WO2018048135A1 - Power inductor - Google Patents

Power inductor Download PDF

Info

Publication number
WO2018048135A1
WO2018048135A1 PCT/KR2017/009460 KR2017009460W WO2018048135A1 WO 2018048135 A1 WO2018048135 A1 WO 2018048135A1 KR 2017009460 W KR2017009460 W KR 2017009460W WO 2018048135 A1 WO2018048135 A1 WO 2018048135A1
Authority
WO
WIPO (PCT)
Prior art keywords
external electrode
substrate
power inductor
coil patterns
plating
Prior art date
Application number
PCT/KR2017/009460
Other languages
French (fr)
Korean (ko)
Inventor
김경태
서태근
박상준
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170074170A external-priority patent/KR101981466B1/en
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Priority to CN201780054636.6A priority Critical patent/CN109690709B/en
Priority to US16/326,185 priority patent/US11476037B2/en
Priority to JP2019512663A priority patent/JP2019530219A/en
Priority to EP17849019.9A priority patent/EP3511962B1/en
Publication of WO2018048135A1 publication Critical patent/WO2018048135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof

Definitions

  • the present invention relates to a power inductor, and more particularly, to a power inductor capable of preventing a short with a peripheral device and a method of manufacturing the same.
  • Power inductors are mainly provided in power supply circuits such as DC-DC converters in portable devices. Such power inductors are increasingly being used in place of the conventional coiled choke coils due to the high frequency and miniaturization of power circuits. In addition, power inductors are being developed in the direction of miniaturization, high current, and low resistance according to the size reduction and multifunction of portable devices.
  • Conventional power inductors have been manufactured in the form of stacked ceramic sheets made of a plurality of ferrites or low dielectric constant dielectrics.
  • a coil pattern is formed on the ceramic sheet, and the coil patterns formed on each ceramic sheet are connected by conductive vias formed in the ceramic sheet, and may have a structure overlapping along the vertical direction in which the sheets are stacked.
  • a body formed by laminating ceramic sheets has been conventionally manufactured using a magnetic material composed of quaternary systems of nickel (Ni) -zinc (Zn) -copper (Cu) -iron (Fe).
  • the magnetic material may not implement the high current characteristic required by recent portable devices because the saturation magnetization value is lower than that of the metal material. Therefore, by manufacturing the body constituting the power inductor using metal powder, the saturation magnetization value can be relatively increased as compared with the case in which the body is made of magnetic material.
  • eddy current loss and hysteresis loss at high frequencies may increase, resulting in a serious loss of material.
  • a structure insulating a polymer between metal powders is applied. That is, the body of the power inductor is manufactured by laminating sheets mixed with metal powder and polymer.
  • a predetermined substrate on which a coil pattern is formed is provided inside the body. That is, a coil pattern is formed on a predetermined substrate, and a plurality of sheets are stacked and pressed on the upper side and the lower side thereof to manufacture a power inductor.
  • an external electrode formed on the lower surface of the body is mounted on a printed circuit board (PCB).
  • the power inductor is mounted adjacent to a power management IC (PMIC).
  • PMIC power management IC
  • the PMIC has a thickness of about 1 mm, and power inductors are also manufactured to the same thickness. Since PMIC generates high frequency noise and affects peripheral circuits or devices, the PMIC and power inductor are covered with a shield can made of metal such as stainless steel. However, since the external electrode of the power inductor extends to the lower surface and the upper surface, the external electrode on the upper surface of the power inductor is shorted with the shield can.
  • the power inductor can be formed by applying a conductive paste to the external electrode. That is, an external electrode is formed by applying a metal paste to both sides of the body to be connected to the coil pattern. In addition, an external electrode may be formed by further forming a plating layer on the metal paste. However, the external electrode formed using the metal paste may be separated from the body due to the weak bonding force. That is, a tensile force may act on the power inductor mounted in the electronic device. A power inductor having an external electrode formed using a metal paste may have a weak tensile strength, and thus, the body and the external electrode may be separated.
  • the present invention provides a power inductor capable of preventing short of external electrodes.
  • the present invention provides a power inductor capable of preventing a short with the shield can by preventing an external electrode from being exposed on the upper side of the body.
  • the present invention provides a power inductor capable of improving tensile strength.
  • a power inductor includes a body including a metal powder and an insulator; At least one substrate provided in the body; At least one coil pattern formed on at least one surface of the substrate; And external electrodes formed on at least two side surfaces of the body, the external electrodes including at least a part of the same material as the coil pattern.
  • the coil pattern and the external electrode each contain copper.
  • the coil pattern is formed on the substrate by a plating process, and the external electrode is formed by at least a region in contact with the coil pattern by the plating process.
  • the external electrode includes a first layer in contact with the coil pattern, and at least one second layer formed of a material different from the first layer on the first layer.
  • the metal powder comprises at least one material having at least two sizes.
  • the coil patterns formed on one surface and the other surface of the substrate are formed at the same height, and are formed at least 2.5 times higher than the thickness of the substrate.
  • the surface insulating layer is formed on at least one surface of the body in which the external electrode is not formed.
  • the capping insulating layer is formed on one surface opposite to the mounting surface of the body, and is formed so that the external electrode extending on the one surface is not exposed.
  • the capping insulating layer is formed to a thickness equal to or thicker than the surface insulating layer.
  • a capping insulating layer may be formed on the upper surface of the body to prevent the external electrode from being exposed, thereby preventing a short between the external electrode, a shield can, and an adjacent component.
  • the external electrode connected to the coil pattern may be formed of the same material as the coil pattern, and may be formed by the same method as the coil pattern. That is, at least some thicknesses of the external electrodes contacting the side surfaces of the body and connected to the coil patterns may be formed using the same material as the coil patterns, for example, copper using plating. Therefore, the bonding force between the body and the external electrode can be improved, and thus the tensile strength can be improved.
  • parylene may be formed on the coil pattern in a uniform thickness, thereby improving insulation between the body and the coil pattern.
  • At least two or more substrates each having a coil-shaped coil pattern formed on at least one surface thereof may be provided in the body to form a plurality of coils in one body, thereby increasing the capacity of the power inductor.
  • FIG. 1 is a combined perspective view of a power inductor according to a first embodiment of the present invention.
  • FIG. 2 and 3 are cross-sectional views taken along the line AA ′ of FIG. 1 in accordance with a first embodiment of the present invention and variations thereof.
  • FIGS. 4 and 5 are an exploded perspective view and a partial plan view of the power inductor according to the first embodiment of the present invention.
  • FIGS. 6 and 7 are cross-sectional views of coil patterns inside a power inductor according to a first embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional schematic diagrams of a power inductor according to an insulating layer material.
  • FIG. 10 is a side view of a power inductor according to a first embodiment of the present invention.
  • FIG. 11 is a graph showing the tensile strength of the power inductor according to the prior art and the embodiment of the present invention.
  • FIG. 12 is a cross-sectional schematic diagram after a tensile strength test of a power inductor according to an embodiment of the present invention.
  • FIG. 13 and 14 are cross-sectional views of a power inductor according to second embodiments of the present invention.
  • FIG. 15 is a perspective view of a power inductor according to a third embodiment of the present invention.
  • 16 and 17 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 15.
  • 18 and 19 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 13 according to a modified example of the third embodiment of the present invention.
  • FIG. 20 is a perspective view of a power inductor according to a fourth embodiment of the present invention.
  • 21 and 22 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 20;
  • FIG. 23 is an interior plan view of FIG. 20;
  • FIG. 24 is a perspective view of a power inductor according to a fifth embodiment of the present invention.
  • 25 and 26 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 24;
  • 27 to 29 are cross-sectional views sequentially illustrating a method of manufacturing a power inductor according to an embodiment of the present invention.
  • FIG. 1 is a perspective view illustrating a coupling of a power inductor according to a first embodiment of the present invention
  • FIGS. 2 and 3 illustrate a first embodiment of the present invention and a modified example thereof, taken along a line AA ′ of FIG. 1.
  • It is a cross section. 4 is an exploded perspective view of a power inductor according to a first embodiment of the present invention
  • FIG. 5 is a plan view of the substrate and the coil pattern
  • FIGS. 6 and 7 are cross-sectional views of the substrate and the coil pattern for explaining the shape of the coil pattern. to be.
  • 8 and 9 are cross-sectional schematics of a power inductor according to an insulating layer material
  • FIG. 10 is a side view of the power inductor.
  • the power inductor according to the first embodiment of the present invention includes a body 100a, 100b; 100, a substrate 200 provided inside the body 100, and at least a portion of the substrate 200.
  • Coil patterns 310, 320; 300 formed on one surface and external electrodes 410, 420; 400 provided outside the body 100 may be included.
  • the display device may further include at least one of the capping insulation layers 550 formed on at least an upper surface of the body 100 on which the external electrodes 400 are formed.
  • the body 100 may have a hexahedron shape. Of course, the body 100 may have a polyhedron shape other than a hexahedron.
  • the body 100 may include a metal powder 110 and an insulator 120 as shown in FIG. 2, and may further include a thermally conductive filler 130 as shown in FIG. 3.
  • the metal powder 110 may have an average particle diameter of 1 ⁇ m to 100 ⁇ m.
  • the metal powder 110 may use a single particle or two or more kinds of powders of the same size, or may use a single powder or two or more kinds of powders having a plurality of sizes.
  • the first metal powder having an average particle diameter of 20 ⁇ m to 100 ⁇ m
  • the second metal powder having an average particle diameter of 2 ⁇ m to 20 ⁇ m
  • the third metal powder having an average particle diameter of 1 ⁇ m to 10 ⁇ m It can mix and use.
  • the metal powder 110 is a first metal powder having an average value of particle size or a median value of particle size distribution (D50) of 20 ⁇ m to 100 ⁇ m, and an average value of particle size or a medium value (D50) of a particle size distribution of 2 ⁇ m.
  • a second metal powder having a thickness of ⁇ 20 ⁇ m and a third metal powder having an average value of particle size or a median value D50 of the particle size distribution of 1 ⁇ m to 10 ⁇ m may be included.
  • the first metal powder may be larger than the second metal powder, and the second metal powder may be larger than the third metal powder.
  • the metal powders may be powders of the same material or powders of different materials.
  • the mixing ratio of the first, second and third metal powders may be, for example, 5-9: 0.5-2.5: 0.5-2.5, and preferably 7: 1: 2. That is, 50 wt% to 90 wt% of the first metal powder, 5 wt% to 25 wt% of the second metal powder, and 5 wt% to 25 wt% of the third metal powder may be mixed with respect to 100 wt% of the metal powder 110. .
  • the first metal powder may be included in more than the second metal powder, and the second metal powder may be included in the same or less than the third metal powder.
  • the metal powder 110 is at least two, preferably three or more metal powder having an average particle diameter is uniformly distributed throughout the body 100, the permeability may be uniform throughout the body 100.
  • the filling rate of the body 100 may be increased to maximize the capacity. For example, when a metal powder of 30 ⁇ m is used, voids may occur between the metal powder of 30 ⁇ m, and thus the filling rate may be lowered.
  • the metal powder 110 may use a metal material including iron (Fe), for example iron-nickel (Fe-Ni), iron-nickel-silicon (Fe-Ni-Si), iron-aluminum- It may include one or more metals selected from the group consisting of silicon (Fe-Al-Si) and iron-aluminum-chromium (Fe-Al-Cr). That is, the metal powder 110 may be formed of a metal alloy having magnetic structure or magnetic properties including iron, and may have a predetermined permeability.
  • the surface of the metal powder 110 may be coated with a magnetic material, and the metal powder 110 may be coated with a material having a different permeability.
  • the magnetic material may include a metal oxide magnetic material, which is selected from the group consisting of nickel oxide magnetic material, zinc oxide magnetic material, copper oxide magnetic material, manganese oxide magnetic material, cobalt oxide magnetic material, barium oxide magnetic material, and nickel-zinc-copper oxide magnetic material.
  • nickel oxide magnetic material which is selected from the group consisting of nickel oxide magnetic material, zinc oxide magnetic material, copper oxide magnetic material, manganese oxide magnetic material, cobalt oxide magnetic material, barium oxide magnetic material, and nickel-zinc-copper oxide magnetic material.
  • One or more oxide magnetic materials selected may be used. That is, the magnetic body coated on the surface of the metal powder 110 may be formed of a metal oxide containing iron, it is preferable to have a higher permeability than the metal powder (110).
  • the metal powder 110 since the metal powder 110 is magnetic, when the metal powder 110 contacts each other, insulation may be destroyed and a short may be generated.
  • the metal powder 110 may be coated with at least one insulator on its surface.
  • the metal powder 110 may be coated with an oxide on a surface thereof, or may be coated with an insulating polymer material such as parylene, which is preferably coated with parylene.
  • Parylene may be coated with a thickness of 1 ⁇ m to 10 ⁇ m.
  • the parylene is formed to a thickness of less than 1 ⁇ m, the insulating effect of the metal powder 110 may be reduced.
  • the size of the metal powder 110 is increased to increase the size of the body 100.
  • the distribution of the metal powder 110 in the interior may be reduced, so that the permeability may be lowered.
  • the surface of the metal powder 110 may be coated using various insulating polymer materials in addition to parylene.
  • the oxide coating the metal powder 110 may be formed by oxidizing the metal powder 110, TiO 2 , SiO 2 , ZrO 2 , SnO 2 , NiO, ZnO, CuO, CoO, MnO, MgO, Al One selected from 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , B 2 O 3 and Bi 2 O 3 may be coated.
  • the metal powder 110 may be coated with an oxide having a dual structure, and may be coated with a dual structure of an oxide and a polymer material.
  • the metal powder 110 may be coated with an insulator after the surface is coated with a magnetic material.
  • the surface of the metal powder 110 is coated with an insulator, it is possible to prevent a short due to contact between the metal powder 110.
  • the metal powder 110 may be coated with an oxide, an insulating polymer material, or the like, or may be coated with a thickness of 1 ⁇ m to 10 ⁇ m even when the magnetic material and the insulator are double coated.
  • Insulator 120 may be mixed with metal powder 110 to insulate between metal powder 110. That is, the metal powder 110 may have a problem that the loss of material is increased due to high eddy current loss and hysteresis loss at a high frequency. Insulation 120 that insulates the metal powder 110 to reduce the loss of such material may occur. ) Can be included.
  • the insulator 120 may include one or more selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP), but is not limited thereto.
  • the insulator 120 may be made of a thermosetting resin to provide insulation between the metal powders 110.
  • thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin.
  • Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin).
  • DCPD Type Epoxy Resin PD Type Epoxy Resin
  • the insulator 120 may be included in an amount of 2.0 wt% to 5.0 wt% with respect to 100 wt% of the metal powder.
  • the insulator 120 may be included in a range so as not to lower the saturation magnetization value and inductance of the metal powder 110.
  • the power inductor manufactured by using the metal powder 110 and the insulator 120 has a problem that the inductance is lowered as the temperature rises. That is, the temperature of the power inductor increases due to the heat generation of the electronic device to which the power inductor is applied, and as a result, the inductance decreases as the metal powder 110 forming the body of the power inductor is heated.
  • the body 100 may include a thermally conductive filler 130 to solve the problem that the body 100 is heated by external heat. That is, the metal powder 110 of the body 100 may be heated by external heat, and the heat conductive filler 130 may be included to release heat of the metal powder 110 to the outside.
  • the thermally conductive filler 130 may include one or more selected from the group consisting of MgO, AlN, carbon-based materials, Ni-based ferrites, Mn-based ferrites, and the like, but is not limited thereto.
  • the carbon-based material may include carbon and have various shapes, for example, graphite, carbon black, graphene, graphite, or the like.
  • the Ni-based ferrite may include NiO.ZnO.CuO-Fe 2 O 3
  • the Mn-based ferrite may include MnO.ZnO.CuO-Fe 2 O 3 .
  • the thermally conductive filler is preferable because it can be formed of a ferrite material to increase the permeability or to prevent the permeability decrease.
  • the thermally conductive filler 130 may be dispersed and contained in the insulator 120 in powder form.
  • the thermally conductive filler 130 may be included in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder 110.
  • the content of the thermally conductive filler 130 is less than the above range, it is not possible to obtain a heat dissipation effect.
  • the content of the thermally conductive filler 130 is exceeded, the content of the metal powder 110 is lowered, thereby lowering the permeability of the body 100.
  • the thermally conductive filler 130 may have, for example, a size of 0.5 ⁇ m to 100 ⁇ m.
  • the thermally conductive filler 130 may have a size equal to, larger than, or smaller than the size of the metal powder 110.
  • the thermally conductive filler 130 may have a heat dissipation effect according to its size and content. For example, as the size and content of the thermally conductive filler 130 increase, the heat dissipation effect may be high.
  • the body 100 may be manufactured by stacking a plurality of sheets made of a material including the metal powder 110, the insulator 120, and the thermally conductive filler 130.
  • the content of the thermally conductive filler 130 of each sheet may be different.
  • the content of the thermally conductive filler 130 in the sheet may increase as it moves toward the upper side and the lower side with respect to the substrate 200. That is, the content of the thermally conductive filler 130 may be different in the vertical direction, that is, Z direction. In addition, the thermally conductive filler 130 may have a different content in at least one of the horizontal direction, that is, the X direction and the Y direction. That is, the content of the thermally conductive filler 130 in the same sheet may be different. Meanwhile, the body 100 is formed by printing a paste made of a material including the metal powder 110, the insulator 120, and the thermally conductive filler 130 to a predetermined thickness, or by pressing such paste into a mold and pressing the paste.
  • the number of sheets laminated to form the body 100 or the thickness of the paste printed with a predetermined thickness may be determined to an appropriate number or thickness in consideration of electrical characteristics such as inductance required by the power inductor.
  • the body 100 has been described as a modified example that further includes a thermally conductive filler, it should be understood that the body 100 may further include a thermally conductive filler even if not mentioned in the description of the other embodiments below. do.
  • the bodies 100a and 100b disposed above and below the substrate 200 may be connected to each other through the substrate 200. That is, at least a portion of the substrate 200 may be removed and a portion of the body 100 may be filled in the removed portion. As such, at least a part of the substrate 200 is removed and the body 100 is filled in the portion, thereby reducing the area of the substrate 200 and increasing the proportion of the body 100 in the same volume, thereby increasing the permeability of the power inductor. .
  • the substrate 200 may be provided inside the body 100.
  • the substrate 200 may be provided in the long axis direction of the body 100, that is, in the direction of the external electrode 400 inside the body 100.
  • one or more substrates 200 may be provided.
  • two or more substrates 200 may be spaced apart by a predetermined interval in a direction orthogonal to the direction in which the external electrode 400 is formed, for example, in a vertical direction. Can be.
  • two or more substrates may be arranged in the direction in which the external electrode 400 is formed.
  • the substrate 200 may be made of, for example, copper clad lamination (CCL) or a magnetic metal.
  • the substrate 200 may be made of a magnetic metal to increase permeability and facilitate capacity implementation.
  • the CCL is manufactured by bonding a copper foil to glass-reinforced fibers. Since the CCL does not have a permeability, the permeability of the power inductor may be reduced. However, when the magnetic metal is used as the substrate 200, the magnetic magnetic material has a magnetic permeability, so that the magnetic permeability of the power inductor is not lowered.
  • Substrate 200 using such a magnetic metal material is a metal containing iron, for example iron-nickel (Fe-Ni), iron-nickel-silicon (Fe-Ni-Si), iron-aluminum-silicon (Fe-Al -Si) and iron-aluminum-chromium (Fe-Al-Cr) can be produced by bonding a copper foil to a plate of a predetermined thickness consisting of at least one metal selected from the group consisting of. That is, the substrate 200 may be manufactured by manufacturing an alloy made of at least one metal including iron into a plate shape having a predetermined thickness, and bonding a copper foil to at least one surface of the metal plate.
  • iron-Ni iron-nickel
  • Fe-Ni-Si iron-nickel-silicon
  • Fe-Al -Si iron-aluminum-silicon
  • Fe-Al-Cr iron-aluminum-chromium
  • At least one conductive via 210 may be formed in a predetermined region of the substrate 200, and coil patterns 310 and 320 formed on the upper side and the lower side of the substrate 200 by the conductive via 210, respectively. This can be electrically connected.
  • the conductive via 210 may be formed by forming a via (not shown) penetrating along the thickness direction of the substrate 200 and then filling the via with a conductive paste.
  • at least one of the coil patterns 310 and 320 may be grown from the conductive via 210, and thus at least one of the conductive via 210 and the coil patterns 310 and 320 may be integrally formed.
  • at least a portion of the substrate 200 may be removed.
  • the substrate 200 may have other regions except for regions overlapping the coil patterns 310 and 320.
  • the through hole 220 may be formed by removing the substrate 200 inside the coil patterns 310 and 320 having a spiral shape, and the substrate 200 outside the coil patterns 310 and 320. Can be removed. That is, the substrate 200 has a racetrack shape along the outer shape of the coil patterns 310 and 320, and a region facing the external electrode 400 along the shape of the ends of the coil patterns 310 and 320. It may be formed in a straight shape. Therefore, the outer side of the substrate 200 may be provided in a curved shape with respect to the edge of the body 100.
  • the body 100 may be filled in the portion where the substrate 200 is removed as shown in FIG. 5. That is, the upper and lower bodies 100a and 100b are connected to each other through the removed region including the through hole 220 of the substrate 200. Meanwhile, when the substrate 200 is made of a magnetic metal, the substrate 200 may be in contact with the metal powder 110 of the body 100.
  • an inner insulating layer 500 such as parylene may be formed on the side surface of the substrate 200.
  • the inner insulation layer 500 may be formed on the side surface of the through hole 220 and the outer surface of the substrate 200.
  • the substrate 200 may be provided in a wider width than the coil patterns 310 and 320.
  • the substrate 200 may remain at a predetermined width below the coil patterns 310 and 320 at a predetermined width.
  • the substrate 200 may protrude about 0.3 ⁇ m from the coil patterns 310 and 320. Can be formed.
  • the substrate 200 may be smaller than the area of the cross-section of the body 100 by removing the inner region and the outer region of the coil patterns (310, 320).
  • the substrate 200 may be provided in an area ratio of 40 to 80.
  • the area ratio of the substrate 200 is high, the permeability of the body 100 may be low, and when the area ratio of the substrate 200 is low, the formation areas of the coil patterns 310 and 320 may be reduced. Accordingly, the area ratio of the substrate 200 may be adjusted in consideration of the magnetic permeability of the body 100, the line width and the number of turns of the coil patterns 310 and 320.
  • the coil patterns 310, 320; 300 may be formed on at least one surface of the substrate 200, preferably on both surfaces thereof.
  • the coil patterns 310 and 320 may be formed in a spiral shape in a predetermined area of the substrate 200, for example, from the center portion to an outward direction, and two coil patterns 310 and 320 formed on the substrate 200 are connected to each other.
  • the coil patterns 310 and 320 may be formed in a spiral form from the outside of the through hole 220 formed in the center of the substrate 200, and may be connected to each other through the conductive via 210 formed in the substrate 200.
  • the upper coil pattern 310 and the lower coil pattern 320 may be formed in the same shape with each other and may be formed at the same height.
  • the coil patterns 310 and 320 may be formed to overlap each other, or the coil patterns 320 may be formed to overlap the region where the coil pattern 310 is not formed. Meanwhile, the ends of the coil patterns 310 and 320 may be formed to extend outward in a straight line shape, and may be formed along the short side center portion of the body 100. In addition, an area in contact with the external electrodes 400 of the coil patterns 310 and 320 may be wider than other areas as shown in FIGS. 4 and 5. A part of the coil patterns 310 and 320, that is, the lead portion is formed to have a wide width, thereby increasing the contact area between the coil patterns 310 and 320 and the external electrode 400, thereby lowering the resistance.
  • the coil patterns 310 and 320 may extend in the width direction of the external electrode 400 in one region where the external electrode 400 is formed.
  • the end portions of the coil patterns 310 and 320, that is, the lead portions drawn out toward the external electrode 400 may be formed in a straight line toward the side center portion of the body 100.
  • the coil patterns 310 and 320 may be electrically connected by the conductive vias 210 formed in the substrate 200.
  • the coil patterns 310 and 320 may be formed by, for example, thick film printing, coating, deposition, plating, and sputtering, and are preferably formed by plating.
  • the coil patterns 310 and 320 and the conductive via 210 may be formed of a material including at least one of silver (Ag), copper (Cu), and a copper alloy, but is not limited thereto.
  • a plating process for example, a metal layer, for example, a copper layer may be formed on the substrate 200 by a plating process, and patterned by a lithography process.
  • the coil patterns 310 and 320 may be formed by forming and patterning a copper layer by using a copper foil formed on the surface of the substrate 200 as a seed layer.
  • a plating process is performed to grow a metal layer from the exposed surface of the substrate 200, and then the photosensitive film is removed to remove the coil patterns 310 and 320 of the predetermined shape. It may be formed.
  • the coil patterns 310 and 320 may be formed in multiple layers. That is, a plurality of coil patterns may be further formed above the coil pattern 310 formed above the substrate 200, and a plurality of coil patterns may be formed below the coil pattern 320 formed below the substrate 200. It may be further formed.
  • an insulating layer may be formed between the lower layer and the upper layer, and conductive vias (not shown) may be formed in the insulating layer to connect the multilayer coil patterns.
  • the coil patterns 310 and 320 may be formed at least 2.5 times higher than the thickness of the substrate 200.
  • the substrate 200 may be formed to a thickness of 10 ⁇ m to 50 ⁇ m, and the coil patterns 310 and 320 may be formed to a height of 50 ⁇ m to 300 ⁇ m.
  • the coil patterns 310 and 320 according to the present invention may be formed in a double structure. That is, as shown in FIG. 6, the first plating film 300a and the second plating film 300b formed to cover the first plating film 300a may be included.
  • the second plating film 300b is formed to cover the top and side surfaces of the first plating film 300a, and the second plating film 300b is formed thicker on the top surface than the side surfaces of the first plating film 300a.
  • the first plating film 300a is formed so that the side surface has a predetermined inclination
  • the second plating film 300b is formed so that the side surface has less inclination than the side surface of the first plating film 300a.
  • the first plating film 300a is formed so that the side surface has an obtuse angle from the surface of the base material 200 outside the first plating film 300a, and the second plating film 300b is less than the first plating film 300a. It is formed to have a small angle, preferably a right angle. As shown in FIG. 7, the first plating film 300a may be formed such that a ratio of the width a of the upper surface to the width b of the lower surface is 0.2: 1 to 0.9: 1. a: b may be formed to be 0.4: 1 to 0.8: 1.
  • the first plating film 300a may be formed such that the ratio of the width b and the height h of the lower surface is 1: 0.7 to 1: 4, preferably 1: 1 to 1: 2. It may be formed to. That is, the first plating film 300a may be formed to have a narrower width from the lower surface to the upper surface, and a predetermined slope may be formed on the side surface. In order to make the first plating film 300a have a predetermined inclination, an etching process may be performed after the first plating process.
  • the second plated film 300b formed to cover the first plated film 300a is preferably formed to have a substantially rectangular shape in which the side surface is preferably vertical and there are few regions rounded between the top surface and the side surface.
  • the shape of the second plating film 300b may be determined according to a ratio of the width a of the upper surface of the first plating film 300a and the width b of the lower surface of the second plating film 300a.
  • variety d of a lower surface become large ratio.
  • the second plating film 300b may have a lower surface.
  • the width of the upper surface is wider than the width of the side may be acute angle with the substrate 200.
  • the ratio (a: b) of the width of the upper surface of the first plating film 300a to the width of the lower surface of the first plating film 300a is less than 0.2: 1, the second plating film 300b may have a rounded upper surface from a predetermined region of the side surface. Can be formed.
  • the width b of the lower surface of the first plating film 300a and the width d of the lower surface of the second plating film 300b may have a ratio of 1: 1.2 to 1: 2.
  • An interval e between the width b of the lower surface of the plating film 300a and the adjacent first plating film 300a may have a ratio of 1.5: 1 to 3: 1.
  • the second plating films 300b do not contact each other.
  • the coil pattern 300 including the first and second plating layers 300a and 300b may have a ratio (c: d) of a width between an upper surface and a lower surface of about 0.5: 1 to about 0.9: 1. 0.6: 1 to 0.8: 1. That is, the outer shape of the coil pattern 300, that is, the outer shape of the second plating film 300b may have a ratio of a width between an upper surface and a lower surface of 0.5 to 0.9: 1. Therefore, the coil pattern 300 may be less than 0.5 compared to the ideal rectangular shape in which the rounded area of the corner of the upper surface forms a right angle. For example, the rounded area may be 0.001 or more and less than 0.5, compared with an ideal rectangular shape forming a right angle.
  • the coil pattern 300 according to the present invention does not have a large resistance change compared to the ideal rectangular shape.
  • the coil pattern 300 according to the present invention can maintain 101 to 110. That is, according to the shape of the first plating film 300a and the shape of the second plating film 300b changed accordingly, the resistance of the coil pattern 300 of the present invention is 101% compared to the resistance of the ideal coil pattern having a square shape. To about 110%.
  • the second plating film 300b may be formed using the same plating solution as that of the first plating film 300a.
  • the first and second plating films 300a and 300b use plating solutions based on copper sulfate and sulfuric acid, and plating solutions in which plating properties of products are improved by adding chlorine (Cl) and organic compounds in ppm units. It can be formed using.
  • the organic compound may improve the uniformity, electrodeposition properties, and gloss characteristics of the plated film by using a carrier and a gloss agent including PEG (PolyEthylene Glycol).
  • the coil pattern 300 may be formed by stacking at least two plating layers. At this time, each plating layer may be formed by stacking the sides of the same vertical and the same shape and thickness. That is, the coil pattern 300 may be formed by a plating process on the seed layer, for example, three plating layers may be stacked on the seed layer.
  • the coil pattern 300 may be formed by an anisotropic plating process, and may have an aspect ratio of about 2 to about 10.
  • the coil pattern 300 may be formed in a shape in which the width increases from the innermost circumference to the outermost circumference. That is, the spiral coil pattern 300 may have n patterns formed from the innermost circumference to the outermost circumference. For example, when four patterns are formed, the second and third patterns may be formed from the first pattern of the innermost circumference. The width of the pattern may increase as the outermost fourth pattern is formed. For example, when the width of the first pattern is 1, the second pattern is formed at a ratio of 1 to 1.5, the third pattern is formed at a ratio of 1.2 to 1.7, and the fourth pattern is formed at a ratio of 1.3 to 2. Can be formed.
  • the first to fourth patterns may be formed in a ratio of 1: 1 to 1.5: 1.2 to 1.7: 1.3 to 2.
  • the second pattern is formed to be equal to or larger than the width of the first pattern
  • the third pattern is formed to be larger than or equal to the width of the first pattern and equal to or larger than the width of the second pattern
  • the fourth pattern is formed from the first and the first pattern.
  • the width of the second pattern may be greater than or equal to the width of the third pattern.
  • the width of the seed layer may be wider from the innermost circumference to the outermost circumference.
  • the coil pattern may be formed to have a different width in at least one region in the vertical direction. That is, the widths of the lower end, the stop and the upper end of at least one region may be different.
  • the external electrodes 410, 420; 400 may be formed on two surfaces of the body 100 facing each other.
  • the external electrode 400 may be formed on two side surfaces that face each other in the X direction of the body 100.
  • the external electrode 400 may be electrically connected to the coil patterns 310 and 320 of the body 100.
  • the external electrode 400 may be formed on both sides of the body 100, and may be in contact with the coil patterns 310 and 320 at the center of the two sides. That is, the ends of the coil patterns 310 and 320 may be exposed to the outer center portion of the body 100 and the external electrode 400 may be formed on the side of the body 100 to be connected to the ends of the coil patterns 310 and 320. .
  • the external electrode 400 may be formed by various methods such as conductive epoxy, conductive paste, deposition, sputtering, plating, and the like. Meanwhile, the external electrode 400 may be formed only on both side surfaces and the bottom surface of the body 100, or may also be formed on the top surface, the front surface, and the rear surface of the body 100. For example, when immersed in the conductive paste, the external electrode 400 may be formed not only on both sides of the X direction, but also on the front and rear surfaces in the Y direction, and the upper and lower surfaces in the Z direction. In contrast, when formed by printing, deposition, sputtering, plating, or the like, the external electrode 400 may be formed on both side surfaces of the X direction and a bottom surface of the Y direction.
  • the external electrode 400 may be formed not only on both side surfaces of the X direction and the bottom surface of the printed circuit board, but also in other areas according to the formation method or process conditions.
  • the external electrode 400 may be formed by mixing, for example, glass frit of a multi-component system based on 0.5% to 20% of Bi 2 O 3 or SiO 2 with metal powder. That is, part of the external electrode 400 in contact with the body 100 may be formed of a conductive material mixed with glass. In this case, the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the body 100. That is, when a part of the external electrode 400 is formed using the conductive paste, the glass frit may be mixed with the conductive paste. As the glass frit is included in the external electrode 400, the adhesion between the external electrode 400 and the body 100 may be improved, and the contact reaction between the coil pattern 300 and the external electrode 400 may be improved.
  • the external electrode 400 may be formed of a metal having electrical conductivity.
  • the external electrode 400 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof.
  • the embodiment of the present invention is formed on at least a portion of the external electrode 400 that is connected to the coil pattern 300, that is, on the surface of the body 100 to form the first layers 411 and 421 connected to the coil pattern 300.
  • the coil pattern 300 is formed of copper
  • at least a part of the external electrode 400, that is, the first layers 411 and 412 may be formed of copper.
  • copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like.
  • at least the first layers 411 and 421 of the external electrode 400 may be formed by the same method as the coil pattern 300, that is, plating.
  • the entire thickness of the external electrode 400 is formed by copper plating, or the first layer 411 is formed in contact with the surface of the body 100 by being connected to a part of the thickness of the external electrode 400, that is, the coil pattern 300.
  • 421 may be formed by copper plating.
  • seed layers may be formed on both sides of the body 100, and then the external electrode 400 may be formed by forming a plating layer from the seed layer.
  • the coil pattern 300 exposed to the outside of the body 100 may serve as a seed to form the external electrode 400 by plating without forming a separate seed layer.
  • an acid treatment process may be performed before a plating process. That is, the plating process may be performed after hydrochloric acid treatment on at least one surface of the body 100. Even if the external electrode 400 is formed by plating, the external electrode 400 may extend to both opposite sides of the body 100 as well as to other adjacent sides, that is, an upper surface and a lower surface thereof.
  • the external electrode 400 connected to the coil pattern 300 may be an entire side surface of the body 100 on which the external electrode 400 is formed, or may be a partial region.
  • the external electrode 400 may further include at least one plating layer. That is, the external electrode 400 may include first layers 411 and 412 connected to the coil pattern 300 and at least one second layer 412 and 422 formed thereon. That is, the second layers 412 and 422 may be one layer or two or more layers.
  • the external electrode 400 may further include at least one of a nickel plating layer (not shown) and a tin plating layer (not shown) on the copper plating layer.
  • the external electrode 400 may be formed of a laminated structure of a copper layer, a Ni plating layer, and a Sn plating layer, and may be formed of a laminated structure of a copper layer, a Ni plating layer, and a Sn / Ag plating layer.
  • plating can be performed by electrolytic or electroless plating.
  • the first layers 411 and 412 may be formed by electroless plating, and the remaining thickness may be formed by electroless plating, or the entire thickness may be formed by electroless plating or electrolytic plating.
  • the second layers 411 and 412 may also be formed by electroless plating with a part of thickness and the remaining thickness by electroplating, or may be formed by electroless plating or electroplating.
  • the first layers 411 and 412 are formed by electroless or electrolytic plating
  • the second layers 411 and 412 are formed by electroless or electrolytic plating in the same manner as the first layers 411 and 412 or the first is formed.
  • they may be formed by electrolytic or electroless plating.
  • the Sn plating layers of the second layers 412 and 422 may be formed to have the same or thicker thickness as the Ni plating layer.
  • the external electrode 400 may be formed to have a thickness of 2 ⁇ m to 100 ⁇ m
  • the first layers 411 and 412 may be formed to have a thickness of 1 ⁇ m to 50 ⁇ m
  • the second layer 412 may be formed.
  • the external electrodes 400 may have the same thickness or different thicknesses of the first layers 411 and 412 and the second layers 412 and 422.
  • the first layers 411 and 412 may be thinner or thicker than the second layers 412 and 422.
  • the thicknesses of the first layers 411 and 412 are thinner than those of the second layers 412 and 422.
  • the second layers 412 and 422 may have a Ni plating layer having a thickness of 1 ⁇ m to 10 ⁇ m, and the Sn or Sn / Ag plating layer may have a thickness of 2 ⁇ m to 10 ⁇ m.
  • the thickness of the external electrode 400 may be formed by using the same material as the coil pattern 300 and formed in the same manner, thereby improving the bonding force between the body 100 and the external electrode 400. That is, by forming at least a portion of the external electrode 400 by copper plating, the coupling force between the coil pattern 300 and the external electrode 400 may be improved.
  • the power inductor according to the present invention may have a tensile strength of 2.5kgf to 4.5kgf. Therefore, the present invention can improve the tensile strength than the conventional, so that the body may not be separated from the electronic device mounted with the power inductor of the present invention.
  • the inner insulating layer 500 may be formed between the coil patterns 310 and 320 and the body 100 to insulate the coil patterns 310 and 320 and the metal powder 110. That is, the inner insulation layer 500 may be formed to cover the top and side surfaces of the coil patterns 310 and 320. In addition, the internal insulation layer 500 may be formed to cover the substrate 200 as well as the top and side surfaces of the coil patterns 310 and 320. That is, the inner insulation layer 500 may be formed on the exposed area, that is, the surface and the side surface of the substrate 200, of the substrate 200 in which the predetermined region is removed. The inner insulation layer 500 on the substrate 200 may be formed to have the same thickness as the inner insulation layer 500 on the coil patterns 310 and 320.
  • the internal insulation layer 500 may be formed by coating parylene on the coil patterns 310 and 320.
  • parylene may be deposited on the coil patterns 310 and 320 by preparing the substrate 200 on which the coil patterns 310 and 320 are formed in the deposition chamber, and then supplying the parylene into the vacuum chamber.
  • parylene is first heated and vaporized in a vaporizer to make a dimer, followed by second heating to thermally decompose into a monomer, and connected to a deposition chamber.
  • the parylene is cooled by using a trap and a mechanical vacuum pump, the parylene is converted into the polymer state from the monomer state and deposited on the coil patterns 310 and 320.
  • the inner insulating layer 500 may be formed of one or more materials selected from insulating polymers other than parylene, for example, epoxy, polyimide, and liquid crystal crystalline polymer.
  • the internal insulation layer 500 may be formed on the coil patterns 310 and 320 with a uniform thickness, and even when formed with a thin thickness, the insulation characteristics may be improved compared to other materials. That is, in the case of coating the parylene as the internal insulation layer 500, the insulating property may be improved by increasing the dielectric breakdown voltage while forming a thinner thickness than in the case of forming the polyimide.
  • the gap between the patterns of the coil patterns 310 and 320 may be buried between the patterns to have a uniform thickness or may be formed to have a uniform thickness along the step difference of the pattern. That is, when the distance between the patterns of the coil patterns 310 and 320 is far, parylene may be coated with a uniform thickness along the step of the pattern, and when the distance between the patterns is close, the coil patterns 310 may be buried between the patterns. , 320 may be formed to a predetermined thickness.
  • 8 is an actual cross-sectional schematic diagram of a power inductor formed of an insulating layer of polyimide
  • FIG. 9 is an actual cross-sectional schematic diagram of a power inductor formed of an insulating layer of parylene. As shown in FIG.
  • the internal insulating layer 500 can be formed to a thickness of 3 ⁇ m to 100 ⁇ m using parylene. If the parylene is formed to a thickness of less than 3 ⁇ m may reduce the insulating properties, when formed to a thickness of more than 100 ⁇ m thickness of the inner insulating layer 500 in the same size increases the body 100 The volume can be small and thus the permeability can be lowered.
  • the inner insulation layer 500 may be formed on the coil patterns 310 and 320 after being made of a sheet having a predetermined thickness.
  • the surface insulating layer 510 may be formed on the surface of the body 100 on which the external electrode 400 is not formed. That is, the surface insulating layer 510 may be formed in a predetermined region of four surfaces of the body 100 in which the external electrode 400 is not formed.
  • the surface insulating layer 510 may have two surfaces (ie, front and rear surfaces) that face each other in the Y direction, and external electrodes 400 of two surfaces (ie, bottom and top surfaces) that face each other in the Z direction. It may be formed in the non-region.
  • the external electrode 400 is formed on two surfaces in the X direction and extends to a predetermined width from the edges of the four surfaces in the Y and Z directions, so that the surface insulating layer 510 is formed at the central portion of the four surfaces in the Y and Z directions. Can be.
  • the surface insulating layer 510 may be formed to form the external electrode 400 by a plating process at a desired position. That is, since the body 100 has almost the same surface resistance, when the plating process is performed, the plating process may be performed on the entire surface of the body 100. Therefore, by forming the surface insulating layer 510 in a region where the external electrode 400 is not formed, the external electrode 400 can be formed at a desired position.
  • the surface insulating layer 510 may be formed of an insulating material, for example, at least one selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP). It can be formed as.
  • the surface insulating layer 550 may be formed of a thermosetting resin. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin. Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin).
  • the surface insulating layer 510 may be formed of a material used as the insulator 120 of the body 100.
  • the surface insulating layer 510 may be formed by applying or printing a polymer or a thermosetting resin to a predetermined region of the body 100. Therefore, the surface insulating layer 510 may be formed at the center of four surfaces in the Y direction and the Z direction.
  • the surface insulating layer 510 may be formed of parylene, and may be formed using various insulating materials such as silicon oxide film (SiO 2 ), silicon nitride film (Si 3 N 4 ), and silicon oxynitride film (SiON). . When formed of these materials can be formed using a variety of methods, such as CVD, PVD method. Meanwhile, the surface insulating layer 510 may be formed to have a thickness equal to or different from that of the external electrode 400, for example, 3 ⁇ m to 30 ⁇ m.
  • a surface modification member (not shown) may be formed on at least one surface of the body 100.
  • the surface modification member may be formed by, for example, distributing an oxide on the surface of the body 100.
  • the oxide may be dispersed and distributed on the surface of the body 100 in a crystalline state or an amorphous state.
  • at least a portion of the surface modification member distributed on the surface may be melted.
  • the surface modification member may be formed on at least one surface of the body 100 before forming the external electrode 400. That is, the surface modification member may be formed before forming the surface insulating layer 510, or may be formed after forming the surface insulating layer 510. By forming the surface modification member, the resistance of the surface of the body 100 may be maintained to be substantially the same.
  • the surface resistance of at least one region of the body 100 may be different, plating growth may be performed in a region having low resistance, and plating growth may be low or not in a region having high resistance.
  • the surface of the body 100 exposed by the surface insulating layer 510 may have a region where the metal powder is exposed and a region where the metal powder is not exposed.
  • the region where the metal powder is exposed may be more resistant than the region where the metal powder is exposed. This may be low, and the plating layer may be grown better than the region where the resistance is low, so that the plating layer may be uneven. Therefore, by forming the surface modification member on the surface of the body 100, it is possible to make the resistance uniform and thereby to make the plating layer grow uniform.
  • the surface modification member may be evenly distributed on the surface of the body 100 in the same size, at least a portion may be irregularly distributed in different sizes.
  • a recess may be formed on at least part of the surface of the body 100. That is, the surface modification member may be formed to form a convex portion, and at least a portion of the region where the surface modification member is not formed may be recessed to form a recess. At this time, at least a portion of the surface modification member may be formed deeper than the surface of the body 100. That is, the surface modification member may be formed with a predetermined thickness to be embedded at a predetermined depth of the body 100 and the remaining thickness is higher than the surface of the body 100.
  • the thickness of the body 100 may be 1/20 to 1 of the average diameter of the oxide particles. That is, all of the oxide particles may be embedded into the body 100, and at least some may be embedded.
  • the oxide particles may be formed only on the surface of the body 100. Therefore, the oxide particles may be formed in a hemispherical shape on the surface of the body 100, or may be formed in a spherical shape.
  • the surface modification member may be partially distributed on the surface of the body 100 as described above, or may be distributed in at least one region in the form of a film. That is, the oxide particles may be distributed in the form of islands on the surface of the body 100 to form a surface modification member.
  • oxides in a crystalline state or an amorphous state may be distributed in an island form on the surface of the body 100, and thus at least a portion of the surface of the body 100 may be exposed.
  • the oxide may be formed as a film in at least one region and at least a portion thereof in an island form by connecting at least two surface modification members. That is, at least two or more oxide particles may be aggregated or adjacent oxide particles may be connected to form a film. However, even when the oxide is present in the form of particles or when two or more particles are aggregated or connected, at least a part of the surface of the body 100 is exposed to the outside by the surface modification member.
  • the total area of the surface modification member may be, for example, 5% to 90% of the total surface area of the body 100.
  • the plating bleeding phenomenon of the surface of the body 100 may be controlled according to the area of the surface modifying member.
  • contact between the conductive pattern inside the body 100 and the external electrode 400 may be difficult. . That is, when the surface modification member is formed to less than 5% of the surface area of the body 100, it is difficult to control the plating bleeding phenomenon.
  • the surface modification member is formed to exceed 90%, the conductive pattern and the external electrode 400 inside the body 100 May not be contacted.
  • the surface modification member may control the plating bleeding phenomenon and may be formed in an area that can be in contact with the conductive pattern inside the body 100 and the external electrode 400.
  • the surface modification member may be formed of 10% to 90% of the surface area of the body 100, preferably 30% to 70% of the area, more preferably 40% to 50% of the area It can be formed as.
  • the surface area of the body 100 may be the surface area of one surface, or may be the surface area of six surfaces of the body 100 forming a hexahedron.
  • the surface modification member may be formed to a thickness of 10% or less of the thickness of the body 100. That is, the surface modification member may be formed to a thickness of 0.01% to 10% of the thickness of the body 100.
  • the surface modification member may exist in a size of 0.1 ⁇ m to 50 ⁇ m, and thus the surface modification member may be formed to a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the body 100. That is, the surface modification member may be formed to have a thickness of 0.1 ⁇ m to 50 ⁇ m from the surface of the body 100 except for a region that is stuck to the surface of the body 100. Accordingly, when the thickness of the body 100 is embedded, the surface modification member may have a thickness greater than 0.1 ⁇ m to 50 ⁇ m.
  • the surface modification member is formed to be less than 0.01% of the thickness of the body 100, it is difficult to control the plating bleeding phenomenon, and if formed to a thickness of more than 10% of the thickness of the body 100, the conductive inside the body 100 The pattern and the external electrode 400 may not be in contact. That is, the surface modification member may have various thicknesses according to material properties (conductivity, semiconductivity, insulation, magnetic material, etc.) of the body 100, and may have various thicknesses according to the size, distribution amount, or aggregation of oxide powder. .
  • the surface modification member is formed on the surface of the body 100
  • at least two regions having different components may exist on the surface of the body 100. That is, different components may be detected in the region where the surface modification member is formed and the region where the surface modification member is not formed.
  • the region in which the surface modification member is formed may have a component according to the surface modification member, that is, an oxide
  • the region in which the surface modification member is not formed may include a component according to the body 100, that is, a component of the sheet.
  • the surface of the body 100 may have at least one resistance different from that of the other regions. If the plating process is performed in a state where the resistance is uneven, growth unevenness of the plating layer may occur.
  • the surface of the body 100 may be modified by dispersing oxides in a particle state or a molten state on the surface of the body 100 to form a surface modification member, and the growth of the plating layer may be controlled.
  • the oxide in the granular or molten state for uniform surface resistance of the body 100 is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al 2 At least one or more of O 3 , MnO, H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used.
  • the surface modification member may be formed on at least one sheet in the body 100. That is, although the conductive patterns of various shapes on the sheet may be formed by a plating process, the shape of the conductive patterns can be controlled by forming the surface modification member.
  • a capping insulating layer 550 may be formed on the upper surface of the body 100 on which the external electrode 400 is formed. That is, a printed circuit board;
  • the capping insulation layer 550 may be formed on the upper surface of the body 100, for example, in the Z direction, which faces the lower surface of the body 100 mounted on the PCB.
  • the capping insulating layer 550 may be formed to prevent a short between the external electrode 400 formed on the upper surface of the body 100, a shield can, or a circuit component on the upper side and a power inductor. That is, in the power inductor, the external electrode 400 formed on the lower surface of the body 100 is mounted on the printed circuit board adjacent to the PMIC (Power Management IC).
  • PMIC Power Management IC
  • the PMIC has a thickness of about 1 mm. Made to be the same thickness. Because PMICs generate high-frequency noise that affects peripheral circuits or devices, the PMIC and power inductor are covered with a shield can made of metal, such as stainless steel. However, the power inductor is shorted with the shield can because the external electrode is also formed on the upper side. Therefore, the capping insulating layer 550 may be formed on the upper surface of the body 100 to prevent a short between the power inductor and the external conductor.
  • the capping insulating layer 550 may be formed of an insulating material.
  • the capping insulating layer 550 may be formed of one or more selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP).
  • the capping insulating layer 550 may be formed of a thermosetting resin.
  • thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin. Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin). That is, the capping insulation layer 550 may be formed of a material used as the insulator 120 or the surface insulation layer 510 of the body 100.
  • the capping insulating layer 550 may be formed by immersing the upper surface of the body 100 in a polymer, a thermosetting resin, or the like. Accordingly, the capping insulation layer 550 may not only have a top surface of the body 100 as shown in FIGS. 1 and 10, but also a portion of both sides of the body 100 in the X direction and a portion of the front and rear surfaces in the Y direction. It may be formed in.
  • the capping insulating layer 550 may be formed of parylene, and may be formed using various insulating materials such as silicon oxide film (SiO 2 ), silicon nitride film (Si 3 N 4 ), and silicon oxynitride film (SiON). .
  • the capping insulating layer 550 When formed of these materials can be formed using a variety of methods, such as CVD, PVD method.
  • the capping insulating layer 550 When the capping insulating layer 550 is formed by CVD or PVD, the capping insulating layer 550 may be formed only on the upper surface of the body 100.
  • the capping insulating layer 550 may be formed to a thickness that can prevent the short, such as the external electrode 400 and the shield can of the power inductor 100, for example, formed to a thickness of 10 ⁇ m ⁇ 100 ⁇ m
  • the capping insulating layer 550 may be formed to have a thickness equal to or different from that of the external electrode 400, and may be formed to have a thickness equal to or different from the thickness of the surface insulating layer 510.
  • the capping insulating layer 550 may be formed thicker than the external electrode 400 and the surface insulating layer 510.
  • the capping insulation layer 550 may be thinner than the external electrode 400 and have the same thickness as the surface insulation layer 510.
  • the capping insulating layer 550 may be formed to have a uniform thickness on the upper surface of the body 100 so that the step is maintained between the external electrode 400 and the body 100, the external electrode 400 and the body 100.
  • the upper surface of the body 100 may be formed thicker than the upper portion of the external electrode 400 so that the step difference is eliminated.
  • the capping insulating layer 550 may be separately formed to a predetermined thickness and then bonded to the body 100 using an adhesive or the like.
  • the capping insulating layer 550 is formed on the upper surface of the body 100 so that the external electrode 400 is not exposed, so that the external electrode 400 can be shielded. It is possible to prevent the short from contact with the back.
  • the coupling force between the body 100 and the external electrode 400 may be improved by forming at least a part of the thickness of the external electrode 400 using the same material as the coil pattern 300. That is, by forming the external electrode 400 by copper plating, the bonding force between the coil pattern 300 and the external electrode 400 may be improved. Therefore, the tensile strength can be improved, so that the body can not be separated from the electronic device in which the power inductor of the present invention is mounted.
  • the heat of the body 100 may be released to the outside by heating the metal powder 110. It is possible to prevent the temperature rise of the body 100, thereby preventing problems such as inductance lowering.
  • the inner insulation layer 500 is formed between the coil patterns 310 and 320 and the body 100 using parylene to form an inner insulation layer with a thin and uniform thickness on the side surfaces and the upper surfaces of the coil patterns 310 and 320. Insulating characteristics can be improved while forming 500.
  • the external electrode 400 may be formed of copper plating in the same manner as the coil pattern 300, thereby improving the bonding force between the external electrode 400 and the coil pattern 300.
  • the tensile strength of the embodiment of the present invention in which the external electrode is formed by copper plating and the conventional example in which the epoxy is applied and formed are compared experimentally.
  • the wire was soldered on the external electrode, and the tensile strength was measured by pulling the soldered wire. That is, the tensile strength was measured when the body 100 was torn by pulling the wire or when the external electrode 400 and the body 100 were separated.
  • the conventional example was formed by applying silver epoxy to the external electrode
  • Example 1 was formed by electroplating the external electrode
  • Example 2 was formed by electroless plating and electrolytic plating.
  • Other shapes of the body, the substrate, the coil pattern, etc. are the same as the conventional examples and the embodiments.
  • each of the tensile strength was measured and the average was calculated.
  • the tensile strength indicates the force when the external electrode is separated from the body by increasing the pulling force of the wire.
  • the prior art has a tensile strength measured from 2.057 kgf to 2.9910 kgf, with an average of 2.679 kgf.
  • Example 1 measured tensile strength from 2.884 kgf to 4.285 kgf, with an average of 3.603.
  • Example 2 measured the tensile strength from 2.959kgf to 3.940kgf, with an average of 3.453kgf.
  • dark and large marks are averages in the drawings, and light colors are other means of distribution of measured values.
  • Example 1 of the embodiments of the present invention formed with an external electrode by electroplating is higher than Example 2 formed by electroless plating and electrolytic plating. Therefore, embodiments of the present invention can improve the bonding force between the external electrode and the body or coil pattern, and thus there is no problem in that the body is separated when mounted in the electronic device.
  • the present invention may cause a phenomenon in which the body is broken when the tensile force is continuously applied. That is, as shown in FIG. 12, when the tensile force is continuously applied, the body may be broken. That is, although the external electrode is conventionally separated from the body according to the tensile force, in the embodiment of the present invention, the coupling force between the coil pattern and the external electrode is stronger than the coupling force between the body and the external electrode, so that the body may be broken under continuous application of the tensile force. That is, the present invention may have a strong bonding force such that the body and the external electrode are not separated even if the body is broken.
  • the present invention can be pretreated using hydrochloric acid, for example, before forming the external electrode by plating.
  • Table 1 shows the tensile strength measurement results of Examples 1 and 2 according to the pretreatment time using hydrochloric acid.
  • Example 1 As shown in Table 1, in the case of Example 1, the tensile strength increases as the pretreatment time increases, and in Example 2, the tensile strength decreases as the pretreatment time increases. However, even if the pretreatment step is carried out, it can be seen that Example 2 is stronger than Example 1 in the tensile strength. Therefore, the tensile strength can be adjusted according to the plating type, pretreatment time and the like.
  • the external electrode 400 includes a first layer formed of copper plating and a second layer formed of nickel or tin plating.
  • the surface insulating layer 510 may be formed in a region where the electrode including the external electrode 400 is not formed on the surface of the body 100.
  • FIG. 13 is a cross-sectional view of a power inductor according to a second embodiment of the present invention.
  • a power inductor may include a body 100, a substrate 200 provided inside the body 100, and a coil pattern formed on at least one surface of the substrate 200. 310 and 320, external electrodes 410 and 420 provided outside the body 100, internal insulating layers 500 provided on the coil patterns 310 and 320, and upper and lower portions of the body 100.
  • Each of the at least one magnetic layer 600 (610; 620) may be provided. That is, the magnetic layer 600 may be further provided in the first embodiment of the present invention to implement the second embodiment of the present invention.
  • the second embodiment of the present invention will be described with reference to a configuration different from the first embodiment of the present invention.
  • the magnetic layers 600 may be provided in at least one region of the body 100. That is, the first magnetic layer 610 may be formed on the upper surface of the body 100, and the second magnetic layer 620 may be formed on the lower surface of the body 100.
  • the first and second magnetic layers 610 and 620 are provided to increase the magnetic permeability of the body 100, and may be made of a material having a higher magnetic permeability than the body 100.
  • the permeability of the body 100 is 20 and the first and second magnetic layers 610 and 620 may be provided to have permeability of 40 to 1000.
  • the first and second magnetic layers 610 and 620 may be manufactured using, for example, magnetic powder and an insulator.
  • the first and second magnetic layers 610 and 620 may be formed of a material having a higher magnetic force than the magnetic body of the body 100 or have a higher content of the magnetic body so as to have a higher magnetic permeability than the body 100.
  • the first and second magnetic layers 610 and 620 may have an insulator added in an amount of 1 wt% to 2 wt% with respect to 100 wt% of the metal powder. That is, the magnetic layers 610 and 620 may contain more metal powder than the metal powder of the body 100.
  • the magnetic powder is nickel magnetic (Ni Ferrite), zinc magnetic (Zn Ferrite), copper magnetic (Cu Ferrite), manganese magnetic (Mn Ferrite), cobalt magnetic (Co Ferrite), barium magnetic (Ba Ferrite) and nickel-zinc
  • Ni Ferrite nickel magnetic
  • Zn Ferrite zinc magnetic
  • Cu Ferrite copper magnetic
  • Mn Ferrite manganese magnetic
  • Co Ferrite cobalt magnetic
  • One or more oxide magnetic materials thereof selected from the group consisting of -Ni-Zn-Cu Ferrite can be used. That is, the magnetic layer 600 may be formed using metal alloy powder containing iron or metal alloy oxide containing iron. In addition, the magnetic powder may be coated on the metal alloy powder to form the magnetic powder.
  • one or more oxide magnetic materials selected from the group consisting of nickel oxide magnetic materials, zinc oxide magnetic materials, copper oxide magnetic materials, manganese oxide magnetic materials, cobalt oxide magnetic materials, barium oxide magnetic materials, and nickel-zinc-copper oxide magnetic materials, for example, iron It may be coated on the metal alloy powder to form a magnetic powder. That is, the magnetic oxide powder may be formed by coating the metal oxide including iron on the metal alloy powder.
  • at least one oxide magnetic material selected from the group consisting of nickel oxide magnetic material, zinc oxide magnetic material, copper oxide magnetic material, manganese oxide magnetic material, cobalt oxide magnetic material, barium oxide magnetic material and nickel-zinc-copper oxide magnetic material, for example, including iron It can be mixed with the metal alloy powder to form a magnetic powder.
  • the magnetic oxide powder may be formed by mixing the metal oxide including iron with the metal alloy powder.
  • the first and second magnetic layers 610 and 620 may be manufactured by further including a thermally conductive filler (not shown) in the metal powder and the insulator.
  • the thermally conductive filler may be contained in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder.
  • the first and second magnetic layers 610 and 620 may be manufactured in the form of a sheet, and may be provided on the upper and lower portions of the body 100 in which a plurality of sheets are stacked.
  • the body 100 Magnetic layers 610 and 620 may be formed on the upper and lower portions, respectively.
  • the magnetic layers 610 and 620 may be formed using a paste, and the magnetic layers 610 and 620 may be formed by applying a magnetic material to the upper and lower portions of the body 100.
  • the third and fourth magnetic layers 630 and 640 are disposed between the first and second magnetic layers 610 and 620 and the substrate 200.
  • This may be further provided. That is, at least one magnetic layer 600 may be provided in the body 100.
  • the magnetic layer 600 may be manufactured in the form of a sheet and may be provided between the bodies 100 in which a plurality of sheets are stacked. That is, at least one magnetic layer 600 may be provided between the sheets for manufacturing the body 100.
  • a magnetic layer may be formed during printing.
  • the magnetic layer can be pressed in between.
  • the magnetic layer 600 may be formed using a paste.
  • a soft magnetic material may be applied to form the magnetic layer 600 in the body 100.
  • the magnetic inductance of the power inductor may be improved by providing at least one magnetic layer 600 in the body 100.
  • FIG. 15 is a perspective view of a power inductor according to a third exemplary embodiment of the present invention
  • FIG. 16 is a cross-sectional view taken along the line AA ′ of FIG. 15, and
  • FIG. 17 is taken along the line BB ′ of FIG. 15. It is a cross section of.
  • a power inductor may include a body 100, at least two substrates 200a, 200b; 200 provided in the body 100, and at least two or more substrates.
  • At least two substrates 200a and 200b may be provided inside the body 100, and may be provided to be spaced apart from each other by a predetermined interval in the short direction of the body 100. That is, the at least two substrates 200 may be spaced apart from each other in a direction perpendicular to the external electrode 400, that is, in the thickness direction of the body 100.
  • conductive vias 210a, 210b; 210 are formed in each of the at least two substrates 200, and at least a portion thereof is removed to form through holes 220a, 220b; 220, respectively.
  • the through holes 220a and 220b may be formed at the same position, and the conductive vias 210a and 210b may be formed at the same position or at different positions.
  • the at least two substrates 200 may be filled with the body 100 by removing not only the through hole 220 but also the region in which the coil pattern 300 is not formed.
  • the body 100 may be provided between at least two substrates 200. Since the body 100 is also provided between at least two substrates 200, the permeability of the power inductor may be improved.
  • the inner insulation layer 500 is formed on the coil pattern 300 formed on at least two substrates 200, the body 100 may not be formed between the substrates 200. In this case, the thickness of the power inductor can be reduced.
  • the coil patterns 310, 320, 330, 340; 300 may be formed on at least one side of each of the at least two substrates 200, preferably on both sides.
  • the coil patterns 310 and 320 may be formed on the lower and upper portions of the first substrate 200a, respectively, and electrically connected to each other by the conductive vias 210a formed on the first substrate 200a.
  • the coil patterns 330 and 340 may be formed on the lower and upper portions of the second substrate 200b and electrically connected to each other by the conductive vias 210b formed on the second substrate 200b.
  • the plurality of coil patterns 300 may be formed in a spiral shape in an outward direction from a predetermined region of the substrate 200, for example, the through holes 220a and 220b of the center portion, and the two coils formed on the substrate 200.
  • the patterns can be connected to form one coil. That is, two or more coils may be formed in one body 100.
  • the coil patterns 310 and 330 on the upper side of the substrate 200 and the coil patterns 320 and 340 on the lower side may be formed in the same shape.
  • the plurality of coil patterns 300 may be formed to overlap each other, or the lower coil patterns 320 and 340 may be formed to overlap the region where the upper coil patterns 310 and 330 are not formed.
  • the external electrodes 410, 420; 400 may be formed at both ends of the body 100.
  • the external electrodes 400 may be formed on two side surfaces facing each other in the long axis direction of the body 100.
  • the external electrode 400 may be electrically connected to the coil pattern 300 of the body 100. That is, at least one end of the plurality of coil patterns 300 may be exposed to the outside of the body 100 and the external electrode 400 may be connected to the ends of the plurality of coil patterns 300.
  • the external electrode 410 may be formed to be connected to the coil pattern 310
  • the external pattern 420 may be formed to be connected to the coil pattern 340. That is, the external electrode 400 is connected to one coil pattern 310, 340 formed on the substrates 200a and 200b, respectively.
  • the connection electrode 700 may be formed on at least one side of the body 100 in which the external electrode 400 is not formed. E.g. The external electrode 400 may be formed on the first and second side surfaces facing each other, and the connection electrode 700 may be formed on the third and fourth side surfaces on which the external electrode 400 is not formed, respectively.
  • the connection electrode 700 connects at least one of the coil patterns 310 and 320 formed on the first substrate 200a and at least one of the coil patterns 330 and 340 formed on the second substrate 200b. Is prepared to. That is, the connection electrode 710 connects the coil pattern 320 formed below the first substrate 200a and the coil pattern 330 formed above the second substrate 200b to the outside of the body 100.
  • the external electrode 410 is connected to the coil pattern 310
  • the connection electrode 710 connects the coil patterns 320 and 330
  • the external electrode 420 is connected to the coil pattern 340.
  • the coil patterns 310, 320, 330, and 340 formed on the first and second substrates 200a and 200b are connected in series.
  • the connection electrode 710 connects the coil patterns 320 and 330
  • the connection electrode 720 is not connected to the coil patterns 300, which is two process electrodes 710 and 720 for convenience of process. Is formed and only one connection electrode 710 is connected to the coil patterns 320 and 330.
  • connection electrode 700 may be formed on one side of the body 100 by various methods such as immersing the body 100 in the conductive paste, plating, printing, deposition and sputtering. Preferably, the connection electrode 700 may be formed by the same method, that is, plating when the external electrode 400 is formed.
  • the connection electrode 700 is a metal capable of imparting electrical conductivity, and may include, for example, one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof. In this case, a nickel-plating layer (not shown) or tin plating layer (not shown) may be further formed on the surface of the connection electrode 700 if necessary.
  • FIGS. 18 and 19 are cross-sectional views of a power inductor according to a modified example of the third embodiment of the present invention. That is, three substrates 200a, 200b, 200c; 200 are provided in the body 100, and coil patterns 310, 320, 330, 340, 350, and 360 are formed on one surface and the other surface of each substrate 200; 300, respectively, the coil patterns 310 and 360 are connected to the external electrodes 410 and 420, the coil patterns 320 and 330 are connected to the connection electrode 710, and the coil patterns 340, 350 is connected to the connection electrode 720. Therefore, the coil patterns 300 formed on the three substrates 200a, 200b, and 200c may be connected in series by the connection electrodes 710 and 720.
  • At least two or more substrates 200 having coil patterns 300 formed on at least one surface thereof are spaced apart from each other in the body 100.
  • Coil patterns 300 formed on different substrates 200 are connected by connection electrodes 700 outside the body 100 to form a plurality of coil patterns in one body 100, thereby Dose can be increased. That is, the coil patterns 300 formed on the different substrates 200 may be connected in series by using the connection electrode 700 outside the body 100, thereby increasing the capacity of the power inductor within the same area. have.
  • FIGS. 21 and 22 are cross-sectional views taken along the lines A-A 'and B-B' of FIG. 20.
  • 23 is an internal plan view.
  • the power inductor according to the fourth embodiment of the present invention includes a body 100 and at least two substrates 200a, 200b, 200c provided in a horizontal direction inside the body 100.
  • At least two or more, for example, three substrates 200a, 200b, 200c; 200 may be provided inside the body 100.
  • the at least two substrates 200 may be provided, for example, spaced apart from each other in a long axis direction perpendicular to the thickness direction of the body 100. That is, although the plurality of substrates 200 are arranged in the thickness direction of the body 100, for example, in the vertical direction, the fourth embodiment of the present invention may include a plurality of substrates ( 200 may be arranged in a direction perpendicular to the thickness direction of the body 100, for example, in a horizontal direction.
  • conductive vias 210a, 210b, 210c; 210 are formed in the plurality of substrates 200, and at least a portion thereof is removed to form through holes 220a, 220b, 220c; 220, respectively.
  • the plurality of substrates 200 may be filled with the body 100 by removing not only the through hole 220 but also the region where the coil pattern 300 is not formed as shown in FIG. 18.
  • the coil patterns 310, 320, 330, 340, 350, 360; 300 may be formed on at least one surface of each of the plurality of substrates 200, and preferably on both surfaces thereof.
  • the coil patterns 310 and 320 may be formed on one surface and the other surface of the first substrate 200a and electrically connected to each other by conductive vias 210a formed on the first substrate 200a.
  • the coil patterns 330 and 340 may be formed on one surface and the other surface of the second substrate 200b and electrically connected to each other by conductive vias 210b formed on the second substrate 200b.
  • the coil patterns 350 and 360 may be formed on one surface and the other surface of the third substrate 300c to be electrically connected to each other by conductive vias 210c formed on the third substrate 200c.
  • the plurality of coil patterns 300 may be formed in a spiral shape outwardly from a predetermined region of the substrate 200, for example, the through holes 220a, 220b, and 220c of the center portion, respectively, on the substrate 200.
  • the formed two coil patterns may be connected to form one coil. That is, two or more coils may be formed in one body 100.
  • the coil patterns 310, 330, 350 on one side of the substrate 200 and the coil patterns 320, 340, 360 on the other side may be formed in the same shape.
  • the coil patterns 300 formed on the same substrate 200 may be formed to overlap each other, or the coil patterns 320 on the other side may overlap each other in a region where the coil patterns 310, 330, and 350 of one side are not formed.
  • 340 and 360 may be formed.
  • the external electrodes 410, 420, 430, 440, 450, 460; 400 may be formed at both ends of the body 100 at predetermined intervals from each other.
  • the external electrode 400 may be electrically connected to the coil patterns 300 formed on the plurality of substrates 200, respectively.
  • the external electrodes 410 and 420 are connected to the coil patterns 310 and 320, respectively, and the external electrodes 430 and 440 are respectively connected to the coil patterns 330 and 340, and the external electrodes 450 and 460.
  • a plurality of inductors may be implemented in one body 100. That is, at least two substrates 200 are arranged in a horizontal direction, and the coil patterns 300 formed thereon are connected to each other by different external electrodes 400 so that a plurality of inductors may be provided in parallel. Accordingly, two or more power inductors are implemented in one body 100.
  • FIG. 24 is a perspective view of a power inductor according to a fifth exemplary embodiment of the present invention
  • FIGS. 25 and 26 are cross-sectional views taken along the lines A-A 'and B-B' of FIG. 24.
  • a power inductor may include a body 100, at least two substrates 200a, 200b; 200 provided in the body 100, and at least two or more substrates.
  • the two or more substrates 200 are stacked at predetermined intervals in a thickness direction of the body 100, for example, in a vertical direction, and the coil patterns 300 formed on the respective substrates 200 are drawn out in different directions to the outside. It is connected to the electrode 400, respectively. That is, in the fifth embodiment of the present invention, the plurality of substrates 200 are arranged in the vertical direction, whereas the plurality of the substrates 200 are arranged in the horizontal direction. Therefore, in the fifth embodiment of the present invention, at least two or more substrates 200 are arranged in the thickness direction of the body 100, and the coil patterns 300 formed on the substrates 200 are different from each other. By connecting the plurality of inductors in parallel, two or more power inductors are implemented in one body 100.
  • a plurality of substrates 200 in which coil patterns 300 are formed on at least one surface of the body 100 may have a body. It may be stacked in the thickness direction (ie, the vertical direction) of (100) or arranged in a direction orthogonal thereto (ie, the horizontal direction).
  • the coil patterns 300 formed on the plurality of substrates 200 may be connected in series or in parallel with the external electrode 400. That is, the coil patterns 300 formed on each of the plurality of substrates 200 may be connected to the different external electrodes 400 and connected in parallel, and the coil patterns 300 formed on each of the plurality of substrates 200 may be It may be connected to the same external electrode 400 and connected in series.
  • the coil patterns 300 formed on the respective substrates 200 may be connected by the connection electrode 700 outside the body 100. Therefore, two external electrodes 400 are required for each of the plurality of substrates 200 when connected in parallel, and two external electrodes 400 are required regardless of the number of substrates 200 when connected in series, and one or more substrates are required.
  • the connecting electrode 700 is required. For example, when the coil patterns 300 formed on the three substrates 300 are connected to the external electrodes 400 in parallel, six external electrodes 400 are required, and the three substrates 300 are formed on the three substrates 300. When the coil patterns 300 are connected in series, two external electrodes 400 and at least one connection electrode 700 are required.
  • a plurality of coils are provided in the body 100 when connected in parallel, and one coil is provided in the body 100 when connected in series.
  • 27 to 29 are cross-sectional views sequentially illustrating a method of manufacturing a power inductor according to an embodiment of the present invention.
  • coil patterns 310 and 320 having a predetermined shape are formed on at least one surface, preferably one surface and the other surface of the substrate 200.
  • the substrate 200 may be made of CCL or a magnetic metal, and it is preferable to use a magnetic metal that can increase the effective permeability and facilitate the implementation of the capacity.
  • the substrate 200 may be manufactured by bonding copper foil to one side and the other side of a metal plate having a predetermined thickness made of a metal alloy containing iron.
  • the substrate 200 has a through hole 220 formed in a central portion thereof, for example, and a conductive via 210 formed in a predetermined region.
  • the substrate 200 may have a shape in which an outer region other than the through hole 220 is removed.
  • a through hole 220 is formed in a central portion of a rectangular plate-shaped substrate 200 having a predetermined thickness, a conductive via 210 is formed in a predetermined region, and at least part of an outer side of the substrate 200 is removed.
  • the removed portion of the substrate 200 may be an outer portion of the coil patterns 310 and 320 formed in a spiral shape.
  • the coil patterns 310 and 320 may be formed in a circular spiral shape from a predetermined region, for example, a central portion of the substrate 200.
  • the coil pattern 310 is formed on one surface of the substrate 200, and then a conductive via 210 is formed through the predetermined region of the substrate 200 and the conductive material is embedded therein, and on the other surface of the substrate 200.
  • the coil pattern 320 may be formed on the coil pattern 320.
  • the conductive via 210 may be formed by forming a via hole in the thickness direction of the substrate 200 using a laser or the like, and then filling the via hole with a conductive paste.
  • the coil pattern 310 may be formed by, for example, a plating process. For this, a plating process using a copper foil on the substrate 200 as a seed is formed by forming a photoresist pattern having a predetermined shape on one surface of the substrate 200.
  • the coil pattern 320 may be formed on the other surface of the substrate 200 in the same manner as the coil pattern 310.
  • the coil patterns 310 and 320 may be formed in multiple layers.
  • an insulating layer may be formed between the lower layer and the upper layer, and a second conductive via may be formed in the insulating layer to connect the multilayer coil pattern.
  • the inner insulation layer 500 is formed to cover the coil patterns 310 and 320.
  • the inner insulation layer 500 may be formed on the top and side surfaces of the substrate 200 as well as the top and side surfaces of the coil patterns 310 and 320 by coating with parylene.
  • the internal insulation layer 500 may be formed to have the same thickness on the top and side surfaces of the coil patterns 310 and 320 and the top and side surfaces of the substrate 200. That is, after preparing the substrate 200 having the coil patterns 310 and 320 in the deposition chamber, parylene is vaporized and supplied into the vacuum chamber to deposit parylene on the coil patterns 310 and 320 and the substrate 200. You can.
  • parylene is first heated in a vaporizer to vaporize to a dimer state, and then secondly heated to pyrolyze into a monomer state, and a cold trap and a mechanical vacuum pump connected to a deposition chamber are provided.
  • the parylene is cooled by using the parylene, the parylene is converted into the polymer state from the monomer state and deposited on the coil patterns 310 and 320.
  • the primary heating process for vaporizing parylene into a dimer state proceeds at a temperature of 100 ° C to 200 ° C and a pressure of 1.0 Torr, and the secondary heating process for pyrolyzing vaporized parylene to make a monomer state
  • the temperature may be 400 ° C to 500 ° C and a pressure of 0.5 Torr or more.
  • the deposition chamber may maintain a temperature of, for example, 25 ° C. and a pressure of 0.1 Torr to deposit parylene in a monomer state as a polymer state.
  • the inner insulation layer 500 is coated along the steps of the coil patterns 310 and 320 and the substrate 200, thereby making the inner insulation layer 500 uniform. It can be formed in one thickness.
  • the inner insulating layer 500 may be formed by closely contacting the sheet including at least one material selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer on the coil patterns 310 and 320.
  • a plurality of sheets 100a to 100h including a metal powder 110 and an insulator 120 and further including a thermally conductive filler (not shown) are provided.
  • the metal powder 110 may use a metal material including iron (Fe)
  • the insulator 120 may use an epoxy, polyimide, or the like, which may insulate the metal powder 110 from each other.
  • the filler may use a material of MgO, AlN, carbon-based, etc. that can release the heat of the metal powder 110 to the outside.
  • the surface of the metal powder 110 may be coated with a magnetic material, for example, a metal oxide magnetic material, or may be coated with an insulating material such as parylene.
  • the insulator 120 may be included in an amount of 2.0 wt% to 5.0 wt% with respect to 100 wt% of the metal powder, and the thermally conductive filler may be included in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder 110.
  • the plurality of sheets 100a to 100h are disposed above and below the substrate 200 on which the coil patterns 310 and 320 are formed. Meanwhile, the plurality of sheets 100a to 100h may have different amounts of thermally conductive fillers. For example, the content of the thermally conductive filler may be increased from the one side and the other side of the substrate 200 toward the upper side and the lower side.
  • the content of the thermally conductive fillers of the sheets 100b and 100e positioned above and below the sheets 100a and 100d in contact with the substrate 200 is higher than that of the thermally conductive fillers of the sheets 100a and 100d.
  • the content of the thermally conductive fillers of the sheets 100c and 100f positioned above and below the 100b and 100e may be higher than the content of the thermally conductive fillers of the sheets 100b and 100e.
  • the first and second magnetic layers 610 and 620 may be provided on the upper and lower portions of the uppermost and lowermost sheets 100a and 100h, respectively.
  • the first and second magnetic layers 610 and 620 may be made of a material having a higher magnetic permeability than the sheets 100a to 100h.
  • the first and second magnetic layers 610 and 620 may be manufactured using magnetic powder and an epoxy resin to have a magnetic permeability higher than the magnetic permeability of the sheets 100a to 100h.
  • the first and second magnetic layers 610 and 620 may further include a thermally conductive filler.
  • the body 100 is formed by stacking and pressing the plurality of sheets 100a to 100h with the substrate 200 therebetween. In this way, the body 100 may be filled in the through-hole 220 and the removed portion of the substrate 200 of the substrate 200.
  • the external electrode is cut to the body 100 and the substrate 200 in unit device units, and then electrically connected to the drawn portions of the coil patterns 310 and 320 at both ends of the body 100 of the unit device. 400 may be formed. At least a part of the external electrode 400 may be formed of the same material and the same method as the coil pattern 300.
  • the first layers 411 and 421 may be formed of copper by electroless plating, electrolytic plating, or the like
  • the second layers 412 and 422 may be formed of at least one layer of Ni, Sn, or the like by a plating method.
  • the external electrode 400 may be formed using the coil pattern 300 exposed to the outside of the body 100 as a seed. By forming at least a portion of the external electrode 400 by copper plating, the bonding force of the external electrode 400 can be strengthened. In this case, the coupling force between the coil pattern 300 and the external electrode 400 may be stronger than the coupling force between the body 100 and the external electrode 400.
  • the capping insulating layer 550 is formed so that the external electrode 400 extending on the upper surface of the body 100 is not exposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

The present invention provides a power inductor comprising: a body including a metal powder and an insulating material; at least one substrate provided in the body; at least one coil pattern formed on at least one surface of the substrate; and external electrodes formed on at least two side surfaces of the body, wherein the external electrode has at least one portion made of the same material as the coil pattern.

Description

파워 인덕터Power inductor
본 발명은 파워 인덕터(power inductor)에 관한 것으로, 특히 주변 장치와의 쇼트(short)를 방지할 수 있는 파워 인덕터 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power inductor, and more particularly, to a power inductor capable of preventing a short with a peripheral device and a method of manufacturing the same.
파워 인덕터는 주로 휴대기기 내의 DC-DC 컨버터 등의 전원 회로에 마련된다. 이러한 파워 인덕터는 전원 회로의 고주파화 및 소형화에 따라 기존의 권선형 초크 코일(Choke Coil)을 대신하여 이용이 증대되고 있다. 또한, 파워 인덕터는 휴대기기의 사이즈 축소와 다기능화에 따라 소형화, 고전류화, 저저항화 등의 방향으로 개발이 진행되고 있다.Power inductors are mainly provided in power supply circuits such as DC-DC converters in portable devices. Such power inductors are increasingly being used in place of the conventional coiled choke coils due to the high frequency and miniaturization of power circuits. In addition, power inductors are being developed in the direction of miniaturization, high current, and low resistance according to the size reduction and multifunction of portable devices.
종래의 파워 인덕터는 다수의 자성체(ferrite) 또는 저유전율의 유전체로 이루어진 세라믹 시트들이 적층된 형태로 제조되었다. 이때, 세라믹 시트 상에는 코일 패턴이 형성되는데, 각각의 세라믹 시트 상에 형성된 코일 패턴은 세믹 시트에 형성된 도전성 비아에 의해 접속되고, 시트가 적층되는 상하 방향을 따라 중첩되는 구조를 이룰 수 있다. 또한, 세라믹 시트들이 적층되어 구성된 바디는 종래에는 대체로 니켈(Ni)-아연(Zn)-구리(Cu)-철(Fe)의 4 원계로 구성된 자성체 재료를 이용하여 제작하였다.Conventional power inductors have been manufactured in the form of stacked ceramic sheets made of a plurality of ferrites or low dielectric constant dielectrics. In this case, a coil pattern is formed on the ceramic sheet, and the coil patterns formed on each ceramic sheet are connected by conductive vias formed in the ceramic sheet, and may have a structure overlapping along the vertical direction in which the sheets are stacked. In addition, a body formed by laminating ceramic sheets has been conventionally manufactured using a magnetic material composed of quaternary systems of nickel (Ni) -zinc (Zn) -copper (Cu) -iron (Fe).
그런데, 자성체 재료는 포화 자화 값이 금속 재료에 비해 낮아서 최근의 휴대기기가 요구하는 고전류 특성을 구현하지 못할 수 있다. 따라서, 파워 인덕터를 구성하는 바디를 금속 분말을 이용하여 제작함으로써 바디를 자성체로 제작한 경우에 비해 상대적으로 포화 자화 값을 높일 수 있다. 그러나, 금속을 이용하여 바디를 제작할 경우 고주파에서의 와전류 손실 및 히스테리 손실이 높아져 재료의 손실이 심해지는 문제가 발생할 수 있다.However, the magnetic material may not implement the high current characteristic required by recent portable devices because the saturation magnetization value is lower than that of the metal material. Therefore, by manufacturing the body constituting the power inductor using metal powder, the saturation magnetization value can be relatively increased as compared with the case in which the body is made of magnetic material. However, when a body is manufactured using metal, eddy current loss and hysteresis loss at high frequencies may increase, resulting in a serious loss of material.
이러한 재료의 손실을 감소시키기 위해 금속 분말 사이를 폴리머로 절연하는 구조를 적용하고 있다. 즉, 금속 분말과 폴리머가 혼합된 시트를 적층하여 파워 인덕터의 바디를 제조한다. 또한, 바디 내부에는 코일 패턴이 형성된 소정의 기재가 마련된다. 즉, 소정의 기재 상에 코일 패턴을 형성하고, 그 상측 및 하측에 복수의 시트를 적층 및 압착하여 파워 인덕터를 제조한다.In order to reduce the loss of such a material, a structure insulating a polymer between metal powders is applied. That is, the body of the power inductor is manufactured by laminating sheets mixed with metal powder and polymer. In addition, a predetermined substrate on which a coil pattern is formed is provided inside the body. That is, a coil pattern is formed on a predetermined substrate, and a plurality of sheets are stacked and pressed on the upper side and the lower side thereof to manufacture a power inductor.
이러한 파워 인덕터는 바디의 하부면에 형성된 외부 전극이 인쇄회로기판(Pronted Circuit Board; PCB) 상에 실장된다. 이때, 파워 인덕터는 전력관리 IC(Power Management IC; PMIC)에 인접하여 실장된다. PMIC는 약 1㎜의 두께를 갖는데, 파워 인덕터 또한 이와 동일한 두께로 제작된다. PMIC는 고주파 노이즈를 발생시켜 주변 회로 또는 소자에 영향을 주기 때문에 PMIC 및 파워 인덕터를 스테인레스 스틸 등의 금속 재질의 쉴드 캔(shield can)으로 덮게 된다. 그런데, 파워 인덕터는 외부 전극이 하면 및 상면으로 연장 형성되기 때문에 파워 인덕터 상면의 외부 전극이 쉴드 캔과 쇼트(short)된다.In the power inductor, an external electrode formed on the lower surface of the body is mounted on a printed circuit board (PCB). In this case, the power inductor is mounted adjacent to a power management IC (PMIC). The PMIC has a thickness of about 1 mm, and power inductors are also manufactured to the same thickness. Since PMIC generates high frequency noise and affects peripheral circuits or devices, the PMIC and power inductor are covered with a shield can made of metal such as stainless steel. However, since the external electrode of the power inductor extends to the lower surface and the upper surface, the external electrode on the upper surface of the power inductor is shorted with the shield can.
한편, 파워 인덕터는 외부 전극을 도전성 페이스트를 도포하여 형성할 수 있다. 즉, 바디의 양 측면에 코일 패턴과 연결되도록 금속 페이스트를 도포하여 외부 전극을 형성한다. 또한, 금속 페이스트 상에 도금층을 더 형성하여 외부 전극을 형성할 수도 있다. 그런데, 금속 페이스트를 이용하여 형성된 외부 전극은 결합력이 약해 바디로부터 이탈될 수 있다. 즉, 전자기기에 실장된 파워 인덕터에는 인장력이 작용할 수 있는데, 금속 페이스트를 이용하여 외부 전극이 형성된 파워 인덕터는 인장 강도가 약해 바디와 외부 전극이 분리될 수 있다.On the other hand, the power inductor can be formed by applying a conductive paste to the external electrode. That is, an external electrode is formed by applying a metal paste to both sides of the body to be connected to the coil pattern. In addition, an external electrode may be formed by further forming a plating layer on the metal paste. However, the external electrode formed using the metal paste may be separated from the body due to the weak bonding force. That is, a tensile force may act on the power inductor mounted in the electronic device. A power inductor having an external electrode formed using a metal paste may have a weak tensile strength, and thus, the body and the external electrode may be separated.
(선행기술문헌)(Prior art document)
한국공개특허공보 제2007-0032259호Korean Laid-Open Patent Publication No. 2007-0032259
본 발명은 외부 전극의 쇼트를 방지할 수 있는 파워 인덕터를 제공한다.The present invention provides a power inductor capable of preventing short of external electrodes.
본 발명은 바디의 상측에는 외부 전극이 노출되지 않도록 함으로써 쉴드 캔과의 쇼트를 방지할 수 있는 파워 인덕터를 제공한다.The present invention provides a power inductor capable of preventing a short with the shield can by preventing an external electrode from being exposed on the upper side of the body.
본 발명은 인장 강도를 향상시킬 수 있는 파워 인덕터를 제공한다.The present invention provides a power inductor capable of improving tensile strength.
본 발명의 일 양태에 따른 파워 인덕터는 금속 분말 및 절연물을 포함하는 바디; 상기 바디 내부에 마련된 적어도 하나의 기재; 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 및 상기 바디의 적어도 두 측면에 형성된 외부 전극을 포함하고, 상기 외부 전극은 적어도 일부가 상기 코일 패턴과 동일 재질을 포함한다.A power inductor according to an aspect of the present invention includes a body including a metal powder and an insulator; At least one substrate provided in the body; At least one coil pattern formed on at least one surface of the substrate; And external electrodes formed on at least two side surfaces of the body, the external electrodes including at least a part of the same material as the coil pattern.
상기 코일 패턴 및 외부 전극은 각각 구리를 포함한다.The coil pattern and the external electrode each contain copper.
상기 코일 패턴은 상기 기재 상에 도금 공정으로 형성되고, 상기 외부 전극은 적어도 상기 코일 패턴과 접촉되는 영역이 도금 공정으로 형성된다.The coil pattern is formed on the substrate by a plating process, and the external electrode is formed by at least a region in contact with the coil pattern by the plating process.
상기 외부 전극은 상기 코일 패턴과 접촉되는 제1층과, 상기 제1층 상에 상기 제1층과 다른 재질로 형성된 적어도 하나의 제2층을 포함한다.The external electrode includes a first layer in contact with the coil pattern, and at least one second layer formed of a material different from the first layer on the first layer.
상기 금속 분말은 적어도 둘 이상의 크기를 갖는 적어도 하나 이상의 물질을 포함한다.The metal powder comprises at least one material having at least two sizes.
상기 기재의 일면 및 타면에 형성된 상기 코일 패턴은 동일 높이로 형성되며, 상기 기재의 두께 대비 2.5배 이상 높게 형성된다.The coil patterns formed on one surface and the other surface of the substrate are formed at the same height, and are formed at least 2.5 times higher than the thickness of the substrate.
상기 코일 패턴과 바디 사이에 형성되며, 파릴렌을 이용하여 형성된 내부 절연층을 더 포함한다.It is formed between the coil pattern and the body, and further comprises an inner insulating layer formed using parylene.
상기 바디의 적어도 일 표면 상에 형성된 표면 절연층을 더 포함한다.It further comprises a surface insulating layer formed on at least one surface of the body.
상기 표면 절연층은 상기 외부 전극이 형성되지 않은 상기 바디의 적어도 일 표면 상에 형성된다.The surface insulating layer is formed on at least one surface of the body in which the external electrode is not formed.
상기 바디의 일면 상에 형성된 캐핑 절연층을 더 포함한다.It further comprises a capping insulating layer formed on one surface of the body.
상기 캐핑 절연층은 상기 바디의 실장면에 대향되는 일면 상에 형성되며, 상기 일면 상에 연장 형성된 외부 전극이 노출되지 않도록 형성된다.The capping insulating layer is formed on one surface opposite to the mounting surface of the body, and is formed so that the external electrode extending on the one surface is not exposed.
상기 캐핑 절연층은 표면 절연층보다 두껍거나 같은 두께로 형성된다.The capping insulating layer is formed to a thickness equal to or thicker than the surface insulating layer.
본 발명의 실시 예들에 따른 파워 인덕터는 바디의 상면에 캐핑 절연층을 형성하여 외부 전극이 노출되지 않도록 함으로써 외부 전극과 쉴드 캔(shield can), 인접 부품 등의 쇼트(short)를 방지할 수 있다.In the power inductor according to the embodiments of the present invention, a capping insulating layer may be formed on the upper surface of the body to prevent the external electrode from being exposed, thereby preventing a short between the external electrode, a shield can, and an adjacent component. .
또한, 본 발명은 코일 패턴과 연결되는 외부 전극이 코일 패턴과 동일 물질로 형성되고, 코일 패턴과 동일 방법으로 형성될 수 있다. 즉, 외부 전극 중에서 바디의 측면과 접촉되어 코일 패턴과 연결되는 적어도 일부 두께를 코일 패턴과 동일 물질을 이용하여 동일 방법, 예를 들어 구리를 도금을 이용하여 형성할 수 있다. 따라서, 바디와 외부 전극의 결합력을 향상시킬 수 있고, 그에 따라 인장 강도를 향상시킬 수 있다.In addition, in the present invention, the external electrode connected to the coil pattern may be formed of the same material as the coil pattern, and may be formed by the same method as the coil pattern. That is, at least some thicknesses of the external electrodes contacting the side surfaces of the body and connected to the coil patterns may be formed using the same material as the coil patterns, for example, copper using plating. Therefore, the bonding force between the body and the external electrode can be improved, and thus the tensile strength can be improved.
그리고, 코일 패턴 상에 파릴렌(parylene)을 코팅함으로써 코일 패턴 상에 파릴렌을 균일한 두께로 형성할 수 있고, 그에 따라 바디와 코일 패턴 사이의 절연성을 향상시킬 수 있다.In addition, by coating parylene on the coil pattern, parylene may be formed on the coil pattern in a uniform thickness, thereby improving insulation between the body and the coil pattern.
한편, 적어도 일 면에 코일 형상의 코일 패턴이 각각 형성된 적어도 둘 이상의 기재가 바디 내에 마련됨으로써 하나의 바디 내에 복수의 코일을 형성할 수 있고, 그에 따라 파워 인덕터의 용량을 증가시킬 수 있다.Meanwhile, at least two or more substrates each having a coil-shaped coil pattern formed on at least one surface thereof may be provided in the body to form a plurality of coils in one body, thereby increasing the capacity of the power inductor.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도.1 is a combined perspective view of a power inductor according to a first embodiment of the present invention.
도 2 및 도 3은 본 발명의 제 1 실시 예 및 그 변형 예에 따른 도 1의 A-A' 라인을 따라 절취한 상태의 단면도.2 and 3 are cross-sectional views taken along the line AA ′ of FIG. 1 in accordance with a first embodiment of the present invention and variations thereof.
도 4 및 도 5는 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도 및 일부 평면도.4 and 5 are an exploded perspective view and a partial plan view of the power inductor according to the first embodiment of the present invention.
도 6 및 도 7은 본 발명의 제 1 실시 예에 따른 파워 인덕터 내부의 코일 패턴의 단면도.6 and 7 are cross-sectional views of coil patterns inside a power inductor according to a first embodiment of the present invention.
도 8 및 도 9는 절연층 재료에 따른 파워 인덕터의 단면 개략도.8 and 9 are cross-sectional schematic diagrams of a power inductor according to an insulating layer material.
도 10은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 측면도.10 is a side view of a power inductor according to a first embodiment of the present invention.
도 11는 종래 예와 본 발명의 실시 예에 따른 파워 인덕터의 인장 강도를 나타낸 그래프.11 is a graph showing the tensile strength of the power inductor according to the prior art and the embodiment of the present invention.
도 12는 본 발명의 실시 예에 따른 파워 인덕터의 인장 강도 실험 후의 단면 개략도.12 is a cross-sectional schematic diagram after a tensile strength test of a power inductor according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 제 2 실시 예들에 따른 파워 인덕터의 단면도.13 and 14 are cross-sectional views of a power inductor according to second embodiments of the present invention.
도 15는 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도.15 is a perspective view of a power inductor according to a third embodiment of the present invention.
도 16 및 도 17은 도 15의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.16 and 17 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 15.
도 18 및 도 19는 본 발명의 제 3 실시 예의 변형 예에 따른 도 13의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.18 and 19 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 13 according to a modified example of the third embodiment of the present invention.
도 20은 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도.20 is a perspective view of a power inductor according to a fourth embodiment of the present invention.
도 21 및 도 22은 도 20의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.21 and 22 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 20;
도 23은 도 20의 내부 평면도.FIG. 23 is an interior plan view of FIG. 20;
도 24는 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도.24 is a perspective view of a power inductor according to a fifth embodiment of the present invention.
도 25 및 도 26은 도 24의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.25 and 26 are cross-sectional views taken along the line A-A 'and line B-B' of FIG. 24;
도 27 내지 도 29는 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도.27 to 29 are cross-sectional views sequentially illustrating a method of manufacturing a power inductor according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도이고, 도 2 및 도 3은 도 1의 A-A' 라인을 따라 절단한 상태의 본 발명의 제 1 실시 예 및 그 변형 예에 따른 단면도이다. 도 4는 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도이고, 도 5는 기재 및 코일 패턴의 평면도이며, 도 6 및 도 7은 코일 패턴의 형상을 설명하기 위한 기재 및 코일 패턴의 단면도이다. 또한, 도 8 및 도 9는 절연층 재료에 따른 파워 인덕터의 단면 개략도이고, 도 10은 파워 인덕터의 일 측면도이다.1 is a perspective view illustrating a coupling of a power inductor according to a first embodiment of the present invention, and FIGS. 2 and 3 illustrate a first embodiment of the present invention and a modified example thereof, taken along a line AA ′ of FIG. 1. It is a cross section. 4 is an exploded perspective view of a power inductor according to a first embodiment of the present invention, FIG. 5 is a plan view of the substrate and the coil pattern, and FIGS. 6 and 7 are cross-sectional views of the substrate and the coil pattern for explaining the shape of the coil pattern. to be. 8 and 9 are cross-sectional schematics of a power inductor according to an insulating layer material, and FIG. 10 is a side view of the power inductor.
도 1 내지 도 10을 참조하면, 본 발명의 제 1 실시 예에 따른 파워 인덕터는 바디(100a, 100b; 100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420; 400)을 포함할 수 있다. 또한, 코일 패턴(310, 320)과 바디(100) 사이에 형성된 내부 절연층(500)과, 외부 전극(400)이 형성되지 않은 바디(100)의 표면에 형성된 표면 절연층(510)과, 외부 전극(400)이 형성된 바디(100)의 적어도 상면에 형성된 캐핑 절연층(550) 중 적어도 하나를 더 포함할 수 있다.1 to 10, the power inductor according to the first embodiment of the present invention includes a body 100a, 100b; 100, a substrate 200 provided inside the body 100, and at least a portion of the substrate 200. Coil patterns 310, 320; 300 formed on one surface and external electrodes 410, 420; 400 provided outside the body 100 may be included. In addition, the inner insulating layer 500 formed between the coil patterns 310 and 320 and the body 100, the surface insulating layer 510 formed on the surface of the body 100 on which the external electrode 400 is not formed, The display device may further include at least one of the capping insulation layers 550 formed on at least an upper surface of the body 100 on which the external electrodes 400 are formed.
1. 바디1. Body
바디(100)는 육면체 형상일 수 있다. 물론, 바디(100)는 육면체 이외의 다면체 형상을 가질 수 있다. 이러한 바디(100)는 도 2에 도시된 바와 같이 금속 분말(110) 및 절연물(120)을 포함하고, 도 3에 도시된 바와 같이 열 전도성 필러(130)를 더 포함할 수 있다. The body 100 may have a hexahedron shape. Of course, the body 100 may have a polyhedron shape other than a hexahedron. The body 100 may include a metal powder 110 and an insulator 120 as shown in FIG. 2, and may further include a thermally conductive filler 130 as shown in FIG. 3.
금속 분말(110)은 평균 입경이 1㎛ 내지 100㎛일 수 있다. 또한, 금속 분말(110)은 동일 크기의 단일 입자 또는 2종 이상의 분말을 이용할 수도 있고, 복수의 크기를 갖는 단일 분말 또는 2종 이상의 분말을 이용할 수도 있다. 예를 들어, 20㎛∼100㎛의 평균 입경을 갖는 제 1 금속 분말과, 2㎛∼20㎛의 평균 입경을 갖는 제 2 금속 분말과, 1㎛∼10㎛의 평균 입경을 갖는 제 3 금속 분말을 혼합하여 이용할 수 있다. 즉, 금속 분말(110)은 입자 크기의 평균값 또는 입도 분포의 중간값(D50)이 20㎛∼100㎛인 제 1 금속 분말과, 입자 크기의 평균값 또는 입도 분포의 중간값(D50)이 2㎛∼20㎛인 제 2 금속 분말과, 입자 크기의 평균값 또는 입도 분포의 중간값(D50)이 1㎛∼10㎛인 제 3 금속 분말을 포함할 수 있다. 여기서, 제 1 금속 분말은 제 2 금속 분말보다 크고, 제 2 금속 분말은 제 3 금속 분말보다 클 수 있다. 이때, 금속 분말들은 동일 물질의 분말일 수 있고 다른 물질의 분말일 수 있다. 또한, 제 1, 제 2 및 제 3 금속 분말의 혼합 비율은 예를 들어 5∼9:0.5∼2.5:0.5∼2.5일 수 있고, 바람직하게는 7:1:2일 수 있다. 즉, 100wt%의 금속 분말(110)에 대하여 제 1 금속 분말이 50wt%∼90wt%, 제 2 금속 분말이 5wt%∼25wt%, 그리고 제 3 금속 분말이 5wt%∼25wt%로 혼합될 수 있다. 여기서, 제 1 금속 분말은 제 2 금속 분말보다 많이 포함되고, 제 2 금속 분말은 제 3 금속 분말보다 적거나 같거나 많이 포함될 수 있다. 바람직하게는, 금속 분말(110) 100wt%에 대하여 제 1 금속 분말이 70wt%, 제 2 금속 분말이 10wt%, 그리고 제 3 금속 분말이 20wt% 혼합될 수 있다. 한편, 금속 분말(110)은 적어도 둘 이상, 바람직하게는 셋 이상의 평균 입경을 갖는 금속 분말이 바디(100) 전체에 균일하게 혼합하여 분포하므로 투자율은 바디(100) 전체가 균일할 수 있다. 이렇게 크기가 서로 다른 2종 이상의 금속 분말(110)을 이용할 경우 바디(100)의 충진율을 높일 수 있어 용량을 최대한으로 구현할 수 있다. 예를 들어, 30㎛의 금속 분말을 이용할 경우 30㎛의 금속 분말 사이에는 공극이 발생할 수 있고, 그에 따라 충진율이 낮아질 수 밖에 없다. 그러나, 30㎛의 금속 분말 사이에 이보다 크기가 작은 3㎛의 금속 분말을 혼합하여 이용함으로써 바디(110) 내의 금속 분말의 충진율을 높일 수 있다. 이러한 금속 분말(110)은 철(Fe)를 포함하는 금속 물질을 이용할 수 있는데, 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 즉, 금속 분말(110)은 철을 포함하여 자성 조직을 갖거나 자성을 띄는 금속 합금으로 형성되어 소정의 투자율을 가질 수 있다. 또한, 금속 분말(110)은 표면이 자성체로 코팅될 수 있는데, 금속 분말(110)과 투자율이 상이한 물질로 코팅될 수 있다. 예를 들어, 자성체는 금속 산화물 자성체를 포함할 수 있는데, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 금속 분말(110)의 표면에 코팅되는 자성체는 철을 포함하는 금속 산화물로 형성될 수 있으며, 금속 분말(110)보다 높은 투자율을 갖는 것이 바람직하다. 한편, 금속 분말(110)이 자성을 띄기 때문에 금속 분말(110)이 서로 접촉하면 절연이 파괴되고 쇼트가 발생될 수 있다. 따라서, 금속 분말(110)은 표면이 적어도 하나의 절연체로 코팅될 수 있다. 예를 들어, 금속 분말(110)은 표면이 산화물로 코팅될 수 있고, 파릴렌(parylene) 등의 절연성 고분자 물질로 코팅될 수 있는데, 파릴렌으로 코팅되는 것이 바람직하다. 파릴렌은 1㎛∼10㎛의 두께로 코팅될 수 있다. 여기서, 파릴렌이 1㎛ 미만의 두께로 형성되면 금속 분말(110)의 절연 효과가 저하될 수 있고, 10㎛를 초과하는 두께로 형성하면 금속 분말(110)의 사이즈가 증가하여 바디(100) 내의 금속 분말(110)의 분포가 줄어들어 투자율이 낮아질 수 있다. 또한, 파릴렌 이외에도 다양한 절연성 고분자 물질을 이용하여 금속 분말(110)의 표면을 코팅할 수 있다. 한편, 금속 분말(110)을 코팅하는 산화물은 금속 분말(110)을 산화시켜 형성할 수도 있고, TiO2, SiO2, ZrO2, SnO2, NiO, ZnO, CuO, CoO, MnO, MgO, Al2O3, Cr2O3, Fe2O3, B2O3 및 Bi2O3로부터 선택된 하나가 코팅될 수도 있다. 여기서, 금속 분말(110)은 이중 구조의 산화물로 코팅될 수 있고, 산화물 및 고분자 물질의 이중 구조로 코팅될 수 있다. 물론, 금속 분말(110)은 표면이 자성체로 코팅된 후 절연체로 코팅될 수도 있다. 이렇게 금속 분말(110)의 표면이 절연체로 코팅됨으로써 금속 분말(110) 사이의 접촉에 의한 쇼트를 방지할 수 있다. 이때, 산화물, 절연성 고분자 물질 등으로 금속 분말(110)을 코팅하거나 자성체 및 절연체의 이중으로 코팅되는 경우에도 1㎛∼10㎛의 두께로 코팅될 수 있다. The metal powder 110 may have an average particle diameter of 1 μm to 100 μm. In addition, the metal powder 110 may use a single particle or two or more kinds of powders of the same size, or may use a single powder or two or more kinds of powders having a plurality of sizes. For example, the first metal powder having an average particle diameter of 20 μm to 100 μm, the second metal powder having an average particle diameter of 2 μm to 20 μm, and the third metal powder having an average particle diameter of 1 μm to 10 μm It can mix and use. That is, the metal powder 110 is a first metal powder having an average value of particle size or a median value of particle size distribution (D50) of 20 μm to 100 μm, and an average value of particle size or a medium value (D50) of a particle size distribution of 2 μm. A second metal powder having a thickness of ˜20 μm and a third metal powder having an average value of particle size or a median value D50 of the particle size distribution of 1 μm to 10 μm may be included. Here, the first metal powder may be larger than the second metal powder, and the second metal powder may be larger than the third metal powder. In this case, the metal powders may be powders of the same material or powders of different materials. In addition, the mixing ratio of the first, second and third metal powders may be, for example, 5-9: 0.5-2.5: 0.5-2.5, and preferably 7: 1: 2. That is, 50 wt% to 90 wt% of the first metal powder, 5 wt% to 25 wt% of the second metal powder, and 5 wt% to 25 wt% of the third metal powder may be mixed with respect to 100 wt% of the metal powder 110. . Here, the first metal powder may be included in more than the second metal powder, and the second metal powder may be included in the same or less than the third metal powder. Preferably, 70 wt% of the first metal powder, 10 wt% of the second metal powder, and 20 wt% of the third metal powder may be mixed with respect to 100 wt% of the metal powder 110. On the other hand, the metal powder 110 is at least two, preferably three or more metal powder having an average particle diameter is uniformly distributed throughout the body 100, the permeability may be uniform throughout the body 100. When two or more kinds of metal powders 110 having different sizes are used, the filling rate of the body 100 may be increased to maximize the capacity. For example, when a metal powder of 30 μm is used, voids may occur between the metal powder of 30 μm, and thus the filling rate may be lowered. However, the filling rate of the metal powder in the body 110 may be increased by mixing a smaller 3 μm metal powder between the 30 μm metal powder. The metal powder 110 may use a metal material including iron (Fe), for example iron-nickel (Fe-Ni), iron-nickel-silicon (Fe-Ni-Si), iron-aluminum- It may include one or more metals selected from the group consisting of silicon (Fe-Al-Si) and iron-aluminum-chromium (Fe-Al-Cr). That is, the metal powder 110 may be formed of a metal alloy having magnetic structure or magnetic properties including iron, and may have a predetermined permeability. In addition, the surface of the metal powder 110 may be coated with a magnetic material, and the metal powder 110 may be coated with a material having a different permeability. For example, the magnetic material may include a metal oxide magnetic material, which is selected from the group consisting of nickel oxide magnetic material, zinc oxide magnetic material, copper oxide magnetic material, manganese oxide magnetic material, cobalt oxide magnetic material, barium oxide magnetic material, and nickel-zinc-copper oxide magnetic material. One or more oxide magnetic materials selected may be used. That is, the magnetic body coated on the surface of the metal powder 110 may be formed of a metal oxide containing iron, it is preferable to have a higher permeability than the metal powder (110). On the other hand, since the metal powder 110 is magnetic, when the metal powder 110 contacts each other, insulation may be destroyed and a short may be generated. Thus, the metal powder 110 may be coated with at least one insulator on its surface. For example, the metal powder 110 may be coated with an oxide on a surface thereof, or may be coated with an insulating polymer material such as parylene, which is preferably coated with parylene. Parylene may be coated with a thickness of 1 μm to 10 μm. Herein, when the parylene is formed to a thickness of less than 1 μm, the insulating effect of the metal powder 110 may be reduced. When the parylene is formed to a thickness of more than 10 μm, the size of the metal powder 110 is increased to increase the size of the body 100. The distribution of the metal powder 110 in the interior may be reduced, so that the permeability may be lowered. In addition, the surface of the metal powder 110 may be coated using various insulating polymer materials in addition to parylene. On the other hand, the oxide coating the metal powder 110 may be formed by oxidizing the metal powder 110, TiO 2 , SiO 2 , ZrO 2 , SnO 2 , NiO, ZnO, CuO, CoO, MnO, MgO, Al One selected from 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , B 2 O 3 and Bi 2 O 3 may be coated. Here, the metal powder 110 may be coated with an oxide having a dual structure, and may be coated with a dual structure of an oxide and a polymer material. Of course, the metal powder 110 may be coated with an insulator after the surface is coated with a magnetic material. Thus, the surface of the metal powder 110 is coated with an insulator, it is possible to prevent a short due to contact between the metal powder 110. In this case, the metal powder 110 may be coated with an oxide, an insulating polymer material, or the like, or may be coated with a thickness of 1 μm to 10 μm even when the magnetic material and the insulator are double coated.
절연물(120)은 금속 분말(110) 사이를 절연시키기 위해 금속 분말(110)과 혼합될 수 있다. 즉, 금속 분말(110)은 고주파에서의 와전류 손실 및 히스테리 손실이 높아져서 재료의 손실이 심해지는 문제점이 발생할 수 있는데, 이러한 재료의 손실을 감소시키기 위해 금속 분말(110) 사이를 절연하는 절연물(120)을 포함시킬 수 있다. 이러한 절연물(120)은 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 절연물(120)은 금속 분말(110) 사이에 절연성을 제공하는 것으로 열경화성 수지로 이루어질 수 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 여기서, 절연물(120)은 금속 분말 100wt%에 대하여 2.0wt% 내지 5.0wt%의 함량으로 포함될 수 있다. 그런데, 절연물(120)의 함량이 증가할 경우 금속 분말(110)의 부피 분율이 저하되어 포화자화 값을 높이는 효과가 제대로 구현되지 않을 수 있고, 바디(100)의 투자율을 저하시킬 수 있다. 반대로, 절연물(120)의 함량이 감소하는 경우 인덕터의 제조 과정에서 사용되는 강산 또는 강염기 용액 등이 내부로 침투하여 인덕턴스 특성을 감소시킬 수 있다. 따라서, 절연물(120)은 금속 분말(110)의 포화자화 값 및 인덕턴스를 저하시키지 않도록 하는 범위에서 포함될 수 있다. Insulator 120 may be mixed with metal powder 110 to insulate between metal powder 110. That is, the metal powder 110 may have a problem that the loss of material is increased due to high eddy current loss and hysteresis loss at a high frequency. Insulation 120 that insulates the metal powder 110 to reduce the loss of such material may occur. ) Can be included. The insulator 120 may include one or more selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP), but is not limited thereto. In addition, the insulator 120 may be made of a thermosetting resin to provide insulation between the metal powders 110. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin. Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin). Here, the insulator 120 may be included in an amount of 2.0 wt% to 5.0 wt% with respect to 100 wt% of the metal powder. However, when the content of the insulator 120 is increased, the volume fraction of the metal powder 110 may be lowered so that the effect of increasing the saturation magnetization value may not be properly implemented, and the permeability of the body 100 may be reduced. On the contrary, when the content of the insulator 120 decreases, the strong acid or strong base solution used in the manufacturing process of the inductor may penetrate therein to reduce the inductance characteristic. Therefore, the insulator 120 may be included in a range so as not to lower the saturation magnetization value and inductance of the metal powder 110.
한편, 금속 분말(110) 및 절연물(120)을 이용하여 바디를 제조한 파워 인덕터는 온도 상승에 따라 인덕턴스가 낮아지는 문제가 있다. 즉, 파워 인덕터가 적용된 전자기기의 발열에 의해 파워 인덕터의 온도가 상승하고, 그에 따라 파워 인덕터의 바디를 이루는 금속 분말(110)이 가열되면서 인덕턴스가 낮아지는 문제가 발생된다. 이러한 문제를 해결하기 위해 바디(100)는 외부의 열에 의해 바디(100)가 가열되는 문제를 해결하기 위해 열 전도성 필러(130)가 포함될 수 있다. 즉, 외부의 열에 의해 바디(100)의 금속 분말(110)이 가열될 수 있는데, 열 전도성 필러(130)가 포함됨으로써 금속 분말(110)의 열을 외부로 방출시킬 수 있다. 이러한 열 전도성 필러(130)는 MgO, AlN, 카본 계열의 물질, Ni계 페라이트, Mn계 페라이트 등으로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 여기서, 카본 계열의 물질은 탄소를 포함하며 다양한 형상을 가질 수 있는데, 예를 들어 흑연, 카본 블랙, 그래핀, 그라파이트 등이 포함될 수 있다. 또한, Ni계 페라이트로는 NiO·ZnO·CuO-Fe2O3가 있을 수 있고, Mn계 페라이트로는 MnO·ZnO·CuO-Fe2O3가 있을 수 있다. 그런데, 열 전도성 필러는 페라이트 물질로 형성함으로써 투자율을 증대시키거나 투자율 감소를 방지할 수 있으므로 바람직하다. 이러한 열 전도성 필러(130)는 분말 형태로 절연물(120)에 분산되어 함유될 수 있다. 또한, 열 전도성 필러(130)는 금속 분말(110) 100wt%에 대하여 0.5wt% 내지 3wt%의 함량으로 포함될 수 있다. 열 전도성 필러(130)의 함량이 상기 범위 미만일 경우 열 방출 효과를 얻을 수 없으며, 상기 범위를 초과할 경우 금속 분말(110)의 함량이 낮아져 바디(100)의 투자율을 저하시키게 된다. 그리고, 열 전도성 필러(130)는 예를 들어 0.5㎛ 내지 100㎛의 크기를 가질 수 있다. 즉, 열 전도성 필러(130)는 금속 분말(110)의 크기와 동일하거나, 이보다 크거나 작은 크기를 가질 수 있다. 열 전도성 필러(130)는 크기와 함량에 따라 열 방출 효과가 조절될 수 있다. 예를 들어, 열 전도성 필러(130)의 크기가 크고 함량이 증가할수록 열 방출 효과가 높을 수 있다. 한편, 바디(100)는 금속 분말(110), 절연물(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 복수 개의 시트를 적층하여 제작될 수 있다. 여기서, 복수의 시트를 적층하여 바디(100)를 제작할 경우 각 시트의 열 전도성 필러(130)의 함량은 다를 수 있다. 예를 들어, 기재(200)를 중심으로 상측 및 하측으로 멀어질수록 시트 내의 열 전도성 필러(130)의 함량은 증가할 수 있다. 즉, 열 전도성 필러(130)의 함량은 수직 방향, 즉 Z 방향으로 다를 수 있다. 또한, 열 전도성 필러(130)는 수평 방향, 즉 X 방향 및 Y 방향의 적어도 어느 한 방향으로 함량이 다를 수 있다. 즉, 동일 시트 내의 열 전도성 필러(130)의 함량이 다를 수 있다. 한편, 바디(100)는 금속 분말(110), 절연물(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하여 형성하거나, 이러한 페이스트를 틀에 넣어서 압착하는 방법 등 필요에 따라 다양한 방법이 적용되어 형성될 수 있다. 이때, 바디(100)를 형성하기 위해 적층되는 시트의 개수 또는 일정 두께로 인쇄되는 페이스트의 두께는 파워 인덕터에서 요구되는 인덕턴스 등의 전기적 특성을 고려하여 적정한 수나 두께로 결정될 수 있다. 한편, 바디(100)가 열 전도성 필러를 더 포함한 변형 예로서 설명하였는데, 이하의 다른 실시 예의 설명에서 열 전도성 필러를 언급하지 않더라도 바디(100)는 열 전도성 필러를 더 포함할 수 있는 것으로 이해되어야 한다.On the other hand, the power inductor manufactured by using the metal powder 110 and the insulator 120 has a problem that the inductance is lowered as the temperature rises. That is, the temperature of the power inductor increases due to the heat generation of the electronic device to which the power inductor is applied, and as a result, the inductance decreases as the metal powder 110 forming the body of the power inductor is heated. In order to solve this problem, the body 100 may include a thermally conductive filler 130 to solve the problem that the body 100 is heated by external heat. That is, the metal powder 110 of the body 100 may be heated by external heat, and the heat conductive filler 130 may be included to release heat of the metal powder 110 to the outside. The thermally conductive filler 130 may include one or more selected from the group consisting of MgO, AlN, carbon-based materials, Ni-based ferrites, Mn-based ferrites, and the like, but is not limited thereto. Herein, the carbon-based material may include carbon and have various shapes, for example, graphite, carbon black, graphene, graphite, or the like. Further, the Ni-based ferrite may include NiO.ZnO.CuO-Fe 2 O 3 , and the Mn-based ferrite may include MnO.ZnO.CuO-Fe 2 O 3 . However, the thermally conductive filler is preferable because it can be formed of a ferrite material to increase the permeability or to prevent the permeability decrease. The thermally conductive filler 130 may be dispersed and contained in the insulator 120 in powder form. In addition, the thermally conductive filler 130 may be included in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder 110. When the content of the thermally conductive filler 130 is less than the above range, it is not possible to obtain a heat dissipation effect. When the content of the thermally conductive filler 130 is exceeded, the content of the metal powder 110 is lowered, thereby lowering the permeability of the body 100. The thermally conductive filler 130 may have, for example, a size of 0.5 μm to 100 μm. That is, the thermally conductive filler 130 may have a size equal to, larger than, or smaller than the size of the metal powder 110. The thermally conductive filler 130 may have a heat dissipation effect according to its size and content. For example, as the size and content of the thermally conductive filler 130 increase, the heat dissipation effect may be high. Meanwhile, the body 100 may be manufactured by stacking a plurality of sheets made of a material including the metal powder 110, the insulator 120, and the thermally conductive filler 130. Here, when the body 100 is manufactured by stacking a plurality of sheets, the content of the thermally conductive filler 130 of each sheet may be different. For example, the content of the thermally conductive filler 130 in the sheet may increase as it moves toward the upper side and the lower side with respect to the substrate 200. That is, the content of the thermally conductive filler 130 may be different in the vertical direction, that is, Z direction. In addition, the thermally conductive filler 130 may have a different content in at least one of the horizontal direction, that is, the X direction and the Y direction. That is, the content of the thermally conductive filler 130 in the same sheet may be different. Meanwhile, the body 100 is formed by printing a paste made of a material including the metal powder 110, the insulator 120, and the thermally conductive filler 130 to a predetermined thickness, or by pressing such paste into a mold and pressing the paste. If necessary, various methods may be applied and formed. In this case, the number of sheets laminated to form the body 100 or the thickness of the paste printed with a predetermined thickness may be determined to an appropriate number or thickness in consideration of electrical characteristics such as inductance required by the power inductor. On the other hand, the body 100 has been described as a modified example that further includes a thermally conductive filler, it should be understood that the body 100 may further include a thermally conductive filler even if not mentioned in the description of the other embodiments below. do.
또한, 기재(200)를 사이에 두고 그 상측 및 하측에 마련된 바디(100a, 100b)는 기재(200)를 통해 서로 연결될 수 있다. 즉, 기재(200)의 적어도 일부가 제거되고 제거된 부분에 바디(100)의 일부가 충진될 수 있다. 이렇게 기재(200)의 적어도 일부가 제거되고 그 부분에 바디(100)가 충진됨으로써 기재(200)의 면적을 줄이고 동일 부피에서 바디(100)의 비율을 증가시킴으로써 파워 인덕터의 투자율을 증가시킬 수 있다.In addition, the bodies 100a and 100b disposed above and below the substrate 200 may be connected to each other through the substrate 200. That is, at least a portion of the substrate 200 may be removed and a portion of the body 100 may be filled in the removed portion. As such, at least a part of the substrate 200 is removed and the body 100 is filled in the portion, thereby reducing the area of the substrate 200 and increasing the proportion of the body 100 in the same volume, thereby increasing the permeability of the power inductor. .
2. 기재2. Description
기재(200)는 바디(100)의 내부에 마련될 수 있다. 예를 들어, 기재(200)는 바디(100) 내부에 바디(100)의 장축 방향, 즉 외부 전극(400) 방향으로 마련될 수 있다. 또한, 기재(200)는 하나 이상으로 마련될 수 있는데, 예를 들어 둘 이상의 기재(200)가 외부 전극(400)이 형성된 방향과 직교하는 방향, 예를 들어 수직 방향으로 소정 간격 이격되어 마련될 수 있다. 물론, 둘 이상의 기재가 외부 전극(400)이 형성된 방향으로 배열될 수도 있다. 이러한 기재(200)는 예를 들어 구리 클래드 라미네이션(Copper Clad Lamination; CCL) 또는 금속 자성체 등으로 제작될 수 있다. 이때, 기재(200)는 금속 자성체로 제작됨으로써 투자율을 증가시키고 용량 구현을 용이하게 할 수 있다. 즉, CCL은 유리강화섬유에 구리 포일(foil)을 접합하여 제작되는데, 이러한 CCL은 투자율을 갖기 않기 때문에 파워 인덕터의 투자율을 저하시킬 수 있다. 그러나, 금속 자성체를 기재(200)로 이용하게 되면 금속 자성체가 투자율을 가지기 때문에 파워 인덕터의 투자율을 저하시키지 않게 된다. 이러한 금속 자성체를 이용한 기재(200)은 철을 함유하는 금속, 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속으로 이루어진 소정 두께의 판에 구리 포일을 접합시켜 제작될 수 있다. 즉, 철을 포함하여 적어도 하나의 금속으로 이루어진 합금을 소정 두께의 판 형상으로 제작하고, 금속판의 적어도 일면에 구리 포일을 접합함으로써 기재(200)가 제작될 수 있다. The substrate 200 may be provided inside the body 100. For example, the substrate 200 may be provided in the long axis direction of the body 100, that is, in the direction of the external electrode 400 inside the body 100. In addition, one or more substrates 200 may be provided. For example, two or more substrates 200 may be spaced apart by a predetermined interval in a direction orthogonal to the direction in which the external electrode 400 is formed, for example, in a vertical direction. Can be. Of course, two or more substrates may be arranged in the direction in which the external electrode 400 is formed. The substrate 200 may be made of, for example, copper clad lamination (CCL) or a magnetic metal. In this case, the substrate 200 may be made of a magnetic metal to increase permeability and facilitate capacity implementation. That is, the CCL is manufactured by bonding a copper foil to glass-reinforced fibers. Since the CCL does not have a permeability, the permeability of the power inductor may be reduced. However, when the magnetic metal is used as the substrate 200, the magnetic magnetic material has a magnetic permeability, so that the magnetic permeability of the power inductor is not lowered. Substrate 200 using such a magnetic metal material is a metal containing iron, for example iron-nickel (Fe-Ni), iron-nickel-silicon (Fe-Ni-Si), iron-aluminum-silicon (Fe-Al -Si) and iron-aluminum-chromium (Fe-Al-Cr) can be produced by bonding a copper foil to a plate of a predetermined thickness consisting of at least one metal selected from the group consisting of. That is, the substrate 200 may be manufactured by manufacturing an alloy made of at least one metal including iron into a plate shape having a predetermined thickness, and bonding a copper foil to at least one surface of the metal plate.
또한, 기재(200)의 소정 영역에는 적어도 하나의 도전성 비아(210)가 형성될 수 있고, 도전성 비아(210)에 의해 기재(200)의 상측 및 하측에 각각 형성되는 코일 패턴(310, 320)이 전기적으로 연결될 수 있다. 도전성 비아(210)는 기재(200)에 두께 방향을 따라 관통하는 비아(미도시)를 형성한 후 비아에 도전성 페이스트를 충전하는 등의 방법으로 형성할 수 있다. 이때, 도전성 비아(210)로부터 코일 패턴(310, 320)의 적어도 하나가 성장될 수 있고, 그에 따라 도전성 비아(210)와 코일 패턴(310, 320)의 적어도 하나가 일체로 형성될 수 있다. 또한, 기재(200)는 적어도 일부가 제거될 수 있다. 즉, 기재(200)는 적어도 일부가 제거될 수도 있고, 제거되지 않을 수도 있다. 바람직하게, 기재(200)는 도 4 및 도 5에 도시된 바와 같이 코일 패턴(310, 320)과 중첩되는 영역을 제외한 나머지 영역이 제거될 수 있다. 예를 들어, 스파이럴 형상으로 형성되는 코일 패턴(310, 320)의 내측에 기재(200)가 제거되어 관통홀(220)이 형성될 수 있고, 코일 패턴(310, 320) 외측의 기재(200)가 제거될 수 있다. 즉, 기재(200)는 코일 패턴(310, 320)의 외측 형상을 따라 예컨데 레이스트랙(racetrack) 형상을 가지고 외부 전극(400)과 대향되는 영역이 코일 패턴(310, 320) 단부의 형상을 따라 직선 형상으로 형성될 수 있다. 따라서, 기재(200)의 외측은 바디(100)의 가장자리에 대하여 만곡한 형상으로 마련될 수 있다. 이렇게 기재(200)가 제거된 부분에는 도 5에 도시된 바와 같이 바디(100)가 충진될 수 있다. 즉, 기재(200)의 관통홀(220)을 포함한 제거된 영역을 통해 상측 및 하측의 바디(100a, 100b)가 서로 연결된다. 한편, 기재(200)가 금속 자성체로 제작되는 경우 기재(200)가 바디(100)의 금속 분말(110)과 접촉될 수 있다. 이러한 문제를 해결하기 위해 기재(200)의 측면에는 파릴렌 등의 내부 절연층(500)이 형성될 수 있다. 예를 들어, 관통홀(220)의 측면 및 기재(200)의 외측면에 내부 절연층(500)이 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320)보다 넓은 폭으로 마련될 수 있다. 예를 들어, 기재(200)는 코일 패턴(310, 320)의 수직 하방에서 소정의 폭으로 잔류할 수 있는데, 예를 들어 기재(200)는 코일 패턴(310, 320)보다 0.3㎛ 정도 돌출되도록 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320) 내측 영역 및 외측 영역이 제거되어 바디(100)의 횡단면의 면적보다 작을 수 있다. 예를 들어, 바디(100)의 횡단면의 면적을 100으로 할 때, 기재(200)는 40 내지 80의 면적 비율로 마련될 수 있다. 기재(200)의 면적 비율이 높으면 바디(100)의 투자율이 낮아질 수 있고, 기재(200)의 면적 비율이 낮으면 코일 패턴(310, 320)의 형성 면적이 작아질 수 있다. 따라서, 바디(100)의 투자율, 코일 패턴(310, 320)의 선폭 및 턴수 등을 고려하여 기재(200)의 면적 비율을 조절할 수 있다.In addition, at least one conductive via 210 may be formed in a predetermined region of the substrate 200, and coil patterns 310 and 320 formed on the upper side and the lower side of the substrate 200 by the conductive via 210, respectively. This can be electrically connected. The conductive via 210 may be formed by forming a via (not shown) penetrating along the thickness direction of the substrate 200 and then filling the via with a conductive paste. In this case, at least one of the coil patterns 310 and 320 may be grown from the conductive via 210, and thus at least one of the conductive via 210 and the coil patterns 310 and 320 may be integrally formed. In addition, at least a portion of the substrate 200 may be removed. That is, at least a portion of the substrate 200 may or may not be removed. Preferably, as shown in FIGS. 4 and 5, the substrate 200 may have other regions except for regions overlapping the coil patterns 310 and 320. For example, the through hole 220 may be formed by removing the substrate 200 inside the coil patterns 310 and 320 having a spiral shape, and the substrate 200 outside the coil patterns 310 and 320. Can be removed. That is, the substrate 200 has a racetrack shape along the outer shape of the coil patterns 310 and 320, and a region facing the external electrode 400 along the shape of the ends of the coil patterns 310 and 320. It may be formed in a straight shape. Therefore, the outer side of the substrate 200 may be provided in a curved shape with respect to the edge of the body 100. The body 100 may be filled in the portion where the substrate 200 is removed as shown in FIG. 5. That is, the upper and lower bodies 100a and 100b are connected to each other through the removed region including the through hole 220 of the substrate 200. Meanwhile, when the substrate 200 is made of a magnetic metal, the substrate 200 may be in contact with the metal powder 110 of the body 100. In order to solve this problem, an inner insulating layer 500 such as parylene may be formed on the side surface of the substrate 200. For example, the inner insulation layer 500 may be formed on the side surface of the through hole 220 and the outer surface of the substrate 200. Meanwhile, the substrate 200 may be provided in a wider width than the coil patterns 310 and 320. For example, the substrate 200 may remain at a predetermined width below the coil patterns 310 and 320 at a predetermined width. For example, the substrate 200 may protrude about 0.3 μm from the coil patterns 310 and 320. Can be formed. On the other hand, the substrate 200 may be smaller than the area of the cross-section of the body 100 by removing the inner region and the outer region of the coil patterns (310, 320). For example, when the area of the cross section of the body 100 is 100, the substrate 200 may be provided in an area ratio of 40 to 80. When the area ratio of the substrate 200 is high, the permeability of the body 100 may be low, and when the area ratio of the substrate 200 is low, the formation areas of the coil patterns 310 and 320 may be reduced. Accordingly, the area ratio of the substrate 200 may be adjusted in consideration of the magnetic permeability of the body 100, the line width and the number of turns of the coil patterns 310 and 320.
3. 코일 패턴3. coil pattern
코일 패턴(310, 320; 300)은 기재(200)의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 이러한 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴(310, 320)이 연결되어 하나의 코일을 이룰 수 있다. 즉, 코일 패턴(310, 320)은 기재(200)의 중심부에 형성된 관통홀(220) 외측으로부터 스파이럴 형태로 형성될 수 있고, 기재(200)에 형성된 전도성 비아(210)를 통해 서로 연결될 수 있다. 여기서, 상측의 코일 패턴(310)과 하측의 코일 패턴(320)은 서로 동일 형상으로 형성될 수 있고 동일 높이로 형성될 수 있다. 또한, 코일 패턴(310, 320)은 서로 중첩되게 형성될 수도 있고, 코일 패턴(310)이 형성되지 않은 영역에 중첩되도록 코일 패턴(320)이 형성될 수도 있다. 한편, 코일 패턴(310, 320)의 단부는 직선 형상으로 외측으로 연장 형성될 수 있는데, 바디(100)의 단변 중앙부를 따라 연장 형성될 수 있다. 그리고, 코일 패턴(310, 320)의 외부 전극(400)과 접촉되는 영역은 도 4 및 도 5에 도시된 바와 같이 다른 영역에 비해 폭이 넓게 형성될 수 있다. 코일 패턴(310, 320)의 일부, 즉 인출부가 넓은 폭으로 형성됨으로써 코일 패턴(310, 320)과 외부 전극(400)의 접촉 면적을 증가시킬 수 있고 그에 따라 저항을 낮출 수 있다. 물론, 코일 패턴(310, 320)이 외부 전극(400)이 형성되는 일 영역에서 외부 전극(400)의 폭 방향으로 연장 형성될 수도 있다. 이때, 코일 패턴(310, 320)의 말단부, 즉 외부 전극(400)으로 향하여 인출되는 인출부는 바디(100)의 측면 중앙부를 향해 직선 형상으로 형성될 수 있다. The coil patterns 310, 320; 300 may be formed on at least one surface of the substrate 200, preferably on both surfaces thereof. The coil patterns 310 and 320 may be formed in a spiral shape in a predetermined area of the substrate 200, for example, from the center portion to an outward direction, and two coil patterns 310 and 320 formed on the substrate 200 are connected to each other. To form a single coil. That is, the coil patterns 310 and 320 may be formed in a spiral form from the outside of the through hole 220 formed in the center of the substrate 200, and may be connected to each other through the conductive via 210 formed in the substrate 200. . Here, the upper coil pattern 310 and the lower coil pattern 320 may be formed in the same shape with each other and may be formed at the same height. In addition, the coil patterns 310 and 320 may be formed to overlap each other, or the coil patterns 320 may be formed to overlap the region where the coil pattern 310 is not formed. Meanwhile, the ends of the coil patterns 310 and 320 may be formed to extend outward in a straight line shape, and may be formed along the short side center portion of the body 100. In addition, an area in contact with the external electrodes 400 of the coil patterns 310 and 320 may be wider than other areas as shown in FIGS. 4 and 5. A part of the coil patterns 310 and 320, that is, the lead portion is formed to have a wide width, thereby increasing the contact area between the coil patterns 310 and 320 and the external electrode 400, thereby lowering the resistance. Of course, the coil patterns 310 and 320 may extend in the width direction of the external electrode 400 in one region where the external electrode 400 is formed. In this case, the end portions of the coil patterns 310 and 320, that is, the lead portions drawn out toward the external electrode 400 may be formed in a straight line toward the side center portion of the body 100.
한편, 이러한 코일 패턴(310, 320)은 기재(200)에 형성된 도전성 비아(210)에 의해 전기적으로 연결될 수 있다. 코일 패턴(310, 320)은 예를 들면 후막 인쇄, 도포, 증착, 도금 및 스퍼터링 등의 방법을 통하여 형성할 수 있는데, 도금으로 형성하는 것이 바람직하다. 또한, 코일 패턴(310, 320) 및 도전성 비아(210)는 은(Ag), 구리(Cu) 및 구리 합금 중 적어도 하나를 포함하는 재료로 형성될 수 있으나, 이에 제한되는 것은 아니다. 한편, 코일 패턴(310, 320)을 도금 공정으로 형성하는 경우 예를 들어 기재(200) 상에 도금 공정으로 금속층, 예를 들어 구리층을 형성하고, 리소그라피 공정으로 패터닝할 수 있다. 즉, 기재(200)의 표면에 형성된 구리 포일을 시드층으로 구리층을 도금 공정으로 형성하고 이를 패터닝함으로써 코일 패턴(310, 320)을 형성할 수 있다. 물론, 기재(200) 상에 소정 형상의 감광막 패턴을 형성한 후 도금 공정을 실시하여 노출된 기재(200) 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 소정 형상의 코일 패턴(310, 320)을 형성할 수도 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 즉, 기재(200)의 상측에 형성된 코일 패턴(310)의 상측으로 복수의 코일 패턴이 더 형성될 수 있고, 기재(200)의 하측에 형성된 코일 패턴(320)의 하측으로 복수의 코일 패턴이 더 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 한편, 코일 패턴(310, 320)은 기재(200)의 두께보다 2.5배 이상 높게 형성될 수 있다. 예를 들어, 기재(200)가 10㎛∼50㎛의 두께로 형성되고 코일 패턴(310, 320)이 50㎛∼300㎛의 높이로 형성될 수 있다.Meanwhile, the coil patterns 310 and 320 may be electrically connected by the conductive vias 210 formed in the substrate 200. The coil patterns 310 and 320 may be formed by, for example, thick film printing, coating, deposition, plating, and sputtering, and are preferably formed by plating. In addition, the coil patterns 310 and 320 and the conductive via 210 may be formed of a material including at least one of silver (Ag), copper (Cu), and a copper alloy, but is not limited thereto. Meanwhile, when the coil patterns 310 and 320 are formed by a plating process, for example, a metal layer, for example, a copper layer may be formed on the substrate 200 by a plating process, and patterned by a lithography process. That is, the coil patterns 310 and 320 may be formed by forming and patterning a copper layer by using a copper foil formed on the surface of the substrate 200 as a seed layer. Of course, after forming a photosensitive film pattern having a predetermined shape on the substrate 200, a plating process is performed to grow a metal layer from the exposed surface of the substrate 200, and then the photosensitive film is removed to remove the coil patterns 310 and 320 of the predetermined shape. It may be formed. Meanwhile, the coil patterns 310 and 320 may be formed in multiple layers. That is, a plurality of coil patterns may be further formed above the coil pattern 310 formed above the substrate 200, and a plurality of coil patterns may be formed below the coil pattern 320 formed below the substrate 200. It may be further formed. When the coil patterns 310 and 320 are formed in multiple layers, an insulating layer may be formed between the lower layer and the upper layer, and conductive vias (not shown) may be formed in the insulating layer to connect the multilayer coil patterns. Meanwhile, the coil patterns 310 and 320 may be formed at least 2.5 times higher than the thickness of the substrate 200. For example, the substrate 200 may be formed to a thickness of 10 μm to 50 μm, and the coil patterns 310 and 320 may be formed to a height of 50 μm to 300 μm.
또한, 본 발명에 따른 코일 패턴(310, 320)은 이중 구조로 형성될 수 있다. 즉, 도 6에 도시된 바와 같이 제 1 도금막(300a)과, 제 1 도금막(300a)을 덮도록 형성된 제 2 도금막(300b)을 포함할 수 있다. 여기서, 제 2 도금막(300b)은 제 1 도금막(300a)의 상면 및 측면을 덮도록 형성되는데, 제 1 도금막(300a)의 측면보다 상면에 더 두껍게 제 2 도금막(300b)이 형성될 수 있다. 한편, 제 1 도금막(300a)은 측면이 소정의 경사를 갖도록 형성되고, 제 2 도금막(300b)은 측면이 제 1 도금막(300a)의 측면보다 적은 경사를 갖도록 형성된다. 즉, 제 1 도금막(300a)은 측면이 제 1 도금막(300a) 외측의 기재(200)의 표면으로부터 둔각을 갖도록 형성되고, 제 2 도금막(300b)은 제 1 도금막(300a)보다 작은 각도, 바람직하게는 직각을 갖도록 형성된다. 제 1 도금막(300a)은 도 7에 도시된 바와 같이 상부면의 폭(a)과 하부면의 폭(b)의 비율이 0.2:1 내지 0.9:1이 되도록 형성될 수 있고, 바람직하게는 a:b가 0.4:1 내지 0.8:1이 되도록 형성될 수 있다. 또한, 제 1 도금막(300a)은 하부면의 폭(b)과 높이(h)의 비율이 1:0.7 내지 1:4가 되도록 형성될 수 있고, 바람직하게는 1:1 내지 1:2가 되도록 형성될 수 있다. 즉, 제 1 도금막(300a)은 하부면으로부터 상부면으로 갈수록 폭이 좁아지도록 형성되고, 그에 따라 측면에 소정의 경사가 형성될 수 있다. 제 1 도금막(300a)이 소정의 경사를 갖도록 하기 위해 1차 도금 공정 후 식각 공정을 실시할 수 있다. 또한, 제 1 도금막(300a)을 덮도록 형성된 제 2 도금막(300b)은 측면이 바람직하게는 수직하고 상부면과 측면 사이에 라운드한 영역이 적은 대략 사각형의 형태를 갖도록 형성된다. 이때, 제 2 도금막(300b)은 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율, 즉 a:b에 따라 그 형상이 결정될 수 있다. 예를 들어, 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율(a:b)의 비율이 클수록 제 2 도금막(300b)의 상부면의 폭(c)과 하부면의 폭(d)이 비율이 커진다. 그러나, 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율(a:b)이 0.9:1을 초과하는 경우 제 2 도금막(300b)은 하부면의 폭보다 상부면의 폭이 더 넓어지고 측면이 기재(200)와 예각을 이룰 수 있다. 또한, 제 1 도금막(300a)의 상부면의 폭과 하부면의 폭의 비율(a:b)이 0.2:1 미만의 경우 제 2 도금막(300b)은 측면의 소정 영역으로부터 상부면이 둥글게 형성될 수 있다. 따라서, 상부면의 폭이 크고 측면이 수직하게 형성될 수 있도록 제 1 도금막(300a)의 상부면과 하부면의 폭의 비율을 조절하는 것이 바람직하다. 한편, 제 1 도금막(300a)의 하부면의 폭(b)과 제 2 도금막(300b)의 하부면의 폭(d)은 1:1.2 내지 1:2의 비율을 가질 수 있고, 제 1 도금막(300a)의 하부면의 폭(b)과 인접한 제 1 도금막(300a) 사이의 간격(e)은 1.5:1 내지 3:1의 비율을 가질 수 있다. 물론, 제 2 도금막(300b)은 서로 접촉되지 않는다. 이렇게 제 1 및 제 2 도금막(300a, 300b)으로 이루어진 코일 패턴(300)은 상부면과 하부면의 폭의 비(c:d)가 0.5:1 내지 0.9:1일 수 있고, 바람직하게는 0.6:1 내지 0.8:1일 수 있다. 즉, 코일 패턴(300)의 외형, 다시 말하면 제 2 도금막(300b)의 외형은 상부면과 하부면의 폭의 비가 0.5 내지 0.9:1일 수 있다. 따라서, 코일 패턴(300)은 상부면의 모서리의 라운드한 영역이 직각을 이루는 이상적인 사각 형태 대비 0.5 미만일 수 있다. 예를 들어, 라운드한 영역이 직각을 이루는 이상적인 사각 형태 대비 0.001 이상 0.5 미만일 수 있다. 또한, 본 발명에 따른 코일 패턴(300)은 이상적인 사각형의 형태에 비해 저항 변화가 크지 않다. 예를 들어, 이상적인 사각형 형태의 코일 패턴의 저항이 100이라면 본 발명에 따른 코일 패턴(300)은 101 내지 110 정도를 유지할 수 있다. 즉, 제 1 도금막(300a)의 형상 및 그에 따라 변화되는 제 2 도금막(300b)의 형상에 따라 본 발명의 코일 패턴(300)의 저항은 사각 형상의 이상적인 코일 패턴의 저항에 비해 101% 내지 110% 정도를 유지할 수 있다. 한편, 제 2 도금막(300b)은 제 1 도금막(300a)과 동일 도금액을 이용하여 형성할 수 있다. 예를 들어, 1차 및 2차 도금막(300a, 300b)은 황산구리와 황산을 기본으로 하는 도금액을 사용하며, ppm 단위의 염소(Cl)와 유기 화합물을 첨가하여 제품의 도금성을 향상시킨 도금액을 이용하여 형성할 수 있다. 유기 화합물은 PEG(PolyEthylene Glycol)을 포함한 캐리어와 광택제를 사용하여 도금막의 균일성과 전착성, 그리고 광택 특성을 개선할 수 있다. In addition, the coil patterns 310 and 320 according to the present invention may be formed in a double structure. That is, as shown in FIG. 6, the first plating film 300a and the second plating film 300b formed to cover the first plating film 300a may be included. Here, the second plating film 300b is formed to cover the top and side surfaces of the first plating film 300a, and the second plating film 300b is formed thicker on the top surface than the side surfaces of the first plating film 300a. Can be. On the other hand, the first plating film 300a is formed so that the side surface has a predetermined inclination, and the second plating film 300b is formed so that the side surface has less inclination than the side surface of the first plating film 300a. That is, the first plating film 300a is formed so that the side surface has an obtuse angle from the surface of the base material 200 outside the first plating film 300a, and the second plating film 300b is less than the first plating film 300a. It is formed to have a small angle, preferably a right angle. As shown in FIG. 7, the first plating film 300a may be formed such that a ratio of the width a of the upper surface to the width b of the lower surface is 0.2: 1 to 0.9: 1. a: b may be formed to be 0.4: 1 to 0.8: 1. In addition, the first plating film 300a may be formed such that the ratio of the width b and the height h of the lower surface is 1: 0.7 to 1: 4, preferably 1: 1 to 1: 2. It may be formed to. That is, the first plating film 300a may be formed to have a narrower width from the lower surface to the upper surface, and a predetermined slope may be formed on the side surface. In order to make the first plating film 300a have a predetermined inclination, an etching process may be performed after the first plating process. In addition, the second plated film 300b formed to cover the first plated film 300a is preferably formed to have a substantially rectangular shape in which the side surface is preferably vertical and there are few regions rounded between the top surface and the side surface. In this case, the shape of the second plating film 300b may be determined according to a ratio of the width a of the upper surface of the first plating film 300a and the width b of the lower surface of the second plating film 300a. For example, the larger the ratio (a: b) of the width a of the upper surface of the first plating film 300a to the width b of the lower surface of the first plating film 300a, the larger the width of the upper surface of the second plating film 300b. (c) and the width | variety d of a lower surface become large ratio. However, when the ratio (a: b) of the width a of the upper surface of the first plating film 300a to the width b of the lower surface of the first plating film 300a exceeds 0.9: 1, the second plating film 300b may have a lower surface. The width of the upper surface is wider than the width of the side may be acute angle with the substrate 200. In addition, when the ratio (a: b) of the width of the upper surface of the first plating film 300a to the width of the lower surface of the first plating film 300a is less than 0.2: 1, the second plating film 300b may have a rounded upper surface from a predetermined region of the side surface. Can be formed. Therefore, it is preferable to adjust the ratio of the width of the upper surface and the lower surface of the first plating film 300a so that the width of the upper surface is large and the side surfaces are formed vertically. Meanwhile, the width b of the lower surface of the first plating film 300a and the width d of the lower surface of the second plating film 300b may have a ratio of 1: 1.2 to 1: 2. An interval e between the width b of the lower surface of the plating film 300a and the adjacent first plating film 300a may have a ratio of 1.5: 1 to 3: 1. Of course, the second plating films 300b do not contact each other. As such, the coil pattern 300 including the first and second plating layers 300a and 300b may have a ratio (c: d) of a width between an upper surface and a lower surface of about 0.5: 1 to about 0.9: 1. 0.6: 1 to 0.8: 1. That is, the outer shape of the coil pattern 300, that is, the outer shape of the second plating film 300b may have a ratio of a width between an upper surface and a lower surface of 0.5 to 0.9: 1. Therefore, the coil pattern 300 may be less than 0.5 compared to the ideal rectangular shape in which the rounded area of the corner of the upper surface forms a right angle. For example, the rounded area may be 0.001 or more and less than 0.5, compared with an ideal rectangular shape forming a right angle. In addition, the coil pattern 300 according to the present invention does not have a large resistance change compared to the ideal rectangular shape. For example, if the resistance of the coil pattern of the ideal rectangular shape is 100, the coil pattern 300 according to the present invention can maintain 101 to 110. That is, according to the shape of the first plating film 300a and the shape of the second plating film 300b changed accordingly, the resistance of the coil pattern 300 of the present invention is 101% compared to the resistance of the ideal coil pattern having a square shape. To about 110%. Meanwhile, the second plating film 300b may be formed using the same plating solution as that of the first plating film 300a. For example, the first and second plating films 300a and 300b use plating solutions based on copper sulfate and sulfuric acid, and plating solutions in which plating properties of products are improved by adding chlorine (Cl) and organic compounds in ppm units. It can be formed using. The organic compound may improve the uniformity, electrodeposition properties, and gloss characteristics of the plated film by using a carrier and a gloss agent including PEG (PolyEthylene Glycol).
또한, 코일 패턴(300)은 적어도 둘 이상의 도금층이 적층되어 형성될 수 있다. 이때, 각각의 도금층은 측면이 수직하며 동일 형상 및 두께로 적층되어 형성될 수 있다. 즉, 코일 패턴(300)은 시드층 상에 도금 공정으로 형성될 수 있는데, 시드층 상에 예를 들어 세개의 도금층이 적층되어 형성될 수 있다. 이러한 코일 패턴(300)은 이방성 도금 공정으로 형성되며, 종횡비가 2∼10 정도로 형성될 수 있다. In addition, the coil pattern 300 may be formed by stacking at least two plating layers. At this time, each plating layer may be formed by stacking the sides of the same vertical and the same shape and thickness. That is, the coil pattern 300 may be formed by a plating process on the seed layer, for example, three plating layers may be stacked on the seed layer. The coil pattern 300 may be formed by an anisotropic plating process, and may have an aspect ratio of about 2 to about 10.
또한, 코일 패턴(300)은 최내주로부터 최외주로 갈수록 폭이 증가하는 형상으로 형성될 수도 있다. 즉, 스파이럴 형상의 코일 패턴(300)은 최내주로부터 최외주까지 n개의 패턴이 형성될 수 있는데, 예를 들어 4개의 패턴이 형성될 경우 최내주의 제 1 패턴으로부터 제 2 및 제 3 패턴, 그리고 최외주의 제 4 패턴으로 갈수록 패턴의 폭이 증가하여 형성될 수 있다. 예를 들어, 제 1 패턴의 폭이 1일 경우, 제 2 패턴은 1 내지 1.5의 비율로 형성되고, 제 3 패턴은 1.2 내지 1.7의 비율로 형성되며, 제 4 패턴은 1.3 내지 2의 비율로 형성될 수 있다. 즉, 제 1 내지 제 4 패턴은 1:1∼1.5:1.2∼1.7:1.3∼2의 비율로 형성될 수 있다. 다시 말하면, 제 2 패턴은 제 1 패턴의 폭과 같거나 크게 형성되고, 제 3 패턴은 제 1 패턴의 폭보다 크고 제 2 패턴의 폭과 같거나 크게 형성되며, 제 4 패턴은 제 1 및 제 2 패턴의 폭보다 크고 제 3 패턴의 폭과 같거나 크게 형성될 수 있다. 이렇게 최내주로부터 최외주로 갈수록 코일 패턴의 폭을 증가시키기 위해 시드층의 폭을 최내주로부터 최외주로갈수록 넓게 형성할 수 있다. 또한, 코일 패턴은 수직 방향으로 적어도 일 영역의 폭이 다르게 형성될 수도 있다. 즉, 적어도 일 영역의 하단부, 중단부 및 상단부의 폭이 다르게 형성될 수도 있다.In addition, the coil pattern 300 may be formed in a shape in which the width increases from the innermost circumference to the outermost circumference. That is, the spiral coil pattern 300 may have n patterns formed from the innermost circumference to the outermost circumference. For example, when four patterns are formed, the second and third patterns may be formed from the first pattern of the innermost circumference. The width of the pattern may increase as the outermost fourth pattern is formed. For example, when the width of the first pattern is 1, the second pattern is formed at a ratio of 1 to 1.5, the third pattern is formed at a ratio of 1.2 to 1.7, and the fourth pattern is formed at a ratio of 1.3 to 2. Can be formed. That is, the first to fourth patterns may be formed in a ratio of 1: 1 to 1.5: 1.2 to 1.7: 1.3 to 2. In other words, the second pattern is formed to be equal to or larger than the width of the first pattern, the third pattern is formed to be larger than or equal to the width of the first pattern and equal to or larger than the width of the second pattern, and the fourth pattern is formed from the first and the first pattern. The width of the second pattern may be greater than or equal to the width of the third pattern. Thus, in order to increase the width of the coil pattern from the innermost circumference to the outermost circumference, the width of the seed layer may be wider from the innermost circumference to the outermost circumference. In addition, the coil pattern may be formed to have a different width in at least one region in the vertical direction. That is, the widths of the lower end, the stop and the upper end of at least one region may be different.
4. 외부 전극4. External electrode
외부 전극(410, 420; 400)은 바디(100)의 서로 대향하는 두 면에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 X 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(310, 320)과 전기적으로 연결될 수 있다. 또한, 외부 전극(400)은 바디(100)의 두 측면 전체에 형성되고, 두 측면의 중앙부에서 코일 패턴(310, 320)과 접촉될 수 있다. 즉, 코일 패턴(310, 320)의 단부가 바디(100)의 외측 중앙부로 노출되고 외부 전극(400)이 바디(100)의 측면에 형성되어 코일 패턴(310, 320)의 단부와 연결될 수 있다. 이러한 외부 전극(400)은 도전성 에폭시, 도전성 페이스트, 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 한편, 외부 전극(400)은 형성 방법에 따라 바디(100)의 양 측면 및 하면에만 형성되거나, 바디(100)의 상면 또는 전면 및 후면에도 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 X 방향의 양 측면 뿐만 아니라 Y 방향으로의 전면 및 후면, 그리고 Z 방향으로의 상면 및 하면에도 외부 전극(400)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 X 방향의 양 측면 및 Y 방향의 하면에 외부 전극(400)이 형성될 수 있다. 즉, 외부 전극(400)은 X 방향의 양 측면 및 인쇄회로기판에 실장되는 하면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다. 한편, 외부 전극(400)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 즉, 바디(100)와 접촉되는 외부 전극(400)의 일부는 글래스가 혼합된 도전 물질로 형성될 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 바디(100)의 두면에 도포될 수 있다. 즉, 외부 전극(400)의 일부가 도전성 페이스트를 이용하여 형성하는 경우 도전성 페이스트에는 글래스 프릿이 혼합될 수 있다. 이렇게 외부 전극(400)에 글래스 프릿이 포함됨으로써 외부 전극(400)과 바디(100)의 밀착력을 향상시킬 수 있고, 코일 패턴(300)과 외부 전극(400)의 콘택 반응을 향상시킬 수 있다. The external electrodes 410, 420; 400 may be formed on two surfaces of the body 100 facing each other. For example, the external electrode 400 may be formed on two side surfaces that face each other in the X direction of the body 100. The external electrode 400 may be electrically connected to the coil patterns 310 and 320 of the body 100. In addition, the external electrode 400 may be formed on both sides of the body 100, and may be in contact with the coil patterns 310 and 320 at the center of the two sides. That is, the ends of the coil patterns 310 and 320 may be exposed to the outer center portion of the body 100 and the external electrode 400 may be formed on the side of the body 100 to be connected to the ends of the coil patterns 310 and 320. . The external electrode 400 may be formed by various methods such as conductive epoxy, conductive paste, deposition, sputtering, plating, and the like. Meanwhile, the external electrode 400 may be formed only on both side surfaces and the bottom surface of the body 100, or may also be formed on the top surface, the front surface, and the rear surface of the body 100. For example, when immersed in the conductive paste, the external electrode 400 may be formed not only on both sides of the X direction, but also on the front and rear surfaces in the Y direction, and the upper and lower surfaces in the Z direction. In contrast, when formed by printing, deposition, sputtering, plating, or the like, the external electrode 400 may be formed on both side surfaces of the X direction and a bottom surface of the Y direction. That is, the external electrode 400 may be formed not only on both side surfaces of the X direction and the bottom surface of the printed circuit board, but also in other areas according to the formation method or process conditions. On the other hand, the external electrode 400 may be formed by mixing, for example, glass frit of a multi-component system based on 0.5% to 20% of Bi 2 O 3 or SiO 2 with metal powder. That is, part of the external electrode 400 in contact with the body 100 may be formed of a conductive material mixed with glass. In this case, the mixture of the glass frit and the metal powder may be prepared in a paste form and applied to two surfaces of the body 100. That is, when a part of the external electrode 400 is formed using the conductive paste, the glass frit may be mixed with the conductive paste. As the glass frit is included in the external electrode 400, the adhesion between the external electrode 400 and the body 100 may be improved, and the contact reaction between the coil pattern 300 and the external electrode 400 may be improved.
이러한 외부 전극(400)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 본 발명의 실시 예는 코일 패턴(300)과 연결되는 외부 전극(400)의 적어도 일부, 즉 바디(100)의 표면에 형성되어 코일 패턴(300)과 연결되는 제1층(411, 421)은 코일 패턴(300)과 동일 물질로 형성될 수 있다. 예를 들어, 코일 패턴(300)이 구리를 이용하여 형성되는 경우 외부 전극(400)의 적어도 일부, 즉 제1층(411, 412)은 구리를 이용하여 형성할 수 있다. 이때, 구리는 앞서 설명한 바와 같이 도전성 페이스트를 이용한 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 방법으로 형성할 수 있다. 그런데, 본 발명의 바람직한 실시 예는 적어도 외부 전극(400)의 제1층(411, 421)은 코일 패턴(300)과 동일 방법, 즉 도금으로 형성할 수 있다. 즉, 외부 전극(400)의 전체 두께를 구리 도금으로 형성하거나, 외부 전극(400)의 일부 두께, 즉 코일 패턴(300)과 연결되어 바디(100)의 표면에 접촉 형성되는 제1층(411, 421)을 구리 도금으로 형성할 수 있다. 도금 공정으로 외부 전극(400)을 형성하기 위해 바디(100)의 양 측면에 시드층을 형성한 후 시드층으로부터 공정으로 도금층을 형성하여 외부 전극(400)을 형성할 수 있다. 물론, 바디(100)의 외측으로 노출된 코일 패턴(300)이 시드의 역할을 하여 별도의 시드층을 형성하지 않고 도금으로 외부 전극(400)을 형성할 수 있다. 한편, 도금 공정 이전에 산처리 공정을 실시할 수도 있다. 즉, 바디(100)의 적어도 일부면에 염산 처리한 후 도금 공정을 실시할 수 있다. 외부 전극(400)을 도금으로 형성하더라도 외부 전극(400)은 바디(100)의 서로 대향되는 양 측면 뿐만 아니라 이와 인접한 다른 측면, 즉 상면 및 하면으로 연장 형성될 수 있다. 여기서, 외부 전극(400)의 코일 패턴(300)과 연결되는 적어도 일부는 외부 전극(400)이 형성되는 바디(100)의 측면 전체일 수 있고, 일부 영역일 수도 있다. 한편, 외부 전극(400)은 적어도 하나의 도금층을 더 포함할 수 있다. 즉, 외부 전극(400)은 코일 패턴(300)과 연결되는 제1층(411, 412)과, 그 상부에 형성된 적어도 하나의 제2층(412, 422)을 포함할 수 있다. 즉, 제2층(412, 422)는 하나의 층일 수도 있고, 둘 이상의 층일 수도 있다. 예를 들어, 외부 전극(400)은 구리 도금층 상에 니켈 도금층(미도시) 및 주석 도금층(미도시) 중 적어도 하나가 더 형성될 수 있다. 즉, 외부 전극(400)은 구리층, Ni 도금층 및 Sn 도금층의 적층 구조로 형성될 수 있고, 구리층, Ni 도금층 및 Sn/Ag 도금층의 적층 구조로 형성될 수 있다. 이때, 도금은 전해 또는 무전해 도금으로 실시할 수 있다. 즉, 제1층(411, 412)은 일부 두께를 무전해 도금으로 형성하고 나머지 두께를 전해 도금으로 형성하거나, 전체 두께를 무전해 도금 또는 전해 도금으로 형성할 수 있다. 제2층(411, 412) 또한 일부 두께를 무전해 도금으로 형성하고 나머지 두께를 전해 도금으로 형성하거나, 전체 두께를 무전해 도금 또는 전해 도금으로 형성할 수 있다. 물론, 제1층(411, 412)을 무전해 또는 전해 도금으로 형성하고, 제2층(411, 412)을 제1층(411, 412)과 동일하게 무전해 또는 전해 도금으로 형성하거나 제1층(411, 412)과 다르게 전해 또는 무전해 도금으로 형성할 수 있다. 한편, 제2층(412, 422)의 Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 예를 들어, 외부 전극(400)은 2㎛∼100㎛의 두께로 형성될 수 있는데, 제1층(411, 412)이 1㎛∼50㎛의 두께로 형성될 수 있으며, 제2층(412, 422)이 1㎛∼50㎛의 두께로 형성될 수 있다. 여기서, 외부 전극(400)은 제1층(411, 412)과 제2층(412, 422)의 두께가 같을 수도 있고 다를 수도 있다. 제1층(411, 412)과 제2층(412, 422)의 두께가 다를 경우 제1층(411, 412)이 제2층(412, 422)보다 얇거나 두꺼울 수 있다. 본 발명의 실시 예는 제1층(411, 412)의 두께가 제2층(412, 422)보다 얇게 형성된다. 한편, 제2층(412, 422)은 Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.The external electrode 400 may be formed of a metal having electrical conductivity. For example, the external electrode 400 may be formed of one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof. At this time, the embodiment of the present invention is formed on at least a portion of the external electrode 400 that is connected to the coil pattern 300, that is, on the surface of the body 100 to form the first layers 411 and 421 connected to the coil pattern 300. ) May be formed of the same material as the coil pattern 300. For example, when the coil pattern 300 is formed of copper, at least a part of the external electrode 400, that is, the first layers 411 and 412 may be formed of copper. In this case, copper may be formed by an immersion or printing method using a conductive paste as described above, or may be formed by deposition, sputtering, plating, or the like. However, in the preferred embodiment of the present invention, at least the first layers 411 and 421 of the external electrode 400 may be formed by the same method as the coil pattern 300, that is, plating. In other words, the entire thickness of the external electrode 400 is formed by copper plating, or the first layer 411 is formed in contact with the surface of the body 100 by being connected to a part of the thickness of the external electrode 400, that is, the coil pattern 300. , 421 may be formed by copper plating. In order to form the external electrode 400 by the plating process, seed layers may be formed on both sides of the body 100, and then the external electrode 400 may be formed by forming a plating layer from the seed layer. Of course, the coil pattern 300 exposed to the outside of the body 100 may serve as a seed to form the external electrode 400 by plating without forming a separate seed layer. In addition, an acid treatment process may be performed before a plating process. That is, the plating process may be performed after hydrochloric acid treatment on at least one surface of the body 100. Even if the external electrode 400 is formed by plating, the external electrode 400 may extend to both opposite sides of the body 100 as well as to other adjacent sides, that is, an upper surface and a lower surface thereof. Here, at least a part of the external electrode 400 connected to the coil pattern 300 may be an entire side surface of the body 100 on which the external electrode 400 is formed, or may be a partial region. Meanwhile, the external electrode 400 may further include at least one plating layer. That is, the external electrode 400 may include first layers 411 and 412 connected to the coil pattern 300 and at least one second layer 412 and 422 formed thereon. That is, the second layers 412 and 422 may be one layer or two or more layers. For example, the external electrode 400 may further include at least one of a nickel plating layer (not shown) and a tin plating layer (not shown) on the copper plating layer. That is, the external electrode 400 may be formed of a laminated structure of a copper layer, a Ni plating layer, and a Sn plating layer, and may be formed of a laminated structure of a copper layer, a Ni plating layer, and a Sn / Ag plating layer. At this time, plating can be performed by electrolytic or electroless plating. That is, the first layers 411 and 412 may be formed by electroless plating, and the remaining thickness may be formed by electroless plating, or the entire thickness may be formed by electroless plating or electrolytic plating. The second layers 411 and 412 may also be formed by electroless plating with a part of thickness and the remaining thickness by electroplating, or may be formed by electroless plating or electroplating. Of course, the first layers 411 and 412 are formed by electroless or electrolytic plating, and the second layers 411 and 412 are formed by electroless or electrolytic plating in the same manner as the first layers 411 and 412 or the first is formed. Unlike layers 411 and 412, they may be formed by electrolytic or electroless plating. Meanwhile, the Sn plating layers of the second layers 412 and 422 may be formed to have the same or thicker thickness as the Ni plating layer. For example, the external electrode 400 may be formed to have a thickness of 2 μm to 100 μm, and the first layers 411 and 412 may be formed to have a thickness of 1 μm to 50 μm, and the second layer 412 may be formed. , 422 may be formed to a thickness of 1 μm to 50 μm. Here, the external electrodes 400 may have the same thickness or different thicknesses of the first layers 411 and 412 and the second layers 412 and 422. When the thicknesses of the first layers 411 and 412 and the second layers 412 and 422 are different, the first layers 411 and 412 may be thinner or thicker than the second layers 412 and 422. In an embodiment of the present invention, the thicknesses of the first layers 411 and 412 are thinner than those of the second layers 412 and 422. The second layers 412 and 422 may have a Ni plating layer having a thickness of 1 μm to 10 μm, and the Sn or Sn / Ag plating layer may have a thickness of 2 μm to 10 μm.
상기한 바와 같이 외부 전극(400)의 적어도 일부 두께를 코일 패턴(300)과 동일 물질을 이용하여 형성하고 동일 방법으로 형성함으로써 바디(100)와 외부 전극(400)의 결합력을 향상시킬 수 있다. 즉, 외부 전극(400)의 적어도 일부를 구리 도금으로 형성함으로써 코일 패턴(300)과 외부 전극(400)의 결합력을 향상시킬 수 있다. 이러한 본 발명에 따른 파워 인덕터는 인장 강도가 2.5kgf 내지 4.5kgf일 수 있다. 따라서, 본 발명은 종래보다 인장 강도를 향상시킬 수 있고, 그에 따라 본 발명의 파워 인덕터가 실장된 전자기기로부터 바디가 분리되지 않을 수 있다.As described above, at least a part of the thickness of the external electrode 400 may be formed by using the same material as the coil pattern 300 and formed in the same manner, thereby improving the bonding force between the body 100 and the external electrode 400. That is, by forming at least a portion of the external electrode 400 by copper plating, the coupling force between the coil pattern 300 and the external electrode 400 may be improved. The power inductor according to the present invention may have a tensile strength of 2.5kgf to 4.5kgf. Therefore, the present invention can improve the tensile strength than the conventional, so that the body may not be separated from the electronic device mounted with the power inductor of the present invention.
5. 내부 절연층5. Internal insulation layer
내부 절연층(500)은 코일 패턴(310, 320)과 금속 분말(110)을 절연시키기 위해 코일 패턴(310, 320)과 바디(100) 사이에 형성될 수 있다. 즉, 내부 절연층(500)이 코일 패턴(310, 320)의 상면 및 측면을 덮도록 형성될 수 있다. 또한, 내부 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 기재(200)를 덮도록 형성될 수도 있다. 즉, 소정 영역이 제거된 기재(200)의 코일 패턴(310, 320)보다 노출된 영역, 즉 기재(200)의 표면 및 측면에도 내부 절연층(500)이 형성될 수 있다. 기재(200) 상의 내부 절연층(500)은 코일 패턴(310, 320) 상의 내부 절연층(500)과 동일 두께로 형성될 수 있다. 이러한 내부 절연층(500)은 코일 패턴(310, 320) 상에 파릴렌을 코팅하여 형성할 수 있다. 예를 들어, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기(Vaporizer)에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩(Cold Trap)과 기계적 진공 펌프(Mechanical Vaccum Pump)를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 물론, 내부 절연층(500)은 파릴렌 이외의 절연성 고분자, 예를 들어 에폭시, 폴리이미드 및 액정 결정성 폴리머로부터 선택된 하나 이상의 물질로 형성될 수 있다. 그러나, 파릴렌을 코팅함으로써 코일 패턴(310, 320) 상에 균일한 두께로 내부 절연층(500)을 형성할 수 있고, 얇은 두께로 형성하더라도 다른 물질에 비해 절연 특성을 향상시킬 수 있다. 즉, 내부 절연층(500)으로서 파릴렌을 코팅하는 경우 폴리이미드를 형성하는 경우에 비해 얇은 두께로 형성하면서 절연 파괴 전압을 증가시켜 절연 특성을 향상시킬 수 있다. 또한, 코일 패턴(310, 320)의 패턴 사이의 간격에 따라 패턴 사이를 매립하여 균일한 두께로 형성되거나 패턴의 단차를 따라 균일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)의 패턴 사이의 간격이 멀 경우 패턴의 단차를 따라 균일한 두께로 파릴렌이 코팅될 수 있고, 패턴 사이의 간격이 가까울 경우 패턴 사이를 매립하여 코일 패턴(310, 320) 상에 소정 두께로 형성될 수 있다. 도 8은 폴리이미드를 절연층으로 형성한 파워 인덕터의 실제적인 단면 개략도이고, 도 9는 파릴렌을 절연층으로 형성한 파워 인덕터의 실제적인 단면 개략도이다. 도 9에 도시된 바와 같이 파릴렌의 경우 코일 패턴(310, 320)의 단차를 따라 얇은 두께로 형성되지만, 도 8에 도시된 바와 같이 폴리이미드는 파릴렌에 비해 두꺼운 두께로 형성된다. 한편, 내부 절연층(500)은 파릴렌을 이용하여 3㎛∼100㎛의 두께로 형성할 수 있다. 파릴렌이 3㎛ 미만의 두께로 형성되면 절연 특성이 저하될 수 있고, 100㎛를 초과하는 두께로 형성하는 경우 동일 사이즈 내에서 내부 절연층(500)이 차지하는 두께가 증가하여 바디(100)의 체적이 작아지고 그에 따라 투자율이 저하될 수 있다. 물론, 내부 절연층(500)은 소정 두께의 시트로 제작된 후 코일 패턴(310, 320) 상에 형성될 수 있다.The inner insulating layer 500 may be formed between the coil patterns 310 and 320 and the body 100 to insulate the coil patterns 310 and 320 and the metal powder 110. That is, the inner insulation layer 500 may be formed to cover the top and side surfaces of the coil patterns 310 and 320. In addition, the internal insulation layer 500 may be formed to cover the substrate 200 as well as the top and side surfaces of the coil patterns 310 and 320. That is, the inner insulation layer 500 may be formed on the exposed area, that is, the surface and the side surface of the substrate 200, of the substrate 200 in which the predetermined region is removed. The inner insulation layer 500 on the substrate 200 may be formed to have the same thickness as the inner insulation layer 500 on the coil patterns 310 and 320. The internal insulation layer 500 may be formed by coating parylene on the coil patterns 310 and 320. For example, parylene may be deposited on the coil patterns 310 and 320 by preparing the substrate 200 on which the coil patterns 310 and 320 are formed in the deposition chamber, and then supplying the parylene into the vacuum chamber. . For example, parylene is first heated and vaporized in a vaporizer to make a dimer, followed by second heating to thermally decompose into a monomer, and connected to a deposition chamber. When the parylene is cooled by using a trap and a mechanical vacuum pump, the parylene is converted into the polymer state from the monomer state and deposited on the coil patterns 310 and 320. Of course, the inner insulating layer 500 may be formed of one or more materials selected from insulating polymers other than parylene, for example, epoxy, polyimide, and liquid crystal crystalline polymer. However, by coating the parylene, the internal insulation layer 500 may be formed on the coil patterns 310 and 320 with a uniform thickness, and even when formed with a thin thickness, the insulation characteristics may be improved compared to other materials. That is, in the case of coating the parylene as the internal insulation layer 500, the insulating property may be improved by increasing the dielectric breakdown voltage while forming a thinner thickness than in the case of forming the polyimide. In addition, the gap between the patterns of the coil patterns 310 and 320 may be buried between the patterns to have a uniform thickness or may be formed to have a uniform thickness along the step difference of the pattern. That is, when the distance between the patterns of the coil patterns 310 and 320 is far, parylene may be coated with a uniform thickness along the step of the pattern, and when the distance between the patterns is close, the coil patterns 310 may be buried between the patterns. , 320 may be formed to a predetermined thickness. 8 is an actual cross-sectional schematic diagram of a power inductor formed of an insulating layer of polyimide, and FIG. 9 is an actual cross-sectional schematic diagram of a power inductor formed of an insulating layer of parylene. As shown in FIG. 9, in the case of parylene, a thin thickness is formed along the steps of the coil patterns 310 and 320, but as shown in FIG. 8, the polyimide is formed in a thicker thickness than parylene. On the other hand, the internal insulating layer 500 can be formed to a thickness of 3 ㎛ to 100 ㎛ using parylene. If the parylene is formed to a thickness of less than 3㎛ may reduce the insulating properties, when formed to a thickness of more than 100㎛ thickness of the inner insulating layer 500 in the same size increases the body 100 The volume can be small and thus the permeability can be lowered. Of course, the inner insulation layer 500 may be formed on the coil patterns 310 and 320 after being made of a sheet having a predetermined thickness.
6. 표면 절연층6. Surface Insulation Layer
외부 전극(400)이 형성되지 않은 바디(100)의 표면에 표면 절연층(510)이 형성될 수 있다. 즉, 표면 절연층(510)은 외부 전극(400)이 형성되지 않는 바디(100) 네면의 소정 영역에 형성될 수 있다. 예를 들어, 표면 절연층(510)은 Y 방향으로 서로 대향되는 두면(즉, 전면 및 후면)과, Z 방향으로 서로 대향되는 두면(즉, 하면 및 상면)의 외부 전극(400)이 형성되지 않은 영역에 형성될 수 있다. 외부 전극(400)은 X 방향의 두면에 형성되며 Y 방향 및 Z 방향의 네면의 가장자리로부터 소정 폭으로 연장 형성되므로 Y 방향 및 Z 방향의 네면의 중앙부에 소정 폭으로 표면 절연층(510)이 형성될 수 있다. 이러한 표면 절연층(510)은 원하는 위치에 도금 공정으로 외부 전극(400)을 형성하기 위해 형성될 수 있다. 즉, 바디(100)는 표면 저항이 거의 동일하기 때문에 도금 공정을 실시하면 바디(100) 전체 표면에 도금 공정이 실시될 수 있다. 따라서, 외부 전극(400)이 형성되지 않는 영역에 표면 절연층(510)을 형성함으로써 외부 전극(400)을 원하는 위치에 형성할 수 있다. 한편, 이러한 표면 절연층(510)은 절연 물질로 형성될 수 있는데, 예를 들어 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상으로 형성될 수 있다. 또한, 표면 절연층(550)은 열경화성 수지로 형성될 수도 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 즉, 표면 절연층(510)은 바디(100)의 절연물(120)로 이용되는 물질로 형성될 수 있다. 이러한 표면 절연층(510)은 폴리머, 열경화성 수지을 바디(100)의 소정 영역에 도포 또는 인쇄함으로써 형성될 수 있다. 따라서, 표면 절연층(510)은 Y 방향 및 Z 방향의 네면의 중앙부에 형성될 수 있다. 한편, 표면 절연층(510)은 파릴렌으로 형성될 수도 있고, 실리콘 산화막(SiO2), 실리콘 질화막(Si3N4), 실리콘 산화질화막(SiON) 등 다양한 절연 물질을 이용하여 형성될 수 있다. 이들 물질로 형성되는 경우 CVD, PVD 방법 등의 다양한 방법을 이용하여 형성할 수 있다. 한편, 표면 절연층(510)은 외부 전극(400)의 두께와 같거나 다른 두께로 형성될 수 있는데, 예를 들어 3㎛∼30㎛의 두께로 형성될 수 있다.The surface insulating layer 510 may be formed on the surface of the body 100 on which the external electrode 400 is not formed. That is, the surface insulating layer 510 may be formed in a predetermined region of four surfaces of the body 100 in which the external electrode 400 is not formed. For example, the surface insulating layer 510 may have two surfaces (ie, front and rear surfaces) that face each other in the Y direction, and external electrodes 400 of two surfaces (ie, bottom and top surfaces) that face each other in the Z direction. It may be formed in the non-region. The external electrode 400 is formed on two surfaces in the X direction and extends to a predetermined width from the edges of the four surfaces in the Y and Z directions, so that the surface insulating layer 510 is formed at the central portion of the four surfaces in the Y and Z directions. Can be. The surface insulating layer 510 may be formed to form the external electrode 400 by a plating process at a desired position. That is, since the body 100 has almost the same surface resistance, when the plating process is performed, the plating process may be performed on the entire surface of the body 100. Therefore, by forming the surface insulating layer 510 in a region where the external electrode 400 is not formed, the external electrode 400 can be formed at a desired position. Meanwhile, the surface insulating layer 510 may be formed of an insulating material, for example, at least one selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP). It can be formed as. In addition, the surface insulating layer 550 may be formed of a thermosetting resin. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin. Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin). That is, the surface insulating layer 510 may be formed of a material used as the insulator 120 of the body 100. The surface insulating layer 510 may be formed by applying or printing a polymer or a thermosetting resin to a predetermined region of the body 100. Therefore, the surface insulating layer 510 may be formed at the center of four surfaces in the Y direction and the Z direction. Meanwhile, the surface insulating layer 510 may be formed of parylene, and may be formed using various insulating materials such as silicon oxide film (SiO 2 ), silicon nitride film (Si 3 N 4 ), and silicon oxynitride film (SiON). . When formed of these materials can be formed using a variety of methods, such as CVD, PVD method. Meanwhile, the surface insulating layer 510 may be formed to have a thickness equal to or different from that of the external electrode 400, for example, 3 μm to 30 μm.
7. 표면 개질 부재7. Surface modification member
한편, 바디(100)의 적어도 일 표면에는 표면 개질 부재(미도시)가 형성될 수 있다. 이러한 표면 개질 부재는 바디(100)의 표면에 예를 들어 산화물을 분포시켜 형성할 수 있다. 여기서, 산화물은 결정 상태 또는 비결정 상태로 바디(100)의 표면에 분산되어 분포될 수 있다. 또한, 표면에 분포된 표면 개질 부재는 적어도 일부가 용융될 수 있다. 표면 개질 부재는 외부 전극(400)을 형성하기 이전에 바디(100)의 적어도 일 표면에 형성될 수 있다. 즉, 표면 개질 부재는 표면 절연층(510)을 형성하기 이전에 형성할 수도 있고, 표면 절연층(510)을 형성한 후에 형성할 수도 있다. 표면 개질 부재가 형성됨으로써 바디(100) 표면의 저항이 거의 동일하게 유지될 수 있다. 즉, 바디(100)는 적어도 일 영역의 표면 저항이 다를 수 있기 때문에 도금 공정을 실시하면 저항이 낮은 영역에서 도금 성장이 이루어지고 저항이 높은 영역에는 도금 성장이 낮거나 이루어지지 않을 수 있다. 예를 들어, 표면 절연층(510)에 의해 노출된 바디(100)의 표면에는 금속 분말이 노출되는 영역과 노출되지 않는 영역이 존재할 수 있는데, 금속 분말이 노출된 영역은 노출되지 않는 영역보다 저항이 낮을 수 있고, 저항이 낮은 영역이 높은 영역보다 도금층이 더잘 성장될 수 있으므로 도금층의 불균일이 발생될 수 있다. 따라서, 바디(100)의 표면에 표면 개질 부재를 형성함으로써 저항을 균일하게 하고 그에 따라 도금층 성장을 균일하게 할 수 있다.Meanwhile, a surface modification member (not shown) may be formed on at least one surface of the body 100. The surface modification member may be formed by, for example, distributing an oxide on the surface of the body 100. Here, the oxide may be dispersed and distributed on the surface of the body 100 in a crystalline state or an amorphous state. In addition, at least a portion of the surface modification member distributed on the surface may be melted. The surface modification member may be formed on at least one surface of the body 100 before forming the external electrode 400. That is, the surface modification member may be formed before forming the surface insulating layer 510, or may be formed after forming the surface insulating layer 510. By forming the surface modification member, the resistance of the surface of the body 100 may be maintained to be substantially the same. That is, since the surface resistance of at least one region of the body 100 may be different, plating growth may be performed in a region having low resistance, and plating growth may be low or not in a region having high resistance. For example, the surface of the body 100 exposed by the surface insulating layer 510 may have a region where the metal powder is exposed and a region where the metal powder is not exposed. The region where the metal powder is exposed may be more resistant than the region where the metal powder is exposed. This may be low, and the plating layer may be grown better than the region where the resistance is low, so that the plating layer may be uneven. Therefore, by forming the surface modification member on the surface of the body 100, it is possible to make the resistance uniform and thereby to make the plating layer grow uniform.
한편, 표면 개질 부재는 적어도 일부가 동일한 크기로 바디(100)의 표면에 고르게 분포될 수 있고, 적어도 일부가 서로 다른 크기로 불규칙하게 분포될 수도 있다. 또한, 바디(100)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 표면 개질 부재가 형성되어 볼록부가 형성되고 표면 개질 부재가 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 표면 개질 부재는 적어도 일부가 바디(100)의 표면보다 깊이 형성될 수 있다. 즉, 표면 개질 부재는 소정 두께가 바디(100)의 소정 깊이로 박히고 나머지 두께가 바디(100)의 표면보다 높게 형성될 수 있다. 이때, 바디(100)에 박히는 두께는 산화물 입자의 평균 직경의 1/20 내지 1일 수 있다. 즉, 산화물 입자는 바디(100) 내부로 모두 함입될 수 있고, 적어도 일부가 함입될 수 있다. 물론, 산화물 입자는 바디(100)의 표면에만 형성될 수 있다. 따라서, 산화물 입자는 바디(100)의 표면에서 반구형으로 형성될 수도 있고, 구 형태로 형성될 수도 있다. 또한, 표면 개질 부재는 상기한 바와 같이 바디(100)의 표면에 부분적으로 분포될 수도 있으며, 적어도 일 영역에 막 형태로 분포될 수도 있다. 즉, 산화물 입자가 바디(100)의 표면에 섬(island) 형태로 분포되어 표면 개질 부재가 형성될 수 있다. 즉, 바디(100) 표면에 결정 상태 또는 비결정 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 바디(100) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물은 표면 개질 부재는 적어도 둘 이상이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 즉, 적어도 둘 이상의 산화물 입자가 응집되거나 인접한 산화물 입자가 연결되어 막 형태를 이룰 수 있다. 그러나, 산화물이 입자 상태로 존재하거나, 둘 이상의 입자가 응집되거나 연결된 경우에도 바디(100) 표면의 적어도 일부는 표면 개질 부재에 의해 외부로 노출된다. On the other hand, at least a portion of the surface modification member may be evenly distributed on the surface of the body 100 in the same size, at least a portion may be irregularly distributed in different sizes. In addition, a recess may be formed on at least part of the surface of the body 100. That is, the surface modification member may be formed to form a convex portion, and at least a portion of the region where the surface modification member is not formed may be recessed to form a recess. At this time, at least a portion of the surface modification member may be formed deeper than the surface of the body 100. That is, the surface modification member may be formed with a predetermined thickness to be embedded at a predetermined depth of the body 100 and the remaining thickness is higher than the surface of the body 100. In this case, the thickness of the body 100 may be 1/20 to 1 of the average diameter of the oxide particles. That is, all of the oxide particles may be embedded into the body 100, and at least some may be embedded. Of course, the oxide particles may be formed only on the surface of the body 100. Therefore, the oxide particles may be formed in a hemispherical shape on the surface of the body 100, or may be formed in a spherical shape. In addition, the surface modification member may be partially distributed on the surface of the body 100 as described above, or may be distributed in at least one region in the form of a film. That is, the oxide particles may be distributed in the form of islands on the surface of the body 100 to form a surface modification member. That is, oxides in a crystalline state or an amorphous state may be distributed in an island form on the surface of the body 100, and thus at least a portion of the surface of the body 100 may be exposed. In addition, the oxide may be formed as a film in at least one region and at least a portion thereof in an island form by connecting at least two surface modification members. That is, at least two or more oxide particles may be aggregated or adjacent oxide particles may be connected to form a film. However, even when the oxide is present in the form of particles or when two or more particles are aggregated or connected, at least a part of the surface of the body 100 is exposed to the outside by the surface modification member.
이때, 표면 개질 부재의 총 면적은 바디(100) 표면 전체 면적의 예를 들어 5% 내지 90%일 수 있다. 표면 개질 부재의 면적에 따라 바디(100) 표면의 도금 번짐 현상이 제어될 수 있지만, 표면 개질 부재가 너무 많이 형성되면 바디(100) 내부의 도전 패턴과 외부 전극(400)의 접촉이 어려울 수 있다. 즉, 표면 개질 부재가 바디(100) 표면적의 5% 미만으로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 90%를 초과하여 형성될 경우 바디(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 따라서, 표면 개질 부재는 도금 번짐 현상을 제어할 수 있고 바디(100) 내부의 도전 패턴과 외부 전극(400)의 접촉될 수 있는 정도의 면적으로 형성하는 것이 바람직하다. 이를 위해 표면 개질 부재는 바디(100) 표면적의 10% 내지 90%로 형성될 수 있고, 바람직하게는 30% 내지 70%의 면적으로 형성될 수 있으며, 더욱 바람직하게는 40% 내지 50%의 면적으로 형성될 수 있다. 이때, 바디(100)의 표면적은 일 면의 표면적일 수도 있고, 육면체를 이루는 바디(100)의 여섯면의 표면적일 수도 있다. 한편, 표면 개질 부재는 바디(100) 두께의 10% 이하의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 바디(100) 두께의 0.01% 내지 10%의 두께로 형성될 수 있다. 예를 들어, 표면 개질 부재는 0.1㎛∼50㎛의 크기로 존재할 수 있는데, 그에 따라 표면 개질 부재는 바디(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 바디(100)의 표면보다 박힌 영역을 제외하고 바디(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 따라서, 바디(100) 내측으로 박힌 두께를 포함하면 표면 개질 부재는 0.1㎛∼50㎛보다 두꺼운 두께를 가질 수 있다. 표면 개질 부재가 바디(100) 두께의 0.01% 미만의 두께로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 바디(100) 두께의 10%를 초과하는 두께로 형성될 경우 바디(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 즉, 표면 개질 부재는 바디(100)의 재료 특성(전도성, 반도성, 절연성, 자성체 등)에 따라 다양한 두께를 가질 수 있고, 산화물 분말의 크기, 분포량, 응집 여부에 따라 다양한 두께를 가질 수 있다.In this case, the total area of the surface modification member may be, for example, 5% to 90% of the total surface area of the body 100. The plating bleeding phenomenon of the surface of the body 100 may be controlled according to the area of the surface modifying member. However, when too much surface modifying member is formed, contact between the conductive pattern inside the body 100 and the external electrode 400 may be difficult. . That is, when the surface modification member is formed to less than 5% of the surface area of the body 100, it is difficult to control the plating bleeding phenomenon. When the surface modification member is formed to exceed 90%, the conductive pattern and the external electrode 400 inside the body 100 May not be contacted. Therefore, the surface modification member may control the plating bleeding phenomenon and may be formed in an area that can be in contact with the conductive pattern inside the body 100 and the external electrode 400. To this end, the surface modification member may be formed of 10% to 90% of the surface area of the body 100, preferably 30% to 70% of the area, more preferably 40% to 50% of the area It can be formed as. In this case, the surface area of the body 100 may be the surface area of one surface, or may be the surface area of six surfaces of the body 100 forming a hexahedron. Meanwhile, the surface modification member may be formed to a thickness of 10% or less of the thickness of the body 100. That is, the surface modification member may be formed to a thickness of 0.01% to 10% of the thickness of the body 100. For example, the surface modification member may exist in a size of 0.1 μm to 50 μm, and thus the surface modification member may be formed to a thickness of 0.1 μm to 50 μm from the surface of the body 100. That is, the surface modification member may be formed to have a thickness of 0.1 μm to 50 μm from the surface of the body 100 except for a region that is stuck to the surface of the body 100. Accordingly, when the thickness of the body 100 is embedded, the surface modification member may have a thickness greater than 0.1 μm to 50 μm. If the surface modification member is formed to be less than 0.01% of the thickness of the body 100, it is difficult to control the plating bleeding phenomenon, and if formed to a thickness of more than 10% of the thickness of the body 100, the conductive inside the body 100 The pattern and the external electrode 400 may not be in contact. That is, the surface modification member may have various thicknesses according to material properties (conductivity, semiconductivity, insulation, magnetic material, etc.) of the body 100, and may have various thicknesses according to the size, distribution amount, or aggregation of oxide powder. .
이렇게 바디(100)의 표면에 표면 개질 부재가 형성됨으로써 바디(100)의 표면은 성분이 다른 적어도 두 영역이 존재할 수 있다. 즉, 표면 개질 부재가 형성된 영역과 형성되지 않은 영역은 서로 다른 성분이 검출될 수 있다. 예를 들어, 표면 개질 부재가 형성된 영역은 표면 개질 부재에 따른 성분, 즉 산화물이 존재할 수 있고, 형성되지 않은 영역은 바디(100)에 따른 성분, 즉 시트의 성분이 존재할 수 있다. 이렇게 도금 공정 이전에 바디(100)의 표면에 표면 개질 부재를 분포시킴으로써 바디(100) 표면에 거칠기를 부여하여 개질시킬 수 있다. 따라서, 도금 공정이 균일하게 실시될 수 있고, 그에 따라 외부 전극(400)의 형상을 제어할 수 있다. 즉, 바디(100)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 도금층의 성장 불균일이 발생된다. 이러한 문제를 해결하기 위해 바디(100)의 표면에 입자 상태 또는 용융 상태의 산화물을 분산시켜 표면 개질 부재를 형성함으로써 바디(100)의 표면을 개질시킬 수 있고, 도금층의 성장을 제어할 수 있다. As the surface modification member is formed on the surface of the body 100, at least two regions having different components may exist on the surface of the body 100. That is, different components may be detected in the region where the surface modification member is formed and the region where the surface modification member is not formed. For example, the region in which the surface modification member is formed may have a component according to the surface modification member, that is, an oxide, and the region in which the surface modification member is not formed may include a component according to the body 100, that is, a component of the sheet. As such, by distributing the surface modification member on the surface of the body 100 before the plating process, the surface of the body 100 may be provided with a roughness to be modified. Therefore, the plating process can be performed uniformly, thereby controlling the shape of the external electrode 400. That is, the surface of the body 100 may have at least one resistance different from that of the other regions. If the plating process is performed in a state where the resistance is uneven, growth unevenness of the plating layer may occur. In order to solve this problem, the surface of the body 100 may be modified by dispersing oxides in a particle state or a molten state on the surface of the body 100 to form a surface modification member, and the growth of the plating layer may be controlled.
여기서, 바디(100)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다. 한편, 표면 개질 부재는 바디(100) 내의 적어도 하나의 시트 상에도 형성될 수 있다. 즉, 시트 상의 다양한 형상의 도전 패턴은 도금 공정으로 형성할 수도 있는데, 표면 개질 부재를 형성함으로써 도전 패턴의 형상을 제어할 수 있다.Here, the oxide in the granular or molten state for uniform surface resistance of the body 100 is, for example, Bi 2 O 3 , BO 2 , B 2 O 3 , ZnO, Co 3 O 4 , SiO 2 , Al 2 At least one or more of O 3 , MnO, H 2 BO 3 , Ca (CO 3 ) 2 , Ca (NO 3 ) 2 , and CaCO 3 may be used. Meanwhile, the surface modification member may be formed on at least one sheet in the body 100. That is, although the conductive patterns of various shapes on the sheet may be formed by a plating process, the shape of the conductive patterns can be controlled by forming the surface modification member.
8. 캐핑 절연층8. Capping Insulation Layer
도 1 및 도 10에 도시된 바와 같이 외부 전극(400)이 형성된 바디(100)의 상면에 캐핑 절연층(550)이 형성될 수 있다. 즉, 인쇄회로기판Pronted Circuit Board; PCB) 상에 실장되는 바디(100)의 하면과 대향되는 바디(100)의 상면, 예를 들어 Z 방향으로 상측면에 캐핑 절연층(550)이 형성될 수 있다. 이러한 캐핑 절연층(550)은 바디(100)의 상면에 연장 형성된 외부 전극(400)과 쉴드 캔 또는 상측의 회로 부품과 파워 인덕터의 쇼트를 방지하기 위해 형성될 수 있다. 즉, 파워 인덕터는 바디(100)의 하면에 형성된 외부 전극(400)이 PMIC(Power Management IC)에 인접하여 인쇄회로기판 상에 실장되는데, PMIC는 약 1㎜의 두께를 갖고, 파워 인덕터 또한 이와 동일한 두께로 제작된다. PMIC는 고주파 노이즈를 발생시켜 주변 회로 또는 소자에 영향을 주기 때문에 PMIC 및 파워 인덕터를 금속 재질, 예를 들어 스테인레스 스틸 재질의 쉴드 캔(shield can)으로 덮게 된다. 그런데, 파워 인덕터는 외부 전극이 상측에도 형성되기 때문에 쉴드 캔과 쇼트(short)된다. 따라서, 바디(100)의 상면에 캐핑 절연층(550)을 형성함으로써 파워 인덕터와 외부 도전체와의 쇼트를 방지할 수 있다. 이러한 캐핑 절연층(550)은 절연 물질로 형성될 수 있는데, 예를 들어 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상으로 형성될 수 있다. 또한, 캐핑 절연층(550)은 열경화성 수지로 형성될 수도 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 즉, 캐핑 절연층(550)은 바디(100)의 절연물(120) 또는 표면 절연층(510)으로 이용되는 물질로 형성될 수 있다. 이러한 캐핑 절연층(550)은 폴리머, 열경화성 수지 등에 바디(100)의 상면을 침지함으로써 형성될 수 있다. 따라서, 캐핑 절연층(550)은 도 1 및 도 10에 도시된 바와 같이 바디(100)의 상면 뿐만 아니라 바디(100)의 X 방향으로의 양 측면의 일부 및 Y 방향으로의 전면 및 후면의 일부에 형성될 수도 있다. 한편, 캐핑 절연층(550)은 파릴렌으로 형성될 수도 있고, 실리콘 산화막(SiO2), 실리콘 질화막(Si3N4), 실리콘 산화질화막(SiON) 등 다양한 절연 물질을 이용하여 형성될 수 있다. 이들 물질로 형성되는 경우 CVD, PVD 방법 등의 다양한 방법을 이용하여 형성할 수 있다. 캐핑 절연층(550)이 CVD, PVD 방법으로 형성되는 경우 바디(100)의 상면에만 형성될 수도 있다. 한편, 캐핑 절연층(550)은 파워 인덕터(100)의 외부 전극(400)과 쉴드 캔 등의 쇼트를 방지할 수 있는 두께로 형성될 수 있는데, 예를 들어 10㎛∼100㎛의 두께로 형성될 수 있다.여기서, 캐핑 절연층(550)은 외부 전극(400)의 두께와 같거나 다른 두께로 형성될 수 있고, 표면 절연층(510)의 두께와 같거나 다른 두께로 형성될 수 있다. 예를 들어, 캐핑 절연층(550)은 외부 전극(400) 및 표면 절연층(510)보다 두껍게 형성될 수 있다. 물론, 캐핑 절연층(550)은 외부 전극(400)보다 얇고 표면 절연층(510)과 같은 두께로 형성될 수도 있다. 또한, 캐핑 절연층(550)은 외부 전극(400)과 바디(100) 사이에 단차가 유지되도록 바디(100) 상면에 균일한 두께로 형성될 수도 있고, 외부 전극(400)과 바디(100) 사이의 단차가 제거되도록 바디(100) 상부에서 외부 전극(400) 상부보다 두껍게 형성되어 표면이 평탄할 수도 있다. 물론, 캐핑 절연층(550)은 소정 두께로 별도로 제작한 후 바디(100) 상에 접착제 등을 이용하여 접합하여 형성할 수도 있다. As illustrated in FIGS. 1 and 10, a capping insulating layer 550 may be formed on the upper surface of the body 100 on which the external electrode 400 is formed. That is, a printed circuit board; The capping insulation layer 550 may be formed on the upper surface of the body 100, for example, in the Z direction, which faces the lower surface of the body 100 mounted on the PCB. The capping insulating layer 550 may be formed to prevent a short between the external electrode 400 formed on the upper surface of the body 100, a shield can, or a circuit component on the upper side and a power inductor. That is, in the power inductor, the external electrode 400 formed on the lower surface of the body 100 is mounted on the printed circuit board adjacent to the PMIC (Power Management IC). The PMIC has a thickness of about 1 mm. Made to be the same thickness. Because PMICs generate high-frequency noise that affects peripheral circuits or devices, the PMIC and power inductor are covered with a shield can made of metal, such as stainless steel. However, the power inductor is shorted with the shield can because the external electrode is also formed on the upper side. Therefore, the capping insulating layer 550 may be formed on the upper surface of the body 100 to prevent a short between the power inductor and the external conductor. The capping insulating layer 550 may be formed of an insulating material. For example, the capping insulating layer 550 may be formed of one or more selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer (LCP). Can be. In addition, the capping insulating layer 550 may be formed of a thermosetting resin. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin. Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin). That is, the capping insulation layer 550 may be formed of a material used as the insulator 120 or the surface insulation layer 510 of the body 100. The capping insulating layer 550 may be formed by immersing the upper surface of the body 100 in a polymer, a thermosetting resin, or the like. Accordingly, the capping insulation layer 550 may not only have a top surface of the body 100 as shown in FIGS. 1 and 10, but also a portion of both sides of the body 100 in the X direction and a portion of the front and rear surfaces in the Y direction. It may be formed in. The capping insulating layer 550 may be formed of parylene, and may be formed using various insulating materials such as silicon oxide film (SiO 2 ), silicon nitride film (Si 3 N 4 ), and silicon oxynitride film (SiON). . When formed of these materials can be formed using a variety of methods, such as CVD, PVD method. When the capping insulating layer 550 is formed by CVD or PVD, the capping insulating layer 550 may be formed only on the upper surface of the body 100. On the other hand, the capping insulating layer 550 may be formed to a thickness that can prevent the short, such as the external electrode 400 and the shield can of the power inductor 100, for example, formed to a thickness of 10㎛ ~ 100㎛ Here, the capping insulating layer 550 may be formed to have a thickness equal to or different from that of the external electrode 400, and may be formed to have a thickness equal to or different from the thickness of the surface insulating layer 510. For example, the capping insulating layer 550 may be formed thicker than the external electrode 400 and the surface insulating layer 510. Of course, the capping insulation layer 550 may be thinner than the external electrode 400 and have the same thickness as the surface insulation layer 510. In addition, the capping insulating layer 550 may be formed to have a uniform thickness on the upper surface of the body 100 so that the step is maintained between the external electrode 400 and the body 100, the external electrode 400 and the body 100. The upper surface of the body 100 may be formed thicker than the upper portion of the external electrode 400 so that the step difference is eliminated. Of course, the capping insulating layer 550 may be separately formed to a predetermined thickness and then bonded to the body 100 using an adhesive or the like.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 파워 인덕터는 바디(100)의 상부면에 외부 전극(400)이 노출되지 않도록 캐핑 절연층(550)이 형성됨으로써 외부 전극(400)이 쉴드 캔 등과 접촉되어 쇼트되는 것을 방지할 수 있다. 또한, 외부 전극(400)의 적어도 일부 두께를 코일 패턴(300)과 동일 물질을 이용하여 동일 방법으로 형성함으로써 바디(100)와 외부 전극(400)의 결합력을 향상시킬 수 있다. 즉, 외부 전극(400)을 구리 도금으로 형성함으로써 코일 패턴(300)과 외부 전극(400)의 결합력을 향상시킬 수 있다. 따라서, 인장 강도를 향상시킬 수 있고, 그에 따라 본 발명의 파워 인덕터가 실장된 전자기기로부터 바디가 분리되지 않을 수 있다. 그리고, 금속 분말(110) 및 절연물(120) 뿐만 아니라 열 전도성 필러(130)를 포함하여 바디(100)를 제작함으로써 금속 분말(110)의 가열에 의한 바디(100)의 열을 외부로 방출할 수 있어 바디(100)의 온도 상승을 방지할 수 있고, 그에 따라 인덕턴스 저하 등의 문제를 방지할 수 있다. 한편, 코일 패턴(310, 320)과 바디(100) 사이에 파릴렌을 이용하여 내부 절연층(500)을 형성함으로써 코일 패턴(310, 320)의 측면 및 상면에 얇고 균일한 두께로 내부 절연층(500)을 형성하면서 절연 특성을 향상시킬 수 있다.As described above, in the power inductor according to the first embodiment of the present invention, the capping insulating layer 550 is formed on the upper surface of the body 100 so that the external electrode 400 is not exposed, so that the external electrode 400 can be shielded. It is possible to prevent the short from contact with the back. In addition, the coupling force between the body 100 and the external electrode 400 may be improved by forming at least a part of the thickness of the external electrode 400 using the same material as the coil pattern 300. That is, by forming the external electrode 400 by copper plating, the bonding force between the coil pattern 300 and the external electrode 400 may be improved. Therefore, the tensile strength can be improved, so that the body can not be separated from the electronic device in which the power inductor of the present invention is mounted. In addition, by manufacturing the body 100 including the metal powder 110 and the insulator 120 as well as the thermally conductive filler 130, the heat of the body 100 may be released to the outside by heating the metal powder 110. It is possible to prevent the temperature rise of the body 100, thereby preventing problems such as inductance lowering. Meanwhile, the inner insulation layer 500 is formed between the coil patterns 310 and 320 and the body 100 using parylene to form an inner insulation layer with a thin and uniform thickness on the side surfaces and the upper surfaces of the coil patterns 310 and 320. Insulating characteristics can be improved while forming 500.
실험 예Experiment example
본 발명은 외부 전극(400)의 적어도 일부를 코일 패턴(300)과 동일하게 구리 도금으로 형성함으로써 외부 전극(400)과 코일 패턴(300)의 결합력을 향상시킬 수 있다. 이렇게 외부 전극을 구리 도금으로 형성하는 본 발명의 실시 예와, 에폭시를 도포하여 형성하는 종래 예의 인장 강도를 실험으로 비교하였다.According to the present invention, at least a part of the external electrode 400 may be formed of copper plating in the same manner as the coil pattern 300, thereby improving the bonding force between the external electrode 400 and the coil pattern 300. Thus, the tensile strength of the embodiment of the present invention in which the external electrode is formed by copper plating and the conventional example in which the epoxy is applied and formed are compared experimentally.
먼저, 인장 강도를 측정하기 위해 외부 전극을 형성한 후 외부 전극 상에 와이어를 솔더링하고, 솔더링된 와이어를 잡아당겨 인장 강도를 측정하였다. 즉, 와이어를 잡아당겨 바디(100)가 찢어지거나 외부 전극(400)과 바디(100)가 분리될 때의 인장 강도를 측정하였다. 이때, 종래 예는 외부 전극을 은 에폭시를 도포하여 형성하였고, 실시 예 1는 외부 전극을 전해 도금으로 형성하였으며, 실시 예 2는 외부 전극을 무전해 도금 및 전해 도금으로 형성하였다. 그 이외의 바디, 기재, 코일 패턴의 형상 등은 종래 예와 실시 예들이 동일하게 하였다. 또한, 종래 예와 실시 예 1 및 2에 따른 파워 인덕터를 복수개 제작한 후 각각의 인장 강도를 측정하였고 그 평균을 산출하였다.First, after forming the external electrode to measure the tensile strength, the wire was soldered on the external electrode, and the tensile strength was measured by pulling the soldered wire. That is, the tensile strength was measured when the body 100 was torn by pulling the wire or when the external electrode 400 and the body 100 were separated. At this time, the conventional example was formed by applying silver epoxy to the external electrode, Example 1 was formed by electroplating the external electrode, Example 2 was formed by electroless plating and electrolytic plating. Other shapes of the body, the substrate, the coil pattern, etc. are the same as the conventional examples and the embodiments. In addition, after fabricating a plurality of power inductors according to the conventional example and Examples 1 and 2, each of the tensile strength was measured and the average was calculated.
도 11은 종래 예 및 실시 예들에 따른 인장 강도를 비교한 그래프이다. 여기서, 인장 강도는 와이어를 잡아당기는 힘을 증가시켜 바디로부터 외부 전극이 분리될 때의 힘을 나타낸다. 도 11에 도시된 바와 같이 종래 예는 인장 강도가 2.057kgf로부터 2.9910kgf로 측정되었으며, 평균은 2.679kgf이다. 그러나, 실시 예 1은 인장 강도가 2.884kgf로부터 4.285kgf로 측정되었으며, 평균은 3.603이다. 또한, 실시 예 2는 인장 강도가 2.959kgf로부터 3.940kgf로 측정되었으며, 평균은 3.453kgf이다. 참고로, 도면에서 진하고 크게 표시된 것은 평균이고, 그 이외에 옅은 색으로 표시된 것은 측정 값의 분포이다. 따라서, 본 발명의 실시 예들의 인장 강도가 비교 예보다 훨씬 높음을 알 수 있다. 또한, 본 발명의 실시 예들 중에서 외부 전극을 전해 도금으로 형성한 실시 예 1이 무전해 도금 및 전해 도금으로 형성한 실시 예 2보다 더 높음을 알 수 있다. 따라서, 본 발명의 실시 예들은 외부 전극과 바디 또는 코일 패턴의 결합력을 향상시킬 수 있고, 그에 따라 전자기기에 실장되었을 때 바디가 분리되는 문제가 발생되지 않는다.11 is a graph comparing the tensile strength according to the prior art examples and embodiments. Here, the tensile strength indicates the force when the external electrode is separated from the body by increasing the pulling force of the wire. As shown in FIG. 11, the prior art has a tensile strength measured from 2.057 kgf to 2.9910 kgf, with an average of 2.679 kgf. However, Example 1 measured tensile strength from 2.884 kgf to 4.285 kgf, with an average of 3.603. In addition, Example 2 measured the tensile strength from 2.959kgf to 3.940kgf, with an average of 3.453kgf. For reference, dark and large marks are averages in the drawings, and light colors are other means of distribution of measured values. Therefore, it can be seen that the tensile strength of the embodiments of the present invention is much higher than the comparative example. In addition, it can be seen that Example 1 of the embodiments of the present invention formed with an external electrode by electroplating is higher than Example 2 formed by electroless plating and electrolytic plating. Therefore, embodiments of the present invention can improve the bonding force between the external electrode and the body or coil pattern, and thus there is no problem in that the body is separated when mounted in the electronic device.
한편, 본 발명은 인장력을 계속 인가할 경우 바디가 깨지는 현상이 발생될 수 있다. 즉, 도 12에 도시된 바와 같이, 인장력을 계속 인가하면 바디가 깨지는 현상이 발생될 수 있다. 즉, 종래에는 인장력에 따라 외부 전극이 바디로부터 분리되었지만, 본 발명의 실시 예는 바디와 외부 전극의 결합력보다 코일 패턴과 외부 전극의 결합력이 강해 계속적인 인장력 인가에 따라 바디가 깨질 수 있다. 즉, 본 발명은 바디가 깨질지언정 바디와 외부 전극이 분리되지 않을 정도로 강한 결합력을 가질 수 있다.On the other hand, the present invention may cause a phenomenon in which the body is broken when the tensile force is continuously applied. That is, as shown in FIG. 12, when the tensile force is continuously applied, the body may be broken. That is, although the external electrode is conventionally separated from the body according to the tensile force, in the embodiment of the present invention, the coupling force between the coil pattern and the external electrode is stronger than the coupling force between the body and the external electrode, so that the body may be broken under continuous application of the tensile force. That is, the present invention may have a strong bonding force such that the body and the external electrode are not separated even if the body is broken.
한편, 본 발명은 도금으로 외부 전극을 형성하기 이전에 예를 들어 염산을 이용하여 전처리할 수 있다. [표 1]은 염산을 이용한 전처리 시간에 따른 실시 예 1 및 2의 인장 강도 측정 결과이다.On the other hand, the present invention can be pretreated using hydrochloric acid, for example, before forming the external electrode by plating. Table 1 shows the tensile strength measurement results of Examples 1 and 2 according to the pretreatment time using hydrochloric acid.
전처리 시간Pretreatment time 무전해 도금Electroless plating 전해도금Electroplating 인장력(kgf)Tensile force (kgf) 파괴모드Destruction mode
실시 예 1Example 1 30초30 seconds 2.959∼3.1442.959-3.144 바디깨짐Broken body
90초90 sec 3.137∼3.9403.137-3.940 바디깨짐Broken body
180초180 seconds 3.603∼3.9333.603 to 3.933 바디깨짐Broken body
실시 예 2Example 2 30초30 seconds XX 4.002∼4.2574.002-4.257 바디깨짐Broken body
90초90 sec XX 3.962∼4.2853.962-4.285 바디깨짐Broken body
180초180 seconds XX 2.884∼3.1632.884-3.163 바디깨짐Broken body
[표 1]에 나타낸 바와 같이 실시 예 1의 경우 전처리 시간이 증가할수록 인장 강도가 증가하는 것을 알 수 있고, 실시 예 2의 경우 전처리 시간이 증가할수록 인장 강도가 감소하는 것을 알 수 있다. 그러나, 전처리 공정을 실시하더라도 실시 예 1보다 실시 예 2가 인장 강도가 더 강함을 알 수 있다. 따라서, 도금 종류, 전처리 시간 등에 따라 인장 강도를 조절할 수 있다.As shown in Table 1, in the case of Example 1, the tensile strength increases as the pretreatment time increases, and in Example 2, the tensile strength decreases as the pretreatment time increases. However, even if the pretreatment step is carried out, it can be seen that Example 2 is stronger than Example 1 in the tensile strength. Therefore, the tensile strength can be adjusted according to the plating type, pretreatment time and the like.
다른 실시 예Another embodiment
이하에서는 본 발명의 다른 실시 예들에 대해 설명한다. 이때, 본 발명의 일 실시 예와 중복되는 내용은 상세한 설명을 생략하며, 별도로 기재되지 않는한 본 발명의 다른 실시 예의 상세한 구성은 본 발명의 일 실시 예의 상세한 구성과 동일하다. 예를 들어, 제1층 및 제2층을 구분하여 도시하지 않더라도 이하의 다른 실시 예들에서도 외부 전극(400)은 구리 도금으로 형성된 제1층과, 니켈 또는 주석 도금으로 형성된 제2층을 포함한다. 또한, 바디(100)의 표면에 외부 전극(400)을 포함한 전극이 형성되지 않은 영역에는 표면 절연층(510)이 형성될 수 있다.Hereinafter, other embodiments of the present invention will be described. In this case, details overlapping with the embodiments of the present invention will not be described in detail. Unless otherwise described, the detailed configurations of other embodiments of the present invention are the same as the detailed structures of the embodiments of the present invention. For example, although not illustrated separately from the first layer and the second layer, in the following exemplary embodiments, the external electrode 400 includes a first layer formed of copper plating and a second layer formed of nickel or tin plating. . In addition, the surface insulating layer 510 may be formed in a region where the electrode including the external electrode 400 is not formed on the surface of the body 100.
도 13은 본 발명의 제 2 실시 예에 따른 파워 인덕터의 단면도이다.13 is a cross-sectional view of a power inductor according to a second embodiment of the present invention.
도 13을 참조하면, 본 발명의 제 2 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(310, 320) 상에 각각 마련된 내부 절연층(500)과, 바디(100)의 상부 및 하부에 각각 마련된 적어도 하나의 자성층(600; 610, 620)을 포함할 수 있다. 즉, 본 발명의 제 1 실시 예에 자성층(600)이 더 구비되어 본 발명의 제 2 실시 예가 구현될 수 있다. 이러한 본 발명의 제 2 실시 예를 본 발명의 제 1 실시 예와 다른 구성을 중심으로 설명하면 다음과 같다.Referring to FIG. 13, a power inductor according to a second embodiment of the present invention may include a body 100, a substrate 200 provided inside the body 100, and a coil pattern formed on at least one surface of the substrate 200. 310 and 320, external electrodes 410 and 420 provided outside the body 100, internal insulating layers 500 provided on the coil patterns 310 and 320, and upper and lower portions of the body 100. Each of the at least one magnetic layer 600 (610; 620) may be provided. That is, the magnetic layer 600 may be further provided in the first embodiment of the present invention to implement the second embodiment of the present invention. The second embodiment of the present invention will be described with reference to a configuration different from the first embodiment of the present invention.
자성층(600; 610, 620)은 바디(100)의 적어도 일 영역에 마련될 수 있다. 즉, 제 1 자성층(610)이 바디(100)의 상부 표면에 형성되고 제 2 자성층(620)이 바디(100)의 하부 표면에 형성될 수 있다. 여기서, 제 1 및 제 2 자성층(610, 620)은 바디(100)의 투자율을 증가시키기 위해 마련되며, 바디(100)보다 높은 투자율을 갖는 물질로 제작될 수 있다. 예를 들어, 바디(100)의 투자율이 20이고 제 1 및 제 2 자성층(610, 620)은 40 내지 1000의 투자율을 갖도록 마련될 수 있다. 이러한 제 1 및 제 2 자성층(610, 620)은 예를 들어 자성체 분말과 절연물을 이용하여 제작할 수 있다. 즉, 제 1 및 제 2 자성층(610, 620)은 바디(100)보다 높은 투자율을 갖도록 바디(100)의 자성체보다 높은 자성을 갖는 물질로 형성되거나 자성체의 함유율이 더 높도록 형성될 수 있다. 예를 들어, 제 1 및 제 2 자성층(610, 620)은 절연물이 금속 분말 100wt%에 대하여 1wt% 내지 2wt%로 첨가될 수 있다. 즉, 자성층(610, 620)은 금속 분말이 바디(100)의 금속 분말보다 많이 함유될 수 있다. 또한, 자성체 분말은 니켈 자성체(Ni Ferrite), 아연 자성체(Zn Ferrite), 구리 자성체(Cu Ferrite), 망간 자성체(Mn Ferrite), 코발트 자성체(Co Ferrite), 바륨 자성체(Ba Ferrite) 및 니켈-아연-구리 자성체(Ni-Zn-Cu Ferrite)로 구성된 군으로부터 선택된 하나 또는 이들의 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 철을 포함하는 금속 합금 분말 또는 철을 함유하는 금속 합금 산화물을 이용하여 자성층(600)을 형성할 수 있다. 또한, 금속 합금 분말에 자성체를 코팅하여 자성체 분말을 형성할 수도 있다. 예를 들어, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 물론, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 한편, 제 1 및 제 2 자성층(610, 620)은 금속 분말 및 절연물에 열 전도성 필러(미도시)를 더 포함하여 제작할 수도 있다. 열 전도성 필러는 금속 분말 100wt%에 대하여 0.5wt% 내지 3wt%로 함유될 수 있다. 이러한 제 1 및 제 2 자성층(610, 620)은 시트 형태로 제작되어 복수의 시트가 적층된 바디(100)의 상부 및 하부에 각각 마련될 수 있다. 또한, 금속 분말(110) 및 절연물(120)을 포함하거나 열 전도성 필러를 더 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하거나 페이스트를 틀에 넣어 압착하는 바디(100)를 형성한 후 바디(100)의 상부 및 하부에 자성층(610, 620)을 각각 형성할 수 있다. 물론, 자성층(610, 620)은 페이스트를 이용하여 형성할 수도 있는데, 바디(100)의 상부 및 하부에 자성 물질을 도포하여 자성층(610, 620)을 형성할 수 있다.The magnetic layers 600 (610 and 620) may be provided in at least one region of the body 100. That is, the first magnetic layer 610 may be formed on the upper surface of the body 100, and the second magnetic layer 620 may be formed on the lower surface of the body 100. Here, the first and second magnetic layers 610 and 620 are provided to increase the magnetic permeability of the body 100, and may be made of a material having a higher magnetic permeability than the body 100. For example, the permeability of the body 100 is 20 and the first and second magnetic layers 610 and 620 may be provided to have permeability of 40 to 1000. The first and second magnetic layers 610 and 620 may be manufactured using, for example, magnetic powder and an insulator. That is, the first and second magnetic layers 610 and 620 may be formed of a material having a higher magnetic force than the magnetic body of the body 100 or have a higher content of the magnetic body so as to have a higher magnetic permeability than the body 100. For example, the first and second magnetic layers 610 and 620 may have an insulator added in an amount of 1 wt% to 2 wt% with respect to 100 wt% of the metal powder. That is, the magnetic layers 610 and 620 may contain more metal powder than the metal powder of the body 100. In addition, the magnetic powder is nickel magnetic (Ni Ferrite), zinc magnetic (Zn Ferrite), copper magnetic (Cu Ferrite), manganese magnetic (Mn Ferrite), cobalt magnetic (Co Ferrite), barium magnetic (Ba Ferrite) and nickel-zinc One or more oxide magnetic materials thereof selected from the group consisting of -Ni-Zn-Cu Ferrite can be used. That is, the magnetic layer 600 may be formed using metal alloy powder containing iron or metal alloy oxide containing iron. In addition, the magnetic powder may be coated on the metal alloy powder to form the magnetic powder. For example, one or more oxide magnetic materials selected from the group consisting of nickel oxide magnetic materials, zinc oxide magnetic materials, copper oxide magnetic materials, manganese oxide magnetic materials, cobalt oxide magnetic materials, barium oxide magnetic materials, and nickel-zinc-copper oxide magnetic materials, for example, iron It may be coated on the metal alloy powder to form a magnetic powder. That is, the magnetic oxide powder may be formed by coating the metal oxide including iron on the metal alloy powder. Of course, at least one oxide magnetic material selected from the group consisting of nickel oxide magnetic material, zinc oxide magnetic material, copper oxide magnetic material, manganese oxide magnetic material, cobalt oxide magnetic material, barium oxide magnetic material and nickel-zinc-copper oxide magnetic material, for example, including iron It can be mixed with the metal alloy powder to form a magnetic powder. That is, the magnetic oxide powder may be formed by mixing the metal oxide including iron with the metal alloy powder. Meanwhile, the first and second magnetic layers 610 and 620 may be manufactured by further including a thermally conductive filler (not shown) in the metal powder and the insulator. The thermally conductive filler may be contained in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder. The first and second magnetic layers 610 and 620 may be manufactured in the form of a sheet, and may be provided on the upper and lower portions of the body 100 in which a plurality of sheets are stacked. In addition, after forming a body 100 for printing a paste made of a material including the metal powder 110 and the insulator 120 or further comprising a thermally conductive filler to a predetermined thickness or by inserting the paste into a mold, the body 100 Magnetic layers 610 and 620 may be formed on the upper and lower portions, respectively. Of course, the magnetic layers 610 and 620 may be formed using a paste, and the magnetic layers 610 and 620 may be formed by applying a magnetic material to the upper and lower portions of the body 100.
한편, 본 발명의 제 2 실시 예에 따른 파워 인덕터는 도 14에 도시된 바와 같이 제 1 및 제 2 자성층(610, 620)과 기재(200) 사이에 제 3 및 제 4 자성층(630, 640)이 더 마련될 수 있다. 즉, 바디(100) 내에 적어도 하나의 자성층(600)이 마련될 수 있다. 이러한 자성층(600)은 시트 형태로 제작되어 복수의 시트가 적층된 바디(100)의 사이에 마련될 수 있다. 즉, 바디(100)를 제작하기 위한 복수의 시트 사이에 적어도 하나의 자성층(600)을 마련할 수 있다. 또한, 금속 분말(110), 절연물(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하여 바디(100)를 형성하는 경우 인쇄 도중에 자성층을 형성할 수 있고, 페이스트를 틀에 넣어서 압착하는 경우에도 자성층을 그 사이에 넣고 압착할 수 있다. 물론, 자성층(600)은 페이스트를 이용하여 형성할 수도 있는데, 바디(100)를 인쇄할 때 연자성 물질을 도포하여 바디(100) 내에 자성층(600)을 형성할 수 있다.Meanwhile, in the power inductor according to the second embodiment of the present invention, as shown in FIG. 14, the third and fourth magnetic layers 630 and 640 are disposed between the first and second magnetic layers 610 and 620 and the substrate 200. This may be further provided. That is, at least one magnetic layer 600 may be provided in the body 100. The magnetic layer 600 may be manufactured in the form of a sheet and may be provided between the bodies 100 in which a plurality of sheets are stacked. That is, at least one magnetic layer 600 may be provided between the sheets for manufacturing the body 100. In addition, in the case where the body 100 is formed by printing a paste made of a material including the metal powder 110, the insulator 120, and the thermally conductive filler 130 to a predetermined thickness, a magnetic layer may be formed during printing. In the case of pressing in a mold, the magnetic layer can be pressed in between. Of course, the magnetic layer 600 may be formed using a paste. When printing the body 100, a soft magnetic material may be applied to form the magnetic layer 600 in the body 100.
상기한 바와 같이 본 발명의 다른 실시 예에 따른 파워 인덕터는 바디(100)에 적어도 하나의 자성층(600)을 마련함으로써 파워 인덕터의 자성률을 향상시킬 수 있다.As described above, in the power inductor according to another exemplary embodiment, the magnetic inductance of the power inductor may be improved by providing at least one magnetic layer 600 in the body 100.
도 15는 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도이고, 도 16은 도 15의 A-A' 라인을 따라 절단한 상태의 단면도이며, 도 17은 도 15의 B-B' 라인을 따라 절단한 상태의 단면도이다.FIG. 15 is a perspective view of a power inductor according to a third exemplary embodiment of the present invention, FIG. 16 is a cross-sectional view taken along the line AA ′ of FIG. 15, and FIG. 17 is taken along the line BB ′ of FIG. 15. It is a cross section of.
도 15 내지 도 17을 참조하면, 본 발명의 제 3 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(300) 상에 형성된 내부 절연층(500)과, 바디(100)의 외부에 외부 전극(410, 420)과 이격되어 마련되며 바디(100) 내부의 적어도 둘 이상의 기판(200) 각각에 형성된 적어도 하나의 코일 패턴(300)과 연결된 연결 전극(710, 720; 700)을 포함할 수 있다. 이하의 설명에서는 본 발명의 제 1 실시 예 및 제 2 실시 예의 설명과 중복되는 내용은 생략하기로 한다.15 to 17, a power inductor according to a third embodiment of the present invention may include a body 100, at least two substrates 200a, 200b; 200 provided in the body 100, and at least two or more substrates. Coil patterns 310, 320, 330, and 340; 300 formed on at least one surface of each of the substrates 200, external electrodes 410 and 420 provided outside the body 100, and coil patterns 300 formed on the substrate 200. At least one coil pattern 300 provided on the inner insulating layer 500 and spaced apart from the outer electrodes 410 and 420 on the outside of the body 100 and formed on each of the at least two substrates 200 inside the body 100. ) May include connection electrodes 710, 720; 700. In the following description, the description overlapping with the description of the first and second embodiments of the present invention will be omitted.
적어도 둘 이상의 기재(200a, 200b; 200)는 바디(100) 내부에 마련되며, 바디(100)의 단축 방향으로 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 기재(200)는 외부 전극(400)과 직교되는 방향, 즉 바디(100)의 두께 방향으로 소정 간격 이격되어 마련될 수 있다. 또한, 적어도 둘 이상의 기재(200) 각각에는 도전성 비아(210a, 210b; 210)가 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b; 220)이 각각 형성된다. 이때, 관통홀(220a, 220b)은 동일 위치에 형성될 수 있고, 도전성 비아(210a, 210b)은 동일 위치 또는 다른 위치에 형성될 수도 있다. 물론, 적어도 둘 이상의 기재(200)는 관통홀(220) 뿐만 아니라 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다. 또한, 적어도 둘 이상의 기재(200) 사이에는 바디(100)가 마련될 수 있다. 바디(100)가 적어도 둘 이상의 기재(200) 사이에도 마련됨으로써 파워 인덕터의 투자율을 향상시킬 수 있다. 물론, 적어도 둘 이상의 기재(200) 상에 형성된 코일 패턴(300) 상에 내부 절연층(500)이 형성되어 있으므로 기재들(200) 사이에는 바디(100)가 형성되지 않을 수도 있다. 이 경우 파워 인덕터의 두께를 줄일 수 있다.At least two substrates 200a and 200b may be provided inside the body 100, and may be provided to be spaced apart from each other by a predetermined interval in the short direction of the body 100. That is, the at least two substrates 200 may be spaced apart from each other in a direction perpendicular to the external electrode 400, that is, in the thickness direction of the body 100. In addition, conductive vias 210a, 210b; 210 are formed in each of the at least two substrates 200, and at least a portion thereof is removed to form through holes 220a, 220b; 220, respectively. In this case, the through holes 220a and 220b may be formed at the same position, and the conductive vias 210a and 210b may be formed at the same position or at different positions. Of course, the at least two substrates 200 may be filled with the body 100 by removing not only the through hole 220 but also the region in which the coil pattern 300 is not formed. In addition, the body 100 may be provided between at least two substrates 200. Since the body 100 is also provided between at least two substrates 200, the permeability of the power inductor may be improved. Of course, since the inner insulation layer 500 is formed on the coil pattern 300 formed on at least two substrates 200, the body 100 may not be formed between the substrates 200. In this case, the thickness of the power inductor can be reduced.
코일 패턴(310, 320, 330, 340; 300)은 적어도 둘 이상의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 하부 및 상부에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(330, 340)은 제 2 기판(200b)의 하부 및 상부에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 상측의 코일 패턴(310, 330)과 하측의 코일 패턴(320, 340)은 서로 동일 형상으로 형성될 수 있다. 또한, 복수의 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 상측의 코일 패턴(310, 330)이 형성되지 않은 영역에 중첩되도록 하측의 코일 패턴(320, 340)이 형성될 수도 있다.The coil patterns 310, 320, 330, 340; 300 may be formed on at least one side of each of the at least two substrates 200, preferably on both sides. Here, the coil patterns 310 and 320 may be formed on the lower and upper portions of the first substrate 200a, respectively, and electrically connected to each other by the conductive vias 210a formed on the first substrate 200a. Similarly, the coil patterns 330 and 340 may be formed on the lower and upper portions of the second substrate 200b and electrically connected to each other by the conductive vias 210b formed on the second substrate 200b. The plurality of coil patterns 300 may be formed in a spiral shape in an outward direction from a predetermined region of the substrate 200, for example, the through holes 220a and 220b of the center portion, and the two coils formed on the substrate 200. The patterns can be connected to form one coil. That is, two or more coils may be formed in one body 100. Here, the coil patterns 310 and 330 on the upper side of the substrate 200 and the coil patterns 320 and 340 on the lower side may be formed in the same shape. In addition, the plurality of coil patterns 300 may be formed to overlap each other, or the lower coil patterns 320 and 340 may be formed to overlap the region where the upper coil patterns 310 and 330 are not formed.
외부 전극(410, 420; 400)은 바디(100)의 양단부에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 장축 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(300)과 전기적으로 연결될 수 있다. 즉, 복수의 코일 패턴(300)의 적어도 일 단부가 바디(100)의 외측으로 노출되고 외부 전극(400)이 복수의 코일 패턴(300)의 단부와 연결되도록 형성될 수 있다. 예를 들어, 외부 전극(410)은 코일 패턴(310)과 연결되도록 형성될 수 있고, 외부 패턴(420)는 코일 패턴(340)과 연결되도록 형성될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b) 상에 형성된 하나의 코일 패턴(310, 340)과 각각 연결된다.The external electrodes 410, 420; 400 may be formed at both ends of the body 100. For example, the external electrodes 400 may be formed on two side surfaces facing each other in the long axis direction of the body 100. The external electrode 400 may be electrically connected to the coil pattern 300 of the body 100. That is, at least one end of the plurality of coil patterns 300 may be exposed to the outside of the body 100 and the external electrode 400 may be connected to the ends of the plurality of coil patterns 300. For example, the external electrode 410 may be formed to be connected to the coil pattern 310, and the external pattern 420 may be formed to be connected to the coil pattern 340. That is, the external electrode 400 is connected to one coil pattern 310, 340 formed on the substrates 200a and 200b, respectively.
연결 전극(700)은 외부 전극(400)이 형성되지 않은 바디(100)의 적어도 일 측면 상에 형성될 수 있다. 예를 들어. 외부 전극(400)이 서로 대향되는 제 1 및 제 2 측면에 형성되고, 연결 전극(700)은 외부 전극(400)이 형성되지 않은 제 3 및 제 4 측면에 각각 형성될 수 있다. 이러한 연결 전극(700)은 제 1 기재(200a) 상에 형성된 코일 패턴(310, 320)의 적어도 어느 하나와 제 2 기재(200b) 상에 형성된 코일 패턴(330, 340)의 적어도 어느 하나를 연결하기 위해 마련된다. 즉, 연결 전극(710)은 제 1 기재(200a)의 하측에 형성된 코일 패턴(320)과 제 2 기재(200b)의 상측에 형성된 코일 패턴(330)을 바디(100)의 외측에서 연결한다. 즉, 외부 전극(410)이 코일 패턴(310)과 연결되고, 연결 전극(710)이 코일 패턴(320, 330)을 연결시키며, 외부 전극(420)이 코일 패턴(340)과 연결된다. 따라서, 제 1 및 제 2 기재(200a, 200b) 상에 각각 형성된 코일 패턴들(310, 320, 330, 340)이 직렬 연결된다. 한편, 연결 전극(710)은 코일 패턴(320, 330)을 연결시키지만 연결 전극(720)은 코일 패턴들(300)과 연결되지 않는데, 이는 공정 상의 편의에 의해 두개의 연결 전극(710, 720)이 형성되고 하나의 연결 전극(710)만이 코일 패턴(320, 330)과 연결되기 때문이다. 이러한 연결 전극(700)은 도전성 페이스트에 바디(100)를 침지하거나, 도금, 인쇄, 증착 및 스퍼터링 등의 다양한 방법을 통하여 바디(100)의 일 측면에 형성될 수 있다. 바람직하게, 연결 전극(700)은 외부 전극(400) 형성 시 동일 방법, 즉 도금으로 형성될 수 있다. 연결 전극(700)은 전기 전도성을 부여할 수 있는 금속으로, 예컨대 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 이때, 연결 전극(700)의 표면에 필요시 니켈-도금층(미도시) 또는 주석 도금층(미도시)이 더 형성될 수 있다.The connection electrode 700 may be formed on at least one side of the body 100 in which the external electrode 400 is not formed. E.g. The external electrode 400 may be formed on the first and second side surfaces facing each other, and the connection electrode 700 may be formed on the third and fourth side surfaces on which the external electrode 400 is not formed, respectively. The connection electrode 700 connects at least one of the coil patterns 310 and 320 formed on the first substrate 200a and at least one of the coil patterns 330 and 340 formed on the second substrate 200b. Is prepared to. That is, the connection electrode 710 connects the coil pattern 320 formed below the first substrate 200a and the coil pattern 330 formed above the second substrate 200b to the outside of the body 100. That is, the external electrode 410 is connected to the coil pattern 310, the connection electrode 710 connects the coil patterns 320 and 330, and the external electrode 420 is connected to the coil pattern 340. Accordingly, the coil patterns 310, 320, 330, and 340 formed on the first and second substrates 200a and 200b are connected in series. On the other hand, the connection electrode 710 connects the coil patterns 320 and 330, but the connection electrode 720 is not connected to the coil patterns 300, which is two process electrodes 710 and 720 for convenience of process. Is formed and only one connection electrode 710 is connected to the coil patterns 320 and 330. The connection electrode 700 may be formed on one side of the body 100 by various methods such as immersing the body 100 in the conductive paste, plating, printing, deposition and sputtering. Preferably, the connection electrode 700 may be formed by the same method, that is, plating when the external electrode 400 is formed. The connection electrode 700 is a metal capable of imparting electrical conductivity, and may include, for example, one or more metals selected from the group consisting of gold, silver, platinum, copper, nickel, palladium, and alloys thereof. In this case, a nickel-plating layer (not shown) or tin plating layer (not shown) may be further formed on the surface of the connection electrode 700 if necessary.
도 18 및 도 19는 본 발명의 제 3 실시 예의 변형 예에 따른 파워 인덕터의 단면도이다. 즉, 바디(100) 내부에 세개의 기재(200a, 200b, 200c; 200)를 마련하고, 기재(200) 각각의 일면 및 타면 상에 코일 패턴(310, 320, 330, 340, 350, 360; 300)을 각각 형성하고, 코일 패턴(310, 360)은 외부 전극(410, 420)과 연결되도록 하고, 코일 패턴(320, 330)은 연결 전극(710)과 연결되도록 하며, 코일 패턴(340, 350)은 연결 전극(720)과 연결되도록 한다. 따라서, 세개의 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴들(300)이 연결 전극(710, 720)에 의해 직렬 연결될 수 있다.18 and 19 are cross-sectional views of a power inductor according to a modified example of the third embodiment of the present invention. That is, three substrates 200a, 200b, 200c; 200 are provided in the body 100, and coil patterns 310, 320, 330, 340, 350, and 360 are formed on one surface and the other surface of each substrate 200; 300, respectively, the coil patterns 310 and 360 are connected to the external electrodes 410 and 420, the coil patterns 320 and 330 are connected to the connection electrode 710, and the coil patterns 340, 350 is connected to the connection electrode 720. Therefore, the coil patterns 300 formed on the three substrates 200a, 200b, and 200c may be connected in series by the connection electrodes 710 and 720.
상기한 바와 같이 본 발명의 제 3 실시 예 및 그 변형 예에 따른 파워 인덕터는 적어도 일 면에 코일 패턴(300)이 각각 형성된 적어도 둘 이상의 기재(200)가 바디(100) 내에 이격되어 마련되고, 서로 다른 기재(200) 상에 형성된 코일 패턴(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결됨으로써 하나의 바디(100) 내에 복수의 코일 패턴을 형성하고, 그에 따라 파워 인덕터의 용량을 증가시킬 수 있다. 즉, 바디(100) 외부의 연결 전극(700)을 이용하여 서로 다른 기재(200) 상에 각각 형성된 코일 패턴(300)을 직렬 연결할 수 있고, 그에 따라 동일 면적 내의 파워 인덕터의 용량을 증가시킬 수 있다.As described above, in the power inductor according to the third embodiment of the present disclosure and at least one modified example thereof, at least two or more substrates 200 having coil patterns 300 formed on at least one surface thereof are spaced apart from each other in the body 100. Coil patterns 300 formed on different substrates 200 are connected by connection electrodes 700 outside the body 100 to form a plurality of coil patterns in one body 100, thereby Dose can be increased. That is, the coil patterns 300 formed on the different substrates 200 may be connected in series by using the connection electrode 700 outside the body 100, thereby increasing the capacity of the power inductor within the same area. have.
도 20은 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도이고, 도 21 및 도 22은 도 20의 A-A' 및 B-B' 라인을 따라 절취한 상태의 단면도이다. 또한, 도 23은 내부 평면도이다.20 is a perspective view of a power inductor according to a fourth exemplary embodiment of the present invention, and FIGS. 21 and 22 are cross-sectional views taken along the lines A-A 'and B-B' of FIG. 20. 23 is an internal plan view.
도 20 내지 도 23을 참조하면, 본 발명의 제 4 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 수평 방향으로 마련된 적어도 둘 이상의 기재(200a, 200b, 200c; 200)와, 적어도 둘 이상의 기재(200)의 적어도 일면 상에 각각 형성된 코일 패턴(310, 320, 330, 340, 350, 360; 300)과, 바디(100) 외부에 마련되며 적어도 둘 이상의 기재(200a, 200b, 200c) 상에 형성된 코일 패턴들(300)과 각각 연결되는 외부 전극들(410, 420, 430, 440, 450, 460; 400)과, 코일 패턴(300) 상에 형성된 내부 절연층(500)을 포함할 수 있다. 이하의 설명에서는 이상의 실시 예들의 설명과 중복되는 내용은 생략하기로 한다.20 to 23, the power inductor according to the fourth embodiment of the present invention includes a body 100 and at least two substrates 200a, 200b, 200c provided in a horizontal direction inside the body 100. And coil patterns 310, 320, 330, 340, 350, 360; 300 formed on at least one surface of the at least two substrates 200, respectively, and are provided outside the body 100 and at least two substrates 200a, External electrodes 410, 420, 430, 440, 450, 460; 400 connected to the coil patterns 300 formed on the 200b and 200c, respectively, and an internal insulating layer 500 formed on the coil pattern 300. ) May be included. In the following description, the description overlapping with the description of the embodiments will be omitted.
적어도 둘 이상, 예를 들어 세개의 기재(200a, 200b, 200c; 200)는 바디(100)의 내부에 마련될 수 있다. 여기서, 적어도 둘 이상의 기재들(200)은 예를 들어 바디(100)의 두께 방향과 직교하는 장축 방향으로 서로 소정 간격 이격되어 마련될 수 있다. 즉, 본 발명의 제 3 실시 예 및 그 변형 예는 복수의 기재들(200)이 바디(100)의 두께 방향, 예컨데 수직 방향으로 배열되었지만, 본 발명의 제 4 실시 예는 복수의 기재들(200)이 바디(100)의 두께 방향과 직교하는 방향, 예컨데 수평 방향으로 배열될 수 있다. 또한, 복수의 기재들(200)에는 도전성 비아(210a, 210b, 210c; 210)가 각각 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b, 220c; 220)이 각각 형성된다. 물론, 복수의 기재들(200)은 관통홀(220) 뿐만 아니라 도 18에 도시된 바와 같이 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다.At least two or more, for example, three substrates 200a, 200b, 200c; 200 may be provided inside the body 100. Here, the at least two substrates 200 may be provided, for example, spaced apart from each other in a long axis direction perpendicular to the thickness direction of the body 100. That is, although the plurality of substrates 200 are arranged in the thickness direction of the body 100, for example, in the vertical direction, the fourth embodiment of the present invention may include a plurality of substrates ( 200 may be arranged in a direction perpendicular to the thickness direction of the body 100, for example, in a horizontal direction. In addition, conductive vias 210a, 210b, 210c; 210 are formed in the plurality of substrates 200, and at least a portion thereof is removed to form through holes 220a, 220b, 220c; 220, respectively. Of course, the plurality of substrates 200 may be filled with the body 100 by removing not only the through hole 220 but also the region where the coil pattern 300 is not formed as shown in FIG. 18.
코일 패턴(310, 320, 330, 340, 350, 360; 300)은 복수의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 일면 및 타면에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 또한, 코일 패턴(330, 340)은 제 2 기판(200b)의 일면 및 타면에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(350, 360)은 제 3 기재(300c)의 일면 및 타면에 각각 형성되어 제 3 기재(200c)에 형성된 도전성 비아(210c)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b, 220c)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 각각 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 일측의 코일 패턴(310, 330, 350)과 타측의 코일 패턴(320, 340, 360)은 서로 동일 형상으로 형성될 수 있다. 또한, 동일 기재(200) 상에 형성된 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 일측의 코일 패턴(310, 330, 350)이 형성되지 않은 영역에 중첩되도록 타측의 코일 패턴(320, 340, 360)이 형성될 수도 있다.The coil patterns 310, 320, 330, 340, 350, 360; 300 may be formed on at least one surface of each of the plurality of substrates 200, and preferably on both surfaces thereof. Here, the coil patterns 310 and 320 may be formed on one surface and the other surface of the first substrate 200a and electrically connected to each other by conductive vias 210a formed on the first substrate 200a. In addition, the coil patterns 330 and 340 may be formed on one surface and the other surface of the second substrate 200b and electrically connected to each other by conductive vias 210b formed on the second substrate 200b. Similarly, the coil patterns 350 and 360 may be formed on one surface and the other surface of the third substrate 300c to be electrically connected to each other by conductive vias 210c formed on the third substrate 200c. The plurality of coil patterns 300 may be formed in a spiral shape outwardly from a predetermined region of the substrate 200, for example, the through holes 220a, 220b, and 220c of the center portion, respectively, on the substrate 200. The formed two coil patterns may be connected to form one coil. That is, two or more coils may be formed in one body 100. Here, the coil patterns 310, 330, 350 on one side of the substrate 200 and the coil patterns 320, 340, 360 on the other side may be formed in the same shape. In addition, the coil patterns 300 formed on the same substrate 200 may be formed to overlap each other, or the coil patterns 320 on the other side may overlap each other in a region where the coil patterns 310, 330, and 350 of one side are not formed. 340 and 360 may be formed.
외부 전극(410, 420, 430, 440, 450, 460; 400)은 바디(100)의 양단부에 서로 소정 간격 이격되어 형성될 수 있다. 이러한 외부 전극(400)은 복수의 기재(200) 상에 각각 형성된 코일 패턴(300)과 전기적으로 연결될 수 있다. 예를 들어, 외부 전극(410, 420)은 코일 패턴(310, 320)과 각각 연결되고, 외부 전극(430, 440)은 코일 패턴(330, 340)과 각각 연결되며, 외부 전극(450, 460)은 코일 패턴(350, 360)과 각각 연결될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴(300)과 각각 연결된다.The external electrodes 410, 420, 430, 440, 450, 460; 400 may be formed at both ends of the body 100 at predetermined intervals from each other. The external electrode 400 may be electrically connected to the coil patterns 300 formed on the plurality of substrates 200, respectively. For example, the external electrodes 410 and 420 are connected to the coil patterns 310 and 320, respectively, and the external electrodes 430 and 440 are respectively connected to the coil patterns 330 and 340, and the external electrodes 450 and 460. ) May be connected to the coil patterns 350 and 360, respectively. That is, the external electrode 400 is connected to the coil patterns 300 formed on the substrates 200a, 200b, and 200c, respectively.
상기한 바와 같이 본 발명의 제 4 실시 예에 따른 파워 인덕터는 하나의 바디(100) 내에 복수의 인턱터가 구현될 수 있다. 즉, 적어도 둘 이상의 기재(200)가 수평 방향으로 배열되고, 그 상부에 각각 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련될 수 있고, 그에 따라 하나의 바디(100) 내에 두개 이상이 파워 인덕터가 구현된다.As described above, in the power inductor according to the fourth exemplary embodiment, a plurality of inductors may be implemented in one body 100. That is, at least two substrates 200 are arranged in a horizontal direction, and the coil patterns 300 formed thereon are connected to each other by different external electrodes 400 so that a plurality of inductors may be provided in parallel. Accordingly, two or more power inductors are implemented in one body 100.
도 24는 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도이고, 도 25 및 도 26은 도 24의 A-A' 라인 및 B-B' 라인을 따라 절단한 상태의 단면도이다.24 is a perspective view of a power inductor according to a fifth exemplary embodiment of the present invention, and FIGS. 25 and 26 are cross-sectional views taken along the lines A-A 'and B-B' of FIG. 24.
도 24 내지 도 26을 참조하면, 본 발명의 제 5 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100)의 서로 대향되는 두 측면에 마련되며 기재(200a, 200b) 상에 각각 형성된 코일 패턴(310, 320, 330, 340)과 각각 연결된 복수의 외부 전극(410, 420, 430, 440; 400)을 포함할 수 있다. 여기서, 둘 이상의 기재(200)는 바디(100)의 두께 방향, 예컨데 수직 방향으로 소정 간격 이격되어 적층되고 각각의 기재(200) 상에 형성된 코일 패턴들(300)은 서로 다른 방향으로 인출되어 외부 전극(400)과 각각 연결된다. 즉, 본 발명의 제 4 실시 예가 복수의 기재(200)가 수평 방향으로 배열된 것에 비해, 본 발명의 제 5 실시 예는 복수의 기재(200)가 수직 방향으로 배열된다. 따라서, 본 발명의 제 5 실시 예는 적어도 둘 이상의 기재(200)가 바디(100)의 두께 방향으로 배열되고, 기재들(200) 상에 각각 형성된 코일 패턴(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련되고, 그에 따라 하나의 바디(100) 내에 두개 이상의 파워 인덕터가 구현된다.24 to 26, a power inductor according to a fifth embodiment of the present invention may include a body 100, at least two substrates 200a, 200b; 200 provided in the body 100, and at least two or more substrates. Coil patterns 310, 320, 330, 340; 300 formed on at least one surface of each of the substrates 200, and coils provided on two opposite sides of the body 100 and formed on the substrates 200a and 200b, respectively. It may include a plurality of external electrodes 410, 420, 430, 440; 400 connected to the patterns 310, 320, 330, and 340, respectively. Here, the two or more substrates 200 are stacked at predetermined intervals in a thickness direction of the body 100, for example, in a vertical direction, and the coil patterns 300 formed on the respective substrates 200 are drawn out in different directions to the outside. It is connected to the electrode 400, respectively. That is, in the fifth embodiment of the present invention, the plurality of substrates 200 are arranged in the vertical direction, whereas the plurality of the substrates 200 are arranged in the horizontal direction. Therefore, in the fifth embodiment of the present invention, at least two or more substrates 200 are arranged in the thickness direction of the body 100, and the coil patterns 300 formed on the substrates 200 are different from each other. By connecting the plurality of inductors in parallel, two or more power inductors are implemented in one body 100.
상기한 바와 같이 도 15 내지 도 26를 이용하여 설명한 본 발명의 제 3 내지 제 5 실시 예는 바디(100) 내에 적어도 일면 상에 코일 패턴들(300)이 각각 형성된 복수의 기재(200)가 바디(100)의 두께 방향(즉 수직 방향)으로 적층되거나 또는 이와 직교하는 방향(즉 수평 방향)으로 배열될 수 있다. 또한, 복수의 기재(200) 상에 각각 형성된 코일 패턴들(300)은 외부 전극(400)과 직렬 또는 병렬 연결될 수 있다. 즉, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 연결되어 병렬로 연결될 수 있고, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 동일한 외부 전극(400)에 연결되어 직렬 연결될 수 있다. 직렬 연결되는 경우 각각의 기재(200) 상에 각각 형성된 코일 패턴들(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결될 수 있다. 따라서, 병렬 연결되는 경우 복수의 기재(200) 각각에 두개의 외부 전극(400)이 필요하고, 직렬 연결되는 경우 기재(200)의 수에 관계없이 두개의 외부 전극(400)이 필요하고 하나 이상의 연결 전극(700)이 필요하다. 예를 들어, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 외부 전극(400)에 병렬로 연결되는 경우 여섯개의 외부 전극(400)이 필요하고, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 직렬로 연결되는 경우 두개의 외부 전극(400)과 적어도 하나의 연결 전극(700)이 필요하다. 또한, 병렬 연결되는 경우 바디(100) 내에 복수의 코일이 마련되고, 직렬 연결되는 경우 바디(100) 내에 하나의 코일이 마련된다. As described above, in the third to fifth embodiments of the present invention described with reference to FIGS. 15 to 26, a plurality of substrates 200 in which coil patterns 300 are formed on at least one surface of the body 100 may have a body. It may be stacked in the thickness direction (ie, the vertical direction) of (100) or arranged in a direction orthogonal thereto (ie, the horizontal direction). In addition, the coil patterns 300 formed on the plurality of substrates 200 may be connected in series or in parallel with the external electrode 400. That is, the coil patterns 300 formed on each of the plurality of substrates 200 may be connected to the different external electrodes 400 and connected in parallel, and the coil patterns 300 formed on each of the plurality of substrates 200 may be It may be connected to the same external electrode 400 and connected in series. When connected in series, the coil patterns 300 formed on the respective substrates 200 may be connected by the connection electrode 700 outside the body 100. Therefore, two external electrodes 400 are required for each of the plurality of substrates 200 when connected in parallel, and two external electrodes 400 are required regardless of the number of substrates 200 when connected in series, and one or more substrates are required. The connecting electrode 700 is required. For example, when the coil patterns 300 formed on the three substrates 300 are connected to the external electrodes 400 in parallel, six external electrodes 400 are required, and the three substrates 300 are formed on the three substrates 300. When the coil patterns 300 are connected in series, two external electrodes 400 and at least one connection electrode 700 are required. In addition, a plurality of coils are provided in the body 100 when connected in parallel, and one coil is provided in the body 100 when connected in series.
도 27 내지 도 29는 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도이다.27 to 29 are cross-sectional views sequentially illustrating a method of manufacturing a power inductor according to an embodiment of the present invention.
도 27을 참조하면, 기재(200)의 적어도 일면, 바람직하게는 일면 및 타면 상에 소정 형상의 코일 패턴(310, 320)을 형성한다. 기재(200)는 CCL 또는 금속 자성체 등으로 제작될 수 있는데, 실효 투자율을 증가시키고 용량 구현을 용이하게 할 수 있는 금속 자성체를 이용하는 것이 바람직하다. 예를 들어, 기재(200)는 철을 함유하는 금속 합금으로 이루어진 소정 두께의 금속판의 일면 및 타면에 구리 포일을 접합함으로써 제작될 수 있다. 여기서, 기재(200)는 예를 들어 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성된다. 또한, 기재(200)는 관통홀(220) 이외에 외측 영역이 제거된 형상으로 마련될 수 있다. 예를 들어, 소정 두께를 갖는 사각형의 판 형태의 기재(200) 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성되며, 기재(200)의 외측이 적어도 일부 제거된다. 이때, 기재(200)의 제거되는 부분은 스파이럴 형상으로 형성된 코일 패턴(310, 320)의 외측 부분이 될 수 있다. 또한, 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 원형의 스파이럴 형태로 형성될 수 있다. 이때, 기재(200)의 일면 상에 코일 패턴(310)을 형성한 후 기재(200)의 소정 영역을 관통하고 도전 물질이 매립된 도전성 비아(210)를 형성하고, 기재(200)의 타면 상에 코일 패턴(320)을 형성할 수 있다. 도전성 비아(210)는 레이저 등을 이용하여 기재(200)의 두께 방향으로 비아홀을 형성한 후 비아홀에 도전성 페이스트를 충전하여 형성할 수 있다. 또한, 코일 패턴(310)은 예를 들어 도금 공정으로 형성할 수 있는데, 이를 위해 기재(200)의 일면 상에 소정 형상의 감광막 패턴을 형성하고 기재(200) 상의 구리 포일을 시드로 이용한 도금 공정을 실시하여 노출된 기재(200)의 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 형성할 수 있다. 물론, 코일 패턴(320)은 기재(200)의 타면 상에 코일 패턴(310)과 동일 방법으로 형성할 수 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 제 2 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 이렇게 기재(200)의 일면 및 타면 상에 코일 패턴(310, 320)을 각각 형성한 후 코일 패턴(310, 320)을 덮도록 내부 절연층(500)을 형성한다. 파릴렌 등의 절연성 고분자 물질을 코팅하여 형성할 수 있다. 바람직하게, 내부 절연층(500)은 파릴렌을 이용하여 코팅함으로써 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 기재(200)의 상면 및 측면에도 형성될 수 있다. 이때, 내부 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면, 그리고 기재(200)의 상면 및 측면에 동일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 및 기재(200) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩과 기계적 진공 펌프를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 여기서, 파릴렌을 기화시켜 다이머 상태로 만들기 위한 1차 가열 공정은 100℃∼200℃의 온도와 1.0Torr의 압력으로 진행하고, 기화된 파릴렌을 열분해하여 모노머 상태로 만들기 위한 2차 가열 공정은 400℃∼500℃의 온도와 0.5Torr 이상의 압력으로 진행할 수 있다. 또한, 모노머 상태를 폴리머 상태로 하여 파릴렌을 증착하기 위해 증착 챔버는 상온 예컨대, 25℃의 온도와 0.1Torr의 압력을 유지할 수 있다. 이렇게 코일 패턴(310, 320) 상에 파릴렌을 코팅함으로써 코일 패턴(310, 320) 및 기재(200)의 단차를 따라 내부 절연층(500)이 코팅되고 그에 따라 내부 절연층(500)이 균일한 두께로 형성될 수 있다. 물론, 내부 절연층(500)은 에폭시, 폴리이미드 및 액정 결정성 폴리머로 구성된 군으로부터 선택된 하나 이상의 물질을 포함하는 시트를 코일 패턴(310, 320) 상에 밀착함으로써 형성할 수도 있다.Referring to FIG. 27, coil patterns 310 and 320 having a predetermined shape are formed on at least one surface, preferably one surface and the other surface of the substrate 200. The substrate 200 may be made of CCL or a magnetic metal, and it is preferable to use a magnetic metal that can increase the effective permeability and facilitate the implementation of the capacity. For example, the substrate 200 may be manufactured by bonding copper foil to one side and the other side of a metal plate having a predetermined thickness made of a metal alloy containing iron. Here, the substrate 200 has a through hole 220 formed in a central portion thereof, for example, and a conductive via 210 formed in a predetermined region. In addition, the substrate 200 may have a shape in which an outer region other than the through hole 220 is removed. For example, a through hole 220 is formed in a central portion of a rectangular plate-shaped substrate 200 having a predetermined thickness, a conductive via 210 is formed in a predetermined region, and at least part of an outer side of the substrate 200 is removed. . In this case, the removed portion of the substrate 200 may be an outer portion of the coil patterns 310 and 320 formed in a spiral shape. In addition, the coil patterns 310 and 320 may be formed in a circular spiral shape from a predetermined region, for example, a central portion of the substrate 200. In this case, the coil pattern 310 is formed on one surface of the substrate 200, and then a conductive via 210 is formed through the predetermined region of the substrate 200 and the conductive material is embedded therein, and on the other surface of the substrate 200. The coil pattern 320 may be formed on the coil pattern 320. The conductive via 210 may be formed by forming a via hole in the thickness direction of the substrate 200 using a laser or the like, and then filling the via hole with a conductive paste. In addition, the coil pattern 310 may be formed by, for example, a plating process. For this, a plating process using a copper foil on the substrate 200 as a seed is formed by forming a photoresist pattern having a predetermined shape on one surface of the substrate 200. It can be formed by growing a metal layer from the surface of the exposed substrate 200 by performing a photoresist film. Of course, the coil pattern 320 may be formed on the other surface of the substrate 200 in the same manner as the coil pattern 310. Meanwhile, the coil patterns 310 and 320 may be formed in multiple layers. When the coil patterns 310 and 320 are formed in a multilayer, an insulating layer may be formed between the lower layer and the upper layer, and a second conductive via may be formed in the insulating layer to connect the multilayer coil pattern. As such, after forming the coil patterns 310 and 320 on one surface and the other surface of the substrate 200, the inner insulation layer 500 is formed to cover the coil patterns 310 and 320. It may be formed by coating an insulating polymer material such as parylene. Preferably, the inner insulation layer 500 may be formed on the top and side surfaces of the substrate 200 as well as the top and side surfaces of the coil patterns 310 and 320 by coating with parylene. In this case, the internal insulation layer 500 may be formed to have the same thickness on the top and side surfaces of the coil patterns 310 and 320 and the top and side surfaces of the substrate 200. That is, after preparing the substrate 200 having the coil patterns 310 and 320 in the deposition chamber, parylene is vaporized and supplied into the vacuum chamber to deposit parylene on the coil patterns 310 and 320 and the substrate 200. You can. For example, parylene is first heated in a vaporizer to vaporize to a dimer state, and then secondly heated to pyrolyze into a monomer state, and a cold trap and a mechanical vacuum pump connected to a deposition chamber are provided. When the parylene is cooled by using the parylene, the parylene is converted into the polymer state from the monomer state and deposited on the coil patterns 310 and 320. Here, the primary heating process for vaporizing parylene into a dimer state proceeds at a temperature of 100 ° C to 200 ° C and a pressure of 1.0 Torr, and the secondary heating process for pyrolyzing vaporized parylene to make a monomer state The temperature may be 400 ° C to 500 ° C and a pressure of 0.5 Torr or more. In addition, the deposition chamber may maintain a temperature of, for example, 25 ° C. and a pressure of 0.1 Torr to deposit parylene in a monomer state as a polymer state. By coating parylene on the coil patterns 310 and 320, the inner insulation layer 500 is coated along the steps of the coil patterns 310 and 320 and the substrate 200, thereby making the inner insulation layer 500 uniform. It can be formed in one thickness. Of course, the inner insulating layer 500 may be formed by closely contacting the sheet including at least one material selected from the group consisting of epoxy, polyimide, and liquid crystal crystalline polymer on the coil patterns 310 and 320.
도 28을 참조하면, 금속 분말(110) 및 절연물(120)을 포함하고, 열 전도성 필러(미도시)를 더 포함하는 재료로 이루어진 복수의 시트(100a 내지 100h)를 마련한다. 여기서, 금속 분말(110)은 철(Fe)를 포함하는 금속 물질을 이용할 수 있고, 절연물(120)은 금속 분말(110) 사이를 절연할 수 있는 에폭시, 폴리이미드 등을 이용할 수 있으며, 열 전도성 필러는 금속 분말(110)의 열을 외부로 방출시킬 수 있는 MgO, AlN, 카본 계열의 물질 등을 이용할 수 있다. 또한, 금속 분말(110)의 표면이 자성체, 예를 들어 금속 산화물 자성체로 코팅될 수 있고 파릴렌 등의 절연성 물질로 코팅될 수도 있다. 여기서, 절연물(120)은 금속 분말 100wt%에 대하여 2.0wt% 내지 5.0wt%의 함량으로 포함될 수 있고, 열 전도성 필러는 금속 분말(110) 100wt%에 대하여 0.5wt% 내지 3wt%의 함량으로 포함될 수 있다. 이러한 복수의 시트(100a 내지 100h)를 코일 패턴(310, 320)이 형성된 기재(200)의 상부 및 하부에 각각 배치한다. 한편, 복수의 시트(100a 내지 100h)는 열 전도성 필러의 함량이 서로 다를 수 있다. 예를 들어, 기재(200)의 일면 및 타면으로부터 상측 및 하측으로 갈수록 열 전도성 필러의 함량이 높아질 수 있다. 즉, 기재(200)에 접하는 시트(100a, 100d)의 상측 및 하측에 위치하는 시트(100b, 100e)의 열 전도성 필러의 함량이 시트(100a, 100d)의 열 전도성 필러의 함량보다 높고, 시트(100b, 100e)의 상측 및 하측에 위치하는 시트(100c, 100f)의 열 전도성 필러의 함량이 시트(100b, 100e)의 열 전도성 필러의 함량보다 더 높을 수 있다. 이렇게 기재(200)으로부터 멀어질수록 열 전도성 필러의 함량이 높아짐으로써 열 전달 효율을 더욱 향상시킬 수 있다. 한편, 본 발명의 다른 실시 예에서 제시된 바와 같이 최상층 및 최하층 시트(100a, 100h)의 상부 및 하부에 제 1 및 제 2 자성층(610, 620)을 각각 마련할 수 있다. 제 1 및 제 2 자성층(610, 620)은 시트(100a 내지 100h)보다 높은 투자율을 갖는 물질로 제작될 수 있다. 예를 들어, 제 1 및 제 2 자성층(610, 620)은 시트(100a 내지 100h)의 투자율보다 높은 투자율을 갖도록 자성 분말과 에폭시 수지를 이용하여 제작할 수 있다. 또한, 제 1 및 제 2 자성층(610, 620)에 열 전도성 필러가 더 포함되도록 할 수 있다.Referring to FIG. 28, a plurality of sheets 100a to 100h including a metal powder 110 and an insulator 120 and further including a thermally conductive filler (not shown) are provided. Here, the metal powder 110 may use a metal material including iron (Fe), and the insulator 120 may use an epoxy, polyimide, or the like, which may insulate the metal powder 110 from each other. The filler may use a material of MgO, AlN, carbon-based, etc. that can release the heat of the metal powder 110 to the outside. In addition, the surface of the metal powder 110 may be coated with a magnetic material, for example, a metal oxide magnetic material, or may be coated with an insulating material such as parylene. Here, the insulator 120 may be included in an amount of 2.0 wt% to 5.0 wt% with respect to 100 wt% of the metal powder, and the thermally conductive filler may be included in an amount of 0.5 wt% to 3 wt% with respect to 100 wt% of the metal powder 110. Can be. The plurality of sheets 100a to 100h are disposed above and below the substrate 200 on which the coil patterns 310 and 320 are formed. Meanwhile, the plurality of sheets 100a to 100h may have different amounts of thermally conductive fillers. For example, the content of the thermally conductive filler may be increased from the one side and the other side of the substrate 200 toward the upper side and the lower side. That is, the content of the thermally conductive fillers of the sheets 100b and 100e positioned above and below the sheets 100a and 100d in contact with the substrate 200 is higher than that of the thermally conductive fillers of the sheets 100a and 100d. The content of the thermally conductive fillers of the sheets 100c and 100f positioned above and below the 100b and 100e may be higher than the content of the thermally conductive fillers of the sheets 100b and 100e. As the distance from the substrate 200 increases, the content of the thermally conductive filler increases, thereby further improving heat transfer efficiency. Meanwhile, as shown in another embodiment of the present invention, the first and second magnetic layers 610 and 620 may be provided on the upper and lower portions of the uppermost and lowermost sheets 100a and 100h, respectively. The first and second magnetic layers 610 and 620 may be made of a material having a higher magnetic permeability than the sheets 100a to 100h. For example, the first and second magnetic layers 610 and 620 may be manufactured using magnetic powder and an epoxy resin to have a magnetic permeability higher than the magnetic permeability of the sheets 100a to 100h. In addition, the first and second magnetic layers 610 and 620 may further include a thermally conductive filler.
도 29를 참조하면, 기재(200)을 사이에 두고 복수의 시트(100a 내지 100h)를 적층 및 가압한 후 성형하여 바디(100)를 형성한다. 이렇게 함으로써 기재(200)의 관통홀(220) 및 기재(200)의 제거된 부분에 바디(100)가 충진될 수 있다. 그리고, 도시되지 않았지만 이러한 바디(100) 및 기재(200)를 단위 소자 단위로 절단한 후 단위 소자의 바디(100) 양단부에 코일 패턴(310, 320)의 인출된 부분과 전기적으로 접속되도록 외부 전극(400)을 형성할 수 있다. 외부 전극(400)은 적어도 일부가 코일 패턴(300)과 동일 물질 및 동일 방법으로 형성될 수 있다. 즉, 제1층(411, 421)은 구리를 무전해 도금, 전해 도금 등의 방법으로 형성할 수 있고, 제2층(412, 422)는 Ni, Sn 등을 도금 방법으로 적어도 한층으로 형성할 수 있다. 이때, 외부 전극(400)은 바디(100)의 외측으로 노출된 코일 패턴(300)을 시드로 이용하여 형성할 수 있다. 이렇게 외부 전극(400)의 적어도 일부를 구리 도금으로 형성함으로써 외부 전극(400)의 결합력을 강하게 할 수 있다. 이때, 코일 패턴(300)과 외부 전극(400)의 결합력을 바디(100)와 외부 전극(400)의 결합력보다 강하게 할 수 있다. 그리고, 바디(100)의 상면에 연장 형성된 외부 전극(400)이 노출되지 않도록 캐핑 절연층(550)을 형성한다.Referring to FIG. 29, the body 100 is formed by stacking and pressing the plurality of sheets 100a to 100h with the substrate 200 therebetween. In this way, the body 100 may be filled in the through-hole 220 and the removed portion of the substrate 200 of the substrate 200. Although not shown, the external electrode is cut to the body 100 and the substrate 200 in unit device units, and then electrically connected to the drawn portions of the coil patterns 310 and 320 at both ends of the body 100 of the unit device. 400 may be formed. At least a part of the external electrode 400 may be formed of the same material and the same method as the coil pattern 300. That is, the first layers 411 and 421 may be formed of copper by electroless plating, electrolytic plating, or the like, and the second layers 412 and 422 may be formed of at least one layer of Ni, Sn, or the like by a plating method. Can be. In this case, the external electrode 400 may be formed using the coil pattern 300 exposed to the outside of the body 100 as a seed. By forming at least a portion of the external electrode 400 by copper plating, the bonding force of the external electrode 400 can be strengthened. In this case, the coupling force between the coil pattern 300 and the external electrode 400 may be stronger than the coupling force between the body 100 and the external electrode 400. In addition, the capping insulating layer 550 is formed so that the external electrode 400 extending on the upper surface of the body 100 is not exposed.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The present invention is not limited to the above-described embodiments, but may be implemented in various forms. In other words, the above embodiments are provided to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the present invention, and the scope of the present invention should be understood by the claims of the present application. .

Claims (12)

  1. 금속 분말 및 절연물을 포함하는 바디;A body comprising a metal powder and an insulator;
    상기 바디 내부에 마련된 적어도 하나의 기재;At least one substrate provided in the body;
    상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 및At least one coil pattern formed on at least one surface of the substrate; And
    상기 바디의 적어도 두 측면에 형성된 외부 전극을 포함하고,An external electrode formed on at least two sides of the body,
    상기 외부 전극은 적어도 일부가 상기 코일 패턴과 동일 재질을 포함하는 파워 인덕터.The external electrode is at least a portion of the power inductor including the same material as the coil pattern.
  2. 청구항 1에 있어서, 상기 코일 패턴 및 외부 전극은 각각 구리를 포함하는 파워 인덕터.The power inductor of claim 1, wherein the coil pattern and the external electrode each include copper.
  3. 청구항 1에 있어서, 상기 코일 패턴은 상기 기재 상에 도금 공정으로 형성되고, 상기 외부 전극은 적어도 상기 코일 패턴과 접촉되는 영역이 도금 공정으로 형성된 파워 인덕터.The power inductor of claim 1, wherein the coil pattern is formed on the substrate by a plating process, and the external electrode has at least a region in contact with the coil pattern.
  4. 청구항 3에 있어서, 상기 외부 전극은 상기 코일 패턴과 접촉되는 제1층과, 상기 제1층 상에 상기 제1층과 다른 재질로 형성된 적어도 하나의 제2층을 포함하는 파워 인덕터.The power inductor of claim 3, wherein the external electrode includes a first layer in contact with the coil pattern, and at least one second layer formed of a material different from the first layer on the first layer.
  5. 청구항 1에 있어서, 상기 금속 분말은 적어도 둘 이상의 크기를 갖는 적어도 하나 이상의 물질을 포함하는 파워 인덕터.The power inductor of claim 1, wherein the metal powder comprises at least one material having at least two sizes.
  6. 청구항 1에 있어서, 상기 기재의 일면 및 타면에 형성된 상기 코일 패턴은 동일 높이로 형성되며, 상기 기재의 두께 대비 2.5배 이상 높게 형성된 파워 인덕터.The power inductor of claim 1, wherein the coil patterns formed on one surface and the other surface of the substrate have the same height, and are formed at least 2.5 times higher than the thickness of the substrate.
  7. 청구항 1에 있어서, 상기 코일 패턴과 바디 사이에 형성되며, 파릴렌을 이용하여 형성된 내부 절연층을 더 포함하는 파워 인덕터.The power inductor of claim 1, further comprising an internal insulation layer formed between the coil pattern and the body and formed using parylene.
  8. 청구항 1에 있어서, 상기 바디의 적어도 일 표면 상에 형성된 표면 절연층을 더 포함하는 파워 인덕터.The power inductor of claim 1, further comprising a surface insulating layer formed on at least one surface of the body.
  9. 청구항 8에 있어서, 상기 표면 절연층은 상기 외부 전극이 형성되지 않은 상기 바디의 적어도 일 표면 상에 형성된 파워 인덕터.The power inductor of claim 8, wherein the surface insulating layer is formed on at least one surface of the body in which the external electrode is not formed.
  10. 청구항 1 또는 청구항 9에 있어서, 상기 바디의 일면 상에 형성된 캐핑 절연층을 더 포함하는 파워 인덕터.The power inductor of claim 1, further comprising a capping insulation layer formed on one surface of the body.
  11. 청구항 10에 있어서, 상기 캐핑 절연층은 상기 바디의 실장면에 대향되는 일면 상에 형성되며, 상기 일면 상에 연장 형성된 외부 전극이 노출되지 않도록 형성된 파워 인덕터.The power inductor of claim 10, wherein the capping insulating layer is formed on one surface of the body facing the mounting surface of the body, and the external electrode formed on the one surface of the capping insulating layer is not exposed.
  12. 청구항 10에 있어서, 상기 캐핑 절연층은 표면 절연층보다 두껍거나 같은 두께로 형성된 파워 인덕터.The power inductor of claim 10, wherein the capping insulation layer has a thickness that is greater than or equal to a surface insulation layer.
PCT/KR2017/009460 2016-09-08 2017-08-30 Power inductor WO2018048135A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780054636.6A CN109690709B (en) 2016-09-08 2017-08-30 power inductor
US16/326,185 US11476037B2 (en) 2016-09-08 2017-08-30 Power inductor
JP2019512663A JP2019530219A (en) 2016-09-08 2017-08-30 Power inductor
EP17849019.9A EP3511962B1 (en) 2016-09-08 2017-08-30 Power inductor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20160115770 2016-09-08
KR10-2016-0115770 2016-09-08
KR1020170074170A KR101981466B1 (en) 2016-09-08 2017-06-13 Power Inductor
KR10-2017-0074170 2017-06-13
KR1020170107780A KR20180028374A (en) 2016-09-08 2017-08-25 Power Inductor
KR10-2017-0107780 2017-08-25

Publications (1)

Publication Number Publication Date
WO2018048135A1 true WO2018048135A1 (en) 2018-03-15

Family

ID=61561525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009460 WO2018048135A1 (en) 2016-09-08 2017-08-30 Power inductor

Country Status (1)

Country Link
WO (1) WO2018048135A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400682A (en) * 2018-04-25 2019-11-01 三星电机株式会社 Coil electronic building brick
CN110911133A (en) * 2018-09-14 2020-03-24 三星电机株式会社 Coil component
US11830653B2 (en) 2019-03-06 2023-11-28 Samsung Electro-Mechanics Co., Ltd. Coil electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140011693A (en) * 2012-07-18 2014-01-29 삼성전기주식회사 Magnetic substance module for power inductor, power inductor and manufacturing method for the same
KR20140077346A (en) * 2012-12-14 2014-06-24 삼성전기주식회사 Power Inductor and Manufacturing Method for the Same
KR20140131418A (en) * 2013-05-02 2014-11-13 주식회사 아모텍 Hybrid Type Power Inductor and Manufacturing Method thereof
KR20150080800A (en) * 2014-01-02 2015-07-10 삼성전기주식회사 Inductor
KR20160098780A (en) * 2015-02-11 2016-08-19 삼성전기주식회사 Chip electronic component, and circuit board for mounting the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140011693A (en) * 2012-07-18 2014-01-29 삼성전기주식회사 Magnetic substance module for power inductor, power inductor and manufacturing method for the same
KR20140077346A (en) * 2012-12-14 2014-06-24 삼성전기주식회사 Power Inductor and Manufacturing Method for the Same
KR20140131418A (en) * 2013-05-02 2014-11-13 주식회사 아모텍 Hybrid Type Power Inductor and Manufacturing Method thereof
KR20150080800A (en) * 2014-01-02 2015-07-10 삼성전기주식회사 Inductor
KR20160098780A (en) * 2015-02-11 2016-08-19 삼성전기주식회사 Chip electronic component, and circuit board for mounting the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511962A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400682A (en) * 2018-04-25 2019-11-01 三星电机株式会社 Coil electronic building brick
US11133129B2 (en) 2018-04-25 2021-09-28 Samsung Electro-Mechanics Co., Ltd. Coil component
CN110911133A (en) * 2018-09-14 2020-03-24 三星电机株式会社 Coil component
CN110911133B (en) * 2018-09-14 2024-05-24 三星电机株式会社 Coil assembly
US11830653B2 (en) 2019-03-06 2023-11-28 Samsung Electro-Mechanics Co., Ltd. Coil electronic component

Similar Documents

Publication Publication Date Title
KR102073727B1 (en) Power Inductor
WO2018062825A1 (en) Power inductor
WO2019117551A1 (en) Power inductor and manufacturing method therefor
KR101900880B1 (en) Power Inductor
WO2018016821A1 (en) Power inductor
KR101900879B1 (en) Power Inductor
TWI614776B (en) Power inductor
WO2017160032A1 (en) Coil pattern and formation method therefor, and chip element having same
WO2017171265A1 (en) Coil pattern, method for forming same, and chip device including same
WO2018048135A1 (en) Power inductor
WO2016039518A1 (en) Power inductor and method for manufacturing same
WO2016021938A1 (en) Power inductor
WO2017065528A1 (en) Power inductor
WO2017090950A1 (en) Power inductor
WO2016021818A1 (en) Power inductor
WO2016021807A1 (en) Power inductor
WO2016039516A1 (en) Power inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017849019

Country of ref document: EP

Effective date: 20190408