WO2018043608A1 - 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置 - Google Patents

弾性波フィルタ装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2018043608A1
WO2018043608A1 PCT/JP2017/031269 JP2017031269W WO2018043608A1 WO 2018043608 A1 WO2018043608 A1 WO 2018043608A1 JP 2017031269 W JP2017031269 W JP 2017031269W WO 2018043608 A1 WO2018043608 A1 WO 2018043608A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel arm
arm resonator
parallel
elastic wave
filter
Prior art date
Application number
PCT/JP2017/031269
Other languages
English (en)
French (fr)
Inventor
浩司 野阪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780053011.8A priority Critical patent/CN109643989B/zh
Publication of WO2018043608A1 publication Critical patent/WO2018043608A1/ja
Priority to US16/283,882 priority patent/US10530335B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an elastic wave filter device having a resonator, a high-frequency front-end circuit, and a communication device.
  • an elastic wave filter device such as a ladder filter
  • a first parallel arm resonator and a first parallel arm resonance in a state of being connected in series with respect to one parallel arm connecting a series arm and a ground.
  • a configuration in which a plurality of second parallel arm resonators connected in parallel to a child is provided (see, for example, Patent Document 1).
  • the resonance frequency of the plurality of second parallel arm resonators is higher than the anti-resonance frequency of the series arm resonator, and at least one first of the plurality of second parallel arm resonators is used.
  • the anti-resonance frequency of the two parallel arm resonators is different from the anti-resonance frequency of the other second parallel arm resonators.
  • this elastic wave filter device can widen the width of the attenuation region where the amount of attenuation is large in the specific frequency band within the stop region (attenuation band).
  • the filters placed in the front end part of mobile communication devices have low loss and high selectivity (reciprocal with other bands adjacent to their own band). Suppression of interference) is demanded.
  • the filter characteristics it is required to suppress the loss in the passband and to increase the steepness of the attenuation slope (so-called “clearance at the passband end”).
  • the conventional acoustic wave filter device does not consider the downsizing of the acoustic wave filter device. If the elastic wave filter device is easily reduced in size, the performance of the elastic wave filter device may be deteriorated. Specifically, there is a risk that loss in the passband increases and the sharpness on the high passband side is deteriorated.
  • the sharpness on the high side of the pass band is specifically the steepness of the high side attenuation slope of the two attenuation slopes formed from the pass band to the attenuation band on both sides of the pass band. .
  • the present invention provides an elastic wave filter device, a high-frequency front end circuit, and a communication device that can reduce the size of the elastic wave filter device while suppressing an increase in loss in the pass band and deterioration of sharpness on the high pass band side.
  • the purpose is to do.
  • an acoustic wave filter device includes a series arm resonance circuit connected on a path connecting a first input / output terminal and a second input / output terminal; A first parallel arm resonator and a second parallel arm resonator connected between the same node and the ground, and the resonance frequency of the second parallel arm resonator is the first parallel arm resonator.
  • the anti-resonance frequency of the second parallel arm resonator is higher than the anti-resonance frequency of the first parallel arm resonator, and the second parallel arm resonator is an IDT that excites an elastic wave. It has electrodes and no reflectors.
  • the inventor of the present application has found the following as a result of intensive studies. That is, with respect to the impedance characteristics of a single resonator, there is a large difference in the anti-resonance frequency Q between the case with and without the reflector, but there is no significant difference in the resonance frequency Q. Therefore, even if the second parallel arm resonator does not have a reflector, the resonance frequency Q is hardly lowered, so that it is possible to suppress an increase in loss in the passband and deterioration of sharpness on the high side of the passband. Further, since the second parallel arm resonator does not have a reflector, the elastic wave filter device can be reduced in size by the space due to not having a reflector. In this way, the elastic wave filter device can be reduced in size while suppressing an increase in loss in the passband and deterioration of sharpness on the high passband side.
  • the first parallel arm resonator may include an IDT electrode that excites an elastic wave and a reflector that reflects the elastic wave excited by the IDT electrode.
  • the first parallel arm resonator includes a reflector, and the loss in the pass band and the sharpness on the high pass band side can be improved by designing the anti-resonance frequency Q to be high.
  • An acoustic wave filter device includes a series arm resonance circuit including one or more acoustic wave resonators connected between a first input / output terminal and a second input / output terminal; A first parallel arm resonator and a second parallel arm resonator connected between the same node on the path connecting the first input / output terminal and the second input / output terminal and the ground; The resonance frequency in the arm resonator is higher than the resonance frequency in the first parallel arm resonator, the anti-resonance frequency in the second parallel arm resonator is higher than the anti-resonance frequency in the first parallel arm resonator,
  • Each of the first parallel arm resonator and the second parallel arm resonator includes an IDT electrode that excites an elastic wave, and a reflector that reflects the elastic wave excited by the IDT electrode.
  • the reflector in the two parallel arm resonator is Than reflectors at first parallel arm resonator, the number of electrode fingers is small.
  • the inventor of the present application has found the following as a result of intensive studies. That is, regarding the impedance characteristics of a single resonator, there is a large difference in the anti-resonance frequency Q between the case where the number of electrode fingers of the reflector constituting the resonator is large and the case where the number is small, but there is a large difference in the resonance frequency Q. Absent. Regarding the filter characteristics, as the resonance frequency Q of the second parallel arm resonator is higher and the anti-resonance frequency Q of the first parallel arm resonator is higher, the loss in the passband increases and the passband higher frequency side. It is possible to suppress the deterioration of sharpness.
  • the elastic wave filter device can be reduced in size by the space due to the reduced number of electrode fingers. In this way, the elastic wave filter device can be reduced in size while suppressing an increase in loss in the passband and deterioration of sharpness on the high passband side.
  • the series arm resonance circuit includes one or more IDT electrodes that excite an elastic wave and a reflector that reflects the elastic wave excited by the IDT electrode, and the reflection in the second parallel arm resonator.
  • the number of electrode fingers may be smaller than the reflector in the series arm resonance circuit.
  • the pass band and the attenuation band of the filter are the resonance frequency and anti-resonance frequency of the series arm resonance circuit and the resonance of the parallel arm resonance circuit (in this embodiment, the parallel connection circuit of the first parallel arm resonator and the second parallel arm resonator). It is formed with a frequency and an anti-resonance frequency.
  • the anti-resonance frequency Q there is a large difference in the anti-resonance frequency Q between the case where the number of electrode fingers of the reflector constituting the resonator is large and the case where the number is small. But there are not a few differences.
  • the Q of the resonance frequency and antiresonance frequency of the series arm resonance circuit is increased, the loss in the passband is increased, and the passband height is increased. The deterioration of the sharpness on the side can be further suppressed.
  • first parallel arm resonator and the second parallel arm resonator may be connected in parallel.
  • a pair of impedance elements and switch elements connected in series to at least one of the first parallel arm resonator and the second parallel arm resonator may be provided.
  • pair of impedance elements and switch elements connected in parallel to each other may be connected in series only to the second parallel arm resonator of the first parallel arm resonator and the second parallel arm resonator.
  • a tunable filter that can switch the frequency of the attenuation pole on the high side of the passband and suppress the increase of the insertion loss at the high end of the passband according to switching between conduction and non-conduction of the switch element. Can be provided.
  • pair of impedance elements and switch elements connected in parallel to each other may be connected in series only to the first parallel arm resonator of the first parallel arm resonator and the second parallel arm resonator.
  • a tunable filter that can switch the frequency of the attenuation pole on the low pass band side and suppress the increase in insertion loss at the low pass band end according to switching between conduction and non-conduction of the switch element. Can be provided.
  • the pair of impedance elements and switch elements connected in parallel to each other may be connected in series to a circuit in which the first parallel arm resonator and the second parallel arm resonator are connected in parallel.
  • a pair of impedance elements and switch elements connected in series only to the first parallel arm resonator of the first parallel arm resonator and the second parallel arm resonator, and connected in parallel to each other; Of the first parallel arm resonator and the second parallel arm resonator, there are another pair of impedance elements and switch elements connected in series only to the first parallel arm resonator and connected in parallel to each other. May be.
  • the frequency of the attenuation pole on the high side of the passband and the low side of the passband can be switched according to the switching of the conduction and non-conduction of the switch element, and the high end of the passband and the low end of the passband Therefore, it is possible to provide a tunable filter that can suppress an increase in insertion loss. For this reason, such a tunable filter can shift the center frequency while maintaining the bandwidth, for example.
  • the first parallel arm resonator and the second parallel arm resonator may be connected in series.
  • a switch element connected in parallel to one of the first parallel arm resonator and the second parallel arm resonator may be provided.
  • the frequency of the attenuation pole on the low passband side can be switched according to switching between conduction and non-conduction of the switch element, and the attenuation pole is added to the high passband side, so that the high passband A tunable filter that obtains attenuation on the band side can be provided.
  • the series arm resonance circuit may be a series arm resonator including one or more elastic wave resonators, and may constitute a ladder type filter structure together with the first parallel arm resonator and the second parallel arm resonator. Good.
  • the series arm resonance circuit may be a longitudinally coupled resonator including a plurality of elastic wave resonators.
  • a high-frequency front end circuit includes the above-described elastic wave filter device and an amplifier circuit connected to the elastic wave filter device.
  • a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that is transmitted between the antenna element and the RF signal processing circuit. And a high-frequency front-end circuit.
  • the elastic wave filter device the high-frequency front end circuit, and the communication device according to the present invention, it is possible to reduce the size while suppressing an increase in loss in the passband and deterioration of sharpness on the high passband side.
  • FIG. 1A is a circuit configuration diagram of a filter according to Embodiment 1.
  • FIG. 1B is a plan view schematically showing the electrode structure of the filter according to Embodiment 1.
  • FIG. 2 is an example of a diagram schematically illustrating the structure of the resonator according to the first embodiment.
  • FIG. 3 is a graph showing the characteristics of the filter according to the first embodiment.
  • FIG. 4 is a graph showing changes in the resonance frequency and anti-resonance frequency and the Q when the number of electrode fingers of the reflector is changed in the resonator of the typical example 1.
  • FIG. 5 is a graph showing impedance characteristics with and without a reflector in the resonator according to the first embodiment.
  • FIG. 6 is a graph showing the filter characteristics of the filters of the example and the comparative example.
  • FIG. 7 is a plan view schematically showing an electrode structure of a filter according to a comparative example.
  • FIG. 8A is a circuit configuration diagram of a filter according to a modification of the first embodiment.
  • FIG. 8B is a plan view schematically illustrating the electrode structure of the filter according to the modification of the first embodiment.
  • FIG. 9 is a graph showing characteristics of a filter according to a modification of the first embodiment.
  • FIG. 10A is a circuit configuration diagram of a filter in application example 1 of the second embodiment.
  • FIG. 10B is a graph illustrating filter characteristics in application example 1 of the second embodiment.
  • FIG. 11A is a circuit configuration diagram of a filter in application example 2 of the second embodiment.
  • FIG. 11B is a graph showing filter characteristics in application example 2 of the second embodiment.
  • FIG. 12A is a circuit configuration diagram of a filter in application example 3 of the second embodiment.
  • FIG. 12B is a graph illustrating filter characteristics in application example 3 of the second embodiment.
  • FIG. 13A is a circuit configuration diagram of a filter in application example 4 of the second embodiment.
  • FIG. 13B is a graph illustrating filter characteristics in application example 4 of the second embodiment.
  • FIG. 14A is a circuit configuration diagram of a filter in application example 5 of the second embodiment.
  • FIG. 14B is a graph illustrating filter characteristics in Application Example 5 of Embodiment 2.
  • FIG. 15 is a configuration diagram of the high-frequency front-end circuit and its peripheral circuits according to the third embodiment.
  • FIG. 16 is a configuration diagram of a high-frequency front-end circuit according to a modification of the third embodiment.
  • FIG. 17 is a plan view schematically showing an electrode structure of a filter according to another embodiment.
  • FIG. 1A is a circuit configuration diagram of a filter 10 according to the first embodiment.
  • the filter 10 is a high-frequency filter circuit that is disposed, for example, in a front end portion of a multi-mode / multi-band mobile phone.
  • the filter 10 is a band-pass filter that is built in a multi-band compatible mobile phone that complies with a communication standard such as LTE (Long Term Evolution) and filters high-frequency signals in a predetermined band.
  • the filter 10 is an elastic wave filter device that filters high-frequency signals using an elastic wave resonator.
  • the filter 10 includes a series arm resonator s1 and parallel arm resonators p1 and p2.
  • the series arm resonator s1 is connected between the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input / output terminal). That is, the series arm resonator s1 is a series arm resonance circuit provided on a path connecting the input / output terminal 11m and the input / output terminal 11n.
  • the series arm resonance circuit is not limited to the series arm resonator s1, but may be provided with a series arm resonance circuit including one or more elastic wave resonators. In the present embodiment, the series arm resonance circuit is configured by one elastic wave resonator, but may be configured by a plurality of elastic wave resonators.
  • the series arm resonance circuit including a plurality of elastic wave resonators includes, for example, a longitudinally coupled resonator including a plurality of elastic wave resonators, or a plurality of divided resonances in which one elastic wave resonator is divided in series. Includes children. For example, by using a longitudinally coupled resonator as the series arm resonance circuit, it becomes possible to adapt to required filter characteristics such as enhancement of attenuation.
  • the parallel arm resonator p1 is a first parallel arm resonator connected to a node (node x1 in FIG. 1A) and a ground (reference terminal) on a path connecting the input / output terminal 11m and the input / output terminal 11n. . That is, the parallel arm resonator p1 is a resonator provided in a parallel arm resonance circuit that connects the node x1 on the path and the ground.
  • the parallel arm resonator p2 is a second parallel arm resonator connected to a node (node x1 in FIG. 1A) and a ground (reference terminal) on the path connecting the input / output terminal 11m and the input / output terminal 11n. . That is, the parallel arm resonator p2 is a resonator provided in the parallel arm resonance circuit that connects the node x1 on the series arm and the ground.
  • parallel arm resonators p1 and p2 are connected between the same node x1 on the path and the ground.
  • the parallel arm resonators p1 and p2 are connected in parallel and connected between the node x1 and the ground.
  • the “same node” includes not only one point on the transmission line but also two different points on the transmission line located without a resonator or an impedance element.
  • the node x1 is on the input / output terminal 11n side of the series arm resonator s1, but may be on the input / output terminal 11m side of the series arm resonator s1.
  • the parallel arm resonators p1 and p2 form a parallel arm resonance circuit connected between the node x1 on the path connecting the input / output terminal 11m and the input / output terminal 11n (on the serial arm) and the ground. . That is, the parallel arm resonance circuit is provided in one parallel arm that connects the series arm and the ground. Therefore, the series arm resonance circuit (series arm resonator s1 in the present embodiment) has a ladder-type filter structure (in this embodiment, the parallel arm resonance circuit (parallel arm resonators p1 and p2 in the present embodiment)). 1-stage ladder type filter structure).
  • the parallel arm resonance circuit constituted by the parallel arm resonators p1 and p2 forms the passband of the filter 10 together with the series arm resonator s1.
  • FIG. 1B is a plan view schematically showing the electrode structure of the filter 10 according to the first embodiment.
  • each resonator (series arm resonator s1, parallel arm resonator p1 and p2) constituting the filter 10 is an elastic wave resonator using an elastic wave.
  • the filter 10 can be constituted by an IDT (InterDigital Transducer) electrode formed on a piezoelectric substrate, so that a small and low-profile filter circuit having a high steep passage characteristic can be realized.
  • the substrate having piezoelectricity is a substrate having piezoelectricity at least on the surface.
  • the substrate may include, for example, a piezoelectric thin film on the surface, a film having a different sound velocity from the piezoelectric thin film, and a laminated body such as a support substrate.
  • the substrate includes, for example, a laminate including a high sound speed support substrate and a piezoelectric thin film formed on the high sound speed support substrate, a high sound speed support substrate, and a low sound speed film formed on the high sound speed support substrate.
  • a laminate including a piezoelectric thin film formed on the film may be used. Note that the substrate may have piezoelectricity throughout the substrate.
  • the series arm resonator s1 and the parallel arm resonator p1 are arranged on both sides in the propagation direction of the IDT electrode so as to be an IDT electrode that excites an elastic wave and a reflector that reflects the elastic wave excited by the IDT electrode. And a set of reflectors.
  • the series arm resonator s1 includes an IDT electrode 111 and a pair of reflectors 112.
  • the parallel arm resonator p ⁇ b> 1 includes an IDT electrode 121 and a set of reflectors 122.
  • the parallel arm resonator p2 (second parallel arm resonator) has an IDT electrode 131 that excites an elastic wave and does not have a reflector.
  • the resonance frequency of the parallel arm resonator p2 (second parallel arm resonator) is higher than the resonance frequency of the parallel arm resonator p1 (first parallel arm resonator).
  • the resonance frequency in the resonator is a frequency at a singular point where the impedance is minimized (ideally, a point where the impedance is 0).
  • the antiresonance frequency of the parallel arm resonator p2 is higher than the antiresonance frequency of the parallel arm resonator p1.
  • the antiresonance frequency in the resonator is a frequency at a singular point where the impedance becomes maximum (ideally, a point where the impedance becomes infinite).
  • the logarithms of the IDT electrodes 111, 121, and 131 are the same, but the logarithm of at least one IDT electrode may be different from the logarithms of other IDT electrodes.
  • each resonator constituting the filter 10 will be described in more detail by paying attention to an arbitrary resonator. Since the other resonators have substantially the same structure as the arbitrary resonator, detailed description thereof is omitted.
  • FIG. 2 is an example of a diagram schematically showing the structure of the resonator in the present embodiment, where (a) is a plan view and (b) is a cross-sectional view of (a).
  • the resonator shown in FIG. 2 is for explaining a typical structure of each resonator constituting the filter 10. For this reason, the number and length of electrode fingers constituting the IDT electrode of each resonator of the filter 10 are not limited to the number and length of electrode fingers of the IDT electrode shown in FIG.
  • illustration is abbreviate
  • the resonator includes an IDT electrode 101, a piezoelectric substrate 102 on which the IDT electrode 101 is formed, and a protective layer 103 that covers the IDT electrode 101.
  • IDT electrode 101 As shown in FIGS. 2A and 2B, the resonator includes an IDT electrode 101, a piezoelectric substrate 102 on which the IDT electrode 101 is formed, and a protective layer 103 that covers the IDT electrode 101.
  • protective layer 103 that covers the IDT electrode 101.
  • the comb-tooth electrode 101a includes a plurality of electrode fingers 110a that are parallel to each other and a bus bar electrode 111a that connects the plurality of electrode fingers 110a.
  • the comb-tooth electrode 101b includes a plurality of electrode fingers 110b that are parallel to each other and a bus bar electrode 111b that connects the plurality of electrode fingers 110b.
  • the plurality of electrode fingers 110a and 110b are formed along a direction orthogonal to the propagation direction.
  • each of the comb electrodes 101a and 101b may be referred to as an IDT electrode alone. However, in the following description, for the sake of convenience, it is assumed that one IDT electrode 101 is constituted by a pair of comb-tooth electrodes 101a and 101b.
  • the IDT electrode 101 composed of the plurality of electrode fingers 110a and 110b and the bus bar electrodes 111a and 111b has a laminated structure of an adhesion layer 101g and a main electrode layer 101h as shown in FIG. It has become.
  • the adhesion layer 101g is a layer for improving adhesion between the piezoelectric substrate 102 and the main electrode layer 101h, and Ti is used as a material, for example.
  • the film thickness of the adhesion layer 101g is, for example, 12 nm.
  • the main electrode layer 101h is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 101h is, for example, 162 nm.
  • the piezoelectric substrate 102 is a substrate on which the IDT electrode 101 is formed, and is made of, for example, LiTaO 3 piezoelectric single crystal, LiNbO 3 piezoelectric single crystal, KNbO 3 piezoelectric single crystal, crystal, or piezoelectric ceramic.
  • the protective layer 103 is formed to cover the comb electrodes 101a and 101b.
  • the protective layer 103 is a layer for the purpose of protecting the main electrode layer 101h from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film mainly composed of silicon dioxide. .
  • each resonator which the filter 10 has is not limited to the structure described in FIG.
  • the IDT electrode 101 may not be a stacked structure of metal films but may be a single layer of metal films.
  • the materials constituting the adhesion layer 101g, the main electrode layer 101h, and the protective layer 103 are not limited to the materials described above.
  • the IDT electrode 101 may be made of, for example, a metal or an alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, and is made of a plurality of laminated bodies made of the above metals or alloys. May be.
  • the protective layer 103 may not be formed.
  • the wavelength of the excited elastic wave is defined by the design parameters of the IDT electrode 101 and the like. That is, the resonance frequency and antiresonance frequency of the resonator are defined by the design parameters of the IDT electrode 101 and the like.
  • design parameters of the IDT electrode 101 that is, design parameters of the comb electrode 101a and the comb electrode 101b will be described.
  • the wavelength of the elastic wave is defined by the repetition period ⁇ of the plurality of electrode fingers 110a or 110b constituting the comb electrodes 101a and 101b shown in FIG.
  • the electrode pitch (electrode period) is 1 ⁇ 2 of the repetition period ⁇
  • the line width of the electrode fingers 110a and 110b constituting the comb electrodes 101a and 101b is W
  • the adjacent electrode fingers 110a and electrodes When the space width between the finger 110b is S, it is defined by (W + S).
  • the crossing width L of the IDT electrode 101 is obtained by viewing the electrode finger 110a of the comb electrode 101a and the electrode finger 110b of the comb electrode 101b from the propagation direction of the elastic wave.
  • the electrode duty is the line width occupation ratio of the plurality of electrode fingers 110a and 110b, and is the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 110a and 110b. , W / (W + S).
  • the film thickness of the IDT electrode 101 is the thickness h of the plurality of electrode fingers 110a and 110b.
  • resonance frequency a singular point where the impedance is minimal (ideally a point where the impedance is 0) is referred to as a “resonance frequency”. Called. A singular point where the impedance is maximum (ideally a point where the impedance is infinite) is referred to as an “anti-resonance frequency”.
  • FIG. 3 is a graph showing the characteristics of the filter 10 according to the first embodiment. Specifically, (a) of the figure is a graph showing impedance characteristics of the parallel arm resonators p1 and p2 and the series arm resonator s1.
  • FIG. 4B is a graph showing the combined impedance characteristics (synthetic characteristics) of the parallel arm resonators p1 and p2 and the impedance characteristics of the series arm resonator s1.
  • FIG. 4C is a graph showing the filter characteristics of the filter 10.
  • the parallel arm resonator p1, the parallel arm resonator p2, and the series arm resonator s1 have the following impedance characteristics. Specifically, for the parallel arm resonator p1, the parallel arm resonator p2, and the series arm resonator s1, in this order, assuming that the resonance frequencies are frp1, frp2, frs1, and the antiresonance frequencies are fap1, fap2, and fas1, In this form, frp1 ⁇ frs1 ⁇ frp2 and fap1 ⁇ fas1 ⁇ fap2 are satisfied.
  • the combined characteristics of the two parallel arm resonators (“parallel arm resonators p1 and p2) (“the combined characteristics of the parallel arms (p1 + p2)” in the figure) are the parallel arm resonators.
  • the resonance frequency frp2 of p2 and the resonance frequency frp1 of the parallel arm resonator p1 are minimized (Fr2 and Fr1 in FIG. 3).
  • the combined characteristic becomes maximum (Fa1 and Fa2 in FIG. 3) at a frequency between the two resonance frequencies frp2 and frp1 and a frequency between the two antiresonance frequencies fap2 and fap1.
  • the low-frequency side anti-resonance frequency of the two anti-resonance frequencies of the parallel arm resonance circuit and the resonance frequency frs1 of the series arm resonator s1 are placed close to each other. Configure the bandwidth.
  • an attenuation band having the resonance frequency frp1 of the parallel arm resonator p1 as an attenuation pole is formed on the low pass band side, and in parallel on the high pass band side.
  • An attenuation band is formed with the resonance frequency frp2 of the arm resonator p2 and the anti-resonance frequency fas1 of the series arm resonator s1 as attenuation poles.
  • the low-frequency side anti-resonance frequency (Fa1 in FIG. 3) and the high-frequency side resonance frequency (Fr2 in FIG. 3) of the combined impedance characteristics of the parallel arm resonator p1 and the parallel arm resonator p2 are:
  • An attenuation slope on the high band side of the pass band of the filter 10 is defined.
  • the sharpness of the attenuation slope on the high side of the pass band is the difference between the low side anti-resonance frequency (Fa1 in FIG. 3) and the high side resonance frequency (Fr2 in FIG. 3) in the above synthetic impedance characteristic. It is influenced by the sharpness of the slope between.
  • the Q of the anti-resonance frequency of the parallel arm resonator p1 (Fap1 in FIG. 3) and the Q of the resonance frequency of the parallel arm resonator p2 (Frp2 in FIG. 3) Affects.
  • the anti-resonance frequency Q of the parallel arm resonator p1 is higher, in the combined impedance characteristic of the parallel arm resonance circuit (in this embodiment, the parallel connection circuit of the parallel arm resonators p1 and p2), Q of the side anti-resonance frequency (Fa1 in FIG. 3) becomes high.
  • the higher the resonance frequency Q of the parallel arm resonator p2 the higher the Q of the resonance frequency (Fr2 in FIG.
  • the sharpness of the slope between the anti-resonance frequency on the low frequency side and the resonance frequency on the high frequency side is improved.
  • the sharpness on the high side of the passband can be improved.
  • the higher the resonance frequency Q of the parallel arm resonator p2 the higher the Q of the attenuation pole (C portion in FIG. 3) on the higher passband side (ie, the attenuation pole becomes deeper), and the parallel arm resonator.
  • the higher the Q of the anti-resonance frequency of p1 the more the loss in the passband (B portion in FIG. 3) is suppressed. For this reason, the sharpness at the high side of the pass band can be improved.
  • the combined impedance characteristic of the parallel arm resonance circuit is a characteristic in which the capacitance component of the parallel arm resonator p2 is combined with the characteristic of the parallel arm resonator p1 in the vicinity of the anti-resonance frequency on the low frequency side. Therefore, in addition to increasing the antiresonance frequency Q of the parallel arm resonator p1, in addition to increasing the Q of the capacitance component of the parallel arm resonator p2, that is, by reducing the series resistance of the parallel arm resonator p2, Loss in the passband of the filter 10 can be suppressed.
  • the resonance frequency (Fr1 in FIG. 3) of the low-pass side of the combined impedance characteristic of the parallel arm resonator p1 and the parallel arm resonator p2 defines an attenuation slope of the filter 10 on the low pass side.
  • the Q of the resonance frequency (Frp1 in FIG. 3) of the parallel arm resonator p1 affects the sharpness on the low pass band side.
  • the higher the resonance frequency Q of the parallel arm resonator p1 the lower the low frequency side in the combined impedance characteristic of the parallel arm resonance circuit (in this embodiment, the parallel connection circuit of the parallel arm resonators p1 and p2).
  • the anti-resonance frequency (Fa2 in FIG. 3) of the combined impedance characteristics of the parallel arm resonator p1 and the parallel arm resonator p2 corresponds to the D portion in FIG. It is difficult to affect the band and the attenuation band.
  • the Q of the anti-resonance frequency (Fap2 in FIG. 3) of the parallel arm resonator p2 hardly affects the passband and attenuation band of the filter 10. For this reason, even if the Q of the anti-resonance frequency (Fap1 in FIG. 3) of the parallel arm resonator p2 is low, the passband and the attenuation band of the filter 10 are hardly affected.
  • the parallel arm resonator p2 does not have a reflector.
  • an elastic wave filter apparatus can be reduced in size, suppressing the increase in the loss in a pass band, and the deterioration of the sharpness of the pass band high region side.
  • the reason why such an effect is achieved will be described including the background to the present invention.
  • a resonator constituting the elastic wave filter device is configured by a reflector in addition to an IDT electrode from the viewpoint of reducing loss.
  • the inventor of the present application utilizes the fact that deterioration of filter characteristics can be suppressed even if a reflector is not provided in a specific resonator among a plurality of resonators included in the elastic wave filter device. It has been found that the device can be miniaturized. This will be described below based on a specific typical example.
  • the following typical example 1 is different in frequency band from the present embodiment, the tendency of the resonance frequency and anti-resonance frequency Q to change depending on the number of electrode fingers of the reflector is described in the present embodiment. The same applies to the frequency band of. Moreover, in the following typical example 1, the number of electrode fingers of the reflector is swung in a state where all the IDT electrodes constituting the resonator are the same.
  • Table 1 shows details of the design parameters of the resonator at this time.
  • fr represents the resonance frequency
  • fa represents the antiresonance frequency
  • Qr represents the resonance frequency Q
  • Qa represents the antiresonance frequency Q.
  • FIG. 4 shows a graph of changes in resonance frequency and Q, and anti-resonance frequency and Q when the number of electrode fingers of the reflector is swung.
  • FIG. 4 is a graph showing changes in the resonance frequency and anti-resonance frequency and Q when the number of electrode fingers of the reflector is changed in the resonator of the typical example 1.
  • 4A is a graph showing changes in the resonance frequency and the anti-resonance frequency
  • FIG. 4B is a graph showing a change in Q of the resonance frequency and the anti-resonance frequency.
  • the resonance frequency and anti-resonance frequency do not fluctuate even when the number of electrode fingers of the reflector is changed. This is because the wavelength (that is, frequency) of the elastic wave is defined by the repetition period of the plurality of electrode fingers constituting the IDT electrode and is not easily affected by the difference in the number of electrode fingers of the reflector.
  • the parallel arm resonator p2 does not have a reflector, thereby increasing the loss in the pass band and reducing the sharpness on the high side of the pass band.
  • the elastic wave filter device can be reduced in size while suppressing deterioration.
  • FIG. 5 is a graph showing impedance characteristics with and without a reflector in the resonator according to the first embodiment.
  • (A) of the figure represents impedance characteristics of a parallel arm resonator p1 having a reflector, a parallel arm resonator p2 having a reflector, and a parallel arm resonator p2 having no reflector, and (b).
  • (A) is an enlarged representation of the impedance characteristic near the resonance frequency of the parallel arm resonator p2 of (a)
  • (c) is an enlarged graph of the impedance characteristic near the anti-resonance frequency of the parallel arm resonator p2 of (a). It is.
  • (D) of the same figure is the synthetic
  • (p2) are the combined impedance characteristics (synthetic characteristics) of (p) and p2,
  • (e) is an enlarged view of the impedance characteristics in the vicinity of the resonance frequency on the high frequency side of (d), and (f) is the high frequency response of (d). It is a graph which expands and represents the impedance characteristic of the resonance frequency vicinity.
  • the anti-resonance frequency Q is lower than when the parallel arm resonator p2 has a reflector. It can be seen that Q has not decreased so much. Further, as shown in (d) to (f) of the figure, when the parallel arm resonator p2 does not have a reflector, the combined impedance characteristics of the parallel arm resonators p1 and p2 are compared with the case where the parallel arm resonator p2 has a reflector.
  • the filter of the example has the configuration of the filter 10 according to the above-described embodiment.
  • the filter of the comparative example has substantially the same configuration as the filter of the example, but differs in that the parallel arm resonator p2 has a reflector.
  • Table 2 shows design parameters related to the number of electrode fingers of the reflectors of the filter of the example and the comparative example.
  • each of the series arm resonator s1 and the parallel arm resonators p1 and p2 of the comparative example has a reflector having ten electrode fingers.
  • the series arm resonator s1 and the parallel arm resonator p1 of the embodiment each have a reflector having ten electrode fingers, and the parallel arm resonator p2 has no reflector.
  • the number of electrode fingers of each of the series arm resonator s1 and the parallel arm resonator p1 of the embodiment is ten, but in FIG. 1B, the number of electrode fingers is schematically represented by four. Yes.
  • FIG. 6 is a graph showing the filter characteristics of the filters of the example and the comparative example.
  • the increase in loss in the pass band is small (almost no) compared to the comparative example. That is, in the embodiment, an increase in loss in the passband is suppressed.
  • the deterioration of the steepness of the attenuation slope is less than that in the comparative example (You can see that there is almost no). That is, in the embodiment, deterioration of sharpness on the high passband side is suppressed.
  • FIG. 7 is a plan view schematically showing the electrode structure of the filter 100 according to the comparative example.
  • the number of electrode fingers of each reflector of the series arm resonator s1 and the parallel arm resonators p1 and p12 of the comparative example is ten, in FIG. 7, the number of electrode fingers is schematically four. Represents.
  • FIG. 6 there is no significant difference in filter characteristics between the example and the comparative example, but the filter 100 of the comparative example shown in FIG. 7 has a reflector 142 compared to the filter 10 of the example shown in FIG. As a result, the size of the reflector 142 is increased.
  • the resonance frequency of the parallel arm resonator p2 is the parallel arm resonator p1 (first The anti-resonance frequency of the parallel arm resonator p1 is higher than the anti-resonance frequency of the parallel arm resonator p1.
  • the parallel arm resonator p1 includes an IDT electrode 121 that excites an elastic wave, and a reflector 122 that reflects the elastic wave excited by the IDT electrode 121.
  • the parallel arm resonator p2 excites an elastic wave.
  • the IDT electrode 131 is provided and the reflector is not provided.
  • the parallel arm resonator p1 has the reflector 122 and is designed to have a high resonance frequency Q, and the parallel arm resonator p2 has little deterioration in the resonance frequency Q even without the reflector.
  • the filter 10 (elastic wave filter device) can be reduced in size by the space of the reflector. In this way, the elastic wave filter device can be reduced in size while suppressing an increase in loss in the passband and deterioration of sharpness on the high passband side.
  • the parallel arm resonators p1 and p2 are connected in parallel to each other and connected to the same node x1 (node) of the series arm.
  • the parallel arm resonators p1 and p2 may be connected in series with each other and connected to the same node x1 (node) of the series arm. Therefore, such a filter will be described as a filter according to a modification of the first embodiment.
  • FIG. 8A is a circuit configuration diagram of a filter 10A according to a modification of the first embodiment.
  • FIG. 8B is a plan view schematically showing an electrode structure of filter 10A according to the modification of Embodiment 1.
  • the filter 10A shown in these drawings includes an input / output terminal 11m (first input / output terminal) and parallel arm resonators p1 and p2 connected in series. The difference is that it is connected between the same node x1 in the path connecting the input / output terminal 11n (second input / output terminal) and the ground.
  • the parallel arm resonator p1 has one terminal connected to the node x1 and the other terminal connected to one terminal of the parallel arm resonator p2.
  • the parallel arm resonator p2 has one terminal connected to the other terminal of the parallel arm resonator p1, and the other terminal connected to the ground.
  • the connection order of the parallel arm resonators p1 and p2 is not limited to this, and the connection order may be reversed.
  • FIG. 9 is a graph showing characteristics of the filter 10A according to the modification of the first embodiment.
  • the Q of the antiresonance frequency (Fap1 in FIG. 9) of the parallel arm resonator p1 and the parallel arm are similar to the characteristics of the filter 10 according to the first embodiment.
  • the Q of the resonance frequency of the resonator p2 (Frp2 in FIG. 9) affects the sharpness on the high side of the passband.
  • the Q of the anti-resonance frequency (Fap2 in FIG. 9) of the parallel arm resonator p2 hardly affects the passband and attenuation band of the filter 10A.
  • the specific mechanism related to this is the same as that in the first embodiment, and a detailed description thereof will be omitted.
  • the parallel arm resonator p2 does not have a reflector, so that the loss in the passband is increased and the passband high band side is the same as in the first embodiment.
  • the elastic wave filter device can be reduced in size while suppressing the deterioration of the sharpness.
  • Embodiment 2 The configuration of the filter (elastic wave filter device) according to the first embodiment and its modification can be applied to a tunable filter having a variable pass band. Therefore, as a filter according to Embodiment 2, such a tunable filter will be described using application examples 1 to 5.
  • application examples 1 to 4 are application examples of the filter 10 according to the first embodiment to the tunable filter
  • application example 5 is an example of the filter 10A according to the modification of the first embodiment. This is an application example to a tunable filter.
  • Each of the tunable filters of Application Examples 1 to 5 described below includes a switch element connected in series or in parallel to the parallel arm resonator p1 or the parallel arm resonator p2, and the switch element is turned on (ON).
  • the pass band is switched according to non-conduction (off).
  • the switch element is turned on and off in accordance with a control signal from a control unit such as an RF signal processing circuit (RFIC: Radio Frequency Integrated Circuit).
  • RFIC Radio Frequency Integrated Circuit
  • FIG. 10A is a circuit configuration diagram of a filter 20A in application example 1 of the second embodiment.
  • the filter 20A shown in the same figure further includes at least one of the parallel arm resonators p1 and p2 (first parallel arm resonator and second parallel arm resonator) (this application example). Then, it has a pair of capacitor C and switch SW connected in series to the parallel arm resonator p2) and connected in parallel to each other. Accordingly, the filter 10 can switch between the first pass characteristic and the second pass characteristic according to the conduction and non-conduction of the switch SW. Specifically, in this application example, the pair of capacitors C and switches SW connected in parallel to each other are connected in series only to the parallel arm resonator p2 of the parallel arm resonators p1 and p2.
  • a circuit in which the capacitor C and the switch SW are connected in parallel is connected in series to the parallel arm resonator p2 between the node x1 and the ground, and specifically, the ground and the parallel arm resonator p2 are connected. Are connected in series.
  • the capacitor C and the switch SW may be connected between the node x1 and the parallel arm resonator p2.
  • the capacitor C is an impedance element connected in series to the parallel arm resonator p2.
  • the frequency variable width of the passband of the filter 20A depends on the constant of the capacitor C. For example, the smaller the constant of the capacitor C, the wider the frequency variable width. For this reason, the constant of the capacitor C can be appropriately determined according to the frequency specification required for the filter 20A.
  • the capacitor C may be a variable capacitor such as a variable gap and a DTC (Digital Tunable Capacitor). As a result, the frequency variable width can be finely adjusted.
  • the switch SW is, for example, a SPST (Single Pole Single Throw) type switch element in which one terminal is connected to a connection node between the parallel arm resonator p2 and the capacitor C and the other terminal is connected to the ground.
  • the switch SW switches between conduction (on) and non-conduction (off) in accordance with a control signal from a control unit (not shown), thereby bringing the connection node and ground into conduction or non-conduction.
  • the switch SW may be a FET (Field Effect Transistor) switch made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), or a diode switch.
  • FET Field Effect Transistor
  • CMOS Complementary Metal Oxide Semiconductor
  • the switch SW can be constituted by one FET switch or a diode switch, the filter 20A can be reduced in size.
  • the parallel arm resonators p1 and p2, the capacitor C, and the switch SW are parallel arms connected between the node x1 on the path connecting the input / output terminal 11m and the input / output terminal 11n (on the serial arm) and the ground.
  • a resonant circuit is configured. That is, the parallel arm resonance circuit is provided in one parallel arm that connects the series arm and the ground. Therefore, the filter 20A has a one-stage ladder-type filter structure including the series arm resonator s1 and the parallel arm resonance circuit.
  • the frequency at which the impedance is minimized and the frequency at which the impedance is maximized are both on the low frequency side or on the high frequency side depending on whether the switch SW is on (conductive) or off (nonconductive). shift. This will be described later together with the characteristics of the filter 20A.
  • FIG. 10B is a graph showing characteristics of the filter 20A in the application example 1 of the second embodiment.
  • (a) of the figure is a graph showing impedance characteristics of a single resonator (parallel arm resonators p1 and p2 and series arm resonator s1 respectively).
  • (B) of the same figure is a synthetic impedance characteristic (synthetic characteristic) of the parallel arm resonance circuit (a circuit constituted by the parallel arm resonators p1 and p2 and the capacitor C and the switch SW in this application example) when the switch SW is turned on / off. ) In comparison.
  • impedance characteristics of the series arm resonator s1 are also shown.
  • (C) of the figure is a graph showing comparison of filter characteristics when the switch SW is on / off.
  • the filter 20A has a pass band defined by the low-frequency side anti-resonance frequency of the two anti-resonance frequencies of the parallel arm resonance circuit and the resonance frequency frs1 of the series arm resonator s1.
  • the passband low band side pole (attenuation pole) is defined by the resonance frequency frp1 of the arm resonator p1, and the passband high band side by the resonance frequency frp2 of the parallel arm resonator p2 and the antiresonance frequency fas1 of the series arm resonator s1.
  • the first pass characteristic is defined, in which a pole (attenuation pole) is defined.
  • the switch SW when the switch SW is off, the impedance characteristic of the parallel arm resonance circuit is affected by the capacitor C. That is, in this state, the combined characteristic of the two parallel arm resonators (parallel arm resonators p1 and p2) and the capacitor C becomes the impedance characteristic of the parallel arm resonance circuit.
  • the capacitor C is added only to the parallel arm resonator p2 when the switch SW is off. For this reason, as shown by the black arrow in (b) of the figure, when the switch SW is switched from on to off, the two resonance frequencies in the impedance characteristics of the parallel arm resonance circuit (the combined characteristics of the parallel arms in the figure) The high frequency side resonance frequency and the low frequency side antiresonance frequency of the two antiresonance frequencies are both shifted to the high frequency side.
  • the anti-resonance frequency on the low band side and the resonance frequency on the high band side of the parallel arm resonance circuit define an attenuation slope on the high band side of the passband of the filter 20A. Therefore, as shown in (c) of the figure, when the switch SW is switched from on to off, the pass characteristic of the filter 20A maintains the steepness of the attenuation slope on the high side of the pass band from the first pass characteristic. While switching to the second pass characteristic shifted to the high frequency side. In other words, the filter 20A can switch the frequency of the attenuation pole on the high side of the passband according to the switching of the switch SW on and off, and can suppress an increase in insertion loss at the high end of the passband. .
  • each of the first pass characteristic and the second pass characteristic is similar to the first embodiment in the passband high band.
  • the elastic wave filter device can be reduced in size while suppressing an increase in loss on the side and deterioration of sharpness. That is, the filter 20A constitutes a tunable filter that can reduce the size of the acoustic wave filter device while suppressing an increase in loss on the high-passband side and deterioration of sharpness.
  • the impedance element is not limited to a capacitor, and may be an inductor, for example.
  • an inductor is used as the impedance element, the shift direction of the attenuation slope when the switch SW is turned on / off is different from that in the above configuration. Specifically, in the second pass characteristic when the switch SW is off, the attenuation slope is shifted to the low frequency side as compared with the first pass characteristic when the switch SW is on.
  • the frequency variable width of the passband of the filter 20A depends on the constant of the inductor. For example, the larger the inductor constant, the wider the frequency variable width. For this reason, the constant of the inductor can be appropriately determined according to the frequency specification required for the filter 20A.
  • the inductor may be a variable inductor using MEMS (Micro Electro Mechanical Systems). As a result, the frequency variable width can be finely adjusted.
  • FIG. 11A is a circuit configuration diagram of a filter 20B in application example 2 of the second embodiment.
  • the filter 20B shown in the figure includes a pair of capacitors C and a switch SW connected in parallel with each other, and only the parallel arm resonator p1 of the parallel arm resonators p1 and p2 is connected in series. The connection is different.
  • FIG. 11B is a graph showing characteristics of the filter 20B in the application example 2 of the second embodiment. Specifically, (a) and (b) in the figure are graphs showing the impedance characteristics of a single resonator and the combined impedance characteristics of the parallel arm resonance circuit, as in (a) and (b) of FIG. 10B. is there. (C) of the figure is a graph showing comparison of filter characteristics when the switch SW is on / off.
  • the capacitor C is added only to the parallel arm resonator p1 when the switch SW is off. For this reason, as shown by the black arrow in (b) of the figure, when the switch SW is switched from on to off, the two resonance frequencies in the impedance characteristics of the parallel arm resonance circuit (the combined characteristics of the parallel arms in the figure) The low-frequency side resonance frequency and the low-frequency side anti-resonance frequency of the two anti-resonance frequencies are both shifted to the high-frequency side.
  • the anti-resonance frequency on the low frequency side and the resonance frequency on the low frequency side of the parallel arm resonance circuit define an attenuation slope on the low frequency side of the pass band of the filter 20B. Therefore, as shown in FIG. 5C, when the switch SW is switched from on to off, the pass characteristic of the filter 20B maintains the steepness of the attenuation slope on the low pass band side from the first pass characteristic. While switching to the second pass characteristic shifted to the high frequency side. In other words, the filter 20B can switch the frequency of the attenuation pole on the low passband side according to the switching of the switch SW on and off, and can suppress an increase in insertion loss at the low end of the passband. .
  • the parallel arm resonator p2 does not have a reflector, so that each of the first pass characteristic and the second pass characteristic is similar to the first embodiment in the high passband region.
  • the elastic wave filter device can be reduced in size while suppressing an increase in loss on the side and deterioration of sharpness. That is, the filter 20B constitutes a tunable filter that can reduce the size of the acoustic wave filter device while suppressing an increase in loss on the high side of the passband and deterioration of sharpness.
  • FIG. 12A is a circuit configuration diagram of a filter 20C in application example 3 of the second embodiment.
  • the filter 20C shown in the figure shifts both the attenuation slopes on the high side of the passband and the low side of the passband.
  • the filter 20C includes a pair of capacitors C (impedance elements) included in the filter 20B illustrated in FIG. 11A and a capacitor C1 and a switch SW1 corresponding to the switch SW.
  • the filter 20C includes a pair (other pair) of capacitors C (impedance elements) included in the filter 20A illustrated in FIG. 10A and a capacitor C2 and a switch SW2 corresponding to the switch SW.
  • FIG. 12B is a graph showing characteristics of the filter 20C in the application example 3 of the second embodiment. Specifically, (a) and (b) in the same figure are similar to (a) and (b) in FIG. 11B, the impedance characteristics of the resonator alone and the parallel arm resonance circuit (in this application example, parallel arm resonance). It is a graph showing the synthetic
  • the pass characteristic of the filter 20C is changed from the first pass characteristic to the pass band high band side and the pass band low band side. Is switched to the second passing characteristic shifted to the high frequency side while maintaining the steepness.
  • the filter 20C can switch the frequencies of the attenuation poles on the high side of the passband and the low side of the passband according to the switching of the conduction and non-conduction of the switches SW1 and WS2, and at the high end of the passband.
  • an increase in insertion loss at the low end of the passband can be suppressed. For this reason, for example, the filter 20C can shift the center frequency while maintaining the bandwidth.
  • each of the first pass characteristic and the second pass characteristic is similar to the first embodiment in the high passband range.
  • the elastic wave filter device can be reduced in size while suppressing an increase in loss on the side and deterioration of sharpness. That is, the filter 20C constitutes a tunable filter that can reduce the size of the acoustic wave filter device while suppressing an increase in loss on the high-passband side and deterioration of sharpness.
  • the filter 20C does not need to turn on / off both the switches SW1 and SW2, and may turn them on / off individually. However, when both the switches SW1 and SW2 are turned on / off, the number of control lines for controlling the switches SW1 and SW2 can be reduced, so that the configuration of the filter 20C can be simplified.
  • the high band end of the pass band can be varied according to the on / off state of the switch SW2 connected in series to the parallel arm resonator p2.
  • the low band end of the pass band can be varied according to the on / off state of the switch SW1 connected in series to the parallel arm resonator p1.
  • both the switches SW1 and SW2 on or off, it is possible to shift both the low band end and high band end of the pass band to the low band side or the high band side. That is, the center frequency of the pass band can be shifted to the low frequency side or the high frequency side.
  • both the low band end and high band end of the pass band are shifted so that these frequency differences are widened or narrowed. be able to. That is, the pass band width can be varied while making the center frequency of the pass band substantially constant.
  • the other of the low band end and the high band of the pass band is fixed while the other one of the low band end and the high band end is fixed. Can be shifted to the side. That is, the low band end or high band end of the pass band can be varied.
  • FIG. 13A is a circuit configuration diagram of a filter 20D in application example 4 of the second embodiment.
  • the filter 20D shown in FIG. 10 has a pair of capacitors C and a switch SW connected in parallel to each other, and the parallel arm resonator p1 and the parallel arm resonator p2 are connected in parallel. The difference is that they are connected in series to the circuit.
  • FIG. 13B is a graph showing characteristics of the filter 20D in the application example 4 of the second embodiment.
  • FIGS. 11A and 11B are graphs showing the impedance characteristics of a single resonator and the combined impedance characteristics of a parallel arm resonance circuit, as in FIGS. 11B and 11B. is there.
  • (C) of the figure is a graph showing comparison of filter characteristics when the switch SW is on / off.
  • the capacitor C is added to the parallel arm resonators p1 and p2 connected in parallel when the switch SW is off. For this reason, as shown by the black arrow in (b) of the figure, when the switch SW is switched from on to off, two anti-resonances are obtained in the impedance characteristics of the parallel arm resonance circuit (the combined characteristics of the parallel arms in the figure). Neither frequency shifts, but both two resonance frequencies shift to the high frequency side.
  • the pass characteristic of the filter 20D is such that the poles (attenuation poles) on both sides of the pass band from the first pass characteristic are higher. To the second passage characteristic shifted to.
  • each of the first pass characteristic and the second pass characteristic is similar to the first embodiment in the passband high band.
  • the elastic wave filter device can be reduced in size while suppressing an increase in loss on the side and deterioration of sharpness. That is, the filter 20D constitutes a tunable filter that can reduce the size of the acoustic wave filter device while suppressing an increase in loss on the high-passband side and deterioration of sharpness.
  • FIG. 14A is a circuit configuration diagram of a filter 20E according to Application Example 5 of Embodiment 2.
  • the filter 20E shown in the figure is further connected in parallel to one of the parallel arm resonators p1 and p2 (the first parallel arm resonator and the second parallel arm resonator) as compared with the filter 10A shown in FIG. 8A. It has a switch SW.
  • the switch SW is connected in parallel to the parallel arm resonator p2.
  • the switch SW may be connected in parallel to the parallel arm resonator p1 when the influence of the diffraction loss of the parallel arm resonator p2 is allowed according to the required specifications for the filter 20E.
  • FIG. 14B is a graph showing characteristics of the filter 20E in the application example 5 of the second embodiment. Specifically, (a) and (b) in the same figure are similar to (a) and (b) in FIG. 10B, and impedance characteristics of a single resonator and a parallel arm resonance circuit (in this application example, parallel arm resonance). It is a graph showing the synthetic
  • the impedance characteristic of the parallel arm resonance circuit (the combined characteristic of the parallel arms in the drawing) is the impedance characteristic of the parallel arm resonator p1 alone.
  • the parallel arm resonator p2 is added to the parallel arm resonator p1.
  • the impedance characteristic of the parallel arm resonance circuit (the combined characteristic of the parallel arms in the figure) is the parallel arm resonator.
  • each of the first pass characteristic and the second pass characteristic is similar to the first embodiment in the high passband range.
  • the elastic wave filter device can be reduced in size while suppressing an increase in loss on the side and deterioration of sharpness. That is, the filter 20E constitutes a tunable filter that can reduce the size of the acoustic wave filter device while suppressing an increase in loss on the high-passband side and deterioration of sharpness.
  • FIG. 15 is a configuration diagram of the high-frequency front-end circuit 1 and its peripheral circuits according to the third embodiment.
  • a high-frequency front-end circuit 1 an antenna element 2, and an RF signal processing circuit (RFIC) 3 are shown.
  • the high frequency front end circuit 1 and the RFIC 3 constitute a communication device 4.
  • the antenna element 2, the high-frequency front end circuit 1, and the RFIC 3 are disposed, for example, in a front end portion of a mobile phone that supports multimode / multiband.
  • the antenna element 2 is a multiband antenna that transmits and receives a high-frequency signal and conforms to a communication standard such as LTE.
  • the antenna element 2 may not correspond to, for example, all the bands of the communication device 4, and may correspond to only the bands of the low frequency band group or the high frequency band group.
  • the antenna element 2 is not built in the communication device 4 and may be provided separately from the communication device 4.
  • the high frequency front end circuit 1 is a circuit that transmits a high frequency signal between the antenna element 2 and the RFIC 3. Specifically, the high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency transmission signal) output from the RFIC 3 to the antenna element 2 via the transmission-side signal path. The high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 2 to the RFIC 3 via the reception-side signal path.
  • a high-frequency signal here, a high-frequency transmission signal
  • the high-frequency front end circuit 1 transmits a high-frequency signal (here, a high-frequency reception signal) received by the antenna element 2 to the RFIC 3 via the reception-side signal path.
  • the high-frequency front-end circuit 1 includes a duplexer 120, a transmission amplifier circuit 140, and a reception amplifier circuit 160.
  • the duplexer 120 is a multiplexer that includes a transmission-side filter 120Tx and a reception-side filter 120Rx, and includes the above-described elastic wave filter device in at least one of them.
  • the transmission-side filter 120Tx and the reception-side filter 120Rx have the antenna-side input / output terminals bundled together and connected to the antenna element 2, and the other terminals connected to the transmission amplifier circuit 140 or the reception amplifier circuit 160.
  • the transmission amplifier circuit 140 is a power amplifier that amplifies the power of the high-frequency transmission signal output from the RFIC 3.
  • the reception amplification circuit 160 is a low noise amplifier that amplifies the power of the high frequency reception signal received by the antenna element 2.
  • RFIC 3 is an RF signal processing circuit that processes high-frequency signals transmitted and received by the antenna element 2. Specifically, the RFIC 3 processes a high-frequency signal (here, a high-frequency reception signal) input from the antenna element 2 via the reception-side signal path of the high-frequency front-end circuit 1 by down-conversion or the like, and performs the signal processing. The received signal generated in this way is output to a baseband signal processing circuit (not shown). Further, the RFIC 3 performs signal processing on the transmission signal input from the baseband signal processing circuit by up-conversion or the like, and transmits a high-frequency signal (here, a high-frequency transmission signal) generated by the signal processing to the high-frequency front-end circuit 1. Output to the side signal path.
  • a high-frequency signal here, a high-frequency reception signal
  • the RFIC 3 performs signal processing on the transmission signal input from the baseband signal processing circuit by up-conversion or the like, and transmits a high-frequency signal (here, a high-
  • high-frequency front-end circuit 1 by providing the elastic wave filter device described above, low loss and high selectivity (inhibition of mutual interference with other bands adjacent to the own band) are achieved. Both can be achieved and the size can be reduced. For this reason, it is particularly useful as the high-frequency front-end circuit 1 applied to the communication device 4 that supports multiband.
  • the filter (elastic wave filter device) described in the first and second embodiments and the modifications thereof is a high frequency front corresponding to a system having a larger number of bands used than the high frequency front end circuit 1 according to the third embodiment. It can also be applied to an end circuit. Therefore, in this modification, such a high-frequency front end circuit will be described.
  • FIG. 16 is a configuration diagram of a high-frequency front-end circuit 1A according to a modification of the third embodiment.
  • the high-frequency front end circuit 1A includes an antenna terminal ANT, transmission terminals Tx1 and Tx2, and reception terminals Rx1 and Rx2, and a switch group 110 including a plurality of switches in order from the antenna terminal ANT side.
  • the filter group 120A includes a plurality of filters, transmission-side switches 130A and 130B, reception-side switches 150A, 150B, and 150C, transmission amplification circuits 140A and 140B, and reception amplification circuits 160A and 160B.
  • the switch group 110 connects the antenna terminal ANT and a signal path corresponding to a predetermined band according to a control signal from a control unit (not shown), and includes, for example, a plurality of SPST type switches.
  • the number of signal paths connected to the antenna terminal ANT is not limited to one, and a plurality of signal paths may be used. That is, the high-frequency front end circuit 1A may support carrier aggregation.
  • the filter group 120A includes, for example, a plurality of filters (including a duplexer) having the following band in the pass band.
  • the band includes (i) Band 12 transmission band, (ii) Band 13 transmission band, (iii) Band 14 transmission band, (iv) Band 27 (or Band 26) transmission band, (v) Band 29 and Band 14 (or Band 12, Band 67 and Band 13) reception band, (vi-Tx) Band 68 and Band 28a (or Band 68 and Band 28b) transmission band, (vi-Rx) Band 68 and Band 28a (or Band 68 and Band 28b) reception band, vii-Tx) Band20 transmission band, (vii-Rx) Band20 reception band, (viii) Band27 (or Band26) reception band, (ix-Tx) Band8 transmission band, and (ix-Rx) Band8 Reception bandwidth.
  • the transmission-side switch 130A is a switch circuit having a plurality of selection terminals connected to a plurality of transmission signal paths on the low band side and a common terminal connected to the transmission amplifier circuit 140A.
  • the transmission-side switch 130B is a switch circuit having a plurality of selection terminals connected to a plurality of transmission-side signal paths on the high band side and a common terminal connected to the transmission amplifier circuit 140B.
  • These transmission-side switches 130A and 130B are switch circuits that are provided in the previous stage of the filter group 120A (here, the previous stage in the transmission-side signal path) and the connection state is switched according to a control signal from a control unit (not shown). .
  • the high-frequency signal (here, the high-frequency transmission signal) amplified by the transmission amplifier circuits 140A and 140B is output from the antenna terminal ANT to the antenna element 2 (see FIG. 15) via the predetermined filter of the filter group 120A. .
  • the reception side switch 150A is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths on the low band side and a common terminal connected to the reception amplification circuit 160A.
  • the reception side switch 150B has a common terminal connected to a reception side signal path of a predetermined band (here, Band20), and two selection terminals connected to a common terminal of the reception side switch 150A and a common terminal of the reception side switch 150B. And a switch circuit.
  • the reception-side switch 150C is a switch circuit having a plurality of selection terminals connected to a plurality of reception-side signal paths on the high band side and a common terminal connected to the reception amplification circuit 160B.
  • reception-side switches 150A to 150C are provided in the subsequent stage of the filter group 120A (here, the subsequent stage in the reception-side signal path), and the connection state is switched according to a control signal from a control unit (not shown).
  • the high-frequency signal here, the high-frequency reception signal
  • the antenna terminal ANT is amplified by the reception amplifier circuits 160A and 160B via the predetermined filter of the filter group 120A, and the RFIC3 is received from the reception terminals Rx1 and Rx2. (See FIG. 15).
  • the RFIC corresponding to the low band and the RFIC corresponding to the high band may be provided separately.
  • the transmission amplifier circuit 140A is a power amplifier that amplifies a low-band high-frequency transmission signal
  • the transmission amplifier circuit 140B is a power amplifier that amplifies a high-band high-frequency transmission signal.
  • the reception amplification circuit 160A is a low noise amplifier that amplifies the power of the low-band high-frequency reception signal
  • the reception amplification circuit 160B is a low-noise amplifier that amplifies the power of the high-band high-frequency reception signal.
  • the high-frequency front-end circuit 1A configured as described above includes (iv) a filter 20A according to Application Example 1 of Embodiment 2 as a filter having a transmission band of Band 27 (or Band 26) in the pass band. That is, the filter switches the pass band between the Band 27 transmission band and the Band 26 transmission band in accordance with the control signal.
  • the high-frequency front-end circuit 1A includes a filter 20B according to Application Example 2 of Embodiment 2 as a reception filter having a reception band of (vi-Rx) Band 68 and Band 28a (or Band 68 and Band 28b) in the pass band, (Vi-Tx)
  • the filter 20C according to the application example 3 of the second embodiment is provided as a transmission filter having transmission bands of Band68 and Band28a (or Band68 and Band28b) in the passband. That is, the duplexer constituted by the transmission filter and the reception filter switches the pass band between the transmission band of Band68 and Band28a and the transmission band of Band68 and Band28b according to the control signal, and the reception band of Band68 and Band28a and Band68. And the reception band of Band 28b.
  • the high-frequency front-end circuit 1A includes (viii) a filter 20B according to Application Example 2 of Embodiment 2 as a filter having a reception band of Band27 (or Band26) in the passband. That is, the filter switches the pass band between the Band 27 transmission band and the Band 26 transmission band in accordance with the control signal.
  • a filter is provided for each band by including the filters 20A to 20C (elastic wave filter devices) according to the application examples 1 to 3 of the second embodiment. Since the number of filters can be reduced compared to the case, the size can be reduced.
  • the transmission-side switches 130A and 130B and the reception-side switches 150A to 150C (stages) provided at the front stage or the rear stage of the filter group 120A (a plurality of acoustic wave filter devices) Switch circuit).
  • the transmission amplifier circuits 140A and 140B or the reception amplifier circuits 160A and 160B amplifier circuits corresponding to a plurality of acoustic wave filter devices can be shared. Accordingly, the high-frequency front end circuit 1A can be reduced in size and cost.
  • the transmission side switches 130A and 130B and the reception side switches 150A to 150C may be provided.
  • the number of transmission side switches 130A and 130B and the number of reception side switches 150A to 150C are not limited to the above-described numbers, and, for example, one transmission side switch and one reception side switch are provided. It doesn't matter.
  • the number of selection terminals and the like of the transmission side switch and the reception side switch is not limited to this embodiment, and may be two each.
  • the configuration of the filter according to the first embodiment and its modification may be applied to at least one of the plurality of filters included in the filter group.
  • the parallel arm resonator p1 has the reflector, but may not have the reflector.
  • the anti-resonance frequency Q can be designed high, and the loss in the pass band and the sharpness on the high side of the pass band can be improved.
  • the parallel arm resonator p2 does not have a reflector, but is not limited thereto, and may have a reflector.
  • the number of electrode fingers of the reflector constituting the parallel arm resonator p2 may be smaller than the number of electrode fingers of the reflector 122 constituting the parallel arm resonator p1. preferable.
  • FIG. 17 is a plan view schematically showing the electrode structure of the filter 10B configured as described above.
  • the resonance frequency of the parallel arm resonator p2a (second parallel arm resonator) is higher than the resonance frequency of the parallel arm resonator p1 (first parallel arm resonator), and the antiresonance frequency of the parallel arm resonator p2a is parallel. It is higher than the anti-resonance frequency in the arm resonator p1.
  • the parallel arm resonator p1 and the parallel arm resonator p2a each include an IDT electrode that excites an elastic wave and a reflector that reflects the elastic wave excited by the IDT electrode.
  • the reflector 132 in p2a has fewer electrode fingers than the reflector in the parallel arm resonator p1.
  • the number of electrode fingers of the reflector of the parallel arm resonator p1 is four
  • the number of electrode fingers of the reflector 132 of the parallel arm resonator p2a is two
  • the parallel arm resonator p2a is It is schematically shown that the reflector 132 is configured with a smaller number of electrode fingers than the parallel arm resonator p1.
  • the parallel arm resonator p2 that does not have a reflector has a lower resonance frequency Q, although the amount of decrease in the resonance frequency Q is smaller than that in the case of having a reflector.
  • the acoustic wave filter device can be downsized.
  • the series arm resonance circuit (here, the series arm resonator s1) includes one or more IDT electrodes (here, one IDT electrode) that excites an elastic wave, and the IDT electrode.
  • the reflector in the series arm resonator s1 has more electrode fingers than the reflector in the parallel arm resonator p2a (second parallel arm resonator).
  • the pass band and the attenuation band of the filter are formed by the resonance frequency and anti-resonance frequency of the series arm resonator s1.
  • the impedance characteristics of a single resonator there is a large difference in the anti-resonance frequency Q between the case where the number of electrode fingers of the reflector constituting the resonator is large and the case where the number of reflectors is small, and there is also a significant difference in the Q of the resonance frequency. There is. Therefore, by increasing the number of electrode fingers of the reflector constituting the series arm resonator s1, the resonance frequency and antiresonance frequency Q of the series arm resonator are increased, and the loss in the pass band is increased and the pass band is increased. The deterioration of sharpness on the high frequency side can be further suppressed.
  • the communication device 4 including the above-described high-frequency front-end circuit and RFIC 3 (RF signal processing circuit) is also included in the present invention. According to such a communication device 4, it is possible to achieve low loss and high selectivity.
  • the aspect ratios of the IDT electrodes constituting the series arm resonator s1 and the parallel arm resonators p1 and p2 may be the same or different. However, from the viewpoint of improving the filter characteristics, the parallel arm resonator The aspect ratio of the IDT electrode 131 constituting p2 is preferably smaller than the aspect ratio of the IDT electrode 121 constituting the parallel arm resonator p1.
  • the duty ratios of the IDT electrodes constituting the series arm resonator s1 and the parallel arm resonators p1 and p2 may be the same or different. From the viewpoint of improving the filter characteristics, the parallel arm resonator is used.
  • the duty ratio of the IDT electrode 131 constituting p2 is preferably larger than the duty ratio of the IDT electrode 121 constituting the parallel arm resonator p1.
  • the series arm resonator s1 is not limited to an elastic wave resonator using a surface acoustic wave, and may be formed of an elastic wave resonator using a bulk wave or a boundary acoustic wave, for example. That is, the series arm resonator s1 may not be configured by the IDT electrode. Even in the elastic wave filter device having such a series arm resonator s1, the elastic wave resonator generally exhibits a high Q characteristic, so that low loss and high selectivity (other than adjacent to its own band) can be achieved. (Suppression of mutual interference with other bands) can be achieved.
  • an inductor or a capacitor may be connected between each component.
  • the inductor may include a wiring inductor formed by wiring that connects the components.
  • the present invention can be widely used in communication devices such as mobile phones as small filters, multiplexers, front-end circuits and communication devices applicable to multiband systems.
  • RFIC RF signal processing circuit
  • Communication device 10A, 10B, 20A to 20E 100 filter (elastic wave filter device) 11m input / output terminal (first input / output terminal) 11n input / output terminal (second input / output terminal) 101, 111, 121, 131 IDT electrode 101a, 101b Comb electrode 101g Adhesion layer 101h Main electrode layer 102 Piezoelectric substrate 103 Protective layer 110a, 110b Electrode finger 111a, 111b Bus bar electrode 112, 122, 132, 142 Reflector 120 Duplexer 120A Filter group 120Rx Reception side filter 120Tx Transmission side filter 130A, 130B Transmission side switch 140, 140A, 140B Transmission amplification circuit 150A-150C Reception side switch 160, 160A, 160B Reception amplification circuit C, C1, C2 Capacitor (impedance element) p1, p2, p2a, p12 Parallel arm resonator s1 Series

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

フィルタ(10)は、入出力端子(11m)と入出力端子(11n)とを結ぶ経路に接続された直列腕共振子(s1)と、当該経路上の同一ノード(x1)とグランドとの間に接続された並列腕共振子(p1、p2)と、を有し、並列腕共振子(p2)における共振周波数は、並列腕共振子(p1)における共振周波数よりも高く、並列腕共振子(p2)における***振周波数は、並列腕共振子(p1)における***振周波数よりも高く、並列腕共振子(p2)は、弾性波を励振するIDT電極(131)を有し、かつ、反射器を有さない。

Description

弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
 本発明は、共振子を有する弾性波フィルタ装置、高周波フロントエンド回路及び通信装置に関する。
 従来、ラダー型フィルタ等の弾性波フィルタ装置として、直列腕とグランドとを結ぶ1つの並列腕について、第1の並列腕共振子、及び、互いに直列接続された状態で当該第1の並列腕共振子に並列接続された複数の第2の並列腕共振子を設ける構成が知られている(例えば、特許文献1参照)。この弾性波フィルタ装置では、複数の第2の並列腕共振子の共振周波数が直列腕共振子の***振周波数よりも高く、かつ、当該複数の第2の並列腕共振子のうち少なくとも1つの第2の並列腕共振子の***振周波数が他の第2の並列腕共振子の***振周波数と異なる。これにより、この弾性波フィルタ装置は、阻止域(減衰帯域)内の特定の周波数帯域において、減衰量が大きい減衰域の幅を広げることができる。
特開2014-68123号公報
 ここで、近年のマルチバンド化等への対応に伴い、弾性波フィルタ装置のさらなる小型化が求められている。また、近年のマルチバンド化等への対応に伴い、移動体通信機のフロントエンド部に配置されるフィルタには、低ロス化及び高選択度化(自帯域に隣接する他の帯域との相互干渉の抑制)が求められている。つまり、フィルタ特性について、通過帯域内のロスを抑制し、かつ、減衰スロープの急峻度(いわゆる「通過帯域端のキレ」)を高めることが求められている。
 しかしながら、上記従来の弾性波フィルタ装置では、当該弾性波フィルタ装置の小型化について考慮されていない。そして弾性波フィルタ装置を安易に小型化しようとすると、当該弾性波フィルタ装置の性能が劣化してしまう場合がある。具体的には、通過帯域内のロスが増大し通過帯域高域側のキレが劣化してしまう恐れがある。
 なお、通過帯域高域側のキレとは、具体的には、通過帯域の両側において通過帯域から減衰帯域にかけて形成される2つの減衰スロープのうち高域側の減衰スロープの急峻度のことである。
 そこで、本発明は、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる弾性波フィルタ装置、高周波フロントエンド回路及び通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、第1入出力端子と第2入出力端子とを結ぶ経路上に接続された直列腕共振回路と、前記経路上の同一ノードとグランドとの間に接続された第1並列腕共振子及び第2並列腕共振子と、を有し、前記第2並列腕共振子における共振周波数は、前記第1並列腕共振子における共振周波数よりも高く、前記第2並列腕共振子における***振周波数は、前記第1並列腕共振子における***振周波数よりも高く、前記第2並列腕共振子は、弾性波を励振するIDT電極を有し、かつ、反射器を有さない。
 本願発明者は鋭意検討の結果、次のことを見出した。すなわち、共振子単体のインピーダンス特性について、反射器を有する場合と有さない場合とで、***振周波数のQに大きな差はあるが共振周波数のQに大きな差はない。したがって、第2並列腕共振子は反射器を有さなくても共振周波数のQの低下は少ないため、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制できる。また、第2並列腕共振子が反射器を有さないため、反射器を有さないことによるスペース分、弾性波フィルタ装置を小型化できる。このように、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。
 また、前記第1並列腕共振子は、弾性波を励振するIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器とを有していてもよい。
 フィルタ特性については、第2並列腕共振子の共振周波数のQが高く、第1並列腕共振子の***振周波数のQが高いほど、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制することができる。したがって、第1並列腕共振子は反射器を有し、***振周波数のQを高く設計することで、通過帯域内のロス及び通過帯域高域側のキレを改善できる。
 また、本発明の一態様に係る弾性波フィルタ装置は、第1入出力端子と第2入出力端子との間に接続された1以上の弾性波共振子からなる直列腕共振回路と、前記第1入出力端子と前記第2入出力端子とを結ぶ経路の同一ノードとグランドとの間に接続された第1並列腕共振子及び第2並列腕共振子と、を有し、前記第2並列腕共振子における共振周波数は、前記第1並列腕共振子における共振周波数よりも高く、前記第2並列腕共振子における***振周波数は、前記第1並列腕共振子における***振周波数よりも高く、前記第1並列腕共振子及び前記第2並列腕共振子は、それぞれ、弾性波を励振するIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器と、を有し、前記第2並列腕共振子における反射器は、前記第1並列腕共振子における反射器よりも、電極指の本数が少ない。
 本願発明者は鋭意検討の結果、次のことを見出した。すなわち、共振子単体のインピーダンス特性について、共振子を構成する反射器の電極指の本数が多い場合と少ない場合とで、***振周波数のQに大きな差はあるが共振周波数のQに大きな差はない。また、フィルタ特性については、第2並列腕共振子の共振周波数のQが高く、第1並列腕共振子の***振周波数のQが高いほど、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制することができる。したがって、第2並列腕共振子を構成する反射器の電極指の本数が第1並列腕共振子を構成する反射器の電極指の本数より少ないことで、第1並列腕共振子の***振周波数のQが高く第2並列腕共振子の共振周波数のQの低下は少ないため、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制できる。また、第2並列腕共振子を構成する反射器の電極指の本数が少ないため、電極指の本数を少なくしたことによるスペース分、弾性波フィルタ装置を小型化できる。このように、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。
 また、前記直列腕共振回路は、弾性波を励振する1以上のIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器と、を有し、前記第2並列腕共振子おける反射器は、前記直列腕共振回路における反射器よりも、電極指の本数が少なくてもよい。
 フィルタの通過帯域及び減衰帯域は、直列腕共振回路の共振周波数及び***振周波数と、並列腕共振回路(本態様では第1並列腕共振子及び第2並列腕共振子の並列接続回路)の共振周波数と***振周波数で形成される。上述したように、共振子単体のインピーダンス特性については、共振子を構成する反射器の電極指の本数が多い場合と少ない場合とで、***振周波数のQに大きな差はあり、共振周波数のQにも少なからず差はある。このため、直列腕共振回路を構成する反射器の電極指の本数を多くすることにより直列腕共振回路の共振周波数及び***振周波数のQを高くし、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化をより抑制できる。
 また、前記第1並列腕共振子及び前記第2並列腕共振子は、並列接続されていてもよい。
 さらに、前記第1並列腕共振子及び前記第2並列腕共振子の少なくとも一方に直列接続され、かつ、互いに並列接続された一対のインピーダンス素子及びスイッチ素子を有してもよい。
 これにより、スイッチ素子の導通及び非導通に応じて第1通過特性と第2通過特性とを切り替えるチューナブルフィルタを提供できる。
 また、前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第2並列腕共振子のみに直列接続されていてもよい。
 これにより、スイッチ素子の導通及び非導通の切り替えに応じて、通過帯域高域側の減衰極の周波数を切り替えることができるとともに、通過帯域高域端の挿入損失の増大を抑制できるチューナブルフィルタを提供できる。
 また、前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続されていてもよい。
 これにより、スイッチ素子の導通及び非導通の切り替えに応じて、通過帯域低域側の減衰極の周波数を切り替えることができるとともに、通過帯域低域端の挿入損失の増大を抑制できるチューナブルフィルタを提供できる。
 また、前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子と前記第2並列腕共振子とが並列接続された回路に対し直列接続されていてもよい。
 これにより、スイッチ素子の導通及び非導通の切り替えに応じて、通過帯域両側の極(減衰極)の周波数を共に切り替えることができるチューナブルフィルタを提供できる。
 また、さらに、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続され、かつ、互いに並列接続された一対のインピーダンス素子及びスイッチ素子と、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続され、かつ、互いに並列接続された他の一対のインピーダンス素子及びスイッチ素子と、を有してもよい。
 これにより、スイッチ素子の導通及び非導通の切り替えに応じて、通過帯域高域側及び通過帯域低域側の減衰極の周波数を切り替えることができるとともに、通過帯域高域端及び通過帯域低域端の挿入損失の増大を抑制できるチューナブルフィルタを提供できる。このため、このようなチューナブルフィルタは、例えば、帯域幅を維持しつつ、中心周波数をシフトすることができる。
 また、前記第1並列腕共振子及び前記第2並列腕共振子は、直列接続されていてもよい。
 さらに、前記第1並列腕共振子及び前記第2並列腕共振子の一方に並列接続されたスイッチ素子を有してもよい。
 これにより、スイッチ素子の導通及び非導通の切り替えに応じて、通過帯域低域側の減衰極の周波数を切り替えることができるとともに、通過帯域高域側に減衰極が追加されるため、通過帯域高域側の減衰を得るチューナブルフィルタを提供できる。
 また、前記直列腕共振回路は、1以上の弾性波共振子からなる直列腕共振子であり、前記第1並列腕共振子及び第2並列腕共振子と共にラダー型のフィルタ構造を構成してもよい。
 これにより、ラダー型のバンドパスフィルタを構成でき、急峻性の高い通過特性を実現できる。
 また、前記直列腕共振回路は、複数の弾性波共振子からなる縦結合共振子であってもよい。
 これにより、減衰強化等を要求されるフィルタ特性に適応することが可能となる。
 また、本発明の一態様に係る高周波フロントエンド回路は、上記の弾性波フィルタ装置と、前記弾性波フィルタ装置に接続された増幅回路と、を備える。
 これにより、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる高周波フロントエンド回路を提供できる。
 また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波フロントエンド回路と、を備える。
 これにより、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる通信装置を提供できる。
 本発明に係る弾性波フィルタ装置、高周波フロントエンド回路及び通信装置によれば、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、小型化できる。
図1Aは、実施の形態1に係るフィルタの回路構成図である。 図1Bは、実施の形態1に係るフィルタの電極構造を模式的に表す平面図である。 図2は、実施の形態1における共振子の構造を模式的に表す図の一例である。 図3は、実施の形態1に係るフィルタの特性を表すグラフである。 図4は、典型例1の共振子において、反射器の電極指の本数を振った場合の共振周波数及び***振周波数の周波数及びQの変化を表すグラフである。 図5は、実施の形態1の共振子において、反射器がある場合とない場合とのインピーダンス特性を表すグラフである。 図6は、実施例及び比較例のフィルタのフィルタ特性を表すグラフである。 図7は、比較例に係るフィルタの電極構造を模式的に表す平面図である。 図8Aは、実施の形態1の変形例に係るフィルタの回路構成図である。 図8Bは、実施の形態1の変形例に係るフィルタの電極構造を模式的に表す平面図である。 図9は、実施の形態1の変形例に係るフィルタの特性を表すグラフである。 図10Aは、実施の形態2の適用例1におけるフィルタの回路構成図である。 図10Bは、実施の形態2の適用例1におけるフィルタの特性を表すグラフである。 図11Aは、実施の形態2の適用例2におけるフィルタの回路構成図である。 図11Bは、実施の形態2の適用例2におけるフィルタの特性を表すグラフである。 図12Aは、実施の形態2の適用例3におけるフィルタの回路構成図である。 図12Bは、実施の形態2の適用例3におけるフィルタの特性を表すグラフである。 図13Aは、実施の形態2の適用例4におけるフィルタの回路構成図である。 図13Bは、実施の形態2の適用例4におけるフィルタの特性を表すグラフである。 図14Aは、実施の形態2の適用例5におけるフィルタの回路構成図である。 図14Bは、実施の形態2の適用例5におけるフィルタの特性を表すグラフである。 図15は、実施の形態3に係る高周波フロントエンド回路及びその周辺回路の構成図である。 図16は、実施の形態3の変形例に係る高周波フロントエンド回路の構成図である。 図17は、その他の実施の形態に係るフィルタの電極構造を模式的に表す平面図である。
 以下、本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。
 (実施の形態1)
 [1.フィルタの回路構成]
 図1Aは、実施の形態1に係るフィルタ10の回路構成図である。
 フィルタ10は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置される、高周波フィルタ回路である。フィルタ10は、例えばLTE(Long Term Evolution)等の通信規格に準拠したマルチバンド対応の携帯電話に内蔵され、所定の帯域(Band)の高周波信号をフィルタリングするバンドパスフィルタである。このフィルタ10は、弾性波共振子を用いて高周波信号をフィルタリングする弾性波フィルタ装置である。
 同図に示すように、フィルタ10は、直列腕共振子s1と、並列腕共振子p1及びp2と、を備える。
 直列腕共振子s1は、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)との間に接続されている。つまり、直列腕共振子s1は、入出力端子11mと入出力端子11nとを結ぶ経路上に設けられた直列腕共振回路である。なお、当該直列腕共振回路には、直列腕共振子s1に限らず、1以上の弾性波共振子からなる直列腕共振回路が設けられていればよい。本実施の形態では、当該直列腕共振回路は、1つの弾性波共振子によって構成されているが、複数の弾性波共振子によって構成されていてもかまわない。複数の弾性波共振子によって構成される直列腕共振回路には、例えば、複数の弾性波共振子からなる縦結合共振子、あるいは、1つの弾性波共振子が直列分割等された複数の分割共振子が含まれる。例えば、直列腕共振回路として縦結合共振子を用いることにより、減衰強化等の要求されるフィルタ特性に適応することが可能となる。
 並列腕共振子p1は、入出力端子11mと入出力端子11nとを結ぶ経路上のノード(図1Aではノードx1)とグランド(基準端子)とに接続されている第1並列腕共振子である。つまり、並列腕共振子p1は、上記経路上のノードx1とグランドとを結ぶ並列腕共振回路に設けられた共振子である。
 並列腕共振子p2は、入出力端子11mと入出力端子11nとを結ぶ経路上のノード(図1Aではノードx1)とグランド(基準端子)とに接続されている第2並列腕共振子である。つまり、並列腕共振子p2は、上記直列腕上のノードx1とグランドとを結ぶ並列腕共振回路に設けられた共振子である。
 これら並列腕共振子p1及びp2は、上記経路上の同一ノードx1とグランドとの間に接続されている。本実施の形態では、並列腕共振子p1及びp2は並列接続されて、ノードx1とグランドとの間に接続されている。ここで、「同一ノード」とは、伝送線路上の1点だけでなく、共振子またはインピーダンス素子を介さずに位置する伝送線路上の異なる2点も含まれる。なお、本実施の形態では、ノードx1は、直列腕共振子s1の入出力端子11n側にあるが、直列腕共振子s1の入出力端子11m側にあってもかまわない。
 また、これら並列腕共振子p1及びp2は、入出力端子11mと入出力端子11nとを結ぶ経路上(直列腕上)のノードx1とグランドとの間に接続された並列腕共振回路を構成する。すなわち、当該並列腕共振回路は、直列腕とグランドとを結ぶ1つの並列腕に設けられている。よって、直列腕共振回路(本実施の形態では直列腕共振子s1)は、並列腕共振回路(本実施の形態では並列腕共振子p1及びp2)と共にラダー型のフィルタ構造(本実施の形態では1段のラダー型のフィルタ構造)を構成する。
 つまり、並列腕共振子p1及びp2によって構成される並列腕共振回路は、直列腕共振子s1とともにフィルタ10の通過帯域を形成する。
 [2.構造]
 [2-1.電極構造]
 次に、フィルタ10の構造について、説明する。
 図1Bは、実施の形態1に係るフィルタ10の電極構造を模式的に表す平面図である。
 同図に示すように、フィルタ10を構成する各共振子(直列腕共振子s1、並列腕共振子p1及びp2)は、弾性波を用いた弾性波共振子である。これにより、フィルタ10を、圧電性を有する基板上に形成されたIDT(InterDigital Transducer)電極により構成できるので、急峻度の高い通過特性を有する小型かつ低背のフィルタ回路を実現できる。なお、圧電性を有する基板は、少なくとも表面に圧電性を有する基板である。当該基板は、例えば、表面に圧電薄膜を備え、当該圧電薄膜と音速の異なる膜、および、支持基板などの積層体で構成されていてもよい。また、当該基板は、例えば、高音速支持基板と、高音速支持基板上に形成された圧電薄膜とを含む積層体、高音速支持基板と、高音速支持基板上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体、または、支持基板と、支持基板上に形成された高音速膜と、高音速膜上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体であってもよい。なお、当該基板は、基板全体に圧電性を有していてもよい。
 直列腕共振子s1及び並列腕共振子p1は、弾性波を励振するIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器となるよう当該IDT電極の伝搬方向の両側に配置された1組の反射器と、を有する。具体的には、直列腕共振子s1は、IDT電極111及び1組の反射器112によって構成されている。並列腕共振子p1は、IDT電極121及び1組の反射器122によって構成されている。
 一方、並列腕共振子p2(第2並列腕共振子)は、弾性波の励振するIDT電極131を有し、かつ、反射器を有さない。
 ここで、並列腕共振子p2(第2並列腕共振子)における共振周波数は、並列腕共振子p1(第1並列腕共振子)における共振周波数よりも高い。共振子における共振周波数とは、インピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)の周波数である。また、並列腕共振子p2における***振周波数は、並列腕共振子p1における***振周波数よりも高い。共振子における***振周波数とは、インピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)の周波数である。
 なお、本実施の形態では、IDT電極111、121及び131の対数は互いに同じであるが、少なくとも1つのIDT電極の対数は他のIDT電極の対数と異なっていてもかまわない。
 [2-2.共振子構造]
 以下、フィルタ10を構成する各共振子の構造について、任意の共振子に着目してより詳細に説明する。なお、他の共振子については、当該任意の共振子と概ね同じ構造を有するため、詳細な説明を省略する。
 図2は、本実施の形態における共振子の構造を模式的に表す図の一例であり、(a)は平面図、(b)は(a)の断面図である。なお、図2に示された共振子は、フィルタ10を構成する各共振子の典型的な構造を説明するためのものである。このため、フィルタ10の各共振子のIDT電極を構成する電極指の本数や長さなどは、同図に示すIDT電極の電極指の本数や長さに限定されない。なお、同図では、共振子を構成する反射器については図示を省略している。
 同図の(a)及び(b)に示すように、共振子は、IDT電極101と、当該IDT電極101が形成された圧電基板102と、当該IDT電極101を覆う保護層103と、を備える。以下、これらの構成要素について、詳細に説明する。
 図2の(a)に示すように、圧電基板102の上には、IDT電極101を構成する互いに対向する一対の櫛歯電極101a及び101bが形成されている。櫛歯電極101aは、互いに平行な複数の電極指110aと、複数の電極指110aを接続するバスバー電極111aとで構成されている。また、櫛歯電極101bは、互いに平行な複数の電極指110bと、複数の電極指110bを接続するバスバー電極111bとで構成されている。複数の電極指110a及び110bは、伝搬方向と直交する方向に沿って形成されている。
 なお、櫛歯電極101a及び101bは、それぞれが単体でIDT電極と称される場合もある。ただし、以下では、便宜上、一対の櫛歯電極101a及び101bによって1つのIDT電極101が構成されているものとして説明する。
 また、複数の電極指110a及び110b、ならびに、バスバー電極111a及び111bで構成されるIDT電極101は、図2の(b)に示すように、密着層101gと主電極層101hとの積層構造となっている。
 密着層101gは、圧電基板102と主電極層101hとの密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層101gの膜厚は、例えば、12nmである。
 主電極層101hは、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層101hの膜厚は、例えば162nmである。
 圧電基板102は、IDT電極101が形成された基板であり、例えば、LiTaO圧電単結晶、LiNbO圧電単結晶、KNbO圧電単結晶、水晶、または圧電セラミックスからなる。
 保護層103は、櫛歯電極101a及び101bを覆うように形成されている。保護層103は、主電極層101hを外部環境から保護する、周波数温度特性を調整する、及び、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。
 なお、フィルタ10が有する各共振子の構造は、図2に記載された構造に限定されない。例えば、IDT電極101は、金属膜の積層構造でなく、金属膜の単層であってもよい。また、密着層101g、主電極層101h及び保護層103を構成する材料は、上述した材料に限定されない。また、IDT電極101は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属又は合金から構成されてもよく、上記の金属又は合金から構成される複数の積層体から構成されてもよい。また、保護層103は、形成されていなくてもよい。
 以上のように構成された共振子(弾性波共振子)では、IDT電極101の設計パラメータ等によって、励振される弾性波の波長が規定される。つまり、IDT電極101の設計パラメータ等によって、共振子における共振周波数及び***振周波数が規定される。以下、IDT電極101の設計パラメータ、すなわち櫛歯電極101a及び櫛歯電極101bの設計パラメータについて説明する。
 上記弾性波の波長は、図2に示す櫛歯電極101a及び101bを構成する複数の電極指110aまたは110bの繰り返し周期λで規定される。また、電極ピッチ(電極周期)とは、当該繰り返し周期λの1/2であり、櫛歯電極101a及び101bを構成する電極指110a及び110bのライン幅をWとし、隣り合う電極指110aと電極指110bとの間のスペース幅をSとした場合、(W+S)で定義される。また、IDT電極101の交叉幅Lとは、図2の(a)に示すように、櫛歯電極101aの電極指110aと櫛歯電極101bの電極指110bとを弾性波の伝搬方向から見た場合の重複する電極指長さである。また、電極デューティ(デューティ比)は、複数の電極指110a及び110bのライン幅占有率であり、複数の電極指110a及び110bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、対数とは、櫛歯電極101a及び101bのうち、対をなす電極指110a及び電極指110bの数であり、電極指110a及び電極指110bの総数の概ね半数である。例えば、対数をNとし、電極指110a及び電極指110bの総数をMとすると、M=2N+1を満たす。すなわち、櫛歯電極101a及び101bの一方の1つの電極指の先端部分と当該先端部分に対向する他方のバスバー電極とで挟まれる領域の数が0.5対に相当する。また、IDT電極101の膜厚とは、複数の電極指110a及び110bの厚みhである。
 [3.フィルタ特性]
 次に、本実施の形態に係るフィルタ10のフィルタ特性について、説明する。
 なお、以下では、共振子単体に限らず複数の共振子で構成される回路についても、便宜上、インピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)を「共振周波数」と称する。また、インピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)を「***振周波数」と称する。
 図3は、実施の形態1に係るフィルタ10の特性を表すグラフである。具体的には、同図の(a)は、並列腕共振子p1及びp2ならびに直列腕共振子s1それぞれのインピーダンス特性を表すグラフである。同図の(b)は、並列腕共振子p1及びp2の合成インピーダンス特性(合成特性)ならびに直列腕共振子s1のインピーダンス特性を表すグラフである。同図の(c)は、フィルタ10のフィルタ特性を表すグラフである。
 まず、同図の(a)を用いて、共振子単体でのインピーダンス特性について、説明する。
 同図に示すように、並列腕共振子p1及び並列腕共振子p2ならびに直列腕共振子s1は、次のようなインピーダンス特性を有する。具体的には、並列腕共振子p1及び並列腕共振子p2ならびに直列腕共振子s1についてこの順に、共振周波数をfrp1、frp2、frs1とし、***振周波数をfap1、fap2、fas1とすると、本実施の形態ではfrp1<frs1<frp2かつfap1<fas1<fap2を満たす。
 次に、並列腕共振子p1及び並列腕共振子p2の合成特性(すなわち、並列腕共振回路のインピーダンス特性)について、説明する。
 同図の(b)に示すように、2つの並列腕共振子(並列腕共振子p1及びp2)の合成特性(図中の「並列腕(p1+p2)の合成特性」)は、並列腕共振子p2の共振周波数frp2、及び、並列腕共振子p1の共振周波数frp1において、極小(図3中のFr2及びFr1)となる。また、当該合成特性は、2つの共振周波数frp2及びfrp1の間の周波数、及び、2つの***振周波数fap2及びfap1の間の周波数において、極大(図3中のFa1及びFa2)となる。
 ラダー型の共振子によりバンドパスフィルタを構成するにあたり、並列腕共振回路の2つの***振周波数のうち低域側の***振周波数と直列腕共振子s1の共振周波数frs1とを近接させて、通過帯域を構成する。
 これにより、同図の(c)に示すように、通過帯域低域側には、並列腕共振子p1の共振周波数frp1を減衰極とする減衰帯域が形成され、通過帯域高域側には並列腕共振子p2の共振周波数frp2及び直列腕共振子s1の***振周波数fas1を減衰極とする減衰帯域が形成される。
 ここで、並列腕共振子p1及び並列腕共振子p2の合成インピーダンス特性の低域側の***振周波数(図3中のFa1)と高域側の共振周波数(図3中のFr2)とは、フィルタ10の通過帯域高域側の減衰スロープを規定する。つまり、通過帯域高域側の減衰スロープのキレは、上記の合成インピーダンス特性における低域側の***振周波数(図3中のFa1)と高域側の共振周波数(図3中のFr2)との間のスロープのキレに影響される。このため、並列腕共振子p1の***振周波数(図3中のFap1)のQ、及び、並列腕共振子p2の共振周波数(図3中のFrp2)のQが、通過帯域高域側のキレに影響を及ぼす。具体的には、並列腕共振子p1の***振周波数のQが高いほど、並列腕共振回路(本実施の形態では並列腕共振子p1及びp2の並列接続回路)の合成インピーダンス特性において、低域側の***振周波数(図3中のFa1)のQが高くなる。一方、並列腕共振子p2の共振周波数のQが高いほど、並列腕の回路の合成インピーダンス特性において、高域側の共振周波数(図3中のFr2)のQが高くなる。このため、当該合成インピーダンス特性において、低域側の***振周波数と高域側の共振周波数との間(図3中のFa1とFr2との間)のスロープのキレが改善されることにより、上記フィルタ特性について、通過帯域高域側のキレを改善することができる。言い換えると、並列腕共振子p2の共振周波数のQが高いほど通過帯域高域側の減衰極(図3中のC部分)のQが高くなり(すなわち減衰極が深くなり)、並列腕共振子p1の***振周波数のQが高いほど通過帯域内(図3中のB部分)のロスが抑制される。このため、通過帯域高域側のキレを改善することができる。
 また、並列腕共振回路の合成インピーダンス特性は、低域側の***振周波数近傍では、並列腕共振子p1の特性に並列腕共振子p2の容量成分が合成された特性となる。このため、並列腕共振子p1の***振周波数のQを高くすることに加え、並列腕共振子p2の容量成分のQを高くする、つまり並列腕共振子p2の直列抵抗を小さくすることにより、フィルタ10の通過帯域内のロスを抑制することができる。
 また、並列腕共振子p1及び並列腕共振子p2の合成インピーダンス特性の低域側の共振周波数(図3中のFr1)は、フィルタ10の通過帯域低域側の減衰スロープを規定する。このため、並列腕共振子p1の共振周波数(図3中のFrp1)のQが、通過帯域低域側のキレに影響を及ぼす。具体的には、並列腕共振子p1の共振周波数のQが高いほど、並列腕共振回路(本実施の形態では並列腕共振子p1及びp2の並列接続回路)の合成インピーダンス特性において、低域側の共振周波数(図3中のFr1)のQが高くなり、通過帯域低域側のキレを改善することができる。言い換えると、並列腕共振子p1の共振周波数のQが高いほど通過帯域低域側の減衰極(図3中のA部分)のQが高くなり(すなわち減衰極が深くなり)、通過帯域低域側のキレを改善することができる。
 一方、並列腕共振子p1及び並列腕共振子p2の合成インピーダンス特性の高域側の***振周波数(図3中のFa2)は、図3中のD部分に対応しており、フィルタ10の通過帯域及び減衰帯域に影響を与えにくい。言い換えると、並列腕共振子p2の***振周波数(図3中のFap2)のQは、フィルタ10の通過帯域及び減衰帯域に影響を与えにくい。このため、並列腕共振子p2の***振周波数(図3中のFap1)のQが低くても、フィルタ10の通過帯域及び減衰帯域に影響を与えにくい。
 本実施の形態に係るフィルタ10では、上述したように、並列腕共振子p2は、反射器を有さない。これにより、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。以下、このような効果が奏される理由について、本発明に至った経緯も含めて説明する。
 [4.弾性波フィルタ装置の小型化のメカニズム]
 一般的に、弾性波フィルタ装置では、低ロス化の観点から当該弾性波フィルタ装置を構成する共振子は、IDT電極に加え反射器によって構成される。これに対し、本願発明者は、弾性波フィルタ装置が有する複数の共振子のうち特定の共振子に反射器を設けないようにしてもフィルタ特性の劣化を抑制できることを利用して、弾性波フィルタ装置を小型化できることを見出した。このことに関し、以下、具体的な典型例に基づき説明する。
 なお、以下の典型例1は、本実施の形態と周波数帯域が異なるものの、反射器の電極指の本数に依存して共振周波数及び***振周波数のQが変化する傾向については、本実施の形態の周波数帯域でも同様である。また、以下の典型例1では、共振子を構成するIDT電極を全て同じにした状態で反射器の電極指の本数を振っている。
 表1に、このときの共振子の設計パラメータの詳細を示す。なお、表中のfrは共振周波数、faは***振周波数、Qrは共振周波数のQ、Qaは***振周波数のQを示している。
Figure JPOXMLDOC01-appb-T000001
 また、表1に示すように反射器の電極指の本数を振ったときの共振周波数及びQの変化、並びに、***振周波数及びQの変化をグラフ化したものを図4に示す。図4は、典型例1の共振子において、反射器の電極指の本数を振った場合の共振周波数及び***振周波数並びにQの変化を表すグラフである。図4の(a)は共振周波数及び***振周波数の変化を表し、図4の(b)は共振周波数及び***振周波数のQの変化を表すグラフである。
 図4の(a)に示すように、反射器の電極指の本数を変化させても、共振周波数及び***振周波数が変動しないことがわかる。これは、弾性波の波長(つまり周波数)は、IDT電極を構成する複数の電極指の繰り返し周期で規定され、反射器の電極指の本数の違いによる影響を受けにくいためである。
 また、図4の(b)に示すように、反射器の電極指の本数が少ないほど***振周波数のQ(Qa)が低くなることがわかる。一方、反射器の電極指の本数が少ないほど共振周波数のQ(Qr)も低くはなるが、低下量は少ないことがわかる。したがって、反射器の電極指の本数が0本、つまり共振子が反射器を有さなくても、反射器を有するときと比べ、共振周波数のQ(Qr)の低下量は少ない。
 このようにして、実施の形態1に係るフィルタ10についても、並列腕共振子p2が反射器を有さないようにすることにより、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。これについて、並列腕共振子p2が反射器を有するときと、有さないときとのインピーダンス特性について図5を用いて説明する。
 図5は、実施の形態1の共振子において、反射器がある場合とない場合とのインピーダンス特性を表すグラフである。同図の(a)は、反射器を有する並列腕共振子p1、反射器を有する並列腕共振子p2、及び、反射器を有さない並列腕共振子p2のインピーダンス特性を表し、(b)は(a)の並列腕共振子p2の共振周波数付近のインピーダンス特性を拡大して表し、(c)は(a)の並列腕共振子p2の***振周波数付近のインピーダンス特性を拡大して表すグラフである。同図の(d)は、反射器を有する並列腕共振子p1及び反射器を有さない並列腕共振子p2の合成インピーダンス特性(合成特性)、ならびに、共に反射器を有する並列腕共振子p1及びp2の合成インピーダンス特性(合成特性)を表し、(e)は(d)の高域側の共振周波数付近のインピーダンス特性を拡大して表し、(f)は(d)の高域側の***振周波数付近のインピーダンス特性を拡大して表すグラフである。
 同図の(a)~(c)に示すように、並列腕共振子p2が反射器を有さない場合、反射器を有する場合と比べ、***振周波数のQは低下するが、共振周波数のQはあまり低下していないことがわかる。また、同図の(d)~(f)に示すように、並列腕共振子p2が反射器を有さない場合、反射器を有する場合と比べ、並列腕共振子p1及びp2の合成インピーダンス特性(合成特性)の高域側の***振周波数(並列腕共振子p2に対応する***振周波数)のQは低下するが、高域側の共振周波数(並列腕共振子p2に対応する共振周波数)のQはあまり低下していないことがわかる。
 [5.効果等]
 次に、本実施の形態に係るフィルタ10によって奏される効果について、実施例を用いて比較例と対比しながら説明する。
 実施例のフィルタは、上述した実施の形態に係るフィルタ10の構成を有する。一方、比較例のフィルタは、実施例のフィルタとほぼ同様の構成を有するものの、並列腕共振子p2が反射器を有している点が異なる。
 表2に、実施例及び比較例のフィルタの反射器の電極指の本数に関する設計パラメータを示す。
Figure JPOXMLDOC01-appb-T000002
 この表に示すように、比較例の直列腕共振子s1、並列腕共振子p1及びp2はそれぞれ電極指の本数が10本の反射器を有している。実施例の直列腕共振子s1及び並列腕共振子p1はそれぞれ電極指の本数が10本の反射器を有し、並列腕共振子p2は反射器を有していない。なお、実施例の直列腕共振子s1及び並列腕共振子p1のそれぞれの反射器の電極指の本数は10本であるが、図1Bでは、模式的に電極指の本数を4本で表している。
 図6は、実施例及び比較例のフィルタのフィルタ特性を示すグラフである。
 同図に示すフィルタ特性について、通過帯域(図中のA部分)に着目すると、実施例では、比較例に対して、通過帯域内のロスの増大は少ない(ほぼない)ことが分かる。つまり、実施例では、通過帯域内のロスの増大が抑制されている。
 また、同図に示すフィルタ特性について、通過帯域高域側の減衰スロープ(図中のB部分)に着目すると、実施例では、比較例に対して、当該減衰スロープの急峻度の劣化は少ない(ほぼない)ことが分かる。つまり、実施例では、通過帯域高域側のキレの劣化が抑制されている。
 図7は、比較例に係るフィルタ100の電極構造を模式的に表す平面図である。なお、比較例の直列腕共振子s1、並列腕共振子p1及びp12のそれぞれの反射器の電極指の本数は10本であるが、図7では、模式的に電極指の本数を4本で表している。図6に示すように、実施例と比較例とでフィルタ特性に大きな違いはないが、図1Bに示す実施例のフィルタ10に比べ、図7に示す比較例のフィルタ100は、反射器142を有することで、反射器142のスペース分大型化してしまう。
 以上説明したように、本実施の形態に係るフィルタ10(弾性波フィルタ装置)によれば、並列腕共振子p2(第2並列腕共振子)における共振周波数は、並列腕共振子p1(第1並列腕共振子)における共振周波数よりも高く、並列腕共振子p2における***振周波数は、並列腕共振子p1における***振周波数よりも高い。また、並列腕共振子p1は、弾性波を励振するIDT電極121と、IDT電極121によって励振される弾性波を反射する反射器122とを有し、並列腕共振子p2は、弾性波を励振するIDT電極131を有し、かつ、反射器を有さない。本願発明者は鋭意検討の結果、次のことを見出した。すなわち、共振子単体のインピーダンス特性について、反射器を有する場合と有さない場合とで、***振周波数のQに大きな差はあるが共振周波数のQに大きな差はない。また、フィルタ特性については、並列腕共振子p2の共振周波数のQが高く、並列腕共振子p1の***振周波数のQが高いほど、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制することができる。したがって、並列腕共振子p1は反射器122を有し、共振周波数のQを高く設計し、並列腕共振子p2は反射器を有さなくても共振周波数のQの劣化は少ないため、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制できる。また、並列腕共振子p2が反射器を有さないため、当該反射器のスペース分、フィルタ10(弾性波フィルタ装置)を小型化できる。このように、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。
 (実施の形態1の変形例)
 上記実施の形態では、並列腕共振子p1及びp2は、互いに並列接続されて直列腕の同一ノードx1(ノード)に接続されているとした。しかし、並列腕共振子p1及びp2は、互いに直列接続されて直列腕の同一ノードx1(ノード)に接続されていてもかまわない。そこで、実施の形態1の変形例に係るフィルタとして、このようなフィルタについて説明する。
 図8Aは、実施の形態1の変形例に係るフィルタ10Aの回路構成図である。図8Bは、実施の形態1の変形例に係るフィルタ10Aの電極構造を模式的に表す平面図である。
 これらの図に示すフィルタ10Aは、図1A及び図1Bに示したフィルタ10に比べて、並列腕共振子p1及びp2が直列接続された状態で、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)とを結ぶ経路の同一ノードx1とグランドとの間に接続されている点が異なる。本変形例では、並列腕共振子p1は、一方の端子がノードx1に接続され、他方の端子が並列腕共振子p2の一方の端子に接続されている。並列腕共振子p2は、一方の端子が並列腕共振子p1の上記他方の端子に接続され、他方の端子がグランドに接続されている。なお、並列腕共振子p1及びp2の接続順序はこれに限らず、上記接続順序と逆であってもかまわない。
 図9は、実施の形態1の変形例に係るフィルタ10Aの特性を表すグラフである。
 本変形例に係るフィルタ10Aの特性についても、上記実施の形態1に係るフィルタ10の特性と同様に、並列腕共振子p1の***振周波数(図9中のFap1)のQ、及び、並列腕共振子p2の共振周波数(図9中のFrp2)のQが、通過帯域高域側のキレに影響を及ぼす。また、並列腕共振子p2の***振周波数(図9中のFap2)のQは、フィルタ10Aの通過帯域及び減衰帯域に影響を与えにくい。なお、このことに関する具体的なメカニズムについては、上記実施の形態1と同様であるため、詳細な説明を省略する。
 したがって、本変形例に係るフィルタ10Aであっても、並列腕共振子p2が反射器を有さないことにより、実施の形態1と同様に、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化を抑制しつつ、弾性波フィルタ装置を小型化できる。
 (実施の形態2)
 上記実施の形態1及びその変形例に係るフィルタ(弾性波フィルタ装置)の構成は、通過帯域が可変なチューナブルフィルタに適用することができる。そこで、実施の形態2に係るフィルタとして、このようなチューナブルフィルタについて適用例1~5を用いて説明する。具体的には、適用例1~4は、上記実施の形態1に係るフィルタ10のチューナブルフィルタへの適用例であり、適用例5は、上記実施の形態1の変形例に係るフィルタ10Aのチューナブルフィルタへの適用例である。
 以下で説明する適用例1~5のチューナブルフィルタはいずれも、並列腕共振子p1または並列腕共振子p2に直列接続あるいは並列接続されたスイッチ素子を有し、当該スイッチ素子の導通(オン)及び非導通(オフ)に応じて通過帯域が切り替えられる。ここで、スイッチ素子は、RF信号処理回路(RFIC:Radio Frequency Integrated Circuit)等の制御部からの制御信号にしたがってオン及びオフする。
 [適用例1]
 図10Aは、実施の形態2の適用例1におけるフィルタ20Aの回路構成図である。
 同図に示すフィルタ20Aは、図1Aに示したフィルタ10に比べて、さらに、並列腕共振子p1及びp2(第1並列腕共振子及び第2並列腕共振子)の少なくとも一方(本適用例では並列腕共振子p2)に直列接続され、かつ、互いに並列接続された一対のキャパシタC及びスイッチSWを有する。これにより、フィルタ10は、スイッチSWの導通及び非導通に応じて第1通過特性と第2通過特性とを切り替えることができる。具体的には、本適用例では、当該互いに並列接続された一対のキャパシタC及びスイッチSWは、並列腕共振子p1及びp2のうち並列腕共振子p2のみに直列接続されている。
 つまり、本適用例では、キャパシタC及びスイッチSWが並列接続された回路が、ノードx1とグランドとの間で並列腕共振子p2に直列接続され、具体的には、グランドと並列腕共振子p2との間で直列接続されている。なお、キャパシタC及びスイッチSWは、ノードx1と並列腕共振子p2との間に接続されていてもよい。
 キャパシタCは、本実施の形態では、並列腕共振子p2に直列接続されたインピーダンス素子である。フィルタ20Aの通過帯域の周波数可変幅はキャパシタCの定数に依存し、例えばキャパシタCの定数が小さいほど周波数可変幅が広くなる。このため、キャパシタCの定数は、フィルタ20Aに要求される周波数仕様に応じて、適宜決定され得る。また、キャパシタCは、バリギャップ及びDTC(Digital Tunable Capacitor)等の可変キャパシタであってもかまわない。これにより、周波数可変幅を細かく調整することが可能となる。
 スイッチSWは、一方の端子が並列腕共振子p2とキャパシタCとの接続ノードに接続され、他方の端子がグランドに接続された、例えばSPST(Single Pole Single Throw)型のスイッチ素子である。スイッチSWは、制御部(図示せず)からの制御信号によって導通(オン)及び非導通(オフ)が切り替えられることにより、当該接続ノードとグランドとを導通または非導通とする。
 例えば、スイッチSWは、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチが挙げられる。これにより、スイッチSWを、1つのFETスイッチまたはダイオードスイッチにより構成できるので、フィルタ20Aを小型化することができる。
 これら並列腕共振子p1及びp2とキャパシタCとスイッチSWとは、入出力端子11mと入出力端子11nとを結ぶ経路上(直列腕上)のノードx1とグランドとの間に接続された並列腕共振回路を構成する。すなわち、当該並列腕共振回路は、直列腕とグランドとを結ぶ1つの並列腕に設けられている。よって、フィルタ20Aは、直列腕共振子s1と当該並列腕共振回路とで構成された1段のラダー型のフィルタ構造を有している。
 この並列腕共振回路は、スイッチSWのオン(導通)及びオフ(非導通)に応じて、インピーダンスが極小となる周波数及び当該インピーダンスが極大となる周波数が、共に低域側または共に高域側にシフトする。このことについては、フィルタ20Aの特性と併せて後述する。
 図10Bは、実施の形態2の適用例1におけるフィルタ20Aの特性を表すグラフである。具体的には、同図の(a)は、共振子単体(並列腕共振子p1及びp2ならびに直列腕共振子s1それぞれ)のインピーダンス特性を表すグラフである。同図の(b)は、スイッチSWオン/オフ時の並列腕共振回路(本適用例では並列腕共振子p1及びp2ならびにキャパシタC及びスイッチSWで構成される回路)の合成インピーダンス特性(合成特性)を比較して表すグラフである。なお、同図には直列腕共振子s1のインピーダンス特性も併せて図示されている。同図の(c)は、スイッチSWオン/オフ時のフィルタ特性を比較して表すグラフである。
 なお、各共振子(並列腕共振子p1及び並列腕共振子p2ならびに直列腕共振子s1)の単体のインピーダンス特性ならびにスイッチSWオン時の特性については、上記実施の形態1の特性と同様である。このため、以下では、これらの事項について適宜簡略化して説明する。
 つまり、スイッチSWオンの状態では、フィルタ20Aは、並列腕共振回路の2つの***振周波数のうち低域側の***振周波数と直列腕共振子s1の共振周波数frs1によって通過帯域が規定され、並列腕共振子p1の共振周波数frp1によって通過帯域低域側の極(減衰極)が規定され、並列腕共振子p2の共振周波数frp2及び直列腕共振子s1の***振周波数fas1によって通過帯域高域側の極(減衰極)が規定される、第1通過特性を有する。
 一方、スイッチSWオフの状態では、並列腕共振回路のインピーダンス特性は、キャパシタCの影響を受ける特性となる。つまり、この状態では、2つの並列腕共振子(並列腕共振子p1及びp2)とキャパシタCとの合成特性が並列腕共振回路のインピーダンス特性となる。
 本適用例では、スイッチSWオフ時には並列腕共振子p2のみにキャパシタCが付加される。このため、同図の(b)の黒い矢印で示すように、スイッチSWがオンからオフに切り替わると、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)において、2つの共振周波数のうち高域側の共振周波数、及び、2つの***振周波数のうち低域側の***振周波数が、共に高域側にシフトする。
 ここで、並列腕共振回路の低域側の***振周波数と高域側の共振周波数とは、フィルタ20Aの通過帯域高域側の減衰スロープを規定する。したがって、同図の(c)に示すように、スイッチSWがオンからオフに切り替わることにより、フィルタ20Aの通過特性は、第1通過特性から通過帯域高域側の減衰スロープの急峻度を維持しつつ高域側にシフトした第2通過特性へと切り替わる。言い換えると、フィルタ20Aは、スイッチSWの導通及び非導通の切り替えに応じて、通過帯域高域側の減衰極の周波数を切り替えることができるとともに、通過帯域高域端の挿入損失の増大を抑制できる。
 このようなフィルタ20Aであっても、並列腕共振子p2が反射器を有さないことにより、第1通過特性及び第2通過特性のそれぞれについて、実施の形態1と同様に、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できる。つまり、フィルタ20Aは、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できるチューナブルフィルタを構成する。
 なお、インピーダンス素子はキャパシタに限らず、例えばインダクタであってもかまわない。インピーダンス素子としてインダクタを用いた場合、上記の構成に比べて、スイッチSWをオン/オフした時の減衰スロープのシフト方向が異なる。具体的には、スイッチSWオフ時の第2通過特性は、スイッチSWオン時の第1通過特性に比べて、減衰スロープが低域側にシフトすることになる。また、このとき、フィルタ20Aの通過帯域の周波数可変幅はインダクタの定数に依存し、例えばインダクタの定数が大きいほど周波数可変幅が広くなる。このため、インダクタの定数は、フィルタ20Aに要求される周波数仕様に応じて、適宜決定され得る。また、このとき、インダクタは、MEMS(Micro Electro Mechanical Systems)を用いた可変インダクタであってもかまわない。これにより、周波数可変幅を細かく調整することが可能となる。
 [適用例2]
 図11Aは、実施の形態2の適用例2におけるフィルタ20Bの回路構成図である。
 同図に示すフィルタ20Bは、図10Aに示したフィルタ20Aに比べて、互いに並列接続された一対のキャパシタC及びスイッチSWが、並列腕共振子p1及びp2のうち並列腕共振子p1のみに直列接続されている点が異なる。
 図11Bは、実施の形態2の適用例2におけるフィルタ20Bの特性を表すグラフである。具体的には、同図の(a)及び(b)は、図10Bの(a)及び(b)と同様に、共振子単体のインピーダンス特性及び並列腕共振回路の合成インピーダンス特性を表すグラフである。同図の(c)は、スイッチSWオン/オフ時のフィルタ特性を比較して表すグラフである。
 本適用例では、スイッチSWオフ時には並列腕共振子p1のみにキャパシタCが付加される。このため、同図の(b)の黒い矢印で示すように、スイッチSWがオンからオフに切り替わると、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)において、2つの共振周波数のうち低域側の共振周波数、及び、2つの***振周波数のうち低域側の***振周波数が、共に高域側にシフトする。
 ここで、並列腕共振回路の低域側の***振周波数と低域側の共振周波数とは、フィルタ20Bの通過帯域低域側の減衰スロープを規定する。したがって、同図の(c)に示すように、スイッチSWがオンからオフに切り替わることにより、フィルタ20Bの通過特性は、第1通過特性から通過帯域低域側の減衰スロープの急峻度を維持しつつ高域側にシフトした第2通過特性へと切り替わる。言い換えると、フィルタ20Bは、スイッチSWの導通及び非導通の切り替えに応じて、通過帯域低域側の減衰極の周波数を切り替えることができるとともに、通過帯域低域端の挿入損失の増大を抑制できる。
 このようなフィルタ20Bであっても、並列腕共振子p2が反射器を有さないことにより、第1通過特性及び第2通過特性のそれぞれについて、実施の形態1と同様に、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できる。つまり、フィルタ20Bは、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できるチューナブルフィルタを構成する。
 [適用例3]
 図12Aは、実施の形態2の適用例3におけるフィルタ20Cの回路構成図である。
 同図に示すフィルタ20Cは、通過帯域高域側及び通過帯域低域側の減衰スロープを共にシフトさせる。具体的には、フィルタ20Cは、図11Aに示したフィルタ20Bが有する一対のキャパシタC(インピーダンス素子)及びスイッチSWに相当するキャパシタC1及びスイッチSW1を備える。また、さらに、フィルタ20Cは、図10Aに示したフィルタ20Aが有する一対(他の一対)のキャパシタC(インピーダンス素子)及びスイッチSWに相当するキャパシタC2及びスイッチSW2を備える。
 図12Bは、実施の形態2の適用例3におけるフィルタ20Cの特性を表すグラフである。具体的には、同図の(a)及び(b)は、図11Bの(a)及び(b)と同様に、共振子単体のインピーダンス特性及び並列腕共振回路(本適用例では並列腕共振子p1、p2、キャパシタC1、C2及びスイッチSW1、SW2で構成される回路)の合成インピーダンス特性を表すグラフである。同図の(c)は、スイッチSW1及びSW2共にオン/オフ時のフィルタ特性を比較して表すグラフである。
 本適用例では、スイッチSW1及びSW2共にオフ時には、並列腕共振子p1にはキャパシタC1が付加され、並列腕共振子p2にはキャパシタC2が付加される。このため、同図の(b)の黒い矢印で示すように、スイッチSW1及びSW2がオンからオフに共に切り替わると、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)において、2つの共振周波数の双方、及び、2つの***振周波数のうち低域側の***振周波数が、共に高域側にシフトする。
 したがって、同図の(c)に示すように、スイッチSW1及びSW2が共にオンからオフに切り替わることにより、フィルタ20Cの通過特性は、第1通過特性から通過帯域高域側及び通過帯域低域側の減衰スロープが急峻度を維持しつつ高域側にシフトした第2通過特性へと切り替わる。言い換えると、フィルタ20Cは、スイッチSW1及びWS2の導通及び非導通の切り替えに応じて、通過帯域高域側及び通過帯域低域側の減衰極の周波数を切り替えることができるとともに、通過帯域高域端及び通過帯域低域端の挿入損失の増大を抑制できる。このため、例えば、フィルタ20Cは、帯域幅を維持しつつ、中心周波数をシフトすることができる。
 このようなフィルタ20Cであっても、並列腕共振子p2が反射器を有さないことにより、第1通過特性及び第2通過特性のそれぞれについて、実施の形態1と同様に、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できる。つまり、フィルタ20Cは、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できるチューナブルフィルタを構成する。
 なお、フィルタ20Cは、スイッチSW1及びSW2を共にオン/オフしなくてもよく、これらを個別にオン/オフしてもかまわない。ただし、スイッチSW1及びSW2を共にオン/オフする場合、スイッチSW1及びSW2を制御する制御線の本数を削減できるため、フィルタ20Cの構成の簡素化が図られる。
 一方、これらを個別にオン/オフする場合、フィルタ20Cによって切り替え可能な通過帯域のバリエーションを増やすことができる。
 具体的には、フィルタ20Aについて説明したように、並列腕共振子p2に直列接続されたスイッチSW2のオン及びオフに応じて、通過帯域の高域端を可変することができる。また、フィルタ20Bについて説明したように、並列腕共振子p1に直列接続されたスイッチSW1のオン及びオフに応じて、通過帯域の低域端を可変することができる。
 したがって、スイッチSW1及びSW2を共にオンまたは共にオフすることにより、通過帯域の低域端及び高域端を共に低域側または高域側にシフトすることができる。すなわち、通過帯域の中心周波数を低域側または高域側にシフトすることができる。また、スイッチSW1及びSW2の一方をオンからオフにするとともに他方をオフからオンにすることにより、通過帯域の低域端及び高域端の双方をこれらの周波数差が広がるまたは狭まるようにシフトすることができる。すなわち、通過帯域の中心周波数を略一定にしつつ、通過帯域幅を可変することができる。また、スイッチSW1及びSW2の一方をオンまたはオフとした状態で他方をオン及びオフすることにより、通過帯域の低域端及び高域端の一方を固定した状態で他方を低域側または高域側にシフトすることができる。すなわち、通過帯域の低域端または高域端を可変することができる。
 このように、キャパシタC1及びC2及びスイッチSW1及びSW2を有することにより、通過帯域を可変する自由度を高めることができる。
 [適用例4]
 図13Aは、実施の形態2の適用例4におけるフィルタ20Dの回路構成図である。
 同図に示すフィルタ20Dは、図10Aに示したフィルタ20Aに比べて、互いに並列接続された一対のキャパシタC及びスイッチSWが、並列腕共振子p1と並列腕共振子p2とが並列接続された回路に対し直列接続されている点が異なる。
 図13Bは、実施の形態2の適用例4におけるフィルタ20Dの特性を表すグラフである。具体的には、同図の(a)及び(b)は、図11Bの(a)及び(b)と同様に、共振子単体のインピーダンス特性及び並列腕共振回路の合成インピーダンス特性を表すグラフである。同図の(c)は、スイッチSWオン/オフ時のフィルタ特性を比較して表すグラフである。
 本適用例では、スイッチSWオフ時には並列接続された並列腕共振子p1及びp2に対してキャパシタCが付加される。このため、同図の(b)の黒い矢印で示すように、スイッチSWがオンからオフに切り替わると、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)において、2つの***振周波数はいずれもシフトせずに、2つの共振周波数の双方が共に高域側にシフトする。
 したがって、同図の(c)に示すように、スイッチSWがオンからオフに切り替わることにより、フィルタ20Dの通過特性は、第1通過特性から通過帯域両側の極(減衰極)が共に高域側にシフトした第2通過特性へと切り替わる。
 このようなフィルタ20Dであっても、並列腕共振子p2が反射器を有さないことにより、第1通過特性及び第2通過特性のそれぞれについて、実施の形態1と同様に、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できる。つまり、フィルタ20Dは、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できるチューナブルフィルタを構成する。
 [適用例5]
 図14Aは、実施の形態2の適用例5におけるフィルタ20Eの回路構成図である。
 同図に示すフィルタ20Eは、図8Aに示したフィルタ10Aに比べて、さらに、並列腕共振子p1及びp2(第1並列腕共振子及び第2並列腕共振子)の一方に並列接続されたスイッチSWを有する。本適用例では、スイッチSWは、並列腕共振子p2に並列接続されている。なお、フィルタ20Eへの要求仕様により、並列腕共振子p2の回折損による影響が許容される場合等には、スイッチSWは、並列腕共振子p1に並列接続されていてもかまわない。
 図14Bは、実施の形態2の適用例5におけるフィルタ20Eの特性を表すグラフである。具体的には、同図の(a)及び(b)は、図10Bの(a)及び(b)と同様に、共振子単体のインピーダンス特性及び並列腕共振回路(本適用例では並列腕共振子p1、p2及びスイッチSWで構成される回路)の合成インピーダンス特性を表すグラフである。同図の(c)は、スイッチSWオン/オフ時のフィルタ特性を比較して表すグラフである。
 本適用例では、スイッチSWオン時には、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)は、並列腕共振子p1単体のインピーダンス特性となる。一方、スイッチSWオフ時には、並列腕共振子p1に対して並列腕共振子p2が付加される。このため、同図の(b)の黒い矢印で示すように、スイッチSWがオンからオフに切り替わると、並列腕共振回路のインピーダンス特性(図中の並列腕の合成特性)は、並列腕共振子p1及びp2の直列接続回路の合成インピーダンス特性となる。
 したがって、同図の(c)に示すように、スイッチSWがオンからオフに切り替わることにより、フィルタ20Eの通過特性は、通過帯域低域側の減衰極が高域側にシフトすると共に、図中のPoleHのように通過帯域高域側に減衰極が追加されるため、通過帯域高域側の減衰を得ることも可能になる。
 このようなフィルタ20Eであっても、並列腕共振子p2が反射器を有さないことにより、第1通過特性及び第2通過特性のそれぞれについて、実施の形態1と同様に、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できる。つまり、フィルタ20Eは、通過帯域高域側のロスの増大及びキレの劣化を抑制しつつ、弾性波フィルタ装置の小型化できるチューナブルフィルタを構成する。
 (実施の形態3)
 以上の実施の形態1及び2ならびにその変形例で説明したフィルタ(弾性波フィルタ装置)は、マルチプレクサ及び高周波フロントエンド回路等に適用することができる。
 そこで、本実施の形態では、このような高周波フロントエンド回路について説明する。
 図15は、実施の形態3に係る高周波フロントエンド回路1及びその周辺回路の構成図である。同図には、高周波フロントエンド回路1と、アンテナ素子2と、RF信号処理回路(RFIC)3とが示されている。高周波フロントエンド回路1及びRFIC3は、通信装置4を構成している。アンテナ素子2、高周波フロントエンド回路1、及びRFIC3は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置される。
 アンテナ素子2は、高周波信号を送受信する、例えばLTE等の通信規格に準拠したマルチバンド対応のアンテナである。なお、アンテナ素子2は、例えば通信装置4の全バンドに対応しなくてもよく、低周波数帯域群または高周波数帯域群のバンドのみに対応していてもかまわない。また、アンテナ素子2は、通信装置4に内蔵されておらず、通信装置4とは別に設けられていてもかまわない。
 高周波フロントエンド回路1は、アンテナ素子2とRFIC3との間で高周波信号を伝達する回路である。具体的には、高周波フロントエンド回路1は、RFIC3から出力された高周波信号(ここでは高周波送信信号)を、送信側信号経路を介してアンテナ素子2に伝達する。また、高周波フロントエンド回路1は、アンテナ素子2で受信された高周波信号(ここでは高周波受信信号)を、受信側信号経路を介してRFIC3に伝達する。
 高周波フロントエンド回路1は、デュプレクサ120と、送信増幅回路140と、受信増幅回路160とを備える。
 デュプレクサ120は、送信側フィルタ120Tx及び受信側フィルタ120Rxを有し、これらの少なくとも一方に上記説明した弾性波フィルタ装置を備えるマルチプレクサである。送信側フィルタ120Tx及び受信側フィルタ120Rxは、アンテナ側の入出力端子が束ねられてアンテナ素子2に接続され、他の端子が送信増幅回路140または受信増幅回路160に接続されている。
 送信増幅回路140は、RFIC3から出力された高周波送信信号を電力増幅するパワーアンプである。
 受信増幅回路160は、アンテナ素子2で受信された高周波受信信号を電力増幅するローノイズアンプである。
 RFIC3は、アンテナ素子2で送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC3は、アンテナ素子2から高周波フロントエンド回路1の受信側信号経路を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(図示せず)へ出力する。また、RFIC3は、ベースバンド信号処理回路から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を高周波フロントエンド回路1の送信側信号経路に出力する。
 このような高周波フロントエンド回路1によれば、上記説明した弾性波フィルタ装置を備えることにより、低ロス化と高選択度化(自帯域に隣接する他の帯域との相互干渉の抑制)との両立を図ることができ、かつ、小型にできる。このため、マルチバンドに対応する通信装置4に適用される高周波フロントエンド回路1として、特に有用である。
 (実施の形態3の変形例)
 以上の実施の形態1及び2ならびにその変形例で説明したフィルタ(弾性波フィルタ装置)は、実施の形態3に係る高周波フロントエンド回路1よりも、さらに使用バンド数が多いシステムに対応する高周波フロントエンド回路に適用することもできる。そこで、本変形例では、このような高周波フロントエンド回路について説明する。
 図16は、実施の形態3の変形例に係る高周波フロントエンド回路1Aの構成図である。
 同図に示すように、高周波フロントエンド回路1Aは、アンテナ端子ANTと送信端子Tx1及びTx2ならびに受信端子Rx1及びRx2を備え、アンテナ端子ANT側から順に、複数のスイッチにより構成されるスイッチ群110と、複数のフィルタにより構成されるフィルタ群120Aと、送信側スイッチ130A及び130Bならびに受信側スイッチ150A、150B及び150Cと、送信増幅回路140A及び140Bならびに受信増幅回路160A及び160Bとを備える。
 スイッチ群110は、制御部(図示せず)からの制御信号にしたがって、アンテナ端子ANTと所定のバンドに対応する信号経路とを接続し、例えば、複数のSPST型のスイッチによって構成される。なお、アンテナ端子ANTと接続される信号経路は1つに限らず、複数であってもかまわない。つまり、高周波フロントエンド回路1Aは、キャリアアグリゲーションに対応してもかまわない。
 フィルタ群120Aは、例えば次の帯域を通過帯域に有する複数のフィルタ(デュプレクサを含む)によって構成される。具体的には、当該帯域は、(i)Band12の送信帯域、(ii)Band13の送信帯域、(iii)Band14の送信帯域、(iv)Band27(またはBand26)の送信帯域、(v)Band29及びBand14(またはBand12、Band67及びBand13)の受信帯域、(vi-Tx)Band68及びBand28a(またはBand68及びBand28b)の送信帯域、(vi-Rx)Band68及びBand28a(またはBand68及びBand28b)の受信帯域、(vii-Tx)Band20の送信帯域、(vii-Rx)Band20の受信帯域、(viii)Band27(またはBand26)の受信帯域、(ix-Tx)Band8の送信帯域、ならびに、(ix-Rx)Band8の受信帯域、である。
 送信側スイッチ130Aは、ローバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路140Aに接続された共通端子とを有するスイッチ回路である。送信側スイッチ130Bは、ハイバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路140Bに接続された共通端子とを有するスイッチ回路である。これら送信側スイッチ130A及び130Bは、フィルタ群120Aの前段(ここでは送信側信号経路における前段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り替えられるスイッチ回路である。これにより、送信増幅回路140A及び140Bで増幅された高周波信号(ここでは高周波送信信号)は、フィルタ群120Aの所定のフィルタを介してアンテナ端子ANTからアンテナ素子2(図15参照)に出力される。
 受信側スイッチ150Aは、ローバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路160Aに接続された共通端子とを有するスイッチ回路である。受信側スイッチ150Bは、所定のバンド(ここではBand20)の受信側信号経路に接続された共通端子と、受信側スイッチ150Aの共通端子及び受信側スイッチ150Bの共通端子に接続された2つの選択端子とを有するスイッチ回路である。受信側スイッチ150Cは、ハイバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路160Bに接続された共通端子とを有するスイッチ回路である。これら受信側スイッチ150A~150Cは、フィルタ群120Aの後段(ここでは受信側信号経路における後段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り替えられる。これにより、アンテナ端子ANTに入力された高周波信号(ここでは高周波受信信号)は、フィルタ群120Aの所定のフィルタを介して、受信増幅回路160A及び160Bで増幅されて、受信端子Rx1及びRx2からRFIC3(図15参照)に出力される。なお、ローバンドに対応するRFICとハイバンドに対応するRFICとが個別に設けられていてもかまわない。
 送信増幅回路140Aは、ローバンドの高周波送信信号を電力増幅するパワーアンプであり、送信増幅回路140Bは、ハイバンドの高周波送信信号を電力増幅するパワーアンプである。
 受信増幅回路160Aは、ローバンドの高周波受信信号を電力増幅するローノイズアンプであり、受信増幅回路160Bは、ハイバンドの高周波受信信号を電力増幅するローノイズアンプである。
 このように構成された高周波フロントエンド回路1Aは、(iv)Band27(またはBand26)の送信帯域を通過帯域に有するフィルタとして、実施の形態2の適用例1に係るフィルタ20Aを備える。つまり、当該フィルタは、制御信号にしたがって、通過帯域を、Band27の送信帯域とBand26の送信帯域とで切り替える。
 また、高周波フロントエンド回路1Aは、(vi-Rx)Band68及びBand28a(またはBand68及びBand28b)の受信帯域を通過帯域に有する受信フィルタとして、実施の形態2の適用例2に係るフィルタ20Bを備え、(vi-Tx)Band68及びBand28a(またはBand68及びBand28b)の送信帯域を通過帯域に有する送信フィルタとして、実施の形態2の適用例3に係るフィルタ20Cを備える。つまり、当該送信フィルタ及び当該受信フィルタによって構成されるデュプレクサは、制御信号にしたがって、通過帯域を、Band68及びBand28aの送信帯域とBand68及びBand28bの送信帯域とで切り替え、Band68及びBand28aの受信帯域とBand68及びBand28bの受信帯域とで切り替える。
 また、高周波フロントエンド回路1Aは、(viii)Band27(またはBand26)の受信帯域を通過帯域に有するフィルタとして、実施の形態2の適用例2に係るフィルタ20Bを備える。つまり、当該フィルタは、制御信号にしたがって、通過帯域を、Band27の送信帯域とBand26の送信帯域とで切り替える。
 以上のように構成された高周波フロントエンド回路1Aによれば、上記実施の形態2の適用例1~3に係るフィルタ20A~20C(弾性波フィルタ装置)を備えることにより、バンドごとにフィルタを設ける場合に比べてフィルタの個数を削減できるため、小型化することができる。
 また、本実施の形態に係る高周波フロントエンド回路1Aによれば、フィルタ群120A(複数の弾性波フィルタ装置)の前段または後段に設けられた送信側スイッチ130A及び130Bならびに受信側スイッチ150A~150C(スイッチ回路)を備える。これにより、高周波信号が伝達される信号経路の一部を共通化することができる。よって、例えば、複数の弾性波フィルタ装置に対応する送信増幅回路140A及び140Bあるいは受信増幅回路160A及び160B(増幅回路)を共通化することができる。したがって、高周波フロントエンド回路1Aの小型化及び低コスト化が可能となる。
 なお、送信側スイッチ130A及び130Bならびに受信側スイッチ150A~150Cは、少なくとも1つが設けられていればよい。また、送信側スイッチ130A及び130Bの個数、ならびに、受信側スイッチ150A~150Cの個数は、上記説明した個数に限らず、例えば、1つの送信側スイッチと1つの受信側スイッチとが設けられていてもかまわない。また、送信側スイッチ及び受信側スイッチの選択端子等の個数も、本実施の形態に限らず、それぞれ2つであってもかまわない。
 また、フィルタ群に含まれる複数のフィルタのうち、少なくとも1つのフィルタに実施の形態1及びその変形例に係るフィルタの構成が適用されていてもかまわない。
 (その他の実施の形態)
 以上、本発明の実施の形態に係る弾性波フィルタ装置及び高周波フロントエンド回路について、実施の形態1~3及び変形例を挙げて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタ装置及び高周波フロントエンド回路を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態では、並列腕共振子p1は、反射器を有していたが、有していなくてもよい。ただし、並列腕共振子p1が反射器を有する場合には、***振周波数のQを高く設計することができ、通過帯域内のロス及び通過帯域高域側のキレを改善できる。
 また、例えば、上記実施の形態では、並列腕共振子p2は、反射器を有さなかったが、これに限らず、反射器を有していてもよい。ただし、弾性波フィルタを小型化する観点からは、並列腕共振子p2を構成する反射器の電極指の本数が、並列腕共振子p1を構成する反射器122の電極指の本数より少ないことが好ましい。
 図17は、このように構成されたフィルタ10Bの電極構造を模式的に表す平面図である。並列腕共振子p2a(第2並列腕共振子)における共振周波数は、並列腕共振子p1(第1並列腕共振子)における共振周波数よりも高く、並列腕共振子p2aにおける***振周波数は、並列腕共振子p1における***振周波数よりも高い。また、並列腕共振子p1及び並列腕共振子p2aは、それぞれ、弾性波を励振するIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器と、を有し、並列腕共振子p2aにおける反射器132は、並列腕共振子p1における反射器よりも、電極指の本数が少ない。図17では、並列腕共振子p1の反射器の電極指の本数が4本であり、並列腕共振子p2aの反射器132の電極指の本数が2本であり、並列腕共振子p2aは、並列腕共振子p1に比べ、電極指の本数が少ない反射器132によって構成されていることが模式的に示されている。
 図4の(b)に示すように、反射器の電極指の本数が少ないほど***振周波数のQ(Qa)が低くなることがわかる。一方、反射器の電極指の本数が少ないほど共振周波数のQ(Qr)も低くはなるが、低下量は少ないことがわかる。しかしながら、反射器を有さない並列腕共振子p2は、反射器を有する場合と比べ、共振周波数のQの低下量は少ないとはいえ、共振周波数のQは低くなっている。
 そこで、フィルタ10Bのように、並列腕共振子p2aの反射器132の電極指の本数を少なくすることにより、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化をより抑制しつつ、弾性波フィルタ装置を小型化できる。
 また、図17に示すように、直列腕共振回路(ここでは、直列腕共振子s1)は、弾性波を励振する1以上のIDT電極(ここでは、1つのIDT電極)と、当該IDT電極によって励振される弾性波を反射する反射器とを有し、直列腕共振子s1における反射器は、並列腕共振子p2a(第2並列腕共振子)における反射器よりも電極指の本数が多い。フィルタの通過帯域及び減衰帯域は、直列腕共振子s1の共振周波数及び***振周波数とで形成される。共振子単体のインピーダンス特性については、共振子を構成する反射器の電極指の本数が多い場合と少ない場合とで、***振周波数のQに大きな差はあり、共振周波数のQにも少なからず差はある。このため、直列腕共振子s1を構成する反射器の電極指の本数を多くすることにより直列腕共振子の共振周波数及び***振周波数のQを高くし、通過帯域内のロスの増大及び通過帯域高域側のキレの劣化をより抑制できる。
 また、例えば、上述した高周波フロントエンド回路とRFIC3(RF信号処理回路)とを備える通信装置4も本発明に含まれる。このような通信装置4によれば、低ロス化と高選択度化を図ることができる。
 また、直列腕共振子s1ならびに並列腕共振子p1及びp2を構成するIDT電極の縦横比は同じであっても異なっていてもかまわないが、フィルタ特性を向上する観点からは、並列腕共振子p2を構成するIDT電極131の縦横比が、並列腕共振子p1を構成するIDT電極121の縦横比より小さいことが好ましい。
 また、直列腕共振子s1ならびに並列腕共振子p1及びp2を構成するIDT電極のデューティ比は同じであっても異なっていてもかまわないが、フィルタ特性を向上する観点からは、並列腕共振子p2を構成するIDT電極131のデューティ比が、並列腕共振子p1を構成するIDT電極121のデューティ比より大きいことが好ましい。
 また、直列腕共振子s1は、弾性表面波を用いた弾性波共振子に限らず、例えば、バルク波または弾性境界波を用いた弾性波共振子によって構成されていてもかまわない。つまり、直列腕共振子s1は、IDT電極によって構成されていなくてもかまわない。このような直列腕共振子s1を有する弾性波フィルタ装置であっても、弾性波共振子は一般的に高Qの特性を示すため、低ロス化と高選択度化(自帯域に隣接する他の帯域との相互干渉の抑制)との両立を図ることができる。
 また、例えば、高周波フロントエンド回路または通信装置において、各構成要素の間に、インダクタやキャパシタが接続されていてもかまわない。なお、当該インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
 本発明は、マルチバンドシステムに適用できる小型のフィルタ、マルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
 1、1A  高周波フロントエンド回路
 2  アンテナ素子
 3  RFIC(RF信号処理回路)
 4  通信装置
 10、10A、10B、20A~20E、100  フィルタ(弾性波フィルタ装置)
 11m  入出力端子(第1入出力端子)
 11n  入出力端子(第2入出力端子)
 101、111、121、131  IDT電極
 101a、101b  櫛歯電極
 101g  密着層
 101h  主電極層
 102  圧電基板
 103  保護層
 110a、110b  電極指
 111a、111b  バスバー電極
 112、122、132、142  反射器
 120  デュプレクサ
 120A  フィルタ群
 120Rx  受信側フィルタ
 120Tx  送信側フィルタ
 130A、130B  送信側スイッチ
 140、140A、140B  送信増幅回路
 150A~150C  受信側スイッチ
 160、160A、160B  受信増幅回路
 C、C1、C2  キャパシタ(インピーダンス素子)
 p1、p2、p2a、p12  並列腕共振子
 s1  直列腕共振子(直列腕共振回路)
 SW、SW1、SW2  スイッチ(スイッチ素子)

Claims (16)

  1.  第1入出力端子と第2入出力端子とを結ぶ経路上に接続された直列腕共振回路と、
     前記経路上の同一ノードとグランドとの間に接続された第1並列腕共振子及び第2並列腕共振子と、を有し、
     前記第2並列腕共振子における共振周波数は、前記第1並列腕共振子における共振周波数よりも高く、
     前記第2並列腕共振子における***振周波数は、前記第1並列腕共振子における***振周波数よりも高く、
     前記第2並列腕共振子は、弾性波を励振するIDT電極を有し、かつ、反射器を有さない、
     弾性波フィルタ装置。
  2.  前記第1並列腕共振子は、弾性波を励振するIDT電極と、当該IDT電極によって励振される弾性波を反射する反射器とを有する、
     請求項1に記載の弾性波フィルタ装置。
  3.  第1入出力端子と第2入出力端子との間に接続された1以上の弾性波共振子からなる直列腕共振回路と、
     前記第1入出力端子と前記第2入出力端子とを結ぶ経路の同一ノードとグランドとの間に接続された第1並列腕共振子及び第2並列腕共振子と、を有し、
     前記第2並列腕共振子における共振周波数は、前記第1並列腕共振子における共振周波数よりも高く、
     前記第2並列腕共振子における***振周波数は、前記第1並列腕共振子における***振周波数よりも高く、
     前記第1並列腕共振子及び前記第2並列腕共振子は、それぞれ、
     弾性波を励振するIDT電極と、
     当該IDT電極によって励振される弾性波を反射する反射器と、を有し、
     前記第2並列腕共振子における反射器は、前記第1並列腕共振子における反射器よりも、電極指の本数が少ない、
     弾性波フィルタ装置。
  4.  前記直列腕共振回路は、
     弾性波を励振する1以上のIDT電極と、
     当該IDT電極によって励振される弾性波を反射する反射器と、を有し、
     前記第2並列腕共振子における反射器は、前記直列腕共振回路における反射器よりも、電極指の本数が少ない、
     請求項3に記載の弾性波フィルタ装置。
  5.  前記第1並列腕共振子及び前記第2並列腕共振子は、並列接続されている、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
  6.  さらに、前記第1並列腕共振子及び前記第2並列腕共振子の少なくとも一方に直列接続され、かつ、互いに並列接続された一対のインピーダンス素子及びスイッチ素子を有する、
     請求項5に記載の弾性波フィルタ装置。
  7.  前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第2並列腕共振子のみに直列接続されている、
     請求項6に記載の弾性波フィルタ装置。
  8.  前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続されている、
     請求項6に記載の弾性波フィルタ装置。
  9.  前記互いに並列接続された一対のインピーダンス素子及びスイッチ素子は、前記第1並列腕共振子と前記第2並列腕共振子とが並列接続された回路に対し直列接続されている、
     請求項6に記載の弾性波フィルタ装置。
  10.  さらに、
     前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続され、かつ、互いに並列接続された一対のインピーダンス素子及びスイッチ素子と、
     前記第1並列腕共振子及び前記第2並列腕共振子のうち前記第1並列腕共振子のみに直列接続され、かつ、互いに並列接続された他の一対のインピーダンス素子及びスイッチ素子と、を有する、
     請求項5に記載の弾性波フィルタ装置。
  11.  前記第1並列腕共振子及び前記第2並列腕共振子は、直列接続されている、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
  12.  さらに、前記第1並列腕共振子及び前記第2並列腕共振子の一方に並列接続されたスイッチ素子を有する、
     請求項11に記載の弾性波フィルタ装置。
  13.  前記直列腕共振回路は、1以上の弾性波共振子からなる直列腕共振子であり、前記第1並列腕共振子及び第2並列腕共振子と共にラダー型のフィルタ構造を構成する、
     請求項1~12のいずれか1項に記載の弾性波フィルタ装置。
  14.  前記直列腕共振回路は、複数の弾性波共振子からなる縦結合共振子である、
     請求項1~12のいずれか1項に記載の弾性波フィルタ装置。
  15.  請求項1~14のいずれか1項に記載の弾性波フィルタ装置と、
     前記弾性波フィルタ装置に接続された増幅回路と、を備える、
     高周波フロントエンド回路。
  16.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項15に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2017/031269 2016-09-02 2017-08-30 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置 WO2018043608A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780053011.8A CN109643989B (zh) 2016-09-02 2017-08-30 弹性波滤波器装置、高频前端电路以及通信装置
US16/283,882 US10530335B2 (en) 2016-09-02 2019-02-25 Acoustic wave filter device, radio-frequency front-end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172190 2016-09-02
JP2016172190 2016-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/283,882 Continuation US10530335B2 (en) 2016-09-02 2019-02-25 Acoustic wave filter device, radio-frequency front-end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2018043608A1 true WO2018043608A1 (ja) 2018-03-08

Family

ID=61300913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031269 WO2018043608A1 (ja) 2016-09-02 2017-08-30 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置

Country Status (3)

Country Link
US (1) US10530335B2 (ja)
CN (1) CN109643989B (ja)
WO (1) WO2018043608A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036100A1 (ja) * 2018-08-13 2020-02-20 株式会社村田製作所 弾性波フィルタ
WO2024085127A1 (ja) * 2022-10-17 2024-04-25 株式会社村田製作所 弾性波装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114663B4 (de) * 2016-08-08 2024-07-04 Snaptrack, Inc. Multiplexer
CN111183585B (zh) * 2017-10-10 2023-09-15 株式会社村田制作所 多工器
CN112886942B (zh) * 2019-11-29 2023-07-07 华为技术有限公司 滤波电路、双工器、通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2013110595A (ja) * 2011-11-21 2013-06-06 Taiyo Yuden Co Ltd フィルタおよび分波器
JP2014068123A (ja) * 2012-09-25 2014-04-17 Murata Mfg Co Ltd ラダー型フィルタ及び分波器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044971B1 (ko) * 2003-07-30 2011-06-29 파나소닉 주식회사 탄성 표면파 필터
JP4734436B2 (ja) * 2008-04-11 2011-07-27 日本電波工業株式会社 デュプレクサ
WO2010103882A1 (ja) * 2009-03-10 2010-09-16 株式会社村田製作所 ラダー型弾性波フィルタ
JP6017868B2 (ja) * 2011-11-04 2016-11-02 太陽誘電株式会社 分波器、フィルタ及び通信モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2013110595A (ja) * 2011-11-21 2013-06-06 Taiyo Yuden Co Ltd フィルタおよび分波器
JP2014068123A (ja) * 2012-09-25 2014-04-17 Murata Mfg Co Ltd ラダー型フィルタ及び分波器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036100A1 (ja) * 2018-08-13 2020-02-20 株式会社村田製作所 弾性波フィルタ
KR20210022080A (ko) * 2018-08-13 2021-03-02 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터
JPWO2020036100A1 (ja) * 2018-08-13 2021-08-10 株式会社村田製作所 弾性波フィルタ
JP7047919B2 (ja) 2018-08-13 2022-04-05 株式会社村田製作所 弾性波フィルタ
KR102587884B1 (ko) * 2018-08-13 2023-10-10 가부시키가이샤 무라타 세이사쿠쇼 탄성파 필터
US11929737B2 (en) 2018-08-13 2024-03-12 Murata Manufacturing Co., Ltd. Acoustic wave filter
WO2024085127A1 (ja) * 2022-10-17 2024-04-25 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20190190491A1 (en) 2019-06-20
CN109643989A (zh) 2019-04-16
CN109643989B (zh) 2023-03-21
US10530335B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP6669262B2 (ja) 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
JP6669263B2 (ja) 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
WO2018043608A1 (ja) 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
WO2018061950A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018051846A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6750676B2 (ja) 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置
KR102249183B1 (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
WO2018061949A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
KR102194752B1 (ko) 탄성파 필터 장치, 고주파 프론트엔드 회로 및 통신 장치
CN109792238B (zh) 弹性波滤波器装置、高频前端电路以及通信装置
WO2018097203A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018016279A1 (ja) 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置
US11394368B2 (en) Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
WO2018056224A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
WO2018061878A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
WO2017204348A1 (ja) 高周波フィルタ回路、高周波フロントエンド回路及び通信装置
WO2018186227A1 (ja) 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
WO2018056056A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP