WO2018058222A1 - Matriz magnética para separador magnético de alta intensidade - Google Patents

Matriz magnética para separador magnético de alta intensidade Download PDF

Info

Publication number
WO2018058222A1
WO2018058222A1 PCT/BR2017/050286 BR2017050286W WO2018058222A1 WO 2018058222 A1 WO2018058222 A1 WO 2018058222A1 BR 2017050286 W BR2017050286 W BR 2017050286W WO 2018058222 A1 WO2018058222 A1 WO 2018058222A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
plates
corrugated
matrix
grooved
Prior art date
Application number
PCT/BR2017/050286
Other languages
English (en)
French (fr)
Inventor
José Pancrácio RIBEIRO
Original Assignee
Ribeiro Jose Pancracio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ribeiro Jose Pancracio filed Critical Ribeiro Jose Pancracio
Priority to MX2019003515A priority Critical patent/MX2019003515A/es
Priority to EP17800697.9A priority patent/EP3520900A1/en
Priority to AU2017337526A priority patent/AU2017337526A1/en
Priority to RU2019112848A priority patent/RU2749231C2/ru
Priority to US16/337,069 priority patent/US11084045B2/en
Priority to CA3045932A priority patent/CA3045932A1/en
Publication of WO2018058222A1 publication Critical patent/WO2018058222A1/pt
Priority to ZA2019/02651A priority patent/ZA201902651B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/034Component parts; Auxiliary operations characterised by the magnetic circuit characterised by the matrix elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • the invention relates to a WHIMS high intensity magnetic separator magnetic matrix used for the recovery of ultrafine ore particles, which substantially reduces the amount of tailings generated in the mining process, thereby reducing environmental impacts from its storage in dams. and also providing greater use of natural resources.
  • ore as it is mined is mixed with impurities. This ore must be purified in order to increase the grade and increase its added value. Before being purified, the ore is sieved with water and transformed into a pulp, which is then fed to the magnetic separator arrays.
  • Magnetic separators used in the magnetic concentration process to separate the magnetic particles mixed in the pulp to a good quality product are already known in the art. These separators combine efficiency and practicality and are used to separate fines from magnetic ores and non-magnetic ores.
  • magnetic separators are described in US 3,830,367 and CA 717,830. Within these magnetic separators are arranged magnetic arrays consisting of grooved plates of magnetizable steel, provided with longitudinal grooves along their entire surface, on both sides. Each matrix has several plates arranged vertically and parallel to each other face to face, forming channels between the slots of neighboring plates, which are traversed by the ore pulp.
  • the grooves have the shape of triangles, in which external vertices concentrate the lines of force and generate the high magnetic field.
  • the slotted plates are spaced apart by spacers that hold the vertices of the opposing plate slot triangles at a defined distance. This spacing between opposite vertices defines the opening of the matrix, in mm, through which the ore pulp to be separated passes and in The technique of high intensity magnetic separation is called "Gap".
  • the gap, or spacing between the grooved plates defines the air space through which the magnetic field power lines must pass and is therefore a fundamental factor to be defined to perform the magnetic separation process because, among others factors, on it depends on the intensity of the magnetic field that can be generated.
  • the spacing also defines the maximum particle size of the mineral that can pass through the matrix. Typically Spacing is available in some typical dimensions, such as 1.5 mm; 2.0 mm; 2.5 mm; 3.0 mm; 3.2 mm; 3.8 mm; can assume intermediate dimensions and sometimes reaching up to 5.0 mm.
  • These arrays are mounted on the periphery of steel rotors and are magnetized by induction when the rotors rotate and pass in front of the magnetic separator poles.
  • the magnetizable particles of the ore pulp dumped onto the magnetic matrices are attracted and trapped in the plates of these matrices, while tailings containing non-magnetic particles pass through the channels formed between the grooves and are diverted to an outlet. of tailings.
  • these flat expanded plates as they do not enter the grooves of the grooved plates, when removed, do not make it possible to clean the grooves through the scraping effect of the valleys. Therefore, these flat plates do not solve the problem of the difficulty of cleaning the grooved plates and the risk of clogging the die.
  • the object of the invention is to allow magnetic separators to operate with magnetic fields with an intensity of up to 18,000 Gauss and gradients of up to 4000 Gauss / mm, increasing the amount and variety of magnetic particles that are extracted and recovered from the ore pulp. allowing the extraction of particles with smaller particle size and lower magnetic susceptibility.
  • Another object of the invention is to provide a matrix for the magnetic separator that is easy to clean and reduces the risk of separator clogging, and the consequent interruption of plant operation where the magnetic separator is installed.
  • the present invention also aims to decrease the amount of mineral waste and tailings stored in dams, and reducing the waste of water in the mining process.
  • Another object of the invention is to maximize the quantity and quality of material of commercial value extracted from ore, thereby increasing the value of this raw material.
  • the present invention also aims to improve the performance of magnetic separators by increasing the amount and variety of magnetic particles that are extracted and recovered from ore pulp. allowing the extraction of particles with smaller particle size and lower magnetic susceptibility.
  • magnetic matrix for high intensity magnetic separator which is fed with a pulp containing magnetic and non-magnetic particles
  • the magnetic matrix comprising a series of slotted sheet metal on both sides, the slotted plates being arranged in rows, parallel and spaced from the same spacing within a housing, with each face of each slotted plate having ridges aligned with the face-facing valleys of the adjacent slotted plate.
  • a corrugated expanded plate is arranged at each spacing between adjacent grooved plates, with the corrugations of the expanded corrugated plates accompanying the crest-valley alignments of the respective adjacent grooved plates.
  • the magnetic matrix may comprise corrugated expanded plates of different heights, the height of the plates being less than or equal to the height of the grooved plates.
  • the height of each corrugated expanded plate is selected as a function of at least one of the hydraulic load, the pulp passage speed, and the pulp residence time within the matrix.
  • Each corrugated expanded plate has a handle at its upper end.
  • This configuration allows corrugated profile expanded steel plates to be perfectly inserted into the space between the grooved plates.
  • Figure 1 is a front view of a magnetic matrix according to the state of the art using crest-to-crest aligned grooved plates;
  • Figure 1A is an enlarged detail view of a magnetic matrix of Figure 1
  • Figure 1B is an enlarged detail view of the magnetic matrix of Figure 1 with a flat expanded plate disposed between the plates;
  • Figure 2 is a magnetic matrix according to the present invention.
  • Figure 2A is an enlarged detail view of a magnetic matrix of figure 2;
  • Figure 2B is an enlarged detail view of the magnetic matrix of Figure 2 with a flat expanded plate disposed between the plates;
  • Figure 3 is a perspective view of the magnetic matrix according to the invention.
  • Figure 3A is an enlarged detail view of a magnetic matrix of Figure 3, without a portion of the external housing of the matrix, and showing its interior;
  • Figure 3B is an enlarged detail view of the corrugated weft slotted plates within the die of Figure 3;
  • Figure 4 is a view of the magnetic matrix with cuts in various planes showing the arrangement of the grooved plates and corrugated weft plates;
  • Figure 5 is a detail view of the corrugated expanded weft plate in front of the slotted plate.
  • Figure 1 shows a conventional magnetic matrix 1, which is the current industry standard, and which can be better seen in the detail of Figure 1A.
  • Magnetic Intensity (WHIMS) grooved plates 7 are arranged with adjacent plate ridges perfectly aligned with line 3. Spacing 6 between grooved plates 7 is indicated by the distance indicated by reference 6 between grooves of grooved plates 7 adjacent. This spacing 6 is termed in magnetic separation technology simply with "GAP”.
  • Fig. 1B is shown in greater detail a version of the flat expanded plate magnetic matrix 5 arranged between the grooved plates. Note that the crest-to-crest alignment of the slotted plates does not allow sufficient space between two slotted plates for a corrugated plate to be fitted between them, which completely fills the plate slots.
  • Figure 2 shows a magnetic matrix 8 according to the present invention constructed with grooved plates 7, which can be seen more clearly in the detail of figure 2A.
  • Line 10 indicates the alignment of the crest of a plate with the valley of the adjacent plate, characterizing the crest-valley configuration.
  • This type of mounting of the slotted plates 7 allows the insertion between two adjacent plates of a corrugated expanded plate 12, preferably of steel, which efficiently fills the slot space as shown in the enlarged detail view 2B.
  • the corrugated expanded plate 12 has a total length up to 41% greater than the length extension of the flat expanded plate 5. This increase in length can be confirmed by the fact that wherein the total width of the corrugated expanded plate 12 is formed by the sum of the sides of the isosceles rectangular triangles entering the grooves one by one, while the length of the flat expanded plate is equal to the sum of the bases of these triangles. The geometric relationship indicates that the sum of the sides of these triangles is 1.41 times the length of the bases.
  • This configuration of the corrugated expanded steel plate 12 which allows this increase in length is one of the main factors for increasing the production of the corrugated magnetic matrix, as this increase in length directly results in the increase of the magnetic microparticle collecting surface.
  • Figure 3 shows a perspective view of the magnetic matrix 8 according to the present invention with the grooved plates 7 in the crystal arrangement and the corrugated plates 12 disposed therebetween.
  • This embodiment of the invention which is most clearly illustrated in the enlarged detail views of Figure 3A, showing the matrix without a portion of its outer housing for viewing the plates and plates therein, and Figure 3B showing shows in detail the interior of the matrix.
  • the corrugated plates consist of several corrugated or zigzag threads 16 forming an expanded corrugated web. These corrugated weft plates 12 have on their edges collecting edges 17 which are also responsible for the generation of the magnetic gradient responsible for the attraction of the magnetic microparticles. These corrugated weft plates 12 are also inserted between the grooved plates.
  • handles 15 are available at their upper ends, through which the corrugated plates 12 can be moved up and down both at the time of installation and removal of the plates. corrugated sheets 12, such as when cleaning the grooved plates.
  • Figure 4 shows a cross-sectional view of the magnetic matrix 8 with the crest-valley configuration shown in cross-sectional view so that the corrugated plates 12 with varying heights can be viewed, with a higher height 19 and a higher height. 20.
  • the pulp flow being fed is represented by the arrow 18.
  • Figure 5 shows the corrugated expanded plate 12 in front of the grooved plate 7.
  • Some bold highlighted collecting edges 17 indicate the length of the lines where magnetic particles are collected to further clarify the effect that the longer length of the corrugated expanded plate has in increasing production.
  • the corrugated shape and the multiplicity of edges of the expanded corrugated board allows for substantially increased microparticle collection points, increasing mass recovery of the salable product. This prolongation of fillet collecting edges along with slowing pulp speed and the generation of high magnetic gradients all add up to maximize magnetic product recovery and quality.
  • this wavy magnetic matrix has such a structure that, when subjected to the magnetic separator field, magnetic inductions of up to 18,000 Gauss with magnetic gradients of up to 4000 Gauss / mm can be inducted into it. significantly increasing its ability to extract ultrafine particles from the ore being processed. This is because corrugated expanded plates contribute to increase the value of the magnetic field within the matrix. The combined operation of all these described features adds to the high performance, productivity and operational ease of the wavy magnetic matrix object of this invention.

Landscapes

  • Paper (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)

Abstract

A invenção se refere a uma matriz magnética para separador magnético de alta intensidade que é alimentada com uma polpa contendo partículas magnéticas e não-magnéticas, a matriz magnética (8) compreendendo uma série de chapas metálicas (7) ranhuradas nas suas duas faces, as chapas ranhuradas sendo arranjadas enfileiradas, paralelas e espaçadas entre si de um mesmo espaçamento (6) dentro de um alojamento, sendo que cada face de cada chapa ranhurada metálica (7) possui as cristas alinhadas com os vales da face voltada para ela da chapa ranhurada metálica (7) adjacente, e uma placa expandida ondulada (12) é disposta em cada espaçamento (6) entre chapas ranhuradas (7) adjacentes, com as ondulações das placas expandidas onduladas (12) acompanhando os alinhamentos cristavale das respectivas chapas ranhuradas (7) adjacentes.

Description

Pedido de patente de invenção para "MATRIZ MAGNÉTICA PARA SEPARADOR MAGNÉTICO DE ALTA INTENSIDADE".
A invenção se refere a uma matriz magnética para separador magnético de alta intensidade WHIMS usado na recuperação de partículas ultrafinas de minério, o que reduz substancialmente a quantidade de rejeitos gerados no processo de mineração, reduzindo assim os impactos ambientais em decorrência de seu armazenamento em barragens e propiciando também um aproveitamento maior dos recursos naturais.
Descrição do estado da técnica
No processo de mineração, o minério na forma como é extraído das minas está misturado com impurezas. Esse minério deve ser purificado, de modo a aumentar o teor e elevar seu valor agregado. Antes de ser purificado, o minério é peneirado com água e é transformado em uma polpa, a qual, em seguida, é alimentada às matrizes magnéticas de separadores.
Já são conhecidos do estado da técnica separadores magnéticos usados no processo de concentração magnética para separar as partículas magnéticas misturadas na polpa, obtendo um produto de boa qualidade. Esses separadores combinam eficiência e praticidade, sendo utilizados na separação de finos de minérios magnéticos e de minérios não magnéticos.
Exemplos de separadores magnéticos são descritos nos documentos US 3,830,367 e CA 717.830. No interior desses separadores magnéticos são dispostas matrizes magnéticas constituídas por chapas ranhuradas de aço magnetizável, dotadas de ranhuras longitudinais ao longo de toda a sua superfície, em ambas as faces. Cada matriz possui diversas placas dispostas verticalmente e paralelas entre si face a face, formando canais entre as ranhuras de placas vizinhas, que são atravessados pela polpa de minério. As ranhuras tem o formato de triângulos, em cujos vértices externos concentram as linhas de força e geram o alto campo magnético. As chapas ranhuradas são distanciadas umas das outras por espaçadores que mantêm os vértices dos triângulos das ranhuras de placas opostas a uma distância definida. Este espaçamento entre os vértices opostos define a abertura da matriz, em mm, por onde passa a polpa de minério a ser separada e em língua- gem técnica da separação magnética de alta intensidade é denominado "Gap".
O Gap, ou espaçamento entre as chapas ranhuradas, define o espaço de ar por onde devem passar as linhas de força do campo magnético e é, portan- to, um fator fundamental a ser definido para realizar o processo de separação magnética pois, entre outros fatores, dele depende a intensidade de campo magnético que pode ser gerado. O espaçamento também define o tamanho máximo da partícula do mineral que pode passar pela matriz. Tipicamente os Espaçamentos estão disponíveis em algumas dimensões típicas como, por exemplo, 1 ,5 mm; 2,0 mm; 2,5 mm; 3,0 mm; 3,2 mm; 3,8 mm; podendo assumir dimensões intermediárias e chegando ás vezes até 5,0 mm. Essas matrizes são montadas na periferia de rotores de aço e são magnetizadas por indução quando quando os rotores giram e passam em frente aos poios magnéticos dos separadores. Devido ao campo magnético induzido pelos poios, as partículas magnetizáveis da polpa de minério despejada sobre as matrizes magnéticas são atraídas e ficam presas nas placas dessas matrizes, enquanto os rejeitos contendo partículas não magnéticas atravessam os canais formados entre as ranhuras e são desviados para uma saída de rejeitos.
Atualmente, as tecnologias de separação magnética de alto campo (WHIMS) exigem que a separação seja feita em canais ou aberturas muito estreitas como condição para poder produzir altos campos e altos gradientes magnéticos. O empobrecimento das reservas minerais e o reaproveitamento de resíduos tem aumentado a demanda por processamento de minerais cada vez mais finos e que exigem campos magnéticos e gradientes cada vez mais elevados, implicando assim, cada vez mais, na diminuição das aberturas das matrizes magnéticas onde as partículas devem passar para serem separadas.
Nos separadores magnéticos conhecidos, que utilizam matrizes com chapas ranhuradas, a intensidade máxima do campo magnético apresenta um limite em torno de 15.000 Gauss obtido com o uso do Espaçamento de 1 ,5 mm. Essa limitação de intensidade do campo inviabiliza a separação magnética de algumas partículas de minério contidas na polpa que só geram produtos em campos magnéticos acima de 15.000 Gauss, devido à granulometria ul- trafina e a sua baixa susceptibilidade magnética. Consequentemente, essas partículas magnéticas que possuem valor comercial acabam ficando arma- zenadas em barragens de rejeitos, causando impactos ao ambiente.
Para conseguir aumentar este campo magnético já foi experimentado introduzir chapas de aço expandidas planas entre as chapas ranhuradas. Este experimento aumentou a intensidade de campo magnético das matrizes, mas esta solução melhorou o desempenho dos separadores magnéticos de alta intensidade de uma forma limitada e, por este motivo, não existem noticias de sua aplicação em casos práticos.
As dificuldades apresentadas foram em razão de, por razões práticas, terem sido utilizadas matrizes convencionais disponíveis no mercado, cujas chapas ranhuradas são montadas crista-crista, e isso obrigou o uso de chapas ou placas de aço expandidas planas. Estas placas de aço expandidas planas, conforme já mencionado, por não preencherem os vales das ranhuras, tem o seu comprimento das arestas coletoras limitadas à largura da matriz. No entanto, devido ao alinhamento das cristas de chapas ranhuradas adjacentes, só é possível utilizar chapas de aço planas.
Adicionalmente, essas placas expandidas planas, por não entrarem nas ranhuras das chapas ranhuradas, quando removidas, não possibilitam efetuar a limpeza das ranhuras através do efeito de raspagem dos vales. Portanto, essas placas planas não resolvem o problema da dificuldade da limpeza das chapas ranhuradas e o risco de entupimento da matriz.
Assim, o estado da técnica conforme já descrito apresenta muitas limitações para a recuperação de partículas ultrafinas, dentre as quais as principais são:
1 . A limitação do campo e do gradiente magnético a valores que são insuficientes para atrair e separar as micropartículas;
2. A passagem livre e desimpedida da polpa pelos canais formados pelas ranhuras das matrizes, permitindo que a polpa passe em velocidade muito alta e, portanto, reduzindo muito o tempo disponível para que as micropartí- culas sejam capturadas;
3. A disponibilidade limitada de comprimento de arestas coletoras nas chapas ranhuradas cujo comprimento se limita apenas ao comprimento da crista das ranhuras.
Vários modelos de matrizes foram desenvolvidos ao longo dos últimos 50 anos, utilizando esferas metálicas, esponjas de aço, e finalmente placas de aço expandidas planas colocadas entre as chapas ranhuradas, na tentativa de solucionar estes problemas, porém com sucesso limitado, permanecendo o principal problema, a dificuldade de limpeza das matrizes em caso de entupimento, o que paraliza a produção.
Objetivos da invenção
O objetivo da invenção é permitir que os separadores magnéticos, operem com campos magnéticos com intensidade de até 18.000 Gauss, e gradientes de até 4000 Gauss/mm, aumentando a quantidade e a variedade de partículas magnéticas que são extraídas e recuperadas da polpa de minério, permitindo a extração de partículas com menor granulometria e susceptibilidade magnética mais baixa.
Outro objetivo da invenção é de proporcionar uma matriz para o separador magnético que seja fácil de limpar e reduza o risco de entupimento do separador, e a consequente interrupção da operação da planta onde o separador magnético é instalada.
A presente invenção objetiva também diminuir a quantidade de resíduos e rejeitos minerais armazenados em barragens, e reduzindo o desperdício de água no processo de mineração.
Outro objetivo da invenção é maximizar a quantidade e a qualidade do material com valor comercial extraído do minério, elevando-se, assim, o valor dessa matéria prima.
A presente invenção também tem o objetivo de melhorar o desempenho de separadores magnéticos, aumentando a quantidade e a variedade de partículas magnéticas que são extraídas e recuperadas da polpa de minério, permitindo a extração de partículas com menor granulometria e susceptibilidade magnética mais baixa.
Breve Descrição da invenção
Os problemas do estado da técnica são solucionados por matriz magnética para separador magnético de alta intensidade que é alimentada com uma polpa contendo partículas magnéticas e não-magnéticas, a matriz magnética compreendendo uma série de chapas metálicas ranhuradas nas suas duas faces, as chapas ranhuradas sendo arranjadas enfileiradas, paralelas e espaçadas entre si de um mesmo espaçamento dentro de um aloja- mento, sendo que cada face de cada chapa ranhurada metálica possui as cristas alinhadas com os vales da face voltada para ela da chapa ranhurada metálica adjacente.
Uma placa expandida ondulada é disposta em cada espaçamento entre chapas ranhuradas adjacentes, com as ondulações das placas ex- pandidas onduladas acompanhando os alinhamentos crista-vale das respectivas chapas ranhuradas adjacentes.
A matriz magnética pode compreender placas expandidas onduladas de diferentes alturas, sendo que altura das chapas é menor ou igual à altura das chapas ranhuradas. A altura de cada placa expandida ondulada é selecionada em função de pelo menos um dentre a carga hidráulica, a velocidade de passagem da polpa, e o tempo de residência da polpa dentro da matriz. Cada placa expandida ondulada possuem uma alça na sua extremidade superior.
Essa configuração permite que placas de aço expandidas com perfil ondula- do possam ser perfeitamente inseridas no espaço entre as chapas ranhuradas.
Breve Descrição dos desenhos
As figuras ilustram:
Figura 1 - uma vista frontal de uma matriz magnética de acordo com o esta- do da técnica, usando chapas ranhuradas alinhadas crista-a-crista;
Figura 1 A - uma vista em detalhe ampliado de uma matriz magnética da figura 1 ; Figura 1 B - uma vista em detalhe ampliado da matriz magnética da figura 1 com uma placa expandida plana disposta entre as placas;
Figura 2 -uma matriz magnética de acordo com a presente invenção;
Figura 2A - uma vista em detalhe ampliado de uma matriz magnética da fi- gura 2;
Figura 2B - uma vista em detalhe ampliado da matriz magnética da figura 2 com uma placa expandida plana disposta entre as placas;
Figura 3 - uma vista em perspectiva da matriz magnética de acordo com a invenção;
Figura 3A - uma vista em detalhe ampliado de uma matriz magnética da figura 3, sem uma parte do alojamento externo da matriz, e mostrando seu interior;
Figura 3B - uma vista em detalhe ampliado das chapas ranhuradas com placa de trama ondulada dentro da matriz da figura 3;
Figura 4 - uma vista da matriz magnética com cortes em planos variados, mostrando a disposição das chapas ranhuradas e das placas de trama onduladas;
Figura 5 - uma vista em detalhe da placa de trama expandida ondulada em frente à chapa ranhurada.
Descrição detalhada dos desenhos
Esta invenção pode ser melhor intendida através das figuras 1 a 5. Na Figura 1 é mostrada uma matriz magnética convencional 1 , que é o padrão atual do mercado, e que pode ser melhor vista no detalhe da figura 1 A. Nas matrizes magnéticas de separadores magnéticos de alta intensidade (WHIMS), as chapas ranhuradas 7 são dispostas com as cristas de placas adjacentes alinhadas perfeitamente conforme a linha 3. O espaçamento 6 entre as chapas ranhuradas 7 é indicado pela distância indicada pela referência 6 existente entre as cristas das chapas ranhuradas 7 adjascentes. Este espaçamento 6 é denominado na tecnologia de separação magnética simplesmente com "GAP".
Na figura 1 B é mostrada em detalhe ampliado uma versão da matriz magnética com placa expandidas planas 5 dispostas entre as chapas ranhuradas. Nota-se que o alinhamento crista-crista das chapas ranhuradas não permite que haja espaço suficiente entre duas chapas ranhuradas para que seja encaixada uma placa ondulada entre elas, que preencha totalmente as ranhuras das placas.
A figura 2 mostra uma matriz magnética 8 de acordo com a presente invenção construída com chapas ranhuradas 7, que podem ser vistas mais claramente no detalhe da figura 2A. A linha 10 indica o alinhamento da crista de uma placa com o vale da placa adjacente, caracterizando a configuração crista-vale. Este tipo de montagem das chapas ranhuradas 7 permite a intro- dução entre duas placas adjacentes de uma placa expandida ondulada 12, preferivelmente de aço, que preenche de modo eficiente o espaço das ranhuras, conforme mostrado na vista em detalhe ampliado 2B.
Comparando-se a figura 1 B com a figura 2B, pode ser observado que a placa expandida ondulada 12 tem uma extensão total até 41 % maior do que a extensão de comprimento da placa expandida plana 5. Este aumento de comprimento pode ser confirmado pelo fato de que a largura total da placa expandida ondulada 12 é formada pela soma dos lados dos triângulos retân- gulos isósceles que adentram as ranhuras, uma a uma, enquanto que o comprimento da placa expandida plana é igual à soma das bases destes triângulos. A relação geométrica indica que a soma dos lados destes triângulos é 1 ,41 vezes o comprimento das bases.
Esta configuração da placa de aço expandida ondulada 12 que permite este aumento de comprimento é um dos principais fatores para aumentar a produção da matriz magnética ondulada, pois este aumento de comprimento resulta diretamente no aumento da superfície coletora das microparticulas magnéticas.
A figura 3 mostra uma vista em perspectiva da matriz magnética 8 de acordo com a presente invenção com as chapas ranhuradas 7 na disposição crista- vale e as placas onduladas 12 dispostas entre elas. Essa modalidade da invenção que é mais claramente ilustrada nas vistas em detalhe ampliado da figura 3A, que mostra a matriz sem uma parte do seu alojamento externo para visualização das chapas e placas no seu interior, e da figura 3B que mostra em detalhe o interior da matriz. As placas onduladas são constituídas por diversos filetes 16 ondulados ou em zigue-zague formando uma trama expandida ondulada. Essas placas de tramas onduladas 12 possuem, em suas quinas, arestas coletoras 17 que são responsáveis também pela geração do gradiente magnético responsável pela atração das microparticu- las magnéticas. Essas placas de trama onduladas 12 são igualmente inseridas entre as chapas ranhuradas.
Como pode ser visto na figura 3, para manuseio das placas expandidas onduladas 12 são disponíveis as alças 15 nas suas extremidades superiores, através das quais as placas onduladas 12 podem ser deslocadas para cima e para baixo, tanto nos momentos de instalação e retirada das placas onduladas 12, como nos momentos de limpeza das chapas ranhuradas.
Na figura 4, é mostrada uma vista em corte da matriz magnética 8 com a configuração crista-vale mostrada em corte em planos variados, de forma a poderem ser visualizadas as placas onduladas 12 com as alturas variáveis, sendo uma altura maior 19 e uma altura menor 20. O fluxo de polpa que esta sendo alimentado é representado pela seta 18. Pela escolha da altura adequada da placa expandida ondulada 12, é possível ajustar a perda de carga hidráulica para definir a velocidade de passagem da polpa, e também ajustar corretamente o tempo de residência da polpa dentro das matrizes do separador às características específicas do mineral que estiver sendo processado.
A figura 5 mostra a placa expandida ondulada 12 em frente à chapa ranhu- rada 7. Algumas arestas coletoras 17 ressaltadas em negrito 21 indicam o comprimento das linhas onde são coletadas as partículas magnéticas para melhor esclarecer o efeito que o maior comprimento da placa expandida ondulada tem no aumento da produção.
As modificações aqui descritas aplicadas a este tipo de matriz magnética ondulada propiciam também três características que melhoram o processo de separação magnética, a saber:
1 . A presença da placa entre as matrizes permite reduzir a velocidade da polpa em processo de separação, reduzindo, assim, o arraste hidrodinâmico que a água contida exerce sobre as micropartículas. A velocidade reduzida é um fator fundamental para que as micropartículas tenham tempo suficiente para serem coletadas nas arestas formadas pelos filetes da placa expandida ondulada.
2. O formato ondulado e pela multiplicidade de arestas da placa expandida ondulada permite um aumento substancialmente dos pontos de coleta das micropartículas, aumentando a recuperação em massa do produto vendável. Este prolongamento das arestas coletoras dos filetes juntamente com a redução da velocidade da polpa e a geração de altos gradientes magnéticos se somam para maximizar a recuperação e a qualidade do produto magnético.
3. Como as chapas ranhuradas são alinhadas na forma crista-vale, e devido ao formato ondulado das placas expandidas que são inseridas entre os canais formados pelas chapas ranhuradas opostas, ficando imbricadas entre elas, essa disposição forma um sanduíche, permitindo que, em caso de entupimento dos canais por qualquer motivo, a obstrução possa ser rapidamente eliminada, simplesmente pela remoção destas telas de aço onduladas de dentro dos canais da matriz.
A retirada da tela arrasta para fora os materiais que estão provocando o en- tupimento. A tela removida pode então ser limpa e recolocada facilmente na posição original, completando assim o processo de desentupimento. Dessa forma, não há necessidade de se utilizar outros equipamentos de limpeza para o pequeno espaço entre as chapas ranhuradas, já que estas placas expandidas onduladas servem como uma ferramenta natural para efetuar a limpeza das ranhuras em caso de entupimento.
Além disso, essa matriz magnética ondulada possui uma estrutura tal que, quando submetida ao campo do separador magnético, permite que se obtenha por indução, no seu interior, induções magnéticas da ordem de até 18.000 Gauss com gradientes magnéticos de até 4000 Gauss/mm, aumen- tando sensivelmente sua capacidade de extrair partículas ultrafinas do minério que está sendo processado. Isso porque as placas expandidas onduladas contribuem para aumentar o valor do campo magnético dentro da matriz. A operação combinada de todas estas características descritas se somam para propiciar o alto desempenho, produtividade e facilidade operacional da matriz magnética ondulada objeto desta invenção.
Tendo sido descrito um exemplo de concretização preferido, de- ve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1 . Matriz magnética para separador magnético de alta intensidade que é alimentada com uma polpa contendo partículas magnéticas e não- magnéticas, a matriz magnética (8) compreendendo uma série de chapas metálicas (7) ranhuradas nas suas duas faces, as chapas ranhuradas sendo arranjadas enfileiradas, paralelas e espaçadas entre si de um mesmo espaçamento (6) dentro de um alojamento,
caracterizada pelo fato de que cada face de cada chapa ranhu- rada metálica (7) possui as cristas alinhadas com os vales da face voltada para ela da chapa ranhurada metálica (7) adjacente.
2. Matriz magnética ondulada para separador magnético de alta intensidade de acordo com a reivindicação 1 , caracterizada pelo fato de compreender uma placa expandida ondulada (12) disposta em cada espaçamento (6) entre chapas ranhuradas (7) adjacentes, com as ondulações das placas expandidas onduladas (12) acompanhando os alinhamentos cris- ta-vale das respectivas chapas ranhuradas (7) adjacentes.
3. Matriz magnética ondulada para separador magnético de alta intensidade de acordo com qualquer uma das reivindicações 1 a 2, caracterizada pelo fato de compreender placas expandidas onduladas (12) de dife- rentes alturas, sendo que altura das placas expandidas onduladas é menor ou igual à altura das chapas ranhuradas (12).
4. Matriz magnética ondulada para separador magnético de alta intensidade de acordo com a reivindicação 3, caracterizada pelo fato de que a altura de cada placa expandida ondulada (12) é selecionada em função de pelo menos um dentre a carga hidráulica, a velocidade de passagem da polpa, e o tempo de residência da polpa dentro da matriz.
5. Matriz magnética ondulada para separador magnético de alta intensidade de acordo com qualquer uma das reivindicações 1 a 4, caracterizada pelo fato de que cada placa expandida ondulada (12) possuem uma alça (15) na sua extremidade superior.
PCT/BR2017/050286 2016-09-28 2017-09-28 Matriz magnética para separador magnético de alta intensidade WO2018058222A1 (pt)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2019003515A MX2019003515A (es) 2016-09-28 2017-09-28 Matriz magnetica para separador magnetico de alta intensidad.
EP17800697.9A EP3520900A1 (en) 2016-09-28 2017-09-28 Magnetic matrix for high-intensity magnetic separator
AU2017337526A AU2017337526A1 (en) 2016-09-28 2017-09-28 Magnetic matrix for high-intensity magnetic separator
RU2019112848A RU2749231C2 (ru) 2016-09-28 2017-09-28 Магнитная матрица для магнитного сепаратора с высокой интенсивностью магнитного поля
US16/337,069 US11084045B2 (en) 2016-09-28 2017-09-28 Magnetic matrix for high intensity magnetic separator
CA3045932A CA3045932A1 (en) 2016-09-28 2017-09-28 Magnetic matrix for high-intensity magnetic separator
ZA2019/02651A ZA201902651B (en) 2016-09-28 2019-04-26 Magnetic matrix for high-intensity magnetic separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016022548-5A BR102016022548B1 (pt) 2016-09-28 2016-09-28 Matriz magnética ondulada para separador magnético de alta intensidade
BRBR102016022548-5 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018058222A1 true WO2018058222A1 (pt) 2018-04-05

Family

ID=60387790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/050286 WO2018058222A1 (pt) 2016-09-28 2017-09-28 Matriz magnética para separador magnético de alta intensidade

Country Status (9)

Country Link
US (1) US11084045B2 (pt)
EP (1) EP3520900A1 (pt)
AU (1) AU2017337526A1 (pt)
BR (1) BR102016022548B1 (pt)
CA (1) CA3045932A1 (pt)
MX (1) MX2019003515A (pt)
RU (1) RU2749231C2 (pt)
WO (1) WO2018058222A1 (pt)
ZA (1) ZA201902651B (pt)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529636B2 (en) 2020-10-09 2022-12-20 Cláudio Henrique Teixeira Ribeiro Magnetic matrices and methods of using the same
BR102020023390B1 (pt) * 2020-11-16 2021-10-05 Vale S.A. Método e sistema para remoção de partículas de minério de ferro aderidas por histerese magnética a uma matriz magnética de um separador magnético vertical
CN114632619B (zh) * 2022-03-25 2022-11-29 东北大学 一种采用风力送料的无动力电磁平板式干式磁选机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1559338A (en) * 1975-07-21 1980-01-16 Kloeckner Humboldt Deutz Ag Method and device for the wet magnetic dressing of fine gred solid
GB1576071A (en) * 1976-03-26 1980-10-01 Fives Cail Babcock Magnetic separator
DE3744167A1 (de) * 1987-12-24 1989-07-06 Krupp Gmbh Magnetscheider
SU1593701A1 (ru) * 1988-01-04 1990-09-23 Государственный проектно-конструкторский институт "Гипромашуглеобогащение" Ферромагнитный наполнитель дл магнитного сепаратора
US20160151788A1 (en) * 2013-06-28 2016-06-02 National Institute Of Advanced Industrial Science And Technology Matrix for Magnetic Separator and Magnetic Separator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1032742A (en) * 1961-10-12 1966-06-15 Ozonair Engineering Company Lt Improvements in or relating to gas filters
US3830367A (en) * 1972-06-26 1974-08-20 W Stone High intensity wet magnetic separators
US3912634A (en) * 1974-05-01 1975-10-14 Eriez Mfg Co Filter cartridge for a magnetic separator
US4737294A (en) * 1985-08-14 1988-04-12 Krupp Polysius Ag Matrix-ring magnetic separator
US4874508A (en) * 1988-01-19 1989-10-17 Magnetics North, Inc. Magnetic separator
SU1639749A1 (ru) * 1989-04-03 1991-04-07 Научно-исследовательский и проектный институт по обогащению и агломерации руд черных металлов "Механобрчермет" Магнитный сепаратор
SU1648568A1 (ru) * 1989-05-11 1991-05-15 Днепропетровский горный институт им.Артема Электромагнитный полиградиентный сепаратор
US5514340A (en) * 1994-01-24 1996-05-07 Magnetix Biotechnology, Inc. Device for separating magnetically labelled cells
US6241894B1 (en) * 1997-10-10 2001-06-05 Systemix High gradient magnetic device and method for cell separation or purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1559338A (en) * 1975-07-21 1980-01-16 Kloeckner Humboldt Deutz Ag Method and device for the wet magnetic dressing of fine gred solid
GB1576071A (en) * 1976-03-26 1980-10-01 Fives Cail Babcock Magnetic separator
DE3744167A1 (de) * 1987-12-24 1989-07-06 Krupp Gmbh Magnetscheider
SU1593701A1 (ru) * 1988-01-04 1990-09-23 Государственный проектно-конструкторский институт "Гипромашуглеобогащение" Ферромагнитный наполнитель дл магнитного сепаратора
US20160151788A1 (en) * 2013-06-28 2016-06-02 National Institute Of Advanced Industrial Science And Technology Matrix for Magnetic Separator and Magnetic Separator

Also Published As

Publication number Publication date
CA3045932A1 (en) 2018-04-05
US11084045B2 (en) 2021-08-10
US20200030817A1 (en) 2020-01-30
MX2019003515A (es) 2019-08-29
BR102016022548B1 (pt) 2022-03-22
AU2017337526A1 (en) 2019-05-23
BR102016022548A2 (pt) 2018-05-02
RU2749231C2 (ru) 2021-06-07
RU2019112848A3 (pt) 2020-12-16
EP3520900A1 (en) 2019-08-07
ZA201902651B (en) 2020-08-26
RU2019112848A (ru) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2018058222A1 (pt) Matriz magnética para separador magnético de alta intensidade
CN104689907B (zh) 用于磁选机的聚磁介质、聚磁介质盒、聚磁介质柱及其应用
TWI604892B (zh) Magnetic separator
BR112016004282B1 (pt) separador e disposição de placas paralelas inclinadas para uso em uma câmara de separação de um separador
Wang et al. Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets
CN102600969B (zh) 一种优化磁介质排列组合的单元介质分析方法
US3125426A (en) Collecting electrodes and electrode system
US6045705A (en) Magnetic separation
CN207086310U (zh) 烟叶振动筛分装置
BR102014025674A2 (pt) peneira de proteção para separador magnético e separador magnético possuindo essa peneira
BR102015031762B1 (pt) matriz magnética, separador magnético de alta intensidade e método de ajuste do campo magnético gerado dentro desse separador
US3518813A (en) Extended discharge systems for electrostatic precipitators
Yuan et al. Development and performance of a permanent magnet pulsating separator
De Jamblinne de Meux et al. Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries
RU2376070C2 (ru) Электромагнитный сепаратор
CN210496808U (zh) 磁介质盒、磁介质盒模组和选矿设备
US4122005A (en) Magnetic separator
WO1989004724A1 (en) Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream
CN210646801U (zh) 立环高梯度磁选机用不易堵塞的介质盒
CN104646289A (zh) 防堵筛板
RU144123U1 (ru) Магнитный сепаратор
KR102491075B1 (ko) 영구자석을 이용한 자기 분리 장치 및 이의 필터 구조체
CN203791041U (zh) 一种立环强磁选机用易清理介质盒
BR102019002597B1 (pt) Tela modular para classificação cúbica e lamelar em peneiras vibratórias e sistema de vibração independente
CN107570319B (zh) 一种防堵塞防腐蚀的平环聚磁介质盒及其组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17800697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017800697

Country of ref document: EP

Effective date: 20190429

ENP Entry into the national phase

Ref document number: 2017337526

Country of ref document: AU

Date of ref document: 20170928

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3045932

Country of ref document: CA