WO2021047122A1 - 电容和超声波双模式指纹传感***及其指纹影像辨识方法 - Google Patents

电容和超声波双模式指纹传感***及其指纹影像辨识方法 Download PDF

Info

Publication number
WO2021047122A1
WO2021047122A1 PCT/CN2019/130551 CN2019130551W WO2021047122A1 WO 2021047122 A1 WO2021047122 A1 WO 2021047122A1 CN 2019130551 W CN2019130551 W CN 2019130551W WO 2021047122 A1 WO2021047122 A1 WO 2021047122A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
fingerprint image
capacitive
fingerprint
mode
Prior art date
Application number
PCT/CN2019/130551
Other languages
English (en)
French (fr)
Inventor
王地宝
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of WO2021047122A1 publication Critical patent/WO2021047122A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the invention relates to the technical field of fingerprint identification, in particular to a capacitive and ultrasonic dual-mode fingerprint sensing system and a fingerprint image identification method.
  • Optical fingerprint sensors, capacitive fingerprint sensors and ultrasonic fingerprint sensors are currently common types of fingerprint sensors. Under different usage conditions (for example, dry, wet or dirty fingers, cold or hot temperature), the quality of fingerprint images formed by various fingerprint sensors is different, sometimes due to the poor quality of the fingerprint images obtained , Causing fingerprint recognition to fail.
  • the capacitive fingerprint sensor integrates multiple miniature capacitive sensors into one chip.
  • the internal miniature capacitive sensor will form a fingerprint image according to the different charges generated by the peaks and valleys of the fingerprint.
  • the capacitive fingerprint sensor can form a fingerprint image with better quality, and the recognition success rate is higher; when the finger is wet, the quality of the fingerprint image formed is poor and easy Cause misjudgment or identification failure.
  • the ultrasonic fingerprint sensor is mainly composed of one or more piezoelectric micromachined ultrasonic transducers (PMUT) or one or more capacitive micromachined ultrasonic transducers (CMUT). Using the difference in air density at the peak and valley of the fingerprint, fingerprint features can be collected when receiving ultrasonic echo to draw a fingerprint image.
  • PMUT piezoelectric micromachined ultrasonic transducers
  • CMUT capacitive micromachined ultrasonic transducers
  • the cost of the fingerprint sensor is related to the area of the chip. In other words, the smaller the area of the chip, the lower the cost.
  • capacitive fingerprint sensors can form better fingerprint images in dry environments, and the capacitive fingerprint sensor chip has the advantages of thinness and miniaturization, and is suitable for use in palm-sized electronic devices, such as notebook computers and Cell phone etc.
  • the disadvantage of capacitive fingerprint sensors is that in a humid environment or when the fingers are wet or dirty, the quality of the fingerprint image formed is not good, which may cause misjudgment or identification failure, and is not suitable for outdoor transportation. (Car) and the door locked.
  • the ultrasonic fingerprint sensor it has the advantage of being less susceptible to oil stains and wet fingers. Even in a humid environment or when the fingers are wet or dirty, it can still form a good-quality fingerprint image, which is suitable for use in outdoor environments.
  • the capacitive fingerprint sensor and the ultrasonic fingerprint sensor have their own advantages, if the two fingerprint sensors can be integrated and take their advantages, a fingerprint sensor that can adapt to both dry and wet fingers can be developed, that is, the capacitive fingerprint sensor is used for dry fingers.
  • Fingerprint image when the finger is wet, ultrasonic fingerprint image is used, no matter in a dry or humid environment, a good quality fingerprint image can be obtained without misjudgment or recognition failure.
  • the invention provides a capacitive and ultrasonic dual-mode fingerprint sensing system, which includes a sensor array device, a switching circuit, a processing unit, an ultrasonic transmission control circuit, an ultrasonic reception control circuit and a capacitance control circuit.
  • the invention provides a capacitive and ultrasonic dual-mode fingerprint sensing system, which includes a sensor array device, a processing unit, an ultrasonic transmission control circuit, an ultrasonic reception control circuit and a capacitance control circuit.
  • the present invention provides a fingerprint image recognition method of a capacitive and ultrasonic dual-mode fingerprint sensing system, which includes a step of generating a fingerprint image for generating an ultrasonic fingerprint image and a capacitive fingerprint image; and a step for evaluating the quality of the fingerprint image Evaluating whether the capacitive fingerprint image and the ultrasonic fingerprint image are a high-quality fingerprint image; a step of selecting a fingerprint image is used to determine to output the ultrasonic fingerprint image or the capacitive fingerprint image according to an evaluation result; and, A fingerprint image identification step is used to compare the outputted capacitive fingerprint image or the ultrasonic fingerprint image with an authentication fingerprint.
  • Fig. 1 shows a schematic diagram of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 2 shows a schematic diagram of functional modules of a processing unit of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 3 shows a schematic diagram of a sensor array device of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 4 shows a schematic top view of the upper electrode of the sensor array device of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 5a shows a schematic diagram of the upper electrode and its coupling circuit of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 5b shows a schematic diagram of the upper electrode and its coupling circuit of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 7 shows a schematic diagram of functional modules of a processing unit of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of the upper electrode and its coupling circuit of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 9 shows a flowchart of a fingerprint image recognition method of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the capacitive and ultrasonic dual-mode fingerprint sensing system 100 includes a sensor array device 110, a switching circuit 207/209, a processing unit 130, an upper electrode 204, an ultrasonic transmission control circuit 220, and an ultrasonic receiver Control circuit 230 and a capacitor control circuit 240.
  • the switching circuit 207/209 is coupled to the upper electrode 204 and the processing unit 130 in the sensor array device 110, and is selectively coupled to the ultrasonic transmission control circuit 220 and the ultrasonic reception control The circuit 230 and/or the capacitance control circuit 240.
  • the ultrasonic transmission control circuit 220 is used to generate ultrasonic waves sent to the finger to be tested.
  • the ultrasonic receiving control circuit 230 is used for receiving the ultrasonic waves reflected by the finger to be tested and generating an ultrasonic sensing signal.
  • the capacitance control circuit 240 is used to obtain the charge of the finger under test and generate a capacitance sensing signal.
  • the processing unit 130 is used for converting the capacitive sensing signal into a capacitive fingerprint image, and converting the ultrasonic sensing signal into an ultrasonic fingerprint image, and outputting it from the capacitive fingerprint image or the ultrasonic fingerprint image One is to compare the outputted ultrasonic fingerprint image or the capacitive fingerprint image with an authentication fingerprint. .
  • FIG. 2 is a schematic diagram of functional modules of a processing unit of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the functional modules of the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 100 of the present invention include an analog-to-digital conversion module 132, a storage module 133, a fingerprint image quality evaluation module 134, and a fingerprint image
  • the selection module 136, a switching module 138, and a fingerprint authentication module 139 are analog-to-digital conversion module 132, a storage module 133, a fingerprint image quality evaluation module 134, and a fingerprint image
  • the selection module 136, a switching module 138, and a fingerprint authentication module 139 are examples of the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 100 of the present invention.
  • the analog-to-digital conversion module 132 is used for converting capacitive sensing signals into capacitive fingerprint images and converting ultrasonic sensing signals into the ultrasonic fingerprint images.
  • the storage module 133 is used to store the capacitive fingerprint image and the ultrasonic fingerprint image.
  • the fingerprint image quality evaluation module 134 is used to evaluate whether the capacitive fingerprint image or the ultrasonic fingerprint image is a high-quality fingerprint image.
  • the fingerprint image quality evaluation module 134 includes a fingerprint image evaluation method and a corresponding image quality index.
  • the fingerprint image evaluation method is used to evaluate the capacitive fingerprint image and the ultrasonic fingerprint image, and A capacitive image quality score and an ultrasonic image quality score are respectively generated, and the capacitive image quality score and the ultrasonic image quality score are compared with the image quality index to determine the capacitive fingerprint image or the Whether the ultrasonic fingerprint image is a high-quality fingerprint image, and output an evaluation result.
  • the capacitive and ultrasonic dual-mode fingerprint sensing system will re-sensing fingerprints to generate a Set new capacitive fingerprint image and ultrasonic fingerprint image for evaluation.
  • the fingerprint image selection module 136 is used for determining whether to output the capacitive fingerprint image or the ultrasonic fingerprint image according to the evaluation result of the fingerprint image quality evaluation module 134. In detail, when both the capacitive fingerprint image and the ultrasonic fingerprint image are judged to be high-quality fingerprint images, the fingerprint image selection module 136 uses the capacitive fingerprint image as the standard to output the capacitive fingerprint image. When the capacitive fingerprint image is determined to be a non-high-quality fingerprint image, and the ultrasonic fingerprint image is determined to be the high-quality fingerprint image, the fingerprint image selection module 136 outputs the ultrasonic fingerprint image. When both the capacitive fingerprint image and the ultrasonic fingerprint image are determined to be not the high-quality fingerprint image, the fingerprint image selection module 136 does not output the capacitive fingerprint image and the ultrasonic fingerprint image.
  • the switching module 138 is used to control the action of the switching circuit 207, so that the upper electrode 204 is selectively coupled to the ultrasonic transmission control circuit 220, the ultrasonic reception control circuit 230 or the capacitance control circuit 240; or It is to control the action of the switching circuit 209 so that the upper electrode 204 is selectively coupled to the ultrasonic transmission control circuit 220 or the ultrasonic reception control circuit 230.
  • the fingerprint identification module 139 is used to compare the capacitive fingerprint image or the ultrasonic fingerprint image output by the fingerprint image selection module 136 with an authentication fingerprint. The identification fails.
  • the authentication fingerprint is the fingerprint image data preset by the user, which will be used for the capacitive and ultrasonic dual-mode fingerprint sensing system 100 to identify the user in the future.
  • the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system may be a digital circuit controller, such as ASIC, DSP, or MCU.
  • FIG. 3 is a schematic diagram of a sensor array device of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the composition structure of the sensor array device 110 of the capacitive and ultrasonic dual-mode fingerprint sensing system of the present invention includes a complementary metal oxide semiconductor circuit layer (CMOS Circuit Layer) 10 and a capacitor/voltage from bottom to top.
  • the complementary metal oxide semiconductor circuit layer 10 further includes a substrate 102.
  • the coupling layer 30 enables the pressure plate 40 and the capacitive/piezoelectric micromachined ultrasonic transducer layer 20 to be completely tightly bonded.
  • the pressure plate 40 can carry a finger F used to obtain a fingerprint image.
  • the capacitive/piezoelectric micromachined ultrasonic transducer layer 20 includes at least one upper electrode (Upper Electrode) 204, at least one piezoelectric material (Piezoelectric Material) 206, at least a lower electrode (Lower Electrode) 208, and at least one chamber (Cavity) 202.
  • the cavity 202 is arranged at the bottom of the capacitive/piezoelectric micromachined ultrasonic transducer layer 20, and the cavity 202 may be in a vacuum state or filled with a material that is difficult to conduct ultrasonic waves.
  • the lower electrode 208 is disposed above the chamber 202, and can be grounded or connected to a reference voltage, or can be coupled to a bias circuit or other control circuit, and the present invention is not limited to this.
  • the piezoelectric material 206 is disposed above the lower electrode 208.
  • the upper electrode 204 is disposed above the piezoelectric material 206.
  • the material of the upper electrode 204 and the lower electrode 208 can be any conductive material or aluminum. Applying an alternating current bias voltage between the upper electrode 204 and the lower electrode 208 allows the piezoelectric material 206 to generate ultrasonic waves.
  • the areas of the capacitive/piezoelectric micromachined ultrasonic transducer layer 20 that are not provided with the above-mentioned components are filled with a filling material.
  • the filling material may be different according to the difference in the process method, for example, it may be SiO2 or SU-8.
  • FIG. 4 is a schematic top view of the upper electrode of the sensor array device of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the upper electrode 204 of the capacitive/piezoelectric micromachined ultrasonic transducer layer 20 of the sensor array device 110 in an embodiment of the present invention is arranged in an array in which rows and columns are aligned.
  • the upper electrodes 204 can also be arranged in a staggered manner, that is, the positions of the upper electrodes 204 in two adjacent rows are staggered or the positions of the upper electrodes 204 in two adjacent rows are staggered. (Not shown).
  • FIG. 5a is a schematic diagram of the upper electrode and its coupling circuit of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the upper electrode 204 can be selectively coupled to the ultrasonic transmission control circuit 220, the ultrasonic reception control circuit 230, or the capacitance control circuit 240 through the switching of the switching circuit 207.
  • the capacitance control circuit 240, the ultrasonic receiving control circuit 230, and the ultrasonic sending control circuit 220 can share the same upper electrode 204, and perform ultrasonic sensing and capacitance sensing without adding an electrode structure .
  • the technical concept proposed in the first embodiment of the present invention has the advantage of not increasing the area and thickness of the fingerprint sensor chip.
  • the switching module 138 of the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 100 of the present invention can control the switching action of the switching circuit 207 to obtain Ultrasonic sensing signal and capacitance sensing signal.
  • the switching circuit 207 includes a first terminal and a second terminal. The first terminal is coupled to the upper electrode 204, and the second terminal is selectively coupled to the ultrasonic transmission control circuit 220, The ultrasonic receiving control circuit 230 or the capacitance control circuit 240.
  • the second end of the switching circuit 207 is first coupled to the ultrasonic transmission control circuit 220, and a first alternating current bias is applied to the upper electrode 204 to control the ultrasonic transmission
  • the circuit 220 sends out an ultrasonic pulse signal to generate ultrasonic waves, and then couples the second end of the switching circuit 207 to the ultrasonic receiving control circuit 230.
  • no alternating current bias is applied to the upper electrode 204, so that the ultrasonic receiving control
  • the circuit 230 receives the ultrasonic wave reflected by the finger and generates the ultrasonic wave sensing signal.
  • the second end of the switching circuit 207 is coupled to the capacitance control circuit 240, and a DC or AC bias is applied to the upper electrode 204.
  • the The capacitance control circuit 240 obtains the charge of the finger to be tested to generate the capacitance sensing signal.
  • the switching module 138 of the processing unit 130 can control the operation of the switching circuit 207 to obtain the ultrasonic sensing signal and then the capacitance sensing signal, or to obtain the capacitance sensing signal and then the ultrasonic sensing signal.
  • FIG. 5b is a schematic diagram of the upper electrode and its coupling circuit of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the upper electrode 204 is divided into a first area 204a and a second area 204b, and the ranges of the first area 204a and the second area 204b do not overlap or contact each other.
  • the first area 204a and the second area 204b may be arranged as concentric circles, but the invention is not limited to this. Taking the configuration as concentric circles as an example, the radius of the concentric circles of the first zone 204a is smaller than the radius of the concentric circles of the second zone 204b.
  • the radius of the concentric circles of the first zone 204a is approximately between the radius of the second zone 204a.
  • the 204b concentric circle radius of 0.4 to 0.9 times has a better sensing effect, but the present invention is not limited to this.
  • the electrode area of either the first region 204a or the second region 204b will not be too small to affect the ultrasonic sensing or capacitance sensing.
  • the first region 204a has a concentric circle with a connecting portion 204c extending outward.
  • the length of the connecting portion 204c may be the radius of the second region concentric circle minus the first region The radius of the concentric circles, but the present invention is not limited to this.
  • the switching circuit 209 includes a first terminal and a second terminal. The first terminal is coupled to the first region 204a of the upper electrode 204 through the connecting portion 204c, and the second terminal is selectively The ground is coupled to the ultrasonic transmission control circuit 220 or the ultrasonic reception control circuit 230. Through the switching of the switching circuit 209, the ultrasonic receiving control circuit 230 and the ultrasonic transmitting control circuit 220 can share the first region 204a of the upper electrode 204 to obtain ultrasonic sensing signals.
  • the second region 204b of the upper electrode 204 is directly coupled to the capacitance control circuit 240, and the capacitance control circuit 240 is allowed to sense by the upper electrode area configured by the second region 204b to obtain a capacitance. Sensing signal.
  • the first area 204a of the upper electrode 204 can also be connected to the capacitance control circuit 240, and the second area 204b of the upper electrode 204 can also be connected to the switch
  • the circuit 209 is selectively coupled to the ultrasonic wave receiving control circuit 230 or the ultrasonic wave transmitting control circuit 220.
  • the switching module 138 of the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 100 of the present invention can control the switching action of the switching circuit 209 to obtain Ultrasonic sensing signal, and the processing unit 130 can control the capacitance control circuit 240 to obtain the capacitance sensing signal.
  • the second end of the switching circuit 209 is first coupled to the ultrasonic transmission control circuit 220, and at the same time an alternating current bias is applied to the first region 204a of the upper electrode 204 At the same time, a first alternating current bias is applied to the first area 204a of the upper electrode 204, so that the ultrasonic transmission control circuit 220 sends an ultrasonic pulse signal to generate ultrasonic waves, and then controls the second end of the switching circuit 209 to be coupled To the ultrasonic receiving control circuit 230, at this time, no alternating current bias is applied to the first region 204a of the upper electrode 204, so that the ultrasonic receiving control circuit 230 receives the ultrasonic waves reflected by the finger and generates the ultrasonic sensing signal.
  • a DC or AC bias can be applied to the second region 204b of the upper electrode.
  • the processing unit 130 can control the capacitance control circuit 240 to obtain the test finger Charge to generate capacitive sensing signal.
  • the purpose of ultrasonic sensing and capacitance sensing can be achieved without additional electrode structures.
  • FIG. 6 is a schematic diagram of a capacitive and ultrasonic dual-mode fingerprint sensing system according to another embodiment of the present invention.
  • the capacitive and ultrasonic dual-mode fingerprint sensing system 600 includes a sensor array device 110, a processing unit 130, an ultrasonic TX control circuit 220, an ultrasonic RX control circuit 230 and a capacitance control circuit 240.
  • the processing unit 130 is coupled with the sensor array device 110, the ultrasonic TX control circuit 220, the ultrasonic RX control circuit 230, and the capacitance control circuit 240.
  • FIG. 7 is a schematic diagram of functional modules of a processing unit of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the functional modules of the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 600 of the present invention include an analog-to-digital conversion module 132, a storage module 133, a fingerprint image quality evaluation module 134, and a fingerprint image selection module. Module 136, and a fingerprint identification module 139.
  • FIG. 8 is a schematic diagram of the upper electrode and the control circuit of the capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • the upper electrode 204 is divided into a first area 204d, a second area 204e, and a third area 204f.
  • the first area 204d, the second area 204e, and the third area The ranges of 204f do not overlap or touch each other.
  • the first area 204d, the second area 204e, and the third area 204f may be arranged in concentric circles, but the invention is not limited to this.
  • the radius of the concentric circles of the first zone 204d is smaller than the radius of the concentric circles of the second zone 204e, and the radius of the concentric circles of the second zone 204e is smaller than the radius of the concentric circles of the third zone 204f.
  • the first area 204d concentrically has a first connecting portion 204g extending outward
  • the second area 204e has a concentric circle having a second connecting portion 204h extending outward
  • the first The length of a connecting portion 204g may be the radius of the concentric circle of the third zone minus the radius of the concentric circle of the first zone
  • the length of the second connecting portion 204h may be the radius of the concentric circle of the third zone
  • the radius of the concentric circle in the second zone is subtracted, but the present invention is not limited to this.
  • the first area 204d of the upper electrode 204 is coupled to the ultrasonic receiving control circuit 230 through the first connecting portion 204g, and the second area 204e of the upper electrode 204 is coupled to the ultrasonic receiving control circuit 230 through the second connecting portion 204g.
  • 204h is coupled to the ultrasonic transmission control circuit 220, and the third region 204f of the upper electrode 204 is coupled to the capacitance control circuit 240.
  • the present invention does not limit the pairing of the first area 204d, the second area 204e, and the third area 204f with the ultrasonic receiving control circuit 230, the ultrasonic transmitting control circuit 220, and the capacitance control circuit 240 the way.
  • the capacitance sensing signal can be obtained by the capacitance control circuit 240, and the ultrasonic sensing signal can be obtained by the ultrasonic receiving control circuit 230 and the ultrasonic transmitting control circuit 220, without having to In addition, an electrode structure is added, so there is no need to increase the area and thickness of the fingerprint sensor chip.
  • the processing unit 130 of the capacitive and ultrasonic dual-mode fingerprint sensing system 600 of the present invention can control the ultrasonic transmission control circuit 220 and the ultrasonic reception control circuit 230 to obtain ultrasonic waves.
  • the sensing signal can also control the capacitance control circuit 240 to obtain a capacitance sensing signal.
  • a first alternating current bias is applied to the first area 204d of the upper electrode 204, so that the ultrasonic transmission control circuit 220 sends an ultrasonic pulse signal to generate ultrasonic waves.
  • An alternating current bias is applied to the second area 204e of the electrode 204, so that the ultrasonic wave receiving control circuit 230 receives the ultrasonic wave reflected by the finger and generates the ultrasonic wave sensing signal.
  • a DC or AC bias is applied to the third region 204f of the upper electrode 204.
  • the capacitance control circuit 240 can obtain the charge of the finger under test to generate capacitance. Sensing signal.
  • the purpose of ultrasonic sensing and capacitance sensing can be achieved without additional electrode structures.
  • FIG. 9 is a flowchart of a fingerprint image recognition method of a capacitive and ultrasonic dual-mode fingerprint sensing system according to an embodiment of the present invention.
  • a capacitive fingerprint image and an ultrasonic fingerprint image are generated; in step 904, it is evaluated whether the capacitive fingerprint image and the ultrasonic fingerprint image are a high-quality fingerprint image; in step 906, according to a The evaluation result determines the output of the capacitive fingerprint image or the ultrasonic fingerprint image; and, in step 908, the output of the ultrasonic fingerprint image or the capacitive fingerprint image is compared with an authentication fingerprint.
  • the fingerprint image recognition method of the capacitive and ultrasonic dual-mode fingerprint sensing system of the present invention can ensure that a good-quality capacitive fingerprint image or ultrasonic fingerprint image is selected for fingerprint recognition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种电容和超声波双模式指纹传感***,包含传感器阵列装置、切换电路及处理单元,切换电路耦接到传感器阵列装置的上电极,处理单元能控制切换电路选择性耦接到一电容控制电路、一超声波接收控制电路或一超声波发送控制电路,以产生一电容式指纹影像及一超声波指纹影像,以及决定输出电容式指纹影像或超声波指纹影像,并将输出的所述指纹影像与一认证指纹进行比对。还提供一种电容和超声波双模式指纹传感***的指纹影像辨识方法,包含:产生一超声波指纹影像及一电容式指纹影像;评估电容式指纹影像及超声波指纹影像是否为高质量指纹影像;根据评估结果决定输出超声波指纹影像或电容式指纹影像;将输出的所述指纹影像与一认证指纹进行比对。

Description

电容和超声波双模式指纹传感***及其指纹影像辨识方法 技术领域
本发明涉及指纹辨识技术领域,尤其是涉及一种电容和超声波双模式指纹传感***及其指纹影像辨识方法。
背景技术
光学式指纹传感器、电容式指纹传感器及超声波指纹传感器是目前常见的指纹传感器种类。在不同的使用条件下(例如,干燥、潮湿或脏污的手指,温度的冷或热),各种指纹传感器形成的指纹影像的质量不同,有时候会因所取得的指纹影像的质量不佳,导致指纹辨识失败。
电容式指纹传感器是将多个微型电容传感器,整合于一个晶片中,待指纹按压晶片表面时,内部微型电容传感器会根据指纹波峰与波谷聚集而产生的不同电荷量,形成指纹影像。以现行的技术来说,当手指干燥的时候,电容式指纹传感器可以形成质量较佳的指纹影像,辨识成功率较高;而当手指潮湿的时候,所形成的指纹影像的质量较差,容易造成误判或是辨识失败。
超声波指纹传感器主要由一个或多个压电微机械超声换能器(PMUT)或一个或多个电容微机械超声换能器(CMUT)所组成。利用指纹波峰与波谷处的空气密度差异,即可在接收超声波回波时采集指纹特征来绘制出指纹影像。依技术现况来说,当手指干燥的时候,超声波指纹传感器所形成的指纹影像的质量确实还不如光学式指纹传感器或电容式指纹传感器,但是,当手指潮湿的时候,超声波指纹传感器所形成的指纹影像的质量明显比光学式指纹传感器或电容式指纹传感器好。
指纹传感器的成本与晶片的面积有关,换句话说,晶片的面积愈小成本愈低。一般来说,电容式指纹传感器在干燥环境能形成的较佳的指纹影像,且电容式指纹传感器的晶片又具有薄型化与小型化的优点,适合运用在掌上型电子装置上,例如笔记本电脑及手机等。但电容式指纹传感器的缺点是在潮湿的环境或手指潮湿或脏污的情形下,所形成的指纹影像的品质不佳,容易造成误判或是辨识失败,而不适合运用在户外的交通工具(汽车)及门锁上。对于超声波指纹传感器而言,有不易受到油污、湿手指影响的优点,即使在潮湿的环境或手指潮湿或脏污的情形下,依然能形成品质良好的指纹影像,适合运用在户外环境中。
由于电容式指纹传感器和超声波指纹传感器各有其优点,倘若能将两种指纹传感器整合并取其优点,就能发展出同时适应干手指及湿手指的指纹传感器,也就是干手指时采用电容式指纹影像,湿手指时采用超声波指纹影像,无论处于干燥或潮湿的环境下皆可取得品质良好的指纹影像,而不会造成误判或是辨识失败。
发明内容
本发明提供一种电容和超声波双模式指纹传感***,包含一传感器阵列装置、一切换电路、一处理单元、一超声波发送控制电路、一超声波接收控制电路及一电容控制电路。
本发明提供一种电容和超声波双模式指纹传感***,包含一传感器阵列装置、一处理单元、一超声波发送控制电路、一超声波接收控制电路及一电容控制电路。
本发明提供一种电容和超声波双模式指纹传感***的指纹影像辨识方法,包含一产生指纹影像步骤,用以产生一超声波指纹影像及一电容式指纹影像;一评估指纹影像质量步骤,用以评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像;一选择指纹影像步骤,用以根据一评估结果决定输出所述超声波指纹影像或所述电容式指纹影像;以及,一指纹影像鉴别步骤,用以将输出的所述电容式指纹影像或所述超声波指纹影像与一认证指纹进行比对。
附图说明
图1示出根据本发明一实施例的电容和超声波双模式指纹传感***的示意图。
图2示出根据本发明一实施例的电容和超声波双模式指纹传感***的处理单元的功能模块示意图。
图3示出根据本发明一实施例的电容和超声波双模式指纹传感***的传感器阵列装置的示意图。
图4示出根据本发明一实施例的电容和超声波双模式指纹传感***的传感器阵列装置的上电极的俯视示意图。
图5a示出根据本发明一实施例的电容和超声波双模式指纹传感***的上电极及其耦接电路的示意图。
图5b示出根据本发明一实施例的电容和超声波双模式指纹传感***的上电极及其耦接电路的示意图。
图6示出根据本发明一实施例的电容和超声波双模式指纹传感***的示意图。
图7示出根据本发明一实施例的电容和超声波双模式指纹传感***的处理单元的功能模块示意图。
图8示出根据本发明一实施例的电容和超声波双模式指纹传感***的上电极及其耦接电路的示意图。
图9示出根据本发明一实施例的电容和超声波双模式指纹传感***的指纹影像辨识方法的流程图。
具体实施方式
以下提出实施例进行详细说明,所举的实施例仅用以作为范例说明,并不是用来限缩 本发明所要保护的范围。此外,实施例中的图示省略了非必要或以通常技术即可完成的元件,以清楚显示本发明的技术特点。
请参阅图1,其为根据本发明一实施例的电容和超声波双模式指纹传感***的示意图。如图1所示,电容和超声波双模式指纹传感***100包含一传感器阵列装置110、一切换电路207/209、一处理单元130、一上电极204、一超声波发送控制电路220、一超声波接收控制电路230及一电容控制电路240。所述切换电路207/209耦接到所述传感器阵列装置110中的所述上电极204及所述处理单元130,并选择性地耦接到所述超声波发送控制电路220、所述超声波接收控制电路230及(或)所述电容控制电路240。所述超声波发送控制电路220,用以产生发送到待测手指的超声波。所述超声波接收控制电路230,用以接收待测手指反射回来的超声波并产生一超声波感测信号。所述电容控制电路240,用以取得待测手指的电荷并产生一电容感测信号。所述处理单元130,用以将电容感测信号转换为一电容式指纹影像,以及将所述超声波感测信号转换为一超声波指纹影像,并从电容式指纹影像或超声波指纹影像中决定输出其中之一,并将输出的所述超声波指纹影像或所述电容式指纹影像与一认证指纹进行比对。。
以下请同时参阅图1及图2,图2其为根据本发明一实施例的电容和超声波双模式指纹传感***的处理单元的功能模块示意图。如图2所示,本发明的电容和超声波双模式指纹传感***100的处理单元130的功能模块包含有一模拟数字转换模块132、一储存模块133、一指纹影像质量评估模块134、一指纹影像选择模块136、一切换模块138、及一指纹鉴别模块139。所述模拟数字转换模块132,用以将电容感测信号转换为电容式指纹影像以及将超声波感测信号转换为所述超声波指纹影像。所述储存模块133,用以储存所述电容式指纹影像及所述超声波指纹影像。所述指纹影像质量评估模块134,用以评估所述电容式指纹影像或所述超声波指纹影像是否为一高质量指纹影像。详细地说,所述指纹影像质量评估模块134包含有一指纹影像评估法及其对应的一影像质量指数,该指纹影像评估法,用以评估所述电容式指纹影像及所述超声波指纹影像,并分别产生一电容式影像质量分数及一超声波影像质量分数,将所述电容式影像质量分数及所述超声波影像质量分数与所述影像质量指数进行比对以判断所述电容式指纹影像或所述超声波指纹影像是否为一高质量指纹影像,并输出一评估结果。在一实施例中,当所述电容式指纹影像及所述超声波指纹影像均被评估为非高质量指纹影像时,则电容和超声波双模式指纹传感***将重新进行指纹感测,以产生一组新的电容式指纹影像及超声波指纹影像来评估。
所述指纹影像选择模块136,用以根据所述指纹影像质量评估模块134的评估结果以决定要输出所述电容式指纹影像或所述超声波指纹影像。详细地说,当所述电容式指纹影像和所述超声波指纹影像均被判断为高质量指纹影像时,所述指纹影像选择模块136以所述电容式指纹影像为准,输出所述电容式指纹影像。当所述电容式指纹影像被判断为非高质量指纹影像,且所述超声波指纹影像被判断为所述高质量指纹影像时,所述指纹影像选择模块136输出所述超声波指纹影像。而当所述电容式指纹影像和所述超声波指纹影像均 被判断为非所述高质量指纹影像时,所述指纹影像选择模块136不输出所述电容式指纹影像及所述超声波指纹影像。
所述切换模块138用以控制切换电路207的动作,让所述上电极204选择性地耦接到所述超声波发送控制电路220、所述超声波接收控制电路230或所述电容控制电路240;或是控制切换电路209的动作,让所述上电极204选择性地耦接到所述超声波发送控制电路220或所述超声波接收控制电路230。所述指纹鉴别模块139,用以将被所述指纹影像选择模块136所输出的所述电容式指纹影像或所述超声波指纹影像与一认证指纹进行比对,若符合则辨识通过,若不符合则辨识不通过。详细地说,所述认证指纹为使用者事先设定好的指纹影像数据,作为日后让电容和超声波双模式指纹传感***100识别该使用者之用。所述电容和超声波双模式指纹传感***的处理单元130可为一种数字电路控制器,例如ASIC、DSP或MCU。
请参阅图3,其为根据本发明一实施例的电容和超声波双模式指纹传感***的传感器阵列装置的示意图。如图3所示,本发明的电容和超声波双模式指纹传感***的传感器阵列装置110的组成结构由下至上包含一互补式金属氧化物半导体电路层(CMOS Circuit Layer)10、一电容/压电微机械超声换能器层(Cap/PUMT Layer)20、一耦合层(Coupling Layer)30及一压盘(Platen)40。所述互补式金属氧化物半导体电路层10还包含一基板(Substrate)102。所述耦合层30使所述压盘40和所述电容/压电微机械超声换能器层20之间能完整密合。所述压盘40可承载用来取得指纹影像的手指F。
所述电容/压电微机械超声换能器层20包含至少一上电极(Upper Electrode)204、至少一压电材料(Piezoelectric Material)206、至少一下电极(Lower Electrode)208、及至少一腔室(Cavity)202。所述腔室202设置在所述电容/压电微机械超声换能器层20的底部,所述腔室202可以是真空状态或是用难以传导超声波的材料填充。所述下电极208设置于所述腔室202的上方,可以接地或连接一参考电压,也可以耦接到偏压电路或其他控制电路,本发明并不以此为限。所述压电材料206设置于所述下电极208的上方。所述上电极204设置于所述压电材料206的上方。所述上电极204和所述下电极208的材质可为任何导电材料或铝。在所述上电极204和所述下电极208之间施加交流电偏压,能让所述压电材料206产生超声波。所述电容/压电微机械超声换能器层20中未设置有上述各组件的地方则以填充材料来填满,所述填充材料可依据工艺方法的差异而有所不同,例如,可以是SiO2或SU-8。
请参阅图4,其为根据本发明一实施例的电容和超声波双模式指纹传感***的传感器阵列装置的上电极的俯视示意图。如图4所示,可清楚观察到本发明一实施例中传感器阵列装置110的电容/压电微机械超声换能器层20的上电极204是以行与列均对齐的阵列方式排列。在另一实施例中,上电极204也可呈交错式排列,亦即上、下相邻两行的上电极204的位置呈错位排列或左右相邻两列的上电极204的位置呈错位排列(未图示)。
请参阅图5a,其为根据本发明一实施例的电容和超声波双模式指纹传感***的上电极 及其耦接电路的示意图。如图5a所示,经由切换电路207的切换,所述上电极204可以选择性地耦接到所述超声波发送控制电路220、所述超声波接收控制电路230或所述电容控制电路240。在本实施例中,所述电容控制电路240、所述超声波接收控制电路230及所述超声波发送控制电路220能共用同一个上电极204,在不增设电极结构下进行超声波感测及电容感测。对电容式指纹传感器和超声波指纹传感器整合技术领域来说,本发明第一实施例所提出的技术构想具有不增加指纹传感器晶片面积及厚度的优点。
以下实施例请同时参阅图1、图2及图5a,本发明的电容和超声波双模式指纹传感***100的所述处理单元130的切换模块138可控制所述切换电路207的切换动作来取得超声波感测信号及电容感测信号。所述切换电路207包含有一第一端及一第二端,所述第一端耦接到所述上电极204,所述第二端选择性地耦接到所述超声波发送控制电路220、所述超声波接收控制电路230或所述电容控制电路240。当运作取得超声波感测信号时,先将所述切换电路207的第二端耦接到所述超声波发送控制电路220,同时对上电极204施加一第一交流电偏压,使所述超声波发送控制电路220发出超声波脉冲信号以产生超声波,后将所述切换电路207的第二端耦接到所述超声波接收控制电路230,此时,不对上电极204施加交流电偏压,使所述超声波接收控制电路230接收手指反射回来的超声波并产生所述超声波感测信号。当运作取得电容感测信号时,将所述切换电路207的第二端耦接到所述电容控制电路240,并对上电极204施加直流或交流电偏压,只要控制适当的电位,即可使所述电容控制电路240获得待测手指的电荷来产生所述的电容感测信号。所述处理单元130的切换模块138可以控制所述切换电路207的运作先取得超声波感测信号再取得电容感测信号,或是先取得电容感测信号再取得超声波感测信号。
请参阅图5b,其为根据本发明一实施例的电容和超声波双模式指纹传感***的上电极及其耦接电路的示意图。如图5b所示,所述上电极204被分配成一第一区204a及一第二区204b,所述第一区204a与所述第二区204b的范围彼此不重叠也不接触。在一实施例中,所述第一区204a及所述第二区204b可被设置成同心圆,但本发明并不以此为限。以配置为同心圆为例,所述第一区204a同心圆的半径小于所述第二区204b同心圆的半径,理论上所述第一区204a同心圆的半径约介于所述第二区204b同心圆的半径的0.4倍至0.9倍之间会有较佳感测效果,但本发明并不以此为限。借助第一区204a与第二区204b同心圆适当的半径比例配置,将不会导致任一第一区204a或第二区204b所配置的电极面积太小而影响到超声波感测或电容感测的感测效率。所述第一区204a同心圆有向外延伸的一连接部204c,在一实施例中,所述该连接部204c的长度可以为所述第二区同心圆的半径减掉所述第一区同心圆的半径,但本发明并不以此为限。所述切换电路209包含有一第一端及一第二端,所述第一端通过所述连接部204c耦接到所述上电极204的所述第一区204a,所述第二端选择性地耦接到所述超声波发送控制电路220或所述超声波接收控制电路230。经由所述切换电路209的切换所述超声波接收控制电路230及所述超声波发送控制电路220能共用所述上电极204的所述第一区204a来获得超声波感测信号。所述上电 极204的所述第二区204b直接耦接到所述电容控制电路240,借助所述第二区204b所配置的上电极面积让所述电容控制电路240进行感测,以获得电容感测信号。在另一实施例中,亦可将所述上电极204的所述第一区204a连接到所述电容控制电路240,及将所述上电极204的所述第二区204b连接到所述切换电路209以选择性地耦接到所述超声波接收控制电路230或所述超声波发送控制电路220。
以下实施例请同时参阅图1、图2及图5b,本发明的电容和超声波双模式指纹传感***100的所述处理单元130的切换模块138可控制所述切换电路209的切换动作来取得超声波感测信号,而所述处理单元130可控制所述电容控制电路240取得电容感测信号。当运作取得超声波感测信号时,先将所述切换电路209的第二端耦接到所述超声波发送控制电路220,同时对所述上电极204的所述第一区204a施加一交流电偏压,同时对所述上电极204的第一区204a施加一第一交流电偏压,使所述超声波发送控制电路220发出超声波脉冲信号以产生超声波,再控制所述切换电路209的第二端耦接到所述超声波接收控制电路230,此时,不对上电极204的第一区204a施加交流电偏压,使所述超声波接收控制电路230接收手指反射回来的超声波并产生所述超声波感测信号。当运作取得电容感测信号时,可对上电极的第二区204b施加直流或交流电偏压,只要控制适当的电位,所述处理单元130即可控制所述电容控制电路240获得待测手指的电荷来产生电容感测信号。在此实施例中,只要所述上电极204进行适当的分配,即可达成在不增设电极结构的条件下进行超声波感测及电容感测的目的。
请参阅图6,其为根据本发明另一实施例的电容和超声波双模式指纹传感***的示意图。如图6所示,电容和超声波双模式指纹传感***600包含一传感器阵列装置110、一处理单元130、一超声波TX控制电路220、一超声波RX控制电路230及一电容控制电路240。所述处理单元130与所述传感器阵列装置110、所述超声波TX控制电路220、所述超声波RX控制电路230及所述电容控制电路240相耦合。
请同时参阅图6及图7,图7其为根据本发明一实施例的电容和超声波双模式指纹传感***的处理单元的功能模块示意图。如图7所示,本发明电容和超声波双模式指纹传感***600的处理单元130的功能模块包含有一模拟数字转换模块132、一储存模块133、一指纹影像质量评估模块134、一指纹影像选择模块136、及一指纹鉴别模块139。
请参阅图8,其为根据本发明一实施例的电容和超声波双模式指纹传感***的上电极与控制电路的示意图。如图8所示,所述上电极204被分配成一第一区204d、一第二区204e及一第三区204f,所述第一区204d、所述第二区204e及所述第三区204f的范围彼此不重叠也不接触。在一实施例中,所述第一区204d、所述第二区204e及所述第三区204f可设置成同心圆,但本发明并不以此为限。在一实施例中,所述第一区204d同心圆的半径小于所述第二区204e同心圆的半径,所述第二区204e同心圆的半径小于所述第三区204f同心圆的半径。在一实施例中,所述第一区204d同心圆有向外延伸的一第一连接部204g,所述第二区204e同心圆有向外延伸的一第二连接部204h,且所述第一连接部204g 的长度可以为所述第三区同心圆的半径减掉所述第一区同心圆的半径,而所述第二连接部204h的长度可以为所述第三区同心圆的半径减掉所述第二区同心圆的半径,但本发明并不以此为限。所述上电极204的所述第一区204d通过所述第一连接部204g耦接到所述超声波接收控制电路230,所述上电极204的所述第二区204e通过所述第二连接部204h耦接到所述超声波发送控制电路220,所述上电极204的所述第三区204f耦接到所述电容控制电路240。本发明并不限定所述第一区204d、所述第二区204e及所述第三区204f与所述超声波接收控制电路230、所述超声波发送控制电路220及所述电容控制电路240的配对方式。亦即,只要适当地分配上电极204的面积,就可通过所述电容控制电路240取得电容感测信号,通过所述超声波接收控制电路230及超声波发送控制电路220取得超声波感测信号,而不必另外增设电极结构,进而无须增加指纹传感器晶片面积及厚度。
以下实施例请同时参考图6至图8,本发明电容和超声波双模式指纹传感***600的所述处理单元130可控制所述超声波发送控制电路220及所述超声波接收控制电路230来取得超声波感测信号,亦可控制所述电容控制电路240取得电容感测信号。当运作取得超声波感测信号时,对所述上电极204的第一区204d施加一第一交流电偏压,使所述超声波发送控制电路220发出超声波脉冲信号以产生超声波,之后,不对所述上电极204的第二区204e施加交流电偏压,使所述超声波接收控制电路230接收手指反射回来的超声波并产生所述超声波感测信号。当运作取得电容感测信号时,对所述上电极204的第三区204f施加直流或交流电偏压,只要控制适当的电位,所述电容控制电路240即可获得待测手指的电荷来产生电容感测信号。在本实施例中,所述上电极204只要进行适当的分配,即可达成在不增设电极结构的条件下进行超声波感测及电容感测的目的。
请参阅图9,其为根据本发明一实施例的电容和超声波双模式指纹传感***的指纹影像辨识方法的流程图。在步骤902中,产生一电容式指纹影像及一超声波指纹影像;在步骤904中,评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像;在步骤906中,根据一评估结果决定输出所述电容式指纹影像或所述超声波指纹影像;以及,在步骤908中,将输出的所述超声波指纹影像或所述电容式指纹影像与一认证指纹进行比对。本发明的电容和超声波双模式指纹传感***的指纹影像辨识方法能确保选出一个质量好的电容式指纹影像或超声波指纹影像以供指纹辨识之用。
当然,上述的各元件可为本领域技术人员进行各种均等的变更或设计,并依据实际运用时的需求而调整各元件的结构设计及尺寸规格,不应以前述较佳实施例为限制。因此,只要能达到相同功用的各种均等结构或方式,亦均属本案的专利保护范围内。
以上所述仅为本发明的较佳实施例,并非用以限定本发明,因此凡其他未脱离本发明所揭示的精神下所完成的等效改变或修饰,均应包含于本案的发明构思中。

Claims (27)

  1. 一种电容和超声波双模式指纹传感***,其特征在于,包括:
    一传感器阵列装置,包含一上电极;
    一切换电路,用以使所述上电极选择性地耦接至一电容控制电路、一超声波接收控制电路或一超声波发送控制电路;以及
    一处理单元,与所述切换电路耦合,用以产生一电容式指纹影像及一超声波指纹影像以及决定要输出所述电容式指纹影像或所述超声波指纹影像,并将输出的所述超声波指纹影像或所述电容式指纹影像与一认证指纹进行比对。
  2. 如权利要求1所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极包含一第一区及一第二区,所述第一区与所述第二区彼此互不接触。
  3. 如权利要求2所述的电容和超声波双模式指纹传感***,其特征在于,所述切换电路包含一第一端及一第二端,所述第一端耦接到所述上电极的所述第一区,所述第二端选择性地耦接到所述超声波接收控制电路或所述超声波发送控制电路。
  4. 如权利要求2所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极的所述第二区直接耦接到所述电容控制电路。
  5. 如权利要求2所述的电容和超声波双模式指纹传感***,其特征在于,所述第一区与所述第二区是以同心圆设置,所述第一区同心圆的半径小于所述第二区同心圆的半径。
  6. 如权利要求5所述的电容和超声波双模式指纹传感***,其特征在于,所述第一区设置有一连接部,所述连接部的长度相当于所述第二区同心圆的半径减掉所述第一区同心圆的半径,通过所述连接部使所述上电极的所述第一区耦接到所述切换电路。
  7. 如权利要求1所述的电容和超声波双模式指纹传感***,其特征在于,所述传感器阵列装置包含一互补式金属氧化物半导体电路层、一电容/压电微机械超声换能器层、一耦合层及一压盘,所述压盘设置在所述耦合层上,所述耦合层设置在所述电容/压电微机械超声换能器层上,所述电容/压电微机械超声换能器层设置在所述互补式金属氧化物半导体电路层上。
  8. 如权利要求7所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极设置在所述电容/压电微机械超声换能器层之中。
  9. 如权利要求1所述的电容和超声波双模式指纹传感***,其特征在于,所述电容控制电路用以产生一电容感测信号,所述超声波发送控制电路及所述超声波接收控制电路用以产生一超声波感测信号。
  10. 如权利要求9所述的电容和超声波双模式指纹传感***,其特征在于,所述处理单元包含一模拟数字转换模块,用以分别将所述电容感测信号及所述超声波感测 信号转换为所述电容式指纹影像及所述超声波指纹影像。
  11. 如权利要求10所述的电容和超声波双模式指纹传感***,其特征在于,所述处理单元包含一指纹影像质量评估模块,用以评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像。
  12. 如权利要求11所述的电容和超声波双模式指纹传感***,其特征在于,所述指纹影像质量评估模块包含一指纹影像评估法及其对应的一影像质量指标,通过所述指纹影像评估法对所述电容式指纹影像及所述超声波指纹影像进行评估可获得一电容式指纹影像质量分数及一超声波指纹影像质量分数,再将所述电容式指纹影像质量分数及所述超声波指纹影像质量分数与所述影像质量指标比对来判断所述电容式指纹影像及所述超声波指纹影像是否为所述高质量指纹影像。
  13. 如权利要求11所述的电容和超声波双模式指纹传感***,其特征在于,所述处理单元还包括一指纹影像选择模块,用以根据所述指纹影像质量评估模块输出的一评估结果来决定输出所述电容式指纹影像或所述超声波指纹影像。
  14. 一种电容和超声波双模式指纹传感***,其特征在于,包括:
    一传感器阵列装置,包含一上电极,其中,所述上电极包含彼此互不接触的一第一区、一第二区及一第三区,所述第一区耦接到一超声波接收控制电路,所述第二区耦接到一超声波发送控制电路,所述第三区耦接到一电容控制电路;以及
    一处理单元,耦接至所述传感器阵列装置、所述超声波接收控制电路、所述超声波发送控制电路,及所述电容控制电路,用以产生一电容式指纹影像及一超声波指纹影像以及决定输出所述电容式指纹影像或所述超声波指纹影像,并将输出的所述超声波指纹影像或所述电容式指纹影像与一认证指纹进行比对。
  15. 如权利要求14所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极的所述第一区、所述第二区及所述第三区是以同心圆设置,且其中,所述第一区同心圆的半径小于所述第二区同心圆的半径,且所述第二区同心圆的半径小于所述第三区同心圆的半径。
  16. 如权利要求15所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极的所述第一区设置有一第一连接部,所述第一连接部的长度相当于所述第三区同心圆的半径减掉所述第一区同心圆的半径,通过所述第一连接部使所述上电极的所述第一区耦接到所述超声波接收控制电路。
  17. 如权利要求15所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极的所述第二区设置有一第二连接部,所述第二连接部的长度相当于所述第三区同心圆的半径减掉所述第二区同心圆的半径,通过所述第二连接部使所述上电极的所述第二区耦接到所述超声波发送控制电路。
  18. 如权利要求14所述的电容和超声波双模式指纹传感***,其特征在于,所述传感器阵列装置包含一互补式金属氧化物半导体电路层、一电容/压电微机械超声 换能器层、一耦合层及一压盘,所述压盘设置在所述耦合层上,所述耦合层设置在所述电容/压电微机械超声换能器层上,所述电容/压电微机械超声换能器层设置在所述互补式金属氧化物半导体电路层上。
  19. 如权利要求18所述的电容和超声波双模式指纹传感***,其特征在于,所述上电极设置在所述电容/压电微机械超声换能器层之中。
  20. 如权利要求14所述的电容和超声波双模式指纹传感***,其特征在于,所述处理单元还包括一指纹影像质量评估模块,用以评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像。
  21. 如权利要求20所述的电容和超声波双模式指纹传感***,其特征在于,所述指纹影像质量评估模块包含一指纹影像评估法及其对应的一影像质量指标,通过所述指纹影像评估法对所述电容式指纹影像及所述超声波指纹影像进行评估以获得一电容式指纹影像质量分数及一超声波指纹影像质量分数,再将所述电容式指纹影像质量分数及所述超声波指纹影像质量分数与所述影像质量指标比对来判断所述电容式指纹影像及所述超声波指纹影像是否为所述高质量指纹影像。
  22. 如权利要求20所述的电容和超声波双模式指纹传感***,其特征在于,所述处理单元还包括一指纹影像选择模块,用以根据所述指纹影像质量评估模块输出的一评估结果来决定输出所述电容式指纹影像或所述超声波指纹影像。
  23. 一种电容和超声波双模式指纹传感***的指纹影像辨识方法,其特征在于,包含:
    产生一电容式指纹影像及一超声波指纹影像;
    评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像;
    根据一评估结果决定输出所述电容式指纹影像或所述超声波指纹影像;以及
    将输出的所述超声波指纹影像或所述电容式指纹影像与一认证指纹进行比对。
  24. 如权利要求23所述的电容和超声波双模式指纹传感***的指纹影像辨识方法,还包含:
    当所述电容式指纹影像及所述超声波指纹影像均被判断为非所述高质量指纹影像时,所述电容和超声波双模式指纹传感***重新进行指纹感测。
  25. 如权利要求23所述的电容和超声波双模式指纹传感***的指纹影像辨识方法,其特征在于,评估所述电容式指纹影像及所述超声波指纹影像是否为一高质量指纹影像的步骤包含:
    通过一指纹影像评估法评估所述电容式指纹影像及所述超声波指纹影像以分别产生一电容式指纹影像质量分数及一超声波指纹影像质量分数;以及
    将所述电容式指纹影像质量分数及所述超声波指纹影像质量分数与一影像质量指数进行比对。
  26. 如权利要求23所述的电容和超声波双模式指纹传感***的指纹影像辨识方 法,其特征在于,根据一评估结果决定输出所述电容式指纹影像或所述超声波指纹影像的步骤中包含:
    当所述电容式指纹影像被判断为所述高质量指纹影像时,输出所述电容式指纹影像;以及
    当所述电容式指纹影像被判断为非所述高质量指纹影像且所述超声波指纹影像被判断为所述高质量指纹影像时,输出所述超声波指纹影像。
  27. 如权利要求23所述的电容和超声波双模式指纹传感***的指纹影像辨识方法,其特征在于,还包含:
    当所述电容式指纹影像及所述超声波指纹影像均被评估为非所述高质量指纹影像时,所述电容式指纹影像及所述超声波指纹影像均不输出。
PCT/CN2019/130551 2019-09-10 2019-12-31 电容和超声波双模式指纹传感***及其指纹影像辨识方法 WO2021047122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962898054P 2019-09-10 2019-09-10
US62/898,054 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021047122A1 true WO2021047122A1 (zh) 2021-03-18

Family

ID=69753434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130551 WO2021047122A1 (zh) 2019-09-10 2019-12-31 电容和超声波双模式指纹传感***及其指纹影像辨识方法

Country Status (2)

Country Link
CN (2) CN210836139U (zh)
WO (1) WO2021047122A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210836139U (zh) * 2019-09-10 2020-06-23 神盾股份有限公司 电容和超声波双模式指纹传感***
CN112229916A (zh) * 2020-03-24 2021-01-15 神盾股份有限公司 超声波传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649882A (zh) * 2011-06-20 2014-03-19 麦孚斯公司 触摸感应面板
US20170140194A1 (en) * 2015-06-26 2017-05-18 Boe Technology Group Co., Ltd. Fingerprint identification device, touch panel, input device and fingerprint identification method
CN207851836U (zh) * 2017-08-07 2018-09-11 吴露 复合式指纹识别模组及电子设备
CN110178140A (zh) * 2017-01-12 2019-08-27 高通股份有限公司 双模式电容及超声波指纹及触摸传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045023B2 (ja) * 2006-08-09 2012-10-10 パナソニック株式会社 入力装置
US10539539B2 (en) * 2016-05-10 2020-01-21 Invensense, Inc. Operation of an ultrasonic sensor
CN106446817B (zh) * 2016-09-18 2018-03-20 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法
US10235552B2 (en) * 2016-10-12 2019-03-19 Qualcomm Incorporated Hybrid capacitive and ultrasonic sensing
CN210836139U (zh) * 2019-09-10 2020-06-23 神盾股份有限公司 电容和超声波双模式指纹传感***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649882A (zh) * 2011-06-20 2014-03-19 麦孚斯公司 触摸感应面板
US20170140194A1 (en) * 2015-06-26 2017-05-18 Boe Technology Group Co., Ltd. Fingerprint identification device, touch panel, input device and fingerprint identification method
CN110178140A (zh) * 2017-01-12 2019-08-27 高通股份有限公司 双模式电容及超声波指纹及触摸传感器
CN207851836U (zh) * 2017-08-07 2018-09-11 吴露 复合式指纹识别模组及电子设备

Also Published As

Publication number Publication date
CN210836139U (zh) 2020-06-23
CN110889400A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
CN109643378B (zh) 超声换能器件及电子装置
TWI831842B (zh) 具有可撓性基板之超音波指紋感測器
US10871859B2 (en) Touch control device, electronic apparatus and control method of electronic apparatus
CN109492623B (zh) 超声波指纹识别模组及显示面板
CN107491774B (zh) 一种指纹传感器及其驱动方法
US20200279087A1 (en) Module architecture for large area ultrasonic fingerprint sensor
CN107092880B (zh) 超声波指纹传感器及其制造方法
WO2021047122A1 (zh) 电容和超声波双模式指纹传感***及其指纹影像辨识方法
US6323580B1 (en) Ferroic transducer
WO2020248677A1 (zh) 一种显示面板、其控制方法及显示装置
CN102333485A (zh) 具有机械塌陷保持的预塌陷cmut
WO2021217439A1 (zh) 超声换能器、信息采集元件及电子设备
US10783343B2 (en) Fingerprint recognition module, electronic device employing same, and method for manufacturing sound wave control member therefor
WO2021093384A1 (zh) 指纹识别装置及其指纹识别方法
WO2021159678A1 (zh) 超声波感测装置
US10303915B2 (en) Ultrasonic biometric sensor
TWI777485B (zh) 指紋感測裝置
CN107565950B (zh) 触控开关及电子装置
WO2022121882A1 (zh) 一种电子设备
CN109990814B (zh) 一种基于悬空结构的压电微机械超声传感器
TWI663397B (zh) 超聲波成像系統及方法
CN106257485B (zh) 集成式振波发射感测元及感测阵列及电子设备及制造方法
TWI771064B (zh) 類壓電d33裝置及使用其的電子設備
TWM642391U (zh) 超聲波指紋識別模組和裝置
CN115562518A (zh) 类压电d33装置及使用其的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945384

Country of ref document: EP

Kind code of ref document: A1