WO2018051850A1 - Battery electrode manufacturing method, battery electrode manufacturing device, battery electrode, and battery - Google Patents

Battery electrode manufacturing method, battery electrode manufacturing device, battery electrode, and battery Download PDF

Info

Publication number
WO2018051850A1
WO2018051850A1 PCT/JP2017/031970 JP2017031970W WO2018051850A1 WO 2018051850 A1 WO2018051850 A1 WO 2018051850A1 JP 2017031970 W JP2017031970 W JP 2017031970W WO 2018051850 A1 WO2018051850 A1 WO 2018051850A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
coating
slurry
opening
battery electrode
Prior art date
Application number
PCT/JP2017/031970
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 高松
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2018539644A priority Critical patent/JPWO2018051850A1/en
Publication of WO2018051850A1 publication Critical patent/WO2018051850A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode manufacturing method and a battery electrode manufacturing apparatus manufactured by applying a slurry such as an active material to a sheet base material when manufacturing an electrode of a laminate-type lithium ion secondary battery.
  • the present invention relates to a battery electrode manufactured by the above-described method and a battery including such a battery electrode.
  • Lithium ion secondary batteries can be reduced in size and weight and have a high energy density, so they are used for portable device power supplies, electric bicycles, electric vehicles, and other commercial power backup applications. Various proposals for improving performance can be seen.
  • a slurry containing active material particles is applied continuously or intermittently to the surface of a strip-shaped current collector, dried, and then compressed, so that the active material particles mutually and the active material particles
  • the battery performance is improved by reducing the electrical contact resistance with the current collector and further increasing the energy density.
  • the positive electrode active material layer contains lithium such as lithium manganese composite oxide particles.
  • a composite oxide is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-26471. Is disclosed.
  • FIG. 9 is a diagram schematically showing the coating apparatus 200.
  • FIG. 10 is a diagram for explaining the operation of the coating valve 240 and the return valve 250 in the coating apparatus 200.
  • the flow path of the slurry 205 of the coating apparatus 200 in intermittent coating has a die head 260, a coating valve 240 connected to the die head 260, a pump 230, and a tank 220 for storing the slurry 205. Moreover, it has the return valve 250 located between the said tank 220 and the coating valve 240.
  • the tank 220 is a storage unit for the slurry 205 and a supply unit for supplying the slurry 205 to the die head 260.
  • a tank 220 is preferably configured to receive the supply of the slurry 205 from a main tank (not shown) or the like.
  • the tank 220 is connected to the die head 260 by a pipe 210.
  • the pipe 210 is provided with a pump 230 which is a liquid feeding means. By operating the pump 230, the slurry 205 is sent from the tank 220 to the die head 260 side (in the direction of the arrow in the figure).
  • the piping 210 in the coating apparatus 200 is branched, the branched piping 210 on one side is connected to the die head 260, and the branched piping 210 on the other side is connected to the tank 220.
  • a coating valve 240 is provided in the middle of the branched pipe 210 on one side.
  • a return valve 250 is provided in the middle of the branched pipe 210 on the other side. When the return valve 250 is open, the slurry 205 can be returned to the tank 220 side. Further, when the coating valve 240 is in the open state, the slurry 205 is supplied to the die head 260.
  • the die head 260 for example, a so-called slot die is used.
  • the die head 260 is provided with an inlet 261 through which the slurry 205 is supplied from the pipe 210.
  • the die head 260 is provided with a liquid reservoir called a manifold 263.
  • the slurry 205 supplied from the inlet 261 is discharged from the coating outlet 265 through the manifold 263.
  • the coating outlet 265 has a slit shape with a constant width.
  • the sheet base material 203 is stretched around the back roll 270 in a state where a predetermined tension is applied.
  • the coating apparatus 200 has a conveying means (not shown) such as a rotating roller, and the sheet base material 203 is conveyed by the conveying means in the direction of the arrow in the figure. .
  • the back roll 270 rotates.
  • the coating valve 240 When the coating valve 240 is in the open state, the slurry 205 is coated from the coating outlet 265, and the coating film 207 is formed on the sheet base material 203. A portion where the coating film 207 is formed is referred to as a coating portion. On the other hand, when the coating valve 240 is in the closed state, the slurry 205 is not applied, and an uncoated portion is formed on the sheet base material 203. According to such a coating apparatus 200, the coated part and the uncoated part can be alternately formed on the sheet base material 203. Such a coating method using the coating apparatus 200 is referred to as intermittent coating.
  • the coating valve 240 can accurately change the opening and closing of the valve even during the application of the slurry 205, and realizes a complicated coating state by controlling the flow path of the slurry in combination with the operation of the return valve 250. It becomes possible.
  • the coating valve 240 and the return valve 250 have a common structure, but their operations are independent.
  • the coating valve 240 and the return valve 250 are provided with valve seats 243 and 253 having through holes 242 and 252 at the center inside the valve boxes 241 and 251, and can be contacted and separated from the valve seats 243 and 253.
  • Valve bodies 247 and 257 are arranged.
  • Shafts 246 and 256 are integrally formed on the valve bodies 247 and 257, and cylinders 245 and 255 are connected to the shafts 246 and 256, respectively.
  • the valve bodies 247 and 257 are moved through the shafts 246 and 256 in a direction approaching or leaving the valve seats 243 and 253 (vertical direction in the drawing).
  • the through holes 242 and 252 are opened, and the coating valve 240 and the return valve 250 are opened.
  • the opening degree (opening amount) of the coating valve 240 and the return valve 250 changes according to the distance between the valve bodies 247 and 257 from the valve seats 243 and 253, and passes through the coating valve 240 and the return valve 250.
  • the amount of slurry varies.
  • the coating valve 240 is opened at the timing when the formation of the coating film 207 is started, and at the same time, the return valve 250 is closed, and the slurry 205 is supplied from the coating valve 240 to the die head 260, The slurry 205 is applied to the sheet base material 203 from the application outlet 265 of 260.
  • the valve body 247 is raised and separated from the through hole 242, and in the return valve 250, the valve body 257 is lowered and the through hole 252. The operation that closes the screen is performed.
  • the battery electrode manufacturing method includes a tank for storing slurry and a sheet substrate conveyed by a roller.
  • a head having a discharge outlet for discharging; a coating valve for controlling the amount of slurry flowing into the head by opening and closing; a return valve for controlling the amount of slurry flowing into the tank by opening and closing; and the tank
  • a pipe for supplying slurry fed by pressure to both the coating valve and the return valve, and a battery electrode manufactured by a coating apparatus, wherein the valve body of the return valve is against the valve seat
  • the battery electrode manufacturing method according to the present invention is a valve in which the valve body of the coating valve operates perpendicularly to the valve seat.
  • the coating valve opening when the coating valve opening is increased from 0%, the return valve opening is decreased from 100%.
  • the battery electrode manufacturing method according to the present invention provided a period during which the opening degree of the coating valve was kept constant while the opening degree of the coating valve was increased from 0% to 100%.
  • the battery electrode manufacturing method according to the present invention may be configured such that when the coating valve opening degree is 0%, the opening degree of the coating valve is set so that the opening degree of the return valve is 100%. Decrease and increase the opening of the return valve.
  • the battery electrode manufacturing apparatus includes a tank for storing slurry, a head having a coating outlet for discharging slurry to a sheet substrate conveyed by a roller, and the head by opening and closing.
  • a coating valve that controls the amount of slurry flowing into the tank
  • a return valve that controls the amount of slurry flowing into the tank by opening and closing, and a slurry fed by pressure from the tank to the coating valve and the return valve.
  • An apparatus for manufacturing a battery electrode wherein the valve body of the coating valve is a valve that operates perpendicularly to a valve seat, and the valve body of the return valve is a valve seat Is a valve that operates in a horizontal or rotational direction.
  • the battery electrode manufacturing apparatus reduces the opening degree of the return valve from 100% when the opening degree of the coating valve is increased from 0%.
  • the battery electrode manufacturing apparatus provided a period during which the opening degree of the coating valve was kept constant while the opening degree of the coating valve was increased from 0% to 100%.
  • the battery electrode manufacturing apparatus is configured so that the opening degree of the coating valve is set so that the opening degree of the return valve becomes 100% when the opening degree of the coating valve becomes 0%. Decrease and increase the opening of the return valve.
  • the battery electrode according to the present invention was formed by using the slurry for intermittently provided on the sheet base material by using the battery electrode manufacturing method described above.
  • the active material layer includes a first film thickness portion having a substantially constant thickness and a second film thickness portion having a thickness smaller than the first film thickness portion.
  • the second film thickness portion was disposed at the boundary between the portion where the material layer was provided and the portion where the active material layer was not provided.
  • an insulating member was arranged at the boundary between the portion where the active material layer was provided and the portion where the active material layer was not provided.
  • the battery according to the present invention uses any one of the battery electrodes described above as either a positive electrode or a negative electrode, an electrode laminate in which the positive electrode and the negative electrode are stacked via a separator, an electrolyte solution, Is housed inside the exterior material, and a positive electrode lead tab conductively connected to the positive electrode and a negative electrode lead tab conductively connected to the negative electrode are drawn out of the exterior material.
  • the battery electrode manufacturing method / manufacturing apparatus is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to a valve seat, and the movement of the valve body when the return valve is opened and closed Therefore, according to the battery electrode manufacturing method / manufacturing apparatus of the present invention, the slurry in the die head accompanying the operation of the coating valve and the return valve is not affected. Pressure fluctuations can be suppressed, the amount of slurry applied from the die head can be easily controlled, the desired coating film can be obtained, and the performance of the lithium ion secondary battery can be improved. Can do.
  • the performance of the battery can be improved.
  • FIG. 6 is a diagram illustrating a stacking order of components in an electrode stack 60. It is a figure which shows the structure of the electrode laminated body 60 sealed in the laminate film exterior material 80.
  • FIG. FIG. 3 is a perspective view of a battery 100 that is packaged with a laminate film packaging material 80.
  • FIG. 4 is a diagram illustrating a manufacturing process of positive electrode 20 in battery 100.
  • FIG. 5 is a view showing an X-X ′ cross section in FIG. It is a figure explaining operation
  • FIG. 1 It is a figure explaining operation
  • FIG. 1 It is a figure explaining operation
  • the battery 100 composed of battery electrodes manufactured by the manufacturing method and manufacturing apparatus of the present invention will be described.
  • FIG. 1 illustrates the stacking order of components in an electrode stack 60 obtained by stacking a positive electrode 20, a negative electrode 30 (battery electrode) and a separator 40 manufactured by the manufacturing method and manufacturing apparatus of the present invention. It is a figure to do.
  • FIG. 2 is a diagram showing the configuration of the electrode laminate 60 sealed in the laminate film exterior material 80.
  • FIG. 3 is a perspective view of the battery 100 covered with a laminate film covering material 80.
  • a lithium ion secondary battery which is a kind of electrochemical element in which charging and discharging are performed by moving lithium ions between the negative electrode 30 and the positive electrode 20, will be described as an example.
  • the present invention can also be applied to other types of batteries.
  • a battery 100 according to an embodiment of the present invention includes an electrode laminate 60 in which a plurality of positive electrodes 20 and a plurality of negative electrodes 30 are laminated via a separator 40, and an electrolyte solution (not shown) having a rectangular laminate film exterior material. The structure is accommodated in 80.
  • FIG. 1 is a diagram for explaining the stacking order of the components in the electrode stack 60. As shown in FIG. 1, the positive electrode 20, the negative electrode 30, and the separator 40 are used in configuring the electrode laminate 60.
  • the positive electrode 20 has a rectangular positive electrode current collector body portion 22 and a strip-like positive electrode current collector terminal portion 24 extending from the positive electrode current collector body portion 22.
  • the entire current collector of the positive electrode 20 is made of a thin aluminum plate or the like, and the positive electrode current collector main body 22 is coated with a positive electrode active material layer 26 containing a lithium nickel composite oxide or the like on both sides.
  • the positive electrode current collector terminal portion 24 is an uncoated portion where the positive electrode active material layer 26 is not applied.
  • the negative electrode 30 has a rectangular negative electrode current collector body 32 and a strip-shaped negative electrode current collector terminal 34 extending from the negative electrode current collector main body 32.
  • the entire current collector of the negative electrode 30 is made of a thin plate-like nickel plate or copper plate, and the negative electrode current collector main body 32 is coated with a negative electrode active material layer 36 containing graphite or the like on both sides.
  • the negative electrode current collector terminal portion 34 is an uncoated portion where the negative electrode active material 36 is not applied.
  • materials that can form the positive electrode active material layer 26 are, for example, LiCoO 2 , LiNiO 2 , LiNi (1-x) CoO 2 , LiNi x (CoAl) (1-x) O 2 , Li 2 MnO 3.
  • -LiMO 2 (where M is a transition metal, and examples thereof include Ni, Co, Fe, Cr, etc.), layered oxide materials such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 And spinel materials such as LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn (2-x) M x O 4 , olivine materials such as LiMPO 4 , Li 2 MPO 4 F, Li 2 MSiO 4 fluorinated olivine-based material, such as F, such as vanadium oxide-based materials such as V 2 O 5 and the like, can be used singly or a mixture of two or more of these .
  • materials that can form the negative electrode active material layer 36 include carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, silicon, tin, and the like. Alloy-based materials, oxide-based materials such as Nb 2 O 5 and TiO 2 , or composites thereof can be used.
  • the material that can constitute the positive electrode active material layer 26 and the negative electrode active material layer 36 may be a mixture to which a binder, a conductive additive, and the like are appropriately added.
  • a conductive support agent 1 type in carbon black, carbon fiber, or graphite, or a combination of 2 or more types can be used.
  • the binder polyvinylidene fluoride (PVDF), styrene butadiene rubber, polytetrafluoroethylene, carboxymethyl cellulose, modified acrylonitrile rubber particles, and the like can be used.
  • the material of the current collector of the positive electrode 20 aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and aluminum is particularly preferable. Further, as a material for the current collector of the negative electrode 30, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • an insulating member 28 is disposed at the end on the positive electrode current collector terminal portion 24 side and a part of the positive electrode current collector terminal portion 24.
  • the insulating member 28 covers the boundary between the positive electrode current collector body portion 22 to which the positive electrode active material layer 26 is applied and the positive electrode current collector terminal portion 24 to which the positive electrode active material layer 26 is not applied. It is the structure that is called.
  • the positive electrode 20 is laminated with the negative electrode 30 through the separator 40 to form an electrode laminate 60.
  • the active material layers of the positive electrode 20 and the negative electrode 30 are in contact with each other, and the positive electrode 20 and the negative electrode 30 are short-circuited. Is provided.
  • the insulating member 28 as described above, polyimide, glass fiber, polyester, polypropylene, or a material containing these can be used. Heat is applied to the tape-shaped resin member made of the above-described material at the boundary between the portion where the positive electrode active material layer 26 is applied and the portion where the positive electrode active material layer 26 is not applied.
  • the insulating member 28 can be formed by applying to the boundary and then drying.
  • the separator 40 is a rectangular sheet-like member that can be impregnated with an electrolytic solution, such as a porous film, a microporous film (microporous film), a nonwoven fabric, or a woven fabric, which is made of a thermoplastic resin such as polyolefin.
  • an electrolytic solution such as a porous film, a microporous film (microporous film), a nonwoven fabric, or a woven fabric, which is made of a thermoplastic resin such as polyolefin.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethylene methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC)
  • organic solvents such as aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers, cyclic ethers, and the like. Mixtures of the above can be used.
  • lithium salts can be dissolved in these organic solvents.
  • the separator 40 is mainly composed of a resin porous film, woven fabric, non-woven fabric, etc., and as its resin component, for example, a polyolefin resin such as polypropylene or polyethylene, a polyester resin, an acrylic resin, a styrene resin, or a nylon resin is used. it can.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator 40 may be formed with a layer containing inorganic particles. Examples of the inorganic particles may include insulating oxides, nitrides, sulfides, carbides, etc. It is preferable to contain TiO 2 or Al 2 O 3 .
  • all of the positive electrode current collector terminal portions 24 formed on the positive electrode 20 are all of the negative electrode current collector terminal portions 34 formed on the negative electrode 30. Are fixed to each other by ultrasonic welding or the like.
  • the negative electrode current collector terminal portion 34 of the positive electrode 20 is conductively connected to the positive electrode lead tab 120, and the negative electrode terminal portion of the negative electrode 30 is conductively connected to the negative electrode lead tab 130.
  • the positive electrode extraction tab 120 is made of aluminum or an aluminum alloy
  • the negative electrode extraction tab 130 is made of nickel, copper, or copper alloy.
  • nickel plating may be applied to the surface.
  • the two portions on the opposite two sides of the electrode laminate 60 are fixed by the adhesive tape 65 or the like, It is preferable to ensure that the laminated state is maintained.
  • the electrode laminate 60 and the electrolyte solution (not shown) formed as shown in FIG. 2 are sealed in the laminate film exterior member 80 in a state where the positive electrode extraction tab 120 and the negative electrode extraction tab 130 are extracted, A battery 100 as shown in FIG.
  • the laminate film exterior member 80 is composed of two laminate films surrounding and sandwiching the electrode laminate 60 from both sides in the lamination direction, and the first sides of the opposing surfaces that overlap each other around the electrode laminate 60. 111, the second side 112, the third side 113, and the fourth side 114 are heat-welded to form a heat-welded portion (sealing region) 81, so that the electrode stack 60 is sealed together with an electrolyte (not shown). Has been.
  • the positive electrode pull-out tab 120 is pulled out from the first side 111
  • the negative electrode pull-out tab 130 is pulled out from the second side 112.
  • the electrode laminate 60 and the electrolyte solution are sealed with two laminate films.
  • the electrode laminate 60 and the electrolysis are folded so that one laminate film is folded. It is good also as a structure which seals a liquid (not shown).
  • the laminate film exterior material 80 As a laminate film constituting the laminate film exterior material 80, as long as it has flexibility and can seal the electrode laminate 60 and the electrolyte (not shown) so that the electrolyte does not leak,
  • the film generally used for this kind of film-clad battery can be used.
  • a metal thin film layer and a heat-weldable resin layer are laminated, and further, on the surface opposite to the heat-weldable resin layer of the metal thin film layer. Furthermore, the structure which laminated
  • the electrode laminate 60 and the electrolytic solution the electrode laminate 60 is surrounded by facing the heat-welding resin layer.
  • metal thin film layer for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 ⁇ m to 100 ⁇ m can be used.
  • the resin used for the heat-welding resin layer is not particularly limited as long as it can be heat-welded.
  • polypropylene, polyethylene, acid-modified products thereof, polyphenylene sulfide, polyester such as polyethylene terephthalate, polyamide, An ethylene-vinyl acetate copolymer can be used.
  • the thickness of the heat-welding resin layer is preferably 10 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m.
  • the inner surface of the laminate film exterior material 80 becomes the above-described heat-weldable resin layer of the laminate film exterior material 80.
  • the order of lamination is defined so that the outermost layer always becomes the negative electrode 30. Therefore, in the battery 100, the negative electrode 30 of the electrode laminate 60 and the inner surface (heat-weldable resin layer) of the laminate film exterior material 80 are in contact with each other.
  • the manufacturing process of the positive electrode 20 in the battery 100 configured as described above will be described with reference to FIG.
  • the manufacturing process of the positive electrode 20 will be described as an example.
  • the manufacturing process of the negative electrode 30 is the manufacturing of the positive electrode 20 except that the material is changed and the insulating member 28 is not formed. It is almost the same as the process.
  • the positive electrode 20 is manufactured in the order of (A) ⁇ (B) ⁇ (C).
  • the sheet base material 203 is a base material that is a precursor of the current collector of the positive electrode 20 (the positive electrode current collector main body portion 22 and the positive electrode current collector terminal portion 24), and the coating film 207 is formed from the coating device 200. It is a film having a predetermined thickness formed by the slurry 205 to be applied, and is a precursor of the positive electrode active material layer 26 in the positive electrode 20.
  • FIG. 4 only the manufacturing process of the front surface of the sheet base material 203 is shown, but a similar coating film 207 is formed on the back surface of the sheet base material 203 by the coating apparatus 200.
  • the slurry 205 is intermittently applied from the coating apparatus 200, and the coating portion where the coating film 207 is formed and the coating film 207 are formed on the sheet base material 203. It shows how the uncoated parts that are not formed are alternately formed.
  • the coating film 207 is formed by the slurry 205 on the sheet base material 203 having a predetermined film thickness.
  • the sheet base material 203 is set to advance in the direction of the arrow in the figure. Furthermore, the coating apparatus 200 has a die head 260 provided with a coating outlet 265 for coating the slurry 205.
  • the longitudinal direction of the coating outlet 265 is set to be perpendicular to the traveling direction of the sheet base material 203.
  • the process proceeds to a process shown in FIG. 4B through a predetermined drying process and the like.
  • the insulating member 28 is applied to the boundary portion between the coated portion of the coated film 207 and the uncoated portion on the sheet base material 203 by a device (not shown).
  • the insulating member 28 can be formed at the boundary portion by applying heat and welding to a tape-shaped resin member such as polypropylene.
  • FIG. 4C shows a process of obtaining the positive electrode 20 by cutting a range indicated by a dotted line from the sheet base material 203 using a cutting device (not shown).
  • the part referred to as the coating film 207 on the sheet base material 203 is hereinafter referred to as the positive electrode active material layer 26.
  • the sheet base material 203 is referred to as a current collector of the positive electrode 20 (a positive electrode current collector main body 22 and a positive electrode current collector terminal portion 24).
  • FIG. 5 is a view showing an X-X ′ cross section of FIG.
  • the positive electrode active material layer 26 of the positive electrode 20 is a central portion excluding the start and finish of the application of the positive electrode active material layer 26, and is substantially equal to the overall average film thickness and is substantially constant.
  • a first film thickness portion 26a that occupies most of the area of the positive electrode active material layer 26, and a second film thickness portion that is located at one end of the positive electrode active material 26 and is thinner than the first film thickness portion 26a. 26b is illustrated.
  • the second film thickness portion 26 b is applied when the slurry 205 to be the positive electrode active material layer 26 is applied onto the sheet base material 203 that is a precursor of the positive electrode current collector. This is the first part.
  • the sum of the thickness of the second film thickness portion 26b and the thickness of the insulating member 28 partially disposed on the second film thickness portion 26b is equal to or less than the flat thickness of the first film thickness portion 26a.
  • the thicknesses of the first film thickness portion 26a and the second film thickness portion 26b are set. Since the thickness is set in this way, even when a plurality of positive electrodes 20 are used when forming the electrode stack 60, the thickness of the electrode stack 60 due to the insulating member 28 may be uneven. Absent.
  • the second film thickness portion 26b having a thin layer thickness is formed from the uncoated portion. Further, it is necessary to form the coating film 207 in succession, assuming that the first film thickness portion 26a having a large layer thickness is formed. For this reason, it turns out that especially the film thickness control of the coating film 207 by the coating apparatus 200 in the starting end part at the time of forming the coating film 207 is very important.
  • the coating valve 240 is opened, and at the same time, the return valve 250 is closed, and the slurry 205 is supplied from the coating valve 240 to the die head 260.
  • the slurry 205 is applied from the coating outlet 265 of the die head 260 to the sheet base material 203.
  • the valve body 247 is raised and separated from the through hole 242, and in the return valve 250, the valve body 257 is lowered and the through hole 252. The operation that closes the screen is performed.
  • a pressure as indicated by an arrow is applied to the slurry 205, whereby the pressure at which the slurry 205 is applied to the sheet base material 203 from the coating outlet 265 of the die head 260 is higher than expected, and the coating is applied from the die head 260.
  • the amount of the slurry 205 to be dispensed would become unstable.
  • the coating amount of the slurry 205 applied on the sheet base material 203 cannot be controlled, the desired coating film 207 cannot be obtained and the performance of the lithium ion secondary battery may be adversely affected. There was also sex.
  • the control of the coating amount of the slurry 205 at the timing of starting the application of the slurry 205 on the sheet base material 203 and the control of the film thickness of the coating film 207 accompanying the control are uneasy.
  • the second film thickness portion 26b having a small layer thickness is formed, it is necessary to form the coating film 207 by more complicated control.
  • the valve body of the return valve is a valve that operates in a horizontal or rotational direction with respect to the valve seat. It features that what has a valve structure is adopted.
  • FIG. 6 is a view for explaining the operation of the coating valve 240 and the return valve 300 in the coating apparatus 200 used in the battery electrode manufacturing method according to the present invention.
  • the coating valve 240 of the coating apparatus 200 used in the present invention is a valve in which the valve body of the coating valve operates perpendicularly to the valve seat. That is, as the coating valve 240, the valve body 247 closes or opens the through hole 242 provided in the valve seat 243 to control the flow rate, and a ball valve or the like is used.
  • the return valve 300 is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to the valve seat, and includes a gate valve and a ball valve.
  • FIG. 6 schematically shows a gate valve.
  • the return valve 300 is a gate valve that is provided in the valve box 301 and controls the flow rate by partitioning the flow of the slurry 205 in the valve box 301 by the gate valve body 307. Is used. It is clear that such a gate valve not only does not easily generate a high pressure such as a water hammer effect in the control of the flow rate, but can also extremely reduce the fluctuation of the flow rate to the coating valve connected through the piping. It was.
  • the flow rate of the slurry 205 is controlled by inserting and removing the gate valve body 307 from a substantially vertical direction with respect to the flow of the slurry 205.
  • the pressure as shown by the arrow in FIG. 10 is not generated in the slurry 205, and the amount of the slurry 205 applied from the die head 260 onto the sheet base material 203 can be easily controlled.
  • FIG. 7 is a diagram illustrating an example of operation timings of the coating valve 240 and the return valve 300 of the coating apparatus 200.
  • the operation timing shown in FIG. 7 is for forming the coating film 207 (positive electrode active material layer 26) shown in FIGS. That is, the second film thickness portion 26b having a thin layer thickness is formed on the sheet base material 203 from the uncoated portion, and the first film thickness portion 26a having a thick layer thickness is formed continuously.
  • the operation timing when forming the coating film 207 is shown.
  • the opening degree 0 [%] means the opening degree of the valve at which the flow path is completely blocked.
  • the opening degree 100 [%] means the opening degree of the valve when the user assumes that the flow rate is 100 [%], and the opening degree 100 [%] as the performance of the valve itself. Not to say.
  • FIG. 7 will be described in time series.
  • the horizontal axis in FIG. 7 represents the time axis. 7 shows the opening degree of the coating valve 240, and the lower part shows the opening degree of the return valve 300.
  • the opening degree of the coating valve 240 is increased from 0% and the opening degree of the return valve 300 is set to 100. It is trying to decrease from%.
  • the opening degree increase in Nurikoben 240 temporarily stopped, the opening degree constant. Thereby, the coating film 207 corresponding to the second film thickness portion 26b is formed.
  • the opening degree of the return valve 300 which has reduced the degree of opening from 100% opening at t 0 is 0% at t 2.
  • Opening which has been a degree of opening fixed in Nurikoben 240 increases again at t 3, 100% opening at t 4, to form a coating film 207 corresponding to the first film thickness portion 26a To.
  • t 5 is slightly earlier than the timing of reducing the degree of opening of Nurikoben 240 from 100% to terminate the period for forming the coating film 207 corresponding to the first film thickness portion 26a, the return valve 300 Increase the opening from 0%.
  • the opening degree of Nurikoben 240 starts the reduction from 100% t 6. Timing the opening of Nurikoben 240 is 0% and, timing the opening of the return valve 300 is 100%, is controlled so as to coincide with t 7.
  • the coating film 207 that assumes the first film thickness portion 26a can be formed.
  • the coating valve 240 is a ball valve
  • the return valve 300 is a gate valve
  • the gate valve body is opened and closed when the gate valve is opened and closed. Since the movement does not affect the coating valve 240, according to the battery electrode manufacturing method and manufacturing apparatus according to the present invention, the operation of the coating valve 240 and the return valve 300 is performed. As a result, fluctuations in the pressure of the slurry 205 in the die head 260 can be suppressed, the amount of the slurry 205 applied from the die head 260 can be easily controlled, and a desired coating film can be obtained. This can contribute to improving the performance of the secondary battery.
  • the performance of the battery 100 can be improved.
  • FIG. 8 is a view for explaining the operation of the coating valve 240 and the return valve 300 in the coating apparatus 200 used in the method for manufacturing a battery electrode according to another embodiment of the present invention.
  • the coating apparatus 200 used in another embodiment is different from the coating apparatus 200 shown in FIG. 6 only in that a plurality of gate valve bodies 307 are provided in the return valve 300, and the other configurations are the same. It is.
  • the two gate valve bodies 307 are configured to partition the flow of the slurry 205 in the valve box 301.
  • the valve is formed by three or more gate valve bodies 307. The flow of the slurry 205 in the box 301 may be partitioned.
  • the plurality of gate valve bodies 307 are inserted / removed from a substantially vertical direction with respect to the flow of the slurry 205, so that the case of the previous embodiment. Therefore, more precise flow rate control is possible.
  • the present invention relates to a method and an apparatus for manufacturing an electrode for a battery such as a lithium ion secondary battery that can be reduced in size and weight and has a large energy density.
  • a manufacturing method and manufacturing apparatus for battery electrodes when applying a slurry containing active material particles onto a sheet substrate such as a current collector, it is difficult to control the amount of slurry applied, and the desired coating There was a problem that a film could not be obtained and the performance of the lithium ion secondary battery was adversely affected.
  • the battery electrode manufacturing method and manufacturing apparatus is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to the valve seat, and the valve body at the time of opening and closing the return valve Therefore, according to the battery electrode manufacturing method / manufacturing apparatus of the present invention, the inside of the die head accompanying the operation of the coating valve and the return valve is not affected by the movement of the coating valve.
  • the fluctuation of the slurry pressure can be suppressed, the amount of slurry applied from the die head can be easily controlled, the desired coating film can be obtained, and the performance of the lithium ion secondary battery can be improved. Can contribute.
  • SYMBOLS 20 Positive electrode 22 ... Positive electrode collector main-body part 24 ... Positive electrode collector terminal part 26 ... Positive electrode active material layer 26a ... 1st film thickness part 26b ... 2nd film thickness Portion 28 ... Insulating member 30 ... Negative electrode 32 . Negative electrode current collector body 34 ... Negative electrode current collector terminal 36 ... Negative electrode active material layer 40 ... Separator 60 ... Electrode Laminate 65 ... Adhesive tape 80 ... Laminate film exterior material 81 ... Thermal weld (sealing region) DESCRIPTION OF SYMBOLS 100 ... Battery 110 ... Battery main-body part 111 ... 1st edge 112 ... 2nd edge 113 ... 3rd edge 114 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

In order to provide a battery electrode manufacturing method with which a discharge amount of a slurry discharged from a die head can be easily controlled and a desired coating film can be obtained, and which can contribute to the improved performance of a lithium-ion secondary battery, this battery electrode manufacturing method is a method for manufacturing a battery electrode by means of a coating device 200 having a tank 220 that stores a slurry, a head 260 that has a discharge outlet for discharging the slurry to a sheet substrate 203 conveyed by a roller 270, a coating valve 240 that opens and closes so as to control the amount of slurry flowing into the head 260, a return valve 250 that opens and closes so as to control the amount of slurry flowing into the tank 220, and a pipe 210 that supplies slurry that has been pressure-fed from the tank to both the coating valve 240 and the return valve 250, wherein the valve body of the return valve 250 is a valve that operates in a horizontal or rotational direction with respect to the valve seat, and said method has a step for adjusting the amount of slurry to be discharged by controlling the opening degree of the coating valve 240 and controlling the opening degree of the return valve 250.

Description

電池用電極の製造方法及び電池用電極の製造装置及び電池用電極及び電池Battery electrode manufacturing method, battery electrode manufacturing apparatus, battery electrode and battery
 本発明は、ラミネート型のリチウムイオン二次電池の電極を製造する際、活物質などのスラリーをシート基材に塗工することで製造される電池用電極の製造方法及び電池用電極の製造装置、前記方法で製造した電池用電極、及びこのような電池用電極によりなる電池に関する。 The present invention relates to a battery electrode manufacturing method and a battery electrode manufacturing apparatus manufactured by applying a slurry such as an active material to a sheet base material when manufacturing an electrode of a laminate-type lithium ion secondary battery. The present invention relates to a battery electrode manufactured by the above-described method and a battery including such a battery electrode.
 リチウムイオン二次電池は、小型化、軽量化が可能であって、エネルギー密度が大きいので、携帯機器の電源、電動自転車、電気自動車等の電源、あるいは商用電源のバックアップ用途で利用しており、性能向上のための様々な提案を見ることができる。 Lithium ion secondary batteries can be reduced in size and weight and have a high energy density, so they are used for portable device power supplies, electric bicycles, electric vehicles, and other commercial power backup applications. Various proposals for improving performance can be seen.
 リチウムイオン二次電池では、帯状の集電体の表面に活物質粒子を含有するスラリーを連続的または間欠的に塗布し、乾燥した後に圧縮することで、活物質粒子相互、および活物質粒子と集電体との電気的接触抵抗を小さくし、更にはエネルギー密度を高めて電池の性能の向上を行っている。 In a lithium ion secondary battery, a slurry containing active material particles is applied continuously or intermittently to the surface of a strip-shaped current collector, dried, and then compressed, so that the active material particles mutually and the active material particles The battery performance is improved by reducing the electrical contact resistance with the current collector and further increasing the energy density.
 リチウムイオン二次電池を例にとると、負極活物質層は、黒鉛をはじめとする炭素質粒子が主成分である場合には、正極活物質層は、リチウムマンガン複合酸化物粒子等のリチウム含有複合酸化物を利用している。 Taking a lithium ion secondary battery as an example, when the negative electrode active material layer is mainly composed of carbonaceous particles such as graphite, the positive electrode active material layer contains lithium such as lithium manganese composite oxide particles. A composite oxide is used.
 また、集電体などのシート基材に、活物質粒子を含有するスラリーを塗工する工程で用いられるダイコータなどの塗工装置については、例えば、特許文献1(特開2015-26471号公報)に開示されている。 Also, for a coating apparatus such as a die coater used in a step of coating a slurry containing active material particles on a sheet substrate such as a current collector, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2015-26471). Is disclosed.
 特開2015-26471号公報 Japanese Unexamined Patent Publication No. 2015-26471
 ここで、シート基材に、活物質粒子を含むスラリーを塗工する塗工装置200を用いて間欠塗工(シート基材203上に塗工膜207の形成区間(塗工部)と、非形成区間(未塗工部)とを交互に設ける塗工法)を行う構成の概略について説明する。図9は塗工装置200を模式的に示す図である。また、図10は塗工装置200における塗工弁240及びリターン弁250の動作を説明する図である。 Here, intermittent application (formation section (coating part) of the coating film 207 on the sheet base material 203) and non-application using the coating apparatus 200 for applying the slurry containing the active material particles to the sheet base material. An outline of a configuration for performing a forming method (a coating method in which formation sections (uncoated portions) are alternately provided) will be described. FIG. 9 is a diagram schematically showing the coating apparatus 200. FIG. 10 is a diagram for explaining the operation of the coating valve 240 and the return valve 250 in the coating apparatus 200.
 間欠塗工における塗工装置200のスラリー205の流路には、ダイヘッド260と、ダイヘッド260に連結された塗工弁240と、ポンプ230、スラリー205を溜めるタンク220を有している。また、当該タンク220と塗工弁240との間に位置するリターン弁250とを有している。 The flow path of the slurry 205 of the coating apparatus 200 in intermittent coating has a die head 260, a coating valve 240 connected to the die head 260, a pump 230, and a tank 220 for storing the slurry 205. Moreover, it has the return valve 250 located between the said tank 220 and the coating valve 240. FIG.
 塗工装置200において、タンク220はスラリー205の貯蔵部であると共に、ダイヘッド260にスラリー205を供給する供給部でもある。このようなタンク220は、不図示のメインタンクなどからスラリー205の供給を受けることができるようにしておくことが好ましい。 In the coating apparatus 200, the tank 220 is a storage unit for the slurry 205 and a supply unit for supplying the slurry 205 to the die head 260. Such a tank 220 is preferably configured to receive the supply of the slurry 205 from a main tank (not shown) or the like.
 タンク220は、配管210によりダイヘッド260と接続されている。また、配管210には、送液手段であるポンプ230が設けられている。このポンプ230が動作することで、スラリー205がタンク220からダイヘッド260側(図中矢印方向)へと送り込まれるようになっている。 The tank 220 is connected to the die head 260 by a pipe 210. The pipe 210 is provided with a pump 230 which is a liquid feeding means. By operating the pump 230, the slurry 205 is sent from the tank 220 to the die head 260 side (in the direction of the arrow in the figure).
 塗工装置200における配管210は分岐しており、分岐した一方側の配管210はダイヘッド260へと接続され、分岐した他方側の配管210はタンク220へと接続されるようになっている。 The piping 210 in the coating apparatus 200 is branched, the branched piping 210 on one side is connected to the die head 260, and the branched piping 210 on the other side is connected to the tank 220.
 分岐した一方側の配管210の途中には塗工弁240が設けられている。また、分岐した他方側の配管210の途中にはリターン弁250が設けられている。リターン弁250は開状態であるときタンク220側にスラリー205を戻すことができるようになっている。また、塗工弁240は開状態であるとき、ダイヘッド260にスラリー205を供給する。 A coating valve 240 is provided in the middle of the branched pipe 210 on one side. A return valve 250 is provided in the middle of the branched pipe 210 on the other side. When the return valve 250 is open, the slurry 205 can be returned to the tank 220 side. Further, when the coating valve 240 is in the open state, the slurry 205 is supplied to the die head 260.
 ダイヘッド260としては、例えば、スロットダイと呼ばれるものが用いられる。このダイヘッド260には、配管210からスラリー205が供給される流入口261が設けられている。また、ダイヘッド260にはマニホールド263と呼ばれる液溜り部が設けられている。流入口261から供給されたスラリー205は、このマニホールド263を介して塗出口265から吐出される。塗出口265は一定幅のスリット状をなしている。 As the die head 260, for example, a so-called slot die is used. The die head 260 is provided with an inlet 261 through which the slurry 205 is supplied from the pipe 210. The die head 260 is provided with a liquid reservoir called a manifold 263. The slurry 205 supplied from the inlet 261 is discharged from the coating outlet 265 through the manifold 263. The coating outlet 265 has a slit shape with a constant width.
 シート基材203は、所定のテンションがかかった状態でバックロール270に張架されている。また、本発明に係る塗工装置200は回転するローラなどの搬送手段(不図示)を有しており、シート基材203は図中矢印方向に当該搬送手段によって搬送されるようになっている。シート基材203の搬送に伴い、バックロール270は回転するようになっている。 The sheet base material 203 is stretched around the back roll 270 in a state where a predetermined tension is applied. Further, the coating apparatus 200 according to the present invention has a conveying means (not shown) such as a rotating roller, and the sheet base material 203 is conveyed by the conveying means in the direction of the arrow in the figure. . As the sheet base material 203 is conveyed, the back roll 270 rotates.
 塗工弁240が開状態となることで、塗出口265からスラリー205が塗出され、シート基材203上に塗工膜207が形成される。この塗工膜207が形成された部分を塗工部と称する。一方、塗工弁240が閉状態である場合には、スラリー205は塗出されず、シート基材203上に未塗工部が形成される。このような塗工装置200によれば、シート基材203上に塗工部と未塗工部とを交互に形成することができるようになっている。また、このような塗工装置200による塗工方法を間欠塗工と称している。 When the coating valve 240 is in the open state, the slurry 205 is coated from the coating outlet 265, and the coating film 207 is formed on the sheet base material 203. A portion where the coating film 207 is formed is referred to as a coating portion. On the other hand, when the coating valve 240 is in the closed state, the slurry 205 is not applied, and an uncoated portion is formed on the sheet base material 203. According to such a coating apparatus 200, the coated part and the uncoated part can be alternately formed on the sheet base material 203. Such a coating method using the coating apparatus 200 is referred to as intermittent coating.
 塗工弁240は、スラリー205の塗工中でも弁の開閉を精度良く変化させることができ、リターン弁250の動作と組み合わせてスラリーの流路を制御することで、複雑な塗工状態を実現することが可能となる。 The coating valve 240 can accurately change the opening and closing of the valve even during the application of the slurry 205, and realizes a complicated coating state by controlling the flow path of the slurry in combination with the operation of the return valve 250. It becomes possible.
 次に、塗工弁240とリターン弁250の内部構造及び動作を、図10を参照して説明する。ここで、塗工弁240とリターン弁250とは共通の構造を有しているが、動作については独立している。 Next, the internal structure and operation of the coating valve 240 and the return valve 250 will be described with reference to FIG. Here, the coating valve 240 and the return valve 250 have a common structure, but their operations are independent.
 塗工弁240及びリターン弁250は、弁箱241、251の内部の中央部に貫通穴242、252を有する弁座243、253が設けられており、この弁座243、253に接離可能な弁体247、257が配置されている。 The coating valve 240 and the return valve 250 are provided with valve seats 243 and 253 having through holes 242 and 252 at the center inside the valve boxes 241 and 251, and can be contacted and separated from the valve seats 243 and 253. Valve bodies 247 and 257 are arranged.
 弁体247、257にはシャフト246、256が一体的に形成されており、シャフト246、256にシリンダー245、255が接続されている。シリンダー245、255が作動すると、シャフト246、256を介して弁体247、257が、弁座243、253に近づいたり離れたりする方向(図中の上下方向)に移動させられる。 Shafts 246 and 256 are integrally formed on the valve bodies 247 and 257, and cylinders 245 and 255 are connected to the shafts 246 and 256, respectively. When the cylinders 245 and 255 are actuated, the valve bodies 247 and 257 are moved through the shafts 246 and 256 in a direction approaching or leaving the valve seats 243 and 253 (vertical direction in the drawing).
 弁体247、257が当接している状態では、貫通穴242、252が弁体247、257によって塞がれて、塗工弁240及びリターン弁250は閉じた状態である。 In a state where the valve bodies 247 and 257 are in contact, the through holes 242 and 252 are closed by the valve bodies 247 and 257, and the coating valve 240 and the return valve 250 are closed.
 一方、弁体247、257が弁座132から離れていると、貫通穴242、252が開放されて、塗工弁240及びリターン弁250は開いた状態である。そして、弁体247、257が弁座243、253から離れている距離に応じて塗工弁240及びリターン弁250の開度(開口量)が変わり、塗工弁240及びリターン弁250を通過するスラリーの量が変動する。 On the other hand, when the valve bodies 247 and 257 are separated from the valve seat 132, the through holes 242 and 252 are opened, and the coating valve 240 and the return valve 250 are opened. The opening degree (opening amount) of the coating valve 240 and the return valve 250 changes according to the distance between the valve bodies 247 and 257 from the valve seats 243 and 253, and passes through the coating valve 240 and the return valve 250. The amount of slurry varies.
 間欠塗工においては、塗工膜207の形成を開始するタイミングで、塗工弁240を開け、それと同時にリターン弁250を閉めて、塗工弁240からダイヘッド260にスラリー205を供給して、ダイヘッド260の塗出口265からシート基材203に対してスラリー205を塗出するようにしている。 In the intermittent coating, the coating valve 240 is opened at the timing when the formation of the coating film 207 is started, and at the same time, the return valve 250 is closed, and the slurry 205 is supplied from the coating valve 240 to the die head 260, The slurry 205 is applied to the sheet base material 203 from the application outlet 265 of 260.
 より詳細には、図10に示すように、塗工弁240においては、弁体247を上昇させて貫通穴242から離間させると共に、リターン弁250においては、弁体257は下降させて貫通穴252を塞ぐような動作を行うこととなる。 More specifically, as shown in FIG. 10, in the coating valve 240, the valve body 247 is raised and separated from the through hole 242, and in the return valve 250, the valve body 257 is lowered and the through hole 252. The operation that closes the screen is performed.
 このとき、スラリー205中に矢印に示すような圧力が掛かり、これにより、ダイヘッド260の塗出口265からシート基材203に対してスラリー205を塗出する圧力が想定よりも高まり、ダイヘッド260から塗出するスラリー205の塗出量の制御が困難になる、という問題があった。 At this time, a pressure as indicated by an arrow is applied to the slurry 205, whereby the pressure at which the slurry 205 is applied to the sheet base material 203 from the coating outlet 265 of the die head 260 is higher than expected, and the coating is applied from the die head 260. There has been a problem that it becomes difficult to control the coating amount of the slurry 205 to be dispensed.
 さらに、シート基材203上に塗布するスラリー205の塗出量の制御ができないと、所望の塗工膜207を得ることができず、リチウムイオン二次電池の性能にも悪影響を与えてしまう、という問題もあった。 Furthermore, if the application amount of the slurry 205 applied on the sheet base material 203 cannot be controlled, the desired coating film 207 cannot be obtained, and the performance of the lithium ion secondary battery will be adversely affected. There was also a problem.
 本発明は、上記のような問題を解決するものであって、本発明に係る電池用電極の製造方法は、スラリーを貯溜するタンクと、ローラによって搬送されるシート基材に対して、スラリーを吐出する塗出口を有するヘッドと、開閉することによって前記ヘッドへのスラリーの流入量を制御する塗工弁と、開閉することによって前記タンクへのスラリーの流入量を制御するリターン弁と、前記タンクから圧送されるスラリーを前記塗工弁及び前記リターン弁の双方に供給する配管と、を有する塗工装置によって電池用電極を製造する方法であって、前記リターン弁の弁体が弁座に対して水平または回転方向に作動する弁であり、前記塗工弁の開度の制御、及び、前記リターン弁の開度の制御を行うことで吐出するスラリーの量を調整するステップを有する。 The present invention solves the above problems, and the battery electrode manufacturing method according to the present invention includes a tank for storing slurry and a sheet substrate conveyed by a roller. A head having a discharge outlet for discharging; a coating valve for controlling the amount of slurry flowing into the head by opening and closing; a return valve for controlling the amount of slurry flowing into the tank by opening and closing; and the tank A pipe for supplying slurry fed by pressure to both the coating valve and the return valve, and a battery electrode manufactured by a coating apparatus, wherein the valve body of the return valve is against the valve seat These valves operate in the horizontal or rotational direction, and are steps for adjusting the amount of slurry to be discharged by controlling the opening of the coating valve and controlling the opening of the return valve. Having.
 また、本発明に係る電池用電極の製造方法は、前記塗工弁の弁体が弁座に対して垂直に作動する弁である。 Also, the battery electrode manufacturing method according to the present invention is a valve in which the valve body of the coating valve operates perpendicularly to the valve seat.
 また、本発明に係る電池用電極の製造方法は、前記塗工弁の開度を0%から増加させる時、前記リターン弁の開度を100%から減少させる。 Further, in the battery electrode manufacturing method according to the present invention, when the coating valve opening is increased from 0%, the return valve opening is decreased from 100%.
 また、本発明に係る電池用電極の製造方法は、前記塗工弁の開度を0%から100%に増加させる途中に開度を一定に保つ期間を設けた。 In addition, the battery electrode manufacturing method according to the present invention provided a period during which the opening degree of the coating valve was kept constant while the opening degree of the coating valve was increased from 0% to 100%.
 また、本発明に係る電池用電極の製造方法は、前記塗工弁の開度が0%となる時、前記リターン弁の開度が100%となるように、前記塗工弁の開度を減少させ、前記リターン弁の開度を増加させる。 The battery electrode manufacturing method according to the present invention may be configured such that when the coating valve opening degree is 0%, the opening degree of the coating valve is set so that the opening degree of the return valve is 100%. Decrease and increase the opening of the return valve.
 また、本発明に係る電池用電極の製造装置は、スラリーを貯溜するタンクと、ローラによって搬送されるシート基材に対して、スラリーを吐出する塗出口を有するヘッドと、開閉することによって前記ヘッドへのスラリーの流入量を制御する塗工弁と、開閉することによって前記タンクへのスラリーの流入量を制御するリターン弁と、前記タンクから圧送されるスラリーを前記塗工弁及び前記リターン弁の双方に供給する配管と、を有する電池用電極を製造する装置であって、前記塗工弁の弁体が弁座に対して垂直に作動する弁であり、前記リターン弁の弁体が弁座に対して水平または回転方向に作動する弁である。 The battery electrode manufacturing apparatus according to the present invention includes a tank for storing slurry, a head having a coating outlet for discharging slurry to a sheet substrate conveyed by a roller, and the head by opening and closing. A coating valve that controls the amount of slurry flowing into the tank, a return valve that controls the amount of slurry flowing into the tank by opening and closing, and a slurry fed by pressure from the tank to the coating valve and the return valve. An apparatus for manufacturing a battery electrode, wherein the valve body of the coating valve is a valve that operates perpendicularly to a valve seat, and the valve body of the return valve is a valve seat Is a valve that operates in a horizontal or rotational direction.
 また、本発明に係る電池用電極の製造装置は、前記塗工弁の開度を0%から増加させる時、前記リターン弁の開度を100%から減少させる。 Also, the battery electrode manufacturing apparatus according to the present invention reduces the opening degree of the return valve from 100% when the opening degree of the coating valve is increased from 0%.
 また、本発明に係る電池用電極の製造装置は、前記塗工弁の開度を0%から100%に増加させる途中に開度を一定に保つ期間を設けた。 In addition, the battery electrode manufacturing apparatus according to the present invention provided a period during which the opening degree of the coating valve was kept constant while the opening degree of the coating valve was increased from 0% to 100%.
 また、本発明に係る電池用電極の製造装置は、前記塗工弁の開度が0%となる時、前記リターン弁の開度が100%となるように、前記塗工弁の開度を減少させ、前記リターン弁の開度を増加させる。 Further, the battery electrode manufacturing apparatus according to the present invention is configured so that the opening degree of the coating valve is set so that the opening degree of the return valve becomes 100% when the opening degree of the coating valve becomes 0%. Decrease and increase the opening of the return valve.
 また、本発明に係る電池用電極は、前記のいずれかに記載の電池用電極の製造方法を用いて、シート基材上に、間欠的に設けられたスラリーにより活物質層を形成した。 In addition, the battery electrode according to the present invention was formed by using the slurry for intermittently provided on the sheet base material by using the battery electrode manufacturing method described above.
 また、本発明に係る電池用電極は、活物質層が、厚みが略一定の第1膜厚部と、第1膜厚部よりも厚さが薄い第2膜厚部と、からなり、活物質層が設けられている部分と、活物質層が設けられていない部分の境界に第2膜厚部が配された。 In the battery electrode according to the present invention, the active material layer includes a first film thickness portion having a substantially constant thickness and a second film thickness portion having a thickness smaller than the first film thickness portion. The second film thickness portion was disposed at the boundary between the portion where the material layer was provided and the portion where the active material layer was not provided.
 また、本発明に係る電池用電極は、活物質層が設けられている部分と、活物質層が設けられていない部分の境界に絶縁部材が配された。 Also, in the battery electrode according to the present invention, an insulating member was arranged at the boundary between the portion where the active material layer was provided and the portion where the active material layer was not provided.
 また、本発明に係る電池は、前記のいずれかに記載の電池用電極を正極又は負極のいずれかとして用い、前記正極と前記負極とをセパレーターを介して積層した電極積層体と、電解液とが外装材の内部に収容されると共に、前記正極と導電接続された正極引き出しタブと、前記負極と導電接続された負極引き出しタブとが前記外装材の外部に引き出される。 In addition, the battery according to the present invention uses any one of the battery electrodes described above as either a positive electrode or a negative electrode, an electrode laminate in which the positive electrode and the negative electrode are stacked via a separator, an electrolyte solution, Is housed inside the exterior material, and a positive electrode lead tab conductively connected to the positive electrode and a negative electrode lead tab conductively connected to the negative electrode are drawn out of the exterior material.
 本発明に係る電池用電極の製造方法・製造装置は、前記リターン弁の弁体が弁座に対して水平または回転方向に作動する弁であり、前記リターン弁の開閉時における弁体の移動が、前記塗工弁に影響を与えることがないので、このような本発明に係る電池用電極の製造方法・製造装置によれば、前記塗工弁、前記リターン弁の動作に伴うダイヘッド内におけるスラリーの圧力の変動を抑制することができ、ダイヘッドから塗出するスラリーの塗出量の制御が容易となり、所望とする塗工膜を得ることができ、リチウムイオン二次電池の性能向上に資することができる。 The battery electrode manufacturing method / manufacturing apparatus according to the present invention is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to a valve seat, and the movement of the valve body when the return valve is opened and closed Therefore, according to the battery electrode manufacturing method / manufacturing apparatus of the present invention, the slurry in the die head accompanying the operation of the coating valve and the return valve is not affected. Pressure fluctuations can be suppressed, the amount of slurry applied from the die head can be easily controlled, the desired coating film can be obtained, and the performance of the lithium ion secondary battery can be improved. Can do.
 また、前記のような製造方法を用いて製造された、本発明に係る電池用電極によれば、電池の性能を向上させることができる。 Moreover, according to the battery electrode according to the present invention manufactured using the manufacturing method as described above, the performance of the battery can be improved.
 また、前記のような電池用電極が用いられた、本発明に係る電池によれば、より性能を向上させた電池を提供することが可能となる。 Moreover, according to the battery according to the present invention using the battery electrode as described above, it is possible to provide a battery with improved performance.
電極積層体60における各構成の積層順序を説明する図である。FIG. 6 is a diagram illustrating a stacking order of components in an electrode stack 60. ラミネートフィルム外装材80内に封止される電極積層体60の構成を示す図である。It is a figure which shows the structure of the electrode laminated body 60 sealed in the laminate film exterior material 80. FIG. ラミネートフィルム外装材80で外装された電池100の斜視図である。FIG. 3 is a perspective view of a battery 100 that is packaged with a laminate film packaging material 80. 電池100における正極20の製造過程を説明する図である。FIG. 4 is a diagram illustrating a manufacturing process of positive electrode 20 in battery 100. 図4(C)のX-X’断面を示す図である。FIG. 5 is a view showing an X-X ′ cross section in FIG. 本発明に係る電池用電極の製造方法で用いられる塗工装置200における塗工弁240及びリターン弁300の動作を説明する図である。It is a figure explaining operation | movement of the coating valve 240 and the return valve 300 in the coating apparatus 200 used with the manufacturing method of the battery electrode which concerns on this invention. 塗工装置200の塗工弁240及びリターン弁300の動作タイミングの一例を示す図である。It is a figure which shows an example of the operation timing of the coating valve 240 of the coating apparatus 200, and the return valve 300. FIG. 本発明の他の実施形態に係る電池用電極の製造方法で用いられる塗工装置200における塗工弁240及びリターン弁300の動作を説明する図である。It is a figure explaining operation | movement of the coating valve 240 and the return valve 300 in the coating apparatus 200 used with the manufacturing method of the battery electrode which concerns on other embodiment of this invention. 塗工装置200を模式的に示す図である。It is a figure which shows the coating apparatus 200 typically. 塗工装置200における塗工弁240及びリターン弁250の動作を説明する図である。It is a figure explaining operation | movement of the coating valve 240 and the return valve 250 in the coating apparatus 200. FIG.
 以下、本発明の実施の形態を図面を参照しつつ説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれ得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments of the present invention are not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the embodiments of the present invention.
 まず、本発明の製造方法・製造装置によって製造される電池用電極で構成される電池100について説明する。 First, the battery 100 composed of battery electrodes manufactured by the manufacturing method and manufacturing apparatus of the present invention will be described.
 図1は、本発明の製造方法・製造装置によって製造される正極20、負極30(電池用電極)と、セパレーター40とを積層することで得られる電極積層体60における各構成の積層順序を説明する図である。 FIG. 1 illustrates the stacking order of components in an electrode stack 60 obtained by stacking a positive electrode 20, a negative electrode 30 (battery electrode) and a separator 40 manufactured by the manufacturing method and manufacturing apparatus of the present invention. It is a figure to do.
 図2はラミネートフィルム外装材80内に封止される電極積層体60の構成を示す図である。また、図3はラミネートフィルム外装材80で外装された電池100の斜視図である。 FIG. 2 is a diagram showing the configuration of the electrode laminate 60 sealed in the laminate film exterior material 80. As shown in FIG. FIG. 3 is a perspective view of the battery 100 covered with a laminate film covering material 80.
 本実施形態においては、電池100として、リチウムイオンが負極30と正極20とを移動することにより充放電が行われる、電気化学素子の1種であるリチウムイオン二次電池を例に説明するが、本発明は他の種類の電池にも適用することができる。 In the present embodiment, as the battery 100, a lithium ion secondary battery, which is a kind of electrochemical element in which charging and discharging are performed by moving lithium ions between the negative electrode 30 and the positive electrode 20, will be described as an example. The present invention can also be applied to other types of batteries.
 本発明の実施形態に係る電池100は、複数の正極20と複数の負極30とがセパレーター40を介して積層された電極積層体60、および電解液(不図示)が、矩形のラミネートフィルム外装材80内に収容された構造となっている。 A battery 100 according to an embodiment of the present invention includes an electrode laminate 60 in which a plurality of positive electrodes 20 and a plurality of negative electrodes 30 are laminated via a separator 40, and an electrolyte solution (not shown) having a rectangular laminate film exterior material. The structure is accommodated in 80.
 図1は電極積層体60における各構成の積層順序を説明する図である。図1に示すように、電極積層体60を構成する上では、正極20、負極30、セパレーター40が用いられている。 FIG. 1 is a diagram for explaining the stacking order of the components in the electrode stack 60. As shown in FIG. 1, the positive electrode 20, the negative electrode 30, and the separator 40 are used in configuring the electrode laminate 60.
 正極20は、矩形状の正極集電体本体部22と、正極集電体本体部22から延出する短冊状の正極集電体端子部24とを有している。正極20の集電体全体は、薄板状のアルミニウム板などからなり、正極集電体本体部22においては、リチウムニッケル複合酸化物等を含む正極活物質層26が両面に塗布されている。正極集電体端子部24は、正極活物質層26が塗布されていない未塗工部である。 The positive electrode 20 has a rectangular positive electrode current collector body portion 22 and a strip-like positive electrode current collector terminal portion 24 extending from the positive electrode current collector body portion 22. The entire current collector of the positive electrode 20 is made of a thin aluminum plate or the like, and the positive electrode current collector main body 22 is coated with a positive electrode active material layer 26 containing a lithium nickel composite oxide or the like on both sides. The positive electrode current collector terminal portion 24 is an uncoated portion where the positive electrode active material layer 26 is not applied.
 また、負極30は、矩形状の負極集電体本体部32と、負極集電体本体部32から延出する短冊状の負極集電体端子部34とを有している。負極30の集電体全体は、薄板状のニッケル板又は銅板などからなり、負極集電体本体部32においては、グラファイト等を含む負極活物質層36が両面に塗布されている。負極集電体端子部34は、負極活物質36が塗布されていない未塗工部である。 The negative electrode 30 has a rectangular negative electrode current collector body 32 and a strip-shaped negative electrode current collector terminal 34 extending from the negative electrode current collector main body 32. The entire current collector of the negative electrode 30 is made of a thin plate-like nickel plate or copper plate, and the negative electrode current collector main body 32 is coated with a negative electrode active material layer 36 containing graphite or the like on both sides. The negative electrode current collector terminal portion 34 is an uncoated portion where the negative electrode active material 36 is not applied.
 正極活物質層26を構成し得る材料を、より詳しくすると、例えば、LiCoO、LiNiO、LiNi(1-x)CoO、LiNi(CoAl)(1-x)、LiMnO-LiMO(ここで、Mは遷移金属であり、例としてNi、Co、Fe、Crなどが挙げられる)、LiNi1/3Co1/3Mn1/3などの層状酸化物系材料や、LiMn、LiMn1.5Ni0.5、LiMn(2-x)などのスピネル系材料、LiMPOなどのオリビン系材料、LiMPOF、LiMSiOFなどのフッ化オリビン系材料、Vなどの酸化バナジウム系材料などが挙げられ、これらのうちの1種、または2種以上の混合物を使用することができる。 More specifically, materials that can form the positive electrode active material layer 26 are, for example, LiCoO 2 , LiNiO 2 , LiNi (1-x) CoO 2 , LiNi x (CoAl) (1-x) O 2 , Li 2 MnO 3. -LiMO 2 (where M is a transition metal, and examples thereof include Ni, Co, Fe, Cr, etc.), layered oxide materials such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 And spinel materials such as LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn (2-x) M x O 4 , olivine materials such as LiMPO 4 , Li 2 MPO 4 F, Li 2 MSiO 4 fluorinated olivine-based material, such as F, such as vanadium oxide-based materials such as V 2 O 5 and the like, can be used singly or a mixture of two or more of these .
 負極活物質層36を構成し得る材料を、より詳しくすると、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料や、リチウム金属材料、シリコンやスズなどの合金系材料、NbやTiOなどの酸化物系材料、あるいはこれらの複合物を用いることができる。 More specifically, materials that can form the negative electrode active material layer 36 include carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, silicon, tin, and the like. Alloy-based materials, oxide-based materials such as Nb 2 O 5 and TiO 2 , or composites thereof can be used.
 正極活物質層26及び負極活物質層36を構成し得る材料は、結着剤や導電助剤等を適宜加えた合剤であってよい。導電助剤としては、カーボンブラック、炭素繊維、または黒鉛などのうちの1種、または2種以上の組み合わせを用いることができる。また、結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子などを用いることができる。 The material that can constitute the positive electrode active material layer 26 and the negative electrode active material layer 36 may be a mixture to which a binder, a conductive additive, and the like are appropriately added. As a conductive support agent, 1 type in carbon black, carbon fiber, or graphite, or a combination of 2 or more types can be used. As the binder, polyvinylidene fluoride (PVDF), styrene butadiene rubber, polytetrafluoroethylene, carboxymethyl cellulose, modified acrylonitrile rubber particles, and the like can be used.
 正極20の集電体の材料としては、アルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金等を用いることができ、特にアルミニウムが好ましい。また、負極30の集電体の材料としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金を用いることができる。 As the material of the current collector of the positive electrode 20, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and aluminum is particularly preferable. Further, as a material for the current collector of the negative electrode 30, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
 正極20においては、正極集電体端子部24側の端部と、正極集電体端子部24の一部に絶縁部材28が配されている。すなわち、正極活物質層26が塗布されている正極集電体本体部22と、正極活物質層26が塗布されていない正極集電体端子部24との間の境界部が絶縁部材28によって覆われるような構成となっている。 In the positive electrode 20, an insulating member 28 is disposed at the end on the positive electrode current collector terminal portion 24 side and a part of the positive electrode current collector terminal portion 24. In other words, the insulating member 28 covers the boundary between the positive electrode current collector body portion 22 to which the positive electrode active material layer 26 is applied and the positive electrode current collector terminal portion 24 to which the positive electrode active material layer 26 is not applied. It is the structure that is called.
 正極20は、セパレーター40を介して負極30と積層され、電極積層体60とされる。電極積層体60における積層状態が規定の積層状態からずれて、正極20と負極30の活物質層同士が接触し、正極20と負極30が短絡してしまうことを防止するために、絶縁部材28が設けられている。 The positive electrode 20 is laminated with the negative electrode 30 through the separator 40 to form an electrode laminate 60. In order to prevent the laminated state in the electrode laminate 60 from deviating from the prescribed laminated state, the active material layers of the positive electrode 20 and the negative electrode 30 are in contact with each other, and the positive electrode 20 and the negative electrode 30 are short-circuited. Is provided.
 上記のような絶縁部材28には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレン、或いはこれらを含む材料を用いることができる。正極活物質層26が塗布されている部分と、塗布されていない部分との境界に、前記のような材料からなるテープ状の樹脂部材に熱を加えて、溶着させたり、ゲル状の樹脂を当該境界に塗布してから乾燥させたりすることで、絶縁部材28を形成することができる。 For the insulating member 28 as described above, polyimide, glass fiber, polyester, polypropylene, or a material containing these can be used. Heat is applied to the tape-shaped resin member made of the above-described material at the boundary between the portion where the positive electrode active material layer 26 is applied and the portion where the positive electrode active material layer 26 is not applied. The insulating member 28 can be formed by applying to the boundary and then drying.
 セパレーター40は、ポリオレフィン等の熱可塑性樹脂から作られた、多孔膜、マイクロポーラスフィルム(微多孔フィルム)、不織布あるいは織布など、電解液を含浸することができる矩形のシート状の部材である。 The separator 40 is a rectangular sheet-like member that can be impregnated with an electrolytic solution, such as a porous film, a microporous film (microporous film), a nonwoven fabric, or a woven fabric, which is made of a thermoplastic resin such as polyolefin.
 ここで、電解液としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類や、エチレンメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類や、脂肪族カルボン酸エステル類や、γ-ブチロラクトン等のγ-ラクトン類や、鎖状エーテル類、環状エーテル類、などの有機溶媒のうちの1種、または2種以上の混合物を使用することができる。さらに、これらの有機溶媒にリチウム塩を溶解させることができる。 Here, as the electrolytic solution, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, ethylene methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) ) And other organic solvents such as aliphatic carboxylic acid esters, γ-lactones such as γ-butyrolactone, chain ethers, cyclic ethers, and the like. Mixtures of the above can be used. Furthermore, lithium salts can be dissolved in these organic solvents.
 セパレーター40は主に樹脂製の多孔膜、織布、不織布等からなり、その樹脂成分として、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等を用いることができる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレーター40には無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。 The separator 40 is mainly composed of a resin porous film, woven fabric, non-woven fabric, etc., and as its resin component, for example, a polyolefin resin such as polypropylene or polyethylene, a polyester resin, an acrylic resin, a styrene resin, or a nylon resin is used. it can. In particular, a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode. If necessary, the separator 40 may be formed with a layer containing inorganic particles. Examples of the inorganic particles may include insulating oxides, nitrides, sulfides, carbides, etc. It is preferable to contain TiO 2 or Al 2 O 3 .
 上記のような各構成が、電極積層体60として積層されると、正極20に形成された正極集電体端子部24の全ては、負極30に形成された負極集電体端子部34の全ては、それぞれ超音波溶着などにより互いに固着される。 When each of the above configurations is laminated as the electrode laminate 60, all of the positive electrode current collector terminal portions 24 formed on the positive electrode 20 are all of the negative electrode current collector terminal portions 34 formed on the negative electrode 30. Are fixed to each other by ultrasonic welding or the like.
 さらに、図2に示すように、正極20の負極集電体端子部34は、正極引き出しタブ120に導電接続され、また、負極30の負極端子部は、負極引き出しタブ130に導電接続される。 Further, as shown in FIG. 2, the negative electrode current collector terminal portion 34 of the positive electrode 20 is conductively connected to the positive electrode lead tab 120, and the negative electrode terminal portion of the negative electrode 30 is conductively connected to the negative electrode lead tab 130.
 正極引き出しタブ120にはアルミニウムやアルミニウム合金で構成されたものが用いられ、負極引き出しタブ130にはニッケルまたは銅、銅合金が用いられる。負極引き出しタブ130を銅や銅合金の板で構成する場合、表面にニッケルめっきを施してもよい。 The positive electrode extraction tab 120 is made of aluminum or an aluminum alloy, and the negative electrode extraction tab 130 is made of nickel, copper, or copper alloy. When the negative electrode lead tab 130 is made of a copper or copper alloy plate, nickel plating may be applied to the surface.
 また、上記のような各構成が、電極積層体60として積層されると、図2に示すように、電極積層体60の対向する2辺側の2箇所において接着テープ65などによる固着を行い、積層状態の保持を確実とするようにすることが好ましい。 Further, when each of the above-described configurations is laminated as the electrode laminate 60, as shown in FIG. 2, the two portions on the opposite two sides of the electrode laminate 60 are fixed by the adhesive tape 65 or the like, It is preferable to ensure that the laminated state is maintained.
 図2に示されるように形成された電極積層体60及び電解液(不図示)は、正極引き出しタブ120及び負極引き出しタブ130が引き出された状態で、ラミネートフィルム外装材80内に封止され、図3に示されるような電池100とされる。 The electrode laminate 60 and the electrolyte solution (not shown) formed as shown in FIG. 2 are sealed in the laminate film exterior member 80 in a state where the positive electrode extraction tab 120 and the negative electrode extraction tab 130 are extracted, A battery 100 as shown in FIG.
 本実施形態では、ラミネートフィルム外装材80は、電極積層体60をその積層方向両側から挟んで包囲する2枚のラミネートフィルムからなり、電極積層体60の周囲で重なり合った対向面同士における第1辺111、第2辺112、第3辺113、第4辺114を熱溶着し、熱溶着部(封止領域)81を形成することで、電極積層体60が電解液(不図示)と共に封止されている。ラミネートフィルム外装材80において、第1辺111からは正極引き出しタブ120が、また、第2辺112からは負極引き出しタブ130が引き出される。 In the present embodiment, the laminate film exterior member 80 is composed of two laminate films surrounding and sandwiching the electrode laminate 60 from both sides in the lamination direction, and the first sides of the opposing surfaces that overlap each other around the electrode laminate 60. 111, the second side 112, the third side 113, and the fourth side 114 are heat-welded to form a heat-welded portion (sealing region) 81, so that the electrode stack 60 is sealed together with an electrolyte (not shown). Has been. In the laminate film exterior member 80, the positive electrode pull-out tab 120 is pulled out from the first side 111, and the negative electrode pull-out tab 130 is pulled out from the second side 112.
 なお、本実施形態では、2枚のラミネートフィルムで電極積層体60と電解液(不図示)とを封止する構成としたが、1枚のラミネートフィルを折り返すようにして電極積層体60と電解液(不図示)とを封止する構成としてもよい。 In this embodiment, the electrode laminate 60 and the electrolyte solution (not shown) are sealed with two laminate films. However, the electrode laminate 60 and the electrolysis are folded so that one laminate film is folded. It is good also as a structure which seals a liquid (not shown).
  ラミネートフィルム外装材80を構成するラミネートフィルムとしては、柔軟性を有しており、かつ電解液が漏洩しないように、電極積層体60と電解液(不図示)を封止できるものであれば、この種のフィルム外装電池に一般に用いられるフィルムを用いることができる。 As a laminate film constituting the laminate film exterior material 80, as long as it has flexibility and can seal the electrode laminate 60 and the electrolyte (not shown) so that the electrolyte does not leak, The film generally used for this kind of film-clad battery can be used.
 ラミネートフィルム外装材80に用いられるラミネートフィルムの代表的な層構成としては、金属薄膜層と熱溶着性樹脂層とを積層し、さらに、金属薄膜層の熱溶着性樹脂層と反対側の面にさらに、ポリエチレンテレフタレートなどのポリエステルやナイロン等のフィルムからなる保護用樹脂層を積層した構成が挙げられる。電極積層体60、電解液を封止するに際しては、熱溶着性樹脂層を対向させて電極積層体60を包囲する。 As a typical layer structure of the laminate film used for the laminate film exterior material 80, a metal thin film layer and a heat-weldable resin layer are laminated, and further, on the surface opposite to the heat-weldable resin layer of the metal thin film layer. Furthermore, the structure which laminated | stacked the protective resin layer which consists of films, such as polyester, nylon, such as a polyethylene terephthalate, is mentioned. When sealing the electrode laminate 60 and the electrolytic solution, the electrode laminate 60 is surrounded by facing the heat-welding resin layer.
 金属薄膜層としては、例えば、厚さ10μm~100μmの、Al、Ti、Ti合金、Fe、ステンレス、Mg合金などの箔を用いることができる。 As the metal thin film layer, for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 μm to 100 μm can be used.
 熱溶着性樹脂層に用いられる樹脂としては、熱溶着が可能な樹脂であれば特に制限はなく、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル等、ポリアミド、エチレン-酢酸ビニル共重合体などが使用できる。熱溶着性樹脂層の厚さは10μm~200μmが好ましく、より好ましくは30μm~100μmである。 The resin used for the heat-welding resin layer is not particularly limited as long as it can be heat-welded. For example, polypropylene, polyethylene, acid-modified products thereof, polyphenylene sulfide, polyester such as polyethylene terephthalate, polyamide, An ethylene-vinyl acetate copolymer can be used. The thickness of the heat-welding resin layer is preferably 10 μm to 200 μm, more preferably 30 μm to 100 μm.
 ラミネートフィルム外装材80の内面は、ラミネートフィルム外装材80の上記のような熱溶着性樹脂層となる。一方、電極積層体60においては、最外層には必ず負極30となるように、積層順が規定されている。したがって、電池100においては、電極積層体60の負極30と、ラミネートフィルム外装材80内面(熱溶着性樹脂層)とが当接した状態した状態となっている。 The inner surface of the laminate film exterior material 80 becomes the above-described heat-weldable resin layer of the laminate film exterior material 80. On the other hand, in the electrode laminate 60, the order of lamination is defined so that the outermost layer always becomes the negative electrode 30. Therefore, in the battery 100, the negative electrode 30 of the electrode laminate 60 and the inner surface (heat-weldable resin layer) of the laminate film exterior material 80 are in contact with each other.
 以上のように構成される電池100における正極20の製造過程を、図4を参照して説明する。なお、以下、正極20の製造過程を例に挙げ説明を行うが、負極30の製造過程は、材料が変更される点と、絶縁部材28が形成されていない点を除けば、正極20の製造過程と略同一である。 The manufacturing process of the positive electrode 20 in the battery 100 configured as described above will be described with reference to FIG. Hereinafter, the manufacturing process of the positive electrode 20 will be described as an example. However, the manufacturing process of the negative electrode 30 is the manufacturing of the positive electrode 20 except that the material is changed and the insulating member 28 is not formed. It is almost the same as the process.
 図4に示す正極20の製造過程において(A)→(B)→(C)の順序で正極20の製造が進められる。また、シート基材203は正極20の集電体(正極集電体本体部22及び正極集電体端子部24)の前駆体となる基材であり、塗工膜207は塗工装置200から塗出されるスラリー205によって形成される所定厚さを有する膜であり、正極20における正極活物質層26の前駆体である。図4においては、シート基材203の表面の製造過程のみが図示されているが、シート基材203の裏面にも同様の塗工膜207が塗工装置200によって形成されるものである。 In the manufacturing process of the positive electrode 20 shown in FIG. 4, the positive electrode 20 is manufactured in the order of (A) → (B) → (C). Further, the sheet base material 203 is a base material that is a precursor of the current collector of the positive electrode 20 (the positive electrode current collector main body portion 22 and the positive electrode current collector terminal portion 24), and the coating film 207 is formed from the coating device 200. It is a film having a predetermined thickness formed by the slurry 205 to be applied, and is a precursor of the positive electrode active material layer 26 in the positive electrode 20. In FIG. 4, only the manufacturing process of the front surface of the sheet base material 203 is shown, but a similar coating film 207 is formed on the back surface of the sheet base material 203 by the coating apparatus 200.
 図4(A)は、塗工装置200から間欠的にスラリー205を塗出して、シート基材203上に、塗工膜207が形成されている塗工部と、塗工膜207が形成されていない未塗工部とを交互に形成する様子を示している。塗工膜207は、所定の膜厚を有するシート基材203上のスラリー205によって形成されるものである。 In FIG. 4A, the slurry 205 is intermittently applied from the coating apparatus 200, and the coating portion where the coating film 207 is formed and the coating film 207 are formed on the sheet base material 203. It shows how the uncoated parts that are not formed are alternately formed. The coating film 207 is formed by the slurry 205 on the sheet base material 203 having a predetermined film thickness.
 塗工装置200において、シート基材203は、図中の矢印方向に進行するように設定されている。さらに、塗工装置200は、スラリー205を塗出する塗出口265が設けられたダイヘッド260を有している。この塗出口265の長手方向は、シート基材203の進行方向に対して垂直となるように設定されている。この塗出口265から、スラリー205を間欠的となるように塗出することで、図4(A)に示すように、シート基材203上にスラリー205による塗工膜207の塗工部と、未塗工部とを交互に形成する。 In the coating apparatus 200, the sheet base material 203 is set to advance in the direction of the arrow in the figure. Furthermore, the coating apparatus 200 has a die head 260 provided with a coating outlet 265 for coating the slurry 205. The longitudinal direction of the coating outlet 265 is set to be perpendicular to the traveling direction of the sheet base material 203. By applying the slurry 205 from the coating outlet 265 so as to be intermittent, as shown in FIG. 4A, a coating portion of the coating film 207 by the slurry 205 on the sheet base material 203, Uncoated parts are formed alternately.
 塗工装置200によって、シート基材203上に塗工膜207が形成されると、所定の乾燥工程などを経て、続いて、図4(B)に示す工程へと進む。 When the coating film 207 is formed on the sheet base material 203 by the coating apparatus 200, the process proceeds to a process shown in FIG. 4B through a predetermined drying process and the like.
 図4(B)の工程においては、シート基材203上における塗工膜207の塗工部と、未塗工部と間の境界部に絶縁部材28が、不図示の装置によって施される。このような装置においては、例えばポリプロピレンなどのテープ状の樹脂部材に熱を加えて、溶着させることで、前記境界部に絶縁部材28を形成することができる。 4B, the insulating member 28 is applied to the boundary portion between the coated portion of the coated film 207 and the uncoated portion on the sheet base material 203 by a device (not shown). In such an apparatus, for example, the insulating member 28 can be formed at the boundary portion by applying heat and welding to a tape-shaped resin member such as polypropylene.
 続く、図4(C)は不図示の切断装置を用い、シート基材203から点線で示す範囲を切り出すことによって、正極20を得る工程を示している。正極20の製造過程において、シート基材203上の塗工膜207として言及した箇所は、以降、正極活物質層26と称することとする。また、シート基材203は、正極20の集電体(正極集電体本体部22、正極集電体端子部24)と称することとする。 Next, FIG. 4C shows a process of obtaining the positive electrode 20 by cutting a range indicated by a dotted line from the sheet base material 203 using a cutting device (not shown). In the manufacturing process of the positive electrode 20, the part referred to as the coating film 207 on the sheet base material 203 is hereinafter referred to as the positive electrode active material layer 26. The sheet base material 203 is referred to as a current collector of the positive electrode 20 (a positive electrode current collector main body 22 and a positive electrode current collector terminal portion 24).
 図5は、図4(C)のX-X’断面を示す図である。ここでは、正極20の正極活物質層26は、正極活物質層26の塗り始めや塗り終わり部分を除いた中央部であって、全体の平均膜厚とほぼ同等であって概ね一定の厚さを有し、正極活物質層26の面積の大半を占める第1膜厚部26aと、正極活物質26の一端部に位置し第1膜厚部26aよりも厚さが薄い第2膜厚部26bとを有するものを例示している。 FIG. 5 is a view showing an X-X ′ cross section of FIG. Here, the positive electrode active material layer 26 of the positive electrode 20 is a central portion excluding the start and finish of the application of the positive electrode active material layer 26, and is substantially equal to the overall average film thickness and is substantially constant. A first film thickness portion 26a that occupies most of the area of the positive electrode active material layer 26, and a second film thickness portion that is located at one end of the positive electrode active material 26 and is thinner than the first film thickness portion 26a. 26b is illustrated.
 図4及び図5を参照すると分かるように、第2膜厚部26bは、正極活物質層26となるスラリー205を正極集電体の前駆体であるシート基材203上に塗布する際の塗り始めの部分である。 As can be seen from FIGS. 4 and 5, the second film thickness portion 26 b is applied when the slurry 205 to be the positive electrode active material layer 26 is applied onto the sheet base material 203 that is a precursor of the positive electrode current collector. This is the first part.
 第2膜厚部26bの厚さと、一部がこの第2膜厚部26bの上に配置される絶縁部材28との厚さの和は、第1膜厚部26aの平気厚さ以下となるように、第1膜厚部26a及び第2膜厚部26bの厚さが設定されている。このように厚さが設定されているために、電極積層体60を形成する際、正極20を複数枚用いたとしても、絶縁部材28による電極積層体60の厚さの不均一を生ずることがない。 The sum of the thickness of the second film thickness portion 26b and the thickness of the insulating member 28 partially disposed on the second film thickness portion 26b is equal to or less than the flat thickness of the first film thickness portion 26a. As described above, the thicknesses of the first film thickness portion 26a and the second film thickness portion 26b are set. Since the thickness is set in this way, even when a plurality of positive electrodes 20 are used when forming the electrode stack 60, the thickness of the electrode stack 60 due to the insulating member 28 may be uneven. Absent.
 また、本実施形態に係る電池100の正極20を製造する上では、シート基材203上にスラリー205を塗布する際、未塗工部から、層厚が薄い第2膜厚部26bが形成され、さらにそれに連続して、層厚が厚い第1膜厚部26aが形成されることを想定して、塗工膜207を形成していく必要がある。このため、特に、塗工膜207形成時の開始端部における塗工装置200による塗工膜207の膜厚制御が非常に重要であることがわかる。 Further, in manufacturing the positive electrode 20 of the battery 100 according to this embodiment, when the slurry 205 is applied on the sheet base material 203, the second film thickness portion 26b having a thin layer thickness is formed from the uncoated portion. Further, it is necessary to form the coating film 207 in succession, assuming that the first film thickness portion 26a having a large layer thickness is formed. For this reason, it turns out that especially the film thickness control of the coating film 207 by the coating apparatus 200 in the starting end part at the time of forming the coating film 207 is very important.
 ところで、間欠塗工においては、塗工膜207の形成を開始するタイミングで、塗工弁240を開け、それと同時にリターン弁250を閉めて、塗工弁240からダイヘッド260にスラリー205を供給して、ダイヘッド260の塗出口265からシート基材203に対してスラリー205を塗出するようにしている。 By the way, in intermittent coating, at the timing when the formation of the coating film 207 is started, the coating valve 240 is opened, and at the same time, the return valve 250 is closed, and the slurry 205 is supplied from the coating valve 240 to the die head 260. The slurry 205 is applied from the coating outlet 265 of the die head 260 to the sheet base material 203.
 より詳細には、図10に示すように、塗工弁240においては、弁体247を上昇させて貫通穴242から離間させると共に、リターン弁250においては、弁体257は下降させて貫通穴252を塞ぐような動作を行うこととなる。 More specifically, as shown in FIG. 10, in the coating valve 240, the valve body 247 is raised and separated from the through hole 242, and in the return valve 250, the valve body 257 is lowered and the through hole 252. The operation that closes the screen is performed.
 このとき、スラリー205中に矢印に示すような圧力が掛かり、これにより、ダイヘッド260の塗出口265からシート基材203に対してスラリー205を塗出する圧力が想定よりも高まり、ダイヘッド260から塗出するスラリー205の塗出量が不安定になるおそれがあった。 At this time, a pressure as indicated by an arrow is applied to the slurry 205, whereby the pressure at which the slurry 205 is applied to the sheet base material 203 from the coating outlet 265 of the die head 260 is higher than expected, and the coating is applied from the die head 260. There was a possibility that the amount of the slurry 205 to be dispensed would become unstable.
 さらに、シート基材203上に塗布するスラリー205の塗出量の制御ができないと、所望の塗工膜207を得ることができず、リチウムイオン二次電池の性能にも悪影響を与えてしまう可能性もあった。 Furthermore, if the coating amount of the slurry 205 applied on the sheet base material 203 cannot be controlled, the desired coating film 207 cannot be obtained and the performance of the lithium ion secondary battery may be adversely affected. There was also sex.
 このような製造方法によると、特に、シート基材203上にスラリー205の塗布を開始するタイミングでのスラリー205の塗出量の制御、そしてそれに伴う、塗工膜207の膜厚の制御が不安になる可能性がある上、層厚が薄い第2膜厚部26bを形成する場合には、いっそう複雑な制御によって塗工膜207を形成する必要があった。 According to such a manufacturing method, in particular, the control of the coating amount of the slurry 205 at the timing of starting the application of the slurry 205 on the sheet base material 203 and the control of the film thickness of the coating film 207 accompanying the control are uneasy. In addition, when the second film thickness portion 26b having a small layer thickness is formed, it is necessary to form the coating film 207 by more complicated control.
 このような課題を解決するために、本発明に係る電池用電極の製造方法で用いる塗工装置200においては、リターン弁の弁体が弁座に対して水平または回転方向に作動する弁である弁構造を有するものが採用されることを特長としている。 In order to solve such a problem, in the coating apparatus 200 used in the battery electrode manufacturing method according to the present invention, the valve body of the return valve is a valve that operates in a horizontal or rotational direction with respect to the valve seat. It features that what has a valve structure is adopted.
 図6は本発明に係る電池用電極の製造方法で用いられる塗工装置200における塗工弁240及びリターン弁300の動作を説明する図である。 FIG. 6 is a view for explaining the operation of the coating valve 240 and the return valve 300 in the coating apparatus 200 used in the battery electrode manufacturing method according to the present invention.
 本発明で用いる塗工装置200の塗工弁240は、塗工弁の弁体が弁座に対して垂直に作動する弁である。すなわち、塗工弁240としては、弁座243に設けられた貫通穴242を、弁体247が塞いだり開いたりすることで、流量を制御するものであって、玉形弁などが用いられる。 The coating valve 240 of the coating apparatus 200 used in the present invention is a valve in which the valve body of the coating valve operates perpendicularly to the valve seat. That is, as the coating valve 240, the valve body 247 closes or opens the through hole 242 provided in the valve seat 243 to control the flow rate, and a ball valve or the like is used.
 一方、リターン弁300としては、リターン弁の弁体が弁座に対して水平または回転方向に作動する弁であり、仕切弁やボール弁などが挙げられる。図6は仕切弁を模式的に表したものである。本実施形態では図6に示すように、リターン弁300としては、弁箱301内に設けられ仕切弁体307が、弁箱301内のスラリー205の流れを仕切ることで、流量を制御する仕切弁が用いられる。このような仕切弁は、流量の制御において水撃作用のような高圧を発生させにくいというだけでなく、配管を通じて接続されている塗工弁への流量の変動までも極めて小さくできることが明らかとなった。 On the other hand, the return valve 300 is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to the valve seat, and includes a gate valve and a ball valve. FIG. 6 schematically shows a gate valve. In this embodiment, as shown in FIG. 6, the return valve 300 is a gate valve that is provided in the valve box 301 and controls the flow rate by partitioning the flow of the slurry 205 in the valve box 301 by the gate valve body 307. Is used. It is clear that such a gate valve not only does not easily generate a high pressure such as a water hammer effect in the control of the flow rate, but can also extremely reduce the fluctuation of the flow rate to the coating valve connected through the piping. It was.
 リターン弁300で用いられる仕切弁においては、スラリー205の流れに対して、略垂直方向から仕切弁体307が抜き差しされることで、スラリー205の流量が制御されることから、リターン弁300の開閉時、図10の矢印に示したような圧力がスラリー205中に発生することがなく、ダイヘッド260からシート基材203上に塗出するスラリー205の塗出量の制御が容易となり、これに伴い、シート基材203上に塗布するスラリー205の膜厚の制御も容易となる。 In the gate valve used in the return valve 300, the flow rate of the slurry 205 is controlled by inserting and removing the gate valve body 307 from a substantially vertical direction with respect to the flow of the slurry 205. At this time, the pressure as shown by the arrow in FIG. 10 is not generated in the slurry 205, and the amount of the slurry 205 applied from the die head 260 onto the sheet base material 203 can be easily controlled. In addition, it becomes easy to control the film thickness of the slurry 205 applied on the sheet base material 203.
 次に、以上のように構成される、本発明で用いる塗工装置200の塗工弁240及びリターン弁300の制御について説明する。 Next, the control of the coating valve 240 and the return valve 300 of the coating apparatus 200 used in the present invention configured as described above will be described.
 図7は塗工装置200の塗工弁240及びリターン弁300の動作タイミングの一例を示す図である。図7で示す動作タイミングは、図4及び図5で示した塗工膜207(正極活物質層26)を形成する際のものである。すなわち、シート基材203上に、未塗工部から、層厚が薄い第2膜厚部26bが形成され、さらにそれに連続して、層厚が厚い第1膜厚部26aが形成されることを想定して、塗工膜207を形成する際の動作タイミングを示すものである。 FIG. 7 is a diagram illustrating an example of operation timings of the coating valve 240 and the return valve 300 of the coating apparatus 200. The operation timing shown in FIG. 7 is for forming the coating film 207 (positive electrode active material layer 26) shown in FIGS. That is, the second film thickness portion 26b having a thin layer thickness is formed on the sheet base material 203 from the uncoated portion, and the first film thickness portion 26a having a thick layer thickness is formed continuously. The operation timing when forming the coating film 207 is shown.
 なお、図7において、開度0[%]とは流路が完全に遮断される弁の開度を言う。一方、開度100[%]とは、流量が100[%]であるものとして使用者が想定しているときの弁の開度を言い、弁自体の性能としての開度100[%]を言うのではない。 In FIG. 7, the opening degree 0 [%] means the opening degree of the valve at which the flow path is completely blocked. On the other hand, the opening degree 100 [%] means the opening degree of the valve when the user assumes that the flow rate is 100 [%], and the opening degree 100 [%] as the performance of the valve itself. Not to say.
 以下、図7を時系列で説明する。図7の横軸は時間軸を示している。また、図7の上段は塗工弁240の開度を、また、下段はリターン弁300の開度をそれぞれ示している。 Hereinafter, FIG. 7 will be described in time series. The horizontal axis in FIG. 7 represents the time axis. 7 shows the opening degree of the coating valve 240, and the lower part shows the opening degree of the return valve 300.
 シート基材203上に塗工膜207の塗工を開始しようとする瞬間(t)においては、塗工弁240の開度を0%から増加させると同時に、リターン弁300の開度を100%から減少させるようにしている。 At the moment (t 0 ) at which application of the coating film 207 is to be started on the sheet substrate 203, the opening degree of the coating valve 240 is increased from 0% and the opening degree of the return valve 300 is set to 100. It is trying to decrease from%.
 なお、以下、時間tのサフィックスの数字が小さいほど、経過時間が少ないときの時間であるものとする。 In the following, it is assumed that the smaller the time t suffix number, the shorter the elapsed time.
 tにおいては、塗工弁240の開度上昇は一端停止し、開度一定とする。これにより、第2膜厚部26bに相当する塗工膜207を形成するようにする。一方、tで開度100%から開度を減少させていたリターン弁300の開度はtにおいて0%となる。 In t 1, the opening degree increase in Nurikoben 240 temporarily stopped, the opening degree constant. Thereby, the coating film 207 corresponding to the second film thickness portion 26b is formed. On the other hand, the opening degree of the return valve 300 which has reduced the degree of opening from 100% opening at t 0 is 0% at t 2.
 塗工弁240で開度一定とされていた開度は、tにおいて再び増加させて、tで開度100%として、第1膜厚部26aに相当する塗工膜207を形成するようにする。 Opening which has been a degree of opening fixed in Nurikoben 240 increases again at t 3, 100% opening at t 4, to form a coating film 207 corresponding to the first film thickness portion 26a To.
 第1膜厚部26aに相当する塗工膜207を形成する期間を終了するために塗工弁240の開度を100%から減少させるタイミングより若干早いタイミングであるtにおいて、リターン弁300の開度を0%から上昇させる。 In t 5 is slightly earlier than the timing of reducing the degree of opening of Nurikoben 240 from 100% to terminate the period for forming the coating film 207 corresponding to the first film thickness portion 26a, the return valve 300 Increase the opening from 0%.
 一方、塗工弁240の開度は、tで100%から減少を開始させる。塗工弁240の開度が0%となるタイミング、及び、リターン弁300の開度が100%となるタイミングは、tで一致するように制御される。 On the other hand, the opening degree of Nurikoben 240 starts the reduction from 100% t 6. Timing the opening of Nurikoben 240 is 0% and, timing the opening of the return valve 300 is 100%, is controlled so as to coincide with t 7.
 以上のような塗工弁240及びリターン弁300の動作タイミングによって、シート基材203上に、未塗工部から、層厚が薄い第2膜厚部26b、さらにそれに連続した、層厚が厚い第1膜厚部26aを想定した塗工膜207を形成することが可能となる。 According to the operation timing of the coating valve 240 and the return valve 300 as described above, the layer thickness on the sheet base material 203 from the uncoated portion to the second thin film thickness portion 26b having a thin layer thickness and further to the thick layer thickness. The coating film 207 that assumes the first film thickness portion 26a can be formed.
 以上、本発明に係る電池用電極の製造方法・製造装置は、前記塗工弁240が玉形弁であり、前記リターン弁300が仕切弁であり、前記仕切弁の開閉時における仕切弁体の移動が、前記塗工弁240に影響を与えることがないので、このような本発明に係る電池用電極の製造方法・製造装置によれば、前記塗工弁240、前記リターン弁300の動作に伴うダイヘッド260内におけるスラリー205の圧力の変動を抑制することができ、ダイヘッド260から塗出するスラリー205の塗出量の制御が容易となり、所望とする塗工膜を得ることができ、リチウムイオン二次電池の性能向上に資することができる。 As described above, in the battery electrode manufacturing method and manufacturing apparatus according to the present invention, the coating valve 240 is a ball valve, the return valve 300 is a gate valve, and the gate valve body is opened and closed when the gate valve is opened and closed. Since the movement does not affect the coating valve 240, according to the battery electrode manufacturing method and manufacturing apparatus according to the present invention, the operation of the coating valve 240 and the return valve 300 is performed. As a result, fluctuations in the pressure of the slurry 205 in the die head 260 can be suppressed, the amount of the slurry 205 applied from the die head 260 can be easily controlled, and a desired coating film can be obtained. This can contribute to improving the performance of the secondary battery.
 また、前記のような製造方法を用いて製造された、本発明に係る電池用電極によれば、電池100の性能を向上させることができる。 In addition, according to the battery electrode according to the present invention manufactured using the manufacturing method as described above, the performance of the battery 100 can be improved.
 また、前記のような電池用電極が用いられた、本発明に係る電池によれば、より性能を向上させた電池100を提供することが可能となる。 Moreover, according to the battery according to the present invention using the battery electrode as described above, it is possible to provide the battery 100 with improved performance.
 次に、本発明の他の実施形態について説明する。図8は本発明の他の実施形態に係る電池用電極の製造方法で用いられる塗工装置200における塗工弁240及びリターン弁300の動作を説明する図である。 Next, another embodiment of the present invention will be described. FIG. 8 is a view for explaining the operation of the coating valve 240 and the return valve 300 in the coating apparatus 200 used in the method for manufacturing a battery electrode according to another embodiment of the present invention.
 他の実施形態で用いる塗工装置200が、先の図6に示した塗工装置200と相違する点は、リターン弁300において仕切弁体307が複数設けられる点のみで、その他の構成は同様である。他の実施形態で用いる塗工装置200においては、2つの仕切弁体307が、弁箱301内のスラリー205の流れを仕切る構成となっているが、3つ以上の仕切弁体307によって、弁箱301内のスラリー205の流れを仕切るようにしてもよい。 The coating apparatus 200 used in another embodiment is different from the coating apparatus 200 shown in FIG. 6 only in that a plurality of gate valve bodies 307 are provided in the return valve 300, and the other configurations are the same. It is. In the coating apparatus 200 used in other embodiments, the two gate valve bodies 307 are configured to partition the flow of the slurry 205 in the valve box 301. However, the valve is formed by three or more gate valve bodies 307. The flow of the slurry 205 in the box 301 may be partitioned.
 他の実施形態に係るリターン弁300で用いられる仕切弁においては、スラリー205の流れに対して、略垂直方向から、複数の仕切弁体307が抜き差しされることで、先の実施形態の場合より、より精密な流量制御を可能とするものである。 In the gate valve used in the return valve 300 according to another embodiment, the plurality of gate valve bodies 307 are inserted / removed from a substantially vertical direction with respect to the flow of the slurry 205, so that the case of the previous embodiment. Therefore, more precise flow rate control is possible.
 このような他の実施形態によれば、ダイヘッド260から塗出するスラリー205の塗出量の制御が非常に容易となり、所望とする塗工膜を得ることができ、リチウムイオン二次電池の性能向上に資することができる。 According to such another embodiment, it becomes very easy to control the coating amount of the slurry 205 to be coated from the die head 260, a desired coating film can be obtained, and the performance of the lithium ion secondary battery It can contribute to improvement.
産業上の利用性Industrial availability
 本発明は、小型化、軽量化が可能で、エネルギー密度が大きいリチウムイオン二次電池などの電池用電極の製造方法・製造装置に関するものである。従来、電池用電極の製造方法・製造装置においては、活物質粒子を含有するスラリーを、集電体などのシート基材上へ塗布する際、スラリー塗出量の制御が難しく、所望の塗工膜を得ることができず、リチウムイオン二次電池の性能にも悪影響を与えてしまう、という問題があった。 The present invention relates to a method and an apparatus for manufacturing an electrode for a battery such as a lithium ion secondary battery that can be reduced in size and weight and has a large energy density. Conventionally, in a manufacturing method and manufacturing apparatus for battery electrodes, when applying a slurry containing active material particles onto a sheet substrate such as a current collector, it is difficult to control the amount of slurry applied, and the desired coating There was a problem that a film could not be obtained and the performance of the lithium ion secondary battery was adversely affected.
  これに対して、本発明に係る電池用電極の製造方法・製造装置は、リターン弁の弁体が弁座に対して水平または回転方向に作動する弁であり、リターン弁の開閉時における弁体の移動が、塗工弁に影響を与えることがないので、このような本発明に係る電池用電極の製造方法・製造装置によれば、前記塗工弁、前記リターン弁の動作に伴うダイヘッド内におけるスラリーの圧力の変動を抑制することができ、ダイヘッドから塗出するスラリーの塗出量の制御が容易となり、所望とする塗工膜を得ることができ、リチウムイオン二次電池の性能向上に資することができる。 In contrast, the battery electrode manufacturing method and manufacturing apparatus according to the present invention is a valve in which the valve body of the return valve operates in a horizontal or rotational direction with respect to the valve seat, and the valve body at the time of opening and closing the return valve Therefore, according to the battery electrode manufacturing method / manufacturing apparatus of the present invention, the inside of the die head accompanying the operation of the coating valve and the return valve is not affected by the movement of the coating valve. The fluctuation of the slurry pressure can be suppressed, the amount of slurry applied from the die head can be easily controlled, the desired coating film can be obtained, and the performance of the lithium ion secondary battery can be improved. Can contribute.
20・・・正極
22・・・正極集電体本体部
24・・・正極集電体端子部
26・・・正極活物質層
26a・・・第1膜厚部
26b・・・第2膜厚部
28・・・絶縁部材
30・・・負極
32・・・負極集電体本体部
34・・・負極集電体端子部
36・・・負極活物質層
40・・・セパレーター
60・・・電極積層体
65・・・接着テープ
80・・・ラミネートフィルム外装材
81・・・熱溶着部(封止領域)
100・・・電池
110・・・電池本体部
111・・・第1辺
112・・・第2辺
113・・・第3辺
114・・・第4辺
120・・・正極引き出しタブ
130・・・負極引き出しタブ
200・・・塗工装置
203・・・シート基材
205・・・スラリー
207・・・塗工膜
210・・・配管
220・・・タンク
230・・・ポンプ
240・・・塗工弁
241・・・弁箱
242・・・貫通穴
243・・・弁座
245・・・シリンダー
246・・・シャフト
247・・・弁体
250・・・リターン弁
251・・・弁箱
252・・・貫通穴
253・・・弁座
255・・・シリンダー
256・・・シャフト
257・・・弁体
260・・・ダイヘッド
261・・・流入口
263・・・マニホールド
265・・・塗出口
270・・・バックロール
300・・・リターン弁
301・・・弁箱
307・・・仕切弁体
DESCRIPTION OF SYMBOLS 20 ... Positive electrode 22 ... Positive electrode collector main-body part 24 ... Positive electrode collector terminal part 26 ... Positive electrode active material layer 26a ... 1st film thickness part 26b ... 2nd film thickness Portion 28 ... Insulating member 30 ... Negative electrode 32 ... Negative electrode current collector body 34 ... Negative electrode current collector terminal 36 ... Negative electrode active material layer 40 ... Separator 60 ... Electrode Laminate 65 ... Adhesive tape 80 ... Laminate film exterior material 81 ... Thermal weld (sealing region)
DESCRIPTION OF SYMBOLS 100 ... Battery 110 ... Battery main-body part 111 ... 1st edge 112 ... 2nd edge 113 ... 3rd edge 114 ... 4th edge 120 ... Positive electrode extraction tab 130 ...・ Negative electrode extraction tab 200... Coating device 203... Sheet base material 205... Slurry 207... Coating film 210. Engineering valve 241 ... Valve box 242 ... Through hole 243 ... Valve seat 245 ... Cylinder 246 ... Shaft 247 ... Valve body 250 ... Return valve 251 ... Valve box 252 .... Through hole 253 ... Valve seat 255 ... Cylinder 256 ... Shaft 257 ... Valve body 260 ... Die head 261 ... Inlet 263 ... Manifold 265 ... Outlet 270 ..Back roll 300 ... return valve 301 ... valve box 307 ... partition valve body

Claims (13)

  1. スラリーを貯溜するタンクと、
    ローラによって搬送されるシート基材に対して、スラリーを吐出する塗出口を有するヘッドと、
    開閉することによって前記ヘッドへのスラリーの流入量を制御する塗工弁と、
    開閉することによって前記タンクへのスラリーの流入量を制御するリターン弁と、
    前記タンクから圧送されるスラリーを前記塗工弁及び前記リターン弁の双方に供給する配管と、
    を有する塗工装置によって電池用電極を製造する方法であって、
    前記リターン弁の弁体が弁座に対して水平または回転方向に作動する弁であり、
    前記塗工弁の開度の制御、及び、前記リターン弁の開度の制御を行うことで吐出するスラリーの量を調整するステップを有する電池用電極の製造方法。
    A tank for storing slurry;
    A head having a coating outlet for discharging slurry to a sheet substrate conveyed by a roller;
    A coating valve that controls the amount of slurry flowing into the head by opening and closing;
    A return valve that controls the amount of slurry flowing into the tank by opening and closing;
    Piping for supplying slurry fed from the tank to both the coating valve and the return valve;
    A method for producing a battery electrode by a coating apparatus having
    The valve body of the return valve is a valve that operates in a horizontal or rotational direction with respect to the valve seat,
    A method for manufacturing a battery electrode, comprising: adjusting the amount of slurry discharged by controlling the opening of the coating valve and controlling the opening of the return valve.
  2. 前記塗工弁の弁体が弁座に対して垂直に作動する弁である請求項1に記載の電池用電極の製造方法。 The battery electrode manufacturing method according to claim 1, wherein the valve body of the coating valve is a valve that operates perpendicularly to a valve seat.
  3. 前記塗工弁の開度を0%から増加させる時、
    前記リターン弁の開度を100%から減少させる請求項1又は請求項2に記載の電池用電極の製造方法。
    When increasing the opening of the coating valve from 0%,
    The battery electrode manufacturing method according to claim 1, wherein the opening degree of the return valve is reduced from 100%.
  4. 前記塗工弁の開度を0%から100%に増加させる途中に開度を一定に保つ期間を設けた請求項1乃至請求項3のいずれか1項に記載の電池用電極の製造方法。 The method for manufacturing a battery electrode according to any one of claims 1 to 3, wherein a period for keeping the opening constant is provided in the middle of increasing the opening of the coating valve from 0% to 100%.
  5. 前記塗工弁の開度が0%となる時、前記リターン弁の開度が100%となるように、
    前記塗工弁の開度を減少させ、前記リターン弁の開度を増加させる請求項1乃至請求項4のいずれか1項に記載の電池用電極の製造方法。
    When the opening of the coating valve is 0%, the opening of the return valve is 100%.
    The method for manufacturing a battery electrode according to any one of claims 1 to 4, wherein the opening degree of the coating valve is decreased and the opening degree of the return valve is increased.
  6. スラリーを貯溜するタンクと、
    ローラによって搬送されるシート基材に対して、スラリーを吐出する塗出口を有するヘッドと、
    開閉することによって前記ヘッドへのスラリーの流入量を制御する塗工弁と、
    開閉することによって前記タンクへのスラリーの流入量を制御するリターン弁と、
    前記タンクから圧送されるスラリーを前記塗工弁及び前記リターン弁の双方に供給する配管と、
    を有する電池用電極を製造する装置であって、
    前記塗工弁の弁体が弁座に対して垂直に作動する弁であり、
    前記リターン弁の弁体が弁座に対して水平または回転方向に作動する弁である電池用電極の製造装置。
    A tank for storing slurry;
    A head having a coating outlet for discharging slurry to a sheet substrate conveyed by a roller;
    A coating valve that controls the amount of slurry flowing into the head by opening and closing;
    A return valve that controls the amount of slurry flowing into the tank by opening and closing;
    Piping for supplying slurry fed from the tank to both the coating valve and the return valve;
    An apparatus for manufacturing a battery electrode having
    The valve body of the coating valve is a valve that operates perpendicular to the valve seat;
    An apparatus for manufacturing a battery electrode, wherein the valve body of the return valve is a valve that operates in a horizontal or rotational direction with respect to a valve seat.
  7. 前記塗工弁の開度を0%から増加させる時、
    前記リターン弁の開度を100%から減少させる請求項6に記載の電池用電極の製造装置。
    When increasing the opening of the coating valve from 0%,
    The battery electrode manufacturing apparatus according to claim 6, wherein the opening degree of the return valve is decreased from 100%.
  8. 前記塗工弁の開度を0%から100%に増加させる途中に開度を一定に保つ期間を設けた請求項6又は請求項7に記載の電池用電極の製造装置。 The battery electrode manufacturing apparatus according to claim 6 or 7, wherein a period for keeping the opening constant is provided in the middle of increasing the opening of the coating valve from 0% to 100%.
  9. 前記塗工弁の開度が0%となる時、前記リターン弁の開度が100%となるように、
    前記塗工弁の開度を減少させ、前記リターン弁の開度を増加させる請求項6乃至請求項8のいずれか1項に記載の電池用電極の製造装置。
    When the opening of the coating valve is 0%, the opening of the return valve is 100%.
    The battery electrode manufacturing apparatus according to claim 6, wherein the opening degree of the coating valve is decreased and the opening degree of the return valve is increased.
  10. 請求項1乃至5のいずれか1項に記載の電池用電極の製造方法を用いて、
    シート基材上に、間欠的に設けられたスラリーにより活物質層を形成した電池用電極。
    Using the method for manufacturing a battery electrode according to any one of claims 1 to 5,
    A battery electrode in which an active material layer is formed on a sheet base material by slurry provided intermittently.
  11. 活物質層が、厚みが略一定の第1膜厚部と、第1膜厚部よりも厚さが薄い第2膜厚部と、からなり、
    活物質層が設けられている部分と、活物質層が設けられていない部分の境界に第2膜厚部が配された請求項10に記載の電池用電極。
    The active material layer comprises a first film thickness portion having a substantially constant thickness and a second film thickness portion having a thickness smaller than the first film thickness portion,
    The battery electrode according to claim 10, wherein the second film thickness portion is arranged at a boundary between a portion where the active material layer is provided and a portion where the active material layer is not provided.
  12. 活物質層が設けられている部分と、活物質層が設けられていない部分の境界に絶縁部材が配された請求項10又は請求項11に記載の電池用電極。 The battery electrode according to claim 10 or 11, wherein an insulating member is disposed at a boundary between a portion where the active material layer is provided and a portion where the active material layer is not provided.
  13. 請求項10乃至12のいずれか1項に記載の電池用電極を正極又は負極のいずれかとして用い、
    前記正極と前記負極とをセパレーターを介して積層した電極積層体と、電解液とが外装材の内部に収容されると共に、
    前記正極と導電接続された正極引き出しタブと、前記負極と導電接続された負極引き出しタブとが前記外装材の外部に引き出される電池。
    The battery electrode according to any one of claims 10 to 12 is used as either a positive electrode or a negative electrode,
    An electrode laminate in which the positive electrode and the negative electrode are laminated via a separator, and an electrolytic solution are housed in the exterior material,
    A battery in which a positive electrode extraction tab conductively connected to the positive electrode and a negative electrode extraction tab conductively connected to the negative electrode are drawn out of the exterior material.
PCT/JP2017/031970 2016-09-14 2017-09-05 Battery electrode manufacturing method, battery electrode manufacturing device, battery electrode, and battery WO2018051850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539644A JPWO2018051850A1 (en) 2016-09-14 2017-09-05 METHOD FOR MANUFACTURING BATTERY ELECTRODE, APPARATUS FOR MANUFACTURING BATTERY ELECTRODE, AND BATTERY ELECTRODE AND BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179203 2016-09-14
JP2016179203 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051850A1 true WO2018051850A1 (en) 2018-03-22

Family

ID=61619482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031970 WO2018051850A1 (en) 2016-09-14 2017-09-05 Battery electrode manufacturing method, battery electrode manufacturing device, battery electrode, and battery

Country Status (2)

Country Link
JP (1) JPWO2018051850A1 (en)
WO (1) WO2018051850A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047245A (en) * 2010-08-26 2012-03-08 Hirano Tecseed Co Ltd Valve and coating device using the same
JP2014079669A (en) * 2012-10-15 2014-05-08 Toyota Motor Corp Coating device and coating method
JP2014188449A (en) * 2013-03-27 2014-10-06 Nec Corp Intermittent coating apparatus and intermittent coating method
JP2014188426A (en) * 2013-03-27 2014-10-06 Nec Corp Intermittent coating apparatus and coating method
JP2015010706A (en) * 2013-07-02 2015-01-19 株式会社テクノスマート Valve device, and coating device
JP2015062853A (en) * 2013-09-24 2015-04-09 日本電気株式会社 Intermittent coating apparatus and intermittent coating method
JP2015112520A (en) * 2013-12-10 2015-06-22 株式会社ヒラノテクシード Intermittent coating apparatus
WO2016063612A1 (en) * 2014-10-21 2016-04-28 Necエナジーデバイス株式会社 Method and apparatus for manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2017047393A (en) * 2015-09-04 2017-03-09 Necエナジーデバイス株式会社 Coating device and electrode manufactured by the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047245A (en) * 2010-08-26 2012-03-08 Hirano Tecseed Co Ltd Valve and coating device using the same
JP2014079669A (en) * 2012-10-15 2014-05-08 Toyota Motor Corp Coating device and coating method
JP2014188449A (en) * 2013-03-27 2014-10-06 Nec Corp Intermittent coating apparatus and intermittent coating method
JP2014188426A (en) * 2013-03-27 2014-10-06 Nec Corp Intermittent coating apparatus and coating method
JP2015010706A (en) * 2013-07-02 2015-01-19 株式会社テクノスマート Valve device, and coating device
JP2015062853A (en) * 2013-09-24 2015-04-09 日本電気株式会社 Intermittent coating apparatus and intermittent coating method
JP2015112520A (en) * 2013-12-10 2015-06-22 株式会社ヒラノテクシード Intermittent coating apparatus
WO2016063612A1 (en) * 2014-10-21 2016-04-28 Necエナジーデバイス株式会社 Method and apparatus for manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2017047393A (en) * 2015-09-04 2017-03-09 Necエナジーデバイス株式会社 Coating device and electrode manufactured by the same

Also Published As

Publication number Publication date
JPWO2018051850A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6381045B2 (en) Secondary battery
JP6418650B2 (en) Multilayer secondary battery and electrode manufacturing method
JP6621765B2 (en) Secondary battery
JP6292678B2 (en) Secondary battery and electrode manufacturing method
JP6609564B2 (en) Method and apparatus for manufacturing secondary battery electrode
WO2015087657A1 (en) Secondary battery, and method for producing same
JP6739425B2 (en) Electrode for secondary battery, manufacturing method and manufacturing device for secondary battery
JP6628505B2 (en) Method and apparatus for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
WO2017154312A1 (en) Manufacturing method for electrochemical device electrode and electrochemical device
WO2016067706A1 (en) Method for producing electrode for secondary battery, electrode for secondary battery, and secondary battery
WO2017154313A1 (en) Electrochemical device electrode, electrochemical device, and manufacturing method for said electrode and said device
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
WO2018051850A1 (en) Battery electrode manufacturing method, battery electrode manufacturing device, battery electrode, and battery
JP2017054762A (en) Electrode for secondary battery, manufacturing method of secondary battery, and manufacturing method of electrode for secondary battery
JP2018045952A (en) Method of manufacturing electrode and electrochemical device, and electrode roll
JPWO2013098969A1 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018539644

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850753

Country of ref document: EP

Kind code of ref document: A1