WO2018043881A1 - 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법 - Google Patents

염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법 Download PDF

Info

Publication number
WO2018043881A1
WO2018043881A1 PCT/KR2017/006401 KR2017006401W WO2018043881A1 WO 2018043881 A1 WO2018043881 A1 WO 2018043881A1 KR 2017006401 W KR2017006401 W KR 2017006401W WO 2018043881 A1 WO2018043881 A1 WO 2018043881A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium chloride
carbonate
chloride
water
Prior art date
Application number
PCT/KR2017/006401
Other languages
English (en)
French (fr)
Inventor
김성연
김경석
이소연
최재혁
홍완기
Original Assignee
포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코 filed Critical 포스코
Publication of WO2018043881A1 publication Critical patent/WO2018043881A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/26Purification by precipitation or adsorption

Definitions

  • a method for producing lithium chloride and a method for producing lithium carbonate is a method for producing lithium chloride.
  • lithium carbonate is used as a raw material for manufacturing battery batteries.
  • a method of manufacturing such lithium carbonate the following methods are known.
  • the concentration of lithium in the brine is about 0.3 to 1.5g / L
  • the lithium in the brine is extracted in the form of lithium carbonate mainly by the pressurized addition of C0 2
  • the solubility of the lithium carbonate is 0 ° C
  • the amount of lithium carbonate in the brine is 1.59 to 7.95 g / L, assuming that all of the lithium contained in the brine is converted to lithium carbonate. Since most of the concentration is lower than the solubility of lithium carbonate, the amount of lithium carbonate precipitated is very low, and thus there is a problem in that the lithium recovery rate is very low.
  • this method does not have a fast reaction rate between the calcium hydroxide and the lithium phosphate, and it takes a long time to obtain lithium ions up to an economic level.
  • the concentration of lithium ions in the obtained lithium hydroxide aqueous solution is low, and the recovery rate of lithium ions is not high.
  • the reaction rate of calcium hydroxide and lithium phosphate is not very fast, and only a low concentration of lithium ions of about 5, ⁇ 00 ⁇ ⁇ can be recovered within an economically acceptable reaction time. Accordingly, it is necessary to concentrate the solution at a high concentration before producing lithium carbonate in a subsequent process, an additional process for concentration is required, and energy consumption due to evaporation is increased.
  • lithium chloride is extracted from a lithium phosphate-iron compound which is a cathode material of a lithium battery containing lithium.
  • the method of preparation is shown.
  • leaching a lithium phosphate-iron compound with hydrochloric acid to leach the components into a solution to obtain a solution containing iron phosphate, lithium phosphate and iron chloride, and increase the pH of the solution to 2.0-2.5 to precipitate iron phosphate
  • the pH of the filtrate was adjusted to 6.0-7.0 by adding an alkali substance to the filtrate.
  • CaCl 2 was added to precipitate and remove phosphate, and the remaining filtrate was evaporated and concentrated to precipitate LiCl crystals. Obtain LiCl.
  • an embodiment of the present invention to provide a method for producing an environmentally friendly lithium chloride aqueous solution capable of extracting lithium ions at a high concentration in a short time from the lithium-containing phosphate.
  • Another object of the present invention is to provide a method for economically preparing lithium carbonate from an aqueous lithium chloride solution.
  • a step of uniformly mixing a phosphate containing lithium and calcium chloride to form a mixture (hereinafter referred to as a mixture ⁇ 1) (hereinafter ⁇ 1); And heating the mixture 1 at a high temperature of 450 ° C.
  • slurry -1 which is a mixture of poorly soluble chloroapatite (Cloroapat i te, CAp) and water-soluble lithium chloride (hereinafter, step -3); And solid-liquid separation of the slurry -1 to obtain chloroapatite (hereinafter referred to as CAp-1) and an aqueous lithium chloride solution (hereinafter referred to as an aqueous solution -1) (hereinafter referred to as -4). .
  • the lithium-containing phosphate may be prepared directly from lithium in saline. In the step -1, the lithium-containing phosphate may be prepared directly from the lithium of the waste battery.
  • the lithium phosphate may be prepared directly from an ore such as spodumene, petalite or lepidolite.
  • the added phosphate containing lithium may be a dry powder state, a water-containing fil ter cake state, or water is added to artificially contain water three times less than the weight of the phosphate You can prepare.
  • the mixture of lithiumol-containing phosphate and calcium chloride may include a process that is mixed in the mixer.
  • the amount of calcium chloride added may be 1.25 times or more and 2.0 times or less than the lithium phosphate on a molar basis.
  • the step of heating the mixture -1 may be heated so that the temperature of the mixture is 450 ° C or more and 850 ° C or less.
  • the time for heating the mixture -1 may be 30 minutes or more and 5 hours or less after the mixture reaches 450 ° C or more.
  • the product-1 may include a portion of the calcium chloride increase in the step -1 in addition to the chloroapatite, the lithium chloride, unreacted state, the portion of the calcium chloride in the step -1 It may be included in the reaction state.
  • the product -1 may include lithium chloride in an amount that the lithium-containing phosphate reacted with calcium chloride more than 80%.
  • a heating method such as heating the container in a box furnace or tunnel furnace, or heating the container by seating in a bath may be included.
  • the mixture -1 contained in the container can be heated evenly and at the same time so that reaction can occur, or the mixture can be stirred during the heating, or the heating is suspended and the stirring process is continued and the heating is continued again. It may have a process of the manner.
  • the amount of water added to the product -1 may be determined so that the concentration of lithium ions is 10, 000 ppm or more and 200, 000 ppm or less when lithium chloride is dissolved in water in the product -1.
  • step -4 in order to recover the lithium chloride remaining in the chloroapatite-1 in the filtration process, water is added to the chloroapatite-1 and washed with water and then filtered again to obtain a lithium chloride-containing filtrate (hereinafter, the filtrate- la) can be obtained, and this filtrate -la can be mixed with the filtrate 1, which can be carried out at least once.
  • the amount of water added at each wash may be from 0.5 to 5 times the weight of the CAp-1 solid material.
  • the aqueous solution -1 may be evaporated to precipitate lithium chloride crystals, and solid-liquid separation may include a method of obtaining lithium chloride as a solid.
  • the step -4 may include a step of filtering calcium ions present in the aqueous solution -1 derived from the calcium chloride introduced in the step -1, precipitated with calcium sulfate by adding sulfuric acid to the aqueous solution -1, and then filtering and removing the calcium ions. have. And it may include a step of adding sodium hydroxide or potassium hydroxide to neutralize the solution to be acidified.
  • step -4 calci ions present in the aqueous solution -1 derived from the calcium chloride introduced in the step -1, strong alkali such as sodium hydroxide, potassium hydroxide and the like in the aqueous solution -1 was precipitated with calcium hydroxide and then filtered It may include a step of removing.
  • the step -4 may include a step of filtering out calcium ions present in the aqueous solution -1 derived from the chlorinated chlorine introduced in step -1, and adding sodium carbonate to the aqueous solution -1 to precipitate calcium carbonate and then filtering and removing the calcium ion. Can be. However, the amount added is limited to the amount that can preferentially precipitate calcium carbonate.
  • Step -4 may be obtained by adding sulfuric acid to CAp-1 obtained after filtration to form insoluble gypsum and water-soluble phosphoric acid, and may include a process of obtaining gypsum and phosphate solution by solid-liquid separation. The method may further include recovering phosphoric acid remaining in the gypsum by washing the separated gypsum with water.
  • preparing a lithium chloride aqueous solution Adding sodium carbonate to the aqueous lithium chloride solution to precipitate lithium carbonate, and filtering the same to obtain a solid lithium carbonate (hereinafter referred to as lithium carbonate-1) and a filtrate (hereinafter referred to as filtrate -2) (step -5); It comprises, and the concentration of lithium ions in the lithium chloride aqueous solution provides a manufacturing method of lithium carbonate that is more than 10,000ppm.
  • the lithium chloride aqueous solution may be prepared from the method for producing a lithium chloride aqueous solution of the embodiment of the present invention.
  • step # 5 the obtained lithium carbonate ⁇ 1 may be washed with water, and the filtrate -2a obtained after washing with water may be joined to the filtrate -2, and the washing is performed at least once. Can be.
  • the step -5 may further include a step of allowing lithium phosphate to precipitate by injecting a phosphorus feed material into the filtrate -2 to recover residual lithium ions in the filtrate -2.
  • the lithium ion in the aqueous lithium chloride solution, the sodium silver and the molar ratio (lithium ion: sodium ion) in the sodium carbonate may be added in an amount of 1: 0.8 to 1: 1.2.
  • the temperature of the reaction for precipitating lithium carbonate may be more than 20 ° C and less than 100t.
  • the manufacturing method of the aqueous lithium chloride solution it is possible to produce a high concentration of lithium chloride aqueous solution of lithium ion concentration of ⁇ , ⁇ or higher, and higher than 60, 000 ppm in a short time. Therefore, before producing lithium carbonate in a subsequent process, the amount of evaporation energy required for the concentration of the lithium chloride aqueous solution is reduced, much larger amount of aqueous lithium chloride solution can be obtained in one processing unit, and the economical efficiency will be greatly improved. Can be.
  • the manufacturing method of the lithium chloride aqueous solution according to an embodiment of the present invention is an environmentally friendly manufacturing method, because it does not include an acid treatment process in the whole process.
  • FIG. 1 is a process diagram according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a method for producing an aqueous lithium chloride solution and a method for producing lithium carbonate according to an embodiment of the present invention.
  • the present invention is not limited thereto, and various modifications can be made without departing from the technical spirit of the present invention from the viewpoint of a person skilled in the art.
  • FIG. 1 a method of manufacturing an aqueous lithium chloride solution and a method of manufacturing lithium carbonate according to an embodiment of the present invention will be described.
  • One embodiment of the present invention comprises the steps of homogeneously mixing the phosphate containing lithium, the chlorinated chlorine to form a mixture (hereinafter the mixture -1) (hereinafter step -1); And heating the mixture 1 at a high temperature of 450 ° C.
  • slurry 1 which is a mixture of poorly soluble chloroapatite (Cloroapat i te, CAp) and water-soluble lithium chloride (hereinafter, step -3); And solid-liquid separation of the slurry -1 to obtain chloroapatite (hereinafter referred to as CAp-1) and an aqueous lithium chloride solution (hereinafter referred to as aqueous solution -1) (hereinafter as step -4).
  • slurry 1 which is a mixture of poorly soluble chloroapatite (Cloroapat i te, CAp) and water-soluble lithium chloride (hereinafter, step -3); And solid-liquid separation of the slurry -1 to obtain chloroapatite (hereinafter referred to as CAp-1) and an aqueous lithium chloride solution (hereinafter referred to as aqueous solution -1) (hereinafter as step -4).
  • This method is a method that can produce a high concentration of aqueous lithium chloride solution without the acid treatment.
  • the reaction method of the lithium chloride production method according to an embodiment of the present invention described above may be improved compared to the conventional process.
  • reaction formula -1 Through the reaction of the lithium phosphate and calcium chloride at a high temperature to produce a water-soluble CAp and water-soluble LiCl for water, specifically can be carried out by the following reaction formula -1.
  • Banung the formula -1 is thermodynamically banung to reduce the free energy of water followed by the banung left only banung does not occur to the right of the product, because it requires the activation energy that happens to banung the "active at a temperature of at least 450 ° C.
  • reaction product of the reaction product -1 is all solid state, but at 450 ° C or more, reaction reaction of reaction product -1 begins to occur at the site where lithium phosphate and calcium chloride contact each other.
  • reaction speed is fast because a substance of eutectic composition with a melting rate of 475 C is formed in the calcium chloride composition of the molecule.
  • the reaction product of the semi-formula -1 may enter the heating step by, for example, adding the mixture -1 to a container having a volume of 1 m 3 or more.
  • the heating method may be made by heating in an industrially generalized box furnace, tunnel furnace, and to stir or suspend the heating during heating in order to allow the heat transferred to the container to be quickly transferred to the mixture
  • Heating and reaction can be promoted by various methods, such as temporarily removing the mixture from the heater, stirring the mixture temporarily, and then adding the mixture to the heater. This heating with stirring is effective in both ways. The first is to speed up the rate of temperature increase of the mixture -1 in the vessel and serve to raise the temperature evenly.
  • the process composition of melting point 475 ° C can form droplets as described above. It acts to accelerate the reaction speed faster.
  • the time taken for the reaction -1 is greatly influenced by the degree of compatibility between the lithium-containing phosphate and calcium chloride.
  • the time for heating the mixture -1 can be adjusted so as to be retarded with the subsequent process time, after the mixture reaches 450 ° C or more can be adjusted in the range of 30 minutes or more and 5 hours or less.
  • this is not necessarily limited to this range, and may be made shorter or longer, taking into account the error rate, heating energy, and productivity of lithium.
  • lithium-containing phosphate and calcium chloride In order for this reaction to occur smoothly, it is desired to mix lithium-containing phosphate and calcium chloride well on a particle basis. If the lithium-containing phosphate is in a fine powder state, it can be mixed with powdered calcium chloride and mixed in the mixer for a sufficient time, and contains lithium. If the phosphate contains a small amount of water, such as a fil ter cake, add 1 to 3 times the weight of the phosphate to mix with calcium chloride. The combiner runs until the phosphate is separated into fine particles.
  • the amount of reaction is determined by the thermodynamic energy state between the reactant and the product.
  • the reaction product contains various components other than lithium phosphate and chlorinated chloride, and since the compounding ratio of raw materials can be changed, it is difficult to define the value of thermodynamic free energy as one value, but lithium in lithium phosphate at ambient temperature of 450 ° C or higher More than 80% Is switched.
  • the equivalent of calcium chloride in the mixture -1 is 1.667 times the number of moles of lithium phosphate.
  • the preferred amount of calcium chloride is limited to 0/7 times or more and 1.3 times or less of the semiungksik -1 equivalent ratio.
  • the calcium chloride 0.7-equivalent ratio is the number-of-moles equivalent to 1.167 times the number-of-moles of lithium phosphate, and the 1.3-fold equivalent ratio is the number-of-moles corresponding to 2.167 times the number of moles of lithium phosphate.
  • the equivalent ratio is less than 0.7 times, most of the calcium chloride after the reaction participates in the reaction, so the content of Ca 2+ acting as an impurity of the aqueous solution -1 is advantageous, but the reaction rate of the reaction product -1 is lowered, so that the recovery of lithium is low. There are disadvantages to losing.
  • the equivalence ratio is 1.3 times or more, the reaction rate of reaction formula -1 is increased to increase the amount of lithium chloride produced.
  • the impurity Ca 2+ content in aqueous solution -1 increases, and the removal cost thereof increases. do.
  • both the reaction material and the product are salts, and when dissolved in water, do not bias the strong acid or the strong alkali. Depending on the amount of impurities, pH of weak acid or weak alkali is displayed.
  • water is added to the product-1 to dissolve lithium chloride in an aqueous solution.
  • Lithium chloride is very high (69-128 g) for 100 cc of water with a solubility of 0-100 ° C.
  • Lithium ions are very high (113,000-210,000 ppm).
  • the amount of water added can be arbitrarily determined according to the concentration of the desired aqueous solution.
  • water is added to the product -1 to obtain an aqueous solution -1 by filtration, the solid CAp-1 is washed with an aqueous solution -la, and the aqueous solution -la can be joined to the aqueous solution -1 again.
  • the amount of water can be determined taking into account the lithium ion concentration of the final aqueous solution -1. Since the weight of the remaining liquid in the solid CAp-1 corresponds to 0.1 to 0.5 times that of the solid CAp-1, it is preferable to recover the liquid by adding water thereto and filtering again. In particular, as the concentration of lithium chloride in the aqueous solution -1 increases, washing with CAp-1 is preferable to increase the recovery rate of lithium chloride. There are several ways to determine the amount of water, and follow the existing method. However, in the present invention, the amount of the washing liquid is preferably 0.5 times or more and 5 times or less of the CAp-1 mass.
  • the aqueous solution -1 can theoretically obtain the concentration of lithium ions up to the solubility limit, and can easily be obtained at 4, 000 ppm or more. If the precipitate of lithium chloride is to be prepared using the aqueous solution -1, the solubility of lithium chloride can be easily reached even if the solution is evaporated a little, so that the precipitation can be facilitated. In addition, if the lithium carbonate is to be precipitated by adding sodium carbonate to the aqueous solution -1, it is not necessary to go through an expensive evaporation process. .
  • the lithium phosphate may be in the form containing other cationic components together.
  • the lithium in the lithium phosphate when the lithium in the lithium phosphate is derived from the lithium in the brine, the brine together with lithium, the amount of silver, such as calcium magnesium, iron, potassium, sodium, krum, lead, cadmium, etc.
  • a phosphorus supplying material such as a salt containing phosphoric acid or phosphoric acid is added thereto, lithium may be phosphorylated and precipitated in the form of lithium phosphate.
  • lithium phosphate is a low solubility in water ( ⁇ 0.39 g / L), it can be extracted in the form of a slurry in the phosphorylation process.
  • the cation other than the lithium becomes an impurity, and impurities may be removed in a manner generally known in the art before, after, or after the phosphorylation process.
  • lithium phosphate slurry when heated or naturally dried, it is obtained in the form of dried lithium phosphate (li thium phosphate) powder, and when the lithium phosphate slurry is filtered, lithium phosphate in a filter cake state (li thium phosphate) Is obtained.
  • the cationic impurities may be partially included in lithium phosphate as mentioned above.
  • the method may further include removing the unbanung calcium ions remaining in the aqueous solution -1.
  • the present invention provides a method of precipitating Ca 2+ ions by three methods and filtering out from aqueous solution ⁇ 1.
  • the first method of removing Ca 2+ ions from the aqueous solution -1 provides a method of precipitating Ca 2+ as a gypsum by adding sulfuric acid to the aqueous solution as in Banungsik-2.
  • a second method of removing Ca 2+ ions from the aqueous solution -1 provides a method of adding an alkali of a group 1 system such as NaOH and K0H to the aqueous solution -1.
  • a group 1 system such as NaOH and K0H
  • the solubility of Ca (0H) 2 decreases rapidly, so that it has a solubility of 0.008 dry) 1 at pH 13 and a low solubility of 0.06 g / 100cc-water. Therefore, most of Ca 2+ can be removed by precipitation as Ca (0H) 2 .
  • a third method of removing Ca 2+ ions from the aqueous solution -1 provides a method of adding sodium carbonate to an equivalent ratio of Ca 2+ .
  • Calcium carbonate is chemically much more stable than lithium carbonate and is therefore preferentially precipitated.
  • the carbonic anion C0 3 2 — reacts with the reaction formula -3 to precipitate most Ca 2+ ions as CaC0 3 .
  • the precipitate CaC0 3 has a very low solubility in water of 0.0007 g / 100 cc-water, almost all Ca 2+ ions can be removed by adding sodium carbonate by the number of moles of Ca 2+ present in the solution.
  • the present invention provides a method for obtaining phosphoric acid and gypsum by reacting CAp-1 obtained in the addition step -4 with sulfuric acid.
  • Banung -4 is an industrial method of obtaining gypsum by adding sulfuric acid and water to the mineral apat i te.
  • the present invention provides a method for obtaining gypsum and phosphoric acid having high economic value according to Scheme -4 from the product produced in step-4.
  • reaction of the reaction form -4 can occur quickly.
  • banung formula HCKg) gas generated at -4 is removed, by adding to a solid-liquid separation of water after the banung expression -4 banung the termination of the phosphoric acid it can be recovered 3 ⁇ 4P0 4 a high economic value.
  • Another embodiment of the present invention preparing a lithium chloride aqueous solution; And adding sodium carbonate to the aqueous lithium chloride solution to precipitate lithium carbonate and to filter it to obtain a solid lithium carbonate (hereinafter referred to as lithium carbonate-1) and a filtrate (hereinafter referred to as filtrate -2) (hereinafter referred to as -5). ; It includes, and the concentration of lithium ions in the aqueous lithium chloride solution ⁇ , ⁇ provides a method for producing lithium carbonate. Lithium carbonate can be precipitated through the reaction of lithium chloride and sodium carbonate from a high concentration aqueous lithium chloride solution having a lithium ion concentration of ⁇ , ⁇ or higher. Therefore, it is not necessary to further concentrate the lithium chloride aqueous solution to increase the concentration, it is possible to manufacture lithium carbonate economically.
  • Soda ash may be used as a raw material of the sodium carbonate. Soda ash is about 98% or more of sodium carbonate, and can be used as a source of sodium carbonate. However, it is of course possible to use other materials that can be used as a raw material of sodium carbonate, but is not limited thereto.
  • the use of a high pressure container is unnecessary as compared with the manufacturing method of lithium carbonate using a conventional CO 2 gas.
  • the installation can be made more compact.
  • the process cost can be significantly reduced.
  • the additional lithium carbonate manufacturing step as in the lithium chloride aqueous solution manufacturing method, it is possible to minimize the corrosion of the equipment, and to prevent environmental pollution since no sample such as acid or base is used.
  • the sodium carbonate may be added in an amount such that the molar ratio (lithium silver: sodium ion) of lithium ions in the lithium chloride aqueous solution and sodium carbonate to be added is 1: 0.8 to 1: 1.2. If the amount of sodium carbonate is too small, lithium carbonate may not be precipitated sufficiently, and the recovery rate of lithium may be reduced. If too much, the amount of precipitated lithium carbonate increases, but the cost of sodium carbonate may increase. More specifically, it may be added in an amount of 1: 0.9 to 1: 1. In addition, by adding sodium carbonate to the aqueous lithium chloride solution, the reaction temperature of the step of obtaining lithium carbonate and the filtrate may be 20 ° C or more and 100 ° C or less.
  • reaction temperature 20 ° C. or higher and 100 ° C. or lower. If the reaction temperature is too low, the solubility of lithium carbonate increases to decrease the recovery rate of lithium. If the reaction temperature is too high, the solubility of lithium carbonate decreases and the recovery rate of lithium increases, but the energy cost required to increase the silver content increases. Difficult to maintain Can be.
  • the solubility of lithium carbonate in water is 0.018 g / 100cc-water at 20 ° C, 0.010 g / 100cc-water at 100 ° C, and the concentrations of Li + ions are 1,249 ppm and 676 ppm, respectively.
  • the temperature at the time of filtration may be more than 15 ° C and less than 95 ° C.
  • the temperature range is limited in this way because the viscosity of the slurry becomes high when the temperature is lower than 15 ° C.
  • the filtration is not smooth.
  • the temperature is higher than 95 ° C, the energy input cost increases and the operation of the filtration equipment is difficult. .
  • impurities such as sodium chloride in an aqueous solution may be present in the filter cake containing filtered lithium carbonate. Accordingly, to remove it, it is possible to obtain lithium carbonate from which impurities are removed by washing with addition of water as a solvent, followed by a solid-liquid separation step of filtration. Washing and solid-liquid separation can be performed at least once or repeatedly, until the content of impurities is lowered to the desired level.
  • lithium phosphate can be recovered by adding salts or phosphoric acid containing phosphate ions to the filtrate, and the recovered lithium phosphate-containing solution is again filtered and washed. After the impurities are removed, they can be recycled as a lithium phosphate raw material.
  • the lithium phosphate thus prepared was 22.24 kg, calcium chloride was 35.53 kg (the amount of chlorine chloride, 1.667 times lithium phosphate on the basis of the number of moles), and these were put into a mixer and mixed for 30 minutes to mix well. The mixture was then placed in a crucible and placed in a box furnace maintained at 650 ° C for 3 hours. At this time, every 30 minutes the crucible was removed from the furnace and the mixture was stirred with a metal rod and charged again.
  • the crucible was removed from the furnace and allowed to cool for one hour. 50 liters of water was added thereto and stirred well with a metal rod.
  • filtrate -1 The volume of filtrate -1 is 89.3 liters, the concentration of Li
  • the amount of lithium in the product was 2.93 kg, with a very high initial yield of 73.2% at 4.0 kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 염화 리튬 수용액의 제조 방법 및 탄산 리튬의 제조 방법에 관한 것으로, 리륨을 포함하는 인산염과, 염화 칼슘을 균일 혼합하여 혼합물을 만들고, 그 혼합물을 450 °C 이상 고온 가열하여, 클로로 아파타이트 (Chloroapatite)와 염화 리튬이 혼합된 생성물을 만든 후, 그 생성물에 물을 가하여 난용성 클로로 아파타이트 (Chloroapatite, CAp)와 수용성 염화 리튬의 혼합물인 슬러리을 얻으며, 슬러리를 고액 분리하여 클로로 아파타이트와 염화 리튬 수용액을 얻는 방법을 제공한다. 또한 본 발명은 염화 리튬 수용액에 탄산 나트륨을 추가하여 탄산 리튬을 제조하는 방법을 제공한다. 본 발명에서는 상기 수용액 내의 리튬의 농도가 10,000 ppm 이상인 것인 탄산 리튬의 제조 방법을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법
【기술분야】
염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
최근 전기자동차와 모바일 기기가 빠르게 보급되면서 전지의 전극재료로 사용되는 리튬의 수요가 점차 많아지고 있다. 특히, 전기자동차워 배터리 (battery) 제조에 탄산 리튬이 원료로 사용되고 있다. 이러한 탄산 리튬을 제조하는 방법으로는 하기와 같은 방법들이 알려져 있다.
( 1) 스포듀민 (spodumene) , 페탈라이트 (petal i te) 또는 레피돌라이트 ( lepidol i te) 등 리튬을 약 1 내지 1.5¾>로 비교적 많이 함유하고 있는 광물로부터 리튬을 추출한 후, C02와의 반웅을 통해 최종적으로 탄산 리튬을 제조하는방법이다.
그러나, 광물로부터 리튬을 추출하기 위해서는 부유선별, 고온가열, 분쇄, 산 흔합, 추출, 정제, 농축, 침전 등의 공정을 거쳐야 하기 때문에 회수 절차가 복잡하고, 고에너지 소비로 인해 비용이 많이 소비되며, 리튬을 추출하는 과정에서 강산을 사용함으로써 환경 오염이 극심한 문제가 있다.
(2) 리튬을 함유하는 염수 (br ine) 내 리튬을 직접적으로 이용하는 방법이다.
그러나, 염수에 함유된 리튬의 농도는 약 0.3 내지 1.5g/L 정도이고, 염수에 함유된 리튬은 주로 C02를 가압 첨가하여 탄산 리튬의 형태로 추출하는데, 상기 탄산 리튬의 용해도는 0 °C에서 약 15.4 g/L , 100 °C에서 약 7.2 g/L로서, 염수에 함유된 리튬이 모두 탄산 리튬으로 변환된다고 가정하여도 염수 중 탄산 리튬의 양은 1.59 내지 7.95g/L이여서, 상기 탄산 리튬 농도의 대부분은 탄산 리튬의 용해도 보다 낮기 때문에 석출되는 탄산 리튬의 양은 얼마 되지 않아 리튬 회수율이 매우 낮은 문제가 있다.
따라서, 종래에는 염수 함유 리튬을 탄산리튬 형태로 추출하기 위해서, 천연의 염호에서 염수를 펌핑하여 노지 (露地)의 증발못 (evaporat ion ponds)에 1년 이상의 장시간ᅳ동안 자연 증발시킴으로서 리튬을 수십배로 농축시킨 다음, Mg, Ca , B 등의 불순물을 침전시켜 제거한 후에, 탄산 리튬의 용해도 이상의 양을 석출시켜 리튬을 회수하는 방법이 사용되어 왔다.
그러나, 이러한 종래의 방법은 염수의 증발 및 농축에 많은 시간이 소요되어 생산성이 낮고, 염수의 증발 및 농축 과정에서 리튬이 다른 불순물과 함께 염 형태로 석출되어 리튬이 손실되며, 비가 오는 우기에는 이용이 제한되는문제가 있었다.
(3) 한편, 한편 한국특허공개공보 제 2013-0113287호의 발명에서는 수용성 반응제인 수산화칼슘을 물 내에서 인산 리튬과 반웅시켜, 수산화리튬 수용액을 먼저 제조 한 후, C02 가스를 불어넣어 탄산 리튬을 제조하는 방법을 제시하였다. 인산 리튬은 물에 대한 용해도가 20 °C에서 0.39 g/L 수준으로 낮기 때문에 통상적인 방법에서는 인산 리튬을 산에 용해시켜 리튬 이온을 침출하여야 하였으나, 이 특허에서는 수용성 반웅제인 수산화칼슘을 인산 리튬 내 리튬과 직접 반웅시킴으로써, 별도의 산 처리 없이, 수용액 상의 반웅을 통해 수산화 리튬 수용액 형태로 리튬 이온을 수득하고자 하였다.
그러나 이 방법은, 수산화칼슴과 인산 리튬과의 반웅 속도가 빠르지 않아, 경제적인 수준의 농도까지 리튬 이온을 수득하는 데 시간이 많이 걸린다. 경제성을 고려하여 수산화칼슘과 인산 리튬의 반웅 시간을 제한하는 경우에는, 수득된 수산화 리튬 수용액 내 리튬 이온의 농도가 낮아서, 리튬 이온의 회수율이 높지 않은 문제가 있다. 구체적으로, 수산화칼슘과 인산 리튬의 반웅 속도가 층분히 빠르지 않아, 경제적으로 허용되는 반웅 시간 내에, 5 ,Ό00ρ η 정도의 저농도의 리튬 이온의 회수만이 가능하다. 이에 따라, 후속 공정으로 탄산 리튬을 제조하기 전에 고농도로 용액을 농축시킬 필요가 있어, 농축을 위한 추가적인 공정이 필요하고, 증발에 따른 에너지 소모가 커지는 문제가 있다.
(4) 또다른 공지기술로서, CN201210404254.0호의 발명에서는, 리튬을 함유하는 리튬 바테리의 양극재인 인산-리튬-철 화합물로부터 염화 리튬을 제조하는 방법을 제시하고 있다. 이 특허에서는 인산-리튬-철 화합물을 염산으로 leaching하여 구성성분을 용액으로 침출하여 인산철, 인산리튬, 염화철을 함유하는 용액을 얻고, 용액의 pH를 2.0-2.5로 증가시켜 인산철을 석출, 제거하며, 여과액에 알칼리 물질을 첨가하여 pH를 6.0-7.0으로 조절한 후 CaCl2를 추가하여 인산칼슴을 석출, 제거하몌 남은 여과액을 증발시켜 농축시킴으로써 LiCl 결정물질을 석출시킨 후 여과하여 제품 LiCl을 얻는다.
그러나 이 발명에서는 강산을 사용하여 리튬 함유 인산염으로부터 리튬을 침출하기 때문에 환경 친화이지 못하고, 약품 산을 중화시켜야 하므로 약품 투입량이 많아서 경제성이 부족하다.
【발명의 내용】
【해결하고자 하는 과제】
상술한 문제점을 해결하기 위해, 본 발명의 일 구현예는, 리튬 함유 인산염으로부터 빠른 시간 안에 고농도로 리튬 이온을 추출할 수 있는 친환경적인 염화 리튬 수용액의 제조 방법을 제공하고자 한다.
또한 염화 리튬 수용액으로부터 경제적으로 탄산 리튬을 제조할 수 있는 방법을 제공하고자 한다.
【과제의 해결 수단】
본 발명의 일 구현예는, 리튬을 포함하는 인산염과, 염화 칼슘을 균일 흔합하여 흔합물 (이하 흔합물ᅳ 1)을 만드는 단계 (이하 단계ᅳ 1) ; 및 상기 흔합물 1을 450 °C 이상 고온 가열하여, 클로로 아파타이트 (Chloroapat i te)와 염화 리튬이 흔합된 생성물 (이하 생성물 -1)을 만드는 단계 (이하 단계 -2) ; 및 상기 생성물 -1에 물을 가하여 난용성 클로로 아파타이트 (Chloroapat i te , CAp)와 수용성 염화 리튬의 흔합물인 슬러리 (이하 슬러리 -1)을 얻는 단계 (이하 단계 -3) ; 및 상기 슬러리 -1을 고액 분리하여 클로로 아파타이트 (이하 CAp-1)와 염화 리튬 수용액 (이하 수용액- 1)을 수득하는 단계 (이하 단계 -4) ;를 포함하는 염화 리튬 수용액의 제조 방법을 제공한다.
상기 단계 -1에서, 상기 리튬을 포함하는 인산염은 염수 내 리튬으로부터 직접 제조된 것일 수 있다. 상기 단계 -1에서, 상기 리튬을 포함하는 인산염은 폐 battery의 리튬으로부터 직접 제조된 것일 수 있다.
상기 단계 -1에서, 상기 리튬을 포함하는 인산염은 스포듀민 (spodumene) , 페탈라이트 (petal i te) 또는 레피돌라이트 ( lepidol i te) 등의 광석으로부터 직접 제조된 것일 수 있다. 상기 단계 -1에서, 상기 투입되는 리튬을 포함하는 인산염은 건조된 분말상태, 수분을 함유하고 있는 f i l ter cake 상태일 수 있으며, 또는 인위적으로 인산염 중량보다 3배 이하의 물을 함유하도록 물을 첨가하여 준비할 수 있다.
상기 단계 -1에서, 리튬올 함유하는 인산염과 염화 칼슘의 흔합물은, mixer에서 흔합되는 과정을 포함할 수 있다.
상기 단계 -1에서, 상기 투입되는 염화 칼슘의 양은, 몰수 기준으로, 상기 인산 리튬 대비 1.25배 이상 및 2.0배 이하인 것일 수 있다.
상기 단계 -2에서, 상기 흔합물 -1을 가열하는 단계는 흔합물의 온도가 450 °C 이상 850 °C 이하가 되게 가열할 수 있다.
상기 단계 -2에서, 상기 흔합물 -1을 가열하는 시간은 흔합물이 450 °C 이상 도달한 후 30 분 이상 5시간 이하일 수 있다.
상기 단계 -2에서, 상기 생성물— 1은 상기 클로로아파타이트, 상기 염화 리튬 외에도, 상기 단계 -1의 염화 칼슘 증 일부를 미반웅 상태로 포함할 수 있고, 상기 단계 -1의 염화 칼슘 중 일부를 미반웅 상태로 포함할 수 있다.
상기 단계 -2에서, 상기 생성물 -1은 리튬 포함 인산염이 염화 칼슘과 80% 이상 반웅한 양만큼 염화 리튬을 포함할 수 았다.
상기 단계 -2에서, 용기에 담겨진 흔합물 -1의 가열을 효율적으로 하기 위해 용기를 box furnace 또는 tunnel furnace에서 가열, 또는 bath 에 안착시켜 용기를 가열하는 방식 등의 가열 방식이 포함될 수 있다.
상기 단계 -2에서, 용기에 담겨진 흔합물 -1이 골고루 가열되면서 동시에 반웅이 일어날 수 있도록, 가열 중에 흔합물을 교반할 수 있으며, 또는 가열을 일시 중단하고 교반 과정을 거친 후 다시 가열을 지속하는 방식의 공정을 가질 수 있다. 상기 단계 -3에서, 상기 생성물 -1에 가하는 물의 양은, 생성물 -1 내에 염화 리튬이 물에 용해되었을 때, 리튬 이온의 농도가 10, 000 ppm 이상 200, 000 ppm 이하게 되게 결정될 수 있다.
상기 단계 -4에서, 여과 과정에서 클로로아파타이트 -1에 잔류하는 염화 리튬을 회수하기 위해, 클로로아파타이트 -1에 물을 첨가하여 수세한 후 다시 여과함으로써 염화 리튬이 함유된 여과액 (이하 여과액 -la)을 수득할 수 있으며, 이 여과액 -la는 상기 여과액 1에 흔합될 수 있으며, 이 과정은 적어도 1회 이상 수행될 수 있다. 그리고 매번 수세할 때 첨가하는 물의 양은 CAp-1 고체 물질 무게의 0.5배 이상 5배 이하일 수 있다.
상기 단계 -4에서, 수용액 -1을 증발시켜 염화 리튬 결정을 석출시키고, 고액 분리하여 염화 리튬을 고체로 얻는 방법을 포함할 수 있다.
상기 단계 -4은, 상기 단계 -1에서 투입된 염화 칼슘에서 비롯된 상기 수용액 -1 중에 존재하는 칼슘 이온을, 수용액 -1에 황산을 투입하여 황산 칼슘으로 침전시킨 후 여과하여 제거하는 공정을 포함할 수 있다. 그리고 이때 산성화되는 용액을 중화시키기 위해 수산화 나트륨이나 수산화 칼륨을 첨가하는 공정을 포함할 수 있다.
상기 단계 -4은, 상기 단계 -1에서 투입된 염화 칼슘에서 비롯된 상기 수용액 -1 중에 존재하는 칼슴 이온을, 수용액 -1에 수산화 나트륨, 수산화 칼륨 등의 강알칼리를 투입하여 수산화 칼슘으로 침전시킨 후 여과하여 제거하는 공정을 포함할 수 있다.
상기 단계 -4은, 상기 단계— 1에서 투입된 염화 칼슴에서 비롯된 상기 수용액 -1 중에 존재하는 칼슘 이온을, 수용액 -1에 탄산 나트륨을 첨가하여 탄산 칼슘을 침전시킨 후 여과하여 제거하는 공정을 포함할 수 있다. 단 첨가되는 양은 탄산칼슘을 우선적으로 침전시킬 수 있는 양에 국한된다.
상기 단계 -4는, 여과 후에 얻어지는 CAp-1에 황산을 첨가하여 반웅시킴으로써 불용성 석고와 수용성 인산을 얻을 수 있으며, 이를 고액 분리함으로써 석고와 인산용액을 얻는 과정을 포함할 수 있다. 그리고 상기 분리된 석고를 물로 수세함으로써 석고에 잔류하는 인산을 회수하는 과정을 더 포함할 수 있다.
본 발명의 다른 일 구현예는, 염화 리튬 수용액을 준비하는 단계; 상기 염화 리튬 수용액에 탄산 나트륨을 투입하여 탄산 리튬을 침전시키고, 이를 여과하여 고체 탄산리튬 (이하 탄산리튬 -1)과 여과액 (이하 여과액 -2)을 수득하는 단계 (이하 단계 -5) ;를 포함하고, 상기 염화 리튬 수용액 내 리튬 이온의 농도는 10 , 000ppm 이상인 것인 탄산 리튬의 제조 방법을 제공한다. 상기 단계 -5의 염화 리튬 수용액을 준비하는 단계;에서, 상기 염화 리튬 수용액은 상기 본 발명의 일 구현예의 염화 리튬 수용액의 제조 방법으로부터 제조된 것일 수 았다.
상기 단계ᅳ 5에서, 수득된 탄산리튬ᅳ 1을 수세하여 여과하는 공정이 포함될 수 있으며, 수세 후 얻어지는 여과액 -2a는 상기 여과액 -2에 합류될 수 있으며, 상기 수세는 적어도 1회 이상 수행될 수 있다.
상기 단계 -5는, 여과액 -2 내에 있는 잔류 리튬 이온을 회수하기 위해, 상기 여과액 -2에 인 공급 물질을 투입하여 인산리튬이 석출되게 하는 단계를 더 포함하는 것일 수 있다.
상기 단계 -5에서, 상기 염화 리튬 수용액 내 리튬 이온과, 투입되는 탄산 나트륨 내 나트륨 이은와 몰 비 (리튬 이온 : 나트륨 이온)가 1 : 0.8 내지 1 : 1.2가 되는 양으로 투입되는 것일 수 있다.
상기 단계 -5에서 상기 염화 리튬 수용액에 탄산 나트륨을 투입하여, 탄산 리튬을 침전시키는 반응의 온도는 20°C 이상 및 lOOt 이하인 것일 수 있다.
【발명의 효과】
본 발명의 일 구현예에 따른 염화 리튬 수용액의 제조 방법에 의하면, 빠른 시간 안에 리튬 이온의 농도가 ΙΟ , ΟΟΟρρηι 이상, 높게는 60 , 000 ppm 이상의 고농도의 염화 리튬 수용액의 제조가 가능하다. 이에, 후속 공정으로 탄산 리튬을 제조하기 전에, 염화 리튬 수용액의 농축에 요구되는 증발에너지의 양이 감소되며, 한 처리 단위 안에서 훨씬 많은 양의 염화 리튬 수용액을 얻을 수 있어, 경제성이 획기적으로 향상될 수 있다.
또한, 본 발명의 일 구현예에 따른 염화 리튬 수용액의 제조 방법은, 전 (全) 공정에서 산처리 과정을 포함하지 않기 때문에, 친환경적인 제조 방법이다.
또한, 본 발명의 알구현예에 따른 탄산 리튬의 제조 방법에 의하면, 친환경적이며, 간단한 공정으로 경제성 있게 탄산 리튬을 제조할 수 있다. 【도면의 간단한 설명】
도 1은 본 발명의 일 구현예에 따른 공정도이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
다른 정의가 없다면 본 명세서에서 사용되는 모든 용어 (기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 명세서 전체에서 어떤 부분이 어딴 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
도 1은, 본 발명의 일 구현예에 따른 염화 리튬 수용액의 제조 방법 및 탄산 리튬의 제조 방법의 개략적인 구성도이다. 다만, 이에 한정하는 것은 아니고, 통상의 기술자의 입장에서 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양하게 변형하여 실시할 수 있다.
이하, 도 1을 참조하여, 본 발명의 일 구현예에 따른 염화 리륨 수용액의 제조 방법 및 탄산 리튬 제조방법에 대해 설명한다.
[염화리튬수용액의 제조 방법]
본 발명의 일 구현예는 리튬을 포함하는 인산염과, 염화 칼슴을 균일 흔합하여 흔합물 (이하 흔합물 -1)을 만드는 단계 (이하 단계 -1) ; 및 상기 흔합물 1을 450 °C 이상 고온 가열하여, 클로로 아파타이트 (Chloroapat i te)와 염화 리륨이 흔합된 생성물 (이하 생성물 -1)을 만드는 단계 (이하 단계 -2) ; 및 상기 생성물에 물을 가하여 난용성 클로로 아파타이트 (Chloroapat i te , CAp)와 수용성 염화 리튬의 흔합물인 슬러리 (이하 슬러리 1)을 얻는 단계 (이하 단계 -3) ; 및 상기 슬러리 -1을 고액 분리하여 클로로 아파타이트 (이하 CAp-1)와 염화 리튬 수용액 (이하 수용액- 1)을 수득하는 단계 (이하 단계 -4) ;를 포함하는 염화 리튬 수용액의 제조 방법을 제공한다.
이러한 방법은, 별도의 산 처리 없이 고농도의 염화 리튬 수용액을 제조할 수 있는 방법이다. 또한, 전술한 본 발명의 일 구현예에 따른 염화 리튬의 제조 방법은 반웅 속도가 기존 공정에 비해 개선될 수 있다.
상기 인산 리튬과 염화 칼슘의 고온에서의 반응을 통해 물에 대해 난용성 물질인 CAp 와 수용성인 LiCl을 생성시키며, 구체적으로 하기 반웅식 -1에 의해 진행될 수 있다.
[반웅식 -1]
3Li3P04 + 5CaCl2 → Ca5(P04)3Cl + 9LiCl
상기 반웅식 -1은 열역학적으로 자유에너지가 감소하는 반웅이어서 왼쪽의 반웅물이 오른쪽의 생성물로 반웅이 일어나지만, 활성화 에너지가 필요하기 때문에 최소한 450 °C 이상의 온도에서 그 반웅이' 활발하게 일어난다.
상기 반웅식 -1은 반웅물은 모두가 고체 상태이나, 450 °C 이상에서는 인산 리튬과 염화 칼슘이 접촉하는 부위에서 반웅식 -1의 반웅이 일어나기 시작하며, ,이때 두 분자의 염화 리튬과 한 분자의 염화 칼슘 조성에서 융절이 475 C인 공정 (eutect i c) 조성의 물질이 만들어지기 때문에 반응식- 1은 반웅속도가 빠르게 진행된다.
상기 반号식 -1의 반웅은 1회에 생산할 수 있는 양을 크게 하기 위해, 일 예를 들면 흔합물 -1을 1 m3 이상 용적의 용기에 반웅물을 넣고 가열 단계에 진입할 수 있다. 이때;, 가열하는 방법은 산업적으로 일반화된 box furnace , tunnel furnace에서 가열로 이루어질 수 있으며, 용기에 전달된 열이 흔합물에 빠르게 전달되게 하기 위해서, 가열 중에 흔합물을 교반하거나 또는 가열을 일시 중단하고 가열기에서 꺼낸 후 흔합물을 일시 교반하고 나서 다시 가열기에 투입하는 등, 여러가지 방법에 의해 가열과 반웅을 촉진시킬 수 있다. 이렇게 교반을 병행하면서 가열하는 것은 두가자 효과가 있다. 첫번째는 용기 내부에 있는 혼합물 -1의 승온 속도를 빠르게 할 수 있으며 전체를 균일하게 승온시키는 작용을 한다. 두번째는 반웅식- 1의 반웅이 진행되는 동안에, 전술한 바와 같이 융점 475 °C의 공정조성 물질이 액적을 형성할 수 있는데, 이 물질이 미 반웅 물질과 접촉함으로써 반옹 속도를 더 빠르게 촉진하는 작용을 한다.
본 발명에서는 반웅식 -1을 촉진시키기 위한 흔합물 -1의 가열온도를
450 °C 이상 850 °C 이하로 제한한다. 450 °C 이하이면 반응식 -1의 act ivat ion energy가 극복되지 않기 때문에 반응이 아주 지연되므로 최소한 450 °C 이상의 온도는 필요하다. 가열온도가 850 °C 이상이면, 반응식 -1의 생성물인 염화 리튬의 증발이 일어나기 시작하여 증기로 손실되기 때문이다. 반응식 -1은 온도가 높을수록 반웅이 빨라지지만, 염화 리튬의 증발 손실을 억제하기 위해 최고온도를 850 °C로 제한한다.
상기 반웅식 -1에 걸리는 시간은 상기 리튬을 포함하는 인산염과 염화 칼슘의 흔합성 정도에 영향을 크게 받는다. 이에, 흔합물 -1을 가열하는 시간은 이후의 공정 시간과 어을릴 수 있게 조절할 수 있으며, 흔합물이 450 °C 이상 도달한 후 30 분 이상 5시간 이하의 범위에서 조절할 수 있다. 그러나 이것은 꼭 이 범위에 국한되어 있는 것은 아니며, 리튬의 실수율과 가열 에너지, 생산성 등을 고려해서 더 짧게 할 수도 있고 더 길게 할 수도 있다.
상기 반웅식 -1이 원할하게 일어나기 위해서는 리튬 함유 인산염과 염화 칼슘을 입자 단위로 잘 섞는 것이 요망된다. 리튬 함유 인산염이 고운 분말 상태이면 분말상태의 염화 칼슘과 섞어 흔합기에서 충분한 시간 동안 흔합하여 사용할 수 있으며, 리튬 함유. 인산염이 f i l ter cake와 같이 소량의 물을 머금고 있으면 인산염 무게의 1 내지 3배의 물을 첨가하여 염화 칼슘과 흔합시킨다. 흔합기는 인산염이 미소한 입자 상태로 분리될 때가지 가동한다. 만일 물이 충분하지 않으면 f i l ter cake가 풀어지지 않아 흔합되지 않으며, 물이 3배 이상을 넘으면 흔합에는 유리하지만 흔합물 -1에 있는, 물이 가열로 안에서 증발되는데 많은 시간이 소요되며 에너지 투입량이 많아져서 경제성을 훼손한다.
상기 반응식 -1은 반응물과 생성물 사이에서 열역학적 에너지 상태에 따라 반응의 양이 결정된다. 반웅물에는 여러 인산 리튬과 염화 칼슴 이외의 성분들이 존재하며, 원료의 배합비를 변경할 수 있기 때문에, 열역학적 자유에너지의 값을 한가지 값으로 규정하기 어렵지만, 450 °C 이상의 주변온도에서 인산 리튬 중의 리튬은 80% 이상이 염화 리튬으로 전환된다.
상기 반웅식 -1에서, 상기 흔합물 -1중의 염화 칼슘의 당량은 인산 리튬 몰수의 1.667배이다. 본 특허에서는 염화 칼슘의 바람직한 첨가량은 반웅식 -1 당량비의 0/7배 이상 1.3배 이하로 제한한다. 염화 칼슘 0.7배 당량비는 인산 리튬 몰수의 1.167배에 해당되는 몰수이며, 1.3배 당량비는 인산 리튬 몰수의 2.167배에 해당되는 몰수이다. 만일 당량비가 0.7배 미만이면 반응 후 염화 칼슘은 대부분 반웅에 참여하므로 상기 수용액 -1 의 불순물로 작용하는 Ca2+의 함량이 적어 유리하지만, 반웅식 -1의 반웅율이 낮아져 리튬의 회수율이 낮아지는 단점이 있다. 한편 당량비가 1.3배 이상이면 반응식 -1의 반웅율은 높아져 염화 리튬의 생성량은 많아지지만, 미 반웅한 염화 칼슘이 증가하면서 수용액 -1 내의 불순물 Ca2+ 함량이 많아져, 이의 제거 비용이 많아지게 된다.
상기 반웅식 -1에서, 반웅물질과 생성물질은 모두 염으로써, 물에 용해되었을 때 강산이나 강알칼리에 치우치지 않는다. 불순물의 양에 따라 약산이나 약알칼리의 pH를 보인다.
상기 반웅식— 1의 가열에 의한 반옹이 완료된 다음에는 상기 생성물- 1에 물을 첨가하여 염화 리튬을 수용액으로 녹여 낸다. 염화 리튬은 용해도가 0~100 °C의 물 100 cc에 대해서 69~128g으로서 매우 높으며, 리튬 이온으로도 113 ,000 ~ 210 ,000 ppm 로 매우 높다. 이에, 첨가되는 물의 양은 원하는 수용액의 농도에 따라 임의로 결정할 수 있다. 전술한 바와 같이, 생성물 -1에 물을 첨가하여 1차 여과해서 수용액 -1을 얻고, 고체 CAp- 1을 수세하여 수용액 -la를 얻으며,수용액 -la를 다시 수용액 -1에 합류시킬 수 있으므로, 최종 수용액 -1의 리륨 이온 농도를 고려해서 물의 양을 결정할 수 있다. 고체 CAp-1에는 여과하는 방법에 따라 잔류하는 액체의 무게는 고체 CAp-1의 0.1 내지 0.5배에 상당하므로, 여기에 물을 첨가하여 다시 여과함으로써 액체를 회수하는 것이 바람직하다. 특히 수용액 -1의 염화 리튬의 농도가 높아질수록 염화 리튬의 회수율을 높이기 위해서 CAp- 1의 수세를 하는 것이 바람직하다. 물의 양을 결정하는 방법은 여러 가지가 있으며, 기존의 방법을 따른다. 다만, 본 발명에서 제시하는 것은, 수세액의 양은 CAp-1 질량의 0.5배 이상 및 5배 이하가 바람직하다. 0.5배 미만일 경우 세척액이 여과 후의 고체에 잔류하는 비율이 높아 리튬이온의 회수율이 낮으며, 5배 초과이면 세척효과와 리튬이은의 회수율은 좋으나 여과액의 농도가 묽어져 이후 공정에서 리튬을 회수하는데 비효율적이다. 상기 수용액 -1은 전술한 바와 같이, 이론적으로는 리튬 이온의 농도를 용해도 한계까지 얻을 수 있으며, 용이하게 4으 000 ppm 이상으로 얻을 수 있다. 수용액 -1을 이용해서 염화 리튬의 석출물을 제조하고자 한다면, 용액을 조금만 증발시켜도 염화 리륨의 용해도에 쉽게 도달할 수 있으므로 석출을 용이하게 할 수 있다. 또한 수용액 -1에 탄산 나트륨을 투입함으로써 탄산리륨을 침전시키고자 한다면, 굳이 비용이 많이 드는 증발 과정을 거치지 않아도 된다. .
한편, 상기 인산 리튬은, 다른 양이온 성분을 같이 포함하는 형태일 수 있다. 예를 들어, 후술할 바와 같이, 상기 인산 리륨 내 리튬이 염수 내 리튬으로부터 유래된 경우, 염수는 라튬과 함께, 칼슘 마그네슴, 철, 칼륨, 나트륨, 크름, 납, 또는 카드뮴 등의 양이은을 포함하며, 여기에 인산이온을 함유하는 염, 인산 등의 인 공급 물질을 투입하면 리튬이 인산화되어 인산 리튬의 형태로 석출될 수 있다.
여기서, 인산 리튬은 물에 대한 용해도가 낮은 물질 (~0.39g/L)이며, 상기 인산화 공정에서 슬러리의 형태로 추출될 수 있다. 이처럼 인산 리튬을 추출할 때 리륨 외 양이온은 불순물이 되며, 상기 인산화 공정 전, 후, 또는 전후 모두에 당업계에 일반적으로 알려진 방식으로 불순물 제거를 실시할 수 있다.
또한, 상기 인산 리튬 슬러리를 열 또는 자연 건조하면 건조된 인산 리튬 ( l i thium phosphate) 분말 형태로 얻어지고, 상기 인산 리튬 슬러리를 여과하면 필터 케이크 ( f i l ter cake) 상태의 인산 리튬 ( l i thium phosphate)이 얻어진다.
다만, 불순물 제거 공정을 실시하지 않거나, 블순물 제거 공정을 실시하더라도 불가피하게, 앞서 언급한 바와 같이 인산 리튬에 양이온 불순물이 일부 포함될 수 있다.
[염화리튬수용액 내 미반웅 칼슴 이은의 제게
도 1에 도시하지는 않았지만, 상기 염화 리튬 수용액의 제조 방법에 따라 제조된 염화 리튬 수용액인 수용액 -1을 실제 용도로 사용하기 위해서는 수용액 -1 내에 잔류하는 미반웅 칼슘 이온을 제거하는 단계를 더 포함할 수 있다.
상기 수용액 -1에는 전술한 바와 같이, 상기 흔합물 -1에 존재하는 염화 칼슘이 반웅식 -1에서 완전히 반웅하지 못하고 잔류하는 경우에, 수용액 -1에 Ca2+ 이온이 다량 존재할 수 있다. 이 수용액 -1을 증발시켜 염화 리튬을 석출시킴으로써 고체의 염화 리튬을 얻고자 할 때는 Ca2+ 성분이 염화 리튬 석출물에 흔입되어 염화 리륨의 순도를 떨어뜨린다. 또한 이 수용액 -1에 탄산 나트륨을 첨가하여 고체의 탄산 리튬을 얻고자 할 때는, 탄산 리튬보다 우선적으로 탄산 칼슘이 석출되어 탄산 리튬에 흔입됨으로써 탄산 리튬의 순도를 떨어뜨리게 된다. 이를 억제하기 위해 본 발명에서는 세가지의 방법으로 Ca2+ 이온을 석출시켜 수용액 -1로부터 여과 제거하는 방법을 제공한다.
상기 수용액 -1에서 Ca2+ 이온을 제거하는 첫번째는 방법은 반웅식— 2와 같이 수용액에 황산을 첨가하여 Ca2+를 석고 (gypsum)으로 침전시키는 방법을 제공한다.
[반웅식 -2]
Ca2+ (aq) + H2S04(aq) + 2H20→ CaS(V2H20(s) + 2H+
침전물 CaS04.2¾0 는 물에 대한 용해도가 0.2 g/lOOcc-water 수준이므로 거의 대부분의 Ca2+ 이온은 석출 제거된다. 그러나, 이때 용액이 산성으로 되어 있으므로 반웅용기의 부식 등을 억제하고 환경 친화적으로 하기 위해서 NaOH, K0H와 같은 알칼리로 용액으로 중화시키는 방법을 제시한다.
본 발명에서는 상기 수용액 -1에서 Ca2+ 이온을 제거하는 두번째 방법으로 수용액 -1에 NaOH, K0H와 같은 1족 계통의 알칼리를 첨가하는 방법을 제공한다. pH가 상승하면 Ca(0H)2의 용해도가 급격히 감소하여 pH 13에서는 0.008 服)1의 용해도이며, 0.06 g/100cc-water의 낮은 용해도를 갖는다. 이에 대부분의 Ca2+는 Ca(0H)2로 석출되어 제거될 수 있다.
본 발명에서는 상기 수용액 -1에서 Ca2+ 이온을 제거하는 세번째 방법으로 탄산 나트륨을 Ca2+의 당량비에 맞게 투입하는 방법을 제공한다. 탄산 칼슘은 탄산 리튬에 비해 화학적으로 훨씬 안정하여 우선적으로 침전된다. 탄산 음이온 C03 2—는 반웅식 -3에 이해 Ca2+ 이온을 대부분 CaC03로 석출시킨다.
[반웅식 -3]
Ca2+ (aq) + Na2C03(aq) → CaC03(S) + 2Na+
침전물 CaC03는 물에 대한 용해도가 0.0007 g/100cc-water로 아주 낮기 때문에, 용액중에 존재하는 Ca2+의 몰 수만큼 탄산나트륨을 투입하면 거의 대부분의 Ca2+ 이온을 제거할 수 있다.
이렇게, 상기의 세가지 방법으로 수용액 -1 내의 Ca2+ 이온을 제거함으로써, 이후에 탄산나트륨을 투입하여 탄산 리튬을 석출시킬 때, 탄산칼슘이 불순물로 흔입되지 않게 하는 효과를 얻을 수 있다.
[인산의 회수 방법]
본 발명에서는 상가 단계 -4에서 얻어지는 CAp-1을 황산과 반웅시켜 인산과 석고를 얻는 방법을 제공한다. 반웅식 -4는 광물 apat i te에 황산과 물을 가하여 석고를 얻는 공업적인 방법이다. 본 발명에서는, 상기 단계- 4에서 생성되는 생성물로부터 반응식 -4에 따라 gypsum과 경제적 가치가 높은 인산을 얻는 방법을 제공한다. 반웅식 -4와 같이 상기 CAp-1의 당량비에 해당하는 황산과 물을 첨가하고, 반응계의 온도를 인산의 융점인 42.35 °C 이상으로 유지함으로써, 반웅식 -4의 반웅을 빠르게 일어나게 할 수 있다. 반웅식 -4에서 발생하는 HCKg) 기체는 제거되므로, 반웅식 -4의 반웅이 종결된 후에 물을 추가하여 고액 분리함으로써 경제적 가치가 높은 인산 ¾P04를 회수할 수 있다.
[반응식 -4] ' Ca5(P04)3Cl + 5 H2S04 + 10 ¾0 → 3¾P04 + 5CaS04'2H20(s) + HCl (g) [탄산리튬의 제조 방법]
본 발명의 다른 일 구현예는, 염화 리튬 수용액을 준비하는 단계; 및 상기 염화 리튬 수용액에 탄산 나트륨을 투입하여, 탄산 리튬을 침전시키고 이를 여과하여 고체 탄산리튬 (이하 탄산리튬 -1)과 여과액 (이하 여과액 -2)을 수득하는 단계 (이하 단계 -5) ; 를 포함하고, 상기 염화 리튬 수용액 내 리튬 이온의 농도는 ΙΟ , ΟΟΟρριη 이상인 것인 탄산 리튬의 제조 방법을제공한다. 리튬 이온의 농도가 ΙΟ , ΟΟΟρρηι 이상인 고농도의 염화 리튬 수용액으로부터, 염화 리튬과 탄산 나트륨의 반웅을 통해 탄산 리튬을 석출시킬 수 있다. 이에, 염화 리튬 수용액을 추가적으로 농축 시켜 고농도화 시킬 필요가 없어, 경제적으로 탄산 리튬을 제조할 수 있다.
상기 탄산나트륨의 원료로 소다회 (soda ash)를 사용할 수 있다. 소다회는 약 98% 이상이 탄산나트륨으로 이루어진 물질로, 탄산나트륨의 원료로 사용될 수 있다. 다만, 탄산나트륨의 원료로 사용 가능한 다른 물질의 사용이 가능함은 물론이며, 이에 한정하는 것은 아니다.
고체 상태의 탄산원료를 이용하여 리튬 양이온과의 반응을 통해 탄산 리튬을 석출시킴으로써, 종래 C02 가스를 사용하는 탄산 리튬의 제조방법과 비교하여, 고압용기의 사용이 블필요하게 된다. 이에, 설비가 보다 컴팩트 (compact )해 질 수 있다. 이에, 공정 비용이 획기적으로 절감될 수 있다. 또한, 상기 염화 리튬 수용액 제조 방법에서와 같이 추가적인 탄산 리튬 제조 단계에서도 산 또는 염기 등의 시료를 사용하지 않기 때문에 설비의 부식을 최소화하고, 환경오염을 방지할 수 있다.
상기 탄산 나트륨은, 상기 염화 리튬 수용액 내 리튬 이온과, 투입되는 탄산나트륨의 나트륨 이온의 몰 비 (리튬 이은 : 나트륨 이온)가 1 : 0.8 내지 1 : 1.2가 되는 양으로 투입되는 것일 수 있다. 탄산 나트륨의 투입량이 너무 적은 경우 탄산 리튬이 층분히 석출되지 않아 리튬의 회수율이 감소할 수 있고, 너무 많은 경우 탄산 리튬의 석출량은 증가하지만 탄산나트륨의 약품 비용이 증가하는 문제가 발생할 수 있다. 보다 구체적으로는 1 : 0.9 내지 1 : 1. 1이 되는 양으로 투입되는 것일 수 있다. 또한, 상기 염화 리튬 수용액에 탄산 나트륨을 투입하여, 탄산 리튬 및 여액을 수득하는 단계의 반웅 온도는, 20°C 이상 및 100°C 이하인 것일 수 있다. 염화 리튬 수용액에 탄산나트륨을 첨가하면 탄산 리튬이 석출되면서 발열반응을 일으켜 용액의 온도가 상승하기 때문에 반웅온도는 20 °C 이상 및 100 °C 이하가 된다. 반웅 온도가 너무 낮은 경우 탄산 리튬의 용해도가 증가하여 리튬의 회수율이 감소하며, 반웅 온도가 너무 높으면 탄산 리튬의 용해도가 감소하여 리튬의 회수율은 증가하기는 하나, 은도 상승에 필요한 에너지 비용의 증가와 여과장치의 유지보수가 어려워질 수 있다. 탄산리튬의 물에 대한 용해도는 20 °C에서 0.018 g/100cc- water이며, 100 °C 에서는 0.010 g/100cc-water이며, Li+ 이온의 농도로는 각각 1,249 ppm과 676 ppm 이다.
이 때, 상기 단계 -5에서, 여과시의 온도는 15 °C 이상 및 95 °C 이하인 것일 수 있다. 온도 범위를 이와 같이 한정한 것은 온도가 15°C보다 낮으면 슬러리의 점도가 높아져 여과가 순탄하지 않으며, 온도가 95 °C보다 높으면 에너지 투입비용의 상승과 여과설비의 운영에 어려움이 있기 때문이다.
또한, 여과된 탄산 리튬을 포함하는 필터 케이크 내에는 수용액 상태의 염화나트륨 등의 불순물이 존재할 수 있다. 이에, 이를 제거하기 위해 용매로서 물을 첨가하여 세척한 후, 다시 여과하는 고액분리 단계를 거쳐 불순물이 제거된 탄산 리튬을 수득할 수 있다. 세척 및 고액 분리는 적어도 1회 이상 수행될 수 있으며, 불순물의 함량이 원하는 수준으로 낮아질 때까지 반복적으로 수행될 수 있다.
또는, 상기 수득된 여액들에는 리튬 이온이 용해되어 있으므로, 이들에 인산이온을 함유하는 염이나 인산을 첨가함으로써 인산 리튬으로 회수할 수 있으며, 이렇게 회수된 인산 리튬 함유 용액은 재차 여과와 세척을 거쳐 불순물을 제거한 뒤, 인산 리튬 원료로 재활용될 수 있다.
이하 본 발명의 바람직한 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기 실시예에 한정되는 것은 아나다.
실시예
리튬의 초기 총량은 4 kg이 되도록, 분말 상태의 인산 리튬과 염화 칼슴을 상기 반웅식 -1에 따른 당량비로 준비하였다.
이렇게 준비된 인산 리튬은 22.24kg, 염화 칼슘은 35.53 kg이었으며 (염화 칼슴의 양은, 몰수 기준으로 인산 리튬의 1.667배), 이들을 흔합기에 투입하여 두 물질이 잘 흔합되도록 30분간 흔합하였다. 이후, 흔합물을 도가니에 넣고, 650 °C 유지된 box furnace에 투입하여 세시간 유지시켰다. 이때, 매 30분마다 furnace에서 도가니를 꺼내어 금속 봉으로 흔합물을 교반시킨 후 다시 장입하곤 하였다.
세시간 경과 후 도가니를 furnace에서 꺼내어 1시간 공넁한 다음, 여기에 물을 50 리터를 투입하였으며, 금속 봉으로 잘 교반하였다.
이후에, 슬러리를 65 °C 온도에서 필터 프레스 (filter press)로 여과하여 여과액 -1을 얻었다. 여과액 -1의 부피는 89.3 리터, Li의 농도는
34,000 ppm이었다. 이로부터 계산된 Li3P04가 CaCl2와 반웅하여 염화 리튬으로 변환된 반웅율은 85 %였다. 다음으로 필터 케이크 (filter cake)에는 물을 42.68 리터 투입하여 교반 흔합시킨 후 1회 여과하여 여과액 -la를 얻었다. 여과액 -la를 상기 여과액 -1에 흔합한 후의 최종 여과액 -1은 132 리터 부피에, 리튬 농도는 25,200 ppm을 얻었다.
이후 상기 제 1 여과액에 온도를 65 °C로 하여 탄산나트륨 (Na2C03) 25.40kg을 투입하여 탄산 리튬을 석출시켰다. 이 때, 투입한 탄산나트륨의 양은, 상기 제 1 여과액 내 리튬이온과 투입되는 탄산나트륨의 나트륨 이온의 몰비 (리튬이온 : 나트륨이온)이 1:1에 해당하는 양이다. 이후, 70°C 에서 필터 프레싱 (filter pressing)하여 고체 상태의 탄산 리튬과 제 2 여과액으로 분리하였다.
이후, 분리된 탄산 리튬은 물 58.07 리터로 세척 (washing), 및 재차 필터 프레성 (filter pressing) 하는 작업을 2회 실시하였으며, 이를 건조하여 탄산 리튬 15.61 kg을 제품으로 얻었다.
제품 속에 있는 리튬의 양은 2.93 kg으로서 최초 투입량을 4.0 kg에서 73.2%의 수율에 해당되는 매우 높은 값이었다.
한편 , 게 2 여과액과 상기 탄산 리튬의 세척 (washing)액을 모은 뒤, 여기에 인산나트륨 3.10kg을 투입하여 0.39 kg의 인산 리튬을 회수하였으며, 이것은 처음 투입량 22.24kg의 1.8%에 해당되는 양이었다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【청구범위】
[청구항 1】
인산리튬과 염화칼슘을 ΐ합하는 단계; 및
상기 흔합물을 가열하여 고상 반웅에 의해 클로로아파타이트와 염화리튬이 흔합된 생성물을 얻는 단계;
를 포함하는 것을 특징으로 하는 염화리튬 제조방법 .
【청구항 2】
거 U항에 있어서,
상기 생성물에 용매를 투입하여 클로로아파타이트와 수용성 염화리튬이 흔합된 슬러리를 얻는 단계를 더 포함하는 것을 특징으로 하는 염화리튬 제조방법 .
【청구항 3】
제 2항에 있어서,
상기 슬러리를 고액 분리하여 클로로아파타이트와 염화리튬 수용액을 얻는 단계를 더 포함하는 것을 특징으로 하는 염화리튬 제조방법.
【청구항 4】
제 1항에 있어서,
상기 인산리튬은 건조된 분말 상태이거나, 수분을 함유하는 f i l ter cake 상태이거나ᅳ 혹은 인산리튬 중량보다 3배 이하의 물을 함유하도록 물을 첨가한 상태인 것을 특징으로 하는 염화리튬 제조방법.
【청구항 5】
제 1항에 있어서,
상기 흔합물의 가열 온도는 450도 ~850도인 것을 특징으로 하는 염화리튬 제조방법.
【청구항 6】
제 5항에 있어서,
상기 흔합물의 가열 시간은 450도 이상의 온도에서 30분~5시간 이상 유지하는 것을 특징으로 하는 염화리튬 제조방법.
【청구항 7】
제 3항에 있어서, 상기 고액 분리된 클로로아파타이트에 물을 첨가하여 수세한 후 여과하여 얻은 수세액을 상기 염화리튬 수용액에 첨가하는 것을 특징으로 하는 염화리튬 제조방법 .
【청구항 8】
제 3항에 있어서,
상기 염화리튬 수용액을 증발시켜 염화리튬 결정을 석출시키는 것을 특징으로 하는 염화리튬 제조방법 .
【청구항 9】
제 3항에 있어서,
상기 염화리튬 수용액에 . 황산, 수산화나트륨, 수산화칼륨 및 탄산나트륨 중 적어도 1 이상을 투입하여 상기 수용액 내 존재하는 미반웅 칼슘을 침전시키는 것을 특징으로 하는 염화리튬 제조방법.
【청구항 10]
인산리튬과 염화칼슴을 흔합하는 단계 ;
상기 흔합물을 가열하여 고상 반웅에 의해 클로로아파타이트와 염화리튬이 흔합된 생성물을 얻는 단계;
상기 생성물에 용매를 투입하여 클로로아파타이트와 수용성 염화리튬이 흔합된 슬러리를 얻는 단계;
상기 슬러리를 고액 분리하여 클로로아파타이트와 염화리튬 수용액을 얻는 단계 ; 및
상기 염화리튬 수용액에 탄산나트륨올 투입하여 탄산리튬을 침전시키는 것을 특징으로 하는 탄산리튬 제조방법.
【청구항 11】
제 10항에 있어서,
상기 탄산리튬을 고액 분리하고 남은 여액에 인산염을 투입하여 인산리튬을 얻는 단계를 포함하는 것을 특징으로 하는 탄산리튬 제조방법.
PCT/KR2017/006401 2016-09-05 2017-06-19 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법 WO2018043881A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160113685A KR20180026864A (ko) 2016-09-05 2016-09-05 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법
KR10-2016-0113685 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043881A1 true WO2018043881A1 (ko) 2018-03-08

Family

ID=61301299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006401 WO2018043881A1 (ko) 2016-09-05 2017-06-19 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법

Country Status (3)

Country Link
KR (1) KR20180026864A (ko)
AR (1) AR109573A1 (ko)
WO (1) WO2018043881A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627452A (en) * 1949-07-06 1953-02-03 Scient Design Co Preparation of lithium chloride from spodumene
KR20120021675A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 고순도 탄산리튬의 제조 방법
KR20130032563A (ko) * 2011-09-23 2013-04-02 케이엔디티앤아이 주식회사 결정화 반응장치 및 이를 이용한 고순도 탄산리튬의 제조방법
KR101269161B1 (ko) * 2010-12-07 2013-05-29 재단법인 포항산업과학연구원 리튬함유용액으로부터 고순도 리튬 추출 방법
KR20160076021A (ko) * 2014-12-19 2016-06-30 재단법인 포항산업과학연구원 금속리튬의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627452A (en) * 1949-07-06 1953-02-03 Scient Design Co Preparation of lithium chloride from spodumene
KR20120021675A (ko) * 2010-08-12 2012-03-09 재단법인 포항산업과학연구원 고순도 탄산리튬의 제조 방법
KR101269161B1 (ko) * 2010-12-07 2013-05-29 재단법인 포항산업과학연구원 리튬함유용액으로부터 고순도 리튬 추출 방법
KR20130032563A (ko) * 2011-09-23 2013-04-02 케이엔디티앤아이 주식회사 결정화 반응장치 및 이를 이용한 고순도 탄산리튬의 제조방법
KR20160076021A (ko) * 2014-12-19 2016-06-30 재단법인 포항산업과학연구원 금속리튬의 제조 방법

Also Published As

Publication number Publication date
AR109573A1 (es) 2018-12-26
KR20180026864A (ko) 2018-03-14

Similar Documents

Publication Publication Date Title
CA3013941C (en) Process for extracting and recovering lithium values from lithium bearing materials
US8691169B2 (en) Method for the production of battery grade lithium carbonate from natural and industrial brines
CN103097586B (zh) 通过电解从含锂溶液中提取高纯度锂的方法
CN108675323B (zh) 一种低品位磷酸锂酸性转化法制备电池用碳酸锂的方法
CN102020294B (zh) 无尘级单水氢氧化锂及其制备方法
CN108075202A (zh) 一种磷酸铁锂正极材料的综合回收方法
CN107012339A (zh) 从含锂溶液中经济地提取锂的方法
CN104685077A (zh) 从含锂溶液中提取锂的方法
JP2019526523A (ja) 塩化リチウムの製造方法および炭酸リチウムの製造方法
CA2644092A1 (en) Extraction of lithium from lithium bearing minerals by caustic leaching
CN106661664A (zh) 生产纯镁金属和各种副产物的湿法冶金方法
CN104745823A (zh) 一种从废旧锂离子电池中回收锂的方法
CN105836767A (zh) 一种利用含锂废液制备无水氯化锂的方法
CN108531751A (zh) 从含锂溶液中提取锂的方法
WO2023275345A2 (en) Processes for the recovery and reuse of sulphate reagents from leach liquors derived from lithium micas
CN104884648A (zh) 从含锂溶液中提取锂的方法
CN106006675A (zh) 一种利用氯化锂溶液为原料来制备单水氢氧化锂的方法
KR101946483B1 (ko) 수산화리튬 수용액의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
WO2018043881A1 (ko) 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법
JP7442617B2 (ja) 水酸化リチウムの製造方法
CN115849410A (zh) 一种碱金属六氟磷酸盐的制备方法
CN112645363A (zh) 一种以锂云母为原料制备电池级碳酸锂的方法
RU2786259C1 (ru) Способ получения гидроксида лития
KR20190035210A (ko) 탄산 리튬의 제조 방법
RU2793756C1 (ru) Способ извлечения лития, способ получения карбоната лития и способ получения гидроксида лития

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846806

Country of ref document: EP

Kind code of ref document: A1