WO2018049698A1 - 一种基于工业数字相机矩阵的图像获取装置 - Google Patents

一种基于工业数字相机矩阵的图像获取装置 Download PDF

Info

Publication number
WO2018049698A1
WO2018049698A1 PCT/CN2016/100543 CN2016100543W WO2018049698A1 WO 2018049698 A1 WO2018049698 A1 WO 2018049698A1 CN 2016100543 W CN2016100543 W CN 2016100543W WO 2018049698 A1 WO2018049698 A1 WO 2018049698A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lens
matrix
image
photosensitive elements
Prior art date
Application number
PCT/CN2016/100543
Other languages
English (en)
French (fr)
Inventor
龚婷
刘忠辉
刘玉锋
尹兴
Original Assignee
北京清影机器视觉技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京清影机器视觉技术有限公司 filed Critical 北京清影机器视觉技术有限公司
Priority to US16/329,478 priority Critical patent/US10887497B2/en
Publication of WO2018049698A1 publication Critical patent/WO2018049698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to the field of optical electronic product technology, and in particular to an image acquisition device based on an industrial digital camera matrix.
  • the related art provides a method of setting four digital cameras of the same model and the same lens in a shooting scene in a 2 ⁇ 2 matrix, the four digital The camera performs image processing and calculation on a plurality of images acquired by the captured object in the shooting scene to obtain a three-dimensional stereoscopic image of the object to be photographed.
  • the camera adopts the planar matrix method, the amount of three-dimensional operations is greatly simplified, and the accuracy of the three-dimensional operation is improved.
  • this method needs to align the horizontal lines of the cameras in the parallel direction, and align the vertical columns of the camera in the vertical direction, that is, the camera is required to form a geometrically accurate rectangular structure, and also requires the photosensitive elements of the camera to remain at the same horizontal plane. on.
  • a camera matrix formed by four digital cameras is used to photograph an object. Since the digital camera itself has a casing and the casing has a certain size, the lenses of the four digital cameras are located in the middle of the digital camera. In the extreme case, the distance between the lenses of two adjacent digital cameras is at least the width of the outer casing of a digital camera.
  • the distance between the lenses of two adjacent digital cameras is at least the outer casing width of one digital camera when the object is photographed in the related art
  • the size of the outer casing of the digital camera cannot be further reduced, so that the size of the mechanism becomes large, and the related art
  • the image capturing method cannot capture a closer image, resulting in a limited range of three-dimensional image acquisition, and it is impossible to obtain a three-dimensional image of a close object.
  • the mechanical mounting structure itself has errors.
  • the inconsistency in manufacturing there is geometric inconsistency between the optical axis, the photosensitive surface and the outer casing of the camera.
  • the final photosensitive elements are not guaranteed to be on the same level, and the optical axes of the photosensitive elements are not guaranteed to be parallel to each other, and it is not guaranteed to constitute a standard rectangular structure.
  • the above errors can be compensated by the after-the-fact marking, the existence of the error greatly affects the accuracy and accuracy of the three-dimensional calculation.
  • an object of the present invention is to provide an image acquisition apparatus based on an industrial digital camera matrix, wherein a method of processing, soldering or fabricating a photosensitive element of a matrix structure on a board, and mounting a lens of a matrix structure are employed.
  • a method of processing, soldering or fabricating a photosensitive element of a matrix structure on a board, and mounting a lens of a matrix structure are employed.
  • the geometric accuracy of the mutual position of the photosensitive elements, the parallelity of the optical axis of the lens and the geometrical accuracy of the matrix structure can also be reduced, and the distance between adjacent lenses can also be reduced.
  • the accuracy and accuracy of the stereo image is higher, the measurement range is larger, the integration of the camera is higher, and the processing is facilitated, making the device a truly integrated miniaturized three-dimensional image acquisition device.
  • an embodiment of the present invention provides an image acquisition apparatus based on an industrial digital camera matrix, including a first substrate and a second substrate disposed in parallel with each other;
  • a lens matrix is disposed on the first substrate, and an axis of each lens in the lens matrix is perpendicular to a plane of the first substrate;
  • the second substrate is disposed on the surface of the first substrate with a matrix of photosensitive elements, and each of the photosensitive elements in the matrix of the photosensitive elements is disposed in one-to-one correspondence with each of the lenses.
  • the embodiment of the present invention provides a first possible implementation manner of the first aspect, wherein each of the lenses in the lens matrix is set in an m ⁇ n format, where m is greater than or equal to 2, and n is greater than or equal to 2.
  • the embodiment of the present invention provides a second possible implementation manner of the first aspect, wherein each of the lenses in the horizontal direction of the lens matrix is equally spaced, adjacent to each other.
  • the spacing between the two lenses is greater than or equal to 10 mm;
  • Each of the lenses in the vertical direction of the lens matrix is equally spaced, and the spacing between two adjacent lenses is greater than or equal to 10 mm.
  • an embodiment of the present invention provides a third possible implementation manner of the first aspect, wherein each of the photosensitive elements in the matrix of photosensitive elements is integrally formed with the second substrate; or Each of the photosensitive elements in the element matrix is solder mounted on the second substrate.
  • the embodiment of the present invention provides a fourth possible implementation manner of the first aspect, wherein each of the photosensitive elements in the photosensitive element matrix is required to be processed or soldered.
  • the direction corresponds to the pixel row alignment
  • the vertical direction corresponds to the pixel column alignment.
  • an embodiment of the present invention provides a fifth possible implementation manner of the first aspect, further including a control circuit board, where the control circuit board includes an analog-to-digital converter, a digital signal processor, and a control Module and communication module;
  • the analog-to-digital converter is configured to receive an analog image sent by the photosensitive element, and convert the analog image into a digital image;
  • the digital signal processor is used for system control of the camera matrix to complete various control functions of image acquisition, including image acquisition, image transmission, image gain and shutter control, communication protocol interaction management, timing interruption, task switching, storage management , camera parameter settings, acquisition mode and acquisition format definition;
  • the control module is configured to receive and issue a shooting trigger signal and adjust a shooting parameter of the lens when the lens is an automatic lens;
  • the communication module is configured to output the collected plurality of digital images to the upper terminal according to a communication protocol under the control of the digital signal processor.
  • the embodiment of the present invention provides a sixth possible implementation manner of the first aspect, wherein the first substrate is provided with a mounting through hole, and the lens in the lens matrix passes through the mounting through A hole is mounted on the first substrate.
  • the embodiment of the present invention provides the seventh possible implementation manner of the first aspect, further comprising: fixing the rear case, the fixed rear case being fixedly connected to the first substrate
  • the control circuit board is located inside the fixed rear case and is fixedly connected to the second substrate by a fixing post.
  • the embodiment of the present invention provides the eighth possible implementation manner of the first aspect, wherein the fixed rear case is provided with a power input port and a data communication interface;
  • the power input port is configured to connect a power line, and supply power to the photosensitive element and the control circuit board through the power line;
  • the data communication interface is configured to connect a data line, and the control module and the digital signal processor receive a shooting parameter setting command and the shooting trigger signal through the data line, and the communication module passes the data line A plurality of said digital images are output.
  • an embodiment of the present invention provides a ninth possible implementation manner of the first aspect, wherein the device further includes a lens protection cover, where the lens protection cover is used to protect the lens matrix Each shot.
  • a lens matrix composed of a plurality of lenses is integrated on the same substrate, and a matrix of photosensitive elements composed of a plurality of photosensitive elements is integrated on the same substrate, and each photosensitive element is arranged in one-to-one correspondence with each lens. .
  • the image acquisition device based on the industrial digital camera matrix in the embodiment of the present invention arranges a plurality of lenses on the same substrate, the matrix of the photosensitive elements composed of the plurality of photosensitive elements is integrated on the same substrate. Therefore, the geometric accuracy of the mutual position of the photosensitive elements, the parallelism of the optical axes of the lenses, and the geometric accuracy of the matrix structure can be ensured, and the distance between adjacent lenses can be reduced as needed.
  • the above measures ensure that the accuracy and accuracy of the three-dimensional image are higher, the measurement range is larger, the integration of the camera is higher, and the processing is facilitated, so that the device becomes a true three-dimensional image acquisition device.
  • FIG. 1 is a schematic structural diagram of an image acquiring apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a first substrate provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the assembly of an image acquisition device according to an embodiment of the present invention.
  • FIG. 4 is a schematic exploded view of an image acquisition device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an assembly of an image acquisition device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fixed rear case of an image acquisition device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the module composition of a control circuit board provided by an embodiment of the present invention.
  • a second substrate 200 a photosensitive element 201;
  • Control circuit board 300 fixed column 301;
  • the rear case 400, the power input port 401, and the data communication interface 402 are fixed.
  • the present invention provides a An image acquisition apparatus based on an industrial digital camera matrix will be specifically described below by way of embodiments.
  • an image acquisition apparatus in an embodiment of the present invention includes a first substrate 100 and a second substrate 200 disposed in parallel with each other;
  • the first substrate 100 is provided with a lens matrix, and the axes of the respective lenses 101 in the lens matrix are perpendicular to the plane of the first substrate 100;
  • the second substrate 200 is provided with a matrix of photosensitive elements on the surface of the first substrate 100, and each of the photosensitive elements 201 in the matrix of the photosensitive elements is disposed in one-to-one correspondence with the respective lenses 101.
  • a lens matrix composed of a plurality of lenses is integrated on the same substrate, and a matrix of photosensitive elements composed of a plurality of photosensitive elements is integrated on the same substrate, and each photosensitive element is arranged in one-to-one correspondence with each lens. .
  • the image acquisition device based on the industrial digital camera matrix in the embodiment of the present invention arranges a plurality of lenses on the same substrate, the matrix of the photosensitive elements composed of the plurality of photosensitive elements is integrated on the same substrate. Therefore, the geometric accuracy of the mutual position of the photosensitive elements, the parallelism of the optical axes of the lenses, and the geometric accuracy of the matrix structure can be ensured, and the distance between adjacent lenses can be reduced as needed.
  • the above measures ensure that the accuracy and accuracy of the three-dimensional image are higher, the measurement range is larger, the integration of the camera is higher, and the processing is facilitated, so that the device becomes a true three-dimensional image acquisition device.
  • the lens is an industrial lens
  • each lens and the corresponding photosensitive element constitute an industrial digital camera, thereby forming an industrial digital camera matrix formed by a plurality of industrial digital cameras, wherein the industrial digital camera is hereinafter referred to as a camera, industrial
  • the digital camera matrix is hereinafter referred to as a camera matrix.
  • Each lens 101 in the above lens matrix has the same model and type, and may be a fixed focus lens or a zoom lens.
  • the functions of the respective photosensitive elements 201 in the matrix of the photosensitive elements are to convert the optical signals captured by the lens 101 into electrical signals for subsequent image processing, which may be CCD (Charge-coupled Device) or CMOS. (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), of course, can also be used for other known electrical devices that can be applied to convert an optical signal into an electrical signal during image acquisition.
  • each lens 101 Since the optical signal captured by each lens 101 needs to accurately enter the corresponding photosensitive element 201, it is necessary to ensure that the first substrate 100 and the second substrate 200 are parallel to each other, and each photosensitive element 201 is disposed in one-to-one correspondence with each lens 101.
  • connection accuracy of the first substrate 100 and the second substrate 200 should be such that the optical axis of the lens 101 on the first substrate 100 is perpendicular to the respective photosensitive elements 201 on the second substrate 200 and passes through the center of the photosensitive element 201 while the photosensitive element
  • the distance between the photosensitive surface of 201 and the lens 101 Can meet the requirements of clear imaging of the lens.
  • each lens 101 in the lens matrix is set in the form of m ⁇ n, where m is greater than or equal to 2, and n is greater than or equal to 2.
  • each lens 101 in the lens matrix may be set in a 2 ⁇ 2 format, or a 2 ⁇ 3 format setting, or a 3 ⁇ 3 format setting, or a 4 ⁇ 5 format setting, which will not be enumerated here.
  • each lens 101 is set in the form of m ⁇ n, which can ensure that the framing range is appropriate, and a complete object to be photographed or a scene to be photographed is captured.
  • the spacing between the lenses 101 in the lens matrix has an influence on the range of the field of view.
  • the lenses 101 in the horizontal direction of the lens matrix are equally spaced, between the adjacent two lenses 101.
  • the pitch of the lens is set to be equal to or greater than 10 mm.
  • the respective lenses 101 in the vertical direction of the lens matrix are equally spaced, and the distance between the adjacent two lenses 101 is 10 mm or more.
  • the equal spacing of the respective lenses 101 in the horizontal direction of the lens matrix, and the equal spacing of the respective lenses 101 in the vertical direction of the lens matrix are provided, which facilitates the three-dimensional processing operation of the post image, facilitates the production of the first substrate 100 and the mounting of the lens 101. .
  • the respective lenses 101 in the horizontal direction of the lens matrix are equally spaced, and the distance between the adjacent two lenses 101 is greater than or equal to 10 mm and less than or equal to 120 mm, and similarly, the respective lenses 101 in the vertical direction of the lens matrix, etc.
  • the spacing is set such that the spacing between two adjacent lenses 101 is greater than or equal to 10 mm and less than or equal to 120 mm.
  • the distance between the two lenses 101 adjacent in the horizontal direction or the vertical direction is greater than or equal to 10 mm and less than or equal to 120 mm, which can avoid the decrease in the proximity of each photo, resulting in a problem that the accuracy of the final synthesized three-dimensional image is not high. It is also possible to reduce the size of the image acquisition device and facilitate the production and processing of the image acquisition device.
  • the upper limit of the pitch is not limited to 120 mm, and may be 150 mm or 180 mm. Determine according to actual needs. In general, the larger the focal length of the lens, the larger the field of view of the subject, and the larger the spacing of adjacent lenses.
  • the distance between the two lenses 101 adjacent in the horizontal direction in the lens matrix is between the two lenses 101 adjacent to each other in the vertical direction of the lens matrix.
  • the spacing is equal.
  • each photosensitive element 201 in the matrix of photosensitive elements is disposed in one-to-one correspondence with each lens 101 in the lens matrix. Therefore, the arrangement manner of each photosensitive element 201 in the matrix of photosensitive elements, and between the respective photosensitive elements 201 The spacing is consistent with each lens 101 and will not be described here.
  • each of the photosensitive elements 201 in the matrix of photosensitive elements is integrally formed with the second substrate 200; or, each of the photosensitive elements 201 in the matrix of photosensitive elements is solder-mounted on the second substrate 200.
  • the photosensitive element 201 on the second substrate 200 is processed or soldered, it is required that the horizontal direction corresponds to the pixel row alignment, and the vertical direction corresponds to the pixel column alignment.
  • independent photosensitive elements 201 existing in the related art include CCD and/or CMOS, and the technology is very mature. According to the requirements of field of view, measurement accuracy and measurement speed, the photosensitive element 201 suitable for use can be selected. Then, the corresponding second substrate 200 is designed. The second substrate 200 can be printed by a PCB (Printed Circuit Board) circuit board, and then the respective photosensitive elements 201 are soldered to the second lens according to the layout requirements of the lens 101 described above. On the substrate 200. When the welding method is adopted, in order to ensure the welding precision, a dedicated photosensitive member positioning fixture can be used to ensure the positional accuracy of each photosensitive member 201 after welding.
  • PCB Print Circuit Board
  • the photosensitive member 201 is soldered to the second substrate 200 by soldering.
  • the photosensitive elements such as CCD and CMOS are basically processed into rectangles according to the number of rows and columns of pixels. Because of the three-dimensional operation, the pixel rows corresponding to the corresponding coordinate positions of the same row need to be on the same straight line, and the coordinates of the same column are corresponding. The pixel columns of the position also need to be on the same straight line. Therefore, in the embodiment, when each photosensitive element 201 is required to form a standard rectangle, the position of the pixel in the photosensitive element matrix (the position is represented by the value of the row and column) also constitutes The corresponding rectangular structure ensures the accuracy of the three-dimensional operation.
  • the photosensitive element 201 on the second substrate 200 is processed or soldered, it is required that the horizontal direction corresponds to the pixel row alignment, and the vertical direction corresponds to the pixel column alignment, thereby ensuring the accuracy of the three-dimensional operation. degree.
  • the photosensitive element 201 Since the pixel pitch of the photosensitive elements such as CCD and CMOS is generally on the order of micrometers, it is difficult for the photosensitive element 201 to ensure that the corresponding pixel rows or columns are completely aligned during soldering, and a relative offset or relative rotation of the corresponding pixel row or column is inevitable. In order to make up for the above errors, it needs to be processed, Measurement and calibration of the above machining errors can be compensated and corrected in software in 3D calculation.
  • the photosensitive element 201 and the second substrate 200 are integrally formed by means of simultaneous processing.
  • the second substrate 200 can be customized, and each photosensitive element 201 and second substrate 200 are prepared.
  • each of the photosensitive elements 201 is processed in the process of processing the second substrate 200, that is, a large CCD or CMOS formed by processing a plurality of photosensitive regions having a rectangular shape. The method avoids the error caused by the aforementioned welding method, reduces the image calculation time, and makes the three-dimensional image data more accurate.
  • FIG. 2 is a schematic structural view of a first substrate 100 according to an embodiment of the present invention. As shown in FIG. 2, the first substrate 100 is provided with a mounting through hole 102, and the lens 101 in the lens matrix is mounted through the mounting through hole 102. On the first substrate 100.
  • the first substrate may be formed by one-time forming of the machining center or by one-time molding of the model, so as to ensure that the geometric accuracy of the first substrate meets the requirements.
  • the first substrate serves as the basis for the installation and positioning of the entire acquisition device.
  • the geometric accuracy directly affects the accuracy of the camera.
  • the specific requirements of the geometric accuracy are: the upper and lower mounting faces of the lens and the second substrate are parallel, and the distance between the two planes conforms to clear imaging.
  • the accuracy requirement is that the lens mounting through hole 102 is perpendicular to the first substrate, and the positional accuracy of the mounting through hole 102 satisfies requirements.
  • the lens 101 is provided with an external thread, and the mounting through hole 102 is provided with an internal thread, and the lens 101 is mounted on the first substrate 100 through the mounting through hole 102 by screwing.
  • the lens 101 is provided with a first latching structure, and the mounting through hole 102 is provided with a second latching structure, and the lens 101 is mounted on the first substrate 100 through the mounting through hole 102 by way of snapping.
  • the card connection manner may be a snap connection.
  • the respective mounting through holes 102 on the first substrate 100 also need to meet the same requirements.
  • specific requirements refer to the foregoing. No longer.
  • FIG. 3 is a schematic view showing the assembly of the image acquisition device according to the embodiment of the present invention
  • FIG. 4 is a schematic exploded view of the image acquisition device according to the embodiment of the present invention.
  • the image acquiring device further includes a fixed rear case 400, and the fixed rear case 400 is The first substrate 100 is fixedly connected, and the second substrate 200 is located inside the fixed rear case 400.
  • the fixed rear case 400 may be screwed to the first substrate 100 or may be engaged with the first substrate 100.
  • the image acquiring apparatus in this embodiment further includes a control circuit board 300.
  • the control circuit board 300 is located inside the fixed rear case 400, and the first substrate 100, the second substrate 200, and the control circuit board 300 are sequentially arranged and controlled.
  • the circuit board 300 is fixedly connected to the second substrate 200 through the fixing post 301.
  • the control circuit board 300 is configured to receive an electrical signal output by the photosensitive element 201, and perform analog-to-digital conversion, data processing, storage, data output, acquisition parameter setting, and acquisition control. , acquisition trigger and lens control operations.
  • FIG. 5 is a schematic cross-sectional view showing the assembly of the image acquiring device according to the embodiment of the present invention.
  • the second substrate 200 is in contact with the upper surface of the first substrate 100, and the control circuit board 300 is passed through the fixing post 301.
  • the second substrate 200 is fixedly connected, so that the second substrate 200 and the control circuit board 300 are both fixedly connected to the first substrate 100 for the purpose of mounting and fixing the second substrate 200 and the control circuit board 300.
  • the thickness of the first substrate 100 is set to 18.656 mm, or 13.656 mm.
  • the thickness of the first substrate 100 is 18.656 mm
  • the thickness of the first substrate 100 is 13.656 mm.
  • the lower surface of the first substrate 100 is used to mount the lens 101, and the upper surface of the first substrate 100 is used to be in contact with the second substrate 200.
  • the upper surface of the first substrate 100 includes a convex structure at both ends, and the thickness of the first substrate 100 refers to the distance between the surface of the convex structure and the first surface.
  • FIG. 6 is a schematic diagram of a fixed rear case 400 of an image acquisition device according to an embodiment of the present invention.
  • a fixed power supply port 401 and a data communication interface 402 are disposed on the fixed rear case 400, and the power input port 401 is used.
  • the power supply line is connected, and the photosensitive element 201 and the control circuit board 300 are powered by a power supply line 402 for connecting the data lines, transmitting data to the control circuit board 300, and outputting the data output by the control circuit board 300.
  • the image capturing device further includes a lens cover that covers the surface of the lens 101 for protecting each lens 101 in the lens matrix.
  • the lens protection cover is fixedly connected to the first substrate 100, covering the first Each of the lenses 101 on a substrate 100 prevents damage to the lens 101.
  • the lens cover can be made of plastic.
  • the control circuit board 300 in the embodiment of the present invention includes an analog-to-digital converter 701 and a digital signal processor 702 that are sequentially connected.
  • control module 703 Receiving and emitting a shooting trigger signal and adjusting a shooting parameter of the lens 101 when the lens 101 is an automatic lens
  • the communication module 704 is configured to output the collected digital images according to a communication protocol under the control of the digital signal processor 702 Upper terminal.
  • the shooting parameters include the focal length, aperture and sharpness of the lens 101.
  • the digital signal processor 702 is similar to a CPU (Central Processing Unit) chip on an embedded computer, which may be a DSP (Digital Signal Processing), an ARM (Acorn RISC Machine, RISC micro processing). Chips such as FPGAs (Field Programmable Gate Arrays) are the control cores of the entire image acquisition system.
  • the digital signal processor 702 runs, firstly, the embedded program is transferred, communicates with the upper terminal, executes the initialization command of the camera, sets camera parameters, such as exposure time, trigger mode, image gain, etc., and sends the internal parameters of the camera to the upper terminal. For example, the camera number, etc., after the shooting command is obtained, the image acquisition of each camera is controlled, and after the acquisition is completed, the images are sequentially transmitted to the upper terminal.
  • the embedded program is transferred, communicates with the upper terminal, executes the initialization command of the camera, sets camera parameters, such as exposure time, trigger mode, image gain, etc., and sends the internal parameters of the camera to the upper terminal. For example, the
  • the upper terminal sends a shooting trigger signal to the communication module 704, and the communication module 704 sends the shooting trigger signal to the digital signal processor 702, and the digital signal processor 702 focuses the lens 101 according to the shooting trigger signal.
  • the optical signal on the photosensitive element 201 is collected to obtain an analog image signal, and the analog-to-digital converter 701 is controlled to convert the analog image into a digital image, and the control communication module 704 outputs the plurality of digital images to the upper terminal.
  • the upper terminal sends a shooting trigger signal to the communication module 704, the communication module 704 sends the shooting trigger signal to the control module 703, and the control module 703 sends the shooting trigger signal to the digital signal processor 702, the number Signal processor 702 is based on
  • the shooting trigger signal controls the photosensitive element 201 to focus the optical signal focused on the photosensitive element 201, acquires an analog image signal, and controls the analog to digital converter 701 to convert the analog image into a digital image, and controls the communication module 704 to display the plurality of digital images. Output to the upper terminal.
  • the number of the analog-to-digital converters 701 is the same as the number of the lenses 101 and the number of the photosensitive elements 201. In FIG. 7, four lenses are taken as an example for description.
  • control circuit board 300 further includes a non-volatile memory 705 and a power module 706, which are respectively electrically connected to respective power-consuming devices on the control circuit board 300 to supply power to the respective power-consuming devices.
  • the non-volatile memory 705 is coupled to the digital signal processor 702 for storing variables generated by the digital signal processor 702 during image processing and a plurality of digital images.
  • the communication module 704 includes a data exchange circuit or device and a corresponding output input interface.
  • the data exchange circuit or device is like a network switch.
  • the images collected by the camera matrix can be concentrated to the same network interface output, or multiple network interfaces can be used for parallel output. The number of output interfaces corresponds to the time required to acquire images.
  • the output input interface of the communication module 704 includes: a system bus interface, a network device interface, and an I/O control interface.
  • the system bus interface, the network device interface, and the I/O control interface are respectively connected to the digital signal processor 702, and the network device interface and the I
  • the /O control interface is connected to the power module 706, respectively.
  • the system bus interface is configured to transmit the collected digital images through the system bus
  • the network device interface is configured to transmit the obtained multiple digital images through the network device
  • the I/O control interface is connected to the control module 703. It is used to receive the shooting trigger signal from the external device.
  • the above system bus interface includes but is not limited to: RS-232/485 interface, 1394 interface, USB interface and cameralink interface.
  • the above network device interfaces including but not limited to: RJ-45 interface, RJ-11 interface, SC optical interface, FDDI interface, AUI interface, BNC interface, and Console interface, may also be 3G, 4G, WIFI (WIreless-Fidelity, wireless) Fidelity) and other wireless network interfaces.
  • the data communication interface 402 is specifically configured to connect the data lines, and the control module 703 and the digital signal processor 702 receive the shooting parameter setting command sent by the upper terminal and the shooting trigger signal through the data line.
  • the shooting trigger signal can be
  • the upper terminal of the image acquisition device transmits, and the communication module 704 outputs a plurality of digital images through the data line, preferably to the upper terminal of the image acquisition device.
  • the second substrate 200 and the control circuit board 300 are connected through a circuit interface.
  • part of the control circuit board 300 such as an analog-to-digital conversion circuit, may be used according to the size and specific conditions of the outer casing. Moving to the second substrate 200, or dividing the module of the control circuit board 300 into another circuit board in order to reduce the board area, the above changes do not affect the implementation of the specific camera function, but merely facilitate the design of the package and the external dimensions. Claim.
  • the image acquiring device in the embodiment of the present invention can be placed in a shooting scene to take a picture of the object to be photographed, wherein each lens and the photosensitive element can form a single camera.
  • a plurality of cameras constituting the parallel matrix are formed.
  • the processing is in a set of machine boxes to form a three-dimensional stereoscopic image acquisition device.
  • the image acquiring device in the embodiment of the present invention needs to calibrate and detect some specific parameters of the device before capturing the image.
  • the calibration and detection contents include: focal length of the lens, distortion, geometric position of the optical axis; geometric position of the photosensitive element Relationship, actual measurement spacing, row and column offset and rotation, etc.
  • Calibration and detection require special calibration equipment and software. After calibration, the measured parameters need to be provided to the 3D image processing software to input the relevant measurement dimensions.
  • the three-dimensional calculation formula calculates the three-dimensional coordinate size, and at the same time, compensates for manufacturing and installation errors through software, and improves the accuracy of three-dimensional data.
  • each photosensitive element acquires the optical signal transmitted by each lens
  • the control circuit board converts the optical signal into a corresponding electrical signal, converts the electrical signal into a data format of the planar two-dimensional image, and obtains multiple planar two-dimensional images.
  • the image is transmitted to the external image data processing device through the data communication interface 402 for processing, and the plurality of planar two-dimensional images are processed by the external image data processing device to obtain a three-dimensional stereoscopic image of the object to be photographed.
  • the process of processing the image data in the form of a matrix plane two-dimensional image by the external image data processing device is: performing feature point matching operation on the plurality of captured images, and calculating the space of the feature points according to the matched feature point image coordinates Position coordinates, according to the obtained spatial position coordinates of each feature point, calculate other three-dimensional dimensions of the measured object that need special measurement, form three-dimensional point cloud data, establish a three-dimensional point cloud graphic, and perform three-dimensional stereoscopic reproduction.
  • the matrix formed by the adjacent four lenses 101 is an image acquisition unit. When there are only four lenses 101, there is one image acquisition unit. When the lens 101 is greater than four, Then, each time the lens is shifted to the right or downward, multiple image acquisition units are determined by the principle that the lens can overlap. If the lens 101 is a matrix composed of six lenses, two image acquisition units are obtained, two of which are obtained. The lens 101 is in an overlapping state and appears in both image acquisition units.
  • the matrix composed of the adjacent four lenses 101 is an image acquisition unit, and the image acquired by each image acquisition unit is processed to obtain a three-dimensional stereoscopic image of the object to be photographed.
  • the above image acquisition device and the corresponding external image data processing device acquire the three-dimensional data of the object in the same manner as the human eye sees the world. Since the two-dimensional image is captured by the planar matrix method, just as the person looks at the object from different angles, the standard procedure is adopted. The calculation calculates the parallax of the same feature point on the image at different positions, and the three-dimensional shape of the object can be obtained.
  • the terms “set”, “install”, “connected”, and “connected” are to be understood broadly, and may be fixed connections, for example, unless otherwise specifically defined and defined. It can also be a detachable connection or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)

Abstract

本发明提供了一种基于工业数字相机矩阵的图像获取装置,包括相互平行设置的第一基板和第二基板;所述第一基板上设置有镜头矩阵,所述镜头矩阵中的各个镜头的轴线分别垂直于所述第一基板所在平面;所述第二基板朝向所述第一基板的表面上设置有感光元件矩阵,所述感光元件矩阵中的各个感光元件与各个所述镜头一一对应设置。通过本发明中的基于工业数字相机矩阵的图像获取装置能够保证后期处理的三维立体图像精确度和准确度,提高测量范围和相机的集成度,方便加工制作,使该装置成为一套集成化、小型化的三维图像前端采集装置。

Description

一种基于工业数字相机矩阵的图像获取装置 技术领域
本发明涉及光学电子产品技术领域,具体而言,涉及一种基于工业数字相机矩阵的图像获取装置。
背景技术
为了采用图像拍摄的方式获得被拍摄物体的三维立体图像,相关技术提供了如下方法:将四个型号、镜头完全相同的数码相机以2×2矩阵的形式设置在拍摄场景中,该四个数码相机对拍摄场景中被拍摄物体拍摄得到的多张图片,对获取的多张图片进行图像处理与运算,得到被拍摄物体的三维立体图像。
在三维运算时,由于相机采用了平面矩阵方式,极大简化了三维运算量,提高了三维运算的准确性。但该方法需要将平行方向的相机的水平行对齐,将垂直方向的相机的垂直列对齐,也就是说要求相机组成几何尺寸精确的矩形结构,同时,还要求相机的感光元件保持在同一个水平面上。矩阵相机结构的几何精度越高,其对应的测量精度和准确性也越高。
目前,可以将四个现有数码相机安装在一套固定的机械结构上,依靠对相机的精确定位,满足以上对相机矩阵结构的位置精度的要求,但该方法存在以下问题:
1、上述相关技术中采用由四个数码相机形成的相机矩阵对被拍摄物体进行拍摄,由于数码相机本身具有外壳,且外壳具有一定的尺寸,四个数码相机的镜头均位于数码相机的中间位置,极限情况下,两个相邻的数码相机的镜头之间的距离最小为一个数码相机的外壳宽度。由于相关技术中在对被拍摄物体进行拍摄时,两个相邻的数码相机的镜头之间的距离最小为一个数码相机的外壳宽度,无法再进一步缩小,使机构尺寸变大,同时相关技术中的图像拍摄方式无法拍摄得到更加近距离的图像,导致最终得到的三维立体图像拍摄范围有限,无法得到近距离物体的三维立体图像。
2、由于采用既有相机加机械安装结构的方式,机械安装结构本身存在误差,同时,由于加工制造的不一致性,相机的光轴、感光面与外壳之间存在几何尺寸的不一致性,这样,导致最后感光元件不能保证在同一水平面上,感光元件的光轴也不能保证相互平行,同时也不能保证组成一个标准的矩形结构。以上误差虽然可以通过事后标定做一些弥补,但误差的存在极大影响了三维计算的精度和准确性。
发明内容
有鉴于此,本发明的目的在于提供一种基于工业数字相机矩阵的图像获取装置,其中,采用将矩阵结构的感光元件在一块板上加工、焊接或制作的方式,以及将矩阵结构的镜头安装在一块一次加工成型的固定板上,保证感光元件相互位置的几何精度,以及镜头光轴的平行以及矩阵结构的几何精度,也可以缩小相邻的镜头之间的距离,通过以上措施,保证三维立体图像精确度和准确度更高,测量范围更大,相机的集成度更高,方便加工制作,使该装置成为真正意义上的集成化小型化的三维图像采集装置。
第一方面,本发明实施例提供了一种基于工业数字相机矩阵的图像获取装置,包括相互平行设置的第一基板和第二基板;
所述第一基板上设置有镜头矩阵,所述镜头矩阵中的各个镜头的轴线分别垂直于所述第一基板所在平面;
所述第二基板朝向所述第一基板的表面上设置有感光元件矩阵,所述感光元件矩阵中的各个感光元件与各个所述镜头一一对应设置。
结合第一方面,本发明实施例提供了第一方面第一种可能的实施方式,其中,所述镜头矩阵中的各个所述镜头以m×n形式设置,其中m大于等于2,n大于等于2。
结合第一方面第一种可能的实施方式,本发明实施例提供了第一方面第二种可能的实施方式,其中,所述镜头矩阵中水平方向上的各个所述镜头等间距设置,相邻的两个所述镜头之间的间距大于等于10毫米;
所述镜头矩阵中竖直方向上的各个所述镜头等间距设置,相邻的两个所述镜头之间的间距大于等于10毫米。
结合第一方面,本发明实施例提供了第一方面第三种可能的实施方式,其中,所述感光元件矩阵中的各个所述感光元件与所述第二基板一体成形;或者,所述感光元件矩阵中的各个所述感光元件焊接安装在所述第二基板上。
结合第一方面第三种可能的实施方式,本发明实施例提供了第一方面第四种可能的实施方式,其中,所述感光元件矩阵中的各个所述感光元件加工或焊接时,要求水平方向对应像素行对齐,垂直方向对应像素列对齐。
结合第一方面,本发明实施例提供了第一方面第五种可能的实施方式,其中,还包括控制电路板,所述控制电路板包括依次连接的模数转换器、数字信号处理器、控制模块和通信模块;
所述模数转换器,用于接收所述感光元件发送的模拟图像,将所述模拟图像转化为数字图像;
所述数字信号处理器,用于相机矩阵的***控制,完成图像采集的各种控制功能,包括图像采集、图像传输、图像增益和快门控制、通信协议交互管理、定时中断、任务切换、存储管理、相机参数设置、采集模式和采集格式定义;
所述控制模块,用于接收和发出拍摄触发信号以及在所述镜头为自动镜头时调节所述镜头的拍摄参数;
所述通信模块,用于在所述数字信号处理器的控制下将采集到的多幅所述数字图像按通讯协议输出到上位终端。
结合第一方面,本发明实施例提供了第一方面第六种可能的实施方式,其中,所述第一基板上开设有安装通孔,所述镜头矩阵中的所述镜头通过所述安装通孔安装在所述第一基板上。
结合第一方面第五种可能的实施方式,本发明实施例提供了第一方面第七种可能的实施方式,其中,还包括固定后壳,所述固定后壳与所述第一基板固定连接,所述控制电路板位于所述固定后壳内部,通过固定柱与所述第二基板固定连接。
结合第一方面第七种可能的实施方式,本发明实施例提供了第一方面第八种可能的实施方式,其中,所述固定后壳上设置有电源输入口和数据通信接口;
所述电源输入口用于,连接电源线,通过所述电源线为所述感光元件和所述控制电路板供电;
所述数据通信接口用于,连接数据线,所述控制模块和所述数字信号处理器通过所述数据线接收拍摄参数设置命令和所述拍摄触发信号,所述通信模块通过所述数据线将多幅所述数字图像输出。
结合第一方面上述的实施方式,本发明实施例提供了第一方面第九种可能的实施方式,其中,所述装置还包括镜头保护罩,所述镜头保护罩用于保护所述镜头矩阵中的各个镜头。
本发明实施例中,将多个镜头组成的镜头矩阵集成在同一块基板上,并且将多个感光元件组成的感光元件矩阵集成在同一块基板上,保持各个感光元件与各个镜头一一对应设置。与相关技术相比,由于本发明实施例中的基于工业数字相机矩阵的图像获取装置将多个镜头布置在同一块基板上,将多个感光元件组成的感光元件矩阵集成在同一块基板上,因此能够保证感光元件相互位置的几何精度,以及镜头光轴的平行以及矩阵结构的几何精度,也可以根据需要缩小相邻的镜头之间的距离。以上措施,保证了三维立体图像精确度和准确度更高,测量范围更大,相机的集成度更高,方便加工制作,使该装置成为真正意义上的三维图像采集装置。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本发明实施例所提供的图像获取装置的结构示意图;
图2示出了本发明实施例所提供的第一基板的结构示意图;
图3示出了本发明实施例所提供的图像获取装置的装配示意图;
图4示出了本发明实施例所提供的图像获取装置的***示意图;
图5示出了本发明实施例所提供的图像获取装置的装配剖面示意图;
图6示出了本发明实施例所提供的图像获取装置的固定后壳示意图;
图7示出了本发明实施例所提供的控制电路板的模块组成示意图。
附图标记如下:
第一基板100、镜头101、安装通孔102;
第二基板200、感光元件201;
控制电路板300、固定柱301;
固定后壳400、电源输入口401、数据通信接口402。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
考虑到相关技术中的图像拍摄方式无法拍摄得到几何位置关系满足精度要求的图像,导致最终得到的三维立体图像精确度和准确性有限,无法得到更加精准的三维立体图像,本发明提供了一种基于工业数字相机矩阵的图像获取装置,下面通过实施例进行具体描述。
图1示出了本发明实施例所提供的图像获取装置的结构示意图,如图1所示,本发明实施例中的图像获取装置包括相互平行设置的第一基板100和第二基板200;
第一基板100上设置有镜头矩阵,镜头矩阵中的各个镜头101的轴线分别垂直于第一基板100所在平面;
第二基板200朝向第一基板100的表面上设置有感光元件矩阵,感光元件矩阵中的各个感光元件201与各个镜头101一一对应设置。
本发明实施例中,将多个镜头组成的镜头矩阵集成在同一块基板上,并且将多个感光元件组成的感光元件矩阵集成在同一块基板上,保持各个感光元件与各个镜头一一对应设置。与相关技术相比,由于本发明实施例中的基于工业数字相机矩阵的图像获取装置将多个镜头布置在同一块基板上,将多个感光元件组成的感光元件矩阵集成在同一块基板上,因此能够保证感光元件相互位置的几何精度,以及镜头光轴的平行以及矩阵结构的几何精度,也可以根据需要缩小相邻的镜头之间的距离。以上措施,保证了三维立体图像精确度和准确度更高,测量范围更大,相机的集成度更高,方便加工制作,使该装置成为真正意义上的三维图像采集装置。
本发明实施例中,镜头为工业镜头,每个镜头与对应的感光元件组成一个工业数字相机,从而形成由多个工业数字相机形成的工业数字相机矩阵,其中,工业数字相机以下简称相机,工业数字相机矩阵以下简称相机矩阵。
上述镜头矩阵中的各个镜头101型号、类型完全相同,其可以为定焦镜头,也可以为变焦镜头。上述感光元件矩阵中的各个感光元件201的作用是将镜头101捕获到的光信号转变为电信号,以便于后续图像处理,其可以为CCD(Charge-coupled Device,图像传感器),也可以为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体),当然,也可以为其他公知的能够应用在图像获取过程中实现光信号转变为电信号的电器件。
由于每个镜头101捕获到的光信号需要准确进入对应的感光元件201,因此需要保证第一基板100和第二基板200相互平行,且各个感光元件201与各个镜头101一一对应设置。
第一基板100和第二基板200的连接精度应该能够满足第一基板100上镜头101的光轴垂直于第二基板200上的各个感光元件201,且穿过感光元件201的中心,同时感光元件201的感光面与镜头101之间的距离, 能够满足镜头清晰成像的要求。本发明实施例中,优选镜头矩阵中的各个镜头101以m×n形式设置,其中m大于等于2,n大于等于2。
具体地,镜头矩阵中的各个镜头101可以以2×2形式设置,或者2×3形式设置,或者3×3形式设置,或者4×5形式设置,这里不再做一一列举。
本实施例中,采用m×n形式设置各个镜头101,能够保证取景范围合适,拍摄到完整的被拍摄物体或被拍摄场景。
研究发现,镜头矩阵中各个镜头101之间的间距对拍摄视场范围存在影响,本实施例中,优选镜头矩阵中水平方向上的各个镜头101等间距设置,相邻的两个镜头101之间的间距大于等于10毫米,同样地,镜头矩阵中竖直方向上的各个镜头101等间距设置,相邻的两个镜头101之间的间距大于等于10毫米。
将镜头矩阵中水平方向上的各个镜头101等间距设置,以及镜头矩阵中竖直方向上的各个镜头101等间距设置,便于后期图像三维处理运算,便于第一基板100的生产和镜头101的安装。另外考虑到镜头矩阵中各个镜头101之间的间距过大时,拍摄得到的多张照片接近程度会下降,导致最终合成的三维立体图像精确度不高,另一种优选的实施方式中,优选镜头矩阵中水平方向上的各个镜头101等间距设置,相邻的两个镜头101之间的间距大于等于10毫米且小于等于120毫米,同样地,镜头矩阵中竖直方向上的各个镜头101等间距设置,相邻的两个镜头101之间的间距大于等于10毫米且小于等于120毫米。
使水平方向或者竖直方向相邻的两个镜头101之间的间距大于等于10毫米且小于等于120毫米,能够避免每张照片接近程度下降,导致最终合成的三维立体图像精确度不高的问题,还能够减小图像获取设备的尺寸,便于图像获取设备的生产加工。
需要说明的是,在水平方向或者竖直方向相邻的两个镜头101之间的间距大于等于10毫米的基础上,间距的上限不局限于120毫米,也可以是150毫米或者180毫米,可以根据实际需要确定。一般来说,镜头焦距值越大,拍摄物体的视场范围越大,相邻镜头的间距也需要越大。
为了进一步保证多个镜头101拍摄得到的图像规律有序,优选镜头矩阵中水平方向上相邻的两个镜头101之间的间距与镜头矩阵中竖直方向上相邻的两个镜头101之间的间距相等。
本领域技术人员能够理解,感光元件矩阵中的各个感光元件201与镜头矩阵中的各个镜头101一一对应设置,因此感光元件矩阵中的各个感光元件201的布设方式、各个感光元件201之间的间距均与各个镜头101一致,这里不再赘述。
图1中,感光元件矩阵中的各个感光元件201与第二基板200一体成形;或者,感光元件矩阵中的各个感光元件201焊接安装在第二基板200上。其中,第二基板200上的感光元件201加工或焊接时,要求水平方向对应像素行对齐,垂直方向对应像素列对齐。
相关技术中已有的各种类型的独立的感光元件201均包括CCD和/或CMOS,并且技术已经十分成熟,根据视场范围、测量精度和测量速度等要求,可以选择适合使用的感光元件201,然后设计对应的第二基板200,第二基板200可以采用PCB(Printed Circuit Board,印制电路板)电路板的方式,然后将各个感光元件201按照前述的镜头101的布设要求焊接在第二基板200上。采用焊接方式时,为了保证焊接精度,可使用专用的感光元件定位卡具,保证焊接后各感光元件201的位置精度。
采用焊接的方式将感光元件201焊接在第二基板200上。目前CCD和CMOS等感光元件基本都是按照像素的行和列的数量加工成矩形,由于三维运算时,要求同一行的对应坐标位置的像素行需要在同一条直线上,同时,同一列对应坐标位置的像素列也需要在同一条直线上,因此本实施例中要求各个感光元件201组成标准矩形时,感光元件矩阵中的像素所在的位置(该位置用行和列的值表示)也要组成对应的矩形结构,从而保证三维运算的精准度,所以,第二基板200上的感光元件201加工或焊接时,要求水平方向对应像素行对齐,垂直方向对应像素列对齐,从而保证三维运算的精准度。
由于,CCD和CMOS等感光元件的像素间距一般为微米级,感光元件201在焊接时很难保证其对应的像素行或列完全对齐,必然会产生对应像素行或列的相对偏移或相对旋转,为了弥补以上误差,就需要在加工后, 对以上加工误差进行测量和标定,可以在三维计算中进行弥补和软件上的修正。
或者,采用同步加工的方式将感光元件201与第二基板200一体成形。根据矩阵几何精度的需要,为保证感光元件矩阵中的各个像素位置也形成标准的矩形结构,提高三维运算的精度和速度,可以定制加工第二基板200,将各个感光元件201和第二基板200一体成形,在加工第二基板200的过程中加工完成各个感光元件201,也就是相当于加工一块由多个组成矩形的感光区域而形成的一个大型的CCD或CMOS。该方法避免了前述的焊接方法造成的误差,减少图像运算时间,使三维图像数据更加准确。
图2示出了本发明实施例所提供的第一基板100的结构示意图,如图2所示,第一基板100开设有安装通孔102,镜头矩阵中的镜头101通过安装通孔102安装在第一基板100上。
本发明实施例中,第一基板可采用加工中心一次成型的方式,或采用模型一次成型的方法,以便保证第一基板的几何精度满足要求。第一基板作为整个采集装置的安装和定位基础,其几何精度直接影响相机的精度,其几何精度的具体要求是:镜头和第二基板的上下安装面平行,两个平面间的距离符合清晰成像的精度要求,镜头安装通孔102与第一基板垂直,安装通孔102的位置精度满足要求等。
一种实施方式中,镜头101上设置有外螺纹,安装通孔102上设置有内螺纹,通过螺纹连接的方式将镜头101通过安装通孔102安装在第一基板100上。另一种实施方式中,镜头101上设置有第一卡接结构,安装通孔102上设置有第二卡接结构,通过卡接的方式将镜头101通过安装通孔102安装在第一基板100上,其中,卡接方式可以为卡扣连接。
基于前述内容,由于各个镜头101的布设方式和各个镜头101之间的间距需要满足一定要求,因此第一基板100上的各个安装通孔102也需要满足相同的要求,具体要求参见前述内容,这里不再赘述。
图3示出了本发明实施例所提供的图像获取装置的装配示意图,图4示出了本发明实施例所提供的图像获取装置的***示意图,如图3和图4所示,本实施例中的图像获取装置还包括固定后壳400,固定后壳400与 第一基板100固定连接,第二基板200位于固定后壳400内部。其中,固定后壳400可以与第一基板100螺纹连接,也可以与第一基板100卡接。
如图4所示,本实施例中的图像获取装置还包括控制电路板300,控制电路板300位于固定后壳400内部,第一基板100、第二基板200和控制电路板300依次排列,控制电路板300通过固定柱301与第二基板200固定连接,控制电路板300用于接收感光元件201输出的电信号,并进行模数转换、数据处理、存储、数据输出、采集参数设置、采集控制、采集触发和镜头控制等操作。
图5示出了本发明实施例所提供的图像获取装置的装配剖面示意图,如图5所示,第二基板200与第一基板100的上表面相接触,控制电路板300通过固定柱301与第二基板200固定连接,从而第二基板200和控制电路板300均与第一基板100固定连接,达到安装固定第二基板200和控制电路板300的目的。
本实施例中,为了保证镜头101与感光元件201之间的距离符合使用标准,在第二基板200与第一基板100相接触的情况下,设置第一基板100的厚度为18.656毫米,或者为13.656毫米。其中,当镜头101为C接口镜头时,第一基板100的厚度为18.656毫米,当镜头101为CS接口镜头时,第一基板100的厚度为13.656毫米。
由图5可以看出,第一基板100的下表面用于安装镜头101,第一基板100的上表面用于与第二基板200相接触。第一基板100的上表面包括位于两端的凸起结构,第一基板100的厚度指的是凸起结构的表面与第一表面之间的距离。
图6示出了本发明实施例所提供的图像获取装置的固定后壳400示意图,如图6所示,固定后壳400上设置有电源输入口401和数据通信接口402,电源输入口401用于连接电源线,通过电源线为感光元件201和控制电路板300供电,数据通信接口402用于连接数据线,向控制电路板300发送数据,并将控制电路板300输出的数据输出。
考虑到镜头101的易破损性,另外一种实施方式中,图像获取装置还包括镜头保护罩,镜头保护罩覆盖在镜头101表面,用于保护镜头矩阵中的各个镜头101。优选地,镜头保护罩与第一基板100固定连接,覆盖第 一基板100上的各个镜头101,从而避免镜头101损坏。镜头保护罩覆盖可以为塑料材质。
图7是本发明实施例所提供的控制电路板的模块组成示意图,如图7所示,本发明实施例中的控制电路板300包括依次连接的模数转换器701、数字信号处理器702、控制模块703和通信模块704;模数转换器701,用于接收感光元件201发送的模拟图像,将模拟图像转化为数字图像;数字信号处理器702,用于相机矩阵的***控制,完成图像采集的各种控制功能,包括图像采集、图像传输、图像增益和快门控制、通信协议交互管理、定时中断、任务切换、存储管理、相机参数设置、采集模式和采集格式定义等;控制模块703,用于接收和发出拍摄触发信号以及在镜头101为自动镜头时调节镜头101的拍摄参数;通信模块704,用于在数字信号处理器702的控制下将采集到的多幅数字图像按通讯协议输出到上位终端。其中,拍摄参数包括镜头101的焦距、光圈和清晰度。
具体地,数字信号处理器702类似嵌入式计算机上的CPU(Central Processing Unit,中央处理器)芯片,其可以是DSP(Digital Signal Processing,数字信号处理器)、ARM(Acorn RISC Machine,RISC微处理器)、FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)等芯片,是整个图像采集***的控制核心。数字信号处理器702运行时,首先调入内嵌程序,与上位终端通讯,执行相机的初始化命令,设置相机参数,例如曝光时间、触发方式、图像增益等,将相机内部参数发送到上位终端,例如相机编号等,在得到拍摄命令后,控制各个相机的图像采集,采集完成后,依次将图像传输到上位终端。
当图像拍摄采用软触发时,上位终端向通信模块704发送拍摄触发信号,通信模块704将该拍摄触发信号发送至数字信号处理器702,数字信号处理器702根据该拍摄触发信号将镜头101聚焦在感光元件201上的光信号采集得到模拟图像信号,并控制模数转换器701将模拟图像转化为数字图像,以及控制通信模块704将多幅数字图像输出至上位终端。
当图像拍摄采用硬触发时,上位终端向通信模块704发送拍摄触发信号,通信模块704将该拍摄触发信号发送至控制模块703,控制模块703将该拍摄触发信号发送至数字信号处理器702,数字信号处理器702根据 该拍摄触发信号控制感光元件201将聚焦在感光元件201上的光信号,采集得到模拟图像信号,并控制模数转换器701将模拟图像转化为数字图像,以及控制通信模块704将多幅数字图像输出至上位终端。
本发明实施例中,模数转换器701的数量与镜头101的数量和感光元件201的数量一致,图7中以四个镜头为例进行说明。
如图7所示,控制电路板300还包括非易失性存储器705和电源模块706,电源模块706分别与控制电路板300上的各个用电器件电连接,为各个用电器件供电。非易失性存储器705与数字信号处理器702连接,用于存储数字信号处理器702在图像处理过程中生成的变量以及多幅数字图像。
上述通信模块704包括:数据交换电路或设备以及对应的输出输入接口。数据交换电路或设备就像网络交换机,可以将相机矩阵采集到的图像集中到同一个网络接口输出,也可以采用多个网络接口并行输出,输出接口的数量与采集图像需要的时间相对应。
通信模块704的输出输入接口包括:***总线接口、网络设备接口和I/O控制接口,***总线接口、网络设备接口和I/O控制接口分别与数字信号处理器702连接,网络设备接口和I/O控制接口分别与电源模块706连接。***总线接口,用于将采集得到的多幅数字图像通过***总线传输出去,网络设备接口,用于将得到的多幅数字图像通过网络设备传输出去,I/O控制接口和控制模块703连接,用于接收外部设备发出的拍摄触发信号。
上述***总线接口,包括但不限于:RS-232/485接口、1394接口、USB接口和camerlink接口。上述网络设备接口,包括但不限于:RJ-45接口、RJ-11接口、SC光纤接口、FDDI接口、AUI接口、BNC接口和Console接口,还可以是3G、4G、WIFI(WIreless-Fidelity,无线保真)等无线网络接口。
对应如图7所示的控制电路板300,上述数据通信接口402具体用于连接数据线,控制模块703和数字信号处理器702通过数据线接收上位终端发送的拍摄参数设置命令和上述拍摄触发信号,该拍摄触发信号能够由 图像获取装置的上位终端发送,通信模块704通过数据线将多幅数字图像输出,优选输出至该图像获取装置的上位终端。
本实施例中,第二基板200和控制电路板300之间通过电路接口进行连接,在具体电路设计过程中,可根据外壳尺寸和具体情况,将控制电路板300部分模块例如模数转换电路上移到第二基板200,或为了缩小电路板面积,将控制电路板300部分模块分割为另一个电路板,以上的改变,并不影响具体相机功能的实现,只是方便了封装和外形尺寸的设计要求。
本发明实施例中的图像获取装置能够放置在拍摄场景中,对被拍摄物体进行拍照,其中,各个镜头和感光元件可组成一个单独的相机,本发明实施例是将组成平行矩阵的多个相机加工在一套机器盒内,形成三维立体图像采集装置。
本发明实施例中的图像获取装置在拍摄图像之前,需要对该装置的一些具体参数进行标定和检测,标定和检测的内容包括:镜头的焦距、畸变、光轴几何位置;感光元件的几何位置关系、实际测量间距、行和列的偏移和旋转等等,标定和检测需要采用专用标定设备和软件,标定完成后,需要将测量后的参数提供给三维图像处理软件,将相关测量尺寸输入三维运算公式,计算三维坐标尺寸,同时,通过软件补偿制造和安装误差,提高三维数据精度。
上述图像采集装置,一般采用同步方式采集物体多幅平面二维图像。在获得拍摄信号后,各个感光元件获取各个镜头传输的光信号,控制电路板将光信号转变为相应的电信号,将电信号转换为平面二维图像的数据格式,得到的多幅平面二维图像通过数据通信接口402传输至外部图像数据处理装置进行处理,通过外部图像数据处理装置对多幅平面二维图像进行处理,进而得到被拍摄物体的三维立体图像。
其中,外部图像数据处理装置对矩阵平面二维图像形式的图像数据进行处理的过程为:对拍摄得到的多张图像进行特征点匹配运算,根据匹配好的特征点像坐标,计算特征点的空间位置坐标,根据得到的各个特征点的空间位置坐标,计算被测物的其它需要特别测量的三维尺寸,形成三维点云数据,建立三维点云图形,进行三维立体重现。
需要说明的是,本发明实施例中,设置相邻的四个镜头101组成的矩阵为图像获取单元,当镜头101只有四个时,则存在一个图像获取单元,当镜头101大于四个时,则每次向右或者向下偏移一个镜头,采用镜头可以重叠的原则确定多个图像获取单元,如镜头101为6个镜头组成的矩阵时,则得到两个图像获取单元,其中有两个镜头101为重叠状态,在两个图像获取单元中均出现。
本实施例中,按照相邻的四个镜头101组成的矩阵为图像获取单元,对每个图像获取单元获取得到的图像进行处理,从而得到被拍摄物体的三维立体图像。
以上图像获取装置以及对应的外部图像数据处理装置获取物体三维数据的方式,与人眼看世界的方式相同,由于采用平面矩阵方式拍摄二维图像,就像人从不同角度看物体一样,通过标准程序运算,将不同位置图像上,同一特征点的视差计算出来,就能够得到物体的三维外形尺寸。
由于目前三维运算计算量巨大,独立和小型的电路难以胜任如此海量的运算,只能将三维运算放置在上位运算的终端上,未来随着计算芯片功能的逐步强大,以及功耗的逐步降低,相信未来一定会出现本地三维数据自动处理的电路板和芯片。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接, 也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种基于工业数字相机矩阵的图像获取装置,其特征在于,包括相互平行设置的第一基板和第二基板;
    所述第一基板上设置有镜头矩阵,所述镜头矩阵中的各个镜头的轴线分别垂直于所述第一基板所在平面;
    所述第二基板朝向所述第一基板的表面上设置有感光元件矩阵,所述感光元件矩阵中的各个感光元件与各个所述镜头一一对应设置。
  2. 根据权利要求1所述的装置,其特征在于,所述镜头矩阵中的各个所述镜头以m×n形式设置,其中m大于等于2,n大于等于2。
  3. 根据权利要求2所述的装置,其特征在于,所述镜头矩阵中水平方向上的各个所述镜头等间距设置,相邻的两个所述镜头之间的间距大于等于10毫米;
    所述镜头矩阵中竖直方向上的各个所述镜头等间距设置,相邻的两个所述镜头之间的间距大于等于10毫米。
  4. 根据权利要求1所述的装置,其特征在于,所述感光元件矩阵中的各个所述感光元件与所述第二基板一体成形;或者,所述感光元件矩阵中的各个所述感光元件焊接安装在所述第二基板上。
  5. 根据权利要求4所述的装置,其特征在于,所述感光元件矩阵中的各个所述感光元件加工或焊接时,要求水平方向对应像素行对齐,垂直方向对应像素列对齐。
  6. 根据权利要求1所述的装置,其特征在于,还包括控制电路板,所述控制电路板包括依次连接的模数转换器、数字信号处理器、控制模块和通信模块;
    所述模数转换器,用于接收所述感光元件发送的模拟图像,将所述模拟图像转化为数字图像;
    所述数字信号处理器,用于相机矩阵的***控制,完成图像采集的各种控制功能,包括图像采集、图像传输、图像增益和快门控制、通信协议交互管理、定时中断、任务切换、存储管理、相机参数设置、采集模式和采集格式定义;
    所述控制模块,用于接收和发出拍摄触发信号以及在所述镜头为自动镜头时调节所述镜头的拍摄参数;
    所述通信模块,用于在所述数字信号处理器的控制下将采集到的多幅所述数字图像按通讯协议输出到上位终端。
  7. 根据权利要求1所述的装置,其特征在于,所述第一基板上开设有安装通孔,所述镜头矩阵中的所述镜头通过所述安装通孔安装在所述第一基板上。
  8. 根据权利要求6所述的装置,其特征在于,还包括固定后壳,所述固定后壳与所述第一基板固定连接,所述控制电路板位于所述固定后壳内部,通过固定柱与所述第二基板固定连接。
  9. 根据权利要求8所述的装置,其特征在于,所述固定后壳上设置有电源输入口和数据通信接口;
    所述电源输入口,用于连接电源线,通过所述电源线为所述感光元件和所述控制电路板供电;
    所述数据通信接口,用于连接数据线,所述控制模块和所述数字信号处理器通过所述数据线接收拍摄参数设置命令和所述拍摄触发信号,所述通信模块通过所述数据线将多幅所述数字图像输出。
  10. 根据权利要求1至9任一项所述的装置,其特征在于,所述装置还包括镜头保护罩,所述镜头保护罩用于保护所述镜头矩阵中的各个镜头。
PCT/CN2016/100543 2016-09-13 2016-09-28 一种基于工业数字相机矩阵的图像获取装置 WO2018049698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,478 US10887497B2 (en) 2016-09-13 2016-09-28 Image acquisition apparatus based on industrial digital camera matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610822489.X 2016-09-13
CN201610822489.XA CN106210704B (zh) 2016-09-13 2016-09-13 一种基于工业数字相机矩阵的图像获取装置

Publications (1)

Publication Number Publication Date
WO2018049698A1 true WO2018049698A1 (zh) 2018-03-22

Family

ID=58067298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100543 WO2018049698A1 (zh) 2016-09-13 2016-09-28 一种基于工业数字相机矩阵的图像获取装置

Country Status (3)

Country Link
US (1) US10887497B2 (zh)
CN (1) CN106210704B (zh)
WO (1) WO2018049698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240040220A1 (en) * 2022-07-27 2024-02-01 Kwok Wah Allen Lo Camera having imaging lenses with varied inter-lens spacings

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346398A (zh) * 2017-01-24 2018-07-31 上海珏芯光电科技有限公司 显示驱动平板装置其驱动方法
CN107289869A (zh) * 2017-06-08 2017-10-24 杭州联络互动信息科技股份有限公司 一种利用矩阵镜头进行3d测量的方法、装置及***
CN107390174A (zh) * 2017-08-07 2017-11-24 深圳欧沃机器人有限公司 一种光敏矩阵定位方法及装置
CN112639390A (zh) * 2019-11-21 2021-04-09 北京机电研究所有限公司 用于三维尺寸的动态测量装置及其测量方法
CN111107321B (zh) * 2019-12-27 2021-06-18 浙江大华技术股份有限公司 多目影像采集装置的对应关系匹配方法、装置及存储介质
CN212628053U (zh) * 2020-06-17 2021-02-26 深圳市道通科技股份有限公司 一种相机组结构
CN112995810B (zh) * 2021-04-22 2021-08-10 常州微亿智造科技有限公司 适用高速并发数据的工业数据传输***
CN114217502B (zh) * 2021-12-16 2022-10-28 北京拙河科技有限公司 一种亿级像素宽视场相机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203416328U (zh) * 2013-07-26 2014-01-29 瑞声声学科技(苏州)有限公司 阵列式摄像头模组
CN104917937A (zh) * 2014-03-10 2015-09-16 奇景光电股份有限公司 影像撷取组件及其镜头单元阵列
US20150288861A1 (en) * 2014-04-07 2015-10-08 Pelican Imaging Corporation Systems and Methods for Correcting for Warpage of a Sensor Array in an Array Camera Module by Introducing Warpage into a Focal Plane of a Lens Stack Array
CN205336395U (zh) * 2016-01-08 2016-06-22 华天科技(昆山)电子有限公司 阵列摄像模组结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236591A1 (en) * 2006-04-11 2007-10-11 Tam Samuel W Method for mounting protective covers over image capture devices and devices manufactured thereby
US20070263114A1 (en) * 2006-05-01 2007-11-15 Microalign Technologies, Inc. Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
EP4336447A1 (en) * 2008-05-20 2024-03-13 FotoNation Limited Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN101770060B (zh) * 2008-12-27 2014-03-26 鸿富锦精密工业(深圳)有限公司 相机模组及其组装方法
US8599307B2 (en) * 2011-07-25 2013-12-03 Aptina Imaging Corporation Method and apparatus for rapid verification of imaging systems
US9420158B2 (en) * 2012-07-16 2016-08-16 Sony Corporation System and method for effectively implementing a lens array in an electronic device
EP3177003B1 (en) * 2012-09-19 2021-06-30 LG Innotek Co., Ltd. Camera module
CN104052980A (zh) * 2013-03-12 2014-09-17 耿征 真三维图像采集装置、显示***及显示控制方法
CN203250098U (zh) * 2013-05-07 2013-10-23 宁波舜宇光电信息有限公司 多芯片阵列模组
CN104717482A (zh) * 2015-03-12 2015-06-17 天津大学 多光谱多景深阵列拍摄方法与拍摄相机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203416328U (zh) * 2013-07-26 2014-01-29 瑞声声学科技(苏州)有限公司 阵列式摄像头模组
CN104917937A (zh) * 2014-03-10 2015-09-16 奇景光电股份有限公司 影像撷取组件及其镜头单元阵列
US20150288861A1 (en) * 2014-04-07 2015-10-08 Pelican Imaging Corporation Systems and Methods for Correcting for Warpage of a Sensor Array in an Array Camera Module by Introducing Warpage into a Focal Plane of a Lens Stack Array
CN205336395U (zh) * 2016-01-08 2016-06-22 华天科技(昆山)电子有限公司 阵列摄像模组结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240040220A1 (en) * 2022-07-27 2024-02-01 Kwok Wah Allen Lo Camera having imaging lenses with varied inter-lens spacings

Also Published As

Publication number Publication date
US10887497B2 (en) 2021-01-05
US20190260980A1 (en) 2019-08-22
CN106210704B (zh) 2018-03-30
CN106210704A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018049698A1 (zh) 一种基于工业数字相机矩阵的图像获取装置
WO2018049699A1 (zh) 一种基于***头矩阵的图像获取装置
US10491883B2 (en) Image capturing device
US9774831B2 (en) Thin form factor computational array cameras and modular array cameras
KR100910175B1 (ko) 입체영상 생성용 이미지센서
CN107005640B (zh) 图像传感器单元和成像装置
JP2007322128A (ja) カメラモジュール
CN106813595B (zh) 三相机组特征点匹配方法、测量方法及三维检测装置
JP2015049200A (ja) 計測装置、方法及びプログラム
JP5897328B2 (ja) ステレオカメラ及びその製造方法
TW201837438A (zh) 3d成像光電模組
CN113055575A (zh) 图像传感器、摄像头模组及电子设备
TWI674472B (zh) 具有至少三個鏡頭的全景影像擷取裝置及其全景影像擷取模組
CN206004842U (zh) 一种基于工业数字相机矩阵的图像获取装置
JP5832222B2 (ja) カメラ装置
CN206024010U (zh) 一种基于***头矩阵的图像获取装置
WO2016051871A1 (ja) 多眼撮像装置及びその製造方法、情報端末装置
US20150288916A1 (en) Integrated circuit device and image processing apparatus
JP2013061560A (ja) 測距装置および撮像装置
US10080011B1 (en) Light field imaging apparatus
JP2012007906A (ja) 測距装置及び撮像装置
CN206905713U (zh) 三维检测装置
JP2009145654A (ja) ステレオ画像形成装置
TWI565318B (zh) 用於空間受限位置中之成像系統及方法
KR20120063237A (ko) 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916078

Country of ref document: EP

Kind code of ref document: A1