WO2018049909A1 - 指纹识别器件、触摸显示面板和指纹识别器件驱动方法 - Google Patents

指纹识别器件、触摸显示面板和指纹识别器件驱动方法 Download PDF

Info

Publication number
WO2018049909A1
WO2018049909A1 PCT/CN2017/093157 CN2017093157W WO2018049909A1 WO 2018049909 A1 WO2018049909 A1 WO 2018049909A1 CN 2017093157 W CN2017093157 W CN 2017093157W WO 2018049909 A1 WO2018049909 A1 WO 2018049909A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
fingerprint recognition
recognition device
ultrasonic generation
display panel
Prior art date
Application number
PCT/CN2017/093157
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
薛海林
陈小川
王海生
刘英明
王磊
丁小梁
许睿
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/751,848 priority Critical patent/US10929633B2/en
Publication of WO2018049909A1 publication Critical patent/WO2018049909A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1312Sensors therefor direct reading, e.g. contactless acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • Embodiments of the present disclosure relate to the field of touch technologies, and in particular, to a fingerprint recognition device, a touch display panel, and a fingerprint identification device driving method.
  • a fingerprint is a line created by unevenness on the front surface of a human finger.
  • the lines are regularly arranged to form different patterns.
  • the starting point, end point, joint point and bifurcation point of the line are called the detailed feature points of the fingerprint.
  • Fingerprint recognition refers to the identification by comparing the detailed feature points of different fingerprints. Fingerprint recognition technology involves image processing, pattern recognition, computer vision, mathematical morphology, wavelet analysis and many other disciplines. Because each person's fingerprint is different, and even if there is a significant difference between the fingerprints of the same person, the fingerprint can be used for identification. Because the orientation of each print is not exactly the same, different points of force will bring different degrees of deformation, and there are a lot of fuzzy fingerprints. How to correctly extract features and achieve correct matching is the key to fingerprint recognition technology.
  • Fingerprint image acquisition technologies mainly include the following types: optical scanning devices, temperature difference sensing fingerprint sensors, and semiconductor fingerprint sensors.
  • the optical scanning device identification technology is to place a finger on the optical lens, and the finger is projected by the built-in light source of the optical scanning device, and the light from the built-in light source is projected on the charge coupled device (CCD) by the prism to form a black ridge.
  • a line (a line with a certain width and direction in the fingerprint image) and a white valley line (a recessed portion between the lines), a digitized multi-gradation fingerprint image that can be processed by the fingerprint device algorithm.
  • the temperature difference inductive recognition technology also known as sliding fingerprint recognition, can acquire fingerprint images within 0.1s, and the sensor has the smallest volume and area.
  • the disadvantage is: subject to temperature limitations, for a long time, due to the thermal balance, the finger and the chip are at the same temperature.
  • the semiconductor silicon sensing technology is based on the difference between the size of the capacitance of the fingerprint and the capacitance of the semiconductor capacitor to determine what position is the position. Its working process is through the electricity on each pixel
  • the capacitive sensing particles are precharged to a certain reference voltage.
  • the surface of the semiconductor capacitive sensing particle on the semiconductor fingerprint sensor respectively corresponds to ⁇ and ⁇ .
  • the locations form different capacitance values.
  • the discharge is then performed using a discharge current. Since the corresponding capacitance values at the corresponding positions of ⁇ and ⁇ are different, the speed of discharge is also different.
  • the pixels under the arm (high capacitance) discharge slowly, while the pixels under the arm (low capacitance) discharge faster. Depending on the discharge rate, the positions of ⁇ and ⁇ can be detected to form fingerprint image data.
  • a fingerprint recognition device including:
  • the ultrasonic generation detector disposed opposite to the resonant cavity
  • the ultrasonic generation detector is configured to generate an initial ultrasonic signal having a frequency that is the same as an initial natural frequency when the resonant chamber is not touched by a finger;
  • the ultrasonic generation detector is further configured to convert an ultrasonic signal reflected by the ridges and valleys of the finger into an electrical signal, and determine the texture information of the finger based on the electrical signal.
  • the ultrasonic generation detector includes a first electrode layer, a piezoelectric material layer, and a second electrode layer which are sequentially disposed.
  • the fingerprint recognition device includes a plurality of ultrasonic generation detectors and a plurality of resonant chambers;
  • the ultrasonic generation detector is in one-to-one correspondence with the resonant cavity.
  • the first electrode layer of the plurality of ultrasonic generation detectors is disposed over the entire surface
  • the second electrode layers of the plurality of ultrasonic generation detectors are independent of each other;
  • the second electrode layer of the plurality of ultrasonic generation detectors is disposed over the entire surface
  • the first electrode layers of the plurality of ultrasonic generation detectors are independent of each other.
  • a touch display panel comprising the above-described fingerprint recognition device.
  • the touch display panel is an OLED panel or an LCD panel.
  • a method of fabricating a touch display panel includes forming an oppositely disposed ultrasonic generation detector and a resonant cavity on a substrate.
  • the display panel is an OLED display panel
  • the method includes:
  • An insulating layer is formed on the ultrasonic generation detector, and a resonant cavity that is disposed in alignment with the ultrasonic generation detector is formed on the insulating layer.
  • the forming a resonant cavity on the insulating layer that is disposed in overlapping with the ultrasonic generation detector includes:
  • the height of the retaining wall structure is greater than or equal to the height of the OLED lighting unit.
  • the present disclosure further provides a fingerprint identification device driving method for driving the fingerprint identification device described above, the method comprising:
  • the ultrasonic generation detector is coupled to the high frequency drive signal to generate an initial ultrasonic signal
  • the frequency of the initial ultrasonic signal is the same as the initial natural frequency of the resonant cavity without a finger touch
  • the ultrasonic generation detector converts ultrasonic waves reflected by the ridges of the fingers and ultrasonic waves of the amplitude increased by the valleys of the fingers into electrical signals, and the ultrasonic generation detector determines the fingers according to the electrical signals
  • the texture information determines the position of the valley and the ridge of the finger, wherein the position where the electric signal is strong is the valley, and the position where the electric signal is weak is the ridge.
  • FIG. 1 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the principle of fingerprint recognition of the fingerprint recognition device shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an OLED ultrasonic fingerprint recognition substrate according to an embodiment of the present disclosure.
  • the present disclosure provides a fingerprint recognition device including: an ultrasonic generation detector 21 and a resonance chamber 31; an ultrasonic generation detector 21 is disposed opposite to the resonant chamber 31; the ultrasonic generating detector 21 is configured to generate an initial ultrasonic signal; the frequency of the initial ultrasonic signal is the same as the initial natural frequency of the resonant chamber 31 when the finger is not touched; the ultrasonic generating detector 21 further The ultrasonic signal reflected by the ridges and valleys of the finger is configured to be converted into an electrical signal, and the texture information of the finger is determined based on the electrical signal.
  • the fingerprint recognition device provided by the present disclosure will be described in detail below.
  • the volume structure of the resonant chamber 31 is determined by design, and after the design is completed, the resonant frequency thereof is already fixed, and the ultrasonic frequency generated by the ultrasonic generating detector 21 is generated.
  • the frequency of the resonance chamber 31 is the same, resonance occurs in the resonance chamber 31, and the amplitude of the ultrasonic wave is increased to increase the amplitude after passing through the resonance chamber 31.
  • the ultrasonic wave generating detector 21 generates ultrasonic waves and propagates to the resonant cavity 31.
  • the ultrasonic waves passing through the resonant cavity resonate, and the ultrasonic amplitude increases and then exits outward;
  • the ridges are in contact with the resonant cavity 31 due to the convexity of the valleys with respect to the fingers to change the natural frequency of the resonant cavity 31, the resonant cavity 31 does not increase the amplitude of the ultrasonic waves propagating outside the substrate; the resonant cavity 31 receives the fingers After the ridge is reflected, the ultrasonic wave does not resonate in the resonant cavity 31, nor does it change the ultrasonic amplitude; the valley of the finger does not contact the resonant cavity 31 due to the concave ridge with respect to the finger, so that the resonant cavity 31 is not changed.
  • the natural frequency resonates in the resonant cavity 31, and the resonant cavity 31 increases the amplitude of the ultrasonic wave propagating outside the substrate; the resonant cavity 31 receives the ultrasonic wave having a difference in amplitude after being reflected by the valley of the finger, and is inside the resonant cavity 31. Resonance occurs again, and the ultrasonic amplitude after resonance is further increased.
  • the ultrasonic generation detector 21 includes a first electrode layer 211, a piezoelectric material layer 210, and a second electrode layer 212, which are sequentially disposed, for example, from bottom to top. Overlap settings.
  • the driving lines and the detecting lines of the first electrode layer 211 and the second electrode layer 212 of the ultrasonic wave generating detector 21 are shared. Specifically, in the ultrasonic generating phase, the driving line continuously applies high frequency driving to at least one of the first electrode layer 211 and the second electrode layer 212 of the ultrasonic wave generating detector 21, so that the piezoelectric material layer 210 generates ultrasonic waves.
  • the driving line is switched to the detecting line, and the ultrasonic amplitude difference in the resonant cavity caused by the finger and the ridge which is in contact with the ultrasonic generating detector 21 is the ultrasonic amplitude of the resonance after the second electrode layer 212 is fed back.
  • the positive piezoelectric effect generated on the piezoelectric material layer 210 is also different, whereby the voltage signals collected on the first electrode layer 211 are different, thereby detecting and distinguishing the valley ridge difference of the finger.
  • the fingerprint recognition device includes a plurality of ultrasonic generation detectors 21 and a plurality of resonant chambers; the plurality of ultrasonic generation detectors 21 correspond to the plurality of resonant chambers 31 in one-to-one correspondence , for example, one by one overlapping alignment. As shown in FIG. 3, each of the ultrasonic generation detectors 21 aligns the positions of the valleys and ridges of the fingers. The plurality of ultrasonic generation detectors 21 are disposed in one-to-one correspondence with the plurality of resonance chambers 31, and each fingerprint position is identified, thereby effectively improving the accuracy of fingerprint recognition.
  • the first electrode layer 211 or the second electrode layer 212 of the plurality of ultrasonic generation detectors are integrally formed to form a single complete face.
  • the second electrode layer 212 of the plurality of ultrasonic generation detectors 21 is an integral layer, and the first electrode layer 211 is divided into a plurality of small regions independently of each other according to each of the ultrasonic generation detectors 21, and is composed of
  • the lower metal traces 20 are respectively connected to the ICs in the control circuit.
  • the first electrode layer 211 of the plurality of ultrasonic generation detectors 21 becomes an integral layer
  • the second electrode layer 212 is divided into a plurality of small regions independently of each other according to each of the ultrasonic generation detectors 21, and is composed of respective metals.
  • the traces are connected to the ICs in the control circuit.
  • the present disclosure also provides a touch display panel including the above-described fingerprint recognition device.
  • the substrate may be any one of an OLED panel and an LCD panel.
  • the fingerprint recognition device By integrating a fingerprint recognition device on the substrate, the fingerprint recognition device generates ultrasonic waves and propagates out of the substrate, and senses ultrasonic waves reflected by the valleys provided on the fingers in contact with the fingerprint recognition device, and is reflected according to the valleys of the fingers.
  • the ultrasonic wave determines the texture information of the finger, and the touch display panel has a simple structure and effectively improves the accuracy of fingerprint recognition.
  • the present disclosure further provides a method for fabricating a touch display panel for manufacturing the above array substrate, the method comprising: forming an oppositely disposed ultrasonic generation detector 21 on the substrate And a resonant chamber 31.
  • the system for ultrasonic fingerprint recognition substrate provided by the present disclosure is as follows The method is explained in detail.
  • the touch display panel is an OLED display panel
  • the method includes: forming an ultrasonic generation detector 21 on the substrate; forming an insulating layer 7 on the ultrasonic generation detector 21, and forming an ultrasonic generation detector on the insulating layer 7.
  • the corresponding resonant cavity 31, for example, the ultrasonic wave generating detector 21 and the resonant cavity 31 are arranged in an overlapping arrangement in the vertical direction.
  • forming a cavity 31 corresponding to the ultrasonic wave generating detector on the insulating layer includes: forming an anode layer 81 of the OLED light emitting unit on the insulating layer 7; forming on the anode layer 81 by exposure development Retaining wall structure 310; using a high-precision metal mask process to vaporize the luminescent layer structure 80 of the OLED light-emitting unit outside the retaining wall structure 310; and then using the full-surface vapor deposition method to block the luminescent layer structure 80 of the OLED light-emitting unit
  • the cathode layer 82 of the light emitting unit is formed inside the wall structure 310; the height of the retaining wall structure 310 is greater than or equal to the height of the entire OLED light emitting unit.
  • the insulating layer 7, the light emitting layer structure 80, and the like are formed by vapor deposition using a high precision metal mask process (FMM Mask).
  • the second electrode layer 82 of the light emitting unit is formed using a common open mask process.
  • the height of the retaining wall structure 310 (PS) is set to be sufficiently high, so that after the packaging process is completed, the package glass 6 can form the resonant cavity 31 with the lower substrate.
  • the present disclosure further provides a fingerprint identification device driving method including: the ultrasonic generation detector 21 is connected to a high frequency driving signal to generate an initial ultrasonic signal, and an initial ultrasonic signal.
  • the frequency and the initial natural frequency of the resonant cavity are the same when the finger is not touched by the finger; the ultrasonic generating detector 21 converts the ultrasonic wave reflected by the ridge of the finger and the ultrasonic wave whose amplitude is increased by the valley of the finger into an electrical signal, and is determined according to the electrical signal.
  • the texture information of the finger, the position where the electric signal is strong is the valley, and the position where the electric signal is weak is the ridge.
  • the first step high frequency driving is continuously applied to the first electrode layer 211 and the second electrode layer 212 of the ultrasonic wave generating detector 21, so that the first electrode layer 211 and the second electrode layer 212 are pressed.
  • the piezoelectric material layer 210 between the electrical materials produces an initial ultrasonic wave having a frequency that is the same as the resonant frequency of the resonant cavity 31.
  • the ridge position is in contact with the device, and the natural frequency of the resonant cavity 31 at the contact position is changed, and the resonant cavity 31 does not increase the ultrasonic amplitude.
  • the ultrasonic wave reflected to the resonance in the resonant cavity 31 does not resonate in the resonant cavity 31, nor does it change the ultrasonic amplitude; in contrast, since the valley position does not come into contact with the device, the valley is facing the position.
  • the resonant frequency of the resonant cavity 31 does not change, the ultrasonic waves resonate in the resonant cavity 31, and the resonant cavity 31 increases the amplitude of the ultrasonic wave propagating outside the substrate; after the resonant cavity 31 receives the ultrasonic wave reflected by the valley of the finger, Then the ultrasonic further and resonance The chamber resonates and the ultrasonic amplitude increases. Due to the difference in the natural frequency of the valley ridges to the resonant chamber 31, the ultrasonic waves which are reflected again into the resonant cavity by the valley position are increased in amplitude under the action of the resonant cavity, and the amplitude of the ridge position is constant.
  • the roles of the first electrode layer 211 and the second electrode layer 212 of the ultrasonic wave generating detector 21 are changed, and the driving line is switched to the detecting line, and the second electrode layer 212 is On a full face, enter a fixed potential.
  • the amplitude of the ultrasonic waves in the cavity caused by the valley ridges is different. Therefore, the feedback of the ultrasonic waves on the piezoelectric material layer 210 between the piezoelectric material of the first electrode layer 211 and the second electrode layer 212 is also different, and the voltage signal collected on the first electrode layer 211 is different. It will be different.
  • the ultrasonic feedback of the position feedback of the ridge has a low positive piezoelectric effect on the piezoelectric material layer 210, and the ultrasonic feedback of the position feedback of the valley has a high positive piezoelectric effect on the piezoelectric material layer 210, thereby detecting and distinguishing the valley ridge of the finger. difference.
  • the present disclosure provides a fingerprint recognition device, a touch display panel, and a fingerprint recognition device driving method, by integrating a fingerprint recognition device on a substrate, the fingerprint recognition device generates ultrasonic waves and propagates outside the substrate, and senses a valley of the fingers.
  • the ultrasonic wave reflected by the ridge determines the texture information of the finger according to the ultrasonic wave reflected by the valley ridge of the finger.
  • the fingerprint recognition device has a simple structure and effectively improves the accuracy of fingerprint recognition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种指纹识别器件、触摸显示面板和指纹识别器件驱动方法,该指纹识别器件包括:谐振腔室(31);与谐振腔室(31)相对设置的超声波发生检测器(21);其中,超声波发生检测器(21)被配置为产生初始超声波信号;初始超声波信号的频率和谐振腔室(31)未经手指触摸时的初始固有频率相同;超声波发生检测器(21)还被配置为将经过手指的脊和谷反射后的超声波信号转换为电信号,根据电信号确定手指的纹路信息。

Description

指纹识别器件、触摸显示面板和指纹识别器件驱动方法
相关申请的交叉引用
本申请要求于2016年9月18日递交中国专利局的、申请号为201610830380.0的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开实施例涉及触摸技术领域,具体涉及一种指纹识别器件、触摸显示面板和指纹识别器件驱动方法。
背景技术
指纹,由于其具有终身不变性、唯一性和方便性,已几乎成为生物特征识别的代名词。指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。
指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。指纹识别技术涉及图像处理、模式识别、计算机视觉、数学形态学、小波分析等众多学科。由于每个人的指纹不同,以及即便同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。由于每次捺印的方位不完全一样,着力点不同会带来不同程度的变形,又存在大量模糊指纹,如何正确提取特征和实现正确匹配,是指纹识别技术的关键。
指纹图像的获取技术主要有以下几种类型:光学扫描设备、温差感应式指纹传感器、半导体指纹传感器等。
光学扫描设备识别技术是将手指放在光学镜片上,手指在光学扫描设备的内置光源照射下,用棱镜将来自内置光源的光投射在电荷耦合器件(CCD)上,进而形成具备呈黑色的脊线(指纹图像中具有一定宽度和走向的纹线)和呈白色的谷线(纹线之间的凹陷部分),数字化的、可被指纹设备算法处理的多灰度指纹图像。.温差感应式识别技术又称滑动式指纹识别,可在0.1s内获取指纹图像,而且传感器体积和面积最小。缺点是:受制于温度局限,时间一长,由于达成热平衡,则手指和芯片就处于相同的温度了。半导体硅感技术是根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值大小不同,来判断什么位置是嵴什么位置是峪。其工作过程是通过对每个像素点上的电 容感应颗粒预先充电到某一参考电压。当手指接触到半导体电容指纹表现上时,因为嵴是凸起、峪是凹下,根据电容值与距离的关系,会在半导体指纹传感器上的半导体电容感应颗粒的表面上分别与嵴和峪对应的位置形成不同的电容值。然后利用放电电流进行放电。因为嵴和峪分别对应的位置处对应的电容值不同,所以其放电的速度也不同。嵴下的像素(电容量高)放电较慢,而处于峪下的像素(电容量低)放电较快。根据放电率的不同,可以探测到嵴和峪的位置,从而形成指纹图像数据。
发明内容
根据本公开实施例的一个方面,提供了一种指纹识别器件,包括:
谐振腔室;和
与所述谐振腔室相对设置的所述超声波发生检测器;
所述超声波发生检测器被配置为产生初始超声波信号,所述初始超声波信号的频率和所述谐振腔室未经手指触摸时的初始固有频率相同;
所述超声波发生检测器还被配置为将经过手指的脊和谷反射后的超声波信号转换为电信号,根据所述电信号确定手指的纹路信息。
根据本公开的一个实施例,所述超声波发生检测器包括依次设置的第一电极层、压电材料层和第二电极层。
根据本公开的一个实施例,所述指纹识别器件包括多个超声波发生检测器和多个谐振腔室;
所述超声波发生检测器与所述谐振腔一一对应。
根据本公开的一个实施例,所述多个超声波发生检测器的第一电极层整面设置;
所述多个超声波发生检测器的第二电极层相互独立;
根据本公开的一个实施例,所述多个超声波发生检测器的第二电极层整面设置;
所述多个超声波发生检测器的第一电极层相互独立。
根据本公开实施例的另一方面,又提供一种触摸显示面板,包括上述的指纹识别器件。
根据本公开的一个实施例,所述触摸显示面板为OLED面板或LCD面板。
根据本公开实施例的再一方面,还提供一种触摸显示面板的制作方法,包括在基板上形成相对设置的超声波发生检测器和谐振腔室。
根据本公开的一个实施例,所述显示面板是OLED显示面板,所述方法包括:
在基板上形成超声波发生检测器;
在所述超声波发生检测器上形成绝缘层,在所述绝缘层上形成与所述超声波发生检测器重叠对齐设置的谐振腔室。
根据本公开的一个实施例,所述在所述绝缘层上形成与所述超声波发生检测器重叠对齐设置的谐振腔室包括:
在所述绝缘层上形成所述OLED发光单元的阳极层;
采用曝光显影的方法在所述阳极层上形成挡墙结构;
采用高精度金属掩模工艺在所述挡墙结构外侧蒸镀形成所述OLED发光单元的发光层结构;
采用整面蒸镀的方式在所述OLED发光单元的发光层结构上和所述挡墙结构内侧形成阴极层;
所述挡墙结构的高度大于等于所述OLED发光单元的高度。
根据本公开实施例的还一方面,本公开还提供一种指纹识别器件驱动方法,用于驱动上述的指纹识别器件,所述方法包括:
超声波发生检测器接入高频驱动信号,以产生初始超声波信号;
所述初始超声波信号的频率和所述谐振腔室未经手指触摸时的初始固有频率相同;
所述超声波发生检测器将所述手指的脊反射后的超声波和所述经手指的谷反射后增大振幅的超声波转换为电信号,并且所述超声波发生检测器根据所述电信号确定手指的纹路信息确定手指的谷和脊对应的位置,其***号较强的位置为谷,电信号较弱的位置为脊。
附图说明
通过下文中参照附图对本发明所作的详细描述,本发明的上述和其它特征和优点将显而易见,并可帮助获得对本发明有全面的理解。在附图中:
图1为本公开实施例中一种指纹识别器件结构示意图;
图2为本公开实施例中一种指纹识别器件结构示意图;
图3为图2所示的指纹识别器件指纹识别原理示意图;
图4为本公开实施例中一种指纹识别器件结构示意图;
图5为本公开实施例中一种指纹识别器件结构示意图;
图6为本公开实施例中一种OLED超声波指纹识别基板结构示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明实施例的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
附图中各部件尺寸和形状不反映本公开实施例的指纹识别器件、触摸显示面板的部件的真实比例,目的只是示意说明本公开内容
根据本公开的实施例的一种总体上的发明构思,如图1、图2所示,本公开提供一种指纹识别器件,包括:超声波发生检测器21和谐振腔室31;超声波发生检测器21和谐振腔室31相对设置;超声波发生检测器21被配置为产生初始超声波信号;初始超声波信号的频率和谐振腔室31的未经手指触摸时的初始固有频率相同;超声波发生检测器21还被配置为将经过手指的脊和谷反射后的超声波信号转换为电信号,根据电信号确定手指的纹路信息。下面对本公开提供的指纹识别器件展开详细的说明。
在本公开的实施例中,如图2、图3所示,谐振腔室31的体积结构由设计决定,在设计完成后,其谐振频率就已经固定,当超声波发生检测器21产生的超声波频率与谐振腔室31的频率相同时,谐振腔室31内产生谐振,超声波经过谐振腔室31后振幅被增大使振幅最大化。超声波发生检测器21产生超声波,并向谐振腔室31传播,由于超声波的频率和谐振腔室31的固有频率相同,使得经过谐振腔的超声波发生谐振作用,超声波振幅增大后向外出射;手指的脊由于相对于手指的谷凸出而与谐振腔室31接触从而改变谐振腔室31的固有频率,谐振腔室31不会增大向基板外传播的超声波振幅;谐振腔室31接收经过手指的脊反射后超声波后在谐振腔室31内不发生共振,也不会改变超声波振幅;手指的谷由于相对于手指的脊凹入而与谐振腔室31不接触从而未改变谐振腔室31的固有频率,在谐振腔室31内发生共振,谐振腔室31增大向基板外传播的超声波振幅;谐振腔室31接收经过手指的谷反射后产生振幅差异的超声波后,在谐振腔室31内再次发生共振,进一步增大共振后的超声波振幅。
在本公开的一个实施例中,如图2、图3所示,超声波发生检测器21包括依次设置的第一电极层211、压电材料层210和第二电极层212,例如从下至上依次重叠设置。超声波发生检测器21的第一电极层211和第二电极层212的驱动线和检测线共用。具体地,在产生超声波阶段,驱动线向超声波发生检测器21的第一电极层211和第二电极层212中的至少一个持续施加高频驱动,使得压电材料层210产生超声波。在接收超声波阶段,由驱动线切换为检测线,由于与超声波发生检测器21接触的手指具备谷和脊而引起的共振腔内超声波振幅差异,第二电极层212回馈来的共振后的超声波振幅作用在压电材料层210上产生的正压电效应也不同,由此第一电极层211上采集到的电压信号就会不同,以此来检测并区分手指的谷脊差异。
在本公开的一个实施例中,如图4所示,指纹识别器件包括多个超声波发生检测器21和多个谐振腔室;多个超声波发生检测器21与多个谐振腔室31一一对应,例如一一重叠对齐。如图3所示,每个超声波发生检测器21对齐手指的谷和脊的位置。多个超声波发生检测器21与多个谐振腔室31一一对应设置,对每一指纹位置进行识别,有效地提高指纹识别的准确度。
在本公开的示例性实施例中,例如,为了进一步降低加工难度,多个超声波发生检测器的第一电极层211或第二电极层212一体地形成单个完整面而设置。如图5所示,例如,多个超声波发生检测器21的第二电极层212成为整体一层,第一电极层211根据每个超声波发生检测器21分割成若干小区域相互独立,并由各自下方金属走线20分别连接至控制电路中IC处。替代地,例如,多个超声波发生检测器21的第一电极层211成为整体一层,第二电极层212根据每个超声波发生检测器21分割成若干小区域相互独立,并由各自对应的金属走线分别连接至控制电路中IC处。
为进一步体现本公开提供的指纹识别器件的优越性,本公开还提供一种触摸显示面板,该触摸显示面板包括上述的指纹识别器件。该基板可以是OLED面板、LCD面板中的任意一种。通过在基板上集成指纹识别器件,该指纹识别器件产生超声波并向基板外传播,并感测由与该指纹识别器件接触的手指上所具备的谷脊反射的超声波,根据手指的谷脊反射的超声波确定手指的纹路信息,该触摸显示面板,结构简单,且有效地提高指纹识别的准确度。
为进一步体现本公开提供的指纹识别器件的优越性,本公开还提供一种触摸显示面板的制作方法,用于制造上述阵列基板,方法包括:包括在基板上形成相对设置的超声波发生检测器21和谐振腔室31。下面对本公开提供的超声波指纹识别基板的制 作方法展开详细的说明。
如图6所示,触摸显示面板是OLED显示面板,方法包括:在基板上形成超声波发生检测器21;在超声波发生检测器21上形成绝缘层7,在绝缘层7上形成与超声波发生检测器21相对应的谐振腔室31,例如超声波发生检测器21和谐振腔室31在竖直方向上重叠对齐布置。
如图6所示,在绝缘层上形成与超声波发生检测器相对应的谐振腔31室包括:在绝缘层7上形成OLED发光单元的阳极层81;采用曝光显影的方法在阳极层81上形成挡墙结构310;采用高精度金属掩模工艺在挡墙结构310外侧蒸镀形成OLED发光单元的发光层结构80;继而采用整面蒸镀的方式在OLED发光单元的发光层结构80上和挡墙结构310内侧形成发光单元的阴极层82;挡墙结构310的高度大于等于整个OLED发光单元的高度。
在本公开的示例性实施例中,例如,绝缘层7、发光层结构80等采用高精度金属掩模工艺(FMM Mask)蒸镀形成。发光单元的第二电极层82采用普通开放式掩膜工艺形成。在本公开中,挡墙结构310(PS)的高度被设置为足够高,所以当封装工序结束后,封装玻璃6就可以和下基板形成谐振腔室31。
为了进一步体现本公开提供的指纹识别器件的优越性,本公开还提供一种指纹识别器件驱动方法包括:超声波发生检测器21接入高频驱动信号,以使产生初始超声波信号,初始超声波信号的频率和谐振腔室未经手指触摸时的初始固有频率相同;超声波发生检测器21将手指的脊反射后的超声波和经手指的谷反射后增大振幅的超声波转换为电信号,根据电信号确定手指的纹路信息,电信号较强的位置为谷,电信号较弱的位置为脊。下面对本公开提供的指纹识别方法展开详细的说明。
如图2、图3所示,第一步,向超声波发生检测器21的第一电极层211和第二电极层212持续施加高频驱动,使得第一电极层211和第二电极层212压电材料之间的压电材料层210产生初始超声波,该初始超声波的频率与谐振腔室31的谐振频率相同。
如图2、图3所示,第二步,当手指按压到屏幕时,脊位置与器件相接触,改变了接触位置的谐振腔室31的固有频率,谐振腔室31不会增大超声波振幅;同时反射至谐振腔室31内谐振的超声波在谐振腔室31内不发生共振,也不会改变超声波振幅;与之对照的是,谷位置由于不会与器件接触,则谷正对位置的谐振腔室31的谐振频率不会改变,超声波在谐振腔室31内发生共振,谐振腔室31增大向基板外传播的超声波振幅;谐振腔室31接收经过手指的谷反射后的超声波后,则该超声波进一步与谐振 腔室发生共振,超声波振幅增加。由于谷脊对谐振腔室31的固有频率改变的不同,会使得谷位置再次反射至谐振腔内的超声波在谐振腔的作用下振幅增大,脊位置振幅不变。
如图2、图3所示,第三步,超声波发生检测器21的第一电极层211和第二电极层212的作用发生变化,由驱动线切换为检测线,且第二电极层212为一整面,输入固定电位。由于谷脊引起的共振腔内超声波振幅不同。所以反馈回来的超声波作用在第一电极层211和第二电极层212压电材料之间的压电材料层210上产生的正压电效应也不同,第一电极层211上采集到的电压信号就会不同。脊的位置反馈的超声波信对压电材料层210的正压电效应低,谷的位置反馈的超声波信对压电材料层210的正压电效应高,以此来检测并区分手指的谷脊差异。
综上所述,本公开提供的指纹识别器件、触摸显示面板和指纹识别器件驱动方法,通过在基板上集成指纹识别器件,该指纹识别器件产生超声波并向基板外传播,并感测手指的谷脊反射的超声波,根据手指的谷脊反射的超声波确定手指的纹路信息,该指纹识别器件,结构简单,且有效地提高指纹识别的准确度。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改动和变型,这些改动和变型都应涵盖在本发明的保护范围之内。本发明的保护范围以所附权利要求和它们的等同物限定的保护范围为准。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (15)

  1. 一种指纹识别器件,包括:
    谐振腔室;和
    与所述谐振腔室相对设置的超声波发生检测器,
    其中,所述超声波发生检测器被配置为产生初始超声波信号,所述初始超声波信号的频率和所述谐振腔室未经手指触摸时的初始固有频率相同;并且
    所述超声波发生检测器还被配置为将经过手指的脊和谷反射后的超声波信号转换为电信号,根据所述电信号确定手指的纹路信息。
  2. 根据权利要求1所述的指纹识别器件,其中,所述超声波发生检测器包括依次设置的第一电极层、压电材料层和第二电极层。
  3. 根据权利要求2所述的指纹识别器件,包括多个超声波发生检测器和多个谐振腔室;
    其中,所述超声波发生检测器与所述谐振腔一一对应。
  4. 根据权利要求3所述的指纹识别器件,其中,
    所述多个超声波发生检测器的第一电极层整面设置;和
    所述多个超声波发生检测器的第二电极层相互独立设置;
  5. 根据权利要求3所述的指纹识别器件,其中,
    所述多个超声波发生检测器的第二电极层整面设置;和
    所述多个超声波发生检测器的第一电极层相互独立设置。
  6. 一种触摸显示面板,包括权利要求1所述的指纹识别器件。
  7. 一种触摸显示面板,包括权利要求2所述的指纹识别器件。
  8. 一种触摸显示面板,包括权利要求3所述的指纹识别器件。
  9. 一种触摸显示面板,包括权利要求4所述的指纹识别器件。
  10. 一种触摸显示面板,包括权利要求5所述的指纹识别器件。
  11. 根据权利要求6-10任一所述的触摸显示面板,其中,所述触摸显示面板为OLED面板或LCD面板。
  12. 一种触摸显示面板的制作方法,包括在基板上形成相对设置的超声波发生检测器和谐振腔室。
  13. 根据权利要求12所述的触摸显示面板的制作方法,其中,所述触摸显示面板是OLED显示面板,所述方法包括:
    在基板上形成超声波发生检测器;
    在所述超声波发生检测器上形成绝缘层,在所述绝缘层上形成与所述超声波发生检测器相对应的谐振腔室。
  14. 根据权利要求13所述的触摸显示面板的制作方法,其中,所述在所述绝缘层上形成与所述超声波发生检测器相对应的谐振腔室包括:
    在所述绝缘层上形成所述OLED发光单元的阳极层;
    采用曝光显影的方法在所述阳极层上形成挡墙结构;
    采用高精度金属掩模工艺在所述挡墙结构外侧蒸镀形成所述OLED发光单元的发光层结构;
    采用整面蒸镀的方式在所述OLED发光单元的发光层结构上和所述挡墙结构内侧形成阴极层;
    其中,所述挡墙结构的高度大于等于所述OLED发光单元的高度。
  15. 一种指纹识别器件驱动方法,其中,所述方法用于驱动根据权利要求1所述的指纹识别器件,所述方法包括:
    超声波发生检测器接入高频驱动信号,以产生初始超声波信号,所述初始超声波信号的频率和所述谐振腔室未经手指触摸时的初始固有频率相同;
    所述超声波发生检测器将所述手指的脊反射后的超声波和所述经手指的谷反射后增大振幅的超声波转换为电信号;和
    所述超声波发生检测器根据所述电信号确定手指的纹路信息确定手指的谷和脊对应的位置,
    其中,确定电信号较强的位置为谷,电信号较弱的位置为脊。
PCT/CN2017/093157 2016-09-18 2017-07-17 指纹识别器件、触摸显示面板和指纹识别器件驱动方法 WO2018049909A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,848 US10929633B2 (en) 2016-09-18 2017-07-17 Fingerprint identification device, touch display panel, and method for driving fingerprint identification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610830380.0 2016-09-18
CN201610830380.0A CN106446817B (zh) 2016-09-18 2016-09-18 指纹识别器件、触摸显示面板和指纹识别器件驱动方法

Publications (1)

Publication Number Publication Date
WO2018049909A1 true WO2018049909A1 (zh) 2018-03-22

Family

ID=58169103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093157 WO2018049909A1 (zh) 2016-09-18 2017-07-17 指纹识别器件、触摸显示面板和指纹识别器件驱动方法

Country Status (3)

Country Link
US (1) US10929633B2 (zh)
CN (1) CN106446817B (zh)
WO (1) WO2018049909A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134150A1 (zh) * 2018-12-28 2020-07-02 武汉华星光电技术有限公司 超声波指纹识别模组及显示面板
CN113343800A (zh) * 2021-05-25 2021-09-03 电子科技大学 指纹触控识别模组及指纹触控识别方法、电子设备

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446817B (zh) * 2016-09-18 2018-03-20 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法
CN106530968B (zh) * 2016-12-27 2019-09-20 京东方科技集团股份有限公司 显示装置和显示装置的控制方法
CN108694365B (zh) * 2017-04-12 2022-11-15 江西欧迈斯微电子有限公司 一种图像获取方法及终端
CN107145858B (zh) * 2017-05-02 2019-08-30 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
CN107194345B (zh) * 2017-05-18 2020-01-24 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
CN107229909B (zh) * 2017-05-18 2019-12-06 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
CN109492480A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 超声波生物识别装置和电子设备
CN107958199B (zh) * 2017-10-10 2022-06-24 成都大超科技有限公司 指纹检测模组、显示器件及电子设备
CN107967443A (zh) * 2017-10-10 2018-04-27 成都安瑞芯科技有限公司 显示模组和电子设备
CN107977602A (zh) * 2017-10-10 2018-05-01 成都安瑞芯科技有限公司 超声波指纹识别模块、模组、器件及电子设备
CN107798300A (zh) * 2017-10-10 2018-03-13 成都安瑞芯科技有限公司 超声波指纹识别模组、器件及电子设备
KR102615643B1 (ko) * 2017-12-28 2023-12-18 엘지디스플레이 주식회사 지문 인식이 가능한 표시 장치
CN108446685A (zh) * 2018-05-24 2018-08-24 京东方科技集团股份有限公司 超声波指纹识别模组及其制备方法和显示装置
CN109765179A (zh) * 2018-11-08 2019-05-17 京东方科技集团股份有限公司 微流控装置及用于该微流控装置的检测方法
WO2020103125A1 (zh) * 2018-11-23 2020-05-28 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN109858398B (zh) * 2019-01-14 2023-06-06 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置和指纹识别方法
CN109948496B (zh) * 2019-03-12 2022-07-08 京东方科技集团股份有限公司 一种指纹识别器件及显示装置
CN110046556B (zh) * 2019-03-27 2021-06-01 武汉华星光电技术有限公司 一种显示面板及其终端器件
CN110112202B (zh) * 2019-05-24 2021-04-30 京东方科技集团股份有限公司 显示基板及其制备方法
WO2021047122A1 (zh) * 2019-09-10 2021-03-18 神盾股份有限公司 电容和超声波双模式指纹传感***及其指纹影像辨识方法
CN110739388B (zh) * 2019-10-23 2023-06-30 京东方科技集团股份有限公司 压电超声波传感器及其制备方法、显示装置
CN112668457B (zh) * 2020-12-25 2024-01-23 厦门天马微电子有限公司 一种显示屏及电子设备
CN112712027A (zh) * 2020-12-29 2021-04-27 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏模组和电子设备
CN113013209B (zh) * 2021-02-19 2024-05-24 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN113903061B (zh) * 2021-10-08 2024-05-24 上海天马微电子有限公司 显示面板的指纹识别方法、显示面板及显示装置
CN115661870B (zh) * 2022-09-16 2024-03-15 深圳市汇顶科技股份有限公司 超声指纹识别的方法、超声指纹装置和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740814A (zh) * 2004-08-25 2006-03-01 株式会社电装 超声波传感器
KR100789971B1 (ko) * 2006-07-10 2008-01-02 아이티엠 주식회사 표면탄성파를 이용한 터치스크린
CN103389824A (zh) * 2012-05-07 2013-11-13 胜华科技股份有限公司 一种触控显示装置及其制造方法
CN104793804A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 触控基板、显示设备及其制造方法和驱动方法
US20150357375A1 (en) * 2012-11-28 2015-12-10 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (pmut) on integrated circuit (ic) for fingerprint sensing
CN105446554A (zh) * 2014-05-27 2016-03-30 上海和辉光电有限公司 有机电激发光装置
CN205691915U (zh) * 2016-06-08 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106446817A (zh) * 2016-09-18 2017-02-22 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150115789A (ko) * 2013-02-06 2015-10-14 소나베이션, 인크. 손가락 조직 내에 포함된 피하 구조를 3차원 촬상하기 위한 바이오메트릭 감지 장치
WO2015089453A1 (en) * 2013-12-12 2015-06-18 Qualcomm Incorporated Micromechanical ultrasonic transducers and display
US9817108B2 (en) 2014-01-13 2017-11-14 Qualcomm Incorporated Ultrasonic imaging with acoustic resonant cavity
US9836165B2 (en) * 2014-05-16 2017-12-05 Apple Inc. Integrated silicon-OLED display and touch sensor panel
US10497748B2 (en) * 2015-10-14 2019-12-03 Qualcomm Incorporated Integrated piezoelectric micromechanical ultrasonic transducer pixel and array
US10095907B2 (en) * 2016-08-11 2018-10-09 Qualcomm Incorporated Single transducer fingerprint system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740814A (zh) * 2004-08-25 2006-03-01 株式会社电装 超声波传感器
KR100789971B1 (ko) * 2006-07-10 2008-01-02 아이티엠 주식회사 표면탄성파를 이용한 터치스크린
CN103389824A (zh) * 2012-05-07 2013-11-13 胜华科技股份有限公司 一种触控显示装置及其制造方法
US20150357375A1 (en) * 2012-11-28 2015-12-10 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (pmut) on integrated circuit (ic) for fingerprint sensing
CN105446554A (zh) * 2014-05-27 2016-03-30 上海和辉光电有限公司 有机电激发光装置
CN104793804A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 触控基板、显示设备及其制造方法和驱动方法
CN205691915U (zh) * 2016-06-08 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106446817A (zh) * 2016-09-18 2017-02-22 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134150A1 (zh) * 2018-12-28 2020-07-02 武汉华星光电技术有限公司 超声波指纹识别模组及显示面板
CN113343800A (zh) * 2021-05-25 2021-09-03 电子科技大学 指纹触控识别模组及指纹触控识别方法、电子设备

Also Published As

Publication number Publication date
US10929633B2 (en) 2021-02-23
CN106446817A (zh) 2017-02-22
CN106446817B (zh) 2018-03-20
US20200218866A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2018049909A1 (zh) 指纹识别器件、触摸显示面板和指纹识别器件驱动方法
US10303279B2 (en) Detection assembly, touch display device, touch positioning method and pressure detection method
US10733409B2 (en) Hybrid capacitive and ultrasonic sensing
US10699095B2 (en) Dual-mode capacitive and ultrasonic fingerprint and touch sensor
CN106971173B (zh) 触控基板及显示面板
TWI514219B (zh) 運用於軟性顯示面板的撓曲感測器及相關感測方法與系統
US20170316251A1 (en) Fingerprint identification module and manufacturing method thereof, and display device
WO2019125623A1 (en) Systems and methods for behavioral authentication using a touch sensor device
US20100118131A1 (en) Fingerprint recognition device and user authentication method for card including the fingerprint recognition device
TWI671668B (zh) 指紋識別面板及其製備方法、驅動方法
KR20180132496A (ko) 광학식 지문 센서의 동작 방법, 이를 포함하는 전자 장치의 동작 방법 및 디스플레이 장치
TWI601046B (zh) 具壓力量測、觸控及指紋辨識之感測裝置及方法
US10534470B2 (en) Force touch sensing structure, force touch display device, and force touch sensing method using same
CN104679352B (zh) 光学触控装置及触控点检测方法
US11810393B2 (en) Fingerprint authentication device, display device including the same, and method of authenticating fingerprint of display device
TWM538619U (zh) 具壓力量測、觸控及指紋辨識之感測裝置
WO2018027582A1 (en) Fingerprint system and mobile phone
US20170286746A1 (en) Efficient determination of biometric attribute for fast rejection of enrolled templates and other applications
KR100629410B1 (ko) 지문인증기능을 구비한 포인팅 장치 및 방법과, 이를 위한 휴대 단말기
US20230230410A1 (en) Fingerprint sensing system and method using thresholding
TWI658411B (zh) 無方向性之手指掌紋辨識方法及無方向性之手指掌紋資料建立方法
TW201725534A (zh) 具有多重生物辨識功能的觸控感測器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17850112

Country of ref document: EP

Kind code of ref document: A1