WO2018042797A1 - 内視鏡対物光学系 - Google Patents

内視鏡対物光学系 Download PDF

Info

Publication number
WO2018042797A1
WO2018042797A1 PCT/JP2017/020692 JP2017020692W WO2018042797A1 WO 2018042797 A1 WO2018042797 A1 WO 2018042797A1 JP 2017020692 W JP2017020692 W JP 2017020692W WO 2018042797 A1 WO2018042797 A1 WO 2018042797A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
positive
optical system
objective optical
object side
Prior art date
Application number
PCT/JP2017/020692
Other languages
English (en)
French (fr)
Inventor
辻善文
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201780026828.6A priority Critical patent/CN109073864B/zh
Priority to EP17845808.9A priority patent/EP3508900A4/en
Priority to JP2017559483A priority patent/JP6266195B1/ja
Publication of WO2018042797A1 publication Critical patent/WO2018042797A1/ja
Priority to US16/171,021 priority patent/US10809521B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Definitions

  • the present invention relates to a small and bright objective optical system, and more particularly to an endoscope objective optical system.
  • the endoscope is a device that is widely used in the medical field and the industrial field. Particularly in the medical field, from the viewpoint of reducing the burden on the patient and improving the diagnostic accuracy, the image pickup elements of endoscopes such as CCDs and CMOSs are becoming smaller and higher in pixel, and the pixel pitch is becoming smaller year by year. ing. Therefore, the endoscope objective optical system is also required to be downsized while satisfying optical performance such as wide angle and aberration correction.
  • Patent Documents 1 and 2 propose small endoscope objective optical systems.
  • Patent Documents 3 and 4 propose small optical systems for digital cameras.
  • the objective optical system of Patent Document 1 is small and has a large Fno optical specification.
  • the objective optical system of Patent Document 2 is small and has a small Fno, and is not easily affected by diffraction.
  • the objective optical system is configured such that the sensitivity due to variations in focus position is relaxed and the focus adjustment work is facilitated.
  • the zoom lens disclosed in Patent Document 3 is a small, high-performance optical system having an anti-vibration function.
  • the optical system of Patent Document 4 is a small and high-performance optical system mainly used in a small imaging device such as a digital camera.
  • Fno of the objective optical system is in a range that satisfies the following formula (A) so as not to be affected by diffraction.
  • P is the pixel pitch of the image sensor.
  • Patent Document 2 The objective optical system of Patent Document 2 is still insufficient in order to obtain a stable and good optical performance in view of the fact that the focus position shifts due to the assembly load after focus adjustment.
  • the focus position shift, the curing shrinkage of the adhesive, and the mechanical member that holds the focus position when placed in a high temperature environment to promote the curing of the adhesive
  • the focus position may be shifted due to thermal expansion.
  • the objective optical system has the same specification, a phenomenon in which the observation depth is different due to the manufacturing variation described above occurs, and an image may be blurred in observation with a short-distance object or a long-distance object. In that case, high-definition observation cannot be performed, and a problem arises in that the diagnostic accuracy is lowered for the surgeon.
  • the focus sensitivity is relaxed by increasing the positive refractive power of the field lens joined to the image sensor.
  • astigmatism increases only by increasing the positive refractive power of the field lens and reducing the focus sensitivity. For this reason, since the peripheral performance is deteriorated, it is difficult to further reduce the focus.
  • the lens configuration of the optical system for example, the most object-side lens shape is not suitable for application to an endoscope.
  • the present invention has been made in view of such problems, and the purpose thereof is small, can ensure a sufficient observation depth, has a wide viewing angle, and is easy to observe and diagnose a lesion.
  • An endoscope objective optical system is provided.
  • an endoscope objective optical system includes, in order from the object side, a front group having a negative refractive power as a whole, An aperture stop and a rear group having a positive refractive power as a whole.
  • the front group includes, in order from the object side, a first lens composed of a single lens having a negative refractive power, and a single lens having a positive refractive power.
  • the rear group includes a third lens composed of a single lens having a positive refractive power, a cemented lens of a fourth lens having a positive refractive power, and a fifth lens having a negative refractive power.
  • a sixth lens having a positive refractive power The object side surface of the first lens is a flat surface, the second lens has a meniscus shape with a convex surface facing the image side, and the sixth lens is cemented with the image sensor, and satisfies the following conditional expression (1): It is characterized by. ⁇ 1.2 ⁇ D6 / F12 ⁇ ⁇ 0.47 (1) here, D6 is the thickness of the sixth lens, F12 is the combined focal length from the first lens to the second lens, It is.
  • the present invention is advantageous in that it is possible to provide a high-performance endoscope objective optical system that is small and can secure a sufficient observation depth, has a wide viewing angle, and is easy to observe and diagnose a lesion.
  • FIG. 1 It is a figure which shows the lens cross-section structure of the endoscope objective optical system which concerns on one Embodiment of this invention.
  • (A) is a figure which shows the lens cross-section structure of the endoscope objective optical system which concerns on Example 1 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 1, respectively.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 2, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 3 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 3, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 4 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, in Example 4.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 5 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, in Example 5.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 6 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 6, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 7 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 7, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 8 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, of Example 8.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 9 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 9, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 10 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 10, respectively.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 11 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, in Example 11.
  • (A) is a figure which shows the lens cross-sectional structure of the endoscope objective optical system which concerns on Example 12 of this invention.
  • (B), (c), (d), and (e) are aberration diagrams showing the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) of Example 12, respectively. It is.
  • FIG. 1 is a diagram showing a lens cross-sectional configuration of an endoscope objective optical system according to an embodiment of the present invention.
  • the endoscope objective optical system includes, in order from the object side, a front group FL having a negative refractive power as a whole, an aperture stop S, and a rear group RL having a positive refractive power as a whole.
  • the front group FL includes, in order from the object side, a first lens L1 composed of a single lens having a negative refractive power and a second lens L2 composed of a single lens having a positive refractive power
  • the rear group RL includes A third lens L3 composed of a single lens having a positive refractive power, a cemented lens CL1 of a fourth lens L4 having a positive refractive power and a fifth lens L5 having a negative refractive power, and a sixth lens L6 having a positive refractive power
  • the object side surface of the first lens L1 is a flat surface
  • the second lens L2 has a meniscus shape with a convex surface facing the image side
  • the sixth lens L6 is joined to the image sensor IMG.
  • the following conditional expression (1) is satisfied. ⁇ 1.2 ⁇ D6 / F12 ⁇ ⁇ 0.47 (1) here, D6 is the thickness of the sixth lens L6, F12 is a composite focal length from the first lens L1 to the second lens L2,
  • the aperture stop S is formed on the image side surface of the infrared absorption filter F1.
  • a cover glass CG for preventing scratches and the like from entering the imaging element IMG is attached.
  • the sixth lens L6 is bonded to the cover glass CG. For this reason, the sixth lens L6 is joined to the imaging element IMG.
  • a negative first lens L1 having a flat surface on the most object side is first arranged, and a convex surface on the image side is arranged on the image side.
  • a meniscus positive second lens L2 facing the lens is disposed.
  • the second lens L2 having a positive refractive power is disposed so that the lens diameter is not increased while the retrofocus configuration is adopted and the aberration in the first lens L1 is corrected.
  • a compact and high-performance objective optical system suitable for an endoscope is configured.
  • the first lens L1 is preferably configured as follows. In observation with an endoscope, when dirt or blood adheres to the object-side lens surface of the first lens L1, the lens surface is cleaned by ejecting water from a nozzle provided at the tip of the endoscope. At the time of cleaning, if the shape of the lens surface on the object side of the first lens L1 is a convex shape, it becomes difficult to remove dirt. Further, when the lens surface on the object side of the first lens L1 is concave, water drainage such as water accumulation is not good. Furthermore, when the lens surface on the object side of the first lens L1 has a convex shape, scratches and cracks due to impact tend to occur. Therefore, the negative first lens L1 is a plano-concave lens, and the negative first lens L1 is arranged so that the plane faces the object side. By doing so, water breakage during observation is improved and lens cracking due to impact is reduced.
  • a positive lens group for maintaining the positive refractive power mainly contributing to the image formation on the image side of the second lens L2 it is possible to suppress the occurrence of aberrations even when the Fno is small and bright, and the size is small. Allocating the power necessary for commercialization.
  • a cemented lens of a positive lens and a negative lens is disposed on the image side of the third lens L3 and at a position where the peripheral light ray height becomes high. Thereby, chromatic aberration is corrected.
  • a positive sixth lens L6 that is cemented with the imaging element IMG is disposed on the image side in the rear group RL. As a result, it is possible to increase the optical magnification and obtain optical performance with little influence on the optical performance even if the focus position varies.
  • the lens is configured to satisfy the following conditional expression (1).
  • D6 is the thickness of the sixth lens L6
  • F12 is a composite focal length from the first lens L1 to the second lens L2, It is.
  • Conditional expression (1) relates to the ratio between the thickness of the sixth lens L6 and the combined focal length from the first lens L1 to the second lens L2. If the upper limit of conditional expression (1) is exceeded, the negative refractive power of the first lens L1 and the second lens L2 will be reduced, resulting in increased astigmatism, and high definition image quality cannot be obtained with a wide field of view. . In addition, the curved surface of the sixth lens L6 becomes close to the image plane, and a sufficient defocusing effect cannot be obtained. This results in an endoscope objective optical system that is weak against a focus position shift due to manufacturing variations.
  • conditional expression (1) If the lower limit value of conditional expression (1) is not reached, a sufficient defocusing effect can be obtained, but the negative refractive power of the first lens L1 and the second lens L2 becomes too large and coma aberration and the like deteriorate. .
  • the curved surface of the sixth lens L6 is far from the image surface, the entire length of the optical system becomes long, or the back focus for focusing cannot be secured, so that a small and high-definition image quality can be obtained. Can not.
  • conditional expression (1 ′) it is preferable to satisfy the following conditional expression (1 ′) instead of conditional expression (1). ⁇ 1.1 ⁇ D6 / F12 ⁇ ⁇ 0.5 (1 ′) It is more preferable that the following conditional expression (1 ′′) is satisfied instead of conditional expression (1). ⁇ 1.0 ⁇ D6 / F12 ⁇ ⁇ 0.55 (1 ′′)
  • the negative first lens L1 needs a relatively large negative refractive power in order to constitute a retrofocus type.
  • coma aberration and the like may be deteriorated if the negative refractive power of the first lens L1 is too large.
  • the positive fourth lens L4 is disposed far from the aperture stop S, the height of the light beam increases, so that the coma aberration and the chromatic aberration of the peripheral performance are balanced. Therefore, by appropriately setting the refractive powers of the negative first lens L1 and the positive fourth lens L4, as in this embodiment, the Fno is bright and the focus sensitivity is sufficiently relaxed while ensuring the back focus.
  • the entire endoscope objective optical system can also balance the entire aberration.
  • conditional expression (2) it is desirable that the following conditional expression (2) is satisfied.
  • F4 is the focal length of the fourth lens L
  • F1 is the focal length of the first lens L1, It is.
  • Conditional expression (2) relates to the ratio between the focal length of the fourth lens L4 and the focal length of the first lens L1.
  • conditional expression (2) If the lower limit of conditional expression (2) is not reached, the lens diameter becomes too large to satisfy miniaturization, or chromatic aberration is overcorrected.
  • conditional expression (2) it is preferable to satisfy the following conditional expression (2 ′) instead of conditional expression (2). 1.55 ⁇
  • the first lens L1 and the fifth lens L5 are disposed far from the aperture stop S, the first lens L1 and the fifth lens L5 affect the optical performance in the periphery of the screen, and also the lens diameter because the height of the peripheral rays increases.
  • the configuration of the negative fifth lens L5 that increases the peripheral ray height is important.
  • conditional expression (3) it is desirable that the following conditional expression (3) is satisfied.
  • F5 is the focal length of the fifth lens L
  • F1 is the focal length of the first lens L1, It is.
  • conditional expression (3) If the upper limit of conditional expression (3) is exceeded, the negative refracting power becomes too large and the coma aberration cannot be corrected and deteriorated, or the lateral chromatic aberration becomes insufficiently corrected.
  • conditional expression (3) it is preferable to satisfy the following conditional expression (3 ′) instead of conditional expression (3). 1.63 ⁇
  • the main positive refractive power in the lens configuration of the present embodiment is ensured by the third lens L3 and the fourth lens L4 of the cemented lens CL1. For this reason, aberration is likely to occur here. Further, the positive refractive power constituting the retrofocus is also held by the third lens L3 and the fourth lens L4, and is related to the size of the objective optical system. In particular, since the axial ray becomes high, the influence of aberration is high, and the third lens L3 that is not cemented easily secures the refractive power, and also contributes to securing the back focus at the time of defocusing. For this reason, it is necessary to appropriately set the refractive powers of the third lens L3 and the fourth lens L4.
  • conditional expression (4) it is desirable that the following conditional expression (4) is satisfied.
  • R3R is the radius of curvature of the third lens L3 on the image side
  • R4L is a radius of curvature of the fourth lens L4 on the object side
  • Conditional expression (4) relates to an appropriate relationship between the curvature radius on the image side of the third lens L3 and the curvature radius on the object side of the fourth lens L4.
  • conditional expression (4) If the upper limit of conditional expression (4) is exceeded, the correction of coma aberration will be reduced and the overall length will be longer, and it will be impossible to obtain a small and high-definition image quality.
  • conditional expression (4) If the lower limit of conditional expression (4) is not reached, spherical aberration deteriorates, and the back focus necessary for focusing cannot be secured.
  • conditional expression (4 ′) it is preferable to satisfy the following conditional expression (4 ′) instead of conditional expression (4). 0.17 ⁇
  • the negative first lens L1 and the positive second lens L2 arranged in the front group FL play an important role for widening and downsizing the optical system.
  • the radius of curvature of the positive second lens L2 contributes to the generation of coma and chromatic aberration.
  • the radius of curvature of the sixth lens L6 plays an important role in reducing the focus sensitivity, but contributes to the generation of astigmatism.
  • conditional expressions (5) and (6) it is desirable to satisfy the following conditional expressions (5) and (6) in order to balance the amount of each aberration generated, the lens diameter, and the focus sensitivity.
  • conditional expressions (5) and (6) it is desirable to satisfy the conditional expressions (5) and (6) at the same time.
  • F12 is a composite focal length from the first lens L1 to the second lens L2
  • R6L is a radius of curvature of the sixth lens L6 on the object side
  • R2L is a radius of curvature on the object side of the second lens L2, It is.
  • Conditional expression (5) relates to the ratio between the combined focal length from the first lens L1 to the second lens L2 and the radius of curvature of the sixth lens L6 on the object side.
  • Conditional expression (6) relates to the ratio between the object-side radius of curvature of the second lens L2 and the object-side radius of curvature of the sixth lens L6.
  • conditional expression (5) If the upper limit value of conditional expression (5) is exceeded, coma will deteriorate or astigmatism will deteriorate.
  • conditional expression (5) If the lower limit of conditional expression (5) is not reached, the lens diameter becomes large, or a sufficient focus relaxation effect cannot be obtained, resulting in an endoscope objective optical system that is vulnerable to focus position shifts due to manufacturing variations. .
  • conditional expression (6) If the upper limit of conditional expression (6) is exceeded, chromatic aberration will worsen or astigmatism will worsen.
  • conditional expression (6) If the lower limit value of conditional expression (6) is not reached, coma aberration deteriorates or a sufficient focus relaxation effect cannot be obtained, resulting in an endoscope objective optical system that is vulnerable to focus position shifts due to manufacturing variations.
  • conditional expressions (5 ′) and (6 ′) are satisfied instead of conditional expressions (5) and (6).
  • conditional expressions (5 ′′) and (6 ′′) instead of the conditional expressions (5) and (6).
  • the image-side surface of the fourth lens L4 Since the image-side surface of the fourth lens L4 has a high light ray height, it greatly contributes to correction of each chromatic aberration. In addition, the image side surface of the third lens L3 greatly contributes to spherical aberration because the amount of coma and the axial ray height are increased.
  • R4R is the radius of curvature of the fourth lens L4 on the image side
  • R3R is the radius of curvature of the third lens L3 on the image side
  • Conditional expression (7) relates to the ratio between the image-side radius of curvature of the fourth lens L4 and the image-side radius of curvature of the third lens L3.
  • conditional expression (7) If the upper limit of conditional expression (7) is exceeded, chromatic aberration will be insufficiently corrected, or spherical aberration will deteriorate, and the back focus necessary for focusing cannot be secured.
  • conditional expression (7) If the lower limit of conditional expression (7) is not reached, chromatic aberration will be overcorrected or coma will be worsened, and the total length of the optical system will be longer, so that a small and high-definition image quality can be obtained. Can not.
  • conditional expression (7 ′) it is preferable to satisfy the following conditional expression (7 ′) instead of conditional expression (7). 0.65 ⁇ R4R / R3R ⁇ 1.15 (7 ′) It is more preferable that the following conditional expression (7 ′′) is satisfied instead of conditional expression (7). 0.7 ⁇ R4R / R3R ⁇ 1.1 (7 ′′)
  • conditional expression (8) it is desirable that the following conditional expression (8) is satisfied.
  • R4R is the radius of curvature of the fourth lens L4 on the image side
  • R2R is the radius of curvature on the image side of the second lens L2, It is.
  • Conditional expression (8) relates to the ratio between the image-side radius of curvature of the fourth lens L4 and the image-side radius of curvature of the second lens L2.
  • Chromatic aberration correction is important for endoscope objective optical systems that are compatible with small, high-pixel imaging devices.
  • Conditional expression (8) relates to chromatic aberration together with conditional expression (7), and the image side surface of the second lens L2 greatly contributes to each chromatic aberration.
  • conditional expression (8) If the upper limit of conditional expression (8) is exceeded, the lateral chromatic aberration will be insufficiently corrected or the axial chromatic aberration will be insufficiently corrected, and the back focus necessary for focusing cannot be secured.
  • conditional expression (8 ′) it is preferable to satisfy the following conditional expression (8 ′) instead of conditional expression (8). 0.62 ⁇ R4R / R2R ⁇ 0.9 (8 ′) It is more preferable that the following conditional expression (8 ′′) is satisfied instead of conditional expression (8). 0.65 ⁇ R4R / R2R ⁇ 0.7 (8 ′′)
  • the positive third lens L3 has a relatively large refractive power in order to constitute a retrofocus. For this reason, the amount of aberration generated also increases.
  • R3R is the radius of curvature of the third lens L3 on the image side
  • R3L is the radius of curvature of the third lens L3 on the object side
  • Conditional expression (9) relates to the ratio between the curvature radius on the image side of the third lens L3 and the curvature radius on the object side of the third lens L3.
  • conditional expression (9) If the upper limit value of conditional expression (9) is exceeded, coma will deteriorate and the total length of the optical system will also become longer.
  • conditional expression (9) If the lower limit of conditional expression (9) is not reached, the chromatic aberration of magnification is insufficiently corrected, and the back focus necessary for focusing cannot be secured.
  • conditional expression (9 ′) it is preferable to satisfy the following conditional expression (9 ′) instead of conditional expression (9). 0.7 ⁇
  • the cemented lens CL1 of the fourth lens L4 and the fifth lens L5 greatly contributes to the correction of each chromatic aberration, and the positive refractive power of the sixth lens L6 greatly contributes to the reduction of the focus sensitivity.
  • conditional expression (10) is satisfied according to a preferred aspect of the present embodiment.
  • F45 is the focal length of the cemented lens of the fourth lens L4 and the fifth lens L5
  • F6 is the focal length of the sixth lens L6, It is.
  • conditional expression (10) If the upper limit of conditional expression (10) is exceeded, lateral chromatic aberration will be overcorrected or astigmatism will deteriorate.
  • conditional expression (10) If the lower limit value of conditional expression (10) is not reached, the chromatic aberration of magnification will be insufficiently corrected, or a sufficient focus relaxation effect will not be obtained, resulting in an endoscope objective optical system that is vulnerable to focus position shifts due to manufacturing variations. End up.
  • conditional expression (10 ′) it is preferable to satisfy the following conditional expression (10 ′) instead of conditional expression (10). 2.5 ⁇ F45 / F6 ⁇ 7.2 (10 ′) It is more preferable that the following conditional expression (10 ′′) is satisfied instead of conditional expression (10). 2.7 ⁇ F45 / F6 ⁇ 7.1 (10 ′′)
  • FIG. 2A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 2B, 2C, 2D, and 2E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 1, respectively. It is an aberration diagram.
  • FIG. 3A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 3B, 3C, 3D, and 3E show the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, of Example 2. It is an aberration diagram.
  • FIG. 4A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 4B, 4C, 4D, and 4E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 3, respectively. It is an aberration diagram.
  • FIG. 5A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 5B, 5C, 5D, and 5E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 4, respectively. It is an aberration diagram.
  • FIG. 6A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present example.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 An aperture stop S
  • a positive third meniscus lens L3 having a convex surface facing the image side
  • a positive fourth lens L4 having a biconvex shape
  • a negative fifth meniscus lens L5 having a concave surface facing the object side
  • It is composed of a positive sixth lens L6 having a convex surface directed toward the object side and a CCD cover glass CG.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third meniscus lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • CC lateral chromatic aberration
  • FIG. 7A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 An aperture stop S
  • a positive third meniscus lens L3 having a convex surface facing the image side
  • a positive fourth lens L4 having a biconvex shape
  • a negative fifth meniscus lens L5 having a concave surface facing the object side
  • It is composed of a positive sixth lens L6 having a convex surface directed toward the object side and a CCD cover glass CG.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third meniscus lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • CC lateral chromatic aberration
  • FIG. 8A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 8B, 8C, 8D, and 8E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 7, respectively. It is an aberration diagram.
  • Example 8 An endoscope objective optical system according to Example 8 will be described.
  • Fig.9 (a) is a figure which shows the lens cross-section structure of the endoscope objective optical system based on a present Example.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 9B, 9C, 9D, and 9E show the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, of Example 8. It is an aberration diagram.
  • FIG. 10A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present example.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the biconvex positive third lens L3, the biconvex positive fourth lens L4, the negative fifth meniscus lens L5 with the concave surface facing the object side, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 10B, 10C, 10D, and 10E show the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC), respectively, of Example 9. It is an aberration diagram.
  • FIG. 11A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present embodiment.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the positive third meniscus lens L3 with the convex surface facing the image side, the biconvex positive fourth lens L4, the biconcave negative fifth lens L5, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third meniscus lens L3, a positive fourth lens L4, a negative fifth lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion
  • CC lateral chromatic aberration
  • FIG. 12A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present example.
  • the front group FL having a negative refractive power as a whole, the aperture stop S, and the rear group RL having a positive refractive power as a whole are arranged in order from the object side.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 The aperture stop S, the positive third meniscus lens L3 with the convex surface facing the image side, the biconvex positive fourth lens L4, the biconcave negative fifth lens L5, and the convex surface on the object side.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third meniscus lens L3, a positive fourth lens L4, a negative fifth lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 12B, 12C, 12D, and 12E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 11, respectively. It is an aberration diagram.
  • FIG. 13A is a diagram illustrating a lens cross-sectional configuration of the endoscope objective optical system according to the present example.
  • a plano-concave negative first lens L1 having a plane facing the object side
  • a positive second meniscus lens L2 having a convex surface facing the image side
  • an infrared absorption filter F1 An aperture stop S
  • a positive third meniscus lens L3 having a convex surface facing the image side
  • a positive fourth lens L4 having a biconvex shape
  • a negative fifth meniscus lens L5 having a concave surface facing the object side
  • It is composed of a positive sixth lens L6 having a convex surface directed toward the object side and a CCD cover glass CG.
  • I is an imaging surface
  • IMG is an imaging device.
  • the front group FL includes a negative first lens L1 and a positive second meniscus lens L2.
  • the rear group RL includes a positive third meniscus lens L3, a positive fourth lens L4, a negative fifth meniscus lens L5, and a positive sixth lens L6.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1
  • the LD laser cut coating is applied to the image side.
  • the positive fourth lens L4 and the negative fifth meniscus lens L5 are cemented to form a cemented lens CL1.
  • the positive sixth lens L6 and the CCD cover glass CG are cemented.
  • FIGS. 13B, 13C, 13D, and 13E show the spherical aberration (SA), astigmatism (AS), distortion aberration (DT), and lateral chromatic aberration (CC) of Example 12, respectively. It is an aberration diagram.
  • r is the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • nd is the refractive index of the d line of each lens
  • ⁇ d is the Abbe number of each lens
  • FNo is the F number
  • is the half angle of view.
  • IH is the image height.
  • the above-described endoscope objective optical system may satisfy a plurality of configurations at the same time. This is preferable in obtaining a good endoscope objective optical system.
  • the combination of a preferable structure is arbitrary. For each conditional expression, only the upper limit value or lower limit value of the numerical range of the more limited conditional expression may be limited.
  • the present invention is useful for a high-performance endoscope objective optical system that is small and can secure a sufficient observation depth, has a wide viewing angle, and is easy to observe and diagnose a lesion.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

小型で十分な観察深度を確保でき、広角の視野角を有し、病変の観察および診断がしやすい、高性能な内視鏡対物光学系を提供すること。 物体側から順に、負屈折力の前群FLと、明るさ絞りSと、正屈折力の後群RLと、からなり、前群FLは、物体側から順に、負の単レンズからなる第1レンズL1と、正の単レンズからなる第2レンズL2と、を有し、後群RLは、正の単レンズからなる第3レンズL3と、正の第4レンズL4と負の第5レンズL5の接合レンズCL1と、正の第6レンズL6と、を有し、第1レンズL1の物体側面は平面であり、第2レンズL2は像側に凸面を向けたメニスカス形状であり、第6レンズL6は撮像素子IMGと接合されており、以下の条件式(1)を満足する。 -1.2≦D6/F12≦-0.47 …(1) ここで、 D6は、第6レンズL6の肉厚、 F12は、第1レンズL1から第2レンズL2までの合成焦点距離、 である。

Description

内視鏡対物光学系
 本発明は、小型で、明るい対物光学系に関するもので、特に内視鏡対物光学系に関するものである。
 内視鏡は、医療用分野及び工業用分野で広く使用されている装置である。特に医療用分野においては、患者への負担低減や診断精度の向上等の観点から、内視鏡の撮像素子、例えばCCDやCMOSの小型化と高画素化が進み、画素ピッチが年々小さくなってきている。その為、内視鏡対物光学系についても、広角化や収差補正等の光学性能を満足させつつ、小型化を図ることが求められている。小型な内視鏡対物光学系が、例えば、特許文献1、2に提案されている。また、デジタルカメラ用の小型な光学系が、例えば、特許文献3、4に提案されている。
特許第4997348号公報 特許弟5927368号広報 特開2008-107478号公報 特開2006-84886号公報
 特許文献1の対物光学系は、小型で、大きなFnoの光学仕様となっている。特許文献2の対物光学系は、小型で小さいFnoを有しており回折の影響を受けにくい構成である。また、ピント位置のばらつきによる感度を緩めてピント調整作業を容易にした対物光学系となっている。特許文献3のズームレンズは、防振機能を有する小型、高性能な光学系である。特許文献4の光学系は、主にデジタルカメラのような小型撮像装置に用いられる小型、高性能の光学系である。
 特許文献1の対物光学系では、対物光学系のFnoは、回折の影響を受けないように、下記の式(A)を満足する範囲であるのが望ましい。
 Fno<2×P/1.22/λ   (A)
 ここで、Pは、撮像素子の画素ピッチである。
 画素ピッチの小さい光学系においては、光の回折による光学性能の劣化が発生してしまう。そのため、小型化、高画素に伴って画素ピッチが小さくなってきている近年において、特許文献1の対物光学系は、光の回折の影響により適用できない。
 特許文献2の対物光学系は、ピント調整後の組み立て負荷によってピント位置がずれてしまう事情を鑑みると、安定して良好な光学性能を得るためには、まだ不十分な構成である。例えば、ピント調整後にピント位置を固定するためには、メカ部材により光学系をロックし、接着剤により固定する必要がある。このとき、光学系をロックしたときに生じるピント位置のずれや、接着剤の硬化収縮、さらには、接着剤を硬化促進させるために高温環境下においた場合、ピント位置を把持しているメカ部材の熱膨張によるピント位置のずれなどが考えられる。そのため、同じ仕様の対物光学系にも関わらず上述した製造ばらつきによって観察深度が異なる現象が生じてしまい、近距離物体もしくは遠距離物体での観察では画像がボケてしまうことがある。その場合、高精細な観察ができなくなり、術者にとっては診断精度が落ちてしまう問題が生じてしまう。
 さらに、特許文献2の対物光学系では、撮像素子に接合されているフィールドレンズの正屈折力を大きくすることでピント感度を緩和している。ここで、上述した問題を解決するためには、さらにピント感度を緩和する必要がある。しかしながら、フィールドレンズの正屈折力を大きくしてピント感度を緩和しただけでは非点収差が大きくなる。このため、周辺性能が悪化してしまうため、より一層のピント緩和は難しい。
 このように、特許文献1、2の内視鏡対物光学系では、小型化によって生じる回折の影響や、組み立て負荷によってピント位置がずれた場合、光学性能が劣化してしまうため適用できない。
 また、特許文献3、4の光学系は、小型で高性能ではあるが、光学系のレンズ構成、例えば最も物体側のレンズ形状が内視鏡に適用するには好適ではない。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は小型で十分な観察深度を確保でき、広角の視野角を有し、病変の観察および診断がしやすい、高性能な内視鏡対物光学系を提供するものである。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る内視鏡対物光学系は、物体側から順に、全体として負の屈折力をもつ前群と、明るさ絞りと、全体として正の屈折力をもつ後群と、からなり、前群は、物体側から順に、負の屈折力の単レンズからなる第1レンズと、正の屈折力の単レンズからなる第2レンズと、を有し、後群は、正の屈折力の単レンズからなる第3レンズと、正の屈折力の第4レンズと負の屈折力の第5レンズの接合レンズと、正の屈折力の第6レンズと、を有し、
 第1レンズの物体側面は平面であり、第2レンズは像側に凸面を向けたメニスカス形状であり、第6レンズは撮像素子と接合されており、以下の条件式(1)を満足することを特徴とする。
 -1.2≦D6/F12≦-0.47   …(1)
 ここで、
 D6は、第6レンズの肉厚、
 F12は、第1レンズから第2レンズまでの合成焦点距離、
である。
 本発明は、小型で十分な観察深度を確保でき、広角の視野角を有し、病変の観察および診断がしやすい、高性能な内視鏡対物光学系を提供できるという効果を奏する。
本発明の一実施形態に係る内視鏡対物光学系のレンズ断面構成を示す図である。 (a)は、本発明の実施例1に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例1の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例2に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例2の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例3に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例3の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例4に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例4の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例5に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例5の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例6に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例6の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例7に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例7の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例8に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例8の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例9に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例9の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例10に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例10の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例11に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例11の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。 (a)は、本発明の実施例12に係る内視鏡対物光学系のレンズ断面構成を示す図である。(b)、(c)、(d)、(e)は、それぞれ実施例12の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
 以下に、実施形態に係る内視鏡対物光学系を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。
 図1は、本発明の一実施形態に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施形態の内視鏡対物光学系は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLと、からなり、前群FLは、物体側から順に、負の屈折力の単レンズからなる第1レンズL1と、正の屈折力の単レンズからなる第2レンズL2と、を有し、後群RLは、正の屈折力の単レンズからなる第3レンズL3と、正の屈折力の第4レンズL4と負の屈折力の第5レンズL5の接合レンズCL1と、正の屈折力の第6レンズL6と、を有し、第1レンズL1の物体側面が平面であり、第2レンズL2が像側に凸面を向けたメニスカス形状であり、第6レンズL6が撮像素子IMGと接合されており、以下の条件式(1)を満足することを特徴とする。
 -1.2≦D6/F12≦-0.47   …(1)
 ここで、
 D6は、第6レンズL6の肉厚、
 F12は、第1レンズL1から第2レンズL2までの合成焦点距離、
である。
 また、明るさ絞りSは、赤外線吸収フィルタF1の像側面に形成されている。また、撮像素子IMGの撮像面Iにおいては、撮像素子IMGにキズなどが入ることを防止するためのカバーガラスCGを貼り付けている。第6レンズL6は、カバーガラスCGと接合されている。このため、第6レンズL6は、撮像素子IMGと接合されている。
 以下、本実施形態において、このような構成をとった理由と作用を説明する。内視鏡に使用できるような小型で高性能な内視鏡対物光学系を構成するために、まず最も物体側が平面である負の第1レンズL1を配置し、その像側に像側に凸面を向けたメニスカス形状の正の第2レンズL2を配置している。
 このように、レトロフォーカス構成を採用し、第1レンズL1における収差を補正しつつ、レンズ径が大きくならないように、正の屈折力を有する第2レンズL2を配置する。これにより、内視鏡に好適な小型で高性能な対物光学系を構成している。
 また、第1レンズL1については、以下の構成にすることが好ましい。内視鏡による観察では、第1レンズL1の物体側のレンズ面に汚れや血液などが付着したとき、内視鏡先端に設けられたノズルから水を射出することでレンズ面の洗浄を行う。洗浄の際、第1レンズL1の物体側のレンズ面の形状が凸形状の場合、汚れが落ちにくくなってしまう。また、第1レンズL1の物体側のレンズ面が凹形状の場合、水が溜まるなどの水切れが良好でなくなってしまう。さらに、第1レンズL1の物体側のレンズ面が凸形状の場合、衝撃によるキズや割れが発生しやすくなる。そこで、負の第1レンズL1を平凹レンズとすると共に、物体側に平面を向けるように負の第1レンズL1を配置している。このようにすることで、観察中の水切れを良好にすると共に、衝撃によるレンズ割れを軽減している。
 そして、第2レンズL2の像側に、主に結像に寄与する正屈折力を保持するための正レンズ群を配置することで、Fnoが小さく、明るくても収差の発生を抑え、かつ小型化に必要なパワーを配分している。
 また、第3レンズL3の像側であって、周辺の光線高が高くなる位置に、正レンズと負レンズの接合レンズを配置する。これにより、色収差を補正する。
 さらに、後群RL内の像側に、撮像素子IMGと接合する正の第6レンズL6を配置する。これにより、光学倍率を上げ、ピント位置がばらついても光学性能への影響が少ない光学性能を得ることができる。
 ただし上述したように、第6レンズL6の正の屈折力を大きくしてピント感度を緩和しただけでは、非点収差が悪化してしまい良好な光学性能を確保できない。そのためには、第6レンズL6の厚みを厚くし、レンズの曲面を像面から離すことで光学倍率を上げ、ピント感度を緩和する必要がある。また、小型でかつ各収差を抑えるためには以下の条件式(1)を満たすように構成されていることが望ましい。
 -1.2≦D6/F12≦-0.47   …(1)
 ここで、
 D6は、第6レンズL6の肉厚、
 F12は、第1レンズL1から第2レンズL2までの合成焦点距離、
である。
 条件式(1)は、第6レンズL6の肉厚と、第1レンズL1から第2レンズL2までの合成焦点距離との比に関する。
 条件式(1)の上限値を上回ると、第1レンズL1と第2レンズL2の負屈折力が小さくなることで非点収差が大きくなり、広視野で、高精細な画質を得ることができない。また、第6レンズL6の曲面が像面に近くなってしまい十分なピント緩和効果が得られない。このため、製造ばらつきによるピント位置のずれに弱い内視鏡対物光学系となってしまう。
 条件式(1)の下限値を下回ると、十分なピント緩和効果を得ることができるが、第1レンズL1と第2レンズL2の負屈折力が大きくなりすぎてコマ収差などが悪化してしまう。また、第6レンズL6の曲面が像面から遠くなることで光学系の全長が長くなってしまうか、ピント出しを行うためのバックフォーカスが確保できないため、小型で高精細な画質を得ることができない。
 条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
 -1.1≦D6/F12≦-0.5   (1’)
 条件式(1)に代えて、以下の条件式(1”)を満足することがさらに好ましい。
 -1.0≦D6/F12≦-0.55   (1”)
 また、負の第1レンズL1はレトロフォーカスタイプを構成するために比較的大きい負屈折力が必要である。ただ、上述したように、第1レンズL1の負屈折力をあまり大きくしすぎるとコマ収差などが悪化してしまうことがある。また、正の第4レンズL4は、明るさ絞りSから遠くに配置されていることから光線高が上がるため、周辺性能のコマ収差、各色収差などのバランスを取っている。よって、この負の第1レンズL1と正の第4レンズL4の屈折力を適切に設定することにより、本実施形態のように、Fnoが明るく、ピント感度が十分に緩和されつつバックフォーカスも確保された内視鏡対物光学系でも全体の収差バランスを取ることが可能になる。
 このため、本実施形態の好ましい態様によれば、以下の条件式(2)を満足することが望ましい。
 1.5≦|F4/F1|≦2.0   …(2)
 ここで、
 F4は、第4レンズL4の焦点距離、
 F1は、第1レンズL1の焦点距離、
である。
 条件式(2)は、第4レンズL4の焦点距離と第1レンズL1の焦点距離の比に関する。
 条件式(2)の上限値を上回ると、負屈折力が大きくなりすぎてコマ収差が補正しきれず悪化してしまうか、色収差が補正不足となってしまう。
 条件式(2)の下限値を下回ると、レンズ径が大きくなりすぎて小型化を満たせないか、色収差が補正過剰となってしまう。
 条件式(2)に代えて、以下の条件式(2’)を満足することが好ましい。
 1.55≦|F4/F1|≦1.95   (2’)
 条件式(2)に代えて、以下の条件式(2”)を満足することがさらに好ましい。
 1.6≦|F4/F1|≦1.75   (2”)
 また、第1レンズL1と第5レンズL5は、明るさ絞りSから遠くに配置されることから、画面周辺の光学性能に影響し、かつ周辺光線高が高くなるためレンズ径にも影響する。画面周辺の収差を打ち消しあうためには、周辺光線高の高くなる負の第5レンズL5の構成が重要となる。
 このため、本実施形態の好ましい態様によれば、以下の条件式(3)を満足することが望ましい。
 1.6≦|F5/F1|≦2.0   …(3)
 ここで、
 F5は、第5レンズL5の焦点距離、
 F1は、第1レンズL1の焦点距離、
である。
 条件式(3)の上限値を上回ると、負屈折力が大きくなりすぎてコマ収差が補正しきれず悪化してしまうか、倍率色収差が補正不足になってしまう。
 条件式(3)の下限値を下回ると、レンズ径が大きくなりすぎるか、倍率色収差が補正過剰となってしまう。
 条件式(3)に代えて、以下の条件式(3’)を満足することが好ましい。
 1.63≦|F5/F1|≦1.95   …(3’)
 条件式(3)に代えて、以下の条件式(3”)を満足することがさらに好ましい。
 1.66≦|F5/F1|≦1.8   …(3”)
 また、Fnoが明るい対物光学系では、球面収差、コマ収差の補正が不利になる傾向がある。本実施形態のレンズ構成における主な正屈折力は、第3レンズL3と接合レンズCL1の第4レンズL4で確保している。このため、ここで収差が発生しやすい。また、レトロフォーカスを構成する正屈折力も、第3レンズL3と第4レンズL4で保持されて、対物光学系の大きさに関係がある。特に、軸上光線が高くなるため収差的な影響は高く、また、接合されていない第3レンズL3の方が屈折力を確保しやすく、ピント緩和の際のバックフォーカス確保の寄与度も高い。このため、第3レンズL3と第4レンズL4の屈折力を適切に設定する必要がある。
 このため、本実施形態の好ましい態様によれば、以下の条件式(4)を満足することが望ましい。
 0.16≦|(R3R+R4L)/(R3R-R4L)|≦0.5   …(4)
 ここで、
 R3Rは、第3レンズL3の像側の曲率半径、
 R4Lは、第4レンズL4の物体側の曲率半径、
である。
 条件式(4)は、第3レンズL3の像側の曲率半径と第4レンズL4の物体側の曲率半径の適切な関係に関する。
 条件式(4)の上限を上回ると、コマ収差の補正が低下し、全長も長くなってしまうため小型で高精細な画質を得ることができなくなってしまう。
 条件式(4)の下限を下回ると、球面収差が悪化し、ピント出しに必要なバックフォーカスも確保できなくなってしまう。
 条件式(4)に代えて、以下の条件式(4’)を満足することが好ましい。
 0.17≦|(R3R+R4L)/(R3R-R4L)|≦0.45  …(4’)
 条件式(4)に代えて、以下の条件式(4”)を満足することがさらに好ましい。
 0.2≦|(R3R+R4L)/(R3R-R4L)|≦0.4  …(4”)
 また、前群FLに配した負の第1レンズL1と正の第2レンズL2は、光学系の広角化かつ小型化のため重要な役割を果たしている。ここで、正の第2レンズL2の曲率半径はコマ収差や色収差の発生に寄与している。また、第6レンズL6の曲率半径は、ピント感度を緩和する上で重要な役割を果たしているが、非点収差の発生に寄与している。
 このため、本実施形態の好ましい態様によれば、各収差の発生量とレンズ径およびピント感度のバランスを取るため以下の条件式(5)、(6)を満足することが望ましい。好ましくは、条件式(5)、(6)を同時に満足することが望ましい。
 -2.0≦F12/R6L≦-0.62  …(5)
 -4.0≦R2L/R6L≦-1.5  …(6)
 ここで、
 F12は、第1レンズL1から第2レンズL2までの合成焦点距離、
 R6Lは、第6レンズL6の物体側の曲率半径、
 R2Lは、第2レンズL2の物体側の曲率半径、
である。
 条件式(5)は、第1レンズL1から第2レンズL2までの合成焦点距離と、第6レンズL6の物体側の曲率半径と、の比に関する。条件式(6)は、第2レンズL2の物体側の曲率半径と、第6レンズL6の物体側の曲率半径と、の比に関する。
 条件式(5)の上限値を上回ると、コマ収差が悪化してしまうか、非点収差が悪化してしまう。
 条件式(5)の下限値を下回ると、レンズ径が大きくなってしまうか、十分なピント緩和効果が得られないため、製造ばらつきによるピント位置ずれに弱い内視鏡対物光学系となってしまう。
 条件式(6)の上限値を上回ると、色収差が悪化してしまうか、非点収差が悪化してしまう。
 条件式(6)の下限値を下回ると、コマ収差が悪化しまうか、十分なピント緩和効果が得られないため、製造ばらつきによるピント位置ずれに弱い内視鏡対物光学系となってしまう。
 条件式(5)、(6)に代えて、以下の条件式(5’)、(6’)を満足することが好ましい。
 -1.8≦F12/R6L≦-0.7   …(5’)
 -3.8≦R2L/R6L≦-1.6   …(6’)
 条件式(5)、(6)に代えて、以下の条件式(5”)、(6”)を満足することがさらに好ましい。
 -1.6≦F12/R6L≦-0.75   …(5”)
 -3.5≦R2L/R6L≦-1.7   …(6”)
 第4レンズL4の像側の面は光線高が高いため、各色収差の補正に大きく寄与する。また、第3レンズL3の像側の面については、コマ収差の発生量と軸上光線高が高くなるため球面収差にも大きく寄与する。
 このため、本実施形態の好ましい態様によれば、各収差と各色収差補正に関して以下の条件式(7)を満足することが望ましい。
 0.55≦R4R/R3R≦1.2   …(7)
 ここで、
 R4Rは、第4レンズL4の像側の曲率半径、
 R3Rは、第3レンズL3の像側の曲率半径、
である。
 条件式(7)は、第4レンズL4の像側の曲率半径と、第3レンズL3の像側の曲率半径と、の比に関する。
 条件式(7)の上限値を上回ると、色収差の補正不足となるか、球面収差が悪化してしまい、ピント出しに必要なバックフォーカスも確保できなくなってしまう。
 条件式(7)の下限値を下回ると、色収差の補正過剰となってしまうか、コマ収差が悪化してしまい、光学系の全長も長くなってしまうため小型で高精細な画質を得ることができない。
 条件式(7)に代えて、以下の条件式(7’)を満足することが好ましい。
 0.65≦R4R/R3R≦1.15   …(7’)
 条件式(7)に代えて、以下の条件式(7”)を満足することがさらに好ましい。
 0.7≦R4R/R3R≦1.1   …(7”)
 また、本実施形態の好ましい態様によれば、以下の条件式(8)を満足することが望ましい。
 0.6≦R4R/R2R≦1.0   …(8)
 ここで、
 R4Rは、第4レンズL4の像側の曲率半径、
 R2Rは、第2レンズL2の像側の曲率半径、
である。
 条件式(8)は、第4レンズL4の像側の曲率半径と、第2レンズL2の像側の曲率半径と、の比に関する。
 小型で、高画素な撮像素子に対応した内視鏡対物光学系では、色収差補正が重要である。条件式(8)は、条件式(7)と共に色収差に関するものであり、第2レンズL2の像側の面は各色収差に大きく寄与している。
 条件式(8)の上限値を上回ると、倍率色収差の補正不足となってしまうか、軸上色収差補正不足となってしまい、ピント出しに必要なバックフォーカスも確保できなくなってしまう。
 条件式(8)の下限を下回ると、倍率色収差の補正過剰となってしまうか、軸上色収差補正過剰となってしまい、光学系の全長も長くなってしまうため小型で高精細な画質を得ることができない。
 条件式(8)に代えて、以下の条件式(8’)を満足することが好ましい。
 0.62≦R4R/R2R≦0.9   …(8’)      
 条件式(8)に代えて、以下の条件式(8”)を満足することがさらに好ましい。
 0.65≦R4R/R2R≦0.7   …(8”)
 また、正の第3レンズL3は、レトロフォーカスを構成するために、比較的大きな屈折力を有している。このため、収差の発生量も大きくなる。
 このため、本実施形態の好ましい態様によれば、以下の条件式(9)を満足することが望ましい。
 0.5≦|(R3L+R3R)/(R3L-R3R)|≦5   …(9)
 ここで、
 R3Rは、第3レンズL3の像側の曲率半径、
 R3Lは、第3レンズL3の物体側の曲率半径、
である。
 条件式(9)は、第3レンズL3の像側の曲率半径と、第3レンズL3の物体側の曲率半径と、の比に関する。
 条件式(9)の上限値を上回ると、コマ収差が悪化し、光学系の全長も長くなってしまう。
 条件式(9)の下値限を下回ると、倍率色収差が補正不足となり、ピント出しに必要なバックフォーカスも確保できなくなってしまう。
 条件式(9)に代えて、以下の条件式(9’)を満足することが好ましい。
 0.7≦|(R3L+R3R)/(R3L-R3R)|≦4   …(9’)
 条件式(9)に代えて、以下の条件式(9”)を満足することがさらに好ましい。
 0.8≦|(R3L+R3R)/(R3L-R3R)|≦3.5   …(9”)
 第4レンズL4と第5レンズL5の接合レンズCL1は、各色収差の補正に関して大きく寄与しており、第6レンズL6の正の屈折力はピント感度の緩和に大きく寄与している。
 このため、色収差を補正しつつピント感度の緩和を満たすために、本実施形態の好ましい態様によれば、以下の条件式(10)を満足することが望ましい。
 2.3≦F45/F6≦7.3   …(10)
 ここで、
 F45は、第4レンズL4と第5レンズL5の接合レンズの焦点距離、
 F6は、第6レンズL6の焦点距離、
である。
 条件式(10)の上限値を上回ると、倍率色収差が補正過剰となってしまうか、非点収差が悪化してしまう。
 条件式(10)の下限値を下回ると、倍率色収差が補正不足となってしまうか、十分なピント緩和効果が得られないため、製造ばらつきによるピント位置ずれに弱い内視鏡対物光学系となってしまう。
 条件式(10)に代えて、以下の条件式(10’)を満足することが好ましい。
 2.5≦F45/F6≦7.2   …(10’)
 条件式(10)に代えて、以下の条件式(10”)を満足することがさらに好ましい。
 2.7≦F45/F6≦7.1   …(10”)
 以下、各実施例について説明する。
(実施例1)
 実施例1に係る内視鏡対物光学系について説明する。図2(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図2(b)、(c)、(d)、(e)は、それぞれ実施例1の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例2)
 実施例2に係る内視鏡対物光学系について説明する。図3(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図3(b)、(c)、(d)、(e)は、それぞれ実施例2の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例3)
 実施例3に係る内視鏡対物光学系について説明する。図4(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図4(b)、(c)、(d)、(e)は、それぞれ実施例3の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例4)
 実施例4に係る内視鏡対物光学系について説明する。図5(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図5(b)、(c)、(d)、(e)は、それぞれ実施例4の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例5)
 実施例5に係る内視鏡対物光学系について説明する。図6(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、像側に凸面を向けた正の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3メニスカスレンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図6(b)、(c)、(d)、(e)は、それぞれ実施例5の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例6)
 実施例6に係る内視鏡対物光学系について説明する。図7(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、像側に凸面を向けた正の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3メニスカスレンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図7(b)、(c)、(d)、(e)は、それぞれ実施例6の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例7)
 実施例7に係る内視鏡対物光学系について説明する。図8(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図8(b)、(c)、(d)、(e)は、それぞれ実施例7の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例8)
 実施例8に係る内視鏡対物光学系について説明する。図9(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図9(b)、(c)、(d)、(e)は、それぞれ実施例8の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例9)
 実施例9に係る内視鏡対物光学系について説明する。図10(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、両凸の正の第3レンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3レンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図10(b)、(c)、(d)、(e)は、それぞれ実施例9の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例10)
 実施例10に係る内視鏡対物光学系について説明する。図11(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、像側に凸面を向けた正の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、両凹の負の第5レンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3メニスカスレンズL3と、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5レンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図11(b)、(c)、(d)、(e)は、それぞれ実施例10の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例11)
 実施例11に係る内視鏡対物光学系について説明する。図12(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、全体として負の屈折力をもつ前群FLと、明るさ絞りSと、全体として正の屈折力をもつ後群RLとからなる。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、像側に凸面を向けた正の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、両凹の負の第5レンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3メニスカスレンズL3と、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5レンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図12(b)、(c)、(d)、(e)は、それぞれ実施例11の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
(実施例12)
 実施例12に係る内視鏡対物光学系について説明する。図13(a)は、本実施例に係る内視鏡対物光学系のレンズ断面構成を示す図である。
 本実施例は、物体側から順に、物体側に平面を向けた平凹の負の第1レンズL1と、像側に凸面を向けた正の第2メニスカスレンズL2と、赤外吸収フィルタF1と、明るさ絞りSと、像側に凸面を向けた正の第3メニスカスレンズL3と、両凸の正の第4レンズL4と、物体側に凹面を向けた負の第5メニスカスレンズL5と、物体側に凸面を向けた正の第6レンズL6と、CCDカバーガラスCGと、から構成される。Iは撮像面、IMGは撮像素子である。
 前群FLは、負の第1レンズL1と、正の第2メニスカスレンズL2と、を有する。後群RLは、正の第3メニスカスレンズL3と、正の第4レンズL4と、負の第5メニスカスレンズL5と、正の第6レンズL6と、を有する。
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。
 正の第4レンズL4と、負の第5メニスカスレンズL5と、は接合されて接合レンズCL1を構成する。正の第6レンズL6と、CCDカバーガラスCGと、は接合されている。
 図13(b)、(c)、(d)、(e)は、それぞれ実施例12の球面収差(SA)、非点収差(AS)、歪曲収差(DT)及び倍率色収差(CC)を示す収差図である。
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数、FNoはFナンバー、ωは半画角、IHは像高、である。
数値実施例1
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.361      1.07      
   3        -5.665      0.98      1.972      17.47 
   4        -3.734      0.58       
   5          ∞        0.89      1.496      75.00
   6(絞り)    ∞        0.07         
   7          ∞        0.31      
   8       546.967      1.18      1.888      40.76 
   9        -2.932      0.17           
  10         5.234      1.52      1.700      55.53 
  11        -2.540      0.67      1.972      17.47 
  12      -393.697      0.51        
  13         3.064      1.57      1.518      64.14 
  14          ∞        0.02      1.515      64.00
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00     
 
各種データ
FNo.         2.994    
ω(半画角)  66.6°    
IH (mm)      1
 
数値実施例2
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.407      1.03  
   3        -5.953      0.99      1.972      17.47 
   4        -4.100      0.68    
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07     
   7          ∞        0.30 
   8        27.943      1.15      1.888      40.76 
   9        -3.091      0.41     
  10         4.988      1.40      1.700      55.53 
  11        -2.461      0.67      1.972      17.47 
  12      -718.021      0.42     
  13         3.100      1.56      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         3.023    
ω(半画角)  65.6°    
IH (mm)      1
 
数値実施例3
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.366      1.05     
   3        -5.321      1.00      1.972      17.47 
   4        -3.677      0.65     
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07      
   7          ∞        0.31      
   8       283.432      1.18      1.888      40.76 
   9        -2.872      0.18      
  10         4.817      1.62      1.700      55.53 
  11        -2.541      0.80      1.972      17.47 
  12      -589.562      0.51      
  13         3.511      1.24      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.993    
ω(半画角)  67.0°    
IH (mm)      1
 
数値実施例4
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.368      1.03  
   3        -5.818      1.00      1.972      17.47 
   4        -3.680      0.57  
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07       
   7          ∞        0.30    
   8       119.771      1.15      1.888      40.76 
   9        -3.155      0.41      
  10         4.431      1.39      1.700      55.53 
  11        -2.320      0.67      1.972      17.47 
  12       -51.038      0.42       
  13         3.100      1.56      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.951    
ω(半画角)  65.7°    
IH (mm)      1
 
数値実施例5
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.262      1.03      
   3       -10.178      0.89      1.972      17.47 
   4        -4.500      0.41      
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07     
   7          ∞        0.32    
   8        -4.233      0.90      1.888      40.76 
   9        -2.290      0.15     
  10         4.248      1.07      1.700      55.53 
  11        -2.700      0.67      1.972      17.47 
  12      -195.236      0.50       
  13         2.838      2.89      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         3.036    
ω(半画角)  64.8°    
IH (mm)      1
 
数値実施例6
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.366      1.03        
   3       -12.038      1.27      1.972      17.47 
   4        -4.400      0.44        
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07         
   7          ∞        0.32         
   8        -6.155      0.90      1.888      40.76 
   9        -2.227      0.15       
  10         6.630      1.20      1.700      55.53 
  11        -2.660      0.67      1.972      17.47 
  12       -28.953      0.50      
  13         3.030      2.22      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.906
ω(半画角)  63.9°    
IH (mm)      1
 
数値実施例7
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.329      1.05         
   3        -5.692      0.95      1.972      17.47 
   4        -3.999      0.60       
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07     
   7          ∞        0.31       
   8        46.525      1.18      1.888      40.76 
   9        -2.953      0.18        
  10         4.709      1.64      1.700      55.53 
  11        -2.400      0.85      1.972      17.47 
  12       -87.314      0.51         
  13         3.700      1.27      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         3.042
ω(半画角)  67.5°    
IH (mm)      1
 
数値実施例8
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.394      0.84      
   3        -6.786      1.00      1.972      17.47 
   4        -3.645      0.64     
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07   
   7          ∞        0.31      
   8        60.017      1.18      1.888      40.76 
   9        -3.410      0.18    
  10         5.407      1.54      1.700      55.53 
  11        -2.535      0.52      1.972      17.47 
  12      -505.619      0.51      
  13         2.011      1.64      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.785
ω(半画角)  69.8°
IH (mm)      1
 
数値実施例9
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.332      1.03      
   3        -5.685      1.00      1.972      17.47 
   4        -3.601      0.51          
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07       
   7          ∞        0.30    
   8        65.092      1.15      1.888      40.76 
   9        -3.201      0.41          
  10         4.505      1.42      1.700      55.53 
  11        -2.200      0.67      1.972      17.47 
  12       -33.509      0.42     
  13         3.100      1.56      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.963
ω(半画角)  66.0°
IH (mm)      1
 
数値実施例10
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.297      0.95     
   3        -4.256      0.83      1.972      17.47 
   4        -3.010      0.66       
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07      
   7          ∞        0.31        
   8       -29.573      1.18      1.888      40.76 
   9        -2.736      0.18        
  10         4.823      1.64      1.700      55.53 
  11        -3.010      0.83      1.972      17.47 
  12        38.674      0.51      
  13         2.800      1.33      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.935
ω(半画角)  66.6°
IH (mm)      1
 
数値実施例11
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.384      0.96      
   3        -5.524      0.95      1.972      17.47 
   4        -3.700      0.55     
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07      
   7          ∞        0.31      
   8      -393.692      1.18      1.888      40.76 
   9        -2.987      0.18      
  10         5.493      1.53      1.700      55.53 
  11        -2.519      0.77      1.972      17.47 
  12      2109.790      0.51        
  13         2.280      1.61      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.879
ω(半画角)  68.8°
IH (mm)      1
 
数値実施例12
単位  mm
 
面データ
面番号        r          d         nd        νd
   1          ∞        0.45      1.888      40.76 
   2         1.214      1.03    
   3       -10.910      0.97      1.972      17.47 
   4        -4.120      0.23       
   5          ∞        0.89      1.496      75.00 
   6(絞り)    ∞        0.07         
   7          ∞        0.32         
   8        -3.210      0.90      1.888      40.76 
   9        -2.085      0.15                     
  10         4.407      1.14      1.700      55.53 
  11        -2.470      0.67      1.972      17.47 
  12       -45.866      0.50        
  13         2.785      2.89      1.518      64.14 
  14          ∞        0.02      1.515      64.00 
  15          ∞        0.78      1.507      63.26 
  16(撮像面)  ∞        0.00  
 
各種データ
FNo.         2.972
ω(半画角)  65.3°
IH (mm)      1
 
 以下に各実施例の条件式対応値を示す。
 
   条件式
(1)D6/F12
(2)|F4/F1|    
(3)|F5/F1|  
(4)|(R3R+R4L)/(R3R-R4L)| 
(5)F12/R6L
(6)R2L/R6L 
(7)R4R/R3R   
(8)R4R/R2R   
(9)|(R3L+R3R)/(R3L-R3R)|   
(10)F45/F6   
 
条件式        実施例1    実施例2    実施例3     
(1)        -0.596      -0.627      -0.477  
(2)         1.734       1.610       1.699
(3)         1.718       1.604       1.708     
(4)         0.282       0.235       0.253    
(5)        -0.860      -0.802      -0.741
(6)        -1.849      -1.920      -1.516
(7)         0.866       0.796       0.885   
(8)         0.680       0.600       0.691   
(9)         0.989       0.801       0.980   
(10)       4.064       3.818       2.708
 
条件式        実施例4    実施例5    実施例6
(1)         -0.566     -1.188      -0.676
(2)         1.543       1.772       1.862
(3)         1.634       1.985       1.984
(4)         0.168       0.299       0.497
(5)        -0.889      -0.857      -1.084
(6)        -1.877      -3.586      -3.973
(7)         0.735       1.179       1.194
(8)         0.630       0.600       0.605
(9)         0.949       3.357       2.134
(10)       2.317       2.315       4.081
 
条件式        実施例7    実施例8    実施例9   
(1)        -0.550      -0.544      -0.576
(2)         1.677       1.707       1.542
(3)         1.705       1.671       1.632  
(4)         0.229       0.226       0.169  
(5)        -0.624      -1.499      -0.874
(6)        -1.538      -3.374      -1.834
(7)         0.813       0.743       0.687  
(8)         0.600       0.695       0.611  
(9)         0.881       0.892       0.906 
(10)       2.300       7.071       2.303
 
条件式        実施例10  実施例11  実施例12
(1)        -0.511      -0.619      -1.072
(2)         1.984       1.718       1.775
(3)         1.948       1.661       1.980
(4)         0.276       0.296       0.358
(5)        -0.929      -1.141      -0.968
(6)        -1.520      -2.423      -3.917
(7)         1.100       0.843       1.185
(8)         1.000       0.681       0.600
(9)         1.204       1.015       4.706
(10)       3.976       7.227       2.356
 なお、上述の内視鏡対物光学系は、複数の構成を同時に満足してもよい。このようにすることが、良好な内視鏡対物光学系を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値あるいは下限値のみを限定しても構わない。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 以上のように、本発明は、小型で十分な観察深度を確保でき、広角の視野角を有し、病変の観察および診断がしやすい、高性能な内視鏡対物光学系に有用である。
 L1、L2、L3、L4、L5、L6 レンズ
 F1 赤外線吸収フィルタ
 CL1 接合レンズ
 CG CCDカバーガラス
 IMG 撮像素子

Claims (9)

  1.  物体側から順に、全体として負の屈折力をもつ前群と、明るさ絞りと、全体として正の屈折力をもつ後群と、からなり、
     前記前群は、物体側から順に、負の屈折力の単レンズからなる第1レンズと、正の屈折力の単レンズからなる第2レンズと、を有し、
     前記後群は、正の屈折力の単レンズからなる第3レンズと、正の屈折力の第4レンズと負の屈折力の第5レンズの接合レンズと、正の屈折力の第6レンズと、を有し、
     前記第1レンズの物体側面は平面であり、前記第2レンズは像側に凸面を向けたメニスカス形状であり、前記第6レンズは撮像素子と接合されており、以下の条件式(1)を満足することを特徴とする内視鏡対物光学系。
     -1.2≦D6/F12≦-0.47   …(1)
     ここで、
     D6は、前記第6レンズの肉厚、
     F12は、前記第1レンズから前記第2レンズまでの合成焦点距離、
    である。
  2.  以下の条件式(2)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     1.5≦|F4/F1|≦2.0   …(2)
     ここで、
     F4は、前記第4レンズの焦点距離、
     F1は、前記第1レンズの焦点距離、
    である。
  3.  以下の条件式(3)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     1.6≦|F5/F1|≦2.0   …(3)
     ここで、
     F5は、前記第5レンズの焦点距離、
     F1は、前記第1レンズの焦点距離、
    である。
  4.  以下の条件式(4)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     0.16≦|(R3R+R4L)/(R3R-R4L)|≦0.5   …(4)
     ここで、
     R3Rは、前記第3レンズの像側の曲率半径、
     R4Lは、前記第4レンズの物体側の曲率半径、
    である。
  5.  以下の条件式(5)、(6)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     -2.0≦F12/R6L≦-0.62   …(5)
     -4.0≦R2L/R6L≦-1.5   …(6)
     ここで、
     F12は、前記第1レンズから前記第2レンズまでの合成焦点距離、
     R6Lは、前記第6レンズの物体側の曲率半径、
     R2Lは、前記第2レンズの物体側の曲率半径、
    である。
  6.  以下の条件式(7)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     0.55≦R4R/R3R≦1.2  …(7)
     ここで、
     R4Rは、前記第4レンズの像側の曲率半径、
     R3Rは、前記第3レンズの像側の曲率半径、
    である。
  7.  以下の条件式(8)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     0.6≦R4R/R2R≦1.0   …(8)
     ここで、
     R4Rは、前記第4レンズの像側の曲率半径、
     R2Rは、前記第2レンズの像側の曲率半径、
    である。
  8.  以下の条件式(9)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     0.5≦|(R3L+R3R)/(R3L-R3R)|≦5   …(9)
     ここで、
     R3Rは、前記第3レンズの像側の曲率半径、
     R3Lは、前記第3レンズの物体側の曲率半径、
    である。
  9.  以下の条件式(10)を満足することを特徴とする請求項1に記載の内視鏡対物光学系。
     2.3≦F45/F6≦7.3   …(10)
     ここで、
     F45は、前記第4レンズと前記第5レンズの接合レンズの焦点距離、
     F6は、前記第6レンズの焦点距離、
    である。
PCT/JP2017/020692 2016-09-01 2017-06-02 内視鏡対物光学系 WO2018042797A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780026828.6A CN109073864B (zh) 2016-09-01 2017-06-02 内窥镜对物光学***
EP17845808.9A EP3508900A4 (en) 2016-09-01 2017-06-02 LENS OPTICAL SYSTEM FOR AN ENDOSCOPE
JP2017559483A JP6266195B1 (ja) 2016-09-01 2017-06-02 内視鏡対物光学系
US16/171,021 US10809521B2 (en) 2016-09-01 2018-10-25 Endoscope objective optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-170750 2016-09-01
JP2016170750 2016-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/171,021 Continuation US10809521B2 (en) 2016-09-01 2018-10-25 Endoscope objective optical system

Publications (1)

Publication Number Publication Date
WO2018042797A1 true WO2018042797A1 (ja) 2018-03-08

Family

ID=61300350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020692 WO2018042797A1 (ja) 2016-09-01 2017-06-02 内視鏡対物光学系

Country Status (4)

Country Link
US (1) US10809521B2 (ja)
EP (1) EP3508900A4 (ja)
CN (1) CN109073864B (ja)
WO (1) WO2018042797A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416451B1 (ja) * 2017-06-22 2018-10-31 オリンパス株式会社 内視鏡用対物光学系
WO2018235352A1 (ja) * 2017-06-22 2018-12-27 オリンパス株式会社 内視鏡用対物光学系
CN110927955A (zh) * 2019-11-14 2020-03-27 精微视达医疗科技(武汉)有限公司 一种用于共聚焦显微内窥镜的耦合物镜
US12032153B2 (en) 2021-10-07 2024-07-09 Olympus Corporation Endoscope objective optical system and endoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327763B (zh) * 2022-08-31 2023-08-04 重庆西山科技股份有限公司 变焦光学适配器及4k内窥镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910170A (ja) * 1995-06-29 1997-01-14 Olympus Optical Co Ltd 内視鏡対物光学系
WO2011125539A1 (ja) * 2010-04-07 2011-10-13 オリンパスメディカルシステムズ株式会社 対物レンズ及びそれを用いた内視鏡
WO2016031586A1 (ja) * 2014-08-28 2016-03-03 オリンパス株式会社 内視鏡対物光学系

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208702A (en) * 1990-04-11 1993-05-04 Olympus Optical Co., Ltd. Objective lens system for endoscopes
JPH03293307A (ja) * 1990-04-11 1991-12-25 Olympus Optical Co Ltd 内視鏡対物レンズ
JPH04315118A (ja) * 1991-04-15 1992-11-06 Olympus Optical Co Ltd 内視鏡対物光学系
JP4591757B2 (ja) 2004-09-17 2010-12-01 カシオ計算機株式会社 レンズ装置
JP4893227B2 (ja) 2006-10-24 2012-03-07 株式会社ニコン ズームレンズ、光学機器
WO2011077972A1 (ja) * 2009-12-24 2011-06-30 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ及びそれを用いた内視鏡
WO2011145505A1 (ja) 2010-05-20 2011-11-24 オリンパスメディカルシステムズ株式会社 内視鏡対物レンズユニットおよび内視鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910170A (ja) * 1995-06-29 1997-01-14 Olympus Optical Co Ltd 内視鏡対物光学系
WO2011125539A1 (ja) * 2010-04-07 2011-10-13 オリンパスメディカルシステムズ株式会社 対物レンズ及びそれを用いた内視鏡
WO2016031586A1 (ja) * 2014-08-28 2016-03-03 オリンパス株式会社 内視鏡対物光学系

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416451B1 (ja) * 2017-06-22 2018-10-31 オリンパス株式会社 内視鏡用対物光学系
WO2018235352A1 (ja) * 2017-06-22 2018-12-27 オリンパス株式会社 内視鏡用対物光学系
US11543647B2 (en) 2017-06-22 2023-01-03 Olympus Corporation Objective optical system for endoscope, endoscope, and image pickup unit
CN110927955A (zh) * 2019-11-14 2020-03-27 精微视达医疗科技(武汉)有限公司 一种用于共聚焦显微内窥镜的耦合物镜
CN110927955B (zh) * 2019-11-14 2021-08-03 精微视达医疗科技(武汉)有限公司 一种用于共聚焦显微内窥镜的耦合物镜
US12032153B2 (en) 2021-10-07 2024-07-09 Olympus Corporation Endoscope objective optical system and endoscope

Also Published As

Publication number Publication date
CN109073864A (zh) 2018-12-21
EP3508900A4 (en) 2020-05-06
CN109073864B (zh) 2020-11-27
EP3508900A1 (en) 2019-07-10
US20190064500A1 (en) 2019-02-28
US10809521B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
JP4934233B2 (ja) 対物光学系
JP6081683B1 (ja) 内視鏡用対物光学系
JP5948530B2 (ja) 対物光学系
WO2012008312A1 (ja) 対物光学系
JP5927368B1 (ja) 内視鏡対物光学系
JP2008040033A (ja) 広角レンズ
CN109416459B (zh) 内窥镜物镜光学***
JP6177747B2 (ja) 撮像レンズおよび撮像装置
JP5930257B1 (ja) 内視鏡用対物光学系
WO2018042797A1 (ja) 内視鏡対物光学系
JP6230770B1 (ja) 内視鏡用対物光学系
JP2008191230A (ja) 光学系及びそれを有する撮像装置
JP6337687B2 (ja) リアコンバージョンレンズ
WO2018235352A1 (ja) 内視鏡用対物光学系
JP6836466B2 (ja) 内視鏡対物光学系
JP6857572B2 (ja) 内視鏡用対物光学系
CN109073866B (zh) 内窥镜用物镜光学***
JP6266195B1 (ja) 内視鏡対物光学系
JP6416451B1 (ja) 内視鏡用対物光学系
JP6355866B2 (ja) 内視鏡用対物光学系
JPWO2020174561A1 (ja) 内視鏡用対物光学系及び内視鏡
CN111527436B (zh) 内窥镜物镜光学***
JP2005148508A (ja) 内視鏡用対物レンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017559483

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845808

Country of ref document: EP

Effective date: 20190401