WO2018056090A1 - 分離膜エレメントおよびその運転方法 - Google Patents

分離膜エレメントおよびその運転方法 Download PDF

Info

Publication number
WO2018056090A1
WO2018056090A1 PCT/JP2017/032636 JP2017032636W WO2018056090A1 WO 2018056090 A1 WO2018056090 A1 WO 2018056090A1 JP 2017032636 W JP2017032636 W JP 2017032636W WO 2018056090 A1 WO2018056090 A1 WO 2018056090A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
channel material
membrane element
supply
water
Prior art date
Application number
PCT/JP2017/032636
Other languages
English (en)
French (fr)
Inventor
誉田剛士
高木健太朗
広沢洋帆
山田博之
峰原宏樹
田中宏明
鈴木萌菜美
鈴木祐太郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/335,107 priority Critical patent/US11511233B2/en
Priority to KR1020197008027A priority patent/KR102326947B1/ko
Priority to CN201780057759.5A priority patent/CN109715275B/zh
Priority to JP2017550775A priority patent/JP6973081B2/ja
Publication of WO2018056090A1 publication Critical patent/WO2018056090A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Definitions

  • the present invention relates to a separation membrane element used for separating components contained in a fluid such as liquid or gas.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brine, and water containing harmful substances, in the production of industrial ultrapure water, and in wastewater treatment and recovery of valuable materials. Depending on the separation component and separation performance to be used.
  • separation membrane elements there are various types of separation membrane elements, but when the separation component is water, it is common in that supply water is supplied to one surface of the separation membrane and permeated water is obtained from the other surface.
  • the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeated water obtained per one separation membrane element is increased. Is formed.
  • As the separation membrane element various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
  • spiral separation membrane elements are widely used for reverse osmosis filtration.
  • the spiral separation membrane element includes a water collecting pipe and a laminated body wound around the water collecting pipe.
  • the laminate includes a supply-side channel material that supplies supply water to the separation membrane surface, a separation membrane that separates components contained in the supply water, and permeate-side water that has passed through the separation membrane and has been separated from the supply water-side fluid. It is formed by laminating a permeate-side channel material for guiding to the water collecting pipe. Since the spiral separation membrane element can apply pressure to the supply water, it is preferably used in that a larger amount of permeated water can be taken out.
  • the supply-side flow path material is thick, the flow resistance generated when the spiral separation membrane element is operated is small, and even if the supply-side flow path material is further thinned, the increase in flow resistance is slight, A method has been adopted in which the supply-side channel material is thinned and the amount of separation membrane is increased.
  • Patent Document 1 proposes a spiral separation membrane element in which a supply-side channel material having a thickness of 0.08 mm or more and 2 mm or less is filled and a channel material having a low resistance is arranged on the permeation side. ing.
  • Patent Document 2 proposes a spiral-type separation membrane element in which the turbulent flow effect on the membrane surface is increased by providing convex portions and grooves on the supply side surface of the separation membrane.
  • the separation membrane element is not sufficient from the viewpoint of water production and removability, and there is room for improvement in terms of maintaining the performance of the separation membrane element for a long period of time. It was.
  • an object of the present invention is to provide a separation membrane element that is excellent in water formation and removability over a long period of time.
  • the present invention comprises the following configurations (1) to (10).
  • a separation membrane element comprising a water collecting pipe, a separation membrane comprising a supply side surface and a permeation side surface, a supply side channel material, and a permeation side channel material, wherein the separation membrane, the supply The side channel material and the permeate side channel material are spirally wound around the water collection pipe, and the supply side channel material includes a plurality of fibrous materials intersecting each other,
  • the separation membrane has a thickness of 0.15 mm or more and 0.50 mm or less, and the separation water is filtered under the conditions of an operating pressure of 0.41 MPa and a temperature of 25 ° C.
  • the feed water is a NaCl solution having a concentration of 200 ppm and a pH 6.5 aqueous solution, and the amount of permeated water when filtered under conditions of an operating pressure of 0.41 MPa and a temperature of 25 ° C.
  • the separation membrane element according to (1) which is m 2 / day or more.
  • the supply side flow path formed by the supply side flow path material is formed in a direction perpendicular to the longitudinal direction of the water collecting pipe, according to any one of (1) to (4) above. Separation membrane element.
  • a method for operating a separation membrane element wherein the separation membrane element according to any one of (1) to (8) above is used to produce 60% or more of the supplied water amount.
  • a method for operating a separation membrane element wherein the separation membrane element according to any one of (1) to (8) above is used to produce 40% or less of the supplied amount of water.
  • the present invention becomes an element configuration having a high water freshening ability and a high removal ability, and further, hardly soluble salt (scale) and organic matter fouling hardly occur on the membrane surface particularly in the high recovery rate operation by improving the membrane surface linear velocity.
  • a separation membrane element excellent in water-repellent property and removability can be obtained for a long time.
  • a polymer net is mainly used as a supply-side channel material in order to form a supply-side water channel.
  • a separation membrane for example, a stacked type separation membrane is used.
  • Laminated separation membranes consist of a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer made of a polymer such as polysulfone (porous support layer), polyethylene terephthalate, which are laminated in order from the supply side to the permeation side.
  • a substrate such as a nonwoven fabric made of a polymer such as Further, in order to form a flow path of water on the permeate side, a permeate side flow path material is used.
  • the separation membrane element has a supply-side channel material 1 sandwiched between separation membranes 2 and a permeation-side channel material 3 is stacked to form a unit, and spirally around the water collection pipe 4.
  • the separation membrane element 5 is wound around.
  • the separation membrane element 5 includes end plates 92 with holes disposed at the first and second ends thereof and having holes. That is, the supply water 101 supplied from the first end of the separation membrane element 5 is divided into the permeated water 102 and the concentrated water 103 by the separation membrane. The permeated water 102 is taken out from the second end of the separation membrane element 5 through the water collection pipe 4. The concentrated water 103 flows out of the separation membrane element 5 through the hole of the end plate 92 with the hole at the second end.
  • the separation membrane element 5B having a different flow of the supply water can be employed.
  • the supply side flow path formed by the supply side flow path material is provided in a direction parallel to the longitudinal direction of the water collection pipe 4, whereas in the separation membrane element 5 B, at least the water collection pipe 4 is provided. It is provided in a direction perpendicular to the longitudinal direction.
  • the manufacturing method of the separation membrane element 5B is as follows. Specifically, the supply-side channel material 1 is sandwiched between the separation membranes 2, and the permeation-side channel material 3 is laminated to form a set of units, which are wound around the water collection pipe 4 in a spiral shape. Thereafter, edge cutting at both ends is performed, and a sealing plate (corresponding to the first end plate 91) for preventing inflow of supply water from one end is attached, and further, an end plate corresponding to the second end plate 93 is covered.
  • a separation membrane element can be obtained by attaching to the other end of the wound body.
  • porous member 82 a member having a plurality of holes through which feed water can be passed is used. These holes 821 provided in the porous member 82 may be rephrased as supply water supply ports. As long as the porous member 82 has a plurality of holes, the material, size, thickness, rigidity, and the like are not particularly limited. By adopting a relatively thin member as the porous member 82, the membrane area per unit volume of the separation membrane element can be increased.
  • the holes 821 provided in the porous member 82 are shown in a slit shape (straight), but a structure in which a plurality of holes such as a circle, a rectangle, an ellipse, and a triangle are arranged may be used.
  • the thickness of the porous member 82 is, for example, preferably 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.2 mm or less.
  • the porous member 82 may be a member having flexibility or flexibility that can be deformed so as to follow the outer peripheral shape of the wound body. More specifically, as the porous member 82, a net, a porous film, or the like can be applied. The net and the porous film may be formed in a cylindrical shape so that the wound body can be accommodated therein, or may be long and wound around the wound body.
  • the porous member 82 is disposed on the outer peripheral surface of the separation membrane element 5B. By providing the porous member 82 in this manner, holes are provided on the outer peripheral surface of the separation membrane element 5B. It can be said that the “outer peripheral surface” is a portion excluding the first end surface and the second end surface in the entire outer peripheral surface of the separation membrane element 5B. In this embodiment, the porous member 82 is disposed so as to cover almost the entire outer peripheral surface of the wound body.
  • the end plate at the first end is the end plate 91 without holes, so that the feed water does not flow into the separation membrane element 5B from the surface of the first end.
  • the supply water 101 flows into the gap between the vessel and the separation membrane element 5B.
  • the supply water 101 is supplied to the separation membrane 2 from the outer peripheral surface of the separation membrane element 5B through the porous member 82 in a direction perpendicular to the longitudinal direction of the water collecting pipe.
  • Supply water 101 supplied in this way is divided into permeated water 102 and concentrated water 103 by the separation membrane.
  • the permeated water 102 passes through the water collection pipe 6 and is taken out from the second end of the separation membrane element 5B.
  • the concentrated water 103 flows out of the separation membrane element 5B through the hole of the end plate 93 with the second end.
  • the separation membrane element in which the supply side flow path formed by the supply side flow path material is provided at least in the direction perpendicular to the longitudinal direction of the water collecting pipe has a width of the separation membrane element.
  • the supply-side flow path is provided in a direction parallel to the longitudinal direction of the water collecting pipe.
  • a separation membrane element 5C having a different flow of supplied water can be employed.
  • the holeless end plate 91 at the first end of the separation membrane element 5B is changed to a holed end plate 94, and the supply water 101 flows from both the outer peripheral surface and the first end of the separation membrane element 5B. Can be taken.
  • the separation membrane element 5C can be manufactured in the same procedure as the separation membrane element 5B except that the holeless end plate 91 is changed to the holed end plate 94.
  • the separation membrane element 5C is also provided with a supply-side flow path formed by the supply-side flow path material in a direction perpendicular to the longitudinal direction of the water collecting pipe.
  • the separation membrane 2 a membrane having separation performance according to the method of use, purpose, and the like is used.
  • the separation membrane 2 may be a single layer or a laminated composite membrane including a separation functional layer and a substrate.
  • a porous support layer may be further provided between the separation functional layer and the substrate.
  • the surface having the separation functional layer is referred to as the supply side surface
  • the surface opposite to the surface having the separation functional layer is referred to as the transmission side surface
  • the separation is performed in such a state that the supply side surfaces face each other.
  • the membrane is called a separation membrane pair.
  • the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
  • the “separation function layer” refers to a layer having at least a separation function.
  • a layer containing a polymer selected from the group consisting of cellulose, polyvinylidene fluoride, polyethersulfone and polysulfone as a main component is preferably applied as the separation functional layer.
  • a crosslinked polymer is preferably used in terms of easy control of the pore diameter and excellent durability.
  • a polyamide separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide, an organic-inorganic hybrid functional layer, or the like is preferably used because of excellent separation performance of components in the feed water.
  • These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
  • a separation functional layer containing polyamide as a main component can be formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. More specifically, after applying a polyfunctional amine aqueous solution on the porous support layer and removing the excess polyfunctional amine aqueous solution with an air knife or the like, applying an organic solvent solution containing a polyfunctional acid halide. Thus, polycondensation occurs and a polyamide separation functional layer is formed.
  • an aliphatic carboxylic acid having a linear or branched alkyl group and having 5 or more carbon atoms By performing the interfacial polycondensation in the presence of an aliphatic carboxylic acid having a linear or branched alkyl group and having 5 or more carbon atoms, it is possible to precisely control the distribution of terminal functional groups. Thus, both water permeability and removability can be achieved.
  • Such an aliphatic carboxylic acid can be added to an aqueous solution of the polyfunctional amine or an organic solvent solution immiscible with water containing the polyfunctional acid halide, or can be impregnated in advance in a porous support membrane. .
  • aliphatic carboxylic acid for example, as a linear saturated alkyl carboxylic acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid or tridecanoic acid is branched.
  • Examples of the chain saturated alkylcarboxylic acid include caprylic acid, isobutyric acid, isopentanoic acid, butylacetic acid, 2-ethylheptanoic acid and 3-methylnonanoic acid, and examples of the unsaturated alkylcarboxylic acid include methacrylic acid, trans- Examples include 3-hexenoic acid, cis-2-octenoic acid, or trans-4-nonenoic acid.
  • the total carbon number of these aliphatic carboxylic acids is preferably in the range of 5-20, more preferably in the range of 8-15. If the total carbon number is less than 5, the effect of improving the water permeability of the separation functional membrane tends to be small, and if the total carbon number exceeds 20, the boiling point becomes high and it is difficult to remove from the membrane. It tends to be difficult to develop water permeability.
  • the water permeability of the membrane is improved by setting the HLB value to 4 or more and 12 or less. And stain resistance are improved at the same time, and further, it is easy to remove from the porous support membrane.
  • the HLB value is a value representing the degree of affinity for water-immiscible organic solvents.
  • concentration of the aliphatic carboxylic acid in the organic solvent solution can be appropriately determined depending on the aliphatic carboxylic acid to be added. Specifically, it is preferably in the range of 0.03 to 30% by mass, More preferably, it is in the range of 06 to 10% by mass.
  • the porous support layer is a layer that supports the separation functional layer, and can be rephrased as a porous resin layer when the material is a resin.
  • the material used for the porous support layer and its shape are not particularly limited, but may be formed on the substrate with a porous resin, for example.
  • a porous resin for example.
  • polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture and laminate of them is used, and polysulfone with high chemical, mechanical and thermal stability and easy to control pore size. Is preferably used.
  • the porous support layer is formed by casting an N, N-dimethylformamide (DMF) solution of the above polysulfone onto a substrate (for example, a densely woven polyester nonwoven fabric) described later to a certain thickness, It can be manufactured by wet coagulation with.
  • DMF N, N-dimethylformamide
  • the porous support layer is “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the polymer concentration, the temperature of the solvent, and the poor solvent can be adjusted.
  • the separation membrane may have a substrate.
  • the substrate it is preferable to use a fibrous substrate in terms of strength and fluid permeability.
  • a long fiber nonwoven fabric and a short fiber nonwoven fabric can be preferably used.
  • the separation membrane filled in the separation membrane element of the present invention was cut out to 47 cm 2 , and the feed water was a saline solution having a concentration of 200 ppm and a pH 6.5 aqueous solution, an operating pressure of 0.41 MPa, a temperature of 25 ° C., and a recovery rate of 1%.
  • the pure water permeability coefficient was A (m / second / MPa) and the solute permeability coefficient was B (m / second), A 3
  • the separation membrane has high performance (high water permeability and high removal).
  • the higher the performance of the separation membrane the greater the amount of supplied water and the membrane surface salt concentration, and the corresponding flow resistance of the flow path.
  • the separation membrane element of the present invention can stably exhibit higher performance than the conventional separation membrane element even when a high-performance separation membrane is mounted. .
  • the separation membrane element is provided with a supply-side flow path member disposed so as to face the supply-side surface of the separation membrane.
  • the supply-side flow path material only needs to be formed so as to form a flow path for supplying the supply water to the separation membrane 2, and is provided so as to disturb the flow of the supply water in order to suppress the concentration polarization of the supply water. It is preferable that
  • the supply side channel material is a member having a continuous shape such as a knitted fabric, a woven fabric or a net.
  • a net is preferably used from the viewpoint of securing the flow path of the supply water and suppressing concentration polarization.
  • the net in the present application is a structure having a mesh shape in which a plurality of fibrous objects (constituent fibers) intersecting each other are heat-sealed, and is a longitudinal fiber shape discharged from a hole provided in an extrusion die. It is manufactured by adhering a resin in a molten state and a resin in a lateral direction in a molten state, and then cooling and solidifying it.
  • the supply-side channel material includes a fibrous array A composed of a plurality of fibrous objects A11 aligned in one direction, and a plurality of fibrous structures aligned in a direction different from the fibrous array A. It consists of the fibrous row
  • the supply water flow path to the membrane surface becomes narrower. It is preferably not more than °, more preferably not less than 75 ° and not more than 105 °.
  • the thickness of the supply-side channel material substantially corresponds to the intersection thickness of the fibrous material A and the fibrous material B in FIG. If the thickness of the supply-side channel material is reduced, the linear velocity of the supplied water is increased and the flow of the membrane surface is disturbed, so that the concentration polarization layer is reduced and the separation performance of the separation membrane element is improved.
  • the thinner the channel material the more separation membranes that can be filled in the separation membrane element, leading to an improvement in the amount of water produced by the separation membrane element.
  • the thickness of the supply-side channel material needs to be 0.15 mm or more and 0.50 mm or less, and preferably 0.28 mm or more and 0.35 mm or less.
  • the thickness of the supply-side channel material is the average value of the values measured with a precision thickness gauge or the like for the intersection thickness of 30 fibrous materials A and fibrous materials B selected at random.
  • the intersection thicknesses of the fibrous material A and the fibrous material B are both The average thickness of the supply-side channel material is preferably 0.9 times or more and 1.1 times or less.
  • the constituent fiber diameter of the fibrous material can be measured by observing with a commercially available microscope.
  • the constituent fiber diameter of the fibrous object A11 and the constituent fiber diameter of the fibrous object B12 shown in FIG. 4 are the widths c and d of the images obtained by projecting the respective fibrous objects on a plane parallel to the surface direction of the separation membrane.
  • the constituent fiber diameter of the supply-side channel material shown in FIG. 4 is smaller, the region where the supply water is stagnated decreases, but the rigidity becomes lower. On the other hand, when the constituent fiber diameter is large, the rigidity is increased, but the region where the feed water is stagnated increases. From these balances, the constituent fiber diameter of the supply-side channel material is preferably 0.07 mm or more and 0.25 mm or less, and more preferably 0.14 mm or more and 0.18 mm or less.
  • the constituent fiber diameter of the fibrous object A and the constituent fiber diameter of the fibrous object B may be the same or different.
  • the intersection distance of the supply-side channel material is 0.5 mm or more and 10 mm or less.
  • the supply-side channel material is sandwiched between the separation membranes, and the permeation-side channel material is laminated to form a set of units that are wrapped around the water collection pipe while being pressurized spirally.
  • the distance between the intersections of the supply-side flow path members is 1.5 mm or less, the force with which the intersections of the nets are pressed against the separation membrane can be dispersed, and damage to the separation membrane can be reduced.
  • the hardness of the feed water is high and the water-making property and removability of the separation membrane are high, especially during the high recovery rate operation, a region where the feed water stagnates mainly at the intersection position of the feed-side flow path material, Since the salt concentration increases and the inorganic scale adheres, it is effective to suppress the adhesion of the inorganic scale to the film surface when the supply side flow path material has an intersection distance of 8 mm or more.
  • the upper limit of the intersection distance is preferably 10 mm in order to ensure the winding hardness of the element and reduce an excessive load on the film.
  • intersection density is the number of intersections of the fibrous material A and the fibrous material B that constitute the supply-side channel material existing per unit area. For example, it can be obtained by observing the supply-side channel material from the height direction with respect to the plane direction and measuring the number of intersection points per 100 mm 2 selected at random.
  • the flow rate of the supplied water can be moderated.
  • the separation membrane has a high water-producing ability and the amount of water supplied to the separation membrane element is large, the resistance of the supply-side flow path can be reduced, and a separation membrane element excellent in water formation can be obtained.
  • intersection density is 3 pieces / 100 mm 2 or less, particularly in the case where the hardness of the supply water is high and the high recovery rate operation is performed, there is a region where the supply water stagnates at the intersection position of the supply side channel material. This is effective in suppressing adhesion of inorganic scale to the film surface.
  • Cross-sectional shape of fibrous material Since it is important to increase the degree of turbulent flow around the separation membrane surface in the supply-side flow path, it is also possible to use an irregularly shaped fibrous material having a cross section that is not circular or elliptical.
  • the “irregular” cross section includes all non-circular shapes.
  • a Y-shaped, T-shaped, X hour-shaped, star-shaped, gear-shaped, etc. The shape to include is mentioned. Due to the presence of the recesses in the fibrous material, there will be a mixture of areas where the feed water is easy to flow and areas where it is difficult to flow around the supply side flow material. .
  • a fibrous material having a modified cross section is a technique well known in the art.
  • a fibrous material having various modified cross sections can be formed by changing the shape of the extrusion die as necessary. is there.
  • the material of the supply-side channel material is not particularly limited, but a thermoplastic resin is preferable from the viewpoint of moldability, and polyethylene and polypropylene are particularly preferable because they hardly damage the surface of the separation membrane and are inexpensive.
  • the permeation side flow path material is disposed on the permeation side surface of the separation membrane.
  • a projection is formed by forming a projection on a film or a nonwoven fabric, and the projection is arranged and fixed on a sheet imparted with a channel material function or a porous sheet such as a nonwoven fabric. The sheet
  • the permeation-side flow path material has a cross-sectional area ratio of 0.4 or more and 0.75 or less in that the flow resistance of the permeation-side flow path is reduced and the flow path is stably formed even under pressure filtration. It is preferable.
  • the cross-sectional area ratio of the permeate side channel material will be described.
  • FIG. 5 as an example, a sheet-shaped permeation-side flow path material is shown, but when the permeation-side flow path material is filled in the separation membrane element, the permeation-side flow path is along a direction parallel to the longitudinal direction of the water collecting pipe.
  • the ratio of the cross-sectional area S of the permeation-side flow path material occupied between the center of one convex part and the center of the adjacent convex part is the cross-sectional area ratio.
  • the permeate-side channel material is directly fixed to the permeate-side surface of the separation membrane as shown in FIG.
  • there are a plurality of permeation-side channel materials and the cross-sectional area of the permeation-side channel material occupying between the center of the convex portion and the center of the adjacent convex portion is two (S1 and S2).
  • the cross-sectional area S corresponds to the sum of S1 and S2.
  • the permeation side channel material having a cross-sectional area ratio of 0.4 or more and 0.75 or less By disposing the permeation side channel material having a cross-sectional area ratio of 0.4 or more and 0.75 or less in the separation membrane element of the present invention, the flow resistance of the permeation side channel can be reduced. As a result, the unit membrane Water permeability per area can be improved.
  • the improvement in water permeability per unit membrane area means that the water permeability of the entire separation membrane element is improved, and includes a channel material having a large permeation-side flow resistance when operating at a constant recovery rate.
  • the separation membrane element the effect of increasing the flow rate and linear velocity of the feed water is born, and by increasing the membrane surface turbulence effect, concentration polarization is suppressed, and the separation membrane and the supply-side channel material can be used during long-term operation. Contaminant adhesion can be suppressed, and the water-making property and removability of the separation membrane element can be maintained for a long time.
  • the thickness H0 of the permeate side channel material in FIG. 7 is preferably 0.1 mm or more and 1 mm.
  • Various methods such as an electromagnetic method, an ultrasonic method, a magnetic method, and a light transmission method are commercially available for measuring the thickness, but any method may be used as long as it is a non-contact type. Measurements are made at 10 locations at random and the average value is taken as the thickness of the permeate-side channel material.
  • the thickness of the permeate side channel material is 0.1 mm or more, it has strength as a permeate side channel material and can be handled without causing crushing or tearing of the permeate side channel material even when stress is applied. it can.
  • the thickness of the permeate-side channel material is 1 mm or less, the number of separation membranes and permeate-side channel materials that can be filled in the separation membrane element is increased without impairing the surrounding property of the water collecting pipe. Can do.
  • the thickness H0 of the permeate-side channel material is the convex portion of the permeate-side channel material described later. It is the same as the height H1.
  • the height H1 of the convex portion of the permeate-side channel material in FIG. 7 is preferably 0.05 mm or more and 0.8 mm or less, and the groove width D is preferably 0.02 mm or more and 0.8 mm or less.
  • the height H1 and the groove width D of the protrusions can be measured by observing the cross section of the permeate-side channel material with a commercially available microscope at 30 points selected at random, and can be calculated as an average value thereof. it can.
  • the space formed by the height H1 of the convex portion, the groove width D, and the laminated separation membrane becomes a permeate-side flow path, and the pressure filtration is performed because the height H1 and the groove width D of the convex portion are in the above ranges. It is possible to obtain a separation membrane element excellent in pressure resistance and water-forming property while reducing flow resistance while suppressing membrane dropping.
  • the groove length E can be set similarly to the groove width D. .
  • the width W of the convex portion of the permeate-side channel material in FIG. 7 is preferably 0.1 mm or more, and more preferably 0.3 mm or more.
  • the width W is preferably 1 mm or less, more preferably 0.7 mm or less. When the width W is 1 mm or less, it is possible to sufficiently secure the permeation side flow path.
  • the width W of the convex portion 6 is measured as follows. First, in one cross section perpendicular to the first direction, the average value of the maximum width and the minimum width of one convex portion 6 is calculated. That is, in the convex part 6 whose upper part is thin and whose lower part is thick as shown in FIG. 9, the width of the lower part and the upper part of the channel material are measured, and the average value is calculated. By calculating such an average value in at least 30 cross sections and calculating an arithmetic average thereof, the width W per film can be calculated.
  • transmission side flow-path material is the width W. It can be set similarly.
  • the sheet constituting the permeation-side channel material a porous film or a nonwoven fabric can be used, and in the case of the nonwoven fabric in particular, the space that becomes the channel formed by the fibers constituting the nonwoven fabric becomes wider. It is preferable because water easily flows and, as a result, the water forming property of the separation membrane element is improved.
  • the polymer that is the material of the permeate-side channel material is not particularly limited as long as it retains the shape as the permeate-side channel material and has little elution of components into the permeated water.
  • the sheet is composed of a plurality of fibers
  • fibers having a polypropylene / polyethylene core-sheath structure may be used.
  • the transmission side flow channel material itself is shaped into a corrugated plate shape, rectangular wave shape, triangular wave shape, etc., or one surface of the transmission side flow channel material is flat and the other surface is processed to be uneven. Further, it may be formed by laminating other members on the surface of the permeate-side flow path material in an uneven shape.
  • the convex portions forming the flow path may have a dot shape as shown in FIG.
  • FIG. 8 illustrates a cylindrical projection having a circular cross section (a plane parallel to the sheet plane)
  • the cross sectional shape is not particularly limited, such as a polygon or an ellipse.
  • the convex part of a different cross section may be mixed.
  • corrugated shape which has a groove
  • the groove is preferably continuous in a direction perpendicular to the longitudinal direction of the water collecting pipe in order to introduce permeate into the water collecting pipe at the shortest distance.
  • the cross-sectional shape in a direction perpendicular to the winding direction may be a trapezoidal wall-like object having a change in width, an elliptical column, an elliptical cone, a quadrangular pyramid, or a hemispherical shape.
  • the separation membrane element of the present invention can be applied to a water treatment system such as an RO water purifier.
  • a water treatment system such as an RO water purifier.
  • a separation membrane with excellent water production and desalination capacity is installed and operation is performed with a high recovery rate (percentage of permeated water relative to the amount of supplied water)
  • the amount of organic foulant supplied to the membrane surface and the inorganic scale As the amount increases, the fouling associated therewith, the effective pressure of the separation membrane element decreases due to the increase in osmotic pressure, and the desalination rate and the water formation of the separation membrane element tend to decrease.
  • the recovery rate is set to 60% or more. Even if it is operated for a long time, it has excellent fresh water generation and desalination capabilities.
  • the thickness of the intersection of the mesh-like supply side channel material (net) composed of the fibrous material A and the fibrous material B was measured at 30 points using Mitsutoyo Corporation's Thickness Gauge (Part No. 547-315), and the average The value was taken as the thickness of the supply-side channel material.
  • the surface of the polysulfone layer of the porous support membrane was immersed in a 2.2% by mass aqueous solution of m-PDA for 2 minutes and then slowly pulled up in the vertical direction. Furthermore, the excess aqueous solution was removed from the surface of the support film by blowing nitrogen from the air nozzle.
  • separation membrane a A 15.7% by weight DMF solution of polysulfone was cast on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 / sec) to a thickness of 200 ⁇ m at room temperature (25 ° C.), and immediately immersed in pure water.
  • a microporous support membrane (thickness: 210 to 215 ⁇ m) was produced by leaving it for a minute.
  • the obtained microporous support membrane was immersed in a 1.8% by mass aqueous solution of m-PDA for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to remove excess from the surface of the support membrane.
  • an n-decane solution at 25 ° C. containing 0.065% by mass of TMC and 0.1% by mass of undecanoic acid was applied so that the surface was completely wetted, and then allowed to stand for 1 minute.
  • the membrane was held vertically for 1 minute and drained.
  • separation membrane b This separation membrane was designated as separation membrane b.
  • separation membrane c A 15.7% by weight DMF solution of polysulfone was cast on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 / sec) to a thickness of 200 ⁇ m at room temperature (25 ° C.), and immediately immersed in pure water. A microporous support membrane (thickness: 210 to 215 ⁇ m) was produced by leaving it for a minute.
  • the obtained microporous support membrane was immersed in a 1.8% by mass aqueous solution of m-PDA for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to remove excess from the surface of the support membrane.
  • an n-decane solution at 25 ° C. containing 0.065% by mass of TMC and 0.1% by mass of undecanoic acid was applied so that the surface was completely wetted, and further 10 seconds later, 1% by mass of diethylene glycol dimethyl ether The n-decane solution was applied so that the surface was completely wet and allowed to stand for 1 minute.
  • the membrane was held vertically for 1 minute and drained. Thereafter, it was washed with hot water at 80 ° C. for 2 minutes to obtain a composite separation membrane roll.
  • This separation membrane was designated as a separation membrane c.
  • the surface of the polysulfone layer of the porous support membrane was immersed in a 3.0% by mass aqueous solution of m-PDA for 2 minutes, and then slowly pulled up in the vertical direction. Furthermore, the excess aqueous solution was removed from the surface of the support film by blowing nitrogen from the air nozzle.
  • Separation membrane f was obtained by changing the membrane surface temperature at the time of contact between amine and trimesic acid chloride during preparation of the separation membrane to 40 ° C.
  • Separatation membrane flux The separation membrane was cut out to 47 cm 2, and the conditions of an operating pressure of 0.41 MPa, a temperature of 25 ° C., and a recovery rate of 1% or less were used in the membrane evaluation cell using a 200 ppm concentration saline solution and a pH 6.5 NaCl aqueous solution as the feed water. After operating for 15 minutes, sampling was performed for 1 minute, and the amount of water per day was defined as a separation membrane flux (m 3 / m 2 / day).
  • Pure water permeability coefficient (m 3 / m 2 / sec / Pa) (membrane permeation flux of solution) / (pressure difference on both sides of membrane ⁇ osmotic pressure difference on both sides of membrane ⁇ solute reflection coefficient) (a)
  • the solute reflection coefficient can be obtained by the following method. First, the following equation is known as a transport equation of the reverse osmosis method based on non-equilibrium thermodynamics.
  • Jv is the membrane permeation flux of the solution (m 3 / m 2 / s)
  • Lp is the pure water permeability coefficient (m 3 / m 2 / s / Pa)
  • ⁇ P is the pressure difference (Pa) on both sides of the membrane
  • is the solute reflection coefficient
  • is the osmotic pressure difference (Pa) on both sides of the membrane
  • Js is the solute permeability through the membrane (mol / m 2 / s)
  • P is the solute permeability coefficient (m / s)
  • Cm is the solute membrane.
  • the surface concentration (mol / m 3 ), Cp is the permeate concentration (mol / m 3 ), and C is the concentration on both sides of the membrane (mol / m 3 ).
  • the average concentration C on both sides of the membrane has no substantial meaning when the concentration difference between the two sides is very large as in a reverse osmosis membrane. Therefore, the following formula obtained by integrating the formula (a) with respect to the film thickness is often used.
  • R ⁇ (1-F) / (1- ⁇ F) (d)
  • F exp ⁇ -(1- ⁇ ) Jv / P ⁇ (e)
  • R 1-Cp / Cm (f)
  • Lp Lp can be calculated from the equation (b)
  • R is measured by changing Jv in various ways
  • R and 1 / Jv are plotted against the equations (d) and (e).
  • P and ⁇ can be obtained simultaneously by curve fitting.
  • equation (g) is materialized about the desalination rate R of P and a separation membrane.
  • R 100 ⁇ Jv / (Jv + P)
  • (g) Water generation capacity of separation membrane element
  • the separation membrane element was evaluated based on the following three evaluation conditions. (Condition 1) Saline solution having a concentration of 200 ppm and pH 6.5 aqueous solution was used as the feed water, and the sample was sampled for 1 minute after operating for 15 minutes under the conditions of an operating pressure of 0.41 MPa and a temperature of 25 ° C. The water permeability was expressed as the amount of water produced (GPD (gallon / day)).
  • Desalination rate (%) 100 ⁇ ⁇ 1- (TDS concentration in permeated water / TDS concentration in feed water) ⁇ (Preparation of transmission side channel material tricot with weft knitting)
  • the weft knitted fabric is made of multi-filament yarn (48 filaments, 110 dtex) made by blending polyethylene terephthalate filaments (melting point: 255 ° C) with polyethylene terephthalate-based low melting point polyester filaments (melting point: 235 ° C).
  • the weft knitting structure gauge (the number of needles between unit lengths of the knitting machine)) was knitted, heat set at 245 ° C., and then calendered to produce a permeate-side channel material tricot.
  • the permeate side channel material is indicated as permeate side channel material A.
  • the envelope is perpendicular to the longitudinal direction of the water collection pipe when the backup roll is adjusted to 20 ° C. and used as a separation membrane element
  • a highly crystalline PP MFR 1000 g / 10 min, melting point 161 linearly or discontinuously so as to be perpendicular to the longitudinal direction of the water collecting pipe from the inner end to the outer end in the winding direction.
  • the nonwoven fabric had a thickness of 0.07 mm, a weight per unit area of 35 g / m 2 , and an embossed pattern (a circle with a diameter of 1 mm, a lattice with a pitch of 5 mm).
  • the permeate side channel material is indicated as permeate side channel material B.
  • Imprint processing and CO2 laser processing were performed on an unstretched polypropylene film (Torephane (registered trademark) manufactured by Toray Industries, Inc.) to obtain a permeate-side channel material having through holes.
  • an unstretched polypropylene film was sandwiched between metal molds having grooves formed by cutting, held at 140 ° C./2 minutes / 15 MPa, cooled at 40 ° C., and taken out from the mold.
  • a through hole was obtained by laser processing the concave and convex portions on the concave and convex portions from the non-concave surface of the concave and convex imprint sheet.
  • the through holes were provided in each groove with a pitch of 2 mm.
  • the permeation side channel material is indicated as permeation side channel material C.
  • the separation membrane element that had been evaluated in (Condition 3) and reached a total water production of 3000 L was disassembled, and the membrane surface deposit was extracted with a 1 wt% nitric acid aqueous solution. Measure the total adsorption amount (g) of inorganic components (calcium, magnesium, barium) using an inductively coupled plasma emission spectrometer) and calculate the inorganic scale adhesion amount (g / m 2 ) from the membrane area of the separation membrane element did.
  • Total amount of deposits The separation membrane element that had been evaluated in (Condition 3) and reached a total water production of 3000 L was disassembled, and the adhering matter adhering to the membrane surface was collected with a rubber scraper, and then dried at 120 ° C. for 2 hours. The mass was measured, and the total amount of deposits (g / m 2 ) was calculated from the membrane area of the separation membrane element. (Amount of organic fouling attached) The difference between the total deposit amount and the inorganic scale deposit amount was calculated as the organic fouling deposit amount (g / m 2 ).
  • the thickness of the permeate side channel material and the height of the convex portion were measured with a high precision shape measurement system KS-1100 manufactured by Keyence Corporation. Specifically, an average height difference was analyzed from a measurement result of 5 cm ⁇ 5 cm using a high precision shape measurement system KS-1100 manufactured by Keyence Corporation. Thirty locations with a height difference of 10 ⁇ m or more were measured, and the average value was defined as the height of the convex portion.
  • Example 1 The separation membrane a obtained by the above-mentioned production method is cut and processed, and a polypropylene net (thickness: 300 ⁇ m, intersection distance: 8 mm, fiber diameter: 0.15 mm, inclination angle: 90 °) shown in Table 2 is supplied on the supply side flow path The leaves were sandwiched and folded to produce a leaf.
  • a permeation side flow path material B (cross-sectional area ratio: 0.43) shown in Table 2 was laminated as a permeation side flow path material on the permeation side surface of the obtained leaf, and a leaf adhesive was applied.
  • the separation membrane pair is arranged so that the length of the side perpendicular to the longitudinal direction of the water collection pipe is longer than the width of the separation membrane element, and the ABS (acrylonitrile-butadiene-styrene) water collection pipe (width) : 298mm, diameter: 17mm, number of holes 8 holes x 2 straight lines) spirally wound around the outer peripheral surface of the wound body, continuously extruded into a cylindrical shape (thickness: 0.7mm, pitch: 5mm) ⁇ 5 mm, fiber diameter: 350 ⁇ m, projected area ratio: 0.13).
  • a sealing plate (corresponding to the first end plate 91) for preventing inflow of supply water from one end was attached.
  • the supply water supply port was provided only on the outer peripheral surface of the separation membrane element.
  • a separation membrane element having a diameter of 1.8 inches is prepared by attaching an end plate corresponding to the second end plate 92 to the other end of the covered envelope and providing a concentrated fluid outlet at the other end of the separation membrane element. did.
  • the obtained separation membrane element was put in a pressure vessel, and the performance was evaluated under the above-mentioned conditions.
  • the separation membrane element after evaluation in (Condition 3) was disassembled, and the amount of inorganic scale, the total amount of deposit, and the amount of organic fouling were measured. The results are shown in Table 3.
  • the effective membrane area in Table 1 is a region in the separation membrane leaf where the separation function is not deactivated by the leaf adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、長期にわたり造水性や除去性に優れた分離膜エレメントを提供することを課題とする。本発明は、集水管と、供給側の面と透過側の面とを備える分離膜と、供給側流路材と、透過側流路材とを備える分離膜エレメントであって、上記分離膜、供給側流路材および透過側流路材は上記集水管の周りにスパイラル状に巻囲され、上記供給側流路材は、互いに交差する複数の繊維状物を備え、上記供給側流路材の厚みが0.15mm以上0.50mm以下であり、上記分離膜は、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃の条件下でろ過した際の溶液透過係数をA(m/秒/MPa)、溶質透過係数をB(m/秒)とした際に、A/B(m/秒/MPa)の値が8.0×10-8以上である、分離膜エレメントを提供する。

Description

分離膜エレメントおよびその運転方法
 本発明は、液体、気体などの流体に含まれる成分を分離するために使用される分離膜エレメントに関する。
 海水およびかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜に分類される。これらの膜は、例えば海水、かん水および有害物を含んだ水などからの飲料水の製造、工業用超純水の製造、および、排水処理および有価物の回収などに用いられており、目的とする分離成分および分離性能によって使い分けられている。
 分離膜エレメントとしては様々な形態があるが、分離成分が水である場合には、分離膜の一方の面に供給水を供給し、他方の面から透過水を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、一の分離膜エレメント当たりの膜面積が大きくなるように、つまり一の分離膜エレメント当たりに得られる透過水の量が大きくなるように形成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種の形状が提案されている。
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、集水管と、集水管の周囲に巻き付けられた積層体とを備える。積層体は、供給水を分離膜表面へ供給する供給側流路材、供給水に含まれる成分を分離する分離膜、および、分離膜を透過し供給水側流体から分離された透過側水を集水管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、供給水に圧力を付与することができるので、透過水をより多く取り出すことができる点で好ましく用いられている。
 スパイラル型分離膜エレメントの高性能化のために、スパイラル型分離膜エレメントの高造水・高除去化、かつ高寿命化が求められている。近年、スパイラル型分離膜エレメントの高造水化を達成する手段として、供給側流路材や分離膜、透過側流路材といった部材の厚みを低減し、スパイラル型分離膜エレメントに充填する分離膜量を増やして造水量を増やす手法が提案されている。特に、部材の中でも供給側流路材は厚く、スパイラル型分離膜エレメントを運転した際に発生する流動抵抗が小さく、供給側流路材を更に薄くしても流動抵抗の増加が軽微なため、供給側流路材を薄型し、分離膜量を増やす手法が採用されてきた。
 具体的には、特許文献1では、厚みが0.08mm以上2mm以下の供給側流路材を充填し、透過側には抵抗が低い流路材が配置されたスパイラル型分離膜エレメントが提案されている。
 一方で、スパイラル型分離膜エレメントの除去性を向上させるために、膜面の乱流効果を高め、濃度分極を抑制できるような流路材部材およびスパイラル型分離膜エレメント構造が提案されている。
 具体的には、特許文献2では、分離膜の供給側表面に凸部および溝を設けることによって、膜面の乱流効果を増加させたスパイラル型分離膜エレメントが提案されている。
特開平10-230140号公報 特開2010-125418号公報
 上述した種々の提案にもかかわらず、分離膜エレメントは、造水性・除去性の観点から十分とは言えず、また、分離膜エレメント性能を長期間維持する、という点においても改善の余地があった。
 そこで、本発明では、長期にわたり造水性や除去性に優れた分離膜エレメントを提供することを目的とする。
 上記目的を達成するため、本発明は、次の(1)~(10)の構成からなる。
(1) 集水管と、供給側の面と透過側の面とを備える分離膜と、供給側流路材と、透過側流路材とを備える分離膜エレメントであって、上記分離膜、供給側流路材および透過側流路材は上記集水管の周りにスパイラル状に巻囲され、上記供給側流路材は、互いに交差する複数の繊維状物を備え、上記供給側流路材の厚みが0.15mm以上0.50mm以下であり、上記分離膜は、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃の条件下でろ過した際の溶液透過係数をA(m/秒/MPa)、溶質透過係数をB(m/秒)とした際に、A/B(m/秒/MPa)の値が8.0×10-8以上である、分離膜エレメント。
(2) 上記分離膜は、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃の条件下でろ過した際の透過水量が1.5m/m/日以上である、上記(1)に記載の分離膜エレメント。
(3) 上記供給側流路材の交点密度が3個/100mm以下である、上記(1)又は(2)に記載の分離膜エレメント。
(4) 上記供給側流路材の交点密度が15個/100mm以上210個/100mm以下である、上記(1)又は(2)に記載の分離膜エレメント。
(5) 上記供給側流路材により形成される供給側流路が、上記集水管の長手方向に対して垂直方向に形成されている、上記(1)~(4)のいずれかに記載の分離膜エレメント。
(6) 上記透過側流路材は、複数の突起物が形成されたシート又は複数の突起物が固着されたシートである、上記(1)~(5)のいずれかに記載の分離膜エレメント。
(7) 上記突起物が、上記集水管の長手方向に対して垂直方向に連続している、上記(6)に記載の分離膜エレメント。
(8) 上記透過側流路材の横断面が複数の透過側流路を形成し、かつ、上記透過側流路材の横断面積比が0.4以上0.75以下である、上記(1)~(7)のいずれかに記載の分離膜エレメント。
(9) 上記(1)~(8)のいずれかに記載の分離膜エレメントを用いて、供給された水量の60%以上を造水する、分離膜エレメントの運転方法。
(10) 上記(1)~(8)のいずれかに記載の分離膜エレメントを用いて、供給された水量の40%以下を造水する、分離膜エレメントの運転方法。
 本発明によって、高造水能かつ高除去能を有するエレメント構成になり、更に、膜面線速向上により特に高回収率運転において膜面に難溶塩(スケール)や有機物ファウリングが生じ難く、長期にわたり造水性や除去性に優れた分離膜エレメントを得ることができる。
本発明の分離膜エレメントの一例を示す模式図である。 本発明の分離膜エレメントの一例を示すその他の模式図である。 本発明の分離膜エレメントの一例を示すその他の模式図である。 本発明に適用される供給側流路材の平面図の一例である。 本発明に適用される透過側流路材の横断面図の一例である。 本発明に適用される透過側流路材の横断面図のその他の一例である。 本発明に適用される透過側流路材の形態を示す横断面図の一例である。 本発明に適用される透過側流路材の一例である。 本発明に適用される透過側流路材のその他の一例である。
 次に、本発明の分離膜エレメントの実施形態について、詳細に説明する。
 <分離膜エレメントの概要>
 分離膜エレメントでは、供給側の水の流路を形成させるために、供給側流路材として、主に高分子製のネットが使用される。また、分離膜としては例えば、積層型の分離膜が用いられる。積層型の分離膜は、供給側から透過側に順に積層された、ポリアミドなどの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性樹脂層(多孔性支持層)、ポリエチレンテレフタレートなどの高分子からなる不織布などの基材を備えている。また、透過側の水の流路を形成させるために、透過側流路材が用いられる。分離膜エレメントは、図1に示すように、供給側流路材1を分離膜2で挟み込み、透過側流路材3を積層させて一組のユニットとし、集水管4の周囲にスパイラル状に巻囲して分離膜エレメント5としている。
 分離膜エレメント5は、その第1端および第2端に配置され、かつ孔を有する孔付端板92を備える。すなわち、分離膜エレメント5の第1端から供給される供給水101は、分離膜によって透過水102と濃縮水103とに分けられる。透過水102は、集水管4を通って、分離膜エレメント5の第2端から取り出される。濃縮水103は、第2端の孔付端板92の孔を通って、分離膜エレメント5の外に流出する。
 また、本発明では、図2に示すように、供給水の流れが異なる分離膜エレメント5Bの構成をとることができる。一般的な分離膜エレメント5では、供給側流路材により形成される供給側流路が、集水管4の長手方向に平行方向に設けられるのに対し、分離膜エレメント5Bでは少なくとも集水管4の長手方向に対して垂直方向に設けられる。
 分離膜エレメント5Bの作製方法は、次の通りである。具体的には供給側流路材1を分離膜2で挟み込み、透過側流路材3を積層させて一組のユニットとし、集水管4の周囲にスパイラル状に巻囲する。その後、両端のエッジカットを行い、一端からの供給水流入を防ぐための封止板(第1端板91に相当する)の取り付け、さらに、第2端板93に相当する端板を被覆された巻囲体の他端に取り付け、分離膜エレメントを得ることができる。
 多孔性部材82としては、供給水を通過させることができる複数の孔を有する部材が用いられる。多孔性部材82に設けられたこれらの孔821は、供給水の供給口と言い換えられてもよい。多孔性部材82は、複数の孔を有していれば、その材質、大きさ、厚み、剛性などは、特に限定されるものではない。多孔性部材82として、比較的厚みの小さい部材を採用することで、分離膜エレメントの単位体積当たりの膜面積を増大させることができる。
 なお図2において、多孔性部材82に設けられた孔821はスリット状(直線状)に示されているが、円形や四角形、楕円形や三角形などの孔が複数配列される構造でもよい。
 多孔性部材82の厚みは、例えば、1mm以下が好ましく、より好ましくは0.5mm以下、さらに好ましくは0.2mm以下である。また、多孔性部材82は、巻囲体の外周形状に沿うように変形することができる、柔軟性又は可撓性を有する部材であってもよい。より具体的には、多孔性部材82として、ネット、多孔性フィルムなどが適用可能である。ネットおよび多孔性フィルムは、巻囲体を内部に収容できるように筒状に形成されていてもよいし、長尺状であって、巻囲体の周囲に巻き付けられていてもよい。
 多孔性部材82は、分離膜エレメント5Bの外周面に配置される。多孔性部材82がこのように設けられることで、孔が分離膜エレメント5Bの外周面に設けられる。「外周面」とは、特に、分離膜エレメント5Bの外周面全体のうち、上述の第1端の面および第2端の面を除く部分であるともいえる。本実施形態では、多孔性部材82は、巻囲体の外周面のほぼ全体を覆うように配置される。
 分離膜エレメント5Bは、ベッセルに装填して運転する場合、第1端の端板が孔無し端板91なので、第1端の面からは、分離膜エレメント5B内に供給水は流入しない。供給水101はベッセルと分離膜エレメント5Bとの隙間へ流れ込む。そして、供給水101は、分離膜2に対して、分離膜エレメント5Bの外周面から、多孔性部材82を介して集水管の長手方向に対して垂直方向にかけて供給される。こうして供給された供給水101は、分離膜によって透過水102と濃縮水103に分けられる。透過水102は、集水管6を通って、分離膜エレメント5Bの第2端から取り出される。濃縮水103は、第2端の孔付端板93の孔を通って、分離膜エレメント5B外に流出する。
 分離膜エレメント5Bのように、上記供給側流路材により形成される供給側流路が、少なくとも上記集水管の長手方向に対して垂直方向にかけて設けられる分離膜エレメントは、分離膜エレメントの幅に対して、集水管の長手方向に対して垂直方向の辺の長さが長い分離膜対を用いて作製される場合において、供給側流路が上記集水管の長手方向と平行な方向に設けられる従来のスパイラル型分離膜エレメントに比べて、供給水の流入断面積が狭くなり、分離膜エレメントを通過する供給水の線速が速まるため、分離膜の膜面塩濃度が増加する高回収率運転を行う場合において、濃度分極現象を抑制できる点で優位となる。
 さらに、本発明では図3に示すように、供給水の流れが異なる分離膜エレメント5Cの構成をとることもできる。分離膜エレメント5Cでは、分離膜エレメント5Bの第1端における孔無し端板91を孔付端板94に変更し、分離膜エレメント5Bの外周面と第1端の両方から供給水101が流れる構成をとることができる。
 さらに、孔付端板93の孔の配置については、開孔が大きすぎると供給水が供給側流路に均一に流れず、ショートパスするといった場合があるため、本発明の効果が発現するように集水管の周辺に設けることができる。なお、分離膜エレメント5Cは、孔無し端板91を孔付端板94に変更する以外は、分離膜エレメント5Bと同様の手順で製作することができる。
 分離膜エレメント5Cも5Bと同様に、供給側流路材により形成される供給側流路が、上記集水管の長手方向に対して垂直方向にかけて設けられていることから、従来分離膜エレメントと比べて高回収率運転に適した構成とすることができる。
 <分離膜>
 (概要)
 分離膜2としては、使用方法、目的などに応じた分離性能を有する膜が用いられる。分離膜2は、単一層であってもよいし、分離機能層と基材とを備える積層型の複合膜であってもよい。また、複合膜においては、分離機能層と基材との間に、さらに多孔性支持層があってもよい。
 ここで、分離機能層を有する面を供給側の面、分離機能層を有する面とは反対側の面を透過側の面と呼び、供給側の面が互いに向かい合うように形成された状態の分離膜のことを分離膜対と呼ぶ。
 (分離機能層)
 分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
 分離機能層が分離機能および支持機能の両方を有する場合、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホンおよびポリスルホンからなる群から選ばれるポリマーを主成分として含有する層が好ましく適用される。
 一方、分離機能層の成分としては、孔径の制御が容易であり、かつ耐久性に優れるという点で、架橋高分子が好ましく使用される。特に、供給水中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させて得られるポリアミド分離機能層や、有機無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。
 例えば、ポリアミドを主成分として含有する分離機能層は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成できる。より具体的には、多孔性支持層上に多官能アミン水溶液を塗布し、余分な多官能アミン水溶液をエアーナイフなどで除去した後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、重縮合が起きてポリアミド分離機能層が形成される。
 上記界面重縮合を、直鎖又は分枝鎖アルキル基からなり、かつ、炭素数が5以上の脂肪族カルボン酸の存在下で行うことで、末端官能基の分布を精密に制御することが可能となり、透水性と除去性とを両立できることができる。このような脂肪族カルボン酸は、上記多官能アミンの水溶液や上記多官能酸ハロゲン化物を含む水と非混和性の有機溶媒溶液に加えたり、多孔性支持膜にあらかじめ含浸させたりすることができる。
 上記のような脂肪族カルボン酸としては、例えば、直鎖飽和アルキルカルボン酸として、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸又はトリデカン酸が、分岐鎖飽和アルキルカルボン酸としては、例えば、カプリル酸、イソ酪酸、イソペンタン酸、ブチル酢酸、2-エチルヘプタン酸又は3-メチルノナン酸が、さらに不飽和アルキルカルボン酸としては、例えば、メタクリル酸、trans-3-ヘキセン酸、cis-2-オクテン酸又はtrans-4-ノネン酸が挙げられる。
 これら脂肪族カルボン酸の総炭素数は、5~20の範囲内にあることが好ましく、さらに好ましくは8~15の範囲内である。総炭素数が5未満であると、分離機能膜の透水性を向上させる効果が小さくなる傾向があり、総炭素数が20を超えると、沸点が高くなり、膜から除去しにくくなるため、高透水性を発現させることが困難となりやすい。
 さらに、これら脂肪族カルボン酸を上記多官能酸ハロゲン化物を含む、水と非混和性の有機溶媒溶液に添加する場合には、HLB値を4以上12以下にすることで、膜の透水性向上と耐汚れ性向上が同時に発現し、さらに、多孔性支持膜上から除去しやすくなることから好ましい。
 ここでHLB値は、水と非混和性の有機溶媒への親和性の程度を表す値である。HLB値は計算によって決定する方法がいくつか提案されている。グリフィン法によると、HLB値は下記式で定義される。
  HLB値=20×親水部のHLB値
      =20×(親水部の式量の総和)/(分子量)
 上記有機溶媒溶液における脂肪族カルボン酸の濃度は、添加する脂肪族カルボン酸によって適宜決定することができるが、具体的には、0.03~30質量%の範囲内にあると好ましく、0.06~10質量%の範囲内であるとさらに好ましい。
 (多孔性支持層)
 多孔性支持層は、分離機能層を支持する層であり、材料が樹脂の場合多孔性樹脂層とも言い換えることができる。
 多孔性支持層に使用される材料や、その形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用され、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
 多孔性支持層は、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(DMF)溶液を、後述する基材(例えば密に織ったポリエステル不織布)の上に一定の厚みに注型し、それを水中で湿式凝固させることによって、製造することができる。
 多孔性支持層は、“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成できる。なお、所望の形態を得るために、ポリマー濃度、溶媒の温度、貧溶媒は調整可能である。
 (基材)
 分離膜の強度、寸法安定性などの観点から、分離膜は基材を有してもよい。基材としては、強度、流体透過性の点で繊維状の基材を用いることが好ましい。
 基材としては、長繊維不織布および短繊維不織布それぞれを好ましく用いることができる。
 (分離膜性能)
 本発明の分離膜エレメントに充填される分離膜は、47cmに切り出し、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃、回収率1%以下の条件下で15分間運転した後に1分間のサンプリングを行った時に、純水透過係数をA(m/秒/MPa)、溶質透過係数をB(m/秒)とした際に、A/B(m/秒/MPa)の値が8.0×10-8以上を示す分離膜である。これは、分離膜が高性能(高透水かつ高除去)であることを示しており、分離膜が高性能であるほど、供給水量と膜面塩濃度は増加し、それに伴い流路の流動抵抗と膜面ファウリングリスクが増大するが、本発明の分離膜エレメントでは、高性能の分離膜を搭載しても、従来の分離膜エレメントよりも高い性能を安定して発現させることが可能となる。
 <供給側流路材>
 (概要)
 分離膜エレメントは、分離膜の供給側の面に対向するように配置された供給側流路材を備えている。供給側流路材は、分離膜2に供給水を供給する流路を形成するように形成されていればよく、供給水の濃度分極を抑制するために、供給水の流れを乱すように設けられていることが好ましい。
 供給側流路材は、編物、織物、ネットといった連続形状を有している部材が用いられる。中でも、供給水の流路確保、濃度分極抑制の点から、ネットが好ましく用いられる。本願におけるネットとは、互いに交差する複数の繊維状物(構成繊維)同士が熱融着された網目形状を有する構造体であり、押出ダイに設けられた孔から吐出される縦方向の繊維状物と横方向の繊維状物の樹脂同士を溶融状態で接着し、その後冷却固化させることにより製造される。
 供給側流路材は、図4に示すように一方向に並んだ複数の繊維状物A11から構成される繊維状列A、および上記繊維状列Aとは異なる方向に並んだ複数の繊維状物B12から構成される繊維状列Bから構成され、上記繊維状物Aは上記繊維状物Bと複数の地点で交差している。
 (繊維状物の傾斜角)
 図4に示した供給側流路材の繊維状物(構成繊維)の傾斜角e又はfは、0°又は180°に近いほど、膜面への供給水流路が狭まるため、60°以上120°以下であることが好ましく、75°以上105°以下がより好ましい。
(厚み)
 供給側流路材の厚みとは、図4においては実質的に繊維状物Aおよび繊維状物Bの交点厚みに相当する。供給側流路材の厚みは、薄くすれば、供給水の線速が大きくなり膜面の流れが乱れるので、濃度分極層が薄くなり、分離膜エレメントの分離性能が向上する。また流路材を薄くするほど分離膜エレメントに充填できる分離膜が増えるため、分離膜エレメントの造水量向上につながる。しかし、あまり供給側流路材の厚みを過度に薄くすると、供給水中の不純物や、微生物などのファウラントが供給側の流路を閉塞する傾向がある。その結果、分離膜エレメントの造水性が低下したり、分離膜エレメントの流動抵抗が大きくなり、供給水を供給するポンプの必要動力が大きくなるため電力費が高くなったり、分離膜エレメントが破損するといった問題が生じるため好ましくない。そこで、供給側流路材の厚みは、0.15mm以上0.50mm以下である必要があり、好ましくは0.28mm以上0.35mm以下である。
 供給側流路材の厚みは、無作為に選択した30箇所の繊維状物Aおよび繊維状物Bの交点厚みについて、精密厚みゲージなどで測定した値の平均値とする。
 また、供給側流路材の厚みのばらつきが大きいことは、逆浸透膜の性能を均一に発揮させることができず好ましくないので、繊維状物Aおよび繊維状物Bの交点厚みは、いずれも供給側流路材の平均厚みの0.9倍以上1.1倍以下であることが好ましい。
(繊維状物の構成繊維径)
 繊維状物の構成繊維径は、市販のマイクロスコープなどで観察して測定することができる。図4に示した繊維状物A11の構成繊維径と繊維状物B12の構成繊維径は、それぞれの繊維状物を分離膜の面方向に平行な平面に投影した像の幅c、dをそれぞれ、無作為に選択した30箇所に関して測定を行なった平均値とする。図4に示した供給側流路材の構成繊維径は、小さいほど供給水が澱む領域が減るが、剛性は低くなる。一方で構成繊維径が大きいと、剛性は高くなるが、供給水が澱む領域が増える。それらのバランスから、供給側流路材の構成繊維径は、0.07mm以上0.25mm以下であることが好ましく、0.14mm以上0.18mm以下がより好ましい。なお繊維状物Aの構成繊維径と繊維状物Bの構成繊維径とは、同じであっても、異なっていても構わない。
(繊維状物の交点間隔)
 供給側流路材の交点間隔は、前述した繊維状物Aと繊維状物Bとの構成繊維径がいずれも同一の条件で比較すると、その間隔が広いほど供給水の流速は遅くなり、圧力損失は小さくなる。一方で、交点間隔が狭いほど供給水の流速は速くなり、圧力損失は大きくなる。
 それらのバランスから、供給側流路材の交点間隔は、0.5mm以上10mm以下であることが好ましい。
 特に、供給水のTOC(全有機炭素)が高く、分離膜の造水性が高い場合には、供給側流路材の繊維状物が接触していない膜面に有機ファウリングが付着し易いため、供給側流路材の交点間隔が1.5mm以下であることが、膜面への有機ファウリング付着抑制に効果的である。
 また、分離膜エレメントの作製において、供給側流路材を分離膜で挟み込み、透過側流路材を積層させて一組のユニットとし、集水管の周囲にスパイラル状に加圧しながら巻囲する際に、供給側流路材の交点間隔が1.5mm以下であることで、ネットの交点部分が分離膜に押しつけられる力を分散でき、分離膜が受けるダメージを低減することができる。
 一方で、供給水の硬度が高く、分離膜の造水性および除去性が高い場合において、特に高回収率運転時には、主として供給側流路材の交点位置に供給水が澱む領域が発生し、局所的に塩濃度が上昇して無機スケールが付着するため、供給側流路材の交点間隔が8mm以上であることが、膜面への無機スケール付着抑制に効果的である。交点間隔の上限値は、エレメントの巻き硬度の確保、および膜への過度な荷重を低減するため、10mmが好ましい。
 図4に示すように供給側流路材の1つの空隙に対して、2種類の交点間隔a、bが存在する場合において、そのうち短い方であるaを選択し、無作為に選択した30箇所に対して市販のマイクロスコープなどで観察して測定を行ない、それらの平均値を繊維状物の交点間隔とする。
(交点密度)
 交点密度とは、単位面積当たりに存在する供給側流路材を構成する繊維状物Aおよび繊維状物Bの交点数のことである。例えば、供給側流路材を平面方向に対して高さ方向から観察し、無作為に選択した100mm当たりに存在する交点数を測定することで求めることができる。
 例えば、供給側流路材のメッシュ形状が一定である場合、交点密度が高いほど、上記繊維状物の交点間隔は狭くなり、交点密度が低いほど、上記繊維状物の交点間隔は広くなる。
 交点密度が15個/100mm以上210個/100mm以下であることで、供給水の流速を緩やかにできる。その結果、分離膜が高造水能を有し、分離膜エレメントに供給される水量が大きい場合でも、供給側流路の抵抗を低減でき、造水性に優れた分離膜エレメントを得ることができる。
 一方、交点密度が3個/100mm以下であることで、特に供給水の硬度が高く、かつ高回収率運転を行う場合においては、供給側流路材の交点位置に供給水が澱む領域が減少し、膜面への無機スケール付着抑制に効果的である。
(繊維状物の断面形状)
 供給側流路においては、分離膜表面周辺の乱流の程度を増すことが重要であるため、断面が円形や楕円形でなく、異形の繊維状物を用いることも可能である。「異形」の断面とは、非円形の全ての形状を包含するものであり、例えば多角形の他にY字型、T字型、X時型、星型、歯車型などの断面に凹部を含む形状が挙げられる。繊維状物に凹部が存在することで、供給側流材の周辺で供給水の流れやすい領域と流れにくい領域が混在することになり、その差により流れに渦が発生して乱流へとなる。
 異形断面を有する繊維状物の成形は当該技術において周知の技術であり、例えば、必要に応じて押出ダイの形状を変えることによって、様々な異形断面を有する繊維状物を成形することが可能である。
(材料)
 供給側流路材の材料は特に限定されないが、成形性の観点から熱可塑性樹脂が好ましく、特にポリエチレンおよびポリプロピレンは分離膜の表面を傷つけにくく、また安価であるので好適である。
 <透過側流路材>
 (概要)
 本発明の分離膜エレメントには、分離膜の透過側面に透過側流路材が配置される。本発明では、透過側流路材として、フィルムや不織布を凹凸加工して突起物を形成し、流路材機能を付与したシートや、不織布のような多孔性シート上に突起物を配置し固着したシートなどを用いることができる。
 (横断面積比)
 透過側流路材は、透過側流路の流動抵抗を低減し、かつ加圧ろ過下においても流路を安定に形成させる点では、その横断面積比が0.4以上0.75以下であることが好ましい。ここで、透過側流路材の横断面積比について説明する。図5では一例として、シート状の透過側流路材について示しているが、透過側流路材を分離膜エレメントに充填した際、集水管の長手方向と平行な方向に沿って透過側流路材の凸部を通るように切断し、その断面について、一の凸部の中心と隣接する凸部の中心の距離P(ピッチともいう)と透過側流路材の高さH0の積に対する、一の凸部の中心と隣接する凸部の中心との間に占める透過側流路材の横断面積Sとの比が横断面積比である。
 また、図6のように透過側流路材が分離膜の透過側の面に直接固着している場合においても、同様の手法で計算できる。ただし、この場合は透過側流路材が複数存在することになり、凸部の中心と隣接する凸部の中心との間に占める透過側流路材の横断面積は2つ(S1およびS2)存在することになり、横断面積SはS1とS2との和に相当する。
 具体的な測定方法としては、無作為に選択した30箇所について上述のように透過側流路材を切断し、顕微鏡画像解析装置を用いてそれぞれ測定を行ない、その平均値として算出することができる。
 横断面積比が0.4以上0.75以下の透過側流路材を本発明の分離膜エレメントに配置することにより、透過側流路の流動抵抗を低減することができ、その結果、単位膜面積当たりの透水性を向上させることができる。単位膜面積当たりの透水性が向上するということは、すなわち分離膜エレメント全体の造水性が向上するということであり、回収率一定で運転する場合に、透過側流動抵抗が大きい流路材を含む分離膜エレメントに比べて供給水の流量および線速が速まる効果が生まれ、膜面乱流効果を増加させることで濃度分極を抑制すると共に、長期間運転時に分離膜や供給側流路材への汚染物付着を抑制することが可能となり、分離膜エレメントの造水性と除去性を長期間維持することができる。
 (厚み)
 図7における透過側流路材の厚みH0は、0.1mm以上1mmであることが好ましい。厚みの測定は、電磁式、超音波式、磁力式、光透過式など様々な方式のフィルム膜厚測定器が市販されているが、非接触のものであればいずれの方式でも構わない。ランダムに10箇所で測定を行いその平均値を透過側流路材の厚みとする。透過側流路材の厚みが0.1mm以上であることで、透過側流路材としての強度を備え、応力が負荷されても透過側流路材の潰れや破れを引き起こすこと無く取り扱うことができる。また、透過側流路材の厚みが1mm以下であることで、集水管への巻囲性を損なうことなく、分離膜エレメント内に充填できる分離膜や透過側流路材の数を増加させることができる。
 なお、図6のように透過側流路材が分離膜の透過側の面に直接固着している場合は、透過側流路材の厚みH0は、後述する透過側流路材の凸部の高さH1と同じである。
 (透過側流路材の凸部の高さ、溝幅および溝長さ)
 図7における透過側流路材の凸部の高さH1は、0.05mm以上0.8mm以下であることが好ましく、溝幅Dは0.02mm以上0.8mm以下であることが好ましい。凸部の高さH1や溝幅Dは、無作為に選択した30箇所について透過側流路材の横断面を市販のマイクロスコープなどで観察することで測定し、その平均値として算出することができる。
 凸部の高さH1、溝幅Dおよび積層された分離膜とで形成される空間が透過側流路となり、凸部の高さH1や溝幅Dが上記範囲であることで、加圧ろ過時の膜落込みを抑制しつつ、流動抵抗を低減し、耐圧性と造水性に優れた分離膜エレメントを得ることができる。
 また、凸部がドット状のように、いずれの方向にも凸部が離れて配置されるような場合(図8参照)は、溝長さEは溝幅Dと同様に設定することができる。
 (凸部の幅および長さ)
 図7における透過側流路材の凸部の幅Wは、好ましくは0.1mm以上であり、より好ましくは0.3mm以上である。幅Wが0.1mm以上であることで、分離膜エレメントの運転時透過側流路材に圧力がかかっても、凸部の形状を保持することができ透過側流路が安定的に形成される。幅Wは、好ましくは1mm以下であり、より好ましくは0.7mm以下である。幅Wが1mm以下であることで、透過側流路を十分確保することができる。
 凸部6の幅Wは、次のように測定される。まず、第1方向に垂直な1つの断面において、1つの凸部6の最大幅と最小幅の平均値を算出する。つまり、図9に示すような上部が細く下部が太い凸部6においては、流路材下部の幅と上部の幅を測定し、その平均値を算出する。このような平均値を少なくとも30箇所の断面において算出し、その相加平均を算出することで、1枚の膜当たりの幅Wを算出することができる。
 なお、凸部がドット状のように、いずれの方向にも凸部が離れて配置されるような場合(図8参照)は、透過側流路材の凸部の長さXは幅Wと同様に設定することができる。
 (材料)
 透過側流路材を構成するシートとしては、多孔性フィルムや不織布などを用いることができ、特に不織布の場合では、不織布を構成する繊維同士で形成された流路となる空間が広くなるため、水が流動しやすく、その結果、分離膜エレメントの造水性が向上するため好ましい。
 また、透過側流路材の材料であるポリマーについては、透過側流路材としての形状を保持し、透過水中への成分の溶出が少ないものであるならば特に限定されず、例えば、ナイロンなどのポリアミド系、ポリエステル系、ポリアクリロニトリル系、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリフルオロエチレン系などのポリマーが挙げられるが、特に高圧化に耐えうる強度や親水性を考慮すると、ポリオレフィン系やポリエステル系のポリマーが好ましい。
 シート物が複数の繊維から構成される場合では、繊維として例えば、ポリプロピレン/ポリエチレン芯鞘構造を有するものを用いても構わない。
 (透過側流路材による流路)
 透過側流路材の両面に分離膜が配置された際、凸部と隣接する凸部の空間は、透過水の流路となる。流路は、透過側流路材自体が波板状、矩形波状、三角波状などに賦形加工されていたり、透過側流路材の一面が平坦で他の表面が凹凸状に加工されていたり、透過側流路材表面に他の部材が凹凸形状に積層されることによって形成されたものであってもよい。
 (形状)
 本発明の分離膜エレメントに適用する透過側流路材は、流路を形成する凸部が、図8に示すようなドット状でも良い。ドットの配列は千鳥型に配置された場合は、供給水を受圧する時の応力が分散され、陥没の抑制に有利である。なお、図8には断面(シート平面に対して平行面)が円である円柱状の突起物を記載したが、多角形や楕円など、特に断面形状については限定しない。また、異なる断面の凸部が混在していてもよい。また、図9に示すような溝が一方向に並んで連続した溝を有する凹凸形状であってもよい。上記溝は、透過水を最短距離で集水管へと導入するために、集水管の長手方向に対して垂直方向に連続していることが好ましい。
 巻回方向に垂直な方向での断面形状において、幅に変化があるような台形状の壁状物、楕円柱、楕円錐、四角錐あるいは半球のような形状であってもよい。
 <水処理システム>
 本発明の分離膜エレメントは、例えばRO浄水器などの水処理システムに適用することができる。特に、造水能・脱塩能に優れる分離膜を搭載し、かつ回収率(供給水量に対する透過水量の割合)を高く設定して運転する場合、膜面に供給される有機ファウラント量や無機スケール量が上昇し、それに伴うファウリングの発生、浸透圧増加による分離膜エレメント有効圧の低下が起こり、分離膜エレメントの脱塩率と造水性が低下する傾向になる。しかしながら、本発明の分離膜エレメントでは、膜面線速が向上することで濃度分極が低減し、乱流効果が増すため、ファウリングの発生を抑制できるため、回収率を60%以上に設定して運転しても長期にわたり、造水能・脱塩能に優れる。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 (供給側流路材の交点間隔)
 供給側流路材の1つの空隙に対して、供給側流路材を構成する繊維状物Aと、繊維状物Bの交点とそれと隣り合わない上記交点との距離をキーエンス製高精度形状測定システムKS-1100を用いて測定し、得られた2種類の距離のうち、短い方を測定した。同様の測定を30箇所の空隙に関して実施し、その距離の平均値を繊維状物の交点間隔とした。
 (供給側流路材の交点密度)
 供給側流路材の無作為に選択した部分について平面で100mm切り出し、平面上部から観察して繊維状物Aと繊維状物Bが交わる点数を数えた。次に、同じ供給側流路材の別の平面について同様の操作を合計30回実施し、その平均値を交点密度(個/100mm)とした。
(繊維状物Aおよび繊維状物Bの構成繊維径)
 株式会社ミツトヨ製シックネスゲージ(品番547-315)を用いて繊維状物Aおよび繊維状物Bの厚みを30箇所測定し、その平均値を繊維状物Aおよび繊維状物Bの構成繊維径とした。
 (供給側流路材の厚み)
 繊維状物Aおよび繊維状物Bからなる網目状の供給側流路材(ネット)の交点の厚みを、株式会社ミツトヨ製シックネスゲージ(品番547-315)を用いて30箇所測定し、その平均値を供給側流路材の厚みとした。
 (繊維状物A間の距離および繊維状物Bの間の距離)
 網目状の供給側流路材を構成する、無作為に選択した30本の繊維状物Aと、その隣接する繊維状物A間の距離をキーエンス製高精度形状測定システムKS-1100を用いて測定し、その平均値を繊維状物A間の距離とした。
 同様の測定を繊維状物Bについても実施し、繊維状物B間距離を算出した。なお、本実施例における、繊維状物Aと繊維状物Bが構成する格子形状(表中にはメッシュ形状と記載)は、いずれも正方形であるため、繊維状物A間距離と繊維状物B間距離は同じであるため、表中には繊維状物間の距離として片方のみを示した。
(分離膜aの作製)
ポリエチレンテレフタレート繊維からなる不織布(繊度:1デシテックス、厚み:約90μm、通気度:1cc/cm/sec、密度0.80g/cm)上にポリスルホンの17.0質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚み130μm)ロールを作製した。
 その後、多孔性支持膜のポリスルホンからなる層の表面をm-PDAの2.2質量%水溶液中に2分間浸漬してから、垂直方向にゆっくりと引き上げた。さらに、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。
 その後、トリメシン酸クロリド0.08質量%を含むn-デカン溶液を、膜の表面が完全に濡れるように塗布してから、1分間静置した。その後、膜から余分な溶液をエアブローで除去し、80℃の熱水で1分間洗浄して、複合分離膜ロールを得た。この分離膜を分離膜aとした。
(分離膜bの作製)
ポリエステル不織布(通気度0.5~1cc/cm2/sec)上にポリスルホンの15.7質量%DMF溶液を200μmの厚みで、室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置することによって微多孔性支持膜(厚さ210~215μm)を作製した。
得られた微多孔性支持膜を、m-PDAの1.8質量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.065質量%、およびウンデカン酸0.1質量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布してから1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、80℃の熱水で2分間洗浄して複合分離膜ロールを得た。この分離膜を分離膜bとした。
(分離膜cの作製)
ポリエステル不織布(通気度0.5~1cc/cm2/sec)上にポリスルホンの15.7質量%DMF溶液を200μmの厚みで、室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置することによって微多孔性支持膜(厚み210~215μm)を作製した。
得られた微多孔性支持膜を、m-PDAの1.8質量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.065質量%、およびウンデカン酸0.1質量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布してさらに10秒後に、ジエチレングリコールジメチルエーテル1質量%n-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、80℃の熱水で2分間洗浄して複合分離膜ロールを得た。この分離膜を分離膜cとした。
(分離膜dの作製)
ポリエチレンテレフタレート繊維からなる不織布(繊度:1デシテックス、厚み:約90μm、通気度:1cc/cm/sec、密度0.80g/cm)上にポリスルホンの17.0質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚み130μm)ロールを作製した。
 その後、多孔性支持膜のポリスルホンからなる層の表面をm-PDAの3.0質量%水溶液中に2分間浸漬してから、垂直方向にゆっくりと引き上げた。さらに、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。
 その後、トリメシン酸クロリド0.1質量%を含むn-デカン溶液を、膜の表面が完全に濡れるように塗布してから、1分間静置した。その後、膜から余分な溶液をエアブローで除去し、80℃の熱水で1分間洗浄して、複合分離膜ロールを得た。この分離膜を分離膜dとした。
(分離膜e、f、g、hの作製)
抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm/sec)上に、ポリスルホンの15質量%DMF溶液を室温(25℃)で、かつ塗布厚み180μmでキャストした後、ただちに純水中に5分間浸漬することによって基材上に多孔性支持層を形成し、多孔性支持膜を作製した。
 次に、2-エチルピペラジンが2.0質量%、ドデシルジフェニルエーテルジスルホン酸ナトリウムが100ppm、リン酸3ナトリウム1.0質量%になるように溶解した水溶液に10秒間浸漬した後、エアーノズルから窒素を吹き付けて余分な水溶液を除去した。このときのアミン水溶液のpHは、12.0であった。続いて70℃に加温した0.2質量%のトリメシン酸クロリドを含むn-デカン溶液を多孔性支持層の表面に均一塗布し、60℃の膜面温度で3秒間保持した後に、膜面温度を10℃まで冷却し、この温度を維持したまま空気雰囲気下で1分間放置し、分離機能層を形成した後、膜を垂直に保持して液切りした。得られた膜を60℃の純水で2分間洗浄して分離膜ロールを得た。この分離膜を分離膜eとした。
分離膜作製時のアミンとトリメシン酸クロリドとの接触時の膜面温度を40℃、界面重合時の膜面温度を10℃と変更した分離膜を分離膜f、分離膜作製時のアミンとトリメシン酸クロリドとの接触時の膜面温度を70℃、界面重合時の膜面温度を10℃と変更した分離膜を分離膜g、分離膜作製時のアミンとトリメシン酸クロリドとの接触時の膜面温度を60℃、界面重合時の膜面温度を10℃と変更した分離膜を分離膜hとして作製した。
(分離膜のフラックス)
 分離膜を47cmに切り出し、膜評価セルにて、供給水として、濃度200ppmの食塩水、pH6.5のNaCl水溶液を用い、運転圧力0.41MPa、温度25℃、回収率1%以下の条件下で15分間運転した後に1分間のサンプリングを行い、1日当たりの透水量を、分離膜フラックス(m/m/日)とした。
 (分離膜の純水透過係数および溶質透過係数)
 純水透過係数は以下の方法によって計算した。
 純水透過係数(m/m/sec/Pa)=(溶液の膜透過流束)/(膜両側の圧力差-膜両側の浸透圧差×溶質反射係数)・・・(a)
 尚、溶質反射係数は以下の方法で求めることができる。まず、非平衡熱力学に基づいた逆浸透法の輸送方程式として、以下の式が知られている。
Jv=Lp(ΔP-σ・Δπ) ・・・(b)
Js=P(Cm-Cp)+(1-σ)C・Jv ・・・(c)
 ここで、Jvは溶液の膜透過流束(m/m/s)、Lpは純水透過係数(m/m/s/Pa)、ΔPは膜両側の圧力差(Pa)、σは溶質反射係数、Δπは膜両側の浸透圧差(Pa)、Jsは溶質の膜透過流束(mol/m/s)、Pは溶質透過係数(m/s)、Cmは溶質の膜面濃度(mol/m)、Cpは透過液濃度(mol/m)、Cは膜両側の濃度(mol/m)、である。膜両側の平均濃度Cは、逆浸透膜のように両側の濃度差が非常に大きな場合には実質的な意味を持たない。そこで、式(a)を膜厚について積分した次式がよく用いられる。
R=σ(1-F)/(1-σF) ・・・(d)
ただし、
F=exp{-(1-σ)Jv/P} ・・・(e)
であり、Rは真の阻止率で、
R=1-Cp/Cm ・・・(f)
で定義される。ΔPを種々変化させることにより(b)式からLpを算出でき、またJvを種々変化させてRを測定し、Rと1/Jvをプロットしたものに対して(d)、(e)式をカーブフィッティングすることにより、Pとσとを同時に求めることができる。
 なお、Pと分離膜の脱塩率Rについて、以下の式(g)の関係が成り立つ。
R=100×Jv/(Jv+P)・・・(g)
(分離膜エレメントの造水量)
 以下に示す3種の評価条件に基づき、分離膜エレメントの評価を実施した。
(条件1)供給水として、濃度200ppmの食塩水、pH6.5のNaCl水溶液を用い、運転圧力0.41MPa、温度25℃の条件下で15分間運転した後に1分間のサンプリングを行い、1日当たりの透水量を造水量(GPD(ガロン/日))として表した。
(条件2)供給水として、NaCl、CaCl、NaSOが含まれる塩濃度200ppm、pH6.5の水溶液を用い、運転圧力0.41MPa、温度25℃の条件下で30分間運転した後に1分間のサンプリングを行い、1日当たりの透水量を造水量(m/日)として示した。また、分離膜エレメントの総造水量が3000Lに達したときにも1分間のサンプリングを行い、1日当たりの透水量を造水量(m/日)として示した。
(条件3)供給水として、全炭素(TC)35ppm、全有機炭素(TOC)3.8ppm、TDS濃度350ppm、pH7.3の中国上海市水道水を用い、運転圧力0.41MPa、温度25℃の条件下で30分間運転した後に1分間のサンプリングを行い、1日当たりの透水量を造水量(m/日)として示した。また、分離膜エレメントの総造水量が3000Lに達したときにも1分間のサンプリングを行い、1日当たりの透水量を造水量(m/日)として示した。また、分離膜エレメントの総造水量が3000Lに達したときにも1分間のサンプリングを行い、1日当たりの透水量を造水量(m/日)として示した。
(回収率)
 造水量の測定において、所定の時間に供給した供給水流量Vと、同時間での透過水量Vの比率を回収率とし、V/V×100から算出した。
(脱塩率(TDS除去率))
 分離膜エレメントの造水量の測定における1分間の運転で用いた供給水およびサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式から脱塩率を算出した。
 脱塩率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
(緯編物による透過側流路材トリコットの作製)
 緯編物は、ポリエチレンテレフタレートフィラメント(融点:255℃)にポリエチレンテレフタレート系低融点ポリエステルフィラメント(融点:235℃)を混繊してなるマルチフィラメント糸(48フィラメント、110デシテックス)を編糸として、天竺編の緯編組織(ゲージ(編機の単位長間にあるニードルの本数))を編成し、それを245℃で熱セット処理した後にカレンダ加工を施して透過側流路材トリコット作製した。
 なお、表2中には本透過側流路材を、透過側流路材Aと示した。
(不織布上に突起物を有する透過側流路材の作製)
 スリット幅0.5mm、ピッチ0.9mmの櫛形シムを装填したアプリケーターを用いて、バックアップロールを20℃に温度調節しながら、分離膜エレメントとした場合に集水管の長手方向に対して垂直かつ封筒状膜とした場合に巻回方向の内側端部から外側端部まで集水管の長手方向に対して垂直になるよう直線状もしくは不連続状に、高結晶性PP(MFR1000g/10分、融点161℃)60質量%と低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性ポリプロピレン「L-MODU・S400」(商品名))40質量%からなる組成物ペレットを樹脂温度205℃、走行速度10m/分で直線状に不織布上に塗布した。不織布は厚み0.07mm、目付量が35g/m、エンボス柄(φ1mmの円形、ピッチ5mmの格子状)であった。
 なお、表2中には本透過側流路材を、透過側流路材Bと示した。
(貫通孔を有するフィルムによる透過側流路材の作製)
 無延伸ポリプロピレンフィルム(東レ製 トレファン(登録商標))にインプリント加工およびCO2レーザ加工を施し、貫通孔を有する透過側流路材を得た。具体的には切削加工により溝を形成した金属金型で無延伸ポリプロピレンフィルムを挟み込み、140℃/2分間/15MPaで保圧し、40℃で冷却後に金型から取り出した。
 続いて、3D-Axis CO2レーザマーカ MLZ9500を用いて、凹凸インプリントシートの非凹凸面から、凹凸における凹部対してレーザ加工し貫通孔を得た。なお、貫通孔は、各溝にピッチ2mmで設けた。
 なお、表2中には本透過側流路材を、透過側流路材Cと示した。
(無機スケール付着量)
 (条件3)にて評価を実施した、総造水量3000Lに達した分離膜エレメントを解体し、膜面付着物を1wt%の硝酸水溶液で抽出し、日立株式会社製P-4010型ICP(高周波誘導結合プラズマ発光分析)装置を用いて、無機成分(カルシウム、マグネシウム、バリウム)の合計吸着量(g)を測定し、分離膜エレメントの膜面積から無機スケール付着量(g/m)を算出した。
(総付着物量)
 (条件3)にて評価を実施した、総造水量3000Lに達した分離膜エレメントを解体し、膜面に付着した付着物をゴム製のスクレーパーで収集した後、120℃で2時間乾燥させて質量を測定し分離膜エレメントの膜面積から総付着物量(g/m)を算出した。
(有機ファウリング付着量)
 上記総付着物量と上記無機スケール付着量の差を、有機ファウリング付着量(g/m)として算出した。
(透過側流路材の厚みおよび凸部の高さ)
 透過側流路材の厚みと凸部の高さはキーエンス社製高精度形状測定システムKS-1100で測定した。具体的には、キーエンス社製高精度形状測定システムKS-1100を用い、5cm×5cmの測定結果から平均の高低差を解析した。10μm以上の高低差のある30箇所を測定し、その平均値を凸部の高さとした。
(透過側流路材の凸部の幅および長さ、凹部の溝幅および溝長さ)
 キーエンス社製高精度形状測定システムKS-1100を用い、上記の透過側流路材の厚みおよび凸部の高さと同様の手法で測定した。
(透過側流路材の凸部のピッチ)
 キーエンス社製高精度形状測定システムKS-1100を用い、分離膜の透過側における流路材の頂点から、隣の流路材の頂点までの水平距離を200箇所について測定し、その平均値を凸部のピッチとした。
(透過側流路材の横断面積比)
 透過側流路材を分離膜エレメントに充填した際、集水管の長手方向と平行な方向に沿って透過側流路材の凸部を通るように切断し、その断面について、顕微鏡画像解析装置を用いて凸部の中心と隣接する凸部の中心の距離(ピッチとも言う)と透過側流路材の高さを測定し、それらの積に対する、凸部の中心と隣接する凸部の中心との間に占める透過側流路材の横断面積の割合(横断面積比)を算出した。同様の測定を30箇所に関して実施し、その距離の平均値を表2中に示した。
(実施例1)
上述の製法で得られた分離膜aを断裁加工し、表2に示すポリプロピレン製ネット(厚み:300μm、交点間隔:8mm、繊維径:0.15mm、傾斜角:90°)を供給側流路材として挟んで折り畳み、リーフを作製した。
 得られたリーフの透過側面に透過側流路材として表2に示す透過側流路材B(横断面積比:0.43)を積層し、リーフ接着剤を塗布した。分離膜エレメントの幅に対して、集水管の長手方向に対して垂直方向の辺の長さが長くなるように、分離膜対を配置し、ABS(アクリロニトリル-ブタジエン-スチレン)製集水管(幅:298mm、径:17mm、孔数8個×直線状2列)にスパイラル状に巻き付け、巻囲体の外周面を、筒状に連続押し出し成形されたネット(厚み:0.7mm、ピッチ:5mm×5mm、繊維径:350μm、投影面積比:0.13)で被覆した。被覆された巻囲体の両端を長さが254mmになるようにカットした後、一端からの供給水流入を防ぐための封止板(第1端板91に相当する)の取り付けを行った。こうして、供給水供給口を分離膜エレメントの外周面のみに設けた。さらに、第2端板92に相当する端板を被覆された巻囲体の他端に取り付け、濃縮流体出口を分離膜エレメントの他端に設けた直径が1.8インチの分離膜エレメントを作製した。得られた分離膜エレメントを圧力容器に入れて、上述の各条件にて性能を評価した。(条件3)にて評価後の分離膜エレメントを解体し、無機スケール付着量、総付着物量、有機ファウリング付着量を測定したところ、結果は表3の通りであった。なお、表1中の有効膜面積とは、分離膜リーフにおいて、リーフ接着剤により分離機能が失活していない領域のことである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例2~55)
表1~3の通りに分離膜エレメント径、分離膜、供給側流路材、透過側流路材、原水供給部の位置、回収率を変更し、分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、実施例1と同条件で各性能を評価したところ、結果は表3の通りであった。
(比較例1~13)
表1~3の通りに分離膜エレメント径、分離膜、供給側流路材、透過側流路材、原水供給部の位置、回収率を変更し、分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、実施例1と同条件で各性能を評価したところ、結果は表3の通りであった。
1 供給側流路材
11 繊維状物A
12 繊維状物B
101 供給水
102 透過水
103 濃縮水
2 分離膜
3 透過側流路材
4 集水管
5、5B、5C 分離膜エレメント
6 凸部
7 凹部
82 多孔性部材
821 孔
91 孔無端板
92、93、94 孔付端板
a、b 繊維状物の交点間隔
c、d 繊維状物の構成繊維径
e、f 供給側流路材の繊維状物の傾斜角
D 溝幅
E 溝長さ
H0 透過側流路材の厚み
H1 透過側流路材の凸部の高さ
S、S1、S2 透過側流路材の凸部の横断面積
P 透過側流路材の凸部の中心と隣接する凸部の中心の距離
W 透過側流路材の凸部の幅
X 透過側流路材の凸部の長さ

Claims (10)

  1.  集水管と、供給側の面と透過側の面とを備える分離膜と、供給側流路材と、透過側流路材とを備える分離膜エレメントであって、
     前記分離膜、供給側流路材および透過側流路材は前記集水管の周りにスパイラル状に巻囲され、
     前記供給側流路材は、互いに交差する複数の繊維状物を備え、
     前記供給側流路材の厚みが0.15mm以上0.50mm以下であり、
     前記分離膜は、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃の条件下でろ過した際の溶液透過係数をA(m/秒/MPa)、溶質透過係数をB(m/秒)とした際に、A/B(m/秒/MPa)の値が8.0×10-8以上である、分離膜エレメント。
  2.  前記分離膜は、供給水を濃度200ppmの食塩水、pH6.5のNaCl水溶液とし、運転圧力0.41MPa、温度25℃の条件下でろ過した際の透過水量が1.5m/m/日以上である、請求項1に記載の分離膜エレメント。
  3.  前記供給側流路材の交点密度が3個/100mm以下である、請求項1又は2に記載の分離膜エレメント。
  4.  前記供給側流路材の交点密度が15個/100mm以上210個/100mm以下である、請求項1又は2に記載の分離膜エレメント。
  5.  前記供給側流路材により形成される供給側流路が、前記集水管の長手方向に対して垂直方向に形成されている、請求項1~4のいずれか一項に記載の分離膜エレメント。
  6.  前記透過側流路材は、複数の突起物が形成されたシート又は複数の突起物が固着されたシートである、請求項1~5のいずれか一項に記載の分離膜エレメント。
  7.  前記突起物が、前記集水管の長手方向に対して垂直方向に連続している、請求項6に記載の分離膜エレメント。
  8.  前記透過側流路材の横断面が複数の透過側流路を形成し、かつ、前記透過側流路材の横断面積比が0.4以上0.75以下である、請求項1~7のいずれか一項に記載の分離膜エレメント。
  9.  請求項1~8のいずれか一項に記載の分離膜エレメントを用いて、供給された水量の60%以上を造水する、分離膜エレメントの運転方法。
  10.  請求項1~8のいずれか一項に記載の分離膜エレメントを用いて、供給された水量の40%以下を造水する、分離膜エレメントの運転方法。
PCT/JP2017/032636 2016-09-21 2017-09-11 分離膜エレメントおよびその運転方法 WO2018056090A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/335,107 US11511233B2 (en) 2016-09-21 2017-09-11 Separation membrane element and operation method therefor
KR1020197008027A KR102326947B1 (ko) 2016-09-21 2017-09-11 분리막 엘리먼트 및 그 운전 방법
CN201780057759.5A CN109715275B (zh) 2016-09-21 2017-09-11 分离膜元件及其运转方法
JP2017550775A JP6973081B2 (ja) 2016-09-21 2017-09-11 分離膜エレメント

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016183742 2016-09-21
JP2016-183742 2016-09-21
JP2016211467 2016-10-28
JP2016211468 2016-10-28
JP2016-211467 2016-10-28
JP2016-211468 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018056090A1 true WO2018056090A1 (ja) 2018-03-29

Family

ID=61689660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032636 WO2018056090A1 (ja) 2016-09-21 2017-09-11 分離膜エレメントおよびその運転方法

Country Status (5)

Country Link
US (1) US11511233B2 (ja)
JP (1) JP6973081B2 (ja)
KR (1) KR102326947B1 (ja)
CN (1) CN109715275B (ja)
WO (1) WO2018056090A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235441A1 (ja) * 2018-06-04 2019-12-12 国立大学法人信州大学 半透複合膜及びその製造方法並びに半透複合膜エレメント
KR20210039953A (ko) * 2019-10-02 2021-04-12 주식회사 엘지화학 공급측 유로재 및 분리막 엘리먼트
CN113518657A (zh) * 2019-03-22 2021-10-19 株式会社Lg化学 高回收率反渗透间隔件和元件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828587B2 (en) 2015-04-17 2020-11-10 Hollingsworth & Vose Company Stable filter media including nanofibers
US11452959B2 (en) * 2018-11-30 2022-09-27 Hollingsworth & Vose Company Filter media having a fine pore size distribution
GB201912462D0 (en) * 2019-08-30 2019-10-16 Fujifilm Mfg Europe Bv Gas seperation elements and modules
CN114222620B (zh) * 2019-08-30 2023-11-17 东丽株式会社 气体分离膜模块
CN110508138B (zh) * 2019-09-20 2021-06-01 珠海格力电器股份有限公司 卷式反渗透膜元件制作方法
CN110975643B (zh) * 2019-12-19 2022-01-21 沃顿科技股份有限公司 一种卷式膜元件浓水隔网

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230140A (ja) * 1997-02-19 1998-09-02 Nitto Denko Corp スパイラル型膜エレメント
JP2001062255A (ja) * 1999-08-27 2001-03-13 Toray Ind Inc 逆浸透膜プラントおよびその製造、運転方法ならびにそのための記憶媒体
JP2014100645A (ja) * 2012-11-19 2014-06-05 Kurita Water Ind Ltd 選択性透過膜及びその製造方法
JP2014159015A (ja) * 2013-02-20 2014-09-04 Kurita Water Ind Ltd 逆浸透膜装置の運転方法、及び逆浸透膜装置
WO2015016253A1 (ja) * 2013-07-30 2015-02-05 東レ株式会社 分離膜エレメント

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137763C (zh) * 1998-06-18 2004-02-11 东丽株式会社 螺旋型逆渗透膜组件、逆渗透膜模型及其分离装置和方法
JP2001300271A (ja) * 2000-04-25 2001-10-30 Toray Ind Inc 流体分離素子
JP4587937B2 (ja) * 2005-10-31 2010-11-24 日東電工株式会社 スパイラル型分離膜エレメント
JP2010125418A (ja) 2008-11-28 2010-06-10 Nitto Denko Corp シート状分離膜および分離膜エレメント
US9724646B2 (en) * 2012-06-28 2017-08-08 Toray Industries, Inc. Separation membrane element
WO2014021133A1 (ja) * 2012-07-31 2014-02-06 東レ株式会社 分離膜および分離膜エレメント
JP6554781B2 (ja) * 2013-12-26 2019-08-07 栗田工業株式会社 逆浸透膜装置の運転方法、及び逆浸透膜装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230140A (ja) * 1997-02-19 1998-09-02 Nitto Denko Corp スパイラル型膜エレメント
JP2001062255A (ja) * 1999-08-27 2001-03-13 Toray Ind Inc 逆浸透膜プラントおよびその製造、運転方法ならびにそのための記憶媒体
JP2014100645A (ja) * 2012-11-19 2014-06-05 Kurita Water Ind Ltd 選択性透過膜及びその製造方法
JP2014159015A (ja) * 2013-02-20 2014-09-04 Kurita Water Ind Ltd 逆浸透膜装置の運転方法、及び逆浸透膜装置
WO2015016253A1 (ja) * 2013-07-30 2015-02-05 東レ株式会社 分離膜エレメント

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235441A1 (ja) * 2018-06-04 2019-12-12 国立大学法人信州大学 半透複合膜及びその製造方法並びに半透複合膜エレメント
CN112236217A (zh) * 2018-06-04 2021-01-15 国立大学法人信州大学 半透复合膜及其制造方法、以及半透复合膜元件
JPWO2019235441A1 (ja) * 2018-06-04 2021-06-17 国立大学法人信州大学 半透複合膜及びその製造方法並びに半透複合膜エレメント
US20210283556A1 (en) * 2018-06-04 2021-09-16 Shinshu University Semipermeable composite membrane, method of producing same, and semipermeable composite membrane element
JP7266219B2 (ja) 2018-06-04 2023-04-28 国立大学法人信州大学 半透複合膜及びその製造方法並びに半透複合膜エレメント
CN113518657A (zh) * 2019-03-22 2021-10-19 株式会社Lg化学 高回收率反渗透间隔件和元件
JP2022522296A (ja) * 2019-03-22 2022-04-15 エルジー・ケム・リミテッド 高回収率逆浸透スペーサおよびエレメント
EP3943179A4 (en) * 2019-03-22 2022-05-11 Lg Chem, Ltd. HIGH RECOVERY REVERSE OSMOSIS SPACER AND ELEMENT
KR20210039953A (ko) * 2019-10-02 2021-04-12 주식회사 엘지화학 공급측 유로재 및 분리막 엘리먼트
CN114126747A (zh) * 2019-10-02 2022-03-01 株式会社Lg化学 进料侧间隔件和分离膜元件
KR102436315B1 (ko) * 2019-10-02 2022-08-25 주식회사 엘지화학 공급측 유로재 및 분리막 엘리먼트
CN114126747B (zh) * 2019-10-02 2024-05-28 株式会社Lg化学 进料侧间隔件和分离膜元件

Also Published As

Publication number Publication date
US20190282962A1 (en) 2019-09-19
US11511233B2 (en) 2022-11-29
JP6973081B2 (ja) 2021-11-24
KR20190049744A (ko) 2019-05-09
KR102326947B1 (ko) 2021-11-15
CN109715275A (zh) 2019-05-03
CN109715275B (zh) 2021-12-31
JPWO2018056090A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018056090A1 (ja) 分離膜エレメントおよびその運転方法
JP6111668B2 (ja) 分離膜エレメント、および分離膜エレメントの製造方法
JP6772840B2 (ja) 分離膜、分離膜エレメント、浄水器および分離膜の製造方法
KR102277619B1 (ko) 복합 반투막
KR102430206B1 (ko) 스파이럴형 막 엘리먼트
JP6206185B2 (ja) 分離膜および分離膜エレメント
WO2018079511A1 (ja) 分離膜エレメント
JP6645729B2 (ja) スパイラル型膜エレメント
JP6179403B2 (ja) 分離膜および分離膜エレメント
JP2018015735A (ja) 分離膜エレメント
JP7478510B2 (ja) 分離膜エレメント
JP2018086638A (ja) スパイラル型分離膜エレメント
JP6245407B1 (ja) 分離膜エレメント
WO2018021387A1 (ja) 分離膜エレメント
JP2014193460A (ja) 分離膜および分離膜エレメント
JP2014193459A (ja) 分離膜エレメント
JP2015142894A (ja) 分離膜エレメント
WO2023008251A1 (ja) 分離膜エレメントおよび分離膜システム
JP2019205954A (ja) 分離膜エレメント及びその運転方法
JP6308331B2 (ja) 分離膜エレメント
JP2015085322A (ja) 分離膜エレメント
JP2020011231A (ja) 供給側流路材及び分離膜エレメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550775

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008027

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852867

Country of ref document: EP

Kind code of ref document: A1