasonic echo signal can be used to obtain an ultrasound image of the blood flow velocity at which the target point is calculated.
  • the planar ultrasonic beam propagates substantially throughout the imaging region. Therefore, generally, the primary planar beam echo signal obtained corresponding to the planar ultrasonic beam transmitted once is processed to obtain one frame of planar beam echo image data.
  • Plane ultrasound The ultrasound image data of the scanning target obtained by the beam corresponding to the obtained planar beam echo signal is referred to as a "planar beam echo image".
  • a tracking area is selected in the first frame ultrasound image, which may include a target point for which it is desired to obtain its velocity vector.
  • the tracking area can select a neighborhood of the target point or a data block containing the target point.
  • an area corresponding to the tracking area is searched for in the second frame ultrasound image, for example, an area having the greatest similarity with the aforementioned tracking area is searched as the tracking result area.
  • the metric process of similarity may use the following formula to find a similarity matrix, and based on the similarity matrix, find a region having the greatest similarity with the aforementioned tracking region.
  • the similarity matrix in the two-dimensional image is calculated by the following formula (3) or (4).
  • X 1 is a first frame ultrasound image and X 2 is a second frame ultrasound image.
  • i and j are the horizontal and vertical coordinates of the two-dimensional image. Indicates the value of K and L when the result of the expression on the right side of it reaches a minimum.
  • K, L represents the new position in the image.
  • M, N is the size of the tracking area in the figure. with Is the average of the first frame and the second frame tracking area and the tracking result area.
  • the similarity matrix in the three-dimensional image is calculated by the following formula (5) or (6).
  • X 1 is a first frame ultrasound image and X 2 is a second frame ultrasound image.
  • i, j and k are the coordinates of the three-dimensional image. Indicates the value of A, B, and C when the result of the expression on the right side of it reaches a minimum.
  • A, B, and C represent the new horizontal and vertical coordinate positions in the image.
  • M, N, L are the sizes of the tracking areas in the figure. with Is the average of the first frame and the second frame tracking area and the tracking result area.
  • the velocity vector of the target point can be obtained according to the foregoing tracking area and the position of the foregoing tracking result area, and the time interval between the first frame image data and the second frame image data.
  • the velocity value may pass the distance between the tracking area and the tracking result area (ie, the movement displacement of the target point within a preset time interval), divided by the first frame plane beam echo image data and the second frame plane beam echo Image
  • the time interval between the data is obtained, and the speed direction may be the direction of the line from the tracking area to the tracking result area, that is, the moving direction of the target point within the preset time interval.
  • the obtained at least two frames of the ultrasonic image may be subjected to wall filtering processing, that is, wall filtering is performed on the points in each position on the image in the time direction.
  • wall filtering is performed on the points in each position on the image in the time direction.
  • the tissue signal on the image changes less with time, while the blood flow signal changes greatly due to the flow of blood. Therefore, a high-pass filter can be used as the wall filter for the blood flow signal. After wall filtering, the higher frequency blood flow signal is retained, and the smaller frequency tissue signal is filtered out. After the wall-filtered signal, the signal-to-noise ratio of the blood flow signal can be greatly enhanced.
  • the blood flow velocity in step S200 may be an absolute value of the velocity vector obtained by the above method, or a velocity vector.
  • the velocity vector of the target point is obtained based on the time gradient and the spatial gradient at the target point, as shown below.
  • an ultrasonic signal is acquired in the manner described above, and the ultrasonic signal may include at least one set of ultrasonic signals.
  • the ultrasonic signal may be an ultrasonic echo signal belonging to one or more angles. This angle may be an emission angle or a reception angle.
  • the following embodiment illustrates the emission angle as an example.
  • the ultrasonic signal obtaining at least two frames of ultrasound images
  • obtaining a first gradient in the time direction at the target point according to the ultrasound image obtaining a second gradient along the emission angle at the target point according to the ultrasound image, obtaining a direction perpendicular to the emission angle at the target point according to the ultrasound image a third gradient, calculating a fifth velocity component of the target point at the emission angle and a sixth velocity component in a direction perpendicular to the emission angle according to the first gradient, the second gradient, and the third gradient;
  • the velocity vector of the target point is obtained according to the combination of the fifth velocity component and the sixth velocity component, including the velocity value obtained after the synthesis and the composite angle, and the composite angle is directed to the velocity direction.
  • the emission angle adopted in the above embodiment is taken as an embodiment. If at least two frames of the ultrasound image are obtained by using the received angle to obtain multiple ultrasound echo signals as mentioned above, the calculation may be performed in the above manner, but each step is performed. The "emission angle" in should be replaced with the acceptance angle.
  • the above process uses a planar ultrasonic echo signal to perform calculations to improve the speed and accuracy of the velocity vector. Based on the above method, the blood flow velocity in step S200 may be an absolute value of the velocity vector obtained by the above method, or a velocity vector.
  • the velocity components along a plurality of different angles are obtained at the target point; the velocity components associated with the plurality of different angles are synthesized, and the velocity vector at the target point is obtained.
  • Doppler imaging techniques can be utilized to calculate velocity components along a plurality of angles at a target point, and then synthesize the velocity vectors of the target points. Specifically, it is as follows.
  • At least two sets of ultrasonic signals are acquired in the manner described above, and the at least two sets of ultrasonic signals may be ultrasonic signals belonging to a plurality of emission angles or reception angles.
  • the following embodiments illustrate the emission angles as an example.
  • the velocity components corresponding to each set of data frames are respectively calculated, and at least two velocity components related to the angle are obtained. At least two velocity components are obtained at each target point.
  • Each velocity component may include characterizing the velocity value at the target point with a Doppler velocity value, the corresponding firing angle characterizing the velocity direction at the target point; and may only include characterizing the velocity value at the target point with the Doppler velocity value.
  • the speed vector is obtained according to the change of time, and the velocity vector of the target point is obtained, which includes the velocity value obtained after the synthesis and the combined angle, and the combined angle points to the velocity direction.
  • the emission angle employed in the above embodiment is taken as an embodiment. If multiple sets of ultrasonic echo signals are obtained along a plurality of reception angles as mentioned in the foregoing, the calculation may be performed in the above manner, but in each step. The launch angle should be replaced by the "receiving angle".
  • the ultrasound image mentioned herein may be two-dimensional image data or three-dimensional image data composed of a plurality of two-dimensional image data, the same as below.
  • the blood flow velocity calculated in step S200 herein can be a velocity value. It can also be a velocity vector, which includes the velocity value and the velocity direction. If the blood flow velocity in step S200 is a velocity value, it may be represented by a Doppler frequency, a Doppler spectrum, or a velocity value in the velocity vector information, which may be an absolute value of the velocity vector. , or other value expressions.
  • the blood flow velocity in step S200 is a velocity vector
  • the blood flow velocity may be: a velocity value characterized by a Doppler frequency, a reception velocity or a transmission angle characterizing a velocity vector in the velocity direction; and may also be synthesized by, for example, multi-angle velocity, Multi-angle spectral synthesis or speckle tracking is used to approximate the velocity vector.
  • the velocity value in the blood flow velocity may be one of an approximate or real velocity magnitude of the target point, an acceleration magnitude, a velocity variance evaluation value, and the like, and a statistic characterizing the velocity state.
  • the speed direction in the foregoing may be the above-mentioned emission angle or reception angle, or the speed direction obtained when calculating the velocity vector or the composite angle obtained when performing the composite calculation.
  • the blood flow velocity corresponding to the target point calculated in step S200 may include one or more velocity values, and may also include one or more velocity vectors.
  • the target point of the present embodiment may be a point or position of interest within the scan target, typically expressed as a sensation that may be marked or may be displayed in at least a portion of the ultrasound image of the scan target displayed on the display.
  • the point or location of interest may be a pixel point or a pixel area input by the user in the region of interest, or may be a plurality of discrete pixel points or pixel regions automatically generated by the system in the region of interest, for determining a certain pixel point or a certain The associated position of the blood flow velocity at the image coordinates of the block pixel neighborhood block.
  • the target point in step S200 may be a plurality of pixel points or pixel neighborhoods (data blocks) input by the user in the region of interest, or may be multiple discrete pixel points or pixel neighborhoods automatically generated by the system in the region of interest ( The data block), or it may also be all pixels or pixel neighborhoods (data blocks) in the region of interest.
  • the region of interest mentioned herein may be an area in which the system automatically forms on the ultrasound image, or the entire imaging area, or may be a user inputting a selection instruction on the ultrasound image to obtain an area, and the like.
  • the region of interest is at least one pixel, or a neighborhood (data block) containing at least one pixel.
  • step S200 further includes the following steps:
  • the blood flow velocity of the plurality of target points in the second region of interest is obtained.
  • the first inductive area may be an area that the system automatically forms on the ultrasound image, or the entire imaging area, or may be a user inputting a selection instruction acquisition area on the ultrasound image, and the like.
  • the second region of interest may be a sub-region contained within the first region of interest, or a region of interest that partially or completely does not coincide with the first region of interest.
  • the blood flow of each target point in the entire imaging region may be calculated first.
  • the velocity then extracts blood flow velocities of the plurality of target points in the first region of interest and the second region of interest based on the selected region of interest.
  • step S300 the image processing module 7 obtains an ultrasound image of at least a portion of the scan target based on the ultrasonic signal.
  • the ultrasound image herein may be a three-dimensional ultrasound stereoscopic image, or may be a two-dimensional ultrasound image, such as a B-picture, an image in a three-dimensional ultrasound image database obtained by the above-mentioned scanning body for display, or obtained by two-dimensional blood flow display technology.
  • Enhanced B image may be a three-dimensional ultrasound stereoscopic image, or may be a two-dimensional ultrasound image, such as a B-picture, an image in a three-dimensional ultrasound image database obtained by the above-mentioned scanning body for display, or obtained by two-dimensional blood flow display technology.
  • Enhanced B image may be a three-dimensional ultrasound stereoscopic image, or may be a two-dimensional ultrasound image, such as a B-picture, an image in a three-dimensional ultrasound image database obtained by the above-mentioned scanning body for display, or obtained by two-dimensional blood flow display technology.
  • the ultrasound image may be imaged using planar ultrasound beams or focused ultrasound beam imaging.
  • the focused ultrasonic beam is more concentrated in each emission and is only imaged at the concentration of the force, the obtained echo signal has a high signal-to-noise ratio, the obtained ultrasonic image quality is good, and the main lobe of the focused ultrasonic beam is narrow, next to The lower the flap, the higher the lateral resolution of the acquired ultrasound image.
  • the ultrasound image can be imaged using a focused ultrasound beam.
  • a plurality of focused ultrasound beams may be emitted in step S100 to achieve scanning to obtain a frame of ultrasound images.
  • the plurality of focused ultrasound beams are transmitted to the scanning target in the above step S100, and the echoes of the focused ultrasound beams are received in step S200 to acquire a set of focused beam echo signals, according to the Focusing the beam echo signal obtains an ultrasound image of at least a portion of the scan target.
  • High quality ultrasound images can be obtained with focused ultrasound.
  • step S400 the image processing module 7 acquires the location of interest located in the vessel.
  • the position of interest in this embodiment may be one of or a combination of the position where the cursor is located, the position selected by the user, and the position at which the maximum blood flow velocity is located.
  • the location of interest may include one or more.
  • a position of interest in the embodiment may be a region of interest. If it is a region of interest, the blood flow velocity of the region of interest may be the mean, variance, and mean square error of blood flow velocity values of the plurality of target points in the region of interest. One of the maximum and minimum values.
  • a location of interest can be equated to a target point.
  • the location of interest may also be any one of the target regions of interest, or the selected target point (eg, the location selected by the user, the location where the maximum blood flow velocity is located).
  • step S500 to step S600 Performing the process of step S500 to step S600 according to the determined position of interest, that is, using the display to draw a coordinate system of speed and time in the display area, and displaying the position of interest in the order of change of time in the associated coordinate system
  • a change in the value of the blood flow velocity obtains a spectrum of the velocity profile associated with the location of interest.
  • the image processing module may be used in advance to record the change of the blood flow velocity with time in the attention position, perform buffering, and then display the contents of step S500 and step S600 through the display.
  • the location of interest includes at least two
  • step S600 in the same associated coordinate system, the at least two locations of interest are simultaneously displayed in order of change of time.
  • a velocity profile associated with the at least two regions of interest, respectively is obtained.
  • the image processing module may also use the image processing module to simultaneously record changes in blood flow velocity over time at at least two locations of interest, perform caching, and then display the contents of step S500 and step S600 through the display.
  • the location of interest in the above embodiment may be the location of the cursor and the location selected by the user.
  • the ultrasound image 91 includes the region of interest 92 and the region of interest 95, the cursor position 97, and the vessel 93.
  • the above-mentioned location of interest includes the location 94 at which the maximum blood flow velocity within the region of interest 92 is located.
  • the position 96 and the cursor position 97 where the maximum blood flow velocity is within the region of interest 95. Therefore, the motion velocity curves associated with the above three positions of interest 97, 96, 94 are respectively superimposed in a coordinate system to form a motion velocity curve 98 in FIG. 17, wherein the plotted curves 981, 982, 983 are associated with the above.
  • the position of the plurality of attention positions acquired in the above step S400 is not limited to a position including the maximum blood flow velocity, and may include any one of the position of the cursor and the at least one region of interest.
  • the result formed in accordance with the above steps S500 and S600 can also be as shown by the motion speed curve 98 in FIG.
  • step S400 includes the location at which the maximum blood flow velocity is located. Therefore, the following steps need to be added in step S400:
  • step S410 the image processing module 7 searches for the maximum value in the blood flow velocity.
  • step S420 the image processing module 7 determines the location of interest according to the location where the maximum value is located.
  • the attention position determined according to the position where the maximum value is located in step S420 may be a partial attention position, and based on this, it is determined in step S420 that at least one attention position is the position where the maximum value is located, and at the same time, other attention positions are also included.
  • the other attention position may be the position of the cursor or any position selected by the user. As shown in FIG. 17, the position of the maximum value and the blood flow speed change of the position of the cursor may be compared at the same time.
  • the image processing module 7 displays the change of the value of the blood flow velocity at the position where the maximum value is located in the order of change of time in the associated coordinate system, and obtains the position associated with the maximum value.
  • the motion velocity profile is generated to generate a maximum motion velocity profile that records the correspondence between the corresponding blood flow velocity and time at the location of the maximum blood flow velocity.
  • the maximum value in the blood flow velocity can be obtained on a frame-by-frame basis, or can be compared in multiple frames.
  • the maximum value in the blood flow velocity can be obtained on a frame-by-frame basis, or can be compared in multiple frames.
  • step S410 the following frame-by-frame comparison is adopted in step S410.
  • one or more ultrasonic echo signals can obtain one frame of ultrasound images, each frame.
  • the ultrasound image corresponds to a collection time.
  • the blood flow velocity of a plurality of target points in the region of interest in each frame of the ultrasound image (for example, T1, T2, T3, T4) is extracted.
  • the blood flow velocities of the corresponding plurality of target points A, B, C, and D in the T1 frame image are v1-1, v1-2, v1-3, and v1-4, respectively, and the corresponding plurality of targets in the T2 frame image.
  • the blood flow velocities of points A, B, C, and D are v2-1, v2-2, v2-3, and v2-4, respectively, and the blood flow of the corresponding plurality of target points A, B, C, and D in the T3 frame image.
  • the speeds are v3-1, v3-2, v3-3, v3-4, respectively.
  • the blood flow velocities of the corresponding multiple target points A, B, C, and D in the T4 frame image are v4-1, v4-2, respectively.
  • V4-3, v4-4, the blood flow velocity used here may be a velocity value or a velocity vector.
  • the blood flow velocity of each target point in the ultrasound image is compared frame by frame, and the maximum value of the blood flow velocity in the region of interest in each frame of the ultrasound image is extracted, for example, the blood flow velocity in the T1, T2, T3, T4 frame images.
  • the maximum values are v1-1, v2-2, v3-3, and v4-2, respectively.
  • the target point where the maximum value found in the region of interest in each frame of the ultrasound image is located is regarded as the first position of interest, that is, v1-1, v2-2, v3-3, and v4-2 are respectively at T1, T2, and T3.
  • the target points A, B, C, and B in the T4 frame image are regarded as the first attention position.
  • the T1, T2, T3, and T4 frame images respectively correspond to the times t1, t2, and t3 in the maximum motion velocity curve.
  • t4 corresponding to the records v1-1, v2-2, v3-3, v4-2.
  • v1-1, v2-2, v3-3, and v4-2 can be represented by Doppler frequency or Doppler spectrum, and corresponding to the maximum value of the record at each moment in the maximum motion velocity curve spectrum. Doppler frequency or Doppler spectrum, resulting in a new map information that can always guarantee the maximum position velocity.
  • the maximum value can be compared by taking the envelope of the Doppler spectrum.
  • step S410 the following multi-frame alignment is adopted in step S410.
  • the blood flow velocity corresponding to the plurality of target points in the region of interest in the predetermined time period is extracted, wherein, according to the ultrasonic signal, each target point in the region of interest in the preset time segment is calculated at each moment.
  • the speed of blood flow can generally obtain one frame of ultrasound images, and each frame of ultrasound images corresponds to one acquisition time.
  • the blood flow velocity of a plurality of target points in the region of interest in the multi-frame ultrasound image (eg, T11, T12, T13, T14) is extracted.
  • the blood flow velocities of the corresponding plurality of target points A1, B1, C1, and D1 in the T11 frame image are v11-1, v11-2, v11-3, and v11-4, respectively, and the corresponding plurality of targets in the T12 frame image.
  • the blood flow velocities of points A1, B1, C1, and D1 are v12-1, v12-2, v12-3, and v12-4, respectively, and the blood flow of the corresponding plurality of target points A1, B1, C1, and D1 in the T13 frame image.
  • the speeds are v13-1, v13-2, v13-3, and v13-4, respectively, and the blood flow velocities of the corresponding plurality of target points A1, B1, C1, and D1 in the T14 frame image are v14-1, v14-2, respectively.
  • V14-3, v14-4, the blood flow velocity used here may be a velocity value or a velocity vector.
  • the multi-frame ultrasound image in this embodiment may be a continuous multi-frame image or a non-contiguous multi-frame image.
  • comparing the blood flow velocity corresponding to each moment in the preset time period determining the blood flow in the preset time period The maximum speed. For example, compare the blood flow velocity in a multi-frame ultrasound image (eg, T11, T12, T13, T14), find the maximum value, and the maximum value satisfies at least one of the following rules:
  • the target point corresponding to the maximum value has the highest blood flow velocity at each moment in the preset time period.
  • the maximum values are v11-1, v12-1, v13 respectively -1 and v14-1, that is, the blood flow velocity of the target point A1 at each moment.
  • the maximum value is the maximum value of the blood flow velocity corresponding to each moment in the preset time period.
  • the maximum value of the blood flow velocity corresponding to each moment in the preset time period is v11-1, and the target point corresponding to the maximum value is A1.
  • the target point where the found maximum value is located is regarded as the second attention position, that is, the position in the frame image of T11, T12, T13, and T14 is the target point A1.
  • step S600 in the motion speed curve spectrum, the blood flow velocity corresponding to the second attention position in the preset time period is associated and displayed in the preset time period, and the maximum motion speed curve spectrum is obtained.
  • the correspondence between the blood flow velocity and the time variable of the target point A1 is established, and the frame images at T11, T12, T13, and T14 respectively correspond to the times t11 and t12 in the maximum motion velocity curve spectrum.
  • T13, t14 corresponding records v11-1, v12-1, v13-1, v14-1.
  • v11-1, v12-1, v13-1, and v14-1 may be represented by Doppler frequency, and then the Doppler spectrum corresponding to the target point A in the preset preset time period is displayed at the maximum motion. In the speed curve spectrum.
  • the blood flow velocity corresponding to the plurality of target points in the region of interest in the next predetermined time period is extracted, for example, the blood flow of the corresponding plurality of target points A1, B1, C1, and D1 in the T15 frame image.
  • the speeds are v15-1, v15-2, v15-3, v15-4, respectively.
  • the blood flow velocities of the corresponding multiple target points A1, B1, C1, and D1 in the T16 frame image are v16-1, v16-2, respectively.
  • the blood flow velocities of the corresponding multiple target points A1, B1, C1, and D1 in the v16-3, v16-4, and T17 frame images are v17-1, v17-2, v17-3, v17-4, and T18 frame images, respectively.
  • the blood flow velocities of the corresponding plurality of target points A1, B1, C1, and D1 are v18-1, v18-2, v18-3, and v18-4, respectively.
  • the maximum value of the blood flow velocity within the preset time period is determined.
  • v12-3 is the maximum of all blood flow velocities at each of the above moments.
  • the target point where the found maximum value v12-3 is located is regarded as the second attention position, that is, the position in the T15, T16, T17, T18 frame image is the target point B1.
  • the T15, T16, T17, and T18 frame images correspond to the times t15, t16, t17, and t18 in the maximum motion velocity curve, respectively, and the corresponding records v15-2, v16-2, and v17. -2, v18-2, that is, the blood flow velocity corresponding to the target point B1.
  • the Doppler frequency at each moment in the maximum motion velocity curve, the Doppler frequency at the position where the maximum blood flow velocity is recorded during a certain period of time or The Doppler spectrum, resulting in a new map information that always guarantees the maximum positional velocity.
  • the absolute value of the velocity vector can be used for comparison to obtain the maximum value.
  • the preset time period in the above embodiment may be a custom time period, or a time period preset by the system, or a time interval before the user selects the area of interest to change the area of interest, and the like.
  • the position of interest corresponding to each moment in the maximum speed motion spectrum may be fixed within a preset time period, or may be changed with time variables, and thus, the maximum generated by the innovation in this embodiment
  • the velocity motion spectrum does not contain velocity information corresponding to a position of interest, but may be velocity information corresponding to a plurality of attention locations, and the attention locations may be the same or different, and are related to the maximum value of the blood flow velocity.
  • the preset time period is greater than or equal to one cardiac cycle.
  • step S100 obtaining the ultrasonic signal corresponding to the current time period
  • step S200 extracting the ultrasonic echo signal corresponding to the historical time period, combining the ultrasonic echo signals corresponding to the current time period and the historical time period, and obtaining the pre- Set the ultrasonic echo signal in the time period; then calculate the blood flow velocity corresponding to each target point in the region of interest within the preset time period according to the ultrasonic echo signal in the preset time period, and according to the results, according to the above method Find the maximum value of blood flow velocity.
  • the process of obtaining the blood flow velocity is calculated, and the above method can be used to find the maximum value, and the ultrasonic signals based on the multiple angles respectively obtain the velocity components of the target point at multiple angles, based on multiple
  • the velocity component of the angle finds the maximum value of the blood flow velocity
  • step S110 is performed in step S110, and the ultrasonic signals of the plurality of angles are received from the scan target by the receiving circuit 4 and the beam combining module 5, the angles including the transmission angle or the reception angle; in step S200, the execution is performed.
  • the image processing module calculates a velocity component of the plurality of target points in the region of interest based on the ultrasonic signal of the angle, and obtains the plurality of target points respectively according to the ultrasonic signals of the plurality of angles.
  • Step S411 is performed in step S410, and the maximum value among the blood flow velocities is searched for along the plurality of target points along the velocity components at the plurality of angles.
  • step S210 velocity components are respectively performed along a plurality of angles, and a blood flow velocity vector corresponding to the plurality of target points is synthesized to obtain the blood flow velocity vector.
  • the maximum value is used to determine the maximum of the blood flow velocities. If the blood flow velocity vector is used as the blood flow velocity to extract the maximum value in step S310, the maximum value can be filtered in the present embodiment in combination with the frame-by-frame comparison or multi-frame comparison mentioned above. Speed fitting with multiple angles can achieve a more realistic blood flow velocity, and screening the maximum value based on this information can make the result more accurate and provide more accurate diagnostic information.
  • step S410 the maximum value in the synthesized blood flow velocity vector is searched for to determine the maximum value among the blood flow velocities, then the maximum motion is performed according to the frame-by-frame comparison manner shown in FIG.
  • the respective time records in the velocity profile may correspond to the blood flow velocity corresponding to the position of interest at which the maximum value obtained according to the blood flow velocity vector is located.
  • the preset time period corresponding to the record in the maximum motion speed curve spectrum may be that the attention position according to the maximum value obtained by the blood flow velocity vector is at the preset time. The blood flow velocity within the segment.
  • the value of the blood flow velocity displayed in the motion velocity curve in the embodiment may be a Doppler frequency corresponding to the position of interest, or may be a velocity value included in the blood flow velocity vector corresponding to the position of interest.
  • the absolute value of the blood flow velocity vector may be a Doppler frequency corresponding to the position of interest.
  • the maximum value is used to estimate the maximum value of the blood flow velocity at the current time or the preset time period. In this way, although the velocity component is compared, the maximum position of the blood flow velocity can be extracted as much as possible, and the accuracy of the diagnosis information is not affected by the fixed transmission or reception angle.
  • One aspect provides a method for accurately determining the maximum position of blood flow velocity, and is convenient to calculate, has a small amount of computation, and does not require an increase in hardware cost.
  • step S410 searching for a maximum value among the velocity components along the plurality of angles to determine a maximum value among the blood flow velocities, finding a maximum value of the components in the velocity component, according to the maximum value of the components a target point at which the position of interest is determined, wherein a blood flow velocity recorded in the maximum motion velocity profile is a velocity component along an angle of the attention location, the angle being a maximum value of the component
  • the ultrasonic signal corresponds to the angle.
  • the time values corresponding to the velocity components at an angle of interest at the respective positions are respectively recorded at the respective moments in the maximum motion velocity profile.
  • the preset time period correspondingly recorded in the maximum motion speed curve spectrum is the speed of the velocity component along the angle of interest at the attention position within the preset time period. value.
  • step S400 is explained in conjunction with step S500 and step S600, as shown in FIGS. 6 to 10, the purpose of which is to explain the manner of finding the maximum value of blood flow velocity, but in fact, whether Which of the above methods is used to find the maximum value of the blood flow velocity, for example, using different types of blood flow velocities such as blood flow velocity vector, velocity component, Doppler velocity value, etc., and finally determining the maximum value according to the maximum
  • the blood flow velocity corresponding to the position of interest recorded by the map may be Doppler velocity, velocity value in the blood flow velocity vector, velocity value of the velocity component, and the like.
  • step S410 the maximum value in the blood flow velocity is determined according to the blood flow velocity vector, and after the attention position is obtained according to the maximum value, when the maximum motion velocity profile is generated, the Doppler velocity corresponding to the attention position can be recorded. Correspondence with time variables.
  • step S410 the maximum value of the blood flow velocity is determined according to the Doppler frequency, and after the attention position is obtained according to the maximum value, when the maximum motion velocity curve is generated, the blood flow velocity corresponding to the attention position can be recorded. The correspondence between the velocity value and the time variable in the vector.
  • step S410 the maximum value in the blood flow velocity is determined according to the Doppler frequency, and after the attention position is obtained according to the maximum value, when the maximum motion velocity curve is generated, the Doppler corresponding to the position of interest can be recorded.
  • the correspondence between speed and time variables It can be seen that, in step S600, the blood flow velocity corresponding to the position of interest recorded in the maximum motion velocity curve spectrum may or may not coincide with the blood flow velocity used when searching for the maximum value in step S410.
  • the image processing module calculates a Doppler velocity value of a plurality of target points in the region of interest according to the ultrasonic signal; in step S410, image processing The module searches for a maximum value of the Doppler velocity values of the plurality of target points, and searches for a maximum value according to the Doppler velocity value in the manner of FIG. 7 or FIG.
  • step S420 the image processing module determines the location of interest, The attention location corresponds to the target point where the maximum value is located; in step S600, the image processing module displays the change of the Doppler velocity value at the attention location in the order of time change in the associated coordinate system, and obtains the Focusing on the maximum motion velocity curve associated with the position, the maximum motion velocity curve records the correspondence between the Doppler velocity value corresponding to the maximum blood flow velocity and the time variable.
  • an ultrasonic signal that obtains a plurality of angles is received by the receiving circuit and the beam combining module in step S110, wherein the angle may be a transmission angle or a receiving angle;
  • the image processing module calculates a Doppler velocity value of the plurality of target points in the region of interest along the plurality of angles according to the ultrasonic signals of the plurality of angles;
  • the image processing module searches for the plurality of a maximum value of the Doppler velocity values of the target point, wherein the plurality of target points are respectively speed-fitted along the Doppler velocity values of the plurality of angles, and the blood flow velocity vectors corresponding to the plurality of target points are respectively obtained, and then Find the maximum value based on the blood flow velocity vector in the manner of FIG.
  • the manner of FIG. 9 or FIG. 10 may be used to compare the Doppler velocity values of the plurality of target points along multiple angles, and extract the largest value.
  • the Doppler velocity value is a maximum value, and an angle corresponding to the maximum value is determined.
  • the image processing module determines a location of interest, the location of interest corresponding to the target point where the maximum value is located; in step S600, the image processing module displays the location of interest in the order of change of time in the associated coordinate system. And a change in the Doppler velocity value, obtaining a maximum motion velocity profile associated with the location of interest, the maximum velocity profile recording a Doppler velocity of the location of interest at an angle corresponding to the maximum.
  • the angle corresponding to the maximum value here may be changed according to the determination of the maximum value, or may be fixed.
  • the maximum value of the blood flow velocity mentioned in the foregoing includes at least one of the following types: Doppler frequency along an angle or maximum value in the Doppler spectrum; Doppler frequency along different angles Or the maximum value in the Doppler spectrum; the maximum value in the blood flow velocity vector obtained by fitting the Doppler frequency or Doppler spectrum along multiple angles; and, based on two adjacent frames or multiple frames
  • the ultrasound image calculates a maximum value in the obtained blood flow velocity vector, wherein the angle is the emission angle of the ultrasonic beam or the reception angle of the ultrasonic echo signal.
  • the implementation of the above method can be freely selected by referring to the specific process provided above.
  • step S200 obtaining a blood flow velocity in the blood vessel within the scan target based on the ultrasonic signal includes: obtaining, according to the first calculation method, the first of the blood vessels in the scan target according to at least a portion of the ultrasonic signal a blood flow velocity (step S231), obtaining a second blood flow velocity in the blood vessel within the scan target according to a second calculation method based on at least a portion of the ultrasonic signal (step S232); rendering the display on the ultrasonic image by using the display
  • the first blood flow velocity is described (step S710), and in the motion velocity profile in step S600, the change in the value of the second blood flow velocity at the position of interest is recorded as a function of time (step S640).
  • the rendering of the first blood flow velocity on the ultrasound image using the display can be seen in the rendering of the blood flow projection map mentioned later.
  • the particle projectile is displayed on an ultrasound image, the color coding and/or length of the particle projectile being related to the value of the first blood flow velocity at a particular location in the vessel.
  • step S410 the maximum value among the first blood flow velocities is searched for.
  • step S420 according to the maximum value obtained at this time The location determines the location of interest.
  • step S600 in the motion velocity profile, the change in the value of the second blood flow velocity at the position of interest is recorded as a function of time.
  • the first calculation method and the second calculation method can be freely selected from the methods mentioned in the foregoing with respect to step S200.
  • the type or the receiving mode of the ultrasonic signal used in the calculation of the first blood flow velocity and the second blood flow velocity are not limited in this embodiment, for example, the calculation of the first blood flow velocity and the second blood flow velocity may be based on the same
  • the set of ultrasonic signals can also be based on different sets of ultrasonic signals.
  • the calculation of the first blood flow velocity and the second blood flow velocity may be based on ultrasonic signals of the same ultrasonic type, or may be based on ultrasonic signals of different ultrasonic types.
  • the calculation of the first blood flow velocity and the second blood flow velocity may be based on a superwave signal obtained by using different transmission or reception methods, or an ultrasonic signal obtained by the same transmission or reception method. Therefore, the calculation of the first blood flow velocity and the second blood flow velocity uses at least a part of the ultrasonic signal obtained in step S100, and the acquisition of the ultrasonic signal may adopt any one or more of the foregoing explanations relating to step S100.
  • the first blood flow velocity may be a blood flow velocity vector, and the blood flow velocity vector includes a velocity direction and a velocity value; the second blood flow velocity may also include: a Doppler frequency, a blood flow velocity vector, and the velocity vector. One of them.
  • step S200 includes: step S211, acquiring a blood flow velocity of a plurality of target points in the first region of interest according to the received ultrasonic signal; and step S212, according to the received ultrasonic wave
  • the signal acquires blood flow velocities of a plurality of target points in the second region of interest.
  • the definition of the first region of interest and the second region of interest may be referred to the foregoing description of the region of interest.
  • the above step S410 includes the following steps:
  • Step S413 searching for the maximum value of the blood flow velocity in the first region of interest, and obtaining the first maximum value;
  • Step S414 searching for a maximum value of the blood flow velocity in the second region of interest, and obtaining a second maximum value
  • the first region of interest is a whole sampling frame (ROI)
  • the second region of interest is a customized sampling frame
  • the customized sampling frame is at most a system default sampling frame
  • the minimum is a target point.
  • the custom sampling box can be changed at will in the system default sampling box.
  • the first maximum value is the global maximum of the blood flow velocity of the entire sampling frame (ROI), that is, the maximum value of all positions in the entire sampling frame (ROI) with time, this time refers to the duration of blood flow imaging
  • the maximum value is the local maximum value of the blood flow velocity in the custom sampling frame, that is, the maximum value of all positions in the custom sampling frame with time. This time refers to the duration of blood flow imaging.
  • step S420 a position of interest Q1 is obtained based on the first maximum value (step S421), and another position of interest Q2 is determined based on the second maximum value (step S422).
  • step S600 in the associated coordinate system, a position of interest is displayed in order of change of time.
  • the change in the value of the blood flow velocity at Q1 obtains a motion velocity profile associated with one attention position Q1 (step S610).
  • the change in the value of the blood flow velocity at the other attention position Q2 is displayed in order of change in time, and the motion velocity profile associated with the other attention position Q2 is obtained (step S620).
  • step S500 a correspondence between the blood flow velocity and the time variable corresponding to the one attention position Q1 may be recorded to generate a maximum motion velocity curve corresponding to the one attention position Q1 (step S511).
  • a correspondence relationship between the blood flow velocity and the time variable corresponding to the other attention position Q2 is recorded to generate a maximum motion velocity profile corresponding to the another attention position Q2 (step S512).
  • step S513 may be further added: acquiring the position where the cursor is located, and recording the correspondence between the blood flow velocity and the time variable at the position where the cursor is located, to generate a real-time motion map at the cursor position.
  • step S600 in the associated coordinate system, the change in the value of the blood flow velocity at the cursor position is displayed in order of change in time, and the motion velocity profile associated with the position of the cursor is obtained (step S630).
  • the purpose is to compare the blood flow velocity at the cursor position in the maximum motion velocity curve generated above, thereby obtaining more intuitive observation data.
  • the calculation method of the blood flow velocity at the cursor position mentioned here can refer to the related description of the foregoing, and will not be described here.
  • step S513 can also be added in the method flow shown in FIG. 7, and the real-time motion map at the cursor position and the maximum motion speed curve spectrum are simultaneously displayed.
  • the maximum motion velocity curve corresponding to the another attention position Q2, the motion velocity curve associated with another attention position Q2, and the real-time motion map corresponding to the position of the cursor may be in the same associated coordinate system.
  • the inner display forms a spectrum of motion velocity profiles.
  • the maximum motion velocity profile mentioned in the above process is a type of velocity profile, depending on the type of location of interest.
  • a maximum motion velocity profile for recording a corresponding relationship between the velocity value and the time variable is displayed by the display, for example, the velocity value may be characterized by a Doppler velocity value, the maximum velocity profile
  • the form of expression can be similar to the representation of the Doppler spectrum.
  • the maximum velocity profile of the curve for recording the relationship between the velocity value and the time variable in the blood flow velocity vector is displayed by the display, see for example the curves used in FIGS. 7 and 8. Spectral structure relationship.
  • the representation of the maximum motion velocity curve spectrum can be varied, and the present embodiment is not limited thereto, as long as the map indicating the correspondence between the blood flow velocity and the time variable is within the claimed range of the present embodiment.
  • step S700 an ultrasound image is displayed through the display, and the attention position determined in step S400 is marked on the ultrasound image.
  • the ultrasound image 50 is displayed in the corresponding area, and the region of interest is 51, and the maximum motion speed corresponding to the location 52 is displayed.
  • the curve spectrum 53 is plotted and the location of interest 52 is marked in the ultrasound image 51. If the attention position 52 does not change within the preset time period, the attention position 52 is fixed within the region of interest 51 when the maximum motion speed profile 53 is displayed within the preset time period. If the focus position 52 does not change within a preset time period, or changes over time, the focus position 52 will jump within the region of interest 51, as described above. As shown in FIG.
  • the attention position in the region of interest 51 is sequentially changed from A31 to A32 and A33, of course, by connecting 54 or rendering.
  • the historical motion trajectory of the position of interest can be plotted on the ultrasound image 50 to reveal the change in the corresponding maximum position in the maximum motion velocity profile 53.
  • the position of interest is marked at a corresponding position on the maximum motion velocity profile 53, or the change in position is noted.
  • the position of interest is marked at a corresponding position on the maximum motion velocity profile 53 by marking the pattern used to mark the location of interest in the region of interest at the corresponding location on the maximum velocity profile 53. Mark, or mark the coordinates of the location of interest in the ultrasound image (as shown in Figure 13). For another example, in FIG.
  • the change of the position of interest is marked in the process of sequentially displaying the maximum motion velocity profile 53, and the unfilled triangle identifier is used to indicate the attention location identifier and the image coordinate position corresponding to the time t31, and the filled triangle identifier It is used to indicate the position of the attention position and the image coordinate position corresponding to the current display time t32, thereby changing the position of the mark one by one.
  • the identifiers of the marked attention locations in the region of interest may be displayed one by one with the display of the maximum motion velocity profile 53 during the display.
  • the color or the indication icon for example, the triangle in FIG. 13
  • the color or indicator icon for example, the triangle in FIG. 13
  • the color or indicator icon of the map portion corresponding to t31, t32, t33, t34, and t35 in the maximum motion speed curve spectrum 53 may also be associated with the identifiers A31, A32 in the region of interest.
  • the A33 uses the same color or indicator icon.
  • the following manners may also be used to browse and view the location of interest and its corresponding map portion, for example, in FIG. 14, the moving position of the cursor 55 in the region of interest 51; when the moving position is close Or located at the attention position A32, highlighting a partial map on the maximum moving speed curve spectrum 53 (such as the portion of the map corresponding to t32 in FIG. 16), the partial map is associated with the position of interest; on the contrary, A moving position of the cursor 55 within the maximum moving speed profile spectrum 53 can be identified, and when the moving position is close to or located in a partial map of the maximum moving speed profile spectrum (as shown in the map portion corresponding to t32 in FIG. 14), A location of interest A32 within the region of interest 51 is displayed, with the highlighted location of interest being associated with the portion of the map.
  • an area selection instruction made by the user on the ultrasound image is acquired; the region of interest 51 is determined according to the area selection instruction.
  • the region selection command here may be an adjustment to the sampling frame, such as an adjustment to the irregular frame 51.
  • the ultrasound image displayed in the above step S700 may also superimpose and display the blood flow velocity.
  • the blood flow velocity here may be the blood flow velocity calculated by any of the methods mentioned in the foregoing, and may be a velocity vector.
  • the image processing module superimposes the blood flow velocity vector on the ultrasound image to form a blood flow projection map, and the output is displayed on the display simultaneously with the maximum motion velocity curve spectrum.
  • the blood flow projection diagram shows the velocity of the blood flow and also shows the flow direction of the blood flow. As shown in Fig. 17, the flow of blood in a certain blood vessel of the region of interest 51 is indicated by an arrow, and the length of the arrow indicates the speed. The size of the value, the direction of the arrow indicates the direction of the speed.
  • the formation of a blood flow ejection map is explained below in connection with some embodiments.
  • the image processing module 7 is configured to obtain a blood flow velocity vector of the target point based on the ultrasonic signal obtained in the above step S100.
  • step S200 first, a distribution density instruction input by a user is acquired, and a target point is randomly selected within the scan target according to the distributed density instruction, and a velocity vector corresponding to the selected target point is calculated. A velocity vector of the selected target point is obtained, and the acquired velocity vector is marked on the ultrasound image for display on the display. Then, the velocity vector corresponding to the selected target point is calculated, and the velocity vector information of the selected target point is obtained, and the acquired velocity vector is marked on the ultrasound image to form a blood flow projection map for display on the display.
  • the blood flow velocity vector of the target point within the scan target is obtained based on the ultrasonic signal in step S200, which will be explained in detail below.
  • the blood flow velocity vector of the obtained target point calculated in step S200 is mainly used for comparison display with the maximum motion velocity profile in the following step S800, and thus different can be obtained in step S200 according to different display modes of the blood flow velocity vector. Blood flow velocity vector.
  • the step S200 includes: calculating, according to the ultrasonic signal obtained in the above step S100, a blood flow velocity vector at a first display position in the ultrasound image of the target point at different times, The blood flow velocity vector information in the ultrasound image at which the target point is located at different times is obtained. Then, in the process of superimposing the velocity vector of the blood flow on the ultrasound image, the contrast display may display the velocity vector of the blood flow at the first display position in the ultrasound image at each moment. As shown in FIG.
  • the ultrasonic image data P1, P2, ..., Pn corresponding to the times t1, t2, ..., tn can be respectively obtained, and then the target point is calculated.
  • the target point is always located at the position (H1, W1) in the two-dimensional image in the ultrasound image at each time. Based on this, when the speed vector is compared and displayed in the subsequent step S800, that is, the ultrasound image displayed on the display In P0, the calculated velocity vectors at different times are displayed at positions (H1, W1).
  • the corresponding first display position can be obtained by the corresponding point, and the first display position in the ultrasonic image corresponding to the current time is calculated.
  • the velocity vector information is used for comparison display, and this display mode is referred to herein as the first mode, the same applies hereinafter.
  • 16( a ) shows an effect diagram of the two-dimensional image P0 when it is displayed, and can of course also be applied to the three-dimensional image display, that is, the ultrasonic image at each moment is taken as the scan body mentioned above to obtain a three-dimensional image database, and The first display position is taken as a spatial three-dimensional coordinate position in the three-dimensional image database, and will not be described here.
  • the step S300 includes: calculating, according to the ultrasonic signal obtained in the above step S100, a velocity vector sequentially obtained by continuously moving the target point to the corresponding position in the ultrasonic image, thereby acquiring the target point.
  • Speed vector a velocity vector sequentially obtained by continuously moving the target point to the corresponding position in the ultrasonic image, thereby acquiring the target point.
  • Speed vector by repeatedly calculating the velocity vector of the target point moving from one position to another position of the ultrasound image in a time interval, to obtain each corresponding in the ultrasound image after the target point is continuously moved from the initial position.
  • the corresponding velocity vector at the location That is to say, the calculation position for determining the velocity vector in the ultrasonic image of the present embodiment can be obtained by calculation.
  • the contrast display may be the blood flow velocity vector at the position calculated in the ultrasound image at each moment.
  • the ultrasonic image data P11, P12, ... corresponding to the times t1, t2, ..., tn can be respectively obtained.
  • the initial position of the target point is determined according to the part or all of the target point selected by the user in the above embodiment, or the density of the system default target point, etc., as shown in FIG. 16(b) (H1)
  • the first point of W1) is then calculated as the velocity vector A1 in the ultrasound image P11 at the initial position at time t1.
  • the calculation target point i.e., the black dot in the figure
  • the position (H2, W2) on the ultrasonic image P12 at time t2 is moved from the initial position on the ultrasonic image P11 at time t1 to the position (H2, W2) on the ultrasonic image P12 at time t2, and then the ultrasonic image P12 is obtained based on the ultrasonic signal.
  • the velocity vector at the middle position (H2, W2) is used for comparison display.
  • each adjacent two moments along the direction of the velocity vector corresponding to the target point at the first moment, moving the time interval of the two adjacent moments to obtain the displacement amount, and determining the ultrasonic image of the target point at the second moment according to the displacement amount Corresponding position, and then obtaining a velocity vector at a corresponding position in the ultrasonic image of the target point moving from the first moment to the second moment according to the ultrasonic signal, in this way, the target point can be obtained continuously from the ultrasound image (H1, W1) Speed vector moved to (Hn, Wn) The amount is obtained, thereby obtaining a velocity vector of the target point continuously moving from the initial position to the corresponding position in the ultrasound image at different times, for acquiring the velocity vector of the target point to be displayed simultaneously with the ultrasound image.
  • the movement displacement of the target point at a time interval is calculated, and the corresponding position of the target point in the ultrasound image is determined according to the displacement, and the time is moved according to the time interval from the initially selected target point.
  • the interval may be determined by the system transmission frequency, or may be determined by the display frame rate, or may be a time interval input by the user, by calculating the position reached after the target point is moved according to the time interval input by the user, and then obtaining the position at the position.
  • the velocity vector is used to compare the display.
  • N initial target points can be marked in the figure according to the manner described above, and each initial target point has an arrow to indicate the magnitude and direction of the flow velocity of the point, as shown in Fig. 16(b).
  • step S800 of the comparison display the speed vector corresponding to the obtained target point is continuously moved to the corresponding position, forming a logo that flows in time.
  • the original arrow of each point will change position, so that the movement of the arrow can be used to form a similar
  • this display mode is referred to as the second mode in this paper, the same below.
  • the effect diagram of the two-dimensional image P10 is shown in the example of FIG.
  • the first display position is taken as a spatial three-dimensional coordinate position in the three-dimensional image database, and is not described here.
  • the process further includes: when displaying the velocity vector about the blood flow, the step S200 is performed to improve the display effect, and to prevent the human eye from being unrecognizable because the blood flow velocity is displayed too fast.
  • the obtained velocity vector is subjected to slow processing to compare the velocity vectors after the slow processing. For example, the velocity vector is first subjected to slow processing to generate a slow velocity vector; then, the slow velocity vector is superimposed and displayed on the ultrasound image to form the blood flow projection map, thereby realizing the blood flow projection diagram and the motion velocity curve. The comparison of the spectrum shows.
  • the color coded and/or length of the particle projectile is related to the velocity value of the blood flow at a particular location in the vessel by generating a particle projectile as a marker to depict a change in blood flow velocity at the target point; And feeding the particle projecting body to a display, displaying a change of the particle projecting body with time at a specific position of the ultrasonic image for dynamically displaying blood flow in the blood vessel by dynamic display of the particle projecting body The movement, thus obtaining a blood flow projection map.
  • the particle projecting body further includes a direction indicator whose direction is related to the speed direction of the blood flow.
  • the actual flow direction of the target point within the scan target can be clearly depicted in the displayed blood flow projection map, and the blood flow velocity of the current position changes with time is displayed compared to the corresponding display position only in the image.
  • the size and direction of the way the more accurate, more realistic and visual representation of the actual blood flow direction within the scan target.
  • This The flow of blood flow can be described by flowing points or arrows, or other signs that can depict the direction. Referring to Fig. 15, the particle projecting body is indicated by an arrow 56.
  • the particle projecting body may also include only the direction identifier, and does not carry the velocity value information of the blood flow, and the direction of the direction marker is related to the velocity direction of the blood flow at a specific position in the scanning target.
  • a particle projecting body including a direction mark is displayed at a specific position of the ultrasonic image to dynamically exhibit a moving direction of blood flow in the scanning target.
  • the particle projecting body in this embodiment may behave like an arrow, the length and/or thickness of the arrow may be used to express the velocity value of the blood flow, and the direction of the arrow may be used to express the velocity direction of the blood flow.
  • the specific position in this embodiment refers to a position projection body corresponding to a velocity vector of blood flow displayed at a specific position on the ultrasound image, and the specific position may be a position for marking a velocity vector indicating blood flow, for example, may be The first display position or the second display position mentioned in Figs. 16(a) and 16(b).
  • the maximum motion speed curve corresponding to each of the plurality of attention positions may be displayed side by side in the display area, or may be superimposed and displayed.
  • an embodiment is provided that provides a comparison of a plurality of maximum motion velocity profiles.
  • an ultrasound image area 91 for displaying an ultrasound image is included for displaying a blood flow state within the blood vessel 93.
  • the first region of interest is 92
  • the second region of interest 95 the black triangle represents the attention position 96 corresponding to the second maximum value found in the second region of interest 95
  • the black circle represents the position of interest corresponding to the first maximum value found in the first region of interest 92.
  • the cursor position is 97.
  • the maximum moving speed curve 981 (shown as a chain line) corresponding to the position of interest 96 is synchronously displayed in the maximum moving speed curve display area 98, and the maximum moving speed curve 983 corresponding to the position 94 is indicated by a dotted line. )
  • the real-time motion map 982 corresponding to the cursor position 97 shown as a solid line in the figure).
  • Figure 19 shows how the three maps are superimposed together. It can be seen that, by using the display, the maximum motion speed curve corresponding to the one attention position and the other attention position respectively in FIG. 12 can be further displayed, and the real-time motion map at the cursor position can be further superimposed and displayed.
  • a maximum, minimum, median, and/or average value of the blood flow velocity in the region of interest may also be output on the display interface.
  • the maximum value of the current frame of the blood flow velocity in the second region of interest 95 ie, the maximum velocity of the entire sampling frame at the current time
  • the minimum value of the current frame of the blood flow velocity ie, the current time
  • the minimum value of the velocity in the entire sampling frame the median value of the current frame of the blood flow velocity (ie, the median velocity of the entire sampling frame at the current time)
  • the current frame average of the blood flow velocity ie, the average velocity of the entire sampling frame at the current time
  • the maximum motion velocity curve corresponding to each of the plurality of attention positions When the maximum motion velocity curve corresponding to each of the plurality of attention positions is superimposed and displayed, the maximum motion velocity curve corresponding to the different attention positions may be distinguished by highlighting or color marking according to the foregoing manner.
  • step S200 includes:
  • the image processing module obtains Doppler spectra of multiple angular directions according to the ultrasonic signal, and the Doppler spectrum is used to characterize the blood flow velocity;
  • step S410 the image processing module obtains the maximum value of the blood flow velocity by finding the maximum value in the Doppler spectrum of the plurality of angular directions for determining the attention position in step S420.
  • the way to find the maximum value in the Doppler spectrum of multiple angular directions is to compare the envelope values of the Doppler spectrum in multiple angular directions.
  • step S600 the change of the Doppler spectrum at the position of interest with time is displayed in order of time change to form a motion velocity profile. This approach will be simpler and more convenient, without the need to make too many improvements to the hardware.
  • FIG. 5 is a schematic flow chart of an ultrasonic imaging method according to an embodiment of the present invention. It should be understood that although the various steps in the flowchart of FIG. 5 are sequentially displayed as indicated by the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 5 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times, and the order of execution thereof is not necessarily This may be performed in sequence, but may be performed in parallel or alternately with other steps or at least a portion of the sub-steps or stages of the other steps. 6 and 9, and 10 are each based on the extended embodiment of FIG.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product carried on a non-transitory computer readable storage carrier (eg The ROM, the disk, the optical disk, and the server cloud space include instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • the operation control module receives the user's switching instruction and enters the maximum motion speed curve spectrum display mode.
  • the image processing module is further configured to obtain a corresponding attention position by searching for the maximum value of the blood flow velocity for presenting the maximum motion velocity curve spectrum.
  • the representation form of the motion velocity map may be used. For example, when the position of interest is determined, a signal is selected and Fourier transform is performed to obtain a blood flow spectrum, and this spectrum represents During the time of this signal, the blood flow changes with frequency, and this frequency is the Doppler frequency that represents the velocity of the blood flow. So can be seen at this moment, blood flow A map of the number of red blood cells at different speeds.
  • the next segment of the signal is selected, and the number distribution map of the red blood cells at different speeds of the blood flow at this time is again generated, and then the distribution map of each time is displayed vertically in grayscale form, followed by
  • the blood flow spectrum for characterizing the maximum motion velocity profile of the present embodiment is formed by time alignment.
  • Spectral Doppler ultrasound can measure the maximum velocity of blood flow, and is usually used for quantitative diagnosis of heart valve stenosis and arteriosclerotic lesions. It is an important quantitative analysis function in medical ultrasound imaging.
  • the traditional spectral Doppler obtains the spectrum of the velocity component of the blood flow along the direction of ultrasonic propagation. It is not the actual velocity spectrum distribution, and it is affected by the technique.
  • the angle between the blood vessel and the direction of ultrasonic propagation is difficult to be consistent with each scan, which results in poor measurement accuracy and repeatability, and the highest speed value cannot be obtained.
  • the maximum value of the bleeding flow can be estimated by angle correction, this method can only be directed to laminar fluids.
  • the invention mainly aims at improving the error caused by the above-mentioned spectrum Doppler unable to measure the maximum speed and the angle correction. It is also possible to use a multi-angle ultrasonic transmission to receive signals for spectral Doppler. After angle fitting, the spectral Doppler can show the spectrum of the blood flow in the actual flow direction, and the highest flow rate can be obtained accurately. In addition, the multi-angle ultrasonic emission receiving method can obtain a blood flow projection map, and in particular, the maximum position of the blood flow can be found by calculation, so that the blood flow spectrum at the maximum blood flow velocity position can be displayed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声血流成像显示方法及显示***,其***包括:探头(1);发射电路(2),用于激励上述探头(1)向扫描目标发射超声波束;接收电路(4)和波束合成模块(5),用于接收该超声波束的回波,获得超声回波信号;数据处理模块(9),用于根据该超声回波信号,计算感兴趣区域内多个目标点的血流速度,根据血流速度生成运动速度曲线谱;及显示器(8),用于显示运动速度曲线谱。

Description

超声血流运动谱的显示方法及其超声成像*** 技术领域
本发明涉及超声***中血流信息成像显示技术,特别是涉及一种超声血流运动谱的显示方法及其超声成像***。
背景技术
在医学超声成像设备中,超声波辐射到被检查的物体之内,彩色多普勒血流仪与脉冲波和连续波多普勒一样,也是利用红细胞与超声波之间的多普勒效应实现显像的。彩色多普勒血流仪包括二维超声显像***、脉冲多普勒(一维多普勒)血流分析***、连续波多普勒血流测量***和彩色多普勒(二维多普勒)血流显像***。震荡器产生相差为π/2的两个正交信号,分别与多普勒血流信号相乘,其乘积经模/数(A/D)转换器转变成数字信号,经梳形滤波器滤波,去掉血管壁或瓣膜等产生的低频分量后,送入自相关器作自相关检测。由于每次取样都包含了许多个红细胞所产生的多普勒血流信息,因此经自相关检测后得到的是多个血流速度的混合信号。把自相关检测结果送入速度计算器和方差计算器求得平均速度,连同经FFT处理后的血流频谱信息及二维图像信息一起存放在数字扫描转换器(DSC)中。最后,根据血流的方向和速度大小,由彩色处理器对血流资料作为伪彩色编码,送彩色显示器显示,从而完成彩色多普勒血流显像。
将频谱多普勒用于心脏瓣膜狭窄和动脉硬化病变等的定量诊断。传统的频谱多普勒得到的是血流沿超声传播方向速度分量的频谱。它不是实际的速度频谱分布,并且受到手法的影响,每次扫描时血管与超声传播方向的夹角也很难保持一致,因此造成测量的精度和可重复性较差,无法得到更加有效地反应血流实际情况的速度值。虽然可以采用角度矫正的方法估算出真实的速度,但这仅限于层流的情况,并且矫正的角度同样受到手法的影响可能产生一定的偏差。鉴于上述关于多普勒频谱无法有效的反应更加实际的血流情况,有必要提供一种更加直观的血流信息显示方案。
发明内容
基于此,有必要针对现有技术中的不足,提供一种超声血流运动谱的显示方法及其超声成像***,提供了更加直观的血流运动信息显示方案,并为用户提供了更好的观察视角。
本发明的一个实施例中提供了一种超声血流运动谱的显示方法,其包括:
通过探头获得来自于扫描目标内的超声波信号;
基于所述超声波信号,获得所述扫描目标内脉管中的血流速度;
根据所述超声波信号,获得所述扫描目标的至少一部分的超声图像;
获取位于所述脉管中的关注位置;
在显示区内绘制速度与时间的关联坐标系;
在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱;
在所述超声图像上标记所述关注位置。
本发明的一个实施例中提供了一种超声成像***,其包括:
探头;
发射电路,用于激励所述探头向扫描目标发射超声波束;
接收电路和波束合成模块,用于接收所述超声波束的回波,获得来自于扫描目标内的超声波信号;
图像处理模块,用于基于所述超声波信号,获得所述扫描目标内脉管中的血流速度,根据所述超声波信号,获得所述扫描目标的至少一部分的超声图像,获取位于所述脉管中的关注位置,在显示区内绘制速度与时间的关联坐标系;及
显示器,用于在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱,并显示超声图像,在所述超声图像上标记所述关注位置。
附图说明
图1为本发明一个实施例的超声成像***的框图示意图;
图2为本发明一个实施例的垂直发射的平面超声波束的示意图;
图3为本发明一个实施例的偏转发射的平面超声波束的示意图;
图4为本发明一个实施例中多角度接收的示意图;
图5为本发明一个实施例的方法流程示意图;
图6为本发明一个实施例的方法流程示意图;
图7为本发明其中一个实施例的筛选血流速度最大值的方法示意图;
图8为本发明其中一个实施例的筛选血流速度最大值的方法示意图
图9为本发明其中一个实施例的方法流程示意图;
图10为本发明其中一个实施例的方法流程示意图;
图11、图12、图13、图14和图15分别为本发明中多个实施例中超声图像 和运动速度曲线谱对比显示的示意图;
图16(a)为本发明的其中一个实施例中第一模式下血流速度矢量信息计算示意图;
图16(b)为本发明的其中一个实施例中第二模式下血流速度矢量信息计算示意图;
图17为本发明其中一个实施例中运动速度曲线谱的显示示意图;
图18为本发明其中一个实施例的方法流程示意图。
具体实施方式
图1为本实施例一个实施例的超声成像***的结构框图示意图。如图1所示,该超声成像***通常包括:探头1、发射电路2、发射/接收选择开关3、接收电路4、波束合成模块5、信号处理模块6、图像处理模块7和显示器8。本文中的“多个”指大于等于2个。
在超声成像过程中,发射电路2将经过延迟聚焦的具有一定幅度和极性的发射脉冲通过发射/接收选择开关3发送到探头1。探头1受发射脉冲的激励,向扫描目标(例如,人体或者动物体内的器官、组织、血管等等,图中未示出)发射超声波,经一定延时后接收从目标区域反射回来的带有扫描目标的信息的超声回波,并将此超声回波重新转换为电信号。接收电路接收探头1转换生成的电信号,获得超声回波信号,并将这些超声回波信号送入波束合成模块5。波束合成模块5对超声回波信号进行聚焦延时、加权和通道求和等处理,获得超声波信号,然后将超声波信号送入信号处理模块6进行相关的信号处理,如滤波等。经过信号处理模块6处理的超声回波信号送入图像处理模块7。图像处理模块7根据用户所需成像模式的不同,对信号进行不同的处理,获得不同模式的图像数据,然后经对数压缩、动态范围调整、数字扫描变换等处理形成不同模式的超声图像,如B图像,C图像,D图像等二维图像,此外,该超声图像还可包括三维图像。图像处理模块7生成的超声图像送入显示器8进行显示。此外,图像处理模块7还可以依据超声回波信号计算目标点的血流速度,并将给血流速度输出给显示器进行显示。图像处理模块7和信号处理模块6分离设置在不同的处理器上或者集成在同一个处理器9上。
本实施例中提到的目标点可以是超声图像上一个像素点或者包含至少两个像素点的区域块。本实施例中提到的血流速度,用于表征扫描目标内血流运动状态的流速信息,例如,可以包括扫描目标内目标点的多普勒频率,或者估计获得的用于表征扫描目标内目标点血流速度的速度矢量等等。可见,图像处理模块7 计算的血流速度可以是一个速度值,也可以是一个速度矢量。速度矢量包括速度值和速度方向,通常用向量的表达方式。速度值的表现方式可以是数值,也可以是频谱表达,例如,血流的速度值可以是多普勒频率值,也可以是多普勒频谱形式表达。下文将会详细解释血流速度的相关计算方式。
探头1通常包括多个阵元的阵列。在每次发射超声波或接收超声波时,探头1的所有阵元或者所有阵元中的一部分参与超声波的发射。此时,这些参与超声波发射的阵元中的每个阵元或者每部分阵元分别受到发射脉冲的激励,并分别发射超声波,这些阵元分别发射的超声波在传播过程中发生叠加,形成被发射到扫描目标的合成超声波束,该合成超声波束的传播方向即为本文中所提到的超声波的发射角度。参与超声波发射的阵元可以同时被发射脉冲激励;或者,参与超声波发射的阵元被发射脉冲激励的时间之间可以有一定的延时。通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,可改变上述合成超声波束的传播方向,下文将具体说明。
通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,也可以使参与超声波的发射的各个阵元发射的超声波在传播过程中不会聚焦,也不会完全发散,而是形成整体上大体上为平面的平面波。或者,通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,可以使各个阵元发射的超声波束在预定位置叠加,使得在该预定位置处超声波的强度最大,也就是使各个阵元发射的超声波“聚焦”到该预定位置处,该聚焦的预定位置称为“焦点”,这样,获得的合成的超声波束是聚焦到该焦点处的波束,本文中称之为“聚焦超声波束”。发射聚焦超声波束的过程中,参与超声波的发射的阵元可以以预定的发射时延(即参与超声波的发射的阵元被发射脉冲激励的时间之间存在预定的时延)的方式工作,各阵元发射的超声波在焦点处聚焦,形成聚焦超声波束。又或者,通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,使参与超声波的发射的各个阵元发射的超声波在传播过程中发生发散,形成整体上大体上为发散波。本文中,称这种发散形式的超声波为“发散超声波束”。
线性排列的多个阵元同时给予电脉冲信号激励,各个阵元同时发射超声波,合成的超声波束的传播方向与阵元排列平面的法线方向一致。例如,如图2所示的垂直发射的平面波,此时参与超声波的发射的各个阵元之间没有时延(即各阵元被发射脉冲激励的时间之间没有时延),各个阵元被发射脉冲同时激励。生成的超声波束为平面波,即平面超声波束,并且该平面超声波束的传播方向与探头1的发射出超声波的表面大体垂直,即合成的超声波束的传播方向与阵元排列平面的法线方向之间的角度为零度。但是,如果施加到各个阵元间的激励脉冲有一 个时间延时,各个阵元也依次按照此时间延时发射超声波束,则合成的超声波束的传播方向与阵元排列平面的法线方向就具有一定的角度,即为合成波束的发射角度,改变上述时间延时,也就可以调整合成波束的发射角度的大小和在合成波束的扫描平面内相对于阵元排列平面的法线方向的发射方向。例如,图3所示为偏转发射的平面波,此时参与超声波的发射的各个阵元之间有预定的时延(即各阵元被发射脉冲激励的时间之间有预定的时延),各个阵元被发射脉冲按照预定的顺序激励。生成的超声波束为平面波,即平面超声波束,并且该平面超声波束的传播方向与探头1的阵元排列平面的法线方向成一定的角度(例如,图3中的角a),该角度即为该平面超声波束的发射角度。通过改变时延时间,可以调整角a的大小。同理,无论是平面超声波束、聚焦超声波波束还是发散超声波束,均可以通过调整控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,来调整合成波束的方向与阵元排列平面的法线方向之间所形成的合成波束的“发射角度”,这里的合成波束可以为上文提到的平面超声波束、聚焦超声波波束或发散超声波束等等。
此外,虽然上文只提供了线性阵列的发射角度的实现方式,但是对于二维超声换能器,可以理解为多个线性阵列的组合,因此,二维超声换能器也可以通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,来调整合成波束与阵元排列平面的法线方向之间所形成的合成波束的“发射角度”。
更进一步地,通过控制参与超声波的接收的阵元(本文简称接收阵元)的孔径位置,可以调整接收的超声回波信号的接收角度。例如,如图4所示,超声探头包括阵元部1、阵元部2、阵元部3和阵元部4。阵元部1、阵元部2、阵元部3和阵元部4可以是一个阵元或者多个阵元。可以用阵元部1、阵元部2、阵元部3和阵元部4中的一个或多个的组合来作为接收阵元。图4中,向包含目标点位置A的扫描目标发射一个发射角度的超声波束时,利用阵元部1作为接收阵元,接收从扫描目标内某一个目标点位置A反射回来的超声波束的回波,根据阵元部1的孔径位置和目标点位置A的连线(图4中标记为实线),可以确定当前时刻接收的超声波束的回波的接收角度a1。同时,根据利用阵元部2作为接收阵元,接收从扫描目标内某一个目标点位置A反射回来的超声波束的回波,根据阵元部2的孔径位置和目标点位置A的连线(图4中标记为虚线),可以确定当前时刻接收的超声波束的回波的接收角度a2。从同一个目标位置A返回的超声波束的回波可以获得两个不同接收角度的超声波束的回波。因此,根据接收阵元的孔径位置和目标点位置之间的连线、与超声阵元排列平面的法线方向之间的夹角,来定义上述超声波束的回波的“接收角度”。通过改变探头上接收阵元的孔径位置, 则可以改变超声波束的回波的“接收角度”,从而获得不同接收角度的超声波束的回波。
基于上述解释,向扫描目标发射超声波束,期望从扫描目标获得多个角度的超声波信号时,既可以通过改变探头上接收阵元的孔径位置来改变超声波束的回波的接收角度,从而获得来自于扫描目标的不同接收角度对应的超声波信号;也可以通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,改变超声波束的发射角度,基于不同发射角度的超声波束的回波,获得来自于扫描目标的不同发射角度对应的超声波信号。图像处理模块7可以根据不同角度的超声波信号,计算扫描目标内或者扫描目标中感兴趣区域内多个目标点的血流速度。
此外,图1所示的超声成像***中还包括操作控制模块10,用于接收来自操作用户输入的调节信号,该调节信号包括对超声波束的发射角度、接收角度、超声波束类型等成像参数进行的调整,或者还可以包括对组织图像处理模块的图像、感兴趣区域或血流速度矢量的计算结果进行的调整。操作控制模块10可以为人机交互接口,例如键盘、滚轮、与带触摸功能的显示屏连接的触摸手势接收和计算模块、鼠标、有关手势控制信号的收发模块等等。图1中的显示器8包括一个或多个显示屏,本实施例中的显示屏可以为触摸显示屏、LED显示屏等等。
图像处理模块输出的图像数据或者运动速度曲线谱还可以通过无线传输模块,传输到远端显示器上进行显示,本实施例的方案不限于台式超声设备,还可以包括纳入医疗互联网***内的所有可用于展现超声图像的设备。
图5中提供了一种超声血流运动谱的显示方法,其用于产生感兴趣区域内一段时间的速度运动曲线谱,可以显示感兴趣区域内诸如最大血流速度随时间的变化情况,或光标位置选择的多个感兴趣区域处血流速度随时间的对比变化情况。其中,所述运动速度曲线谱可以有两种表现形式,其一为运动速度曲线,在相应时刻时记录关注位置处血流速度的值;其二是,运动速度图谱,在相应时刻时记录所述关注位置处血流速度中不同速度值大小的红细胞数量分布。更进一步地,在本实施例中提供了一种可自动检测最大血流速度处的速度运动曲线谱的方法,下文简称最大运动速度曲线谱,其提供了有别于传统的曲线谱图,其可以在不受探头扫描的手法、探头位置的移动、以及每次扫描时血管与超声传播方向的夹角的变化等因素的影响,而在图谱中时刻反映感兴趣区域中最佳位置的血流信息,并给医生提供更好的诊断基础。当利用角度矫正估算出血流的最大值时,可以针对层流液体,而对于较为复杂的位置,如心脏,颈动脉窦处,无法使用角度矫正,即使在长而直的血管中,如颈总动脉,椎动脉等,受到手法的影响角度矫正依然会造成较大的误差,因此采用本实施例的方法可以为医生提供更加精确的数据支 持,且还可以避免上述问题,执行流程简单,数据更加精确。具体方法步骤如下所示。
如图5所示,本实施例提供的一种超声血流成像显示方法包括以下步骤S100至步骤S600。
在步骤S100中,利用接收电路4和波束合成模块5,通过探头1获得来自于扫描目标内的超声波信号。
在其中一些实施例中,利用发射电路2激励探头1向扫描目标发射超声波束,接收该超声波束的回波获得所述超声波信号。本实施例中向扫描目标发射的超声波束可以包括:聚焦超声波束和非聚焦超声波束,其中非聚焦超声波束包括:虚源超声波束、非衍射超声波束、发散超声波束或平面超声波束等多种波束类型中的至少一种或者至少两种以上的组合(这里的“以上”包括本数,以下同)。当然,本实施例的实施例中不限于以上几种类型的超声波束。可见步骤S100中的超声波信号可以是超声波束的回波信号。
在其中一个实施例中,在步骤S100中包括:步骤121:向扫描目标发射聚焦超声波束,接收聚焦超声波束的回波,获得聚焦超声回波信号,用以重建超声图像、或计算血流速度等。或者,在步骤S100中包括步骤122:向扫描目标发射平面超声波束,接收平面超声波束的回波,获得平面超声回波信号,用以重建超声图像、或计算血流速度等。又或者,在步骤S100中包括上述步骤121和步骤122:向扫描目标发射聚焦超声波束,用以获得聚焦超声回波信号;向扫描目标发射平面超声波束,用以获得平面超声回波信号。聚焦超声回波信号可用作重建扫描目标的至少一部分超声图像,以求获取质量较好的超声图像作为背景图像,而在图5中的步骤S200中平面超声回波信号可以用作计算血流速度的图像数据基础。
在步骤S100中若采用两种类型的超声波束,则向扫描目标交替发射两种超声波束。例如,在向扫描目标发射平面超声波束的过程中***向扫描目标发射聚焦超声波束的过程,即,交替执行上述步骤121和步骤122。这样可以保证两种超声波束图像数据获取的同步性,提高多波束角度发射获得的血流速度的精确度。
除了波束类型可以由多种形式,在步骤S100中还可以接收多个角度的超声波信号用以计算血流速度或超声图像。例如,在步骤S100中可以向扫描目标发射不同发射角度的超声波束,用以接收获得多个角度的超声波信号。或者,从扫描目标上接收不同接收角度的超声波信号。可见,多个角度的超声波信号可以对应于多个发射角度,或者多个接收角度。具体如下所示:
1、针对向扫描目标发射不同发射角度的超声波束,可以沿不同的发射角度接收多个角度的超声波信号。
在本实施例的一个实施例中,在步骤S100中可以包括:沿多个发射角度向扫描目标发射超声波束,接收所述超声波束的回波获得多个角度的超声回波信号作为步骤S100接收的超声波信号。
在其中一个实施例中,在步骤S100中包括:沿多个发射角度向扫描目标发射超声波束,在该过程中,可以按照发射角度的不同交替执行向扫描目标发射超声波束的过程。例如,若沿两个发射角度向扫描目标发射超声波束,则先沿第一个发射角度向扫描目标发射超声波束,然后再沿第二个发射角度向扫描目标发射超声波束,完成一个扫描周期,最后依次重复上述扫描周期过程。或者,还可以先沿一个发射角度向扫描目标发射超声波束,再沿另一个发射角度向扫描目标发射超声波束,依次执行完所有发射角度后完成扫描过程。为获取不同的发射角度,可通过改变参与超声波发射的阵元中的每个阵元或者每部分阵元的时延来获得,具体可参照图2或图3的解释。
在其中一个实施例中,沿每个发射角度向扫描目标发射多次超声波束,用以获得多次超声波信号,供后续超声图像数据的处理。例如,沿多个发射角度分别向扫描目标发射多次非聚焦超声波束、或者沿多个发射角度分别向扫描目标发射多次聚焦超声波束。而每一次超声波束的发射对应获得一次超声波信号。
按照发射角度的不同交替执行向扫描目标发射多次超声波束的过程,能使获得的回波数据近似计算在同一时刻的目标点的血流速度矢量,提高速度矢量信息的计算精度。例如,若沿三个发射角度分别向扫描目标发射N次超声波束,可以先沿第一个发射角度向扫描目标发射至少一次超声波束,然后再沿第二个发射角度向扫描目标发射至少一次超声波束,其次再沿第三个发射角度向扫描目标发射至少一次超声波束,完成一个扫描周期,最后依次重复上述扫描周期过程直至完成所有发射角度上的扫描次数。同一个扫描周期内不同发射角度下的超声波束的发射次数可以相同,也可以不相同。例如,如果是沿两个发射角度的发射超声波束,则按照A1 B1 A2 B2 A3 B3 A4 B4……Ai Bi,以此类推。其中,Ai是第一个发射角度中的第i次发射;Bi是第二个发射角度中的第i次发射。而如果是沿三个发射角度的发射超声波束,则按照A1 B1 B1C1 A2 B2 B2C2 A3 B3 B3C3……Ai Bi BiCi,以此类推。其中Ai是第一个发射角度中的第i次发射;Bi是第二个发射角度中的第i次发射;Ci是第三个发射角度中的第i次发射。
当上述步骤S100中选择向扫描目标发射两种波束类型的超声波束时,可以交替发射两种的超声波束,例如,上述步骤S100包括:步骤S101,向扫描目标发射多次聚焦超声波束,用以获取重建超声图像的图像数据。步骤S102,沿一个或多个发射角度向扫描目标发射多次平面超声波束,用以获取计算速度矢量信息 的图像数据。然而,可以在向扫描目标发射平面超声波束的过程中***向扫描目标发射聚焦超声波束的过程。比如,将向扫描目标发射的多次聚焦超声波束均匀***到执行上述步骤S102的过程中。或者还可以,采用任何一种能实现上述向扫描目标发射多次平面超声波束的至少一部分与上述向扫描目标发射多次聚焦超声波束的至少一部分交替执行方案的任何一种交替发射方式。本实施例中可以利用聚焦超声波束获得质量较好的超声图像;而可以利用平面超声波束帧率高的特点获得高实时性的速度矢量信息,而且为了在数据获取上两者具有更好的同步性,采用两种类型的超声波形交替发射的方式。
接收电路4和波束合成模块5接收上述发射的超声波束的回波,进行波束合成后获得超声波信号。例如,当接收聚焦超声波束的回波,则获得聚焦超声波信号;当接收平面超声波束的回波,则获得平面超声波信号,依次类推。在步骤S100中发射何种类型的超声波束,那么对应接收何种类型的超声波束的回波,生成对应类型的超声波信号。例如,聚焦超声波束对应聚焦超声波信号、平面超声波束对应平面超声波信号、发散超声波束对应发散超声波信号等等,在此不逐一列举。
接收电路4和波束合成模块5接收上述步骤S100发射的超声波束的回波时,可以利用参与超声波发射的阵元中的每个阵元或者每部分阵元分时实现发射和接收功能时接收上述步骤S100中发射的超声波束的回波,或者将探头上的阵元分为接收部分和发射部分、然后利用参与超声波接收的阵元中的每个阵元或者每部分阵元接收上述步骤S100中发射的超声波束的回波,等等。
当在步骤S100中沿一个发射角度上发射超声波束时,接收来自该发射角度的超声波束的回波,对应获得一组超声波信号。当在步骤S100中沿多个发射角度上发射超声波束时,对应接收多个发射角度的超声波束的回波,获得对应于多个发射角度的多组超声波信号。基于不同的发射角度,可以接收对应于不同发射角度的多组超声波信号。此外,一组超声波信号包括多次超声波信号,多次超声波信号可以对应于接收沿每个发射角度上发射的多次超声波束的多次回波信号,其中一次超声波束的发射对应获得一次超声波信号。例如,在步骤S100中沿多个不同发射角度分别向扫描目标发射多次平面超声波束,则分别接收上述多个发射角度对应的平面超声波束的回波,获得分属于不同发射角度的多组平面超声波信号,其中每组平面超声波信号包括至少两次平面超声波信号,每次平面超声波信号源自沿一个发射角度上执行一次向扫描目标发射超声波束的步骤所获得的回波。又例如,对于步骤S100中向扫描目标发射多次聚焦超声波束,则接收上述聚焦超声波束的回波,获得多次聚焦超声波信号。
2、沿不同的接收角度从扫描目标接收多个角度的超声波信号。
当在步骤S100中发射电路2激励探头1沿一个或多个发射角度向扫描目标发射超声波束时,可以通过调节探头上的接收阵元的孔径位置,来接收来自于扫描目标的超声波束的回波,获得沿不同接收角度的超声波信号,作为步骤S100中接收获得的不同角度的超声波信号,具体可参见图4及相关说明所示。沿多个发射角度向扫描目标发射超声波束的过程参见前文相关说明。
例如,在其中一个实施例中,在步骤S100中,当接收来自扫描目标上超声波束的回波时,则将探头中接收阵元的孔径位置调整到第一位置,用于接收该发射角度的超声波束的回波,获得属于第一接收角度的第一组超声波信号,将接收阵元的孔径调整到第二位置,用于接收该发射角度的超声波束的回波,获得属于第二接收角度的第二组超声波信号,同理,从而基于不同的接收角度获得多组超声波信号。
参照前文沿多个发射角度的执行顺序和规则,在上述实施例中沿不同的接收角度从扫描目标接收多个角度的超声波信号的过程中,也可以按照接收角度的不同交替执行多组超声波信号的接收过程。在其中一个实施例中,发射电路2激励探头1向扫描目标发射超声波束,分多个不同的接收角度分别接收该超声波束的回波,获得多组分属不同接收角度的超声波信号,其中沿一个接收角度从扫描目标对应接收一组超声波束的回波信号,供后续波束合成、超声图像数据的处理和血流速度矢量的计算。沿多个接收角度分别从扫描目标接收多组超声波束的回波。例如,在步骤S100中向扫描目标发射平面超声波束,沿一个接收角度多次接收超声波束的回波,获得一组平面超声波信号,此一组平面超声波信号中包括多次平面超声波信号,沿不同接收角度接收多组平面超声波束的回波,从而获得分属不同接收角度的多组平面超声波信号。
3、基于一个发射角度或者一个接收角度获得的超声波信号,也可也以用于后续步骤中计算血流速度的最大值和获得超声图像。例如,在步骤S100中沿一个发射角度向扫描目标发射平面超声波束,则沿一个接收角度多次接收超声波束的回波,获得一组平面超声回波信号,此一组平面超声回波信号中包括多次平面超声回波信号。当然此实施例中还可以替换为上述其他超声波形。
基于前文中提到的调整发射角度或者调整接收角度,均可以在步骤S100中获得了沿一个角度或多个角度的超声波信号,此处的角度可以包括发射角度或者接收角度。与一个发射角度或者接收角度对应获得一组超声波信号,对应不同的发射角度或接收角度可以获得多组超声波信号,每一组超声波信号中包括至少一次沿发射角度或接收角度获得的超声波信号。依据其中任意一组超声波信号或两组以上的超声波信号的组合,可以获取扫描目标的至少一部分的超声图像。此外, 基于多组超声波信号中的任意一组或两组以上的组合,可以获取感兴趣区域中目标点的血流速度。
在步骤S100中,为了便于计算方便,和提升图像显示效果,通过探头获得来自于扫描目标内的多个角度的超声波信号中,多个角度的超声波信号分属于不同的接收角度或发射角度,按照超波信号对应的不同角度,存储为与角度相关的至少一组数据帧集。也就是将上述获得的一组超声波信号存储为与角度相关的一组数据帧集,数据帧集中包括至少一帧图像数据。
在步骤S200中,图像处理模块7根据步骤S100中获得的超声波信号,获得扫描目标内脉管中的血流速度。
步骤S200中可以先计算扫描目标的整个成像区域中所有目标点对应的血流速度方向,然后根据关注位置的获取,再提取相应的血流速度进行显示处理。或者,还可以先确定关注位置,然后获取超声图像用以计算与关注位置有关的血流速度,用于后续的显示处理。
血流速度可以由多种计算方式,具体如下所示。
第一种,利用多普勒成像技术来计算血流速度。
首先,按照前文所述方式获取超声波信号,此超声波信号可以是分属一个或多个角度的超声波信号。此角度可以为发射角度或接收角度。以下实施例以沿一个或多个发射角度向扫描目标发射超声波束,并接受所述超声波束的回波信号作为步骤S100中的超声波信号为例进行说明。在多普勒超声成像方法中,针对扫描目标在同一发射角度连续发射多次超声波束;接收发射的多次超声波束的回波,获得多次超声回波信号,每一次超声回波信号中每个值对应了在一个发射角度上进行扫描时一个目标位置上的值。
然后,在步骤S200中按照以下方式进行计算:
将一组超声波信号中的多次超声波信号分别沿发射角度所在的方向做Hilbert变换,得到采用复数表示每个目标点上值的多个图像数据;N次发射接收后,在每一个目标点上就有沿时间变化的N个复数值,然后,按照下述两个公式(1)和(2)计算目标点z在发射角度方向上的速度大小:
Figure PCTCN2016101266-appb-000001
Figure PCTCN2016101266-appb-000002
其中,Vz是计算出来的沿发射角度的速度值,c是声速,f0是探头的中心频率,Tprf是两次发射之间的时间间隔,N为发射的次数,x(i)是第i次发射上的实部,y(i)是第i次发射上的虚部,
Figure PCTCN2016101266-appb-000003
为取虚部算子,
Figure PCTCN2016101266-appb-000004
为取实部算子。以上公式(1)和(2)为一个固定位置上速度值的计算公式。
其次,以此类推,每个目标点上的速度值通过这N个复数值都可以求出。
如果采用上述方法来计算步骤S200中的血流速度,那么可以取多普勒速度值Vz表征目标点上的血流速度,也可以取包含多普勒速度值Vz表征目标点上的速度值、速度方向为发射角度的向量表达方式来表征目标点上的血流速度。血流速度的表现形式可以不限,当然上述实施例中提供了利用多普勒成像技术获得的一个角度方向上的血流速度分量。
在上述实施例中采用的发射角度作为实施例,如果采用前文中提到的沿接收角度获得多次超声回波信号,则也可以采用上述方式来进行计算,但是前文中的发射角度则替换为接收角度,速度方向则为接收角度。
采用上述多普勒计算方式,根据不同角度的超声波信号,可以分别获得在不同角度作为速度方向上的速度值,本文可以简称为多普勒速度值,此多普勒速度值可以用多普勒频率来表征。此外,多普勒速度值还可以用多普勒频谱的形式来表现。
通常,在超声成像中,利用多普勒原理,对超声波信号进行多普勒处理,可以获得扫描目标或者其内的运动部分的运动速度。例如,获得了超声波信号之后,通过自相关估计方法或者互相关估计方法,可以根据超声波信号获得扫描目标或者其内的运动部分的运动速度。对超声波信号进行多普勒处理以获得扫描目标或者其内的运动部分的运动速度的方法可以使用本领域中目前正在使用或者将来可能使用的任何可以用以通过超声波信号计算扫描目标或者其内的运动部分的运动上速度的方法,在此不再详述。
第二种,基于斑点追踪的方式利用两帧图像之间相同斑点的偏移,来获得计算获得感兴趣区域内目标点的血流速度。具体如下所示。
首先,按照前文所述方式获取超声波信号,此超声波信号可以包括至少一组超声波信号。
其次,根据所述超声波信号,获得至少两帧超声图像,例如获得至少第一帧超声图像和第二帧超声图像。如前文所述,本实施例中可以采用平面超声回波信号来获取计算目标点的血流速度的超声图像。平面超声波束大体上在整个成像区域中传播,因此,通常,一次发射的平面超声波束所对应获得的一次平面波束回波信号通过处理即可获得一帧平面波束回波图像数据。本文中,将对平面超声波 束对应获得的平面波束回波信号进行相应的处理而获得的扫描目标的超声图像数据称之为“平面波束回波图像”。
然后,在第一帧超声图像中选择跟踪区域,该跟踪区域可以包含希望获得其速度矢量的目标点。例如,跟踪区域可以选择目标点的某个邻域或者包含目标点的某个数据块。
其次,在第二帧超声图像中搜索与该跟踪区域对应的区域,例如,搜索与前述的跟踪区域具有最大相似性的区域作为跟踪结果区域。这里,相似性的度量过程可以采用下述公式来寻找相似矩阵,基于相似矩阵来寻找与前述的跟踪区域具有最大相似性的区域。
二维图像中相似矩阵采用下述公式(3)或(4)计算。
Figure PCTCN2016101266-appb-000005
Figure PCTCN2016101266-appb-000006
其中,X1为第一帧超声图像,X2为第二帧超声图像。i和j是二维图像的横纵坐标。
Figure PCTCN2016101266-appb-000007
表示当它右边的式子计算结果达到最小时,K和L的值。K,L则代表图像中新的位置。M,N为图中跟踪区域的大小。
Figure PCTCN2016101266-appb-000008
Figure PCTCN2016101266-appb-000009
是第一帧和第二帧跟踪区域和跟踪结果区域中的平均值。
三维图像中相似矩阵采用下述公式(5)或(6)计算。
Figure PCTCN2016101266-appb-000010
Figure PCTCN2016101266-appb-000011
其中,X1为第一帧超声图像,X2为第二帧超声图像。i,j和k是三维图像的坐标。
Figure PCTCN2016101266-appb-000012
表示当它右边的式子计算结果达到最小时,A,B,C的值。A,B,C则代表图像中新的横纵坐标位置。M,N,L为图中跟踪区域的大小。
Figure PCTCN2016101266-appb-000013
Figure PCTCN2016101266-appb-000014
是第一帧和第二帧跟踪区域和跟踪结果区域中的平均值。
最后,根据前述的跟踪区域和前述的跟踪结果区域的位置,以及第一帧图像数据与第二帧图像数据之间的时间间隔,即可获得所述目标点的速度矢量。例如,速度值可以通过跟踪区域和跟踪结果区域之间的距离(即目标点在预设时间间隔内的移动位移)、除以第一帧平面波束回波图像数据与第二帧平面波束回波图像 数据之间的时间间隔获得,而速度方向可以为从跟踪区域到跟踪结果区域的连线的方向,即目标点在预设时间间隔内的移动方向。
此外,在进行速度计算前,还可以对获得的至少两帧超声图像进行壁滤波处理,就是对于图像上每个位置上的点沿时间方向分别做壁滤波。图像上的组织信号随时间变化较小,而血流信号由于血流的流动则变化较大。因此可以采用高通滤波器作为血流信号的壁滤波器。经过壁滤波之后,频率较大的血流信号保留下来,而频率较小的组织信号将被滤去。经过壁滤波后的信号,血流信号的信噪比可大大增强。
基于上述方法,步骤S200中的血流速度可以为上述方法获得的速度矢量的绝对值,或者为速度矢量。
第三种,基于目标点处的时间梯度和空间梯度获得目标点的速度矢量,具体如下所示。
首先,按照前文所述方式获取超声波信号,此超声波信号可以包括至少一组超声波信号。此超声波信号可以是分属一个或多个角度的超声回波信号。此角度可以为发射角度或接收角度,以下实施例以发射角度为例说明。
其次,根据超声波信号,获得至少两帧超声图像;
然后,根据超声图像获得在目标点处沿时间方向的第一梯度,根据超声图像获得在目标点处沿发射角度的第二梯度,根据超声图像获得在目标点处沿垂直于发射角度的方向的第三梯度,根据第一梯度、第二梯度和第三梯度计算目标点的在发射角度上的第五速度分量和在垂直于发射角度的方向上的第六速度分量;
其次,根据第五速度分量和第六速度分量合成获得目标点的速度矢量,其中包括合成后获得的速度值和合成角度,合成角度指向速度方向。
在上述实施例中采用的发射角度作为实施例,如果至少两帧超声图像采用前文中提到的沿接收角度获得多次超声回波信号,则也可以采用上述方式来进行计算,但是每个步骤中的“发射角度”应被替换为接收角度。在其中一个实施例中,上述过程采用平面超声回波信号来进行计算可以提升速度矢量的计算速度和精确度。基于上述方法,步骤S200中的血流速度可以为上述方法获得的速度矢量的绝对值,或者为速度矢量。
第四种,基于分属不同角度的数据帧集,在目标点处关联获得沿多个不同角度的速度分量;合成与多个不同角度相关的速度分量,获得该目标点处的速度矢量。例如,可以利用多普勒成像技术来计算在目标点处沿多个角度的速度分量,然后合成获得目标点的速度矢量。具体地如下所示。
首先,按照前文所述方式获取至少两组超声波信号,所述至少两组超声波信号可以是分属多个发射角度或接收角度的超声波信号,以下实施例以发射角度为例说明。
其次,基于分属不同角度的数据帧集,参照前文利用多普勒成像技术的计算过程,分别计算每一组数据帧集对应的速度分量,获得与所述角度相关的至少两个速度分量。在每个目标点处获得至少两个速度分量。每个速度分量可以包括以多普勒速度值表征目标点上的速度值,相应的发射角度表征目标点上的速度方向;也可以只包括以多普勒速度值表征目标点上的速度值。
然后,将目标点处对应的至少两个速度分量进行速度合同时按照时间的变化顺序成,获得目标点的速度矢量,其中包括合成后获得的速度值和合成角度,合成角度指向速度方向。
在上述实施例中采用的发射角度作为实施例,如果采用前文中提到的沿多个接收角度获得多组超声回波信号,则也可以采用上述方式来进行计算,但是每个步骤中的“发射角度”应被替换为“接收角度”。
当然针对一个发射角度对应的超声回波信号,本实施例不限于上述方法,还可以采用其他本领域中已知或者未来可能采用的方法。本文中提到的超声图像可以是二维图像数据,也可以是多个二维图像数据组成的三维图像数据,下文同。
前文中已提出了多种有关血流的速度值或速度矢量的计算方式均可以用于估计步骤S200中的目标点的血流速度,本文中步骤S200中计算的血流速度可以是一个速度值,也可以是一个速度矢量,速度矢量包括速度值和速度方向。如果步骤S200中的血流速度是一个速度值,则可以用多普勒频率、多普勒频谱来表示,或者也可以取速度矢量信息中的速度值,这个速度值可以是速度矢量的绝对值,或者其他取值表现形式。如果步骤S200中的血流速度是一个速度矢量,则血流速度可以是:用多普勒频率表征速度值,接收角度或发射角度表征速度方向的速度矢量;也可以通过诸如多角度速度合成、多角度频谱合成或斑点跟踪等方式来近似计算速度矢量。血流速度中速度值可以是目标点的近似或真实速度大小、加速度大小、速度方差评估值等等表征速度状态的统计量中的其中一种。前文的速度方向可以是上文提到的发射角度或者接收角度,或者,计算速度矢量时获得的速度方向或进行合成计算时获得的合成角度。
此外,步骤S200中计算获得的目标点对应的血流速度可以包括一个或多个速度值,也可以包括一个或多个速度矢量。
本实施例的目标点可以为扫描目标内感兴趣的点或者位置,通常表现为,在显示器上展示的扫描目标的至少一部分超声图像中,可被标记或者可被展示的感 兴趣的点或者位置。例如,目标点可以是用户在感兴趣区域中输入的像素点或像素区域,也可以是感兴趣区域中***自动生成的多个离散像素点或像素区域,用于确定计算某个像素点或某块像素邻域块图像坐标处血流速度的关联位置。
步骤S200中的目标点可以是用户在感兴趣区域中输入的多个像素点或像素邻域(数据块),也可以是感兴趣区域中***自动生成的多个离散像素点或像素邻域(数据块),或者还可以是感兴趣区域中的所有像素点或像素邻域(数据块)。
本文提到的感兴趣区域,可以是***自动在超声图像上形成的区域,或者是整个成像区域,或者还可以是用户在超声图像上输入选择指令获得区域,等等。通常感兴趣区域至少一个像素点,或包含至少一个像素点的邻域(数据块)。
在步骤S200中可以计算脉管中多个感兴趣区域内各个目标点的血流速度,而这多个感兴趣区域可以相互包含。例如,在其中一些实施例中,步骤S200还包括以下步骤:
首先,获得第一感兴趣区域内多个目标点的血流速度;
其次,获得第二感兴趣区域内多个目标点的血流速度。
更进一步地,第一感性区域可以是***自动在超声图像上形成的区域,或者是整个成像区域,或者还可以是用户在超声图像上输入选择指令获得区域,等等。第二感兴趣区域可以是包含在第一感兴趣区域内的子区域,或者是与第一感兴趣区域部分重合或完全不重合的感兴趣区域。
在其中一些实施例中,若第一感性区域为整个成像区域,第二感兴趣区域是包含在第一感兴趣区域内的子区域,那么,可以先计算整个成像区域内各个目标点的血流速度,然后根据选定的感兴趣区域来提取第一感兴趣区域和第二感兴趣区域内多个目标点的血流速度。提取两个感兴趣区域或两个以上感兴趣区域的血流速度进行比较,可以同时显示对比两个区域范围内的运动速度曲线谱,例如同时显示对比两个区域范围内的最大运动速度曲线谱。
在步骤S300中,图像处理模块7根据上述超声波信号,获得扫描目标的至少一部分的超声图像。
本文的超声图像可以是三维超声立体图像,也可以是二维超声图像,例如B图、用以显示的通过上述扫描体获得的三维超声图像数据库中的图像,或者通过二维血流显示技术获得的增强型B图像。
在本实施例的一个实施例中,超声图像可以使用平面超声波束成像,也可以使用聚焦超声波束成像。但是由于聚焦超声波束每次发射的能力较集中,而且仅在能力集中处成像,因此获得的回波信号信噪比高,获得的超声图像质量较好,而且聚焦超声波束的主瓣狭窄,旁瓣较低,获得的超声图像的横向分辨率也较高。
所以,在本实施例的一个实施例中,超声图像可以使用聚焦超声波束成像。同时为了获得更加高质量的超声图像,可以在步骤S100中发射多次发射聚焦超声波束,来实现扫描获得一帧超声图像。
在本实施例的一个实施例中,在上述步骤S100中向扫描目标发射多次聚焦超声波束,而在步骤S200中接收聚焦超声波束的回波,获取一组聚焦波束回波信号,根据所述聚焦波束回波信号获得扫描目标的至少一部分的超声图像。利用聚焦超声波可以获得高质量的超声图像。有关平面超声波束和聚焦超声波束的结合发射过程参见前述相关内容。
在步骤S400中,图像处理模块7获取位于脉管中的关注位置。
本实施例中的关注位置可以是光标所在位置,用户选定位置,和血流速度最大值所在的位置中的其中之一或两者的组合。此外,关注位置可以包括一个,也可以包括多个。本实施例中的一个关注位置可以是一个感兴趣区域,若是一个感兴趣区域,那么该关注位置的血流速度可以为感兴趣区域中多个目标点血流速度值的均值、方差、均方差、最大值和最小值中的其中一个。或者,一个关注位置也可以等同于一个目标点。此外,关注位置还可以是感兴趣区域中的任意一个目标点,或者是被选中的目标点(例如用户选定位置、血流速度最大值所在的位置)。
根据确定的关注位置,执行步骤S500至步骤S600的过程,即利用显示器在显示区内绘制速度与时间的关联坐标系,在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱。在上述过程中,可以提前利用图像处理模块在记录所述关注位置处血流速度随时间的变化,进行缓存,然后再通过显示器显示步骤S500和步骤S600的内容。
有关速度与时间的关联坐标系可参见附图11、图12和图13,和图14、图15和图17中的运动速度曲线谱的坐标系。
在其中一些实施例中,参见附图17,若关注位置包括至少两个,那么上述步骤S600中,在同一个所述关联坐标系下,同时按照时间的变化顺序显示所述至少两个关注位置处血流速度的值的变化,获得分别与所述至少两个关注位置相关联的运动速度曲线。在本实施例中,也可以利用图像处理模块在同时记录至少两个关注位置处血流速度随时间的变化,进行缓存,然后再通过显示器显示步骤S500和步骤S600的内容。
上述实施例中的关注位置可以是光标所在位置和用户选定位置。当然,也可以如图17所示,超声图像91内包括感兴趣区域92和感兴趣区域95,光标位置97,脉管93。上述关注位置包括感兴趣区域92内的最大血流速度所在的位置94, 感兴趣区域95内的最大血流速度所在的位置96和光标位置97。因此,分别获得与上述三个关注位置97,96,94相关联的运动速度曲线叠加在一个坐标系中,形成图17中的运动速度曲线98,其中绘制的曲线981,982,983分别关联上述三个关注位置97,96,94。此外,更进一步的上述步骤S400中获取的多个关注位置中并不限定一定包含最大血流速度所在的位置,还可以是包含光标所在位置和至少一个感兴趣区域中的任意一个位置。按照上述步骤S500和步骤S600形成的结果也可如图17中的运动速度曲线98所示。
在其中一些实施例中,如图6所示,步骤S400中的关注位置包括最大血流速度所在的位置。因此,步骤S400中还需要增加以下步骤:
步骤S410,图像处理模块7查找血流速度中的最大值,
步骤S420,图像处理模块7根据所述最大值所在的位置确定所述关注位置。在步骤S420中根据所述最大值所在的位置确定的关注位置可以是部分关注位置,基于此,在步骤S420中确定至少一个关注位置为所述最大值所在的位置,而同时还包含其他关注位置,其他关注位置可以是光标所在位置或用户选定的任意位置,那么如图17所示,可以同时对比显示最大值所在的位置和光标所在位置的血流速度变化。
以下以查找血流速度中的最大值来确定关注位置为例,进行如下具体说明。
在上述步骤S600中,图像处理模块7在关联坐标系内,按照时间的变化顺序显示所述最大值所在的位置处的血流速度的值的变化,获得与所述最大值所在的位置相关联的运动速度曲线谱,从而生成最大运动速度曲线谱,所述最大运动速度曲线谱记录血流速度最大值所在位置处对应的血流速度与时间之间的对应关系。
对于步骤S410中图像处理模块7查找血流速度中的最大值的方法,可参见下文详解。
针对步骤S200获得的目标点的血流速度,可以逐帧对比获得血流速度中的最大值,也可以多帧进行对比。具体可参见下文详细说明。
第一种,步骤S410中采用以下逐帧比对的方式。
首先,提取感兴趣区域内多个目标点在当前时刻对应的血流速度;然后,比较当前时刻中血流速度,确定最大值;其次,将当前时刻时血流速度中的最大值所在的目标点,视为第一关注位置;最后,执行步骤S600时,在运动速度曲线谱中,在当前时刻所在的位置处关联显示所述第一关注位置对应的血流速度的值,获得最大运动速度曲线谱。
参见图7所示,通常一次或多次超声回波信号可以获得一帧超声图像,每帧 超声图像对应一个采集时刻。首先,提取每帧超声图像(例如T1、T2、T3、T4)中感兴趣区域中多个目标点的血流速度。例如,T1帧图像中对应的多个目标点A、B、C、D的血流速度分别为v1-1、v1-2、v1-3、v1-4,T2帧图像中对应的多个目标点A、B、C、D的血流速度分别为v2-1、v2-2、v2-3、v2-4,T3帧图像中对应的多个目标点A、B、C、D的血流速度分别为v3-1、v3-2、v3-3、v3-4,T4帧图像中对应的多个目标点A、B、C、D的血流速度分别为v4-1、v4-2、v4-3、v4-4,此处采用的血流速度可以是速度值,也可以是速度矢量。然后,逐帧比对超声图像中各个目标点的血流速度,提取每帧超声图像中感兴趣区域内血流速度的最大值,例如在T1、T2、T3、T4帧图像中的血流速度最大值分别为v1-1、v2-2、v3-3、v4-2。其次,将每帧超声图像中感兴趣区域内查找的最大值所在的目标点视为第一关注位置,即v1-1、v2-2、v3-3、v4-2分别在T1、T2、T3、T4帧图像中的目标点A、B、C、B,视为第一关注位置。最后,在最大运动速度曲线谱中,建立血流速度与时间变量之间的对应关系,并在T1、T2、T3、T4帧图像分别对应在最大运动速度曲线谱中的时刻t1、t2、t3、t4,对应记录v1-1、v2-2、v3-3、v4-2。当然,这里的v1-1、v2-2、v3-3、v4-2可以用多普勒频率或多普勒频谱来表示,那么在最大运动速度曲线谱中各个时刻将对应记录最大值相应的多普勒频率或多普勒频谱,从而形成一种新的可以始终保证显示最大位置速度的图谱信息。当采用多普勒频谱来进行比较时,可以通过取多普勒频谱的包络来进行最大值的比较。
第二种,参见图8所示,步骤S410中采用以下多帧比对的方式。
首先,提取预设时间段内感兴趣区域内多个目标点在各个时刻对应的血流速度,其中,根据所述超声波信号,计算预设时间段内感兴趣区域内各个目标点在各个时刻对应的血流速度。例如,通常一次或多次超声回波信号可以获得一帧超声图像,每帧超声图像对应一个采集时刻。提取多帧超声图像(例如T11、T12、T13、T14)中感兴趣区域中多个目标点的血流速度。例如,T11帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v11-1、v11-2、v11-3、v11-4,T12帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v12-1、v12-2、v12-3、v12-4,T13帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v13-1、v13-2、v13-3、v13-4,T14帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v14-1、v14-2、v14-3、v14-4,此处采用的血流速度可以是速度值,也可以是速度矢量。本实施例中的多帧超声图像可以是连续的多帧图像,也可以是非连续的多帧图像。
然后,比较预设时间段内各个时刻对应的血流速度,确定预设时间段内血流 速度的最大值。例如,比较多帧超声图像(例如T11、T12、T13、T14)中的血流速度,查找最大值,最大值至少满足以下规则之一:
1、最大值对应的目标点在预设时间段内各个时刻时的血流速度均为最大。例如,在T11帧图像中v11-1>v11-2>v11-3>v11-4,在T12帧图像中v12-1>v12-2>v12-3>v12-4,在T13帧图像中v13-1>v13-2>v13-3>v13-4,在T14帧图像中v14-1>v14-2>v14-3>v14-4,则最大值分别为v11-1、v12-1、v13-1和v14-1,即目标点A1在各个时刻上的血流速度。
2、最大值为预设时间段内各个时刻对应的血流速度中的最大值。例如,
v11-1>v11-2>v11-3>v11-4>v13-1>v13-2>v13-3>v13-4>v14-1>v14-2>v14-3>v14-4>v12-1>v12-2>v12-3>v12-4
则,预设时间段内各个时刻对应的血流速度的最大值为v11-1,最大值对应的目标点为A1。
其次,将查找到的最大值所在的目标点视为第二关注位置,即在T11、T12、T13、T14帧图像中的位置为目标点A1。
最后,执行步骤S600时,在运动速度曲线谱中,位于预设时间段内关联显示所述第二关注位置在预设时间段内对应的血流速度,获得最大运动速度曲线谱。
在最大运动速度曲线谱中,建立目标点A1的血流速度与时间变量之间的对应关系,在T11、T12、T13、T14帧图像分别对应在最大运动速度曲线谱中的时刻t11、t12、t13、t14,对应记录v11-1、v12-1、v13-1、v14-1。当然,这里的v11-1、v12-1、v13-1、v14-1可以用多普勒频率来表示,那么提取预设时间段内目标点A对应的多普勒频谱显示在所述最大运动速度曲线谱中。
更进一步地,提取下一个预设时间段内感兴趣区域内多个目标点在各个时刻对应的血流速度,例如T15帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v15-1、v15-2、v15-3、v15-4,T16帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v16-1、v16-2、v16-3、v16-4,T17帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v17-1、v17-2、v17-3、v17-4,T18帧图像中对应的多个目标点A1、B1、C1、D1的血流速度分别为v18-1、v18-2、v18-3、v18-4。然后,确定预设时间段内血流速度的最大值。例如,v12-3是上述各个时刻所有血流速度中的最大值。那么将查找到的最大值v12-3所在的目标点视为第二关注位置,即在T15、T16、T17、T18帧图像中的位置为目标点B1。最后,在最大运动速度曲线谱中,在T15、T16、T17、T18帧图像分别对应在最大运动速度曲线谱中的时刻t15、t16、t17、t18,对应记录v15-2、v16-2、v17-2、v18-2,即目标点B1对应的血流速度。
若上述血流速度用多普勒频率或多普勒频谱来表示,那么在最大运动速度曲线谱中各个时刻将对应记录某一时间段内血流速度最大值所在位置处的多普勒频率或多普勒频谱,从而形成一种新的可以始终保证显示最大位置速度的图谱信息。
在步骤S410中查找血流速度中的最大值时,如果血流速度采用速度矢量,则可以采用速度矢量的绝对值进行比较获得最大值。上述实施例中的预设时间段可以是自定义时间段,或者***预设的时间段,或者用户从选定感兴趣区域到变更感兴趣区域之前的时间间隔等等。当用户变更感兴趣区域则将按照图9的方式再次确认关注位置的位置。
无论上述哪种情况,在最大速度运动谱中各个时刻对应的关注位置可以在预设时间段内固定不变,也可以随时间变量的变化而改变,因此,本实施例中所创新产生的最大速度运动谱所包含的并非是一个关注位置对应的速度信息,可以是很多关注位置对应的速度信息,而这些关注位置可以相同,也可以不相同,均与血流速度的最大值相关。在其中一个实施例中,上述预设时间段大于或等于一个心动周期,采用第二种方式时,在一个心动周期内可以实现最大值的跟踪,并获得一个第二关注位置,从而在最大速度运动谱中逐一显示连续多个心动周期内血流速度最大值的变化情况。
在预设时间段内进行最大值搜索时可能存在间断期,为提高最大速度运动谱的计算精确度和连续性,可以利用历史数据来连续查找最大值,具体如下文所示。在上述步骤S100中,获得当前时间段对应接收的超声波信号,在上述步骤S200中,提取历史时间段对应的超声回波信号,组合当前时间段和历史时间段对应的超声回波信号,获得预设时间段内的超声回波信号;然后根据预设时间段内的超声回波信号,计算预设时间段内感兴趣区域内各个目标点对应的血流速度,并依据这些结果按照上述方法来查找血流速度的最大值。
此外,基于一个角度的超声波信号,计算获得血流速度的过程,可以采用上述方法来查找最大值,而基于多个角度的超声波信号分别获得目标点在多个角度上的速度分量,基于多个角度的速度分量查找血流速度的最大值时,可以采用以下两种方式之一来确定前述最大值。
参见图9所示,在步骤S100中执行步骤S110,通过接收电路4和波束合成模块5从扫描目标接收多个角度的超声波信号,所述角度包括发射角度或接收角度;在步骤S200中,执行步骤S210中,图像处理模块基于一个角度的超声波信号,计算感兴趣区域内多个目标点在该角度上的速度分量,依据所述多个角度的超声波信号,分别获得所述多个目标点分别在所述多个角度上的速度分量;在上 述步骤S410中执行步骤S411,根据多个目标点分别沿多个角度上的速度分量,查找血流速度中的最大值。
例如,在本实施例的一些实施例中,步骤S210中将分别沿多个角度上的速度分量进行速度拟合,合成获得多个目标点对应的血流速度矢量,查找所述血流速度矢量中的最大值用以确定所述血流速度中的最大值。若在步骤S310中采用血流速度矢量作为血流速度进行比较提取最大值,那么可以采用本实施例中,并结合前文提到的逐帧比较或多帧比较的方式来进行最大值的筛选。通过多个角度的速度拟合可以获得更加接近真实的血流速度,并基于该信息进行最大值的筛选,可以令结果更加精确,提供的诊断信息更加精准。
若在步骤S410中,查找上述合成的血流速度矢量中的最大值用以确定所述血流速度中的最大值,那么,根据图8所示的逐帧比较的方式,在所述最大运动速度曲线谱中各个时刻对应记录的可以是,根据血流速度矢量获得的最大值所在的关注位置对应的血流速度。然而,根据图9所示的多帧比较的方式,在所述最大运动速度曲线谱中预设时间段对应记录的可以是,根据血流速度矢量获得的最大值所在的关注位置在预设时间段内的血流速度。其次,在本实施例中的运动速度曲线谱中显示的血流速度的值,可以是关注位置处对应的多普勒频率,也可以是关注位置处对应的血流速度矢量所包含的速度值,例如,血流速度矢量的绝对值。
又例如,在本实施例的一些实施例中,比较多个目标点分别沿多个角度上的速度,查找沿多个角度上速度分量中的最大值,用以确定所述血流速度中的最大值。若在步骤S410中采用沿多个角度上的速度分量作为血流速度进行比较提取最大值,那么可以采用本实施例中,并结合前文提到的逐帧比较或多帧比较的方式来进行最大值的筛选。在本实施例的一些实施例中还可以按照角度的不同交替比较多个目标点分别沿多个角度上的速度分量,查找沿多个角度上速度分量中的最大值,从而提取速度分量中的最大值,用以评估当前时刻或者预设时间段内血流速度的最大值。这种方式下虽然比对的是速度分量,但是可以尽可能的使血流速度的最大位置提取更加精确,并不会因为发射或接收角度的固定而影响到诊断信息提供的精准性,从另一个方面提供了一种精确求取血流速度最大位置的方法,并且计算方便,运算量少,且并不需要在硬件上增加成本。
若在步骤S410中,查找沿多个角度上速度分量中的最大值,用以确定所述血流速度中的最大值,则查找所述速度分量中的分量最大值,依据所述分量最大值所在的目标点确定所述关注位置,在所述最大运动速度曲线谱中记录的血流速度为所述关注位置上沿一角度上的速度分量,所述一角度为所述分量最大值所属 的超声波信号对应的角度。那么,根据图7所示的逐帧比较的方式,在所述最大运动速度曲线谱中各个时刻对应记录的是,关注位置上沿一角度上的速度分量在各个时刻对应的速度值。然而,根据图8所示的多帧比较的方式,在所述最大运动速度曲线谱中预设时间段对应记录的是,关注位置上沿一角度上的速度分量在预设时间段内的速度值。
上述各个实施例中在解释步骤S400的具体过程时结合步骤S500和步骤S600一起进行说明,如图6至10,其目的在于解释有关查找血流速度最大值的方式,但是实际上,无论是采用上述哪种方式去查找血流速度中的最大值,例如,采用血流速度矢量、速度分量、多普勒速度值等等不同类型的血流速度去进行比较,最后确定了最大值,依据最大值确定了关注位置后,那么在生成运动速度曲线谱时,图谱记录的关注位置对应的血流速度可以是多普勒速度、血流速度矢量中的速度值、速度分量的速度值等等多种血流速度类型之一,而不一定非要是步骤S410中用于查找最大值时用的血流速度。例如,在步骤S410中根据血流速度矢量来确定血流速度中的最大值,根据最大值得到关注位置后,在生成最大运动速度曲线谱时,可使其记录关注位置对应的多普勒速度与时间变量之间的对应关系。又例如,在步骤S410中根据多普勒频率来确定血流速度中的最大值,根据最大值得到关注位置后,在生成最大运动速度曲线谱时,可使其记录关注位置对应的血流速度矢量中的速度值与时间变量之间的对应关系。还比如,在步骤S410中根据多普勒频率来确定血流速度中的最大值,根据最大值得到关注位置后,在生成最大运动速度曲线谱时,可使其记录关注位置对应的多普勒速度与时间变量之间的对应关系。可见,在步骤S600中,最大运动速度曲线谱中记录的关注位置对应的血流速度,可以与步骤S410中查找最大值时所采用的血流速度一致,也可以不一致。下面将根据附图提供几个实施例。
在其中一些实施例中,如图6所示,在步骤S200中,图像处理模块根据所述超声波信号,计算感兴趣区域内多个目标点的多普勒速度值;在步骤S410中,图像处理模块查找所述多个目标点的多普勒速度值中的最大值,基于多普勒速度值采用图7或图8的方式查找最大值;在步骤S420中,图像处理模块确定关注位置,所述关注位置对应于所述最大值所在的目标点;步骤S600中,图像处理模块在关联坐标系内,按照时间的变化顺序显示所述关注位置处多普勒速度值的变化,获得与所述关注位置相关联的最大运动速度曲线谱,最大运动速度曲线谱记录血流速度最大值对应的多普勒速度值与时间变量之间的对应关系。
在其中一些实施例中,如图9所示,在步骤S110中通过接收电路和波束合成模块接收获得多个角度的超声波信号,其中角度可以是发射角度或接收角度; 在步骤S210中,图像处理模块根据多个角度的超声波信号,计算感兴趣区域内多个目标点分别沿多个角度的多普勒速度值;在步骤S410中,图像处理模块查找所述多个目标点的多普勒速度值中的最大值,其中,对多个目标点分别沿多个角度的多普勒速度值进行速度拟合,获得多个目标点分别对应的血流速度矢量,然后基于血流速度矢量采用图9或图10的方式查找最大值;或者,也可以采用图9或图10的方式,比较多个目标点分别沿多个角度的多普勒速度值,提取最大的多普勒速度值为最大值,以及确定所述最大值对应的角度。在步骤S420中,图像处理模块确定关注位置,所述关注位置对应于所述最大值所在的目标点;步骤S600中,图像处理模块在关联坐标系内,按照时间的变化顺序显示所述关注位置处多普勒速度值的变化,获得与所述关注位置相关联的最大运动速度曲线谱,所述最大运动速度曲线谱记录所述关注位置在所述最大值对应的角度上的多普勒速度值与时间变量之间的对应关系。当然,这里最大值对应的角度可以根据最大值的确定而改变,也可以固定不变。
综上所述,前文中提到的血流速度中的最大值至少包括以下类型之一:沿一个角度的多普勒频率或多普勒频谱中的最大值;沿不同角度的多普勒频率或多普勒频谱中的最大值;针对沿多个角度的多普勒频率或多普勒频谱进行拟合所获得的血流速度矢量中的最大值;和,基于相邻两帧或者多帧超声图像计算获得的血流速度矢量中的最大值,其中,所述角度为超声波束的发射角度或超声回波信号的接收角度。具体可以参照前文所提供的具体过程自由选择上述方法的实现方案。
前文中提到了多种用于计算血流速度的方法,而在步骤S600中运动速度曲线谱的血流速度也可以任意选择上述任意一种方式,因此,在其中一个实施例中,如图18所示,在步骤S200中,基于超声波信号,获得所述扫描目标内脉管中的血流速度包括:基于超声波信号的至少一部分,按照第一计算方法获得所述扫描目标内脉管中的第一血流速度(步骤S231),基于超声波信号的至少一部分,按照第二计算方法获得所述扫描目标内脉管中的第二血流速度(步骤S232);利用显示器在超声图像上渲染显示所述第一血流速度(步骤S710),在步骤S600中在运动速度曲线谱中,显示记录关注位置处第二血流速度的值随时间的变化(步骤S640)。利用显示器在超声图像上渲染显示所述第一血流速度可参见后文中提到的血流抛射图的渲染方式。例如,在超声图像上显示所述质点投射体,质点投射体的颜色编码和/或长度与脉管中特定位置处第一血流速度的值相关。
更进一步地,基于图6所示的实施例,在其中一个变形实施例中,在步骤S410中,查找第一血流速度中的最大值。在步骤S420中根据此时获得的最大值所在 位置确定关注位置。然而在所述步骤S600中,在运动速度曲线谱中,显示记录关注位置处第二血流速度的值随时间的变化。
第一计算方法和第二计算方法可以从前文中有关步骤S200中提到的方法中自由选择。当然,本实施例中也不限制第一血流速度和第二血流速度的计算所采用的超声波信号的类型或接收方式,例如第一血流速度和第二血流速度的计算可以基于同一组超声波信号,也可以基于不同组超声波信号。还例如,第一血流速度和第二血流速度的计算可以基于同一超声波类型的超声波信号,也可以基于不同超声波类型的超声波信号。还比如,第一血流速度和第二血流速度的计算可以基于采用不同发射或接收方式获得的超波信号,也可以采用相同发射或接收方式获得的超声波信号。因此,第一血流速度和第二血流速度的计算采用步骤S100中获得的超声波信号的至少一部分,而超声波信号的获得可以采用前文有关步骤S100的解释说明中任何一个实施例或多个实施例的组合。上述第一血流速度可以为血流速度矢量,所述血流速度矢量包括速度方向和速度值;上述第二血流速度也可以包括:多普勒频率、血流速度矢量、上述速度分向量中的其中之一。
上述过程并未限定感兴趣区域的个数,也即本实施例的方法同样适用于存在多个感兴趣区域的情况下,可以对比显示不同区域内血流速度最大值所对应的最大运动速度曲线谱。例如,在一些实施例中,如图10所示,步骤S200中包括:步骤S211,依据接收的超声波信号获取第一感兴趣区域内多个目标点的血流速度;步骤S212,依据接收的超声波信号获取第二感兴趣区域内多个目标点的血流速度。第一感兴趣区域和第二感兴趣区域的限定可参照前文有关感兴趣区域说明。上述步骤S410包括以下步骤:
步骤S413,查找第一感兴趣区域内血流速度的最大值,获得第一个最大值;
步骤S414,查找第二感兴趣区域内血流速度的最大值,获得第二个最大值;
在其中一个实施例中,第一感兴趣区域为整个采样框(ROI),第二感兴趣区域为自定义的采样框,自定义的采样框最大为***默认采样框,最小为一个目标点,自定义的采样框可在***默认采样框中随意变化位置。那么,第一个最大值为整个采样框(ROI)的血流速度全局最大值,即在整个采样框(ROI)中所有位置随时间变化的最大值,这个时间是指血流成像时长;第二最大值为自定义的采样框内的血流速度局部最大值,即在自定义的采样框中所有位置随时间变化的最大值,这个时间是指血流成像时长。
在步骤S420中,根据第一个最大值获得一个关注位置Q1(步骤S421),根据第二最大值确定另一个关注位置Q2(步骤S422)。
在步骤S600中,在关联坐标系内,按照时间的变化顺序显示一个关注位置 Q1处血流速度的值的变化,获得与一个关注位置Q1相关联的运动速度曲线谱(步骤S610)。在关联坐标系内,按照时间的变化顺序显示另一个关注位置Q2处血流速度的值的变化,获得与另一个关注位置Q2相关联的运动速度曲线谱(步骤S620)。
在步骤S500中,还可以记录所述一个关注位置Q1对应的血流速度与时间变量之间的对应关系,用以生成与所述一个关注位置Q1对应的最大运动速度曲线谱(步骤S511)。记录所述另一个关注位置Q2对应的血流速度与时间变量之间的对应关系,用以生成与所述另一个关注位置Q2对应的最大运动速度曲线谱(步骤S512)。
更进一步地,在上述过程中,还可以增加以下步骤S513:获取光标所在的位置,记录光标所在的位置处血流速度与时间变量之间的对应关系,用以生成光标位置处的实时运动图谱。在步骤S600中,在关联坐标系内,按照时间的变化顺序显示光标位置处血流速度的值的变化,获得与光标所在位置相关联的运动速度曲线谱(步骤S630)。目的在于在上述生成的最大运动速度曲线谱中对比显示光标位置处的血流速度,从而获得更加直观的观察数据。这里提到的光标位置处血流速度的计算方法可参照前文的相关说明,在此不再累述。当然步骤S513还可以增加在图7所示的方法流程中,并将光标位置处的实时运动图谱与最大运动速度曲线谱同时显示。
上述实施例中,与所述另一个关注位置Q2对应的最大运动速度曲线谱、与另一个关注位置Q2相关联的运动速度曲线谱和光标所在位置对应的实时运动图谱可以在同一个关联坐标系内显示形成一个运动速度曲线谱。
此外,上述过程中提到的最大运动速度曲线谱是运动速度曲线谱的一种类型,取决于关注位置的类型。在其中一个实施例中,通过显示器显示用于记录速度值与时间变量之间对应的关系的最大运动速度曲线谱,例如速度值可以用多普勒速度值来表征,所述最大运动速度曲线谱的表现形式可以类似多普勒频谱的表现形式。当然,在其中一个实施例中,通过显示器显示用于记录血流速度矢量中的速度值与时间变量之间的曲线关系的最大运动速度曲线谱,参见例如图7和图8中所采用的曲线谱结构关系。最大运动速度曲线谱的表现形式可以多样,本实施例并不对此做限制,只要是表征血流速度与时间变量之间对应关系的图谱均在本实施例的所要求保护范围内。
如图5所示,在步骤S700中,通过显示器显示超声图像,并在超声图像上标注步骤S400中确定的关注位置。如图11所示,同一个显示界面上,相应区域内显示超声图像50,感兴趣区域为51,同时显示关注位置52对应的最大运动速 度曲线谱53,并在超声图像51标记关注位置52。如果关注位置52在预设时间段内不变,那么在预设时间段内显示最大运动速度曲线谱53时,关注位置52在感兴趣区域51内固定不变。如果参照前文所提的方法,关注位置52在预设时间段内不变,或者随时间改变,那么关注位置52在感兴趣区域51内会跳变。如图12所示,在显示t31、t32、t33对应的最大运动速度曲线谱53时,感兴趣区域51内的关注位置依次从A31跳变到A32和A33,当然通过连线54或渲染的方式可以在超声图像50上绘制关注位置的历史运动轨迹,从而展现最大运动速度曲线谱53中对应最大值位置的变化情况。
参见图13和图12,在最大运动速度曲线谱53上相应位置处标记关注位置,或关注位置的变动。例如,图12中,在最大运动速度曲线谱53上对应位置处标记关注位置,标记的方式可以是在最大运动速度曲线谱53上的相应位置处标记感兴趣区域中标记关注位置所采用的图形标记,或者标记关注位置在超声图像中的坐标(如图13所示)。又例如,图13中,在最大运动速度曲线谱53依序显示的过程中标记关注位置的变动,未填充的三角形标识用于表示t31时刻对应的关注位置标识以及图像坐标位置,填充的三角形标识用于表示当前显示时刻t32对应的关注位置标识以及图像坐标位置,从而逐一表达的标记位置的变动情况。当然,无论文本的方式或者标识符的方式,在显示的过程中,感兴趣区域中标记关注位置的标识符可以随最大运动速度曲线谱53的显示逐一显示。
此外,在最大运动速度曲线谱53中,还可以利用色彩或者指示图标来区分标记对应于不同的所述关注位置的图谱部分。例如,图12和图13中,最大运动速度曲线谱53中t31、t32、t33、t34和t35分别对应的图谱部分的色彩或指示图标(例如图13中的三角形)区分标记。更进一步地,最大运动速度曲线谱53中t31、t32、t33、t34和t35分别对应的图谱部分的色彩或指示图标(例如图13中的三角形)还可以与感兴趣区域中标识A31、A32、A33采用相同的色彩或指示图标。
在本实施例的一些实施例中,还可以采用以下方式来浏览查看关注位置及其对应的图谱部分,例如图14中,识别光标55在所述感兴趣区域51的移动位置;当移动位置靠近或位于所述关注位置A32时,突出显示所述最大运动速度曲线谱53上的部分图谱(如图16中t32对应的图谱部分),所述部分图谱与所述关注位置关联;相反的,还可以识别光标55在所述最大运动速度曲线谱53内的移动位置,当所述移动位置靠近或位于所述最大运动速度曲线谱的部分图谱(如图14中t32对应的图谱部分)时,突出显示所述感兴趣区域51内的关注位置A32,突出显示的关注位置与所述部分图谱关联。
在本实施例的一些实施例中,获取用户在所述超声图像上做出的区域选择指令;根据所述区域选择指令,确定所述感兴趣区域51。这里的区域选择指令可以是对采样框的调节,例如对不规则框51的调节。
此外,上述步骤S700中显示的超声图像还可以叠加显示有血流速度。这里的血流速度可以是前文中提到的任何一种方式计算获得的血流速度,可以是速度矢量。
例如,步骤S200中计算获得血流速度矢量,则图像处理模块在超声图像上叠加血流速度矢量形成血流抛射图,输出至显示器上与最大运动速度曲线谱同时显示。血流抛射图即显示了血流的速度,也显示了血流的流动方向,如图17中,通过箭头表示在感兴趣区域51的某个血管内的血流流动情况,箭头的长短表示速度值的大小,箭头的方向表示速度方向。以下结合一些实施例里来解释血流抛射图的形成。
图像处理模块7用于基于上述步骤S100获得的超声波信号,获得目标点的血流速度矢量。比如,在其中一个实施例中,在步骤S200中,首先,获取用户输入的分布密度指令,依据该分布密度指令在扫描目标内随机选择目标点,计算被选择的目标点对应的速度矢量,用以获得被选择的目标点的速度矢量,获取的速度矢量被标记在超声图像上,用以在显示器上显示。然后,计算被选择的目标点对应的速度矢量,获得被选择的目标点的速度矢量信息,获取的速度矢量被标记在超声图像上形成血流抛射图,用以在显示器上显示。在步骤S200中包括基于超声波信号获得扫描目标内目标点的血流速度矢量,下文中将详细解释说明。
在步骤S200中计算获得的目标点的血流速度矢量主要用于在下述步骤S800中与最大运动速度曲线谱的对比显示,因此根据血流速度矢量的不同显示方式,在步骤S200中可以获得不同的血流速度矢量。
例如,在本实施例的其一个实施例中,上述步骤S200中包括:根据上述步骤S100中获得的超声波信号,计算目标点位于不同时刻的超声图像中第一显示位置处的血流速度矢量,用以获得目标点位于不同时刻的超声图像中的血流速度矢量信息。那么在超声图像上叠加血流的速度矢量的过程中,对比显示显示的可以是各个时刻超声图像中第一显示位置处的血流的速度矢量。如图16(a)所示,根据上述步骤S200中获得的超声波信号,可以分别获得t1、t2、……、tn时刻对应的超声图像数据P1、P2、……、Pn中,然后计算目标点在各个时刻超声图像中第一显示位置处(图中黑色圆点的位置)的速度矢量。本实施例中,目标点在各个时刻超声图像中第一显示位置始终位于二维图像中的位置(H1、W1)处。基于此,在后续步骤S800中对比显示速度矢量时,即在显示器显示的超声图像 P0中在位置(H1、W1)处显示不同时刻对应计算的速度矢量。若目标点参照上述具体实施例中根据用户自主选择部分或全部、或者由***默认,那么对应就可以获知相应的第一显示位置,并通过计算当前时刻对应的超声图像中第一显示位置处的速度矢量信息用以对比显示,本文中将这种显示模式称为第一模式,下文同。图16(a)实例中给出了二维图像P0显示时的效果示意图,当然也可以应用于三维图像显示中,即将各个时刻的超声图像取为前文提到的扫描体获得三维图像数据库,而第一显示位置取为三维图像数据库中的空间三维立体坐标位置,在此不再累述。
在本实施例的另一个实施例中,上述步骤S300中包括:根据上述步骤S100中获得的超声波信号,计算目标点连续移动到超声图像中相应位置处而依次获得的速度矢量,从而获取目标点的速度矢量。在本实施例中,通过重复计算目标点在一时间间隔内从一位置移动到超声图像的另一位置处的速度矢量,用以获得目标点从初始位置开始连续移动后在超声图像中各个相应位置处对应的速度矢量。也就是说,在本实施例的超声图像中用以确定速度矢量的计算位置可以通过计算获得。那么在超声图像上叠加血流的速度矢量的过程中,对比显示的可以是各个时刻超声图像中计算获得的位置处的血流速度矢量。
如图16(b)所示,根据上述步骤S100中获得的超声波信号,可以分别获得t1、t2、......、tn时刻对应的超声图像数据P11、P12、......、P1n中,然后,参照上述实施例中根据用户自主选择目标点的部分或全部、或者由***默认目标点的密度等,确定目标点的初始位置,如图16(b)中位置为(H1、W1)的第一点,然后计算初始位置在时刻t1超声图像P11中的速度矢量A1。其次,计算目标点(即图中黑色圆点)从时刻t1的超声图像P11上的初始位置移动到时刻t2的超声图像P12上的位置(H2、W2),然后根据超声波信号,获得超声图像P12中位置(H2、W2)处的速度矢量,用以对比显示。比如,沿时刻t1超声图像P11中(H1、W1)位置上的速度矢量的方向,移动一时间间隔(其中,时刻t2-时刻t1=时间间隔),计算达到第二时刻t2时的位移,如此在第一个时刻t1上的一个目标点在第二个时刻超声图像上的第二显示位置就找到了,然后再依据上步骤S200中获得的超声波信号获得此第二显示位置上的速度矢量,从而得到目标点在时刻t2超声图像P12中速度矢量信息。依次类推,每相邻的两个时刻,沿目标点在第一时刻对应的速度矢量的方向,移动相邻两个时刻的时间间隔获得位移量,根据位移量确定目标点在第二时刻超声图像上的对应位置,再根据超声波信号获得目标点从第一时刻移动到第二时刻的超声图像中相应位置处的速度矢量,依此方式可以获得目标点从超声图像中(H1、W1)处连续移动到(Hn、Wn)处的速度矢 量,从而获得目标点从初始位置连续移动到不同时刻的超声图像中相应位置处的速度矢量,用以获取目标点的速度矢量,使其与超声图像同时显示。
本实施例的显示方式中,计算出目标点在一时间间隔的移动位移、并依据该位移确定超声图像中目标点的相应位置,从初始选择的目标点开始按照该时间间隔移动,这一时间间隔可以由***发射频率决定,还可以是由显示帧率决定,或者还可以是用户输入的时间间隔,通过按照用户输入的时间间隔计算目标点移动后达到的位置,然后在获得该位置处的速度矢量用以对比显示。初始时,可以依据前文所述方式在图中标注上N个初始目标点,每个初始目标点上都有箭头来表示这个点流速的大小和方向,如图16(b)所示。在对比显示的步骤S800中,标记目标点连续移动到相应位置处时对应获得的速度矢量,形成随时间呈流动状的标识。通过标记图16(b)方式计算获得的速度矢量,那么随时间的变化,在新生成的图中,原来每个点的箭头都会发生位置改变,这样可以用箭头的移动,即可形成类似的血流流动过程,以便用户能观察到近似真实的血流流动显像效果,本文中将这种显示模式称为第二模式,下文同。同样,图16(b)实例中给出了二维图像P10显示时的效果示意图,当然也可以应用于三维图像显示中,即将各个时刻的超声图像取为前文提到的扫描体获得三维图像数据库,而第一显示位置取为三维图像数据库中的空间三维立体坐标位置,在此不再累述。
为了提高显示效果,避免因血流速度显示过快而使人眼无法识别,则在本实施例的一个实施例中,上述过程中还包括在显示关于血流的速度矢量时,对上述步骤S200获得的速度矢量进行慢放处理,用以对比显示慢放处理后的速度矢量。例如,首先对速度矢量进行慢放处理,生成慢速速度矢量;然后,在上述超声图像上叠加显示所述慢速速度矢量,形成上述血流抛射图,从而实现血流抛射图与运动速度曲线谱的对比显示。
在其中一个实施例中,通过产生质点投射体作为标识描绘目标点上血流速度的变化,质点投射体的颜色编码和/或长度与所述脉管中特定位置处血流的速度值相关;并将所述质点投射体送入显示器,在所述超声图像的特定位置处显示所述质点投射体随时间的变化,用以通过质点投射体的动态显示来动态展现所述脉管中血流的运动,从而获得血流抛射图。更进一步的,所述质点投射体还包括方向标识,所述方向标识的指向与所述血流的速度方向相关。利用本实施例的方法可以在显示的血流抛射图中可以清晰的描绘目标点在扫描目标内的实际流向,相比只在图像中的相应显示位置显示当前位置随时间变化的血流速度的大小和方向的方式,可以更加精确、更加真实和形象的表示扫描目标内实际的血流走向。这 里可以通过流动的点或箭头,或者可以描绘方向的其他标志来描述流动的血流流动的过程。参见图15中,利用箭头56来表示质点投射体。
此外,质点投射体也可以仅包含方向标识,而不携带血流的速度值信息,方向标识的指向与所述扫描目标中特定位置处血流的速度方向相关。在超声图像的特定位置处显示包含方向标识的质点投射体,用以动态的展现所述扫描目标中血流的运动方向。
本实施例中的质点投射体可以是类似于箭头的表现方式,箭头的长短和/或粗细可以用于表现血流的速度值,箭头的指向可以用于表现血流的速度方向。本实施例中的特定位置是指,在超声图像上一个特定位置显示关于血流的速度矢量时对应一个质点投射体,特定位置可以是用于标记显示血流的速度矢量的位置,例如可以是图16(a)和图16(b)中提到的第一显示位置或第二显示位置。
此外,基于上述实施例,若存在多个关注位置时,则多个关注位置分别对应的最大运动速度曲线谱可以在显示区域内并排显示,也可以叠加显示。例如,参见图17所示,提供了一种对比显示多个最大运动速度曲线谱的实施例。在显示界面上,包括用于显示超声图像的超声图像区域91,用以展示血管93内的血液流动状态,结合图10所示的实施例,第一感兴趣区域为92,第二感兴趣区域为95,黑三角表征第二感兴趣区域95内查找到的第二个最大值对应的关注位置96,黑圆点表征第一感兴趣区域92内查找到的第一个最大值对应的关注位置94,光标位置为97。在最大运动速度曲线谱显示区98内同步显示关注位置96对应的最大运动速度曲线谱981(图中表示为点划线),关注位置94对应的最大运动速度曲线谱983(图中表示为虚线),光标位置97对应的实时运动图谱982(图中表示为实线)。图19给出了三种图谱叠加显示在一起的方式。可见,利用显示器还可以图12中与所述一个关注位置和所述另一个关注位置分别对应的最大运动速度曲线谱,更进一步地还可以叠加显示光标位置处的实时运动图谱。
另外,如图17所示,在显示界面上还可以输出文本提示感兴趣区域内血流速度的最大值,最小值,中值和/或平均值。例如,在文本显示区域99内,显示第二感兴趣区域95内血流速度当前帧的最大值(即当前时刻整个采样框中速度最大值)、血流速度当前帧的最小值(即当前时刻整个采样框中速度最小值)、血流速度当前帧的中值(即当前时刻整个采样框中速度中值)、和血流速度当前帧平均值(即当前时刻整个采样框中速度平均值)。
当叠加显示多个关注位置分别对应的最大运动速度曲线谱时,可以参照前文的方式通过突出显示或彩色标记来区分显示不同关注位置对应的最大运动速度曲线谱。
基于图6所示的实施例,在其中一个变形实施例中,步骤S200中包括:
图像处理模块根据超声波信号,获得多个角度方向的多普勒频谱,多普勒频谱用于表征血流速度;
在步骤S410中,图像处理模块通过查找多个角度方向的多普勒频谱中的最大值,获得血流速度的最大值,用以在步骤S420中确定关注位置。而查找多个角度方向的多普勒频谱中的最大值的方式采用比较多个角度方向的多普勒频谱的包络值。更进一步地,在步骤S600中,按照时间变化顺序显示关注位置处多普勒频谱随时间的变化,用以形成运动速度曲线谱。采用这种方式将更加简单,方便,而不需要对硬件做过多改进。
图5为本实施例一个实施例的超声成像方法的流程示意图。应该理解的是,虽然图5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图5中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分并行执行或者交替地执行。图6和图9、图10均是基于图5的延伸实施例。
以上各个实施例在具体说明中仅只针对相应步骤的实现方式进行了阐述,然后在逻辑不相矛盾的情况下,上述各个实施例是可以相互组合的而形成新的技术方案的,而该新的技术方案依然在本具体实施方式的公开范围内。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品承载在一个非易失性计算机可读存储载体(如ROM、磁碟、光盘、服务器云空间)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
通过操作控制模块接收用户的切换指令,进入最大运动速度曲线谱显示模式,图像处理模块还用于通过查找血流速度的最大值来获取相应的关注位置,用以呈现最大运动速度曲线谱。在本实施例中的最大运动速度曲线谱中,可以采用运动速度图谱的表现形式,例如,在确定了关注位置时,选取一段信号,做傅里叶变换,得到血流频谱,这个频谱代表了这段信号的时刻内,血流随频率的变化,而这个频率是多普勒频率代表了血流的速度大小。因此可以看做在这个时刻,血流 中不同速度的红细胞的数量的分布图。然后接着根据重新筛选的最大值对应的关注位置,选取下一段信号,再次生成这个时刻的血流不同速度的红细胞的数量分布图,然后将每个时刻的分布图按照灰阶形式纵向显示,依次按照时间排列就形成用于表征本实施例的最大运动速度曲线谱的血流频谱。
频谱多普勒超声可以测量血流的最高速度,通常应用于心脏瓣膜狭窄和动脉硬化病变等的定量诊断。它是医学超声成像中一个重要的定量分析功能。传统的频谱多普勒得到的是血流沿超声传播方向速度分量的频谱。它不是实际的速度频谱分布,并且受到手法的影响,每次扫描时血管与超声传播方向的夹角也很难保持一致,因此造成测量的精度和可重复性较差,无法得到最高速度值。虽然可以通过角度矫正估算出血流的最大值,但是这种方式只能针对层流液体。对于较为复杂的位置,如心脏,颈动脉窦处,无法使用角度矫正。即使在长而直的血管中,如颈总动脉,椎动脉等,受到手法的影响角度矫正依然会造成较大的误差。本发明主要针对上述频谱多普勒无法测量到最大速度以及角度矫正带来的误差做改进。还可以采用多角度超声波发射接收的信号做频谱多普勒。经过角度拟合后,频谱多普勒可以显示出血流在实际流动方向上的频谱,可以得到精确的得到最高流速。此外,多角度的超声发射接收方法可以得到血流抛射图,尤其可以通过计算寻找到血流最大位置,从而可以显示出最大血流流速位置上的血流频谱。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (31)

  1. 一种超声血流运动谱的显示方法,其包括:
    通过探头获得来自于扫描目标内的超声波信号;
    基于所述超声波信号,获得所述扫描目标内脉管中的血流速度;
    根据所述超声波信号,获得所述扫描目标的至少一部分的超声图像;
    获取位于所述脉管中的关注位置;
    在显示区内绘制速度与时间的关联坐标系;
    在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱;
    在所述超声图像上标记所述关注位置。
  2. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述通过探头获得来自于扫描目标内的超声波信号中包括:
    通过探头获得来自于扫描目标内的多个角度的超声波信号,所述多个角度的超声波信号分属于不同的接收角度或发射角度,按照超波信号对应的不同角度,存储为与角度相关的至少一组数据帧集;和,
    所述基于所述超声波信号,获得所述扫描目标内脉管中的血流速度包括:
    基于分属不同角度的数据帧集,获得至少两个不同角度分别对应的速度分量;
    根据与至少两个角度相关的速度分量,获得所述血流速度。
  3. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述关注位置包括至少两个,在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱包括:
    在同一个所述关联坐标系下,同时按照时间的变化顺序显示所述至少两个关注位置处血流速度的值的变化,获得分别与所述至少两个关注位置相关联的运动速度曲线。
  4. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述关注位置至少包括以下情况之一:光标所在位置,用户选定位置,和血流速度最大值所在的位置。
  5. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述方法中在显示所述超声图像时,产生质点投射体,所述质点投射体的颜色编码和/或长度与所述脉管中特定位置处血流速度的值相关;
    在所述超声图像上显示所述质点投射体随时间的变化,用以通过质点投射体的动态显示来动态展现所述脉管中血流的运动。
  6. 根据权利要求5所述的超声血流运动谱的显示方法,其中,所述基于所述超声波信号,获得所述扫描目标内脉管中的血流速度包括;
    基于超声波信号的至少一部分,获得所述扫描目标内脉管中的第一血流速度,
    基于超声波信号的至少一部分,获得所述扫描目标内脉管中的第二血流速度;
    在所述超声图像上显示所述质点投射体,所述质点投射体的颜色编码和/或长度与所述脉管中特定位置处第一血流速度的值相关;
    在所述运动速度曲线谱,显示记录所述关注位置处第二血流速度的值随时间的变化。
  7. 根据权利要求4所述的超声血流运动谱的显示方法,其中,所述血流速度最大值至少包括以下之一:
    沿一个角度的多普勒频率或多普勒频谱中的最大值;
    沿不同角度的多普勒频率或多普勒频谱中的最大值;
    针对沿多个角度的多普勒频率或多普勒频谱进行拟合所获得的血流速度矢量中的最大值;和,
    基于相邻两帧或者多帧超声图像计算获得的血流速度矢量中的最大值,
    其中,所述角度为超声波束的发射角度或超声回波信号的接收角度。
  8. 根据权利要求6所述的超声血流运动谱的显示方法,其中,所述获取位于所述脉管中的关注位置包括:
    查找所述第一血流速度中的最大值;
    根据所述第一血流速度中的最大值所在位置确定所述关注位置。
  9. 根据权利要求1所述的超声血流运动谱的显示方法,其中若所述关注位置包括血流速度最大值所在的位置时,则通过以下方式之一来获得所述关注位置,并显示所述运动速度曲线谱:
    提取脉管内感兴趣区域中多个目标点在当前时刻对应的血流速度,确定当前时刻血流速度中的最大值,将当前时刻血流速度中的最大值所在的目标点,视为第一关注位置,在所述运动速度曲线谱中,当前时刻所在的位置处关联显示所述第一关注位置对应的血流速度;和,
    提取预设时间段内脉管中感兴趣区域内多个目标点在各个时刻对应的血 流速度,确定所述预设时间段内血流速度的最大值,将所述预设时间段内血流速度的最大值所在的目标点,视为第二关注位置,在所述运动速度曲线谱中,位于所述预设时间段内关联显示所述第二关注位置在所述预设时间段内对应的血流速度。
  10. 根据权利要求3所述的超声血流运动谱的显示方法,其中,所述获取位于所述脉管中的关注位置包括:
    通过查找第一感兴趣区域内血流速度的最大值,获取一个关注位置;
    通过查找第二感兴趣区域内血流速度的最大值,获取另一个关注位置。
  11. 根据权利要求1或2所述的超声血流运动谱的显示方法,其中,所述获取位于所述脉管中的关注位置包括:
    查找所述血流速度中的最大值;
    确定所述关注位置,所述关注位置对应所述最大值所在的位置。
  12. 根据权利要求1所述的超声血流运动谱的显示方法,其中,若所述关注位置包括血流速度最大值所在的位置时,所述关注位置随时间变量的变化而改变,或者所述关注位置在预设时间段内固定不变。
  13. 根据权利要求9或12所述的超声血流运动谱的显示方法,其中,所述预设时间段大于或等于一个心动周期。
  14. 根据权利要求1所述的超声血流运动谱的显示方法,其中,若所述关注位置包括血流速度最大值所在的位置时,在所述超声图像上绘制所述关注位置的历史运动轨迹。
  15. 根据权利要求1所述的超声血流运动谱的显示方法,其中,在所述运动速度曲线谱上标记所述关注位置或标记所述关注位置的变动。
  16. 根据权利要求11所述的超声血流运动谱的显示方法,其中,所述运动速度曲线谱中,利用色彩或者指示图标来区分标记对应于不同的所述关注位置的图谱部分。
  17. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述方法中还包括:
    识别光标在感兴趣区域或所述运动速度曲线谱内的移动位置;
    当所述移动位置靠近或位于所述关注位置时,突出显示所述运动速度曲线谱上的部分图谱,所述部分图谱与所述关注位置关联;
    当所述移动位置靠近或位于所述运动速度曲线谱的部分图谱时,突出显示所述感兴趣区域内的关注位置,突出显示的关注位置与所述部分图谱关联。
  18. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述方法还包括:
    获取用户在所述超声图像上做出的区域选择指令;
    根据所述区域选择指令,确定所述感兴趣区域。
  19. 根据权利要求1所述的超声血流运动谱的显示方法,其中,所述方法还包括:
    输出文本提示感兴趣区域内血流速度的最大值、最小值、中值和/或平均值。
  20. 根据权利要求11所述的超声血流运动谱的显示方法,其中,所述基于所述超声波信号,获得所述扫描目标内脉管中的血流速度包括:
    根据超声波信号,获得多个角度方向的多普勒频谱;
    所述查找所述血流速度中的最大值,确定所述关注位置包括:
    通过查找多个角度方向的多普勒频谱中的最大值,获得所述血流速度的最大值,用以确定关注位置;
    所述在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱包括,在运动速度曲线谱中,按照时间变化顺序显示所述关注位置处多普勒频谱随时间的变化。
  21. 一种超声成像***,其特征在于,包括:
    探头;
    发射电路,用于激励所述探头向扫描目标发射超声波束;
    接收电路和波束合成模块,用于接收所述超声波束的回波,获得来自于扫描目标内的超声波信号;
    图像处理模块,用于基于所述超声波信号,获得所述扫描目标内脉管中的血流速度,根据所述超声波信号,获得所述扫描目标的至少一部分的超声图像,获取位于所述脉管中的关注位置,在显示区内绘制速度与时间的关联坐标系;及
    显示器,用于在所述关联坐标系内,按照时间的变化顺序显示所述关注位置处血流速度的值的变化,获得与所述关注位置相关联的运动速度曲线谱,并显示超声图像,在所述超声图像上标记所述关注位置。
  22. 根据权利要求21所述的超声成像***,其中,通过探头获得来自于 扫描目标内的多个角度的超声波信号,所述多个角度的超声波信号分属于不同的接收角度或发射角度;
    图像处理模块还用于按照超波信号对应的不同角度,存储为与角度相关的至少一组数据帧集,基于分属不同角度的数据帧集,获得至少两个不同角度分别对应的速度分量;根据与至少两个角度相关的速度分量,获得所述血流速度。
  23. 根据权利要求21所述的超声成像***,其中,所述关注位置包括至少两个,利用显示器在同一个所述关联坐标系下,同时按照时间的变化顺序显示所述至少两个关注位置处血流速度的值的变化,获得分别与所述至少两个关注位置相关联的运动速度曲线。
  24. 根据权利要求21所述的超声成像***,其中,所述关注位置至少包括以下情况之一:光标所在位置,用户选定位置,和血流速度最大值所在的位置。
  25. 根据权利要求21所述的超声成像***,其中,利用显示器显示超声图像时,产生质点投射体,所述质点投射体的颜色编码和/或长度与所述脉管中特定位置处血流速度的值相关,在所述超声图像上显示所述质点投射体随时间的变化,用以通过质点投射体的动态显示来动态展现所述脉管中血流的运动。
  26. 根据权利要求25所述的超声成像***,其中,所述图像处理模块还用于基于超声波信号的至少一部分,获得所述扫描目标内脉管中的第一血流速度,基于超声波信号的至少一部分,获得所述扫描目标内脉管中的第二血流速度;在所述超声图像上显示所述质点投射体,所述质点投射体的颜色编码和/或长度与所述脉管中特定位置处第一血流速度的值相关;在所述运动速度曲线谱,显示记录所述关注位置处第二血流速度的值随时间的变化。
  27. 根据权利要求26所述的超声成像***,其中,所述图像处理模块还用于查找所述第一血流速度中的最大值,根据所述第一血流速度中的最大值所在位置确定所述关注位置。
  28. 根据权利要求23所述的超声成像***,其中,所述图像处理模块还用于通过查找第一感兴趣区域内血流速度的最大值,获取一个关注位置,通过查找第二感兴趣区域内血流速度的最大值,获取另一个关注位置。
  29. 根据权利要求21所述的超声成像***,其中,若所述关注位置包括血流速度最大值所在的位置时,所述关注位置随时间变量的变化而改变,或 者所述关注位置在预设时间段内固定不变。
  30. 根据权利要求29所述的超声成像***,其中,所述预设时间段大于或等于一个心动周期。
  31. 根据权利要求21所述的超声成像***,其中,所述运动速度曲线谱中,利用色彩或者指示图标来区分标记对应于不同的所述关注位置的图谱部分。
PCT/CN2016/101266 2016-09-30 2016-09-30 超声血流运动谱的显示方法及其超声成像*** WO2018058606A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/101266 WO2018058606A1 (zh) 2016-09-30 2016-09-30 超声血流运动谱的显示方法及其超声成像***
CN201680084093.8A CN109414245B (zh) 2016-09-30 2016-09-30 超声血流运动谱的显示方法及其超声成像***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101266 WO2018058606A1 (zh) 2016-09-30 2016-09-30 超声血流运动谱的显示方法及其超声成像***

Publications (1)

Publication Number Publication Date
WO2018058606A1 true WO2018058606A1 (zh) 2018-04-05

Family

ID=61763582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101266 WO2018058606A1 (zh) 2016-09-30 2016-09-30 超声血流运动谱的显示方法及其超声成像***

Country Status (2)

Country Link
CN (1) CN109414245B (zh)
WO (1) WO2018058606A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110490974A (zh) * 2018-09-19 2019-11-22 北京昆仑医云科技有限公司 用于确定血管中血流速度的方法、***、装置和介质
CN112469337A (zh) * 2018-08-28 2021-03-09 深圳迈瑞生物医疗电子股份有限公司 一种超声向量血流成像方法及装置、存储介质
CN112672694A (zh) * 2018-12-29 2021-04-16 深圳迈瑞生物医疗电子股份有限公司 确定超声波发射角度的方法以及超声设备
CN113229843A (zh) * 2021-02-24 2021-08-10 杰杰医疗科技(苏州)有限公司 一种能量多普勒自动测量***及方法
US11154278B2 (en) * 2017-11-20 2021-10-26 Konica Minolta, Inc. Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method for calculating blood flow and tissue information
CN113724208A (zh) * 2021-08-13 2021-11-30 中山大学附属第八医院(深圳福田) 一种血流频谱信号分类方法及***
CN114126495A (zh) * 2020-04-30 2022-03-01 深圳迈瑞生物医疗电子股份有限公司 血流向量速度、血流频谱的处理方法及超声设备
CN114305495A (zh) * 2022-01-07 2022-04-12 京东方科技集团股份有限公司 基于超声换能器的超声成像方法、超声换能器及***
CN114938660A (zh) * 2021-12-14 2022-08-23 武汉联影医疗科技有限公司 一种流速检测方法、***和存储介质
CN115266229A (zh) * 2022-07-22 2022-11-01 北京清环智慧水务科技有限公司 一种污水采样方法及装置
CN116172612A (zh) * 2023-02-02 2023-05-30 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117770871A (zh) * 2020-07-30 2024-03-29 深圳市理邦精密仪器股份有限公司 血流测量方法、设备及存储介质
CN114533127A (zh) * 2022-01-13 2022-05-27 南京易云医疗设备科技有限公司 一种用于对血管检测的多普勒超声***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040019278A1 (en) * 2000-05-26 2004-01-29 Kenneth Abend Device and method for mapping and tracking blood flow and determining parameters of blood flow
CN101301212A (zh) * 2007-05-11 2008-11-12 深圳迈瑞生物医疗电子股份有限公司 实时估计多普勒参数的方法及装置
JP4230904B2 (ja) * 2003-12-26 2009-02-25 アロカ株式会社 超音波診断装置
JP2011024782A (ja) * 2009-07-24 2011-02-10 Toshiba Corp 超音波診断装置及び血流速度計測用制御プログラム
CN103190931A (zh) * 2012-01-09 2013-07-10 三星电子株式会社 使用矢量多普勒产生超声图像的超声装置和方法
CN105919625A (zh) * 2016-05-26 2016-09-07 飞依诺科技(苏州)有限公司 脉冲多普勒壁滤波处理方法及处理***

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251696B2 (ja) * 1993-04-06 2002-01-28 株式会社東芝 超音波診断装置
US5634465A (en) * 1995-06-09 1997-06-03 Advanced Technology Laboratories, Inc. Continuous display of cardiac blood flow information
US20060058610A1 (en) * 2004-08-31 2006-03-16 General Electric Company Increasing the efficiency of quantitation in stress echo
IL165636A0 (en) * 2004-12-08 2006-01-15 Paieon Inc Method and apparatus for finding the coronary velocity and flow and related parameters
CN100496409C (zh) * 2005-08-02 2009-06-10 深圳迈瑞生物医疗电子股份有限公司 频谱多普勒血流速度的自动检测方法
ITGE20090070A1 (it) * 2009-08-31 2011-03-01 Esaote Spa Metodo e dispositivo per il rilevamento e la visualizzazione di informazioni emodinamiche in particolare del flusso ematico nelle vene, mediante ultrasoni
US9204858B2 (en) * 2010-02-05 2015-12-08 Ultrasonix Medical Corporation Ultrasound pulse-wave doppler measurement of blood flow velocity and/or turbulence
JP6017576B2 (ja) * 2011-10-19 2016-11-02 ヴェラゾニックス,インコーポレーテッド 平面波送信を使用するベクトルドップラーイメージングのための推定及び表示
CN102697524B (zh) * 2012-05-04 2014-08-13 成都优途科技有限公司 全聚焦超声成像方法及其在血流成像中的运用
CA2873399A1 (en) * 2012-05-11 2013-11-14 Volcano Corporation Ultrasound catheter for imaging and blood flow measurement
US9247927B2 (en) * 2013-03-15 2016-02-02 B-K Medical Aps Doppler ultrasound imaging
WO2015074511A1 (en) * 2013-11-19 2015-05-28 Versitech Limited Apparatus for ultrasound flow vector imaging and methods thereof
CN112057109B (zh) * 2014-01-24 2023-05-12 深圳迈瑞生物医疗电子股份有限公司 超声监护设备及方法
WO2015180069A1 (zh) * 2014-05-28 2015-12-03 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法和***
CN104173038B (zh) * 2014-08-29 2016-04-20 上海交通大学 基于频域激光散斑成像的血流速度测量方法
US10548571B1 (en) * 2014-11-21 2020-02-04 Ultrasee Corp Fast 2D blood flow velocity imaging
CN105708496B (zh) * 2016-01-27 2019-04-16 成都思多科医疗科技有限公司 一种基于超声的血流信息多维成像***
CN105816202B (zh) * 2016-05-20 2018-08-21 深圳市德力凯医疗设备股份有限公司 一种颅内血流三维成像采集装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040019278A1 (en) * 2000-05-26 2004-01-29 Kenneth Abend Device and method for mapping and tracking blood flow and determining parameters of blood flow
JP4230904B2 (ja) * 2003-12-26 2009-02-25 アロカ株式会社 超音波診断装置
CN101301212A (zh) * 2007-05-11 2008-11-12 深圳迈瑞生物医疗电子股份有限公司 实时估计多普勒参数的方法及装置
JP2011024782A (ja) * 2009-07-24 2011-02-10 Toshiba Corp 超音波診断装置及び血流速度計測用制御プログラム
CN103190931A (zh) * 2012-01-09 2013-07-10 三星电子株式会社 使用矢量多普勒产生超声图像的超声装置和方法
CN105919625A (zh) * 2016-05-26 2016-09-07 飞依诺科技(苏州)有限公司 脉冲多普勒壁滤波处理方法及处理***

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154278B2 (en) * 2017-11-20 2021-10-26 Konica Minolta, Inc. Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method for calculating blood flow and tissue information
CN112469337A (zh) * 2018-08-28 2021-03-09 深圳迈瑞生物医疗电子股份有限公司 一种超声向量血流成像方法及装置、存储介质
CN110490974B (zh) * 2018-09-19 2023-04-28 科亚医疗科技股份有限公司 用于确定血管中血流速度的方法、***、装置和介质
CN110490974A (zh) * 2018-09-19 2019-11-22 北京昆仑医云科技有限公司 用于确定血管中血流速度的方法、***、装置和介质
CN112672694A (zh) * 2018-12-29 2021-04-16 深圳迈瑞生物医疗电子股份有限公司 确定超声波发射角度的方法以及超声设备
CN114126495B (zh) * 2020-04-30 2024-06-04 深圳迈瑞生物医疗电子股份有限公司 血流向量速度、血流频谱的处理方法及超声设备
CN114126495A (zh) * 2020-04-30 2022-03-01 深圳迈瑞生物医疗电子股份有限公司 血流向量速度、血流频谱的处理方法及超声设备
CN113229843A (zh) * 2021-02-24 2021-08-10 杰杰医疗科技(苏州)有限公司 一种能量多普勒自动测量***及方法
CN113724208B (zh) * 2021-08-13 2023-06-06 中山大学附属第八医院(深圳福田) 一种血流频谱信号分类方法及***
CN113724208A (zh) * 2021-08-13 2021-11-30 中山大学附属第八医院(深圳福田) 一种血流频谱信号分类方法及***
CN114938660A (zh) * 2021-12-14 2022-08-23 武汉联影医疗科技有限公司 一种流速检测方法、***和存储介质
CN114305495A (zh) * 2022-01-07 2022-04-12 京东方科技集团股份有限公司 基于超声换能器的超声成像方法、超声换能器及***
CN114305495B (zh) * 2022-01-07 2024-01-12 京东方科技集团股份有限公司 基于超声换能器的超声成像方法、超声换能器及***
CN115266229A (zh) * 2022-07-22 2022-11-01 北京清环智慧水务科技有限公司 一种污水采样方法及装置
CN116172612A (zh) * 2023-02-02 2023-05-30 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法
CN116172612B (zh) * 2023-02-02 2023-12-15 逸超医疗科技(北京)有限公司 一种基于超快平面波复合超声微细血流成像方法

Also Published As

Publication number Publication date
CN109414245A (zh) 2019-03-01
CN109414245B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2018058606A1 (zh) 超声血流运动谱的显示方法及其超声成像***
WO2018058577A1 (zh) 超声血流的参数显示方法及其超声成像***
WO2016172890A1 (zh) 超声血流成像显示方法及超声成像***
JP5681623B2 (ja) 2次元アレイプローブによる拡張視野の超音波イメージング
US8343052B2 (en) Ultrasonograph, medical image processing device, and medical image processing program
CN105816205B (zh) 声辐射力脉冲成像中的稀疏跟踪
JP4795675B2 (ja) 医療用超音波システム
WO2016192114A1 (zh) 超声流体成像方法及超声流体成像***
US20110144495A1 (en) Perfusion Imaging of a Volume in Medical Diagnostic Ultrasound
CN105530870B (zh) 一种超声成像方法和***
EP3376472A1 (en) Anatomical measurements from ultrasound data
JP2016168332A (ja) サブボリュームの連続適応強化超音波イメージング
JP2011521763A (ja) 誘導efov走査による拡張視野の超音波イメージング
JP7150800B2 (ja) 医用4dイメージングにおける動き適応型可視化
EP2610641B1 (en) Ultrasound and system for forming a Doppler ultrasound image
KR20170060852A (ko) 초음파 영상을 제공하는 방법 및 이를 위한 초음파 장치
US20130172747A1 (en) Estimating motion of particle based on vector doppler in ultrasound system
KR101652727B1 (ko) 초음파 도플러 영상 장치 및 그 제어 방법
JP2021529035A (ja) 経弁圧の定量化を行うための方法及びシステム
JP2010125203A (ja) 超音波診断装置
KR20140114523A (ko) 주사 선 정보를 이용한 초음파 데이터 처리 방법 및 장치
JP2013198635A (ja) 超音波診断装置
KR102223058B1 (ko) 초음파 시스템 및 이의 클러터 필터링 방법
CN110495903A (zh) 具有增加的脉冲重复间隔的基于超声的剪切波成像
KR20120086992A (ko) 움직임 정도에 따라 합성빔 수를 결정하는 합성구경 빔집속 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917356

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 10/09/19

122 Ep: pct application non-entry in european phase

Ref document number: 16917356

Country of ref document: EP

Kind code of ref document: A1