WO2018056570A1 - Single electron-occupied quantum dots and method for controlling magnetism thereof - Google Patents

Single electron-occupied quantum dots and method for controlling magnetism thereof Download PDF

Info

Publication number
WO2018056570A1
WO2018056570A1 PCT/KR2017/008471 KR2017008471W WO2018056570A1 WO 2018056570 A1 WO2018056570 A1 WO 2018056570A1 KR 2017008471 W KR2017008471 W KR 2017008471W WO 2018056570 A1 WO2018056570 A1 WO 2018056570A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
quantum dots
thiol
quantum
dot nanoparticles
Prior art date
Application number
PCT/KR2017/008471
Other languages
French (fr)
Korean (ko)
Inventor
정광섭
정주연
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018056570A1 publication Critical patent/WO2018056570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0811Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to a single electron occupied quantum dot and its magnetic control method, and more particularly, to a quantum dot nanoparticle and its magnetic control method comprising a single electron in the quantized energy level of the conduction band.
  • Size-controllable colloidal quantum dots have been developed rapidly over the past 30 years and are now widely used in imaging, displays, sensors, solar cells, detectors, and spectroscopy. These quantum dots are nano-sized semiconductor materials, so optimizing the doping concentration is very important for the electrical and optical properties to determine the performance of the device.
  • heterogeneous impurities are included in the nanocrystals.
  • the carrier concentration is increased by the metal impurity doping.
  • the doping of the metal impurities acts as a carrier recombination trap, there has been no report on the result of filling the lowest energy level in the conduction band with electrons by the addition of the metal impurities.
  • the lowest energy level in the conduction band of the nanomaterial can be stably filled with electrons, electron transfer between the quantized energy levels in the conduction band will be possible, rather than a band gap transition.
  • Filling electrons with the lowest energy level (1S e ) in the conduction band of a quantum dot is similar to filling electrons with the lowest-unoccupied-molecular orbital (LUMO) in the molecule.
  • LUMO lowest-unoccupied-molecular orbital
  • SOMO single occupied molecular orbital
  • SOMO single occupied molecular orbital
  • the lowest energy level of the colloidal quantum dots can be filled with single electrons, it will greatly affect semiconductor nanomaterials including inorganic semiconductor nanomaterials and organic semiconductor molecules.
  • the magnetism of colloidal quantum dots has been studied a lot over the last decade with respect to the adjustable band gap due to the possibility of quantum dot application such as spintronics.
  • the magnetism of the impurity doped nanocrystals originates mainly from the electrons of the metal impurities contained in the nanocrystals. Strictly speaking, the magnetism of the impurity doped colloidal quantum dots is not due to the nanocrystals themselves, but to the doped impurity metal ions.
  • quantum dots can be largely manufactured by the following two methods. One is a method by lithography using a light source such as a laser, and the other is a chemical wet method of growing crystals by adding a precursor material to a solvent. Of these, the synthesis of quantum dots by the chemical wet method has an advantage of controlling the uniformity of the size and shape of the nanocrystals through an easier and cheaper process than the lithography method.
  • colloidal quantum dots passivated with organic ligands do not aggregate in solution due to steric hindrance of organic ligands, maintain a stable structure, and exhibit excellent luminescence properties by passivation of surface defects.
  • colloidal quantum dots stabilized by conventional thiol organic ligands have a disadvantage in that ligand substitution for photoelectric applications such as photodetectors or solar cells is not easy.
  • Patent Document 1 KR2002-0026495 A
  • the present inventors while searching for the magnetic control method of the quantum dot, when adjusting the chemical reaction time of the quantum dot, it is possible to fill the quantized energy level in the conduction band of the quantum dot with a single electron, and also to adjust the number of electrons It confirmed that it can control and completed this invention.
  • the present invention is to provide a quantum dot nanoparticle comprising a quantum dot core and a mutiol ligand bonded to the core, and including a single electron in the quantized energy level of the conduction band, and a method of manufacturing the same.
  • the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol-free ligand at 40 ⁇ 120 °C, the reaction time of the quantum dots It is to provide a magnetic control method of the quantum dot nanoparticles, characterized in that the magnetic control.
  • the present invention is to provide a semiconductor device comprising the quantum dot nanoparticles.
  • the present invention is a.
  • a quantum dot core and a thiol- or thiol ligand bonded to the core
  • a quantum dot nanoparticle comprising a single electron at a quantized energy level in a conduction band.
  • the present invention provides a method for producing quantum dot nanoparticles comprising the step of reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ⁇ 120 °C.
  • the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ⁇ 120 °C, by adjusting the reaction time It provides a magnetic control method of the quantum dot nanoparticles, characterized in that for controlling the magnetism of the quantum dots.
  • the present invention provides a semiconductor device comprising the quantum dot nanoparticles.
  • the present invention provides a quantum dot nanoparticle comprising a quantum dot core and a thiol-free or thiol ligand bonded to the core and including a single electron at a quantized energy level of a conduction band.
  • the quantum dot is a nano-scale semiconductor material and exhibits a quantum limiting effect.
  • These quantum dots have a quantized discontinuous energy level and absorb light from an excitation source to reach an energy excitation state, thereby emitting energy corresponding to the energy level interval of the quantum dot, thereby enabling light emission from the ultraviolet region to the infrared region. Therefore, if the energy level in the conduction band of the quantum dot can be stably filled with electrons, the electron transition between the quantized energy levels in the conduction band is possible, not the band gap transition. It is very difficult to control the magnetism of these quantum dots.
  • the present invention can fill the quantized energy level in the conduction band with single electrons by controlling the reaction time of the quantum dot nanocrystals rather than the doping of impurities, and can also control the magnetism of the quantum dots by controlling the number of electrons. do.
  • the quantized energy level is S e , P e , or It may be a D e level, preferably 1S e , 1P e , or 1D e , or may be a higher level thereof.
  • the quantum dots may exhibit paramagnetic or paramagnetic magnetism in response to an externally applied magnetic field.
  • paramagnetic properties may be exhibited.
  • diamagnetic properties may be observed. Can be represented.
  • the average diameter of the quantum dot may be 1 ⁇ 20 nm, preferably 3 ⁇ 15 nm. Not only the size of the quantum dots can be controlled by controlling the reaction time of the nanocrystal, but also the reaction rate can be controlled according to the precursor type.
  • the quantum dot may include a core and an organic or inorganic ligand bonded to the core.
  • the quantum dot core may include a II-VI semiconductor compound, a III-V semiconductor compound, a IV-VI semiconductor compound, a IV group element or a compound, or a combination thereof.
  • the quantum dot core is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTd, ZnSd, ZnSn, CdZn , CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgST
  • the quantum dot core may be a Group 12 metal-chalcogen nanocrystal, and specifically, may be HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, or the like.
  • the ligand refers to a material that binds to the nanocrystals to prevent aggregation of quantum dots and to fix and stabilize the quantum dots.
  • the said thiol-free ligand is a ligand which does not contain a thiol group, and means an organic or inorganic ligand other than the thiol which couple
  • Colloidal quantum dots stabilized by conventional thiol ligands have a disadvantage in that ligand substitution for photoelectric applications such as photodetectors or solar cells is not easy. Therefore, the use of the non-thiol ligand, in particular oleic acid or oleylamine, has the advantage of very easy ligand substitution while maintaining the n-type doping of the quantum dots.
  • the thiol or thiol ligand is oleic acid (oleic acid), oleylamine (oleylamine), mercaptopropionic acid (MPA), cysteamine (cysteamine), mercaptoacetic acid (mercaptoacetic acid), TOP (trioctylphosphine), TOPO (trioctylphosphine oxide, octylamine, trioctyl amine, hexadecylamine, octadechiol, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA) ) And octylphosphinic acid (OPA) and the like, preferably oleic acid or oleylamine.
  • MPA cysteamine
  • mercaptoacetic acid mercaptoacetic acid
  • TOP trioctylphosphine
  • the present invention provides a method for producing quantum dot nanoparticles comprising the step of reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ⁇ 120 °C.
  • a Group 12 metal precursor solution dissolved in a thiol-free or thiol ligand at a temperature of 90-130 ° C. is separately mixed with a chalcogen precursor solution dissolved in a thiol-free or thiol ligand at a temperature of 160-200 ° C.
  • the colloidal quantum dot nanoparticles may be prepared by heating the mixed solution at 40 to 120 ° C.
  • a quantum dot is manufactured by vapor deposition such as metal organic chemical vapor deposition (MOCVD) or molecular beamepitaxy (MBE), or a chemical wet method is used in which a precursor material is added to a solvent to grow crystals.
  • the chemical wet method controls the growth of crystals by allowing the solvent to naturally coordinate on the quantum dot crystal surface as a dispersant when the crystal grows.
  • the size of nanocrystals is easier and cheaper than vapor deposition such as MOCVD or MBE. And has the advantage of controlling the uniformity of the shape.
  • a quantum dot manufactured by a chemical wet process is not used as a stock solution, and a predetermined ligand is coordinated around the quantum dot for stabilization or ease of use.
  • the thiol or thiol ligand is oleic acid (oleic acid), oleylamine (oleylamine), mercaptopropionic acid (MPA), cysteamine (cysteamine), mercaptoacetic acid (mercaptoacetic acid), TOP (trioctylphosphine), TOPO (trioctylphosphine oxide, octylamine, trioctyl amine, hexadecylamine, octadechiol, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA) ) And octylphosphinic acid (OPA) and the like, preferably oleic acid or oleylamine.
  • MPA cysteamine
  • mercaptoacetic acid mercaptoacetic acid
  • TOP trioctylphosphine
  • Such a thiol-free or thiol ligand may be used in a molar ratio of 1 to 100 with respect to the Group 12 metal precursor. If the amount is less than 1 molar ratio, the quantum dot is significantly fixed after synthesis of the quantum dots, causing aggregation of the quantum dots in a solution, thereby causing quantum effects. Since there is a problem that the addition effect of the ligand is halved because it is lost, if there is more than 100 molar ratio there is a problem that the quantum dots reaggregate due to a decrease in solubility.
  • the chalcogen is preferably mixed in an amount of 0.1 to 10 moles, preferably 0.2 to 5 moles per 1 mole of the Group 12 metal. If the amount of the chalcogen is less than 0.2 molar ratio, the yield of quantum dot production is lowered. If the amount of chalcogen is exceeded, the amount of unreacted chalcogen is increased. It is advantageous to maintain the above range.
  • the Group 12 metal in the Hg, Zn, as there may be Cd or the like, precursor thereof is HgCl 2, ZnCl 2, CdCl 2 , HgSO 4, ZnSO 4, CdSO 4, Hg (CH 3 COOH) 2, Zn (CH 3 COOH) 2 , Cd (CH 3 COOH) 2 And the like can be used, but is not limited thereto.
  • the chalcogen precursor is S, Se, Te and mixtures thereof; Alkyl thiol compounds such as hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane; Sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), trimethylsilyl sulfur (trimethylsilyl sulfur), ammonium sulfide, sodium sulfide, thiol urea, selenium-trioctylphosphine (Se-TOP), selenium-tributylphosphine (Se-TBP), selenium-triphenylphosphine (Se-TPP), Sel
  • the reaction is carried out in the range of 10 ⁇ 250 °C, preferably 40 ⁇ 120 °C significantly lower than 300 ⁇ 350 °C the conventional quantum dot manufacturing temperature, if the reaction temperature is less than 40 °C quantum dots do not form 120 °C If exceeded, the generated quantum dots may grow excessively and may not exhibit quantum effects.
  • the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ⁇ 120 °C, by adjusting the reaction time It provides a magnetic control method of the quantum dot nanoparticles, characterized in that for controlling the magnetism of the quantum dots.
  • the present invention is characterized by controlling the magnetism of the quantum dot by adjusting the reaction time of the quantum dot nanoparticles.
  • By controlling the reaction time it is possible to control the characteristics of the size of the quantum dot and the composition ratio of the Group 12 metal and chalcogen, and thus to adjust the number of electrons in the quantized energy level of the conduction band to 0, 1 or 2 have.
  • the quantum dot when the nanocrystal reaction time is less than 20 seconds, the quantum dot was diamagnetic, but when the reaction time is 20 seconds to 40 seconds, the quantum dot was paramagnetic. In addition, when the reaction time is more than 40 seconds, the magnetic characteristics due to the single electrons disappear quickly, and the quantum dots are diamagnetic again. This indicates that the number of electrons in the energy level in the conduction band changed to 0, 1 and 2 as the reaction time was adjusted.
  • the magnetic control method of the quantum dot nanoparticles may include the step of treating sulfur (S), selenium (Se) or tellurium (Te) prepared quantum dot nanoparticles.
  • S sulfur
  • Se selenium
  • Te tellurium
  • electrons of quantized energy levels in the conduction band can be lost, and such sulfur (S), selenium (Se) or tellurium (Te) Can control the number of electrons.
  • the magnetic state of the quantum dot nanoparticles can control the number of electrons through environmental factors depending on the degree of passivation.
  • the present invention provides a semiconductor device comprising the quantum dot nanoparticles.
  • the semiconductor device may be an LED, a solar cell, a television, a transistor, an infrared camera, an infrared laser, an infrared detector, an infrared therapy device, an infrared communication device, a gas sensor, a color filter, or the like.
  • the magnetic control method of the quantum dot according to the present invention by adjusting the chemical reaction time of the quantum dot, it is possible to fill the quantized energy level in the conduction band of the quantum dot with a single electron, and to control the magnetism of the quantum dot by controlling the number of electrons It works.
  • the quantum dot is prepared by including a non-thiol ligand, there is an effect that the ligand replacement is very easy while maintaining the n-type doping of the quantum dot compared to the conventional thiol ligand.
  • FIG. 1 is a schematic diagram of an electron occupancy state of quantized energy levels in a conduction band of a quantum dot according to Example 1.
  • FIG. 1 is a schematic diagram of an electron occupancy state of quantized energy levels in a conduction band of a quantum dot according to Example 1.
  • EPR electron paramagnetic resonance
  • FIG. 3 is a diagram showing an infrared (IR) absorption spectrum of a HeSe quantum dot showing an electron transition from the 1 Se level to the 1 Pe level in the conduction band according to Example 1.
  • IR infrared
  • TEM 4 is a transmission electron microscope (TEM) image of a HeSe quantum dot according to Example 1 (reaction time 4 minutes).
  • the inset shows a high resolution TEM image of a HeSe quantum dot having a (111) lattice structure with a distance of 3.45 ⁇ s.
  • FIG. 5 is a scanning electron microscope (STEM) image of a HeSe quantum dot according to Example 1 (reaction time 1 minute).
  • FIG. 7 is a diagram showing XPS spectra according to nanocrystal reaction time (15 seconds, 30 seconds, and 2 minutes) of HeSe quantum dots according to Example 1.
  • FIG. 7 is a diagram showing XPS spectra according to nanocrystal reaction time (15 seconds, 30 seconds, and 2 minutes) of HeSe quantum dots according to Example 1.
  • FIG. 8 is a diagram showing electron paramagnetic resonance (EPR) spectra of nanocrystal reaction time (15 seconds and 30 seconds) and sulfur (S) treated HgSe quantum dots of HeSe quantum dots according to Example 1.
  • EPR electron paramagnetic resonance
  • FIG. 9 is a diagram showing electron paramagnetic resonance (EPR) spectra for a single electron occupying quantum state (SOQS) of HeSe quantum dots at various temperatures.
  • EPR electron paramagnetic resonance
  • 10 is a diagram illustrating differential spectra of an EPR spectrum with decreasing temperature.
  • FIG. 11 shows the results of superconducting quantum interference device (SQUID) measurements of HeSe quantum dots at two different temperatures 300K and 4K.
  • SQUID superconducting quantum interference device
  • FIG. 12 is a graph showing the results of measuring the susceptibility of HeSe quantum dots at two different magnetic fields 1000G and 10000G according to temperature changes.
  • Mercury (II) chloride HgCl 2 , ACS, 99.5%
  • HgSe quantum dots Selenium urea (98%), oleylamine (OLA, technical grade, 70%), tetrachloro Ethylene (TCE, ACS reagent, at least 99.0%
  • ammonium sulfide solution in H 2 O, 40-48 wt%) were purchased from Sigma-Aldrich.
  • mercury (Hg) precursor solution was prepared by dissolving 27.2 mg of HgCl 2 (0.1 mmol) in oleylamine, followed by degassing at 85 ° C. for 1 hour, and heating at 110 ° C. for 1 hour.
  • Hg mercury
  • selenium urea 0.1 mmol
  • the mercury (Hg) precursor solution and the selenium (Se) precursor solution were mixed, and the mixture was heated at about 40 to 120 ° C.
  • the reaction time was adjusted to 10 seconds (s) to 30 minutes (min) to control the size of the resulting quantum dots, and the injection mixture containing a non-polar solvent of tetrachloroethylene (tetrachloroethylene) containing oleylamine HgSe quantum dots were prepared by cooling to room temperature with cooling water to terminate the reaction.
  • the HgSe quantum dots were then precipitated with methanol, dried and redispersed in tetrachloroethylene.
  • An HgS quantum dot was prepared in the same manner as in Example 1.1, except that sulfur (S) precursor was used instead of selenium (Se) precursor in Example 1.1.
  • An HgTe quantum dot was prepared in the same manner as in Example 1.1, except that the tellurium (Te) precursor was used instead of the selenium (Se) precursor in Example 1.1.
  • a CdSe quantum dot was prepared in the same manner as in Example 1.1, except that cadmium (Cd) precursor was used instead of the mercury (Hg) precursor in Example 1.1.
  • a ZnSe quantum dot was prepared in the same manner as in Example 1.1, except that a zinc (Zn) precursor was used instead of a mercury (Hg) precursor in Example 1.1.
  • 0.5 mL of oleylamine and 150 ⁇ l of 0.1 M (NH 4 ) 2 S in methanol were mixed in a colloidal quantum dot solution dispersed in tetrachloroethylene according to Examples 1.1 to 1.5, respectively.
  • the mixed solution was stirred at 25 ° C. for 5 minutes, precipitated with ethanol and centrifuged. The precipitate was then dried and then redispersed in tetrachloroethylene.
  • the magnetic and morphological characteristics of the colloidal quantum dots were analyzed.
  • An electron paramagnetic resonance spectrometer (EPR, Jeol JES-FA200) was used to measure the magnetic properties
  • an infrared (FT-IR) spectrometer (Nicolet iS10, Thermoscientific) was used to measure the electron transition in the conduction band
  • FT-IR infrared
  • TEM transmission electron microscope
  • FIG. 2 A schematic of the electron occupancy state of the quantized energy level in the conduction band of the quantum dot according to Example 1 is shown in FIG. 2 and infrared (IR) absorption spectra of HeSe quantum dots showing electron transition from the 1S e level to the 1P e level in the conduction band.
  • IR infrared
  • the EPR spectrum showed that HgSe quantum dots had different sizes and different electron occupancy states at the 1S e level in the conduction band according to the nanocrystal reaction time of 15 seconds to 8 minutes.
  • the EPR spectrum of the HgSe quantum dots showed only background without any features.
  • the small broad curve at 3200G is a noise signal from the EPR spectrometer that appears in all background spectra regardless of the sample.
  • the EPR spectrum showed a strong free electron signal at 3000G, indicating that there is a single electron per HgSe nanocrystal.
  • the infrared (IR) absorption spectrum of the HgSe quantum dot showed the vibration characteristics of the oleylamine ligand having a broad characteristic around 3000cm -1 .
  • the IR absorption spectra of HgSe quantum dots of different sizes increased in peak intensity and showed red-shift.
  • the IR absorption spectrum showing electron transition in the conduction band indicates that the lowest level quantized in the conduction band 1S e is filled with at least one electron. It was moved to 1, wherein the IR absorption peak is from 15 seconds depending on the nanocrystal reaction time of up to 8 minutes, 750cm.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • XRD X-ray diffraction
  • TEM and STEM images showed that HgSe quantum dots form spherical nanocrystals and are monodisperse.
  • the average size of 6.2 nm quantum dots showed a size distribution of 4.1 to 8.7 nm.
  • the lattice structure appeared as zinc blende, and the corresponding peaks narrowed as the nanocrystal size increased.
  • HgSe colloidal quantum dot according to the present invention had a different size according to the nanocrystal reaction time, and thus had an electron occupancy state of single electron or double electron at 1S e level in the conduction band.
  • HgSe quantum dots are monodisperse, forming spherical nanocrystals.
  • the magnetic properties of the colloidal quantum dots and the absorption characteristics in the conduction band were analyzed by stoichiometry of the nanocrystals and the sulfur (S) treatment of the nanocrystal surface with reaction time.
  • the composition ratio between metal (Hg) and chalcogen (Se) was analyzed by X-ray photoelectron spectrum (XPS, VG ESCALAB (220i)).
  • X-ray photoelectron spectra (XPS) of HeSe quantum dots according to nanocrystal reaction times (15 seconds, 30 seconds, and 2 minutes) according to Example 1 are shown in FIG. 7, and nanocrystal reaction times (15 seconds, and 30 seconds).
  • Electron paramagnetic resonance (EPR) spectra of HeSe quantum dots and sulfur (S) treated HgSe quantum dots are shown in FIG. 8.
  • HeSe quantum dots having a reaction time of 15 seconds were found to be richer in chalcogen with Hg / Se of 0.9 (47.56 / 52.44). However, as the reaction time increased from 15 seconds to 30 seconds, the Hg metal component gradually increased, and after 30 seconds, Hg / Se was 1.12 (52.65 / 47.35). In addition, as the Hg / Se ratio exceeds 1, paramagnetic properties appeared and showed a strong light transition phenomenon (see Figures 2 and 3). This result indicates that when the Hg / Se ratio exceeds 1, the metal component in the nanocrystals is abundant and the lowest quantized level (1S e ) in the conduction band is filled with single electrons.
  • the number of electrons of the 1S e level was controlled by post-surface treatment by sulfur (S).
  • S sulfur
  • SOQS single electron occupied quantum states
  • Electron spin at the 1S e level in the conduction band of the colloidal quantum dots was analyzed using an electron paramagnetic resonance spectrometer (EPR, Jeol JES-FA200) at various temperatures.
  • EPR electron paramagnetic resonance spectrometer
  • changes in the magnetization of nanocrystals under various magnetic fields and temperatures were analyzed with superconducting quantum interference devices (SQUID, Quantum Design, mpms 7.5).
  • Electron paramagnetic resonance (EPR) spectra for single electron occupying quantum states (SOQS) at various temperatures of the HeSe quantum dots according to Example 1 are shown in FIG. 9 and the derivative spectra of the EPR spectra with decreasing temperature are shown in FIG. 10.
  • the peak shape changed finely with decreasing temperature, and a single free electron peak was finely decomposed into two peaks at 284K.
  • the decrease in peaks seen at these higher magnetic fields is due to electron-hole exchange.
  • the electron-hole exchange process is suppressed, the peaks appearing in the lower magnetic field gain some intensity and shift toward higher magnetic fields at 133K due to mechanical deformation due to the shrinkage of the nanocrystals.
  • the Fermi level as a function of temperature at 103K, the peak intensity rapidly decreased by half.
  • temperature is a variable that controls the spin intensity of electrons located at the 1S e level of nanocrystals.
  • the superconducting quantum interference device (SQUID) measurement results at two different temperatures 300K and 4K of the HeSe quantum dots according to Example 1 are shown in FIG. 11, and the susceptibility measurement results at two different magnetic fields 1000G and 10000G according to temperature change are shown in FIG. 12. It was.
  • magnetic hysteresis increased with decreasing temperature. This is due to the slow response of the change in electron spin momentum caused by the external magnetic field. As the temperature decreased, the magnetization of the single electron occupying quantum state (SOQS) of the nanocrystals increased from 31K. The off-trend form at 50K is also due to the residual oxygen generated from the gelatin capsules during sample preparation.
  • SOQS single electron occupying quantum state
  • the temperature is one variable controlling the spin intensity of the electron located in the 1S e level of the quantum dot nanocrystal.

Abstract

The present invention relates to single electron-occupied quantum dots and a method for controlling the magnetism thereof and, more specifically, to quantum dot nanoparticles comprising single electrons in the quantized energy level of a conduction band, and to a method for controlling the magnetism thereof. The method for controlling the magnetism of quantum dots according to the present invention can fill the quantized energy level in a conduction band of the quantum dot with single electrons by controlling the time for a chemical reaction of quantum dots and the ratio of metal to calcogen, and can control the magnetism of the quantum dots by adjusting the number of electrons. In addition, the quantum dots are prepared by comprising a thiol-less ligand, so that the n-type doping of quantum dots can be maintained and the ligand substitution is very easy, compared with a conventional thiol ligand.

Description

단일 전자 점유된 양자점 및 이의 자성 제어방법Single electron occupied quantum dot and its magnetic control method
본 발명은 단일 전자 점유된 양자점 및 이의 자성 제어방법에 관한 것으로, 보다 구체적으로는, 전도대의 양자화된 에너지 준위에 단일 전자를 포함하는, 양자점 나노입자 및 이의 자성 제어방법에 관한 것이다.The present invention relates to a single electron occupied quantum dot and its magnetic control method, and more particularly, to a quantum dot nanoparticle and its magnetic control method comprising a single electron in the quantized energy level of the conduction band.
크기-제어 가능한 콜로이드 양자점은 지난 30년간 빠르게 개발되어 왔으며, 오늘날 이미징, 디스플레이, 센서, 태양 전지, 검출기, 분광기 등에 널리 사용되고 있다. 이러한, 양자점은 나노 크기의 반도체 물질로서, 도핑 농도를 최적화하는 것은 전기 및 광학 특성에 매우 중요하여 장치의 성능을 결정한다. 일반적으로 캐리어 농도를 증가시키기 위해, 이종 불순물들이 나노결정 내에 포함된다. 이때, 캐리어 농도는 금속 불순물 도핑에 의해 증가 된다. 그러나, 금속 불순물의 도핑은 캐리어 재결합 트랩으로 작용하기 때문에, 금속 불순물의 첨가에 의해 전도대(conduction band) 내 최저 에너지 준위를 전자로 채운 결과에 대해서는 아직까지 보고된 바가 없다. 만일, 나노 물질의 전도대 내 최저 에너지 준위를 전자로 안정하게 채울 수 있다면, 밴드 갭(band gap) 전이가 아닌 전도대 내 양자화된 에너지 준위 사이의 전자 전이가 가능할 것이다. 양자점의 전도대 내 최저 에너지 준위(1Se)를 전자로 채우는 것은 분자에서 최저 준위 비점유 분자오비탈(lowest-unoccupied-molecular orbital, LUMO)를 전자로 채우는 것과 유사하다. 또한, 단일 전자 점유 분자오비탈(singly occupied molecular orbital, SOMO)은 유기 분야의 촉매 연구 분야에 큰 영향을 미치고 있다. 따라서, 콜로이드 양자점의 최저 에너지 준위를 단일 전자(single electron)로 채울 수 있다면, 무기 반도체 나노 물질 및 유기 반도체 분자를 포함하는 반도체 나노 물질에 큰 영향을 줄 것이다.Size-controllable colloidal quantum dots have been developed rapidly over the past 30 years and are now widely used in imaging, displays, sensors, solar cells, detectors, and spectroscopy. These quantum dots are nano-sized semiconductor materials, so optimizing the doping concentration is very important for the electrical and optical properties to determine the performance of the device. Generally, in order to increase the carrier concentration, heterogeneous impurities are included in the nanocrystals. At this time, the carrier concentration is increased by the metal impurity doping. However, since the doping of the metal impurities acts as a carrier recombination trap, there has been no report on the result of filling the lowest energy level in the conduction band with electrons by the addition of the metal impurities. If the lowest energy level in the conduction band of the nanomaterial can be stably filled with electrons, electron transfer between the quantized energy levels in the conduction band will be possible, rather than a band gap transition. Filling electrons with the lowest energy level (1S e ) in the conduction band of a quantum dot is similar to filling electrons with the lowest-unoccupied-molecular orbital (LUMO) in the molecule. In addition, single occupied molecular orbital (SOMO) has a significant impact on the field of catalytic research in the organic field. Thus, if the lowest energy level of the colloidal quantum dots can be filled with single electrons, it will greatly affect semiconductor nanomaterials including inorganic semiconductor nanomaterials and organic semiconductor molecules.
한편, 콜로이드 양자점의 자성은 스핀트로닉스(spintronics)와 같은 양자점 응용 가능성으로 인해, 크기 조절가능한 밴드 갭과 관련하여 지난 10년간 많은 연구가 되어 왔다. 그러나, 불순물 도핑된 나노결정의 자성은 주로 나노결정 내 포함된 금속 불순물의 전자들로부터 기인한다. 엄밀히 말하면, 불순물 도핑된 콜로이드 양자점의 자성은 나노결정 그 자체로부터 기인된 것이 아니라, 도핑된 불순물 금속 이온으로부터 기인한 것이다.On the other hand, the magnetism of colloidal quantum dots has been studied a lot over the last decade with respect to the adjustable band gap due to the possibility of quantum dot application such as spintronics. However, the magnetism of the impurity doped nanocrystals originates mainly from the electrons of the metal impurities contained in the nanocrystals. Strictly speaking, the magnetism of the impurity doped colloidal quantum dots is not due to the nanocrystals themselves, but to the doped impurity metal ions.
일반적으로 양자점은 크게 다음과 같은 두 가지 방법으로 제조될 수 있다. 하나는 레이저 등의 광원을 이용하는 리소그라피(lithography)에 의한 방법이고, 다른 하나는 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식 방법이다. 이중, 화학적 습식 방법에 의한 양자점의 합성은 리소그라피에 의한 방법보다 더 쉽고 저렴한 공정을 통하여 나노결정의 크기와 형태의 균일도를 조절할 수 있는 장점을 갖는다. 또한, 유기 리간드로 패시베이션되어 있는 콜로이드 양자점은 유기 리간드의 입체 장애로 인해 용액내에서 응집되지 않고, 안정적인 구조를 유지하며, 표면 결함의 패시베이션에 의해 우수한 발광 특성을 나타낸다. 그러나, 종래 티올 유기 리간드에 의해 안정화된 콜로이드 양자점은 광검출기나 태양전지 등의 광전자적 응용을 위한 리간드 치환이 용이하지 않은 단점이 있다.In general, quantum dots can be largely manufactured by the following two methods. One is a method by lithography using a light source such as a laser, and the other is a chemical wet method of growing crystals by adding a precursor material to a solvent. Of these, the synthesis of quantum dots by the chemical wet method has an advantage of controlling the uniformity of the size and shape of the nanocrystals through an easier and cheaper process than the lithography method. In addition, colloidal quantum dots passivated with organic ligands do not aggregate in solution due to steric hindrance of organic ligands, maintain a stable structure, and exhibit excellent luminescence properties by passivation of surface defects. However, colloidal quantum dots stabilized by conventional thiol organic ligands have a disadvantage in that ligand substitution for photoelectric applications such as photodetectors or solar cells is not easy.
(특허문헌 1) KR2002-0026495 A (Patent Document 1) KR2002-0026495 A
본 발명자들은 양자점의 자성 제어방법에 대해 탐색하던 중, 양자점의 화학적 반응시간을 조절할 경우, 양자점의 전도대 내 양자화된 에너지 준위를 단일 전자로 채울 수 있으며, 또한 전자의 수를 조절하여 양자점의 자성을 제어할 수 있는 것을 확인하고, 본 발명을 완성하였다. The present inventors, while searching for the magnetic control method of the quantum dot, when adjusting the chemical reaction time of the quantum dot, it is possible to fill the quantized energy level in the conduction band of the quantum dot with a single electron, and also to adjust the number of electrons It confirmed that it can control and completed this invention.
따라서, 본 발명은 양자점 코어 및 상기 코어에 결합된 무티올 리간드를 포함하며, 전도대의 양자화된 에너지 준위에 단일 전자를 포함하는, 양자점 나노입자및 이의 제조방법을 제공하고자 한다.Accordingly, the present invention is to provide a quantum dot nanoparticle comprising a quantum dot core and a mutiol ligand bonded to the core, and including a single electron in the quantized energy level of the conduction band, and a method of manufacturing the same.
또한, 본 발명은 무티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시켜 양자점 나노입자를 제조하는 단계;를 포함하며, 상기 반응시간을 조절하여 양자점의 자성을 제어하는 것을 특징으로 하는, 양자점 나노입자의 자성 제어방법을 제공하고자 한다. In addition, the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol-free ligand at 40 ~ 120 ℃, the reaction time of the quantum dots It is to provide a magnetic control method of the quantum dot nanoparticles, characterized in that the magnetic control.
또한, 본 발명은 상기 양자점 나노입자를 포함하는, 반도체 장치를 제공하고자 한다. In addition, the present invention is to provide a semiconductor device comprising the quantum dot nanoparticles.
상기와 같은 목적을 달성하기 위해서,In order to achieve the above object,
본 발명은The present invention
양자점 코어 및 상기 코어에 결합된 무티올 또는 티올 리간드를 포함하며,A quantum dot core and a thiol- or thiol ligand bonded to the core,
전도대(conduction band)의 양자화된 에너지 준위에 단일 전자(single electron)를 포함하는, 양자점 나노입자를 제공한다. Provided is a quantum dot nanoparticle comprising a single electron at a quantized energy level in a conduction band.
또한, 본 발명은 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시키는 단계;를 포함하는, 양자점 나노입자의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing quantum dot nanoparticles comprising the step of reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ~ 120 ℃.
또한, 본 발명은 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시켜 양자점 나노입자를 제조하는 단계;를 포함하며, 상기 반응시간을 조절하여 양자점의 자성을 제어하는 것을 특징으로 하는, 양자점 나노입자의 자성 제어방법을 제공한다.In addition, the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ~ 120 ℃, by adjusting the reaction time It provides a magnetic control method of the quantum dot nanoparticles, characterized in that for controlling the magnetism of the quantum dots.
또한, 본 발명은 상기 양자점 나노입자를 포함하는, 반도체 장치를 제공한다.In addition, the present invention provides a semiconductor device comprising the quantum dot nanoparticles.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 양자점 코어 및 상기 코어에 결합된 무티올 또는 티올 리간드를 포함하며, 전도대(conduction band)의 양자화된 에너지 준위에 단일 전자(single electron)를 포함하는, 양자점 나노입자를 제공한다.The present invention provides a quantum dot nanoparticle comprising a quantum dot core and a thiol-free or thiol ligand bonded to the core and including a single electron at a quantized energy level of a conduction band.
상기 양자점은 나노 크기의 반도체 물질로서 양자제한 효과를 나타내는 물질이다. 이러한 양자점은 양자화된 불연속적인 에너지 준위를 가지며 여기원으로부터 빛을 흡수하여 에너지 여기 상태에 이르면, 양자점의 에너지 준위 간격에 해당하는 에너지를 방출하게 되어, 자외선 영역에서부터 적외선 영역까지 발광이 가능하게 된다. 따라서, 양자점의 전도대 내 에너지 준위를 전자로 안정하게 채울 수 있다면, 밴드 갭(band gap) 전이가 아닌 전도대 내 양자화된 에너지 준위 사이의 전자 전이가 가능하게 된다. 이러한 양자점의 자성을 제어하는 것은 매우 어려운 일이다. 종래 양자점의 자성을 제어하기 위하여, 불순물(Mn2 +, Cu2+)의 도핑을 수행하였으나 이것은 도핑된 불순물의 자성을 이용한 것으로, 양자점 자체의 자성을 이용한 것은 아니다.The quantum dot is a nano-scale semiconductor material and exhibits a quantum limiting effect. These quantum dots have a quantized discontinuous energy level and absorb light from an excitation source to reach an energy excitation state, thereby emitting energy corresponding to the energy level interval of the quantum dot, thereby enabling light emission from the ultraviolet region to the infrared region. Therefore, if the energy level in the conduction band of the quantum dot can be stably filled with electrons, the electron transition between the quantized energy levels in the conduction band is possible, not the band gap transition. It is very difficult to control the magnetism of these quantum dots. In order to control the magnetism of the conventional quantum dots, doping of the impurities (Mn 2 + , Cu 2+ ) was performed, but this is using the magnetism of the doped impurities, not the magnetism of the quantum dot itself.
본 발명은 불순물의 도핑이 아닌 양자점 나노결정 반응시간의 조절을 통해 전도대 내 양자화된 에너지 준위를 단일 전자로 채울 수 있으며, 또한, 전자의 수를 조절함으로써 양자점의 자성을 제어할 수 있는 것을 특징으로 한다.The present invention can fill the quantized energy level in the conduction band with single electrons by controlling the reaction time of the quantum dot nanocrystals rather than the doping of impurities, and can also control the magnetism of the quantum dots by controlling the number of electrons. do.
상기 양자화된 에너지 준위는 Se, Pe, 또는 De 준위일 수 있고, 바람직하게는 1Se, 1Pe, 또는 1De이거나, 이들의 상위 준위일 수 있다.The quantized energy level is S e , P e , or It may be a D e level, preferably 1S e , 1P e , or 1D e , or may be a higher level thereof.
상기 양자점은 외부에서 가해지는 자기장에 반응하여 상자성(paramagnetic) 또는 반자성(paramagnetic)의 자성을 나타낼 수 있다. 전도대 내 양자화된 에너지 준위에 단일 전자(single electron)를 포함할 경우 상자성을 나타낼 수 있으며, 본 발명의 일 실시예에 따라, 양자화된 에너지 준위에 쌍 전자(paired electron)를 포함할 경우, 반자성을 나타낼 수 있다.The quantum dots may exhibit paramagnetic or paramagnetic magnetism in response to an externally applied magnetic field. In the case of including single electrons in the quantized energy level in the conduction band, paramagnetic properties may be exhibited. In accordance with an embodiment of the present invention, in the case of including paired electrons in the quantized energy level, diamagnetic properties may be observed. Can be represented.
상기 양자점의 평균 직경은 1~20 nm일 수 있고, 바람직하게는 3~15 nm일 수 있다. 상기 나노결정 반응시간의 조절을 통해 양자점의 크기를 제어할 수 있을 뿐 아니라, 전구체 종류에 따른 반응속도 제어가 가능하다.The average diameter of the quantum dot may be 1 ~ 20 nm, preferably 3 ~ 15 nm. Not only the size of the quantum dots can be controlled by controlling the reaction time of the nanocrystal, but also the reaction rate can be controlled according to the precursor type.
상기 양자점은 코어 및 상기 코어에 결합된 유기 또는 무기 리간드를 포함할 수 있다. The quantum dot may include a core and an organic or inorganic ligand bonded to the core.
상기 양자점 코어는 Ⅱ-Ⅵ족 반도체 화합물, Ⅲ-Ⅴ족 반도체 화합물, Ⅳ-Ⅵ족 반도체 화합물, Ⅳ족 원소 또는 화합물, 또는 이들의 조합을 포함할 수 있다. 구체적으로는, 양자점 코어는 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe; Si, Ge, SiC, SiGe 등일 수 있다.The quantum dot core may include a II-VI semiconductor compound, a III-V semiconductor compound, a IV-VI semiconductor compound, a IV group element or a compound, or a combination thereof. Specifically, the quantum dot core is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTd, ZnSd, ZnSn, CdZn , CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZgZnSeT, HgZgSeSe GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNPs, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe; Si, Ge, SiC, SiGe and the like.
상기 양자점 코어는 12족 금속-칼코겐 나노결정일 수 있으며, 구체적으로는, HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe 등일 수 있다. The quantum dot core may be a Group 12 metal-chalcogen nanocrystal, and specifically, may be HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, or the like.
상기 리간드는 상기 나노결정에 결합하여 양자점이 응집되지 않게 하고, 고정시켜 안정화시키는 물질을 의미한다. 또한, 상기 무티올 리간드는, 티올기를 포함하지 않는 리간드로서, 상기 무기 중심에 결합하는 티올 이외의 유기 또는 무기 리간드를 말한다. 종래 티올 리간드에 의해 안정화된 콜로이드 양자점은 광검출기나 태양전지 등의 광전자적 응용을 위한 리간드 치환이 용이하지 않은 단점이 있었다. 따라서, 상기 무티올 리간드, 특히 올레산 또는 올레일아민을 사용할 경우, 양자점의 n 타입 도핑을 유지하면서 동시에 리간드 치환을 매우 용이하게 하는 장점이 있다. The ligand refers to a material that binds to the nanocrystals to prevent aggregation of quantum dots and to fix and stabilize the quantum dots. In addition, the said thiol-free ligand is a ligand which does not contain a thiol group, and means an organic or inorganic ligand other than the thiol which couple | bonds with the said inorganic center. Colloidal quantum dots stabilized by conventional thiol ligands have a disadvantage in that ligand substitution for photoelectric applications such as photodetectors or solar cells is not easy. Therefore, the use of the non-thiol ligand, in particular oleic acid or oleylamine, has the advantage of very easy ligand substitution while maintaining the n-type doping of the quantum dots.
상기 무티올 또는 티올 리간드는 올레산(oleic acid), 올레일아민(oleylamine), 머캅토프로피온산(MPA), 시스테아민(cysteamine), 머캅토아세트산(mercaptoacetic acid), TOP(trioctylphosphine), TOPO(trioctylphosphine oxide), 옥틸아민(octylamine), 트리옥틸아민(trioctyl amine), 헥사데실아민(hexadecylamine), 옥탄티올(octanethiol), 도데칸티올(dodecanethiol), 헥실포스폰산(HPA), 테트라데실포스폰산(TDPA) 및 옥틸포스핀산(OPA) 등일 수 있으며 올레산(oleic acid) 또는 올레일아민(oleylamine)인 것이 바람직하다.The thiol or thiol ligand is oleic acid (oleic acid), oleylamine (oleylamine), mercaptopropionic acid (MPA), cysteamine (cysteamine), mercaptoacetic acid (mercaptoacetic acid), TOP (trioctylphosphine), TOPO (trioctylphosphine oxide, octylamine, trioctyl amine, hexadecylamine, octadechiol, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA) ) And octylphosphinic acid (OPA) and the like, preferably oleic acid or oleylamine.
또한, 본 발명은 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시키는 단계;를 포함하는, 양자점 나노입자의 제조방법을 제공한다. In another aspect, the present invention provides a method for producing quantum dot nanoparticles comprising the step of reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ~ 120 ℃.
구체적으로는, 90~130℃의 온도에서 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 용액을, 이와 별도로 160~200℃의 온도에서 무티올 또는 티올 리간드에 용해된 칼코겐 전구체 용액과 혼합한 후, 상기 혼합용액을 40~120℃에서 가열함으로써 콜로이드 양자점 나노입자를 제조할 수 있다.Specifically, a Group 12 metal precursor solution dissolved in a thiol-free or thiol ligand at a temperature of 90-130 ° C. is separately mixed with a chalcogen precursor solution dissolved in a thiol-free or thiol ligand at a temperature of 160-200 ° C. After that, the colloidal quantum dot nanoparticles may be prepared by heating the mixed solution at 40 to 120 ° C.
상기 양자점을 합성하는 방법으로는 MOCVD(metal organic chemical vapor deposition)나 MBE(molecular beamepitaxy)와 같은 기상 증착법으로 양자점을 제조하거나, 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식 방법이 이용된다. 화학적 습식 방법은 결정이 성장될 때 용매가 자연스럽게 양자점 결정 표면에 배위되어 분산제 역할을 하게 함으로써 결정의 성장을 조절하는 방법으로, MOCVD또는 MBE와 같은 기상 증착법보다 더 쉽고 저렴한 공정을 통하여 나노결정의 크기와 형태의 균일도를 조절할 수 있는 장점을 갖는다. 또한, 화학적 습식 공정으로 제조된 양자점은 원액 그대로 사용하지 않고, 양자점의 안정화 또는 사용시의 편이를 위하여 양자점 주변에 소정의 리간드를 배위시킨다.As a method of synthesizing the quantum dots, a quantum dot is manufactured by vapor deposition such as metal organic chemical vapor deposition (MOCVD) or molecular beamepitaxy (MBE), or a chemical wet method is used in which a precursor material is added to a solvent to grow crystals. The chemical wet method controls the growth of crystals by allowing the solvent to naturally coordinate on the quantum dot crystal surface as a dispersant when the crystal grows. The size of nanocrystals is easier and cheaper than vapor deposition such as MOCVD or MBE. And has the advantage of controlling the uniformity of the shape. In addition, a quantum dot manufactured by a chemical wet process is not used as a stock solution, and a predetermined ligand is coordinated around the quantum dot for stabilization or ease of use.
상기 무티올 또는 티올 리간드는 올레산(oleic acid), 올레일아민(oleylamine), 머캅토프로피온산(MPA), 시스테아민(cysteamine), 머캅토아세트산(mercaptoacetic acid), TOP(trioctylphosphine), TOPO(trioctylphosphine oxide), 옥틸아민(octylamine), 트리옥틸아민(trioctyl amine), 헥사데실아민(hexadecylamine), 옥탄티올(octanethiol), 도데칸티올(dodecanethiol), 헥실포스폰산(HPA), 테트라데실포스폰산(TDPA) 및 옥틸포스핀산(OPA) 등일 수 있으며 올레산(oleic acid) 또는 올레일아민(oleylamine)인 것이 바람직하다. The thiol or thiol ligand is oleic acid (oleic acid), oleylamine (oleylamine), mercaptopropionic acid (MPA), cysteamine (cysteamine), mercaptoacetic acid (mercaptoacetic acid), TOP (trioctylphosphine), TOPO (trioctylphosphine oxide, octylamine, trioctyl amine, hexadecylamine, octadechiol, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA) ) And octylphosphinic acid (OPA) and the like, preferably oleic acid or oleylamine.
이러한 무티올 또는 티올 리간드는 12족 금속 전구체에 대해 1~100의 몰비로 사용될 수 있는 바, 사용량이 1 몰비 미만이면 양자점 합성 후 양자점의 고정 효과가 현저히 떨어지게 되어 용액 중에 양자점의 응집이 일어나 양자효과를 잃게 되므로 리간드의 첨가 효과가 반감되는 문제가 있고, 100 몰비를 초과하면 용해도의 저하로 양자점들이 재응집하는 문제가 있다.Such a thiol-free or thiol ligand may be used in a molar ratio of 1 to 100 with respect to the Group 12 metal precursor. If the amount is less than 1 molar ratio, the quantum dot is significantly fixed after synthesis of the quantum dots, causing aggregation of the quantum dots in a solution, thereby causing quantum effects. Since there is a problem that the addition effect of the ligand is halved because it is lost, if there is more than 100 molar ratio there is a problem that the quantum dots reaggregate due to a decrease in solubility.
상기 12족 금속 1 몰에 대하여 칼코겐은 0.1~10 몰비, 바람직하게는 0.2~5 몰비로 혼합되는 것이 바람직하다. 상기 칼코겐의 사용량이 0.2 몰비 미만이면 양자점 제조의 수율이 낮아지고, 5 몰비를 초과하는 경우에는 미반응의 칼코겐의 양이 증가 문제가 발생하지만, 칼코겐을 다소 과량으로 사용하는 것이 양자점 합성에 유리하여 상기 범위를 유지하는 것이 바람직하다.The chalcogen is preferably mixed in an amount of 0.1 to 10 moles, preferably 0.2 to 5 moles per 1 mole of the Group 12 metal. If the amount of the chalcogen is less than 0.2 molar ratio, the yield of quantum dot production is lowered. If the amount of chalcogen is exceeded, the amount of unreacted chalcogen is increased. It is advantageous to maintain the above range.
상기 12족 금속으로는 Hg, Zn, Cd 등이 있을 수 있으며, 이의 전구체로는 HgCl2, ZnCl2, CdCl2, HgSO4, ZnSO4, CdSO4, Hg(CH3COOH)2, Zn(CH3COOH)2, Cd(CH3COOH)2등을 사용할 수 있으나, 이에 제한되는 것은 아니다. The Group 12 metal in the Hg, Zn, as there may be Cd or the like, precursor thereof is HgCl 2, ZnCl 2, CdCl 2 , HgSO 4, ZnSO 4, CdSO 4, Hg (CH 3 COOH) 2, Zn (CH 3 COOH) 2 , Cd (CH 3 COOH) 2 And the like can be used, but is not limited thereto.
또한, 상기 칼코겐 전구체는 S, Se, Te 및 이들의 혼합물; 헥산 티올, 옥탄 티올, 데칸 티올, 도데칸 티올, 헥사데칸 티올, 머캅토 프로필 실란과 같은 알킬 티올 화합물; 설퍼-트리옥틸포스핀 (S-TOP), 설퍼-트리부틸포스핀 (S-TBP), 설퍼-트리페닐포스핀 (S-TPP), 설퍼-트리옥틸아민 (S-TOA), 트리메틸실릴 설퍼 (trimethylsilyl sulfur), 황화 암모늄, 황화 나트륨, 티올요소, 셀렌-트리옥틸포스핀 (Se-TOP), 셀렌-트리부틸포스핀 (Se-TBP), 셀렌-트리페닐포스핀 (Se-TPP), 셀렌요소, 텔루르-트리옥틸포스핀 (Te-TOP), 텔루르-트리부틸포스핀 (Te-TBP), 또는 텔루르-트리페닐포스핀 (Te-TPP) 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, the chalcogen precursor is S, Se, Te and mixtures thereof; Alkyl thiol compounds such as hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane; Sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), trimethylsilyl sulfur (trimethylsilyl sulfur), ammonium sulfide, sodium sulfide, thiol urea, selenium-trioctylphosphine (Se-TOP), selenium-tributylphosphine (Se-TBP), selenium-triphenylphosphine (Se-TPP), Selenium urea, tellurium-trioctylphosphine (Te-TOP), tellurium-tributylphosphine (Te-TBP), or tellurium-triphenylphosphine (Te-TPP), and the like, but are not limited thereto. no.
이때, 상기 반응은 종래 양자점 제조온도인 300~350℃ 보다 현저히 낮은 10~250℃, 바람직하게는 40~120℃ 범위에서 수행되는 바, 반응온도가 40℃ 미만이면 양자점이 생성되지 않고 120℃를 초과하는 경우에는 생성된 양자점이 지나치게 성장하여 양자효과를 나타내지 못하는 문제가 발생할 수 있다.At this time, the reaction is carried out in the range of 10 ~ 250 ℃, preferably 40 ~ 120 ℃ significantly lower than 300 ~ 350 ℃ the conventional quantum dot manufacturing temperature, if the reaction temperature is less than 40 ℃ quantum dots do not form 120 ℃ If exceeded, the generated quantum dots may grow excessively and may not exhibit quantum effects.
또한, 본 발명은 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시켜 양자점 나노입자를 제조하는 단계;를 포함하며, 상기 반응시간을 조절하여 양자점의 자성을 제어하는 것을 특징으로 하는, 양자점 나노입자의 자성 제어방법을 제공한다.In addition, the present invention comprises the step of preparing a quantum dot nanoparticles by reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol or thiol ligand at 40 ~ 120 ℃, by adjusting the reaction time It provides a magnetic control method of the quantum dot nanoparticles, characterized in that for controlling the magnetism of the quantum dots.
본 발명은 상기 양자점 나노입자의 반응시간을 조절함으로써 양자점의 자성을 제어하는 것을 특징으로 한다. 상기 반응시간의 조절을 통해, 양자점의 크기 및 12족 금속과 칼코겐의 조성 비율 등의 특성을 제어할 수 있고, 이에 따라 전도대의 양자화된 에너지 준위의 전자 수를 0, 1 또는 2로 조절할 수 있다. The present invention is characterized by controlling the magnetism of the quantum dot by adjusting the reaction time of the quantum dot nanoparticles. By controlling the reaction time, it is possible to control the characteristics of the size of the quantum dot and the composition ratio of the Group 12 metal and chalcogen, and thus to adjust the number of electrons in the quantized energy level of the conduction band to 0, 1 or 2 have.
본 발명의 일 실시예에 따르면, 나노결정 반응시간이 20초 미만인 경우, 양자점은 반자성을 나타냈으나, 반응시간이 20초 내지 40초인 경우, 양자점은 상자성을 나타내었다. 또한, 반응시간이 40초 초과인 경우, 단일 전자에 의한 자기적 특징은 신속히 사라지고, 양자점은 다시 반자성을 나타내었다. 이것은 반응시간의 조절에 따라, 전도대 내 에너지 준위의 전자 수가 0, 1 및 2로 변화하였음을 나타낸다. According to one embodiment of the present invention, when the nanocrystal reaction time is less than 20 seconds, the quantum dot was diamagnetic, but when the reaction time is 20 seconds to 40 seconds, the quantum dot was paramagnetic. In addition, when the reaction time is more than 40 seconds, the magnetic characteristics due to the single electrons disappear quickly, and the quantum dots are diamagnetic again. This indicates that the number of electrons in the energy level in the conduction band changed to 0, 1 and 2 as the reaction time was adjusted.
또한, 상기 양자점 나노입자의 자성 제어방법은 제조된 양자점 나노입자를 황(S), 셀레늄(Se) 혹은 텔루륨(Te) 처리하는 단계를 포함할 수 있다. 상기 양자점을 황(S), 셀레늄(Se) 혹은 텔루륨(Te) 처리함으로써, 전도대 내 양자화된 에너지 준위의 전자가 손실될 수 있고, 이러한 황(S), 셀레늄(Se) 혹은 텔루륨(Te) 처리를 통해 전자 수를 제어할 수 있다.In addition, the magnetic control method of the quantum dot nanoparticles may include the step of treating sulfur (S), selenium (Se) or tellurium (Te) prepared quantum dot nanoparticles. By treating the quantum dots with sulfur (S), selenium (Se) or tellurium (Te), electrons of quantized energy levels in the conduction band can be lost, and such sulfur (S), selenium (Se) or tellurium (Te) Can control the number of electrons.
또한, 상기 양자점 나노입자의 자성상태는 패시베이션 정도에 따른 환경적 요소를 통해서 전자 수를 제어할 수 있다.In addition, the magnetic state of the quantum dot nanoparticles can control the number of electrons through environmental factors depending on the degree of passivation.
또한, 본 발명은 상기 양자점 나노입자를 포함하는, 반도체 장치를 제공한다. 상기 반도체 장치는 LED, 태양 전지, 텔레비젼, 트랜지스터, 적외선 카메라, 적외선 레이저, 적외선 검출기, 적외선 치료기, 적외선 통신장치, 기체 센서, 또는 컬러필터 등일 수 있다.In addition, the present invention provides a semiconductor device comprising the quantum dot nanoparticles. The semiconductor device may be an LED, a solar cell, a television, a transistor, an infrared camera, an infrared laser, an infrared detector, an infrared therapy device, an infrared communication device, a gas sensor, a color filter, or the like.
본 발명에 따른 양자점의 자성 제어방법은 양자점의 화학적 반응시간을 조절함으로써, 양자점의 전도대 내 양자화된 에너지 준위를 단일 전자로 채울 수 있으며, 또한 전자의 수를 조절하여 양자점의 자성을 제어할 수 있는 효과가 있다. In the magnetic control method of the quantum dot according to the present invention, by adjusting the chemical reaction time of the quantum dot, it is possible to fill the quantized energy level in the conduction band of the quantum dot with a single electron, and to control the magnetism of the quantum dot by controlling the number of electrons It works.
또한 상기 양자점은 무티올 리간드를 포함하여 제조됨으로써, 종래 티올 리간드에 비해 양자점의 n 타입 도핑을 유지하면서 동시에 리간드 치환이 매우 용이한 효과가 있다.In addition, the quantum dot is prepared by including a non-thiol ligand, there is an effect that the ligand replacement is very easy while maintaining the n-type doping of the quantum dot compared to the conventional thiol ligand.
도 1은 실시예 1에 따른 양자점의 전도대(conduction band) 내 양자화된 에너지 준위의 전자 점유 상태의 개략도이다.1 is a schematic diagram of an electron occupancy state of quantized energy levels in a conduction band of a quantum dot according to Example 1. FIG.
도 2는 실시예 1에 따른 15초 내지 8분의 나노결정 반응시간에 따른 HeSe 양자점의 전자 상자성 공명(EPR) 스펙트럼을 나타내는 도이다.2 is a diagram showing an electron paramagnetic resonance (EPR) spectrum of HeSe quantum dots according to the nanocrystal reaction time of 15 seconds to 8 minutes according to Example 1.
도 3은 실시예 1에 따른 전도대 내 1Se 준위로부터 1Pe 준위로의 전자전이를 나타내는 HeSe 양자점의 적외선(IR) 흡수 스펙트럼을 나타내는 도이다.3 is a diagram showing an infrared (IR) absorption spectrum of a HeSe quantum dot showing an electron transition from the 1 Se level to the 1 Pe level in the conduction band according to Example 1. FIG.
도 4는 실시예 1에 따른 HeSe 양자점의 투과전자현미경(TEM) 이미지 (반응시간 4분)이다. 여기서 삽도는 3.45Å 거리의 (111) 격자 구조를 갖는 HeSe 양자점의 고해상도 TEM 이미지를 나타낸다. 4 is a transmission electron microscope (TEM) image of a HeSe quantum dot according to Example 1 (reaction time 4 minutes). The inset shows a high resolution TEM image of a HeSe quantum dot having a (111) lattice structure with a distance of 3.45 μs.
도 5는 실시예 1에 따른 HeSe 양자점의 주사투과전자현미경(STEM) 이미지 (반응시간 1분)이다.FIG. 5 is a scanning electron microscope (STEM) image of a HeSe quantum dot according to Example 1 (reaction time 1 minute).
도 6은 실시예 1에 따른 HeSe 양자점의 X-선 회절(XRD) 이미지 (반응시간 16분)이다. 여기서 (a)내 6 is an X-ray diffraction (XRD) image of the HeSe quantum dots according to Example 1 (reaction time 16 minutes). Where (a)
도 7은 실시예 1에 따른 HeSe 양자점의 나노결정 반응시간(15초, 30초, 및 2분)에 따른 XPS 스펙트럼을 나타내는 도이다.7 is a diagram showing XPS spectra according to nanocrystal reaction time (15 seconds, 30 seconds, and 2 minutes) of HeSe quantum dots according to Example 1. FIG.
도 8은 실시예 1에 따른 HeSe 양자점의 나노결정 반응시간(15초 및 30초) 및 황(S) 처리된 HgSe 양자점의 전자 상자성 공명(EPR) 스펙트럼을 나타내는 도이다.FIG. 8 is a diagram showing electron paramagnetic resonance (EPR) spectra of nanocrystal reaction time (15 seconds and 30 seconds) and sulfur (S) treated HgSe quantum dots of HeSe quantum dots according to Example 1. FIG.
도 9는 다양한 온도에서 HeSe 양자점의 단일 전자 점유 양자 상태(SOQS)에 대한 전자 상자성 공명(EPR) 스펙트럼을 나타내는 도이다.FIG. 9 is a diagram showing electron paramagnetic resonance (EPR) spectra for a single electron occupying quantum state (SOQS) of HeSe quantum dots at various temperatures.
도 10은 온도 감소에 따른 EPR 스펙트럼의 미분 스펙트럼을 나타내는 도이다. 10 is a diagram illustrating differential spectra of an EPR spectrum with decreasing temperature.
도 11은 두 개의 상이한 온도 300K 및 4K에서 HeSe 양자점의 초전도 양자간섭 디바이스(SQUID) 측정 결과를 나타내는 도이다.FIG. 11 shows the results of superconducting quantum interference device (SQUID) measurements of HeSe quantum dots at two different temperatures 300K and 4K.
도 12는 온도 변화에 따른 두 개의 상이한 자기장 1000G 및 10000G에서 HeSe 양자점의 자화율 측정 결과를 나타내는 도이다. FIG. 12 is a graph showing the results of measuring the susceptibility of HeSe quantum dots at two different magnetic fields 1000G and 10000G according to temperature changes.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
실시예 1.Example 1. 자성 제어가능한 양자점의 제조Preparation of Magnetically Controllable Quantum Dots
1.1 HgSe 양자점의 제조1.1 Preparation of HgSe Quantum Dots
HgSe 양자점의 제조를 위해 수은(II) 클로라이드(HgCl2, ACS, 99.5%)를 알팔 에이사로부터 구입하고, 셀레늄요소(98%), 올레일아민(OLA, 기술 등급, 70%), 테트라클로로에틸렌(TCE, ACS 시약, 99.0%이상) 및 황화암모늄 용액(H2O내, 40-48wt%)을 시그마-알드리치로부터 구입하였다. Mercury (II) chloride (HgCl 2 , ACS, 99.5%) was purchased from Alfalfa Eisa for the preparation of HgSe quantum dots, selenium urea (98%), oleylamine (OLA, technical grade, 70%), tetrachloro Ethylene (TCE, ACS reagent, at least 99.0%) and ammonium sulfide solution (in H 2 O, 40-48 wt%) were purchased from Sigma-Aldrich.
먼저, 27.2 mg의 HgCl2(0.1mmol)를 올레일아민(Oleylamine)에 용해한 후, 이를 85℃에서 1시간 동안 탈기시키고, 110℃에서 1시간 동안 가열함으로써 수은(Hg) 전구체 용액을 준비하였다. 이와 동시에, 다른 용기에서는 12.6 mg의 셀레늄요소(0.1 mmol)를 1mL의 올레일아민에 용해한 후, 이를 100 mTorr의 진공 하에 85℃에서 1시간 동안 탈기시켰다. 상기 용액을 아르곤 분위기 하에 180℃에서 2시간 동안 가열하여 암갈색의 셀레늄(Se) 전구체 용액을 준비하였다. First, mercury (Hg) precursor solution was prepared by dissolving 27.2 mg of HgCl 2 (0.1 mmol) in oleylamine, followed by degassing at 85 ° C. for 1 hour, and heating at 110 ° C. for 1 hour. At the same time, in another vessel 12.6 mg of selenium urea (0.1 mmol) was dissolved in 1 mL of oleylamine, which was then degassed at 85 ° C. under vacuum of 100 mTorr for 1 hour. The solution was heated at 180 ° C. for 2 hours under argon atmosphere to prepare a dark brown selenium (Se) precursor solution.
그 후, 상기 수은(Hg) 전구체 용액 및 셀레늄(Se) 전구체 용액을 혼합하고, 상기 혼합물을 약 40~120℃에서 가열하였다. 이때, 반응시간을 10초(s) 내지 30분(min)으로 조절하여 생성되는 양자점의 크기를 조절하였고, 상기 반응 혼합물에 올레일아민을 포함하는, 테트라클로로에틸렌(tetrachloroethylene)의 비극성 용매를 주입하고, 냉각수를 이용하여 상온으로 냉각시켜 반응을 종결함으로써 HgSe 양자점을 제조하였다. 그 후, HgSe 양자점을 메탄올로 침전시키고 건조한 후, 테트라클로로에틸렌에 재분산시켰다. Thereafter, the mercury (Hg) precursor solution and the selenium (Se) precursor solution were mixed, and the mixture was heated at about 40 to 120 ° C. At this time, the reaction time was adjusted to 10 seconds (s) to 30 minutes (min) to control the size of the resulting quantum dots, and the injection mixture containing a non-polar solvent of tetrachloroethylene (tetrachloroethylene) containing oleylamine HgSe quantum dots were prepared by cooling to room temperature with cooling water to terminate the reaction. The HgSe quantum dots were then precipitated with methanol, dried and redispersed in tetrachloroethylene.
실시예 1.2 HgS 양자점의 제조Example 1.2 Preparation of HgS Quantum Dots
상기 실시예 1.1에서 셀레늄(Se) 전구체 대신 황(S) 전구체를 사용한 것을 제외하고는 실시예 1.1에 기재된 방법과 동일하게 하여 HgS 양자점을 제조하였다.An HgS quantum dot was prepared in the same manner as in Example 1.1, except that sulfur (S) precursor was used instead of selenium (Se) precursor in Example 1.1.
실시예 1.3 HgTe 양자점의 제조Example 1.3 Preparation of HgTe Quantum Dots
상기 실시예 1.1에서 셀레늄(Se) 전구체 대신 텔루륨(Te) 전구체를 사용한 것을 제외하고는 실시예 1.1에 기재된 방법과 동일하게 하여 HgTe 양자점을 제조하였다.An HgTe quantum dot was prepared in the same manner as in Example 1.1, except that the tellurium (Te) precursor was used instead of the selenium (Se) precursor in Example 1.1.
실시예 1.4 CdSe 양자점의 제조Example 1.4 Preparation of CdSe Quantum Dots
상기 실시예 1.1에서 수은(Hg) 전구체 대신 카드뮴(Cd) 전구체를 사용한 것을 제외하고는 실시예 1.1에 기재된 방법과 동일하게 하여 CdSe 양자점을 제조하였다.A CdSe quantum dot was prepared in the same manner as in Example 1.1, except that cadmium (Cd) precursor was used instead of the mercury (Hg) precursor in Example 1.1.
실시예 1.5 ZnSe 양자점의 제조Example 1.5 Preparation of ZnSe Quantum Dots
상기 실시예 1.1에서 수은(Hg) 전구체 대신 아연(Zn) 전구체를 사용한 것을 제외하고는 실시예 1.1에 기재된 방법과 동일하게 하여 ZnSe 양자점을 제조하였다.A ZnSe quantum dot was prepared in the same manner as in Example 1.1, except that a zinc (Zn) precursor was used instead of a mercury (Hg) precursor in Example 1.1.
실시예 2. 황(S)에 의한 양자점의 후-표면처리Example 2 Post-Surface Treatment of Quantum Dots with Sulfur (S)
상기 실시예 1.1 내지 1.5에 따라 각각 테트라클로로에틸렌에 분산된 콜로이드 양자점 용액에 0.5 mL의 올레일아민 및 메탄올 내 150㎕의 0.1M (NH4)2S를 혼합하였다. 상기 혼합 용액을 25℃에서 5분 동안 교반하였고, 에탄올로 침전시키고, 원심분리하였다. 그 후, 침전물을 건조한 후, 테트라클로로에틸렌에 재분산시켰다. 0.5 mL of oleylamine and 150 μl of 0.1 M (NH 4 ) 2 S in methanol were mixed in a colloidal quantum dot solution dispersed in tetrachloroethylene according to Examples 1.1 to 1.5, respectively. The mixed solution was stirred at 25 ° C. for 5 minutes, precipitated with ethanol and centrifuged. The precipitate was then dried and then redispersed in tetrachloroethylene.
실험예 1. 나노결정 반응시간에 따른 양자점의 자기적 및 형태학적 특성 분석Experimental Example 1. Analysis of magnetic and morphological characteristics of quantum dots according to nanocrystal reaction time
콜로이드 양자점의 자기적 및 형태학적 특성을 분석하였다. 자기적 특성을 측정하기 위하여 전자 상자성 공명 분광기(EPR, Jeol JES-FA200)을 사용하였고, 전도대 내 전자전이 측정을 위해 적외선(FT-IR) 분광기(Nicolet iS10, Thermoscientific)를 사용했으며, 투과전자현미경(TEM)을 이용하여 양자점의 형태를 관찰하였다.The magnetic and morphological characteristics of the colloidal quantum dots were analyzed. An electron paramagnetic resonance spectrometer (EPR, Jeol JES-FA200) was used to measure the magnetic properties, an infrared (FT-IR) spectrometer (Nicolet iS10, Thermoscientific) was used to measure the electron transition in the conduction band, and a transmission electron microscope The shape of the quantum dots was observed using (TEM).
실시예 1에 따른 양자점의 전도대(conduction band) 내 양자화된 에너지 준위의 전자 점유 상태의 개략도를 도 1에, 15초 내지 8분의 나노결정 반응시간에 따른 HeSe 양자점의 전자 상자성 공명(EPR) 스펙트럼을 도 2에 및 전도대 내 1Se 준위로부터 1Pe 준위로의 전자전이를 나타내는 HeSe 양자점의 적외선(IR) 흡수 스펙트럼을 도 3에 나타내었다.A schematic of the electron occupancy state of the quantized energy level in the conduction band of the quantum dot according to Example 1 is shown in FIG. 2 and infrared (IR) absorption spectra of HeSe quantum dots showing electron transition from the 1S e level to the 1P e level in the conduction band.
도 1에 나타난 바와 같이, HeSe 양자점의 자기적 특성은 전도대 내 양자회된 최저 에너지 준위의 전자 점유 수(N)에 따라 반자성(N= 0,2) 또는 상자성(N= 1)을 나타낼 수 있다. As shown in FIG. 1, the magnetic properties of the HeSe quantum dots may exhibit diamagnetic (N = 0, 2) or paramagnetic (N = 1) depending on the number of electrons occupied by the lowest energy level quantum in the conduction band (N). .
도 2에 나타난 바와 같이, EPR 스펙트럼은 15초 내지 8분의 나노결정 반응시간에 따라 HgSe 양자점이 상이한 크기를 가지며 전도대 내 1Se 준위에 상이한 전자 점유 상태를 가짐을 나타내었다. 15초 반응시간(양자점 크기: 3.85nm)후, HgSe 양자점의 EPR 스펙트럼은 어떠한 특징이 없는 백그라운드만을 나타내었다. 여기서, 3200G에서의 작고 넓은 곡선은 시료에 상관없이 모든 백그라운드 스펙트럼에 나타나는 EPR 분광기로부터 유래한 잡음 신호이다. 그러나, 30초 반응시간(양자점 크기: 4.02nm) 후, EPR 스펙트럼은 3000G에서 강한 자유 전자 신호를 나타냈으며, 이것은 HgSe 나노결정 당 단일 전자가 존재함을 나타낸다. 또한, 나노결정 반응시간이 1분(양자점 크기: 4.53nm)으로 증가함에 따라, 단일 전자에 의한 자기적 특징은 신속히 사라지고, 다시 백그라운드 신호만을 나타내었다. 이것은 전도대 내 1Se 준위가 단일 전자에서 쌍 전자로 채워졌음을 나타낸다.As shown in FIG. 2, the EPR spectrum showed that HgSe quantum dots had different sizes and different electron occupancy states at the 1S e level in the conduction band according to the nanocrystal reaction time of 15 seconds to 8 minutes. After 15 seconds response time (quantum dot size: 3.85 nm), the EPR spectrum of the HgSe quantum dots showed only background without any features. Here, the small broad curve at 3200G is a noise signal from the EPR spectrometer that appears in all background spectra regardless of the sample. However, after 30 seconds response time (quantum dot size: 4.02 nm), the EPR spectrum showed a strong free electron signal at 3000G, indicating that there is a single electron per HgSe nanocrystal. In addition, as the nanocrystal reaction time increased to 1 minute (quantum dot size: 4.53 nm), the magnetic characteristics caused by the single electrons disappeared quickly, and only the background signal was displayed. This indicates that the 1S e level in the conduction band is filled with pair electrons in a single electron.
또한, 도 3에 나타난 바와 같이, 15초 반응시간 후, HgSe 양자점의 적외선(IR) 흡수 스펙트럼은 3000cm-1 부근에 넓은 특징을 갖는 올레일아민 리간드의 진동 특성을 나타내었다. 그러나, 나노결정 반응시간이 30초 이상으로 증가함에 따라 상이한 크기의 HgSe 양자점의 IR 흡수 스펙트럼은 피크 강도가 증가하고, 적색-편이를 나타내었다. 이러한 전도대 내 전자전이를 나타내는 IR 흡수 스펙트럼은 전도대 내 양자화된 최저 준위(1Se)가 적어도 하나 이상의 전자로 채워져 있음을 나타낸다. 상기 IR 흡수 피크는 15초로부터 8분까지의 나노결정 반응시간에 따라, 750cm- 1를 이동하였다.In addition, as shown in Figure 3, after 15 seconds reaction time, the infrared (IR) absorption spectrum of the HgSe quantum dot showed the vibration characteristics of the oleylamine ligand having a broad characteristic around 3000cm -1 . However, as the nanocrystal reaction time increased to 30 seconds or more, the IR absorption spectra of HgSe quantum dots of different sizes increased in peak intensity and showed red-shift. The IR absorption spectrum showing electron transition in the conduction band indicates that the lowest level quantized in the conduction band 1S e is filled with at least one electron. It was moved to 1, wherein the IR absorption peak is from 15 seconds depending on the nanocrystal reaction time of up to 8 minutes, 750cm.
또한, 실시예 1에 따른 HeSe 양자점의 투과전자현미경(TEM) 이미지 (반응시간 4분)를 도 4에, HeSe 양자점의 주사투과전자현미경(STEM) 이미지 (반응시간 1분)를 도 5에 및 HeSe 양자점의 X-선 회절(XRD) 이미지 (반응시간 15초, 2분, 16분)를 도 6에 나타내었다. 여기서 도 4 내 삽도는 3.45Å 거리의 (111) 격자 구조를 갖는 HeSe 양자점의 고해상도 TEM 이미지를 나타낸다. In addition, a transmission electron microscope (TEM) image of the HeSe quantum dots (reaction time 4 minutes) according to Example 1 is shown in FIG. 4, and a scanning transmission electron microscope (STEM) image of the HeSe quantum dots (reaction time 1 minute) is shown in FIG. 5 and X-ray diffraction (XRD) images of HeSe quantum dots (reaction time 15 seconds, 2 minutes, 16 minutes) are shown in FIG. 6. 4 shows a high resolution TEM image of a HeSe quantum dot having a (111) lattice structure with a distance of 3.45 μs.
도 4 및 5에 나타난 바와 같이, TEM 및 STEM 이미지는 HgSe 양자점이 구형의 나노결정을 형성하며, 단분산되어 있음을 나타내었다. 또한, 도 5에서 평균 크기 6.2nm 양자점의 경우 4.1 ~ 8.7nm의 크기분포를 나타내었다. 또한, X-선 회절 스펙트럼에 기초할 때, 격자 구조는 섬아연석형 구조(zinc blende)로 나타났으며, 나노결정 크기가 증가함에 따라 상응하는 피크는 협소하게 나타났다. As shown in FIGS. 4 and 5, TEM and STEM images showed that HgSe quantum dots form spherical nanocrystals and are monodisperse. In addition, in FIG. 5, the average size of 6.2 nm quantum dots showed a size distribution of 4.1 to 8.7 nm. In addition, based on the X-ray diffraction spectrum, the lattice structure appeared as zinc blende, and the corresponding peaks narrowed as the nanocrystal size increased.
상기 결과로부터 본 발명에 따른 HgSe 콜로이드 양자점이 나노결정 반응시간에 따라 상이한 크기를 가지며, 이에 따라 전도대 내 1Se 준위에 단일 전자 또는 쌍 전자의 전자 점유 상태를 가짐을 확인하였다. 또한, HgSe 양자점은 구형의 나노결정을 형성하며 단분산되어 있음을 확인하였다.From the above results, it was confirmed that the HgSe colloidal quantum dot according to the present invention had a different size according to the nanocrystal reaction time, and thus had an electron occupancy state of single electron or double electron at 1S e level in the conduction band. In addition, it was confirmed that HgSe quantum dots are monodisperse, forming spherical nanocrystals.
실험예 2. 화학양론 및 황(S) 처리에 따른 양자점의 특성 분석Experimental Example 2 Characterization of Quantum Dots by Stoichiometry and Sulfur Treatment
콜로이드 양자점의 자기적 특성 및 전도대 내 흡수 특성을 반응시간에 따른 나노결정의 화학양론 및 나노결정 표면의 황(S) 처리로 분석하였다. 특히, 나노결정 형성 동안, 금속(Hg) 및 칼코겐(Se)간의 조성 비율을 X-선 광전자 스펙트럼(XPS, VG ESCALAB (220i))으로 분석하였다. The magnetic properties of the colloidal quantum dots and the absorption characteristics in the conduction band were analyzed by stoichiometry of the nanocrystals and the sulfur (S) treatment of the nanocrystal surface with reaction time. In particular, during nanocrystal formation, the composition ratio between metal (Hg) and chalcogen (Se) was analyzed by X-ray photoelectron spectrum (XPS, VG ESCALAB (220i)).
실시예 1에 따른 나노결정 반응시간(15초, 30초, 및 2분)에 따른 HeSe 양자점의 X-선 광전자 스펙트럼(XPS)을 도 7에, 나노결정 반응시간(15초, 및 30초)에 따른 HeSe 양자점 및 황(S) 처리된 HgSe 양자점의 전자 상자성 공명(EPR) 스펙트럼을 도 8에 나타내었다.X-ray photoelectron spectra (XPS) of HeSe quantum dots according to nanocrystal reaction times (15 seconds, 30 seconds, and 2 minutes) according to Example 1 are shown in FIG. 7, and nanocrystal reaction times (15 seconds, and 30 seconds). Electron paramagnetic resonance (EPR) spectra of HeSe quantum dots and sulfur (S) treated HgSe quantum dots are shown in FIG. 8.
도 7에 나타난 바와 같이, 반응시간 15초인 HeSe 양자점은 Hg/Se가 0.9(47.56/52.44)로 칼코겐이 더 풍부한 것으로 나타났다. 그러나, 반응시간이 15초에서 30초로 증가함에 따라, Hg 금속 성분이 점점 증가하여 30초 후에는 Hg/Se가 1.12(52.65/47.35)로 나타났다. 또한, Hg/Se 비율이 1을 초과함에 따라, 상자성 특성이 나타났으며 강한 광 전이 현상을 보였다 (도 2 및 3 참조). 이 결과는 Hg/Se 비율이 1을 초과할 경우, 나노결정 내 금속 성분이 풍부하여 전도대 내 양자화된 최저 준위(1Se)가 단일 전자로 채워졌음을 의미한다. 또한, 금속 성분이 더욱 증가할수록, 1Se 준위가 쌍 전자로 채워짐을 알 수 있다 (도 2 참조). 또한, XPS 스펙트럼에서 Hg/Se 비율이 증가하여도 어떠한 피크 이동도 관찰되지 않았다. 이 결과는 증가된 과량의 금속 이온이 나노결정의 결정성을 파괴하지 않고, 나노결정 표면에 결합되는 것을 나타낸다. As shown in FIG. 7, HeSe quantum dots having a reaction time of 15 seconds were found to be richer in chalcogen with Hg / Se of 0.9 (47.56 / 52.44). However, as the reaction time increased from 15 seconds to 30 seconds, the Hg metal component gradually increased, and after 30 seconds, Hg / Se was 1.12 (52.65 / 47.35). In addition, as the Hg / Se ratio exceeds 1, paramagnetic properties appeared and showed a strong light transition phenomenon (see Figures 2 and 3). This result indicates that when the Hg / Se ratio exceeds 1, the metal component in the nanocrystals is abundant and the lowest quantized level (1S e ) in the conduction band is filled with single electrons. In addition, it can be seen that as the metal component further increases, the 1S e level is filled with a pair of electrons (see FIG. 2). In addition, no peak shift was observed even when the Hg / Se ratio was increased in the XPS spectrum. This result indicates that increased excess metal ions are bonded to the nanocrystal surface without destroying the crystallinity of the nanocrystals.
도 8에 나타난 바와 같이, 1Se 준위의 전자 수는 황(S)에 의한 후-표면처리로 제어되는 것으로 나타났다. 상자성을 나타내는 HeSe 양자점을 (NH4)2S 용액으로 처리한 경우, 칼코겐의 조성비율이 증가하여 Hg/Se이 작아지는 것을 알 수 있다. 그 결과로서 단일 전자 점유 양자 상태(SOQS)의 전자 손실로 인해 나노결정의 상자성 특성이 사라지는 것으로 나타났다. 또한, 1Se 준위에 쌍 전자를 가져 반자성을 나타내는 HeSe 양자점을 (NH4)2S 용액으로 처리한 경우, 하나의 전자를 손실하여 상자성을 갖는 것으로 나타났다. 상기 결과로부터 황(S)에 의한 후-표면처리를 통해 HeSe 양자점의 1Se 준위의 전자 수를 제어할 수 있음을 확인하였다. 또한, 셀레늄(Se), 텔루륨(Te)을 처리한 경우도 황(S) 처리의 경우와 동일하게, 전자 수를 제어할 수 있음을 확인하였다.As shown in FIG. 8, the number of electrons of the 1S e level was controlled by post-surface treatment by sulfur (S). When HeSe quantum dots showing paramagnetic are treated with a (NH 4 ) 2 S solution, it can be seen that the composition ratio of chalcogen increases and Hg / Se decreases. As a result, the paramagnetic properties of nanocrystals disappear due to electron losses in single electron occupied quantum states (SOQS). In addition, when treated with (NH 4 ) 2 S solution of HeSe quantum dots having a pair of electrons in the 1S e level exhibiting diamagnetic properties, it was shown that one electron is lost to have paramagnetic. From the above results, it was confirmed that the number of electrons of the 1S e level of the HeSe quantum dot could be controlled by the post-surface treatment by sulfur (S). It was also confirmed that the treatment of selenium (Se) and tellurium (Te) can control the number of electrons as in the case of the treatment of sulfur (S).
실험예 3. 온도 및 자기장의 변화에 따른 양자점의 특성 분석Experimental Example 3. Characterization of Quantum Dots with Changes in Temperature and Magnetic Field
콜로이드 양자점의 전도대 내 1Se 준위에서의 전자 스핀을 다양한 온도 하에 전자 상자성 공명 분광기(EPR, Jeol JES-FA200)을 사용하여 분석하였다. 또한, 다양한 자기장 및 온도 하에 나노결정의 자화(magnetization) 변화를 초전도 양자간섭 디바이스(SQUID, Quantum Design, mpms 7.5)로 분석하였다. Electron spin at the 1S e level in the conduction band of the colloidal quantum dots was analyzed using an electron paramagnetic resonance spectrometer (EPR, Jeol JES-FA200) at various temperatures. In addition, changes in the magnetization of nanocrystals under various magnetic fields and temperatures were analyzed with superconducting quantum interference devices (SQUID, Quantum Design, mpms 7.5).
실시예 1에 따른 HeSe 양자점의 다양한 온도에서 단일 전자 점유 양자 상태(SOQS)에 대한 전자 상자성 공명(EPR) 스펙트럼을 도 9에, 온도 감소에 따른 EPR 스펙트럼의 미분 스펙트럼을 도 10에 나타내었다. Electron paramagnetic resonance (EPR) spectra for single electron occupying quantum states (SOQS) at various temperatures of the HeSe quantum dots according to Example 1 are shown in FIG. 9 and the derivative spectra of the EPR spectra with decreasing temperature are shown in FIG. 10.
도 9 및 10에 나타난 바와 같이, 온도가 감소함에 따라 피크 모양이 미세하게 변화하였고, 단일 자유 전자 피크가 284K에서 두 개의 피크로 미세하게 분해되었다. 이러한 더 높은 자기장에서 나타난 피크의 감소는 전자-홀 교환에 기인한다. 저온으로 인해 전자-홀 교환 과정이 억제되기 때문에, 더 낮은 자기장에서 나타난 피크는 약간의 강도를 얻고, 133K에서 나노결정의 수축으로 인한 기계적 변형 때문에 더 높은 자기장 쪽으로 이동한다. 또한, 103K에서 온도의 함수인 페르미(Fermi) 레벨을 낮춤으로써 피크 강도는 빠르게 반으로 감소하였다. 이 결과는 온도가 나노결정의 1Se 준위에 위치한 전자의 스핀 강도를 조절하는 하나의 변수임을 나타낸다.As shown in Figures 9 and 10, the peak shape changed finely with decreasing temperature, and a single free electron peak was finely decomposed into two peaks at 284K. The decrease in peaks seen at these higher magnetic fields is due to electron-hole exchange. Because of the low temperature, the electron-hole exchange process is suppressed, the peaks appearing in the lower magnetic field gain some intensity and shift toward higher magnetic fields at 133K due to mechanical deformation due to the shrinkage of the nanocrystals. In addition, by lowering the Fermi level as a function of temperature at 103K, the peak intensity rapidly decreased by half. The results indicate that temperature is a variable that controls the spin intensity of electrons located at the 1S e level of nanocrystals.
실시예 1에 따른 HeSe 양자점의 두 개의 상이한 온도 300K 및 4K에서 초전도 양자간섭 디바이스(SQUID) 측정 결과를 도 11에, 온도 변화에 따른 두 개의 상이한 자기장 1000G 및 10000G에서 자화율 측정 결과를 도 12에 나타내었다.The superconducting quantum interference device (SQUID) measurement results at two different temperatures 300K and 4K of the HeSe quantum dots according to Example 1 are shown in FIG. 11, and the susceptibility measurement results at two different magnetic fields 1000G and 10000G according to temperature change are shown in FIG. 12. It was.
도 11 및 12에 나타난 바와 같이, 자기 이력(magnetic hysteresis)은 온도가 감소됨에 따라 증가하였다. 이것은 외부 자기장에 의한 전자 스핀 모멘텀 변화의 느린 응답때문이다. 온도가 감소함에 따라, 나노결정의 단일 전자 점유 양자 상태(SOQS)의 자성이 31K부터 증가하였다. 또한, 50K에서의 오프(off)-트랜드 형태는 시료 준비 동안 젤라틴 캡슐로부터 발생한 잔류 산소에 기인한다.As shown in FIGS. 11 and 12, magnetic hysteresis increased with decreasing temperature. This is due to the slow response of the change in electron spin momentum caused by the external magnetic field. As the temperature decreased, the magnetization of the single electron occupying quantum state (SOQS) of the nanocrystals increased from 31K. The off-trend form at 50K is also due to the residual oxygen generated from the gelatin capsules during sample preparation.
상기 결과로부터, 온도가 양자점 나노결정의 1Se 준위에 위치한 전자의 스핀 강도를 조절하는 하나의 변수임을 확인하였다. From the above results, it was confirmed that the temperature is one variable controlling the spin intensity of the electron located in the 1S e level of the quantum dot nanocrystal.

Claims (15)

  1. 양자점 코어 및 상기 코어에 결합된 무티올 또는 티올 리간드를 포함하며,A quantum dot core and a thiol- or thiol ligand bonded to the core,
    전도대(conduction band)의 양자화된 에너지 준위에 단일 전자(single electron)를 포함하는, 양자점 나노입자.A quantum dot nanoparticle comprising a single electron in the quantized energy level of a conduction band.
  2. 제 1항에 있어서,The method of claim 1,
    상기 양자화된 에너지 준위는 Se, Pe, 또는 De 준위인 것을 특징으로 하는, 양자점 나노입자.The quantized energy level is S e , P e , or D e level, characterized in that, quantum dot nanoparticles.
  3. 제 1항에 있어서,The method of claim 1,
    상기 양자점은 상자성(paramagnetic)을 나타내는 것을 특징으로 하는, 양자점 나노입자.The quantum dot is characterized in that paramagnetic (paramagnetic), quantum dot nanoparticles.
  4. 제 1항에 있어서,The method of claim 1,
    상기 양자점은 1~20 nm의 평균 직경을 갖는 것을 특징으로 하는, 양자점 나노입자.The quantum dot is characterized in that it has an average diameter of 1 ~ 20 nm, quantum dot nanoparticles.
  5. 제 1항에 있어서,The method of claim 1,
    상기 양자점 코어는 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC 및 SiGe으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 양자점 나노입자.The quantum dot cores are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTd, ZnSe, CnT, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, GaAsN Ga InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNS GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnbbPe, SnPbTe, SnPbSte Quantum dot nanoparticles, characterized in that at least one selected from the group consisting of Ge, SiC and SiGe.
  6. 제 1항에 있어서,The method of claim 1,
    상기 양자점 코어는 12족 금속-칼코겐 나노결정인 것을 특징으로 하는, 양자점 나노입자.The quantum dot core is characterized in that the Group 12 metal-chalcogen nanocrystals, quantum dot nanoparticles.
  7. 제 1항에 있어서,The method of claim 1,
    상기 무티올 또는 티올 리간드는 올레산(oleic acid), 올레일아민(oleylamine), 머캅토프로피온산(MPA), 시스테아민(cysteamine), 머캅토아세트산(mercaptoacetic acid), TOP(trioctylphosphine), TOPO(trioctylphosphine oxide), 옥틸아민(octylamine), 트리옥틸아민(trioctyl amine), 헥사데실아민(hexadecylamine), 옥탄티올(octanethiol), 도데칸티올(dodecanethiol), 헥실포스폰산(HPA), 테트라데실포스폰산(TDPA) 및 옥틸포스핀산(OPA)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 양자점 나노입자.The thiol or thiol ligand is oleic acid (oleic acid), oleylamine (oleylamine), mercaptopropionic acid (MPA), cysteamine (cysteamine), mercaptoacetic acid (mercaptoacetic acid), TOP (trioctylphosphine), TOPO (trioctylphosphine oxide, octylamine, trioctyl amine, hexadecylamine, octadechiol, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA) And octylphosphinic acid (OPA), characterized in that at least one selected from the group consisting of, quantum dot nanoparticles.
  8. 무티올 리간드 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시키는 단계;를 포함하는, 양자점 나노입자의 제조방법.Reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol ligand or a thiol ligand at 40 ~ 120 ℃; manufacturing method comprising quantum dot nanoparticles.
  9. 제 8항에 있어서,The method of claim 8,
    상기 무티올 또는 티올 리간드는 12족 금속 전구체에 대해 1~100의 몰비로 사용된 것을 특징으로 하는, 양자점 나노입자의 제조방법.The thiol-free or thiol ligand is characterized in that used in a molar ratio of 1 to 100 with respect to the Group 12 metal precursor, the method of producing quantum dot nanoparticles.
  10. 제 8항에 있어서,The method of claim 8,
    상기 12족 금속 1 몰에 대하여 칼코겐은 0.1~10의 몰비로 사용된 것을 특징으로 하는, 양자점 나노입자의 제조방법.Chalcogen is used in a molar ratio of 0.1 to 10 with respect to 1 mole of the Group 12 metal, method for producing quantum dot nanoparticles.
  11. 무티올 또는 티올 리간드에 용해된 12족 금속 전구체 및 칼코겐 전구체의 혼합용액을 40~120℃에서 반응시키는 단계를 포함하는, 양자점 나노입자의 자성 제어방법.Reacting a mixed solution of a Group 12 metal precursor and a chalcogen precursor dissolved in a thiol- or thiol ligand at 40 ~ 120 ℃, magnetic control method of the quantum dot nanoparticles.
  12. 제 11항에 있어서,The method of claim 11,
    반응 시간을 20 내지 40초로 조절하여 양자점이 상자성을 나타내도록 하는 것인 양자점 나노입자의 자성 제어방법.Magnetic control method of the quantum dot nanoparticles to control the reaction time to 20 to 40 seconds to show the quantum dot paramagnetic.
  13. 제 11항에 있어서,The method of claim 11,
    상기 반응으로 제조되는 양자점 나노입자를 황(S), 셀레늄(Se) 또는 텔루륨(Te) 처리하여 전자수를 제어하는 단계를 더 포함하는 것인 양자점 나노입자의 자성 제어방법.The method of controlling the magnetic quantum dot nanoparticles further comprises controlling the number of electrons by treating the quantum dot nanoparticles prepared by the reaction with sulfur (S), selenium (Se) or tellurium (Te).
  14. 제 1항의 양자점 나노입자를 포함하는, 반도체 장치.A semiconductor device comprising the quantum dot nanoparticles of claim 1.
  15. 제 14항에 있어서, The method of claim 14,
    상기 반도체 장치는 LED, 태양 전지, 텔레비젼, 트랜지스터, 적외선 카메라, 적외선 레이저, 적외선 검출기, 적외선 치료기, 적외선 통신장치, 기체 센서, 양자 컴퓨터 또는 컬러필터인 것을 특징으로 하는, 반도체 장치.And the semiconductor device is an LED, a solar cell, a television, a transistor, an infrared camera, an infrared laser, an infrared detector, an infrared therapy device, an infrared communication device, a gas sensor, a quantum computer or a color filter.
PCT/KR2017/008471 2016-09-26 2017-08-04 Single electron-occupied quantum dots and method for controlling magnetism thereof WO2018056570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160123110A KR101971586B1 (en) 2016-09-26 2016-09-26 Single electron occupied quantum dot and magnetic control method thereof
KR10-2016-0123110 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056570A1 true WO2018056570A1 (en) 2018-03-29

Family

ID=61690887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008471 WO2018056570A1 (en) 2016-09-26 2017-08-04 Single electron-occupied quantum dots and method for controlling magnetism thereof

Country Status (2)

Country Link
KR (1) KR101971586B1 (en)
WO (1) WO2018056570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998676A (en) * 2021-12-10 2022-02-01 上海应用技术大学 Method for preparing mercury selenide nanocrystalline by solvothermal method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350250B1 (en) * 2018-10-12 2022-01-14 고려대학교 산학협력단 Method for preparing metal ion doped gallium nitride quantum dot
KR102296792B1 (en) 2019-02-01 2021-08-31 삼성에스디아이 주식회사 Non-solvent type curable composition, curing layer using the same, color filter including the curing layer, display device and manufacturing method of the curing layer
KR102602724B1 (en) * 2019-10-14 2023-11-14 삼성에스디아이 주식회사 Quantum dot, curable composition comprising the same, cured layer using the composition and color filter including the cured layer
KR20210045948A (en) 2019-10-17 2021-04-27 삼성전자주식회사 Core shell quantum dot, production method thereof electronic device including the same
EP3809480A1 (en) 2019-10-17 2021-04-21 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068203A1 (en) * 2004-09-24 2006-03-30 Agency For Science, Technology And Research Coated composites of magnetic material and quantum dots
JP2012037259A (en) * 2010-08-04 2012-02-23 Nagoya Univ Magnetic nanoparticle complex and method of labeling cells by the same
KR20120085362A (en) * 2011-01-24 2012-08-01 고려대학교 산학협력단 Magnetic fluorescent nanocomposite and the synthesis of the nanocomposite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476321B1 (en) 2002-01-24 2005-03-10 조성래 transition metal-doped ferromagnetic semiconductor single crystal
ATE513890T1 (en) * 2007-09-28 2011-07-15 Nanoco Technologies Ltd CORE-SHELL NANOPARTICLES AND PRODUCTION PROCESS THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068203A1 (en) * 2004-09-24 2006-03-30 Agency For Science, Technology And Research Coated composites of magnetic material and quantum dots
JP2012037259A (en) * 2010-08-04 2012-02-23 Nagoya Univ Magnetic nanoparticle complex and method of labeling cells by the same
KR20120085362A (en) * 2011-01-24 2012-08-01 고려대학교 산학협력단 Magnetic fluorescent nanocomposite and the synthesis of the nanocomposite

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEONG, JUYEON ET AL.: "Singly and Doubly Occupied Higher Quantum States in Nauocrystals", NANO LETTERS, vol. 17, no. 2, 23 January 2017 (2017-01-23), pages 1187 - 1193, XP055497010 *
WICHIANSEE, WIJITTRA ET AL.: "Synthesis and Optical Characterization of Infra-red Emitting Mercury Sulfide (HgS) Quantum Dots", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 20, 2011, pages 7331 - 7336, XP055497009 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998676A (en) * 2021-12-10 2022-02-01 上海应用技术大学 Method for preparing mercury selenide nanocrystalline by solvothermal method

Also Published As

Publication number Publication date
KR20180033758A (en) 2018-04-04
KR101971586B1 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2018056570A1 (en) Single electron-occupied quantum dots and method for controlling magnetism thereof
KR101874413B1 (en) Method for producing quantum dot
KR101644053B1 (en) Processes for synthesizing nanocrystals and nanocrystal compositions
KR101525525B1 (en) Nanocrystals particles and processes for preparing the same
KR101480475B1 (en) Quantum dot stabilized by halogen salt and method for manufacturing the same
US10562770B2 (en) Nanoparticles passivated with cationic metal-chalcogenide compound
KR20190060753A (en) Emissive nanocrystal particle, method of preparing the same and device including emissive nanocrystal particle
US11066597B2 (en) Intraband transition-based infrared device of nonstoichiometric quantum dots
KR101719574B1 (en) Passivated quantum dot and method for manufacturing the same
CN109694712B (en) Quantum dot, light-emitting material, and method for producing quantum dot
US20160214862A1 (en) Processes for synthesizing magnesium selenide nanocrystals
KR20120053325A (en) Synthesis and post-synthesis method for quantum dots using a novel ligand-exchange method
US8092719B2 (en) Nanocrystal-metal oxide composites and preparation method thereof
KR102480363B1 (en) Material synchronized piezoelectric and luminescence, and device comprising the same
WO2021054651A1 (en) Quantum dot nanoparticle and method for producing same
US20240026222A1 (en) Semiconductor nanoparticles and electronic device including the same
US9764320B2 (en) Anion exchange methods using anion exchange precursor
US20230193122A1 (en) Method of preparing quantum dot, quantum dot, and electronic apparatus including the quantum dot
US11870001B2 (en) Semiconductor nanoparticles, electronic device including the same, and method for manufacturing semiconductor nanoparticles
US20230028670A1 (en) Method of manufacturing multi-component semiconductor nanocrystal, multi-component semiconductor nanocrystal, and quantum dot including the same
KR20210089442A (en) Quantum-dot
CN116590017A (en) Quantum dot preparation method, quantum dot and electronic device comprising quantum dot
KR20230146700A (en) Quantum dot, Method for preparing the quantum dot, optical member and electronic apparatus including the quantum dot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853284

Country of ref document: EP

Kind code of ref document: A1