WO2018041170A1 - 一种自润滑滚动轴承及其制备方法 - Google Patents

一种自润滑滚动轴承及其制备方法 Download PDF

Info

Publication number
WO2018041170A1
WO2018041170A1 PCT/CN2017/099793 CN2017099793W WO2018041170A1 WO 2018041170 A1 WO2018041170 A1 WO 2018041170A1 CN 2017099793 W CN2017099793 W CN 2017099793W WO 2018041170 A1 WO2018041170 A1 WO 2018041170A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
rolling bearing
graphite
ring
iron pipe
Prior art date
Application number
PCT/CN2017/099793
Other languages
English (en)
French (fr)
Inventor
许旸
Original Assignee
西安理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安理工大学 filed Critical 西安理工大学
Priority to DE112017004307.7T priority Critical patent/DE112017004307B4/de
Priority to US16/327,884 priority patent/US11085097B2/en
Priority to SE1950370A priority patent/SE543490C2/en
Priority to JP2019511920A priority patent/JP6846510B2/ja
Publication of WO2018041170A1 publication Critical patent/WO2018041170A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6696Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Definitions

  • the invention belongs to the technical field of bearing preparation, in particular to a self-lubricating rolling bearing, and to a preparation method of the rolling bearing.
  • the role of the bearing is to reduce the mutual friction between the running shaft and the stationary shaft seat. Therefore, reducing the frictional resistance and prolonging its life by lubricating the bearing becomes an important direction of bearing research.
  • Rolling bearings solve the problem of excessive friction and thus obtain a wide range of industrial applications.
  • the sliding bearing can be self-lubricating, that is, the graphite strip is embedded in the wall of the bearing sleeve, and the excellent lubricating function of graphite is used to reduce the friction coefficient, while the rolling bearing always needs to be added regularly.
  • Lubricating grease but in the following special working environment: 1. In the case of high temperature environment such as metallurgical machinery, it is obviously very cumbersome to regularly fill the grease regularly. According to the specification, the interval between the regular loading of the rolling bearing and the grease is 70. °C is the benchmark. When this temperature is exceeded, the filling time interval needs to be shortened.
  • the powder metallurgy bearing material contains oil in the voids, which plays a role of self-lubrication, but the material strength is low, the abrasive grains are severely worn, and the applicable occasions are limited;
  • the appearance of austempered ductile iron (abbreviated as ADI) has played a role in self-lubrication, but the traditionally cast ductile iron has a coarser matrix structure.
  • Graphite state (spheroidization rate, number of spheroidal graphite) is not good; the "Olympus-Iron" and graphite morphology obtained by austempering of ductile iron can meet the requirements of general equipment manufacturing for the comprehensive performance of material toughening. But it can not be used on rolling bearings. The main reasons are:
  • the main cause of failure failure is the point contact fatigue damage between the rotating pairs.
  • the graphite present in ductile iron can contribute to the lubrication effect, but for the matrix structure, it is actually a tiny If the graphite ball is not round and the ball diameter is large, the edge of the pit will be subjected to a large stress, and under the condition of high-speed cyclic load, it becomes the initiation point or the cracking zone of the point contact fatigue crack;
  • the shape of graphite obtained by traditional casting is not good enough to avoid the point of contact fatigue;
  • the castings provided by the traditional casting method contain pores, blisters, slag inclusions and shrinkage defects, which are far less dense than the bearing steel blanks after forging;
  • the object of the present invention is to provide a self-lubricating rolling bearing, which solves the problem that the existing rolling bearing has a low self-lubricating effect and is easy to be caused under the conditions of low rotation speed, high working temperature, difficulty in frequently adding grease, and frequent impact.
  • the problem of scrapping rolling bearings is to provide a self-lubricating rolling bearing, which solves the problem that the existing rolling bearing has a low self-lubricating effect and is easy to be caused under the conditions of low rotation speed, high working temperature, difficulty in frequently adding grease, and frequent impact.
  • Another object of the present invention is to provide a method of preparing a self-lubricating rolling bearing.
  • the technical solution adopted by the invention is a self-lubricating rolling bearing, which comprises an inner jacket ring, a cage and a ball.
  • the inner jacket ring, the cage and the ball are assembled by a conventional process, and the composition of the inner casing ring of the cast iron material is: C: 3.3%-3.5%, Si: 2.7%-2.9%, Mn: 0.3%-0.5%, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, residual magnesium content 0.03%-0.045% , Fe is the balance, and the sum of the mass percentages of the above components is 100%.
  • Another technical solution adopted by the present invention is a method for preparing a self-lubricating rolling bearing, follows the steps below to implement:
  • Step 1 Use the bread pig iron, scrap steel and iron alloy to configure the material and melt the molten iron.
  • the mass percentage components of the inner and outer enveloped molten iron are as follows: C: 3.4%-3.7%, Si: 1.5%-1.7%, Mn: 0.3%-0.5 %, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, Fe and other impurities are the balance, the sum of the mass percentages of the above components is 100%, and then the end of the molten iron by gestation and spheroidization
  • the amount of silicon is 2.7%-2.9%, and the residual magnesium content is 0.03%-0.045%;
  • the original molten iron composition of the cage is: C: 3.3%-3.5%, Si: 1.8%-2.0%, Mn: 0.2%-0.3%, S ⁇ 0.05%, P ⁇ 0.05%, Fe is the balance, the sum of the mass percentages of the above components is 100%, and the final silicon content is 2.8-3.1% and the residual magnesium content is 0.03%-
  • Step 2 the molten iron in step 1 is separately drawn into a ductile iron pipe by a vertical continuous casting method
  • Step 3 the spheroidal iron pipe obtained in the step 2 is subjected to spheroidizing annealing treatment to detect the morphology of the graphite, wherein the graphite form requires: the spheroidization rate of the graphite is ⁇ 90%, and the density of the graphite ball is not less than 500/mm 2 under the microscope of 100 times. ;
  • step 4 the ductile iron pipe processed in step 3 is turned and ground to obtain an inner jacket ring, and is subjected to austempering treatment before grinding processing after turning.
  • step 5 the inner jacket ring obtained in step 4 is inspected, and the inspection includes:
  • the graphite spheroidization rate in the metallographic structure is not less than 93%
  • the number of graphite balls is not less than 500 / mm 2 ;
  • the hardness of the ferrite in the matrix structure is more than twice the hardness of the ferrite in the normal cast structure
  • the overall hardness requirement of the material is not less than HRC48;
  • Step 6 the ductile iron pipe obtained in the step 2 is annealed, and then processed to obtain a cage;
  • step 7 the inner jacket ring obtained in step 5, the cage obtained in step 6, and the balls are assembled according to a conventional process to obtain a self-lubricating rolling bearing.
  • step 2 the inner diameter of the ductile iron pipe is 4-5 mm smaller than the inner diameter of the inner ring of the bearing inner ring, and the outer diameter of the ductile iron pipe is 3-4 mm larger than the outer diameter of the inner ring of the bearing inner ring.
  • the crystallizer used in the vertical continuous casting method in step 2 is a double-spiral two-in and two-out water-cooled crystallizer, and the structure is composed of an inner cylinder body and an outer cylinder body which are sleeved with each other, and the top end of the inner cylinder body and the outer cylinder body are connected.
  • the spheroidizing annealing process in step 3 includes the following steps:
  • the ductile iron pipe is heated in a well type or box type heat treatment furnace to an eutectoid transformation temperature Ac 1 + 50 ° C, and the heat preservation is 55-65 min;
  • step a The ductile iron pipe treated in step a is cooled to the eutectoid transformation temperature Ac 1 -50 ° C, and kept at 55-65 min;
  • step c The ductile iron pipe treated in step c is cooled to 595-605 ° C and turned to air-cooled to normal temperature.
  • Step 4 The medium temperature quenching treatment includes: heating the inner jacket ring to 880-900 ° C, the wall thickness of 10 mm or less, the insulation is 50-60 min, the wall thickness is more than 10 mm, the thickness is increased by 1 mm, the holding time is increased by 2 min, and the heat preservation time is increased. After sufficient time, quickly immerse in 230-250 ° C isothermal media tank, hold time 40-50min, air cooling after the trough, then transfer to the clear water tank, rinse the salt.
  • the ductile iron pipe is heated in a well type or box furnace to an eutectoid transformation temperature of 760 ° C for 120 minutes; then the furnace is cooled to below 500 ° C and turned into air cooling.
  • step 7 the hardness of the balls is 1-2 HRC higher than the hardness of the inner outer ring.
  • the invention has the beneficial effects that the self-lubricating rolling bearing of the invention adopts an ultra-fine density (highest level specified by national standards) as a ductile iron hollow profile of as-cast microstructure, and then undergoes spheroidizing annealing and austempering to obtain excellent mechanical properties.
  • "ADI" material which is used to make the inner outer ring of the rolling bearing, and also uses the spherical iron hollow profile to make the bearing cage, and finally produces a rolling bearing with self-lubricating function.
  • the invention makes a major change to the material selection, the hot working process and the hardness of the bearing ring, and aims to combine the advantages of the rolling bearing and the self-lubricating sliding bearing to provide a long-term working "speed" for the metallurgical machinery and other equipment manufacturing industries.
  • Self-lubricating rolling bearings with low working temperature, high difficulty in filling grease and frequent impact.
  • FIG. 1 is a schematic view of a spiral inner cylinder of a crystallizer in a vertical continuous casting molding apparatus in a method for preparing a self-lubricating rolling bearing of the present invention
  • FIG. 2 is a schematic view showing the assembly structure of a crystallizer in a vertical continuous casting molding apparatus in a method for preparing a self-lubricating rolling bearing according to the present invention
  • FIG. 4 is a process curve diagram of austempering of inner and outer snares in a method for preparing a self-lubricating rolling bearing according to the present invention
  • Figure 5 is a graph showing the annealing process of the cage in the method for preparing the self-lubricating rolling bearing of the present invention.
  • Figure 6 is a metallographic view of the inner jacket ring of the self-lubricating rolling bearing of the present invention.
  • the self-lubricating rolling bearing of the present invention comprises an inner jacket ring, a cage and a ball.
  • the inner jacket ring, the cage and the balls are assembled by a conventional process; the composition of the cast iron material of the inner jacket ring is: C: 3.3% - 3.5%, Si: 2.7% - 2.9%, Mn: 0.3% - 0.5%, Cr: 0.3 %-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, residual magnesium content 0.03%-0.045%, Fe is the balance, and the sum of the mass percentages of the above components is 100%.
  • the invention also provides a preparation method of the above self-lubricating rolling bearing, which is patented in the "continuous casting forming equipment of low plastic metal hollow profile" (patent number: ZL200710018928.2, publication number: 101134231, publication date: 2008-03-05
  • pattern: ZL200710018928.2, publication number: 101134231, publication date: 2008-03-05 The above implementation differs from the original device in that the crystallizer in the original device is different from the structure of the crystallizer in the present invention.
  • the crystallizer of the present invention is double-spiral two-in and two-out water-cooling.
  • the crystallizer is configured to include an inner cylinder 1 and an outer cylinder 2 which are sleeved with each other, and an upper flange 3, an inner cylinder 1 and an outer cylinder 2 are connected to the top ends of the inner cylinder 1 and the outer cylinder 2
  • the bottom end of the outer cylinder 2 is respectively provided with a water inlet nozzle I5 and a water inlet nozzle II6, and the lower portion of the outer cylinder body 2 is respectively provided with a water outlet nozzle I7 and a water outlet nozzle II8, and the inner cylinder body
  • the outer circle of 1 has a double-screw rib 9 on the outer circumference, and the inner and outer cylinders are set to form a double-spiral water flow passage.
  • the double spiral channel will provide greater cooling capacity.
  • the inner cylinder of the inner cylinder is embedded with a graphite sleeve, which is a high temperature resistant component in direct contact with molten iron, which is used to solidify the molten iron and utilize its self-lubricating properties to enable the profile to be pulled out of the crystallizer.
  • a method for preparing a self-lubricating rolling bearing is specifically carried out according to the following steps:
  • Step 1 Use the bread pig iron, scrap steel and iron alloy to configure the material and melt the molten iron.
  • the mass percentage components of the inner and outer enveloped molten iron are as follows: C: 3.4%-3.7%, Si: 1.5%-1.7%, Mn: 0.3%-0.5 %, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, Fe and other impurities are the balance, the sum of the mass percentages of the above components is 100%, and then the end of the molten iron by gestation and spheroidization
  • the amount of silicon is 2.7%-2.9%, residual magnesium content 0.03%-0.045%;
  • the original molten iron composition of the cage is: C: 3.3%-3.5%, Si: 2.8%-3.1%, Mn: 0.2%-0.3%, S ⁇ 0.05 %, P ⁇ 0.05%, residual magnesium content 0.03% - 0.045%, Fe is the balance, the sum of the mass percentages of the above components is 100%;
  • Step 2 the molten iron in step 1 is separately drawn into ductile iron pipes of different diameters and wall thicknesses by vertical continuous casting method; the inner diameter of the ductile iron pipe is 4-5 mm smaller than the inner diameter of the inner ring of the bearing inner ring, and the outer diameter ratio of the pipe
  • the inner diameter of the inner ring of the bearing is 3-4mm; the inner and outer diameters of the retainer profile are also 4-5mm and 3-4mm respectively.
  • Step 3 the spheroidal iron pipe obtained in the step 2 is subjected to spheroidizing annealing treatment to detect the morphology of the graphite, and the graphite form requirement is: the spheroidization rate of the graphite is ⁇ 90%, and the density of the graphite ball is not less than 500/mm 2 under the microscope of 100 times;
  • the spheroidizing annealing process includes the following steps:
  • the ductile iron pipe is heated in a well type or box type heat treatment furnace to an eutectoid transformation temperature of 780 ° C, and the heat preservation is 55-65 min;
  • step a The ductile iron pipe treated in step a is cooled to an eutectoid transformation temperature of 680 ° C, and maintained at 55-65 min;
  • step c The ductile iron pipe treated in step c is cooled to 595-605 ° C, and then air-cooled to normal temperature;
  • step 4 the ductile iron pipe processed in step 3 is sawed, turned, and ground to obtain an inner jacket ring, and subjected to austempering treatment before grinding processing after turning.
  • the austempering treatment includes: heating the inner jacket ring to 880-900 ° C, the wall thickness of 10 mm or less, the insulation is 50-60 min, the wall thickness is more than 10 mm, the thickness is increased by 1 mm, and the holding time is increased. 2min, after the holding time is sufficient, quickly immerse in 230-250 ° C isothermal medium tank, hold time 40-50min, air cooling after the trough, then transfer to the clear water tank, rinse salt;
  • Step 5 the inner jacket ring obtained in step 4 is tested; including: the graphite spheroidization rate in the metallographic structure is not less than 93%; the number of graphite balls is not less than 500/mm 2 ; the hardness of the ferrite in the matrix structure is normal The hardness of ferrite in the cast structure is more than doubled (because it is high silicon ferrite); the overall hardness of the material is not less than HRC48;
  • Step 6 the hollow profile obtained in step 2 is annealed, as shown in FIG. 5, specifically: heating the ductile iron pipe in a well or box furnace to an eutectoid transformation temperature of 760 ° C, holding for 120 min; After 500 ° C or less, it is air-cooled, and then processed to obtain a cage, the material is equivalent to the ball iron of the grade QT400-18;
  • Step 7 the inner outer ring obtained in step 5, the cage obtained in step 6, and the purchased ball (or roller) assembled according to the conventional process, the hardness of the ball and the hardness of the inner jacket ring are 1-2HRC, and a self-lubricating rolling bearing is obtained.
  • the round and finely distributed graphite ball not only provides lubricant for the bearing rotating pair friction, but also avoids point contact fatigue damage.
  • the vertical continuous casting ductile iron pipe has a spheroidization rate of more than 90%. After austempering, the roundness of the graphite is further improved, and the fatigue cracking of the graphite pit edge and the sharp corner is reduced.
  • the fine austempered structure so that the bearing inner ring material has a good comprehensive mechanical properties.
  • the silicon content in the body is higher, the hardness after quenching is 2-3 times higher than that of normal ferrite, which effectively improves the overall strength of the ferrule, and the high carbon austenite and high silicon ferrite dual phase structure is effective.
  • Preventing the in-depth development of fatigue cracks jointly improving the impact energy of materials and prolonging the service life of bearings;
  • the ADI material of the present invention consists of a tough and versatile Austrian-iron structure and a graphite ball. It is these densely distributed graphite balls that provide a continuous supply of lubricant for the rolling bearing;
  • the temperature rise is low.
  • the thermal conductivity of ductile iron material is about 80 or more, which is twice the thermal conductivity (40) of steel.
  • the frictional heat can be transmitted very quickly.
  • the anti-tempering performance of ductile iron material is higher than that of steel. Working in the environment, the hardness will not decrease.
  • the bearings made of ultra-fine ADI materials have a low temperature rise and can work in an environment that does not exceed the temperature of the austempering medium ( ⁇ 200 ° C);
  • the weight of the ADI material in the same volume is 10% lighter than steel
  • the inner outer ring of the bearing is made of a vertically continuous cast ductile iron pipe and subjected to austempering treatment, and the metallographic phase is embedded with fine spherical graphite in the "o-iron structure".
  • the nano-sized austenite and ferrite rich in carbon and silicon atoms in the "O-Iron organization" provide good toughness matching, wear resistance and impact resistance for bearing ring materials, 20-40%
  • the retained austenite not only improves the fatigue resistance, but also induces deformation hardening to make the surface of the ferrule wear-resistant; the spheroidization rate of graphite is above 93%, and the density of graphite balls is above 500/mm 2 , which has reached the traditional The height that ADI organizations can't reach.
  • Spherical graphite provides self-lubricating, absorbing vibration and rapid thermal conductivity for rolling friction, and its high-density distribution avoids the occurrence of point contact fatigue cracks.
  • the bearing balls follow the traditional bearing steel, but the hardness is the same or slightly higher than the ferrule.
  • the bearing cage is manufactured from a continuously cast and annealed ductile iron hollow profile (QT400-18). Compared to bearing steels, ADI materials have a quenching hardness above HRC48, making it difficult to apply to high speed bearings. Therefore, the present invention limits the application range of the self-lubricating rolling bearing to the range of "low rotation speed, low operating temperature of 200 ° C or less, and difficulty in frequent lubrication and frequent impact".
  • Step 1 Use the bread pig iron, scrap steel and iron alloy to configure the material and melt the molten iron.
  • the mass percentage components of the inner and outer enveloped molten iron are as follows: C: 3.4%-3.7%, Si: 1.5%-1.7%, Mn: 0.3%-0.5 %, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, Fe and other impurities are the balance, the sum of the mass percentages of the above components is 100%, and then the end of the molten iron by gestation and spheroidization
  • the amount of silicon is 2.7%-2.9%, and the residual magnesium content is 0.03%-0.045%;
  • the original molten iron composition of the cage is: C: 3.3%-3.5%, Si: 2.8%-3.1%, Mn: 0.2%-0.3%, S ⁇ 0.05%, P ⁇ 0.05%, residual magnesium content 0.03%-0.045%, Fe is the balance, the sum of the mass percentages of the above components is 100%;
  • Step 2 the molten iron in step 1 is separately drawn into ductile iron pipes of different diameters and wall thicknesses by vertical continuous casting method; the inner diameter of the ductile iron pipe is 4-5 mm smaller than the inner diameter of the inner ring of the bearing inner ring, and the outer diameter ratio of the pipe
  • the inner diameter of the inner ring of the bearing is 3-4mm; the inner and outer diameters of the retainer profile are also 4-5mm and 3-4mm respectively.
  • Step 3 the spheroidal iron pipe obtained in the step 2 is subjected to spheroidizing annealing treatment to detect the morphology of the graphite, and the graphite form requirement is: the spheroidization rate of the graphite is ⁇ 90%, and the density of the graphite ball is not less than 500/mm 2 under the microscope of 100 times;
  • the spheroidizing annealing process includes the following steps:
  • the ductile iron pipe is heated in a well type or box type heat treatment furnace to an eutectoid transformation temperature of 780 ° C, and kept for 60 minutes;
  • step a The ductile iron pipe treated in step a is cooled to an eutectoid transformation temperature of 680 ° C, and kept for 55 minutes;
  • step c The ductile iron pipe treated in step c is cooled to 600 ° C and turned into air cooling to normal temperature;
  • step 4 the ductile iron pipe processed in step 3 is sawed, turned, and ground to obtain an inner jacket ring, and subjected to austempering treatment before grinding processing after turning.
  • the austempering treatment includes: heating the inner jacket ring to 880 ° C, a wall thickness of 10 mm or less ferrule, Insulation for 50min, wall thickness of 10mm or more ferrule, increase of thickness by 1mm, increase the holding time by 2min, after the holding time is sufficient, quickly immerse in the isothermal medium tank of 250 °C, keep the time for 40min, air cooling after the trough, then transfer to the clear water tank Rinse salt;
  • Step 5 the inner jacket ring obtained in step 4 is tested; including: the graphite spheroidization rate in the metallographic structure is not less than 93%; the number of graphite balls is not less than 500/mm 2 ; the hardness of the ferrite in the matrix structure is normal The hardness of ferrite in the cast structure is more than doubled; the overall hardness of the material is not less than HRC48;
  • Step 6 the hollow profile obtained in step 2 is annealed, specifically: the ductile iron pipe is heated in a well or box furnace to an eutectoid transformation temperature of 760 ° C, and the temperature is maintained for 120 min; then the furnace is cooled to below 500 ° C, and then transferred. Air cooling, and then processed to obtain a cage, the grade is QT400-18;
  • Step 7 the inner jacket ring obtained in step 5, the cage obtained in step 6, and the purchased ball (or roller) are assembled according to a conventional process, and the hardness of the ball and the hardness of the inner jacket ring are 1-2HRC, which is self-lubricating. Rolling bearings.
  • Step 1 Use the bread pig iron, scrap steel and iron alloy to configure the material and melt the molten iron.
  • the mass percentage components of the inner and outer enveloped molten iron are as follows: C: 3.4%-3.7%, Si: 1.5%-1.7%, Mn: 0.3%-0.5 %, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, Fe and other impurities are the balance, the sum of the mass percentages of the above components is 100%, and then the end of the molten iron by gestation and spheroidization
  • the amount of silicon is 2.7%-2.9%, and the residual magnesium content is 0.03%-0.045%;
  • the original molten iron composition of the cage is: C: 3.3%-3.5%, Si: 2.8%-3.1%, Mn: 0.2%-0.3%, S ⁇ 0.05%, P ⁇ 0.05%, residual magnesium content 0.03%-0.045%, Fe is the balance, the sum of the mass percentages of the above components is 100%;
  • Step 2 the molten iron in step 1 is separately drawn into ductile iron pipes of different diameters and wall thicknesses by vertical continuous casting method; the inner diameter of the ductile iron pipe is 4-5 mm smaller than the inner diameter of the inner ring of the bearing inner ring, and the outer diameter ratio of the pipe
  • the inner diameter of the inner ring of the bearing is 3-4mm; the inner and outer diameters of the retainer profile are also 4-5mm and 3-4mm respectively.
  • Step 3 the spheroidal iron pipe obtained in the step 2 is subjected to spheroidizing annealing treatment to detect the morphology of the graphite, and the graphite form requirement is: the spheroidization rate of the graphite is ⁇ 90%, and the density of the graphite ball is not less than 500/mm 2 under the microscope of 100 times;
  • the spheroidizing annealing process includes the following steps:
  • the ductile iron pipe is heated in a well type or box type heat treatment furnace to an eutectoid transformation temperature of 780 ° C, and kept for 55 minutes;
  • step a The ductile iron pipe treated in step a is cooled to an eutectoid transformation temperature of 680 ° C, and kept for 60 min;
  • step c The ductile iron pipe treated in step c is cooled to 595 ° C and turned into air cooling to normal temperature;
  • step 4 the ductile iron pipe processed in step 3 is sawed, turned, and ground to obtain an inner jacket ring, and subjected to austempering treatment before grinding processing after turning.
  • the austempering treatment includes: heating the inner jacket ring to 900 ° C, the wall thickness of 10 mm or less ferrule, heat preservation for 55 min, wall thickness of 10 mm or more ferrule, each time the thickness is increased by 1 mm, the holding time is increased by 2 min, and the holding time is sufficient, and the immersion is rapidly 240.
  • the holding time is 45min, air cooling after the tank is discharged, and then transferred to the clear water tank to rinse the salt;
  • Step 5 the inner jacket ring obtained in step 4 is tested; including: the graphite spheroidization rate in the metallographic structure is not less than 93%; the number of graphite balls is not less than 500/mm 2 ; the hardness of the ferrite in the matrix structure is normal The hardness of ferrite in the cast structure is more than doubled; the overall hardness of the material is not less than HRC48;
  • Step 6 the hollow profile obtained in step 2 is annealed, specifically: the ductile iron pipe is heated in a well or box furnace to an eutectoid transformation temperature of 760 ° C, and the temperature is maintained for 120 min; then the furnace is cooled to below 500 ° C, and then transferred. Air cooling, and then processed to obtain a cage, the grade is QT400-18;
  • Step 7 the inner jacket ring obtained in step 5, the cage obtained in step 6, and the purchased ball (or roller) are assembled according to a conventional process, and the hardness of the ball and the hardness of the inner jacket ring are 1-2HRC, which is self-lubricating. Rolling bearings.
  • Step 1 Use the bread pig iron, scrap steel and iron alloy to configure the material and melt the molten iron.
  • the mass percentage components of the inner and outer enveloped molten iron are as follows: C: 3.4%-3.7%, Si: 1.5%-1.7%, Mn: 0.3%-0.5 %, Cr: 0.3%-0.5%, S ⁇ 0.05%, P ⁇ 0.05%, Fe and other impurities are the balance, the sum of the mass percentages of the above components is 100%, and then the end of the molten iron by gestation and spheroidization
  • the amount of silicon is 2.7%-2.9%, and the residual magnesium content is 0.03%-0.045%;
  • the original molten iron composition of the cage is: C: 3.3%-3.5%, Si: 2.8%-3.1%, Mn: 0.2%-0.3%, S ⁇ 0.05%, P ⁇ 0.05%, residual magnesium content 0.03%-0.045%, Fe is the balance, the sum of the mass percentages of the above components is 100%;
  • Step 2 the molten iron in step 1 is separately drawn into ductile iron pipes of different diameters and wall thicknesses by vertical continuous casting method; the inner diameter of the ductile iron pipe is 4-5 mm smaller than the inner diameter of the inner ring of the bearing inner ring, and the outer diameter ratio of the pipe
  • the inner diameter of the inner ring of the bearing is 3-4mm; the inner and outer diameters of the retainer profile are also 4-5mm and 3-4mm respectively.
  • Step 3 the spheroidal iron pipe obtained in the step 2 is subjected to spheroidizing annealing treatment to detect the morphology of the graphite, and the graphite form requirement is: the spheroidization rate of the graphite is ⁇ 90%, and the density of the graphite ball is not less than 500/mm 2 under the microscope of 100 times;
  • the spheroidizing annealing process includes the following steps:
  • the ductile iron pipe is heated in a well type or box type heat treatment furnace to an eutectoid transformation temperature of 780 ° C, and kept for 65 minutes;
  • step a The ductile iron pipe treated in step a is cooled to an eutectoid transformation temperature of 680 ° C, and kept for 65 minutes;
  • step c The ductile iron pipe treated in step c is cooled to 605 ° C, and then air cooled to normal temperature;
  • step 4 the ductile iron pipe processed in step 3 is sawed, turned, and ground to obtain an inner jacket ring, and subjected to austempering treatment before grinding processing after turning.
  • the austempering treatment includes: heating the inner jacket ring to 890 ° C, the wall thickness of 10 mm or less ferrule, heat preservation for 60 min, wall thickness of 10 mm or more ferrule, thickness increase for each 1 mm, holding time increased by 2 min, after the holding time is sufficient, quickly immersed in 230 In the isothermal medium tank of °C, the holding time is 50min, the air is cooled after the tank is discharged, and then transferred to the clear water tank to rinse the salt;
  • Step 5 the inner jacket ring obtained in step 4 is tested; including: the graphite spheroidization rate in the metallographic structure is not less than 93%; the number of graphite balls is not less than 500/mm 2 ; the hardness of the ferrite in the matrix structure is normal The hardness of ferrite in the cast structure is more than doubled; the overall hardness of the material is not less than HRC48;
  • Step 6 the hollow profile obtained in step 2 is annealed, specifically: the ductile iron pipe is heated in a well or box furnace to an eutectoid transformation temperature of 760 ° C, and the temperature is maintained for 120 min; then the furnace is cooled to below 500 ° C, and then transferred. Air cooling, and then processed to obtain a cage, the grade is QT400-18;
  • Step 7 the inner jacket ring obtained in step 5, the cage obtained in step 6, and the purchased ball (or roller) are assembled according to a conventional process, and the hardness of the ball and the hardness of the inner jacket ring are 1-2HRC, which is self-lubricating. Rolling bearings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)

Abstract

一种自润滑滚动轴承及其制备方法,其中轴承内外套圈的材料成分为:C:3.4‑3.7%,Si:2.7‑2.9%,Mn:0.3‑0.5%,Cr:0.3‑0.5%,S≤0.05%,P≤0.05%,残镁含量0.03‑0.045%,Fe为余量。轴承保持架的材料成分为:C:3.3‑3.5%,Si:2.8‑3.1%,Mn:0.2‑0.3%,S≤0.05%,P≤0.05%,残镁含量0.03‑0.045%,Fe为余量。该轴承内外套圈为等温淬火球墨铸铁材料,其石墨球直径≤0.02mm,石墨球密度≥400个/mm 2,基体组织为只有在500倍以上金相显微镜下才可观察清楚的"奥铁组织",最终制作成具有自润滑功能的滚动轴承。

Description

一种自润滑滚动轴承及其制备方法 技术领域
本发明属于轴承制备技术领域,具体涉及一种自润滑滚动轴承,本发明还涉及该滚动轴承的制备方法。
背景技术
轴承的作用是减少运转的轴与静止的轴座之间的相互摩擦,因此,通过对轴承润滑来减少摩擦阻力并延长其寿命成为轴承研究的重要方向。市场上先后出现了轴套、滑动轴承、自润滑的滑动轴承等产品,但是滑动摩擦的摩擦阻力大,无法适用中高速旋转的工况,在生产中存在一定的问题;而通过轴承钢制造的滚动轴承解决了摩擦力过大的问题,从而获得了广泛的工业应用。虽然滚动摩擦的阻力大大低于滑动摩擦,但滑动轴承可以采用自润滑方式,即在轴承套的壁上镶嵌石墨条柱,利用石墨优异的润滑功能来降低摩擦系数,而滚动轴承却一直需要定期加注润滑油脂,但在以下特殊工作环境:1.在冶金机械等环境温度较高的场合,频繁地定期加注油脂显然十分繁琐,按照规范要求,滚动轴承定期加注油脂的间隔时间以运行温度70℃为基准,超过这一温度,加注时间间隔便需缩短,100℃时缩短至基准时长的1/4,120℃时缩短至基准时长的1/10;2.有些轴承装在大型设备的心脏部位,为了润滑而拆装设备十分麻烦;3.交通运输装备上的轴承,出厂后难以跟踪维护;由于以上的特殊工况的出现,定期加注润滑油进行滚动轴承的润滑不能够实现,往往会出现大量的滚动轴承是在干摩擦状况下运转,由此造成了轴承的早期报废和材料浪费。另外,在精密机械(如机器人)中使用的精密减速器,需要很高的“加速度转矩”和“瞬时加速度转矩”性能,而其柔性轴承中加注润滑脂,脂膏的粘滞作用会拖累这些关键指标。
为了解决滚动轴承的以上问题,市场上出现了以下产品:如粉末冶金含油轴承,粉末冶金轴承材料的空隙中含油,起到了自润滑的作用,但是材料强度低,磨粒磨损严重,适用场合有限;等温淬火球墨铸铁(简称ADI)的出现,起到了自润滑的作用,但是传统铸造的球墨铸铁,基体组织较粗大, 石墨状态(球化率、球墨数量)不佳;球铁经等温淬火后获得的“奥-铁组织”与石墨形态,虽然可以很好地满足一般的装备制造对材料强韧化综合性能的要求,但却无法用在滚动轴承上。其主要原因是:
(1)滚动轴承在正常使用前提下,失效破坏的主要原因是转动副之间的点接触疲劳损伤,球墨铸铁中存在的石墨虽然可贡献润滑效果,但是对于基体组织来说,其实就是一个个微小的凹坑,如果石墨球不圆整,球径较大的话,这种凹坑边缘就会承受较大应力,在高速循环负载条件下,成为点接触疲劳裂纹的萌生点或启裂区;而传统铸造所获得的石墨形态不佳,不足以避免成为接触疲劳的萌生点;
(2)传统铸造方法所提供的铸件,含有气孔、砂眼、夹渣和缩松缺陷,远不如锻造后的轴承钢毛坯致密;
(3)传统铸造球墨铸铁的铸态组织较粗大,导致等温淬火时淬火保温时间和等温转变时间延长(约在1.5小时以上),热处理效率低,产品成本加大,所获得的组织性能也非最佳;
(4)水平连续铸造的铸铁型材虽然实现了铸铁材料组织的细密化甚至达到零缺陷,但是这种方法无法拉制出空心型材,显然满足不了轴承套圈对材料毛坯形状的需要。
发明内容
技术问题
本发明的目的是提供一种自润滑滚动轴承,解决了现有滚动轴承在转速较低、工作温度较高、难以经常加注润滑油脂、频繁受冲击等工况下,自润滑效果不佳、易造成滚动轴承报废的问题。
本发明的另一个目的是提供一种自润滑滚动轴承的制备方法。
技术方案
本发明所采用的技术方案是,一种自润滑滚动轴承,包括内外套圈、保持架和滚珠,所述内外套圈、保持架和滚珠采用常规工艺装配,内外套圈的铸铁材料的成分为:C:3.3%-3.5%,Si:2.7%-2.9%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%。
本发明所采用的另一个技术方案是,一种自润滑滚动轴承的制备方法, 具体按照以下步骤实施:
步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:1.8%-2.0%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,Fe为余量,上述组分质量百分比之和为100%,经由孕育和球化处理,终硅含量2.8-3.1%,残镁含量0.03%-0.045%;
步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成球铁管材;
步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,其中石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
步骤4,将步骤3处理的球铁管材进行车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
步骤5,对步骤4得到的内外套圈进行检验,检验包括:
1)金相组织中的石墨球化率不小于93%;
2)石墨球数量不小于500个/mm2
3)基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上;
4)材料整体硬度要求不小于HRC48;
步骤6,将步骤2得到的球铁管材进行退火处理,然后加工得到保持架;
步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和滚珠按常规工艺装配得到自润滑滚动轴承。
本发明的特征还在于,
步骤2中球铁管材的内径比轴承内外套圈成品内径小4-5mm,球铁管材的外径比轴承内外套圈成品外径大3-4mm。
步骤2中垂直连铸方法中采用的结晶器为双螺旋两进两出的水冷结晶器,其结构为包括相互套接的内筒体和外筒体,内筒体和外筒体的顶端连接有上法兰盘,内筒体和外筒体的底端连接有下法兰盘,外筒体的上部分别设有进水嘴I和进水嘴II,外筒体的下部分别设有出水嘴I和出水嘴II,内筒体 的外圆上车出了双螺旋筋板,内外筒体套装后,形成了双螺旋的水流通道。
步骤3中球化退火处理包括以下步骤:
a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度Ac1+50℃,保温55-65min;
b.将步骤a处理的球铁管材炉冷至共析转变温度Ac1-50℃,保温55-65min;
c.继续重复步骤a和步骤b不少于两次;
d.将步骤c处理的球铁管材炉冷至595-605℃,转为空冷直至常温。
步骤4中等温淬火处理包括:将内外套圈加热至880-900℃,壁厚10mm以下的套圈,保温50-60min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入230-250℃的等温介质槽中,保持时间40-50min,出槽后空冷,随后转入清水槽中,冲洗盐巴。
步骤6中退火处理是将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷。
步骤7中滚珠的硬度比内外套圈硬度高出1-2HRC。
有益效果
本发明的有益效果是,本发明自润滑滚动轴承,采用超细密(超过国家标准规定的最高级别)铸态组织的球墨铸铁空心型材,再经过球化退火和等温淬火,最后获得具有优异机械性能的“ADI”材料,用其制作滚动轴承的内外套圈,同时也用球铁空心型材制作轴承的保持架,最终制作成具有自润滑功能的滚动轴承。本发明对轴承套圈的材料选择、热加工工艺和硬度作了重大改变,旨在把滚动轴承和自润滑滑动轴承的优点结合起来,为冶金机械等装备制造业提供一种能长期工作在“转速较低、工作温度较高、难以经常加注润滑油脂、频繁受冲击”工况下的自润滑滚动轴承。
附图说明
图1是本发明自润滑滚动轴承的制备方法中垂直连铸成型设备中结晶器的螺旋形内筒的示意图;
图2是本发明自润滑滚动轴承的制备方法中垂直连铸成型设备中结晶器的装配结构示意图;
图3是本发明自润滑滚动轴承的制备方法中内外圈套循环球化退火的工 艺曲线图;
图4是本发明自润滑滚动轴承的制备方法中内外圈套等温淬火的工艺曲线图;
图5是本发明自润滑滚动轴承的制备方法中保持架退火工艺曲线图;
图6是本发明自润滑滚动轴承内外套圈的金相组织图。
图中,1.内筒体,2.外筒体,3.上法兰盘,4.下法兰盘,5.进水嘴I,6.进水嘴II,7.出水嘴I,8.出水嘴II,9.双螺旋筋板。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明自润滑滚动轴承,包括内外套圈、保持架和滚珠。内外套圈、保持架和滚珠采用常规工艺装配;内外套圈的铸铁材料的成分为:C:3.3%-3.5%,Si:2.7%-2.9%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%。
本发明还提供上述自润滑滚动轴承的制备方法,该制备方法在专利“低塑性金属空心型材的连铸成形设备”(专利号:ZL200710018928.2,公开号:101134231,公开日:2008-03-05)上实施,与原装置不同之处在于,原装置中的结晶器与本发明中结晶器的结构不同,如图1~2所示,本发明中结晶器为双螺旋两进两出的水冷结晶器,其结构为:包括相互套接的内筒体1和外筒体2,内筒体1和外筒体2的顶端连接有上法兰盘3,内筒体1和外筒体2的底端连接有下法兰盘4,外筒体2的上部分别设有进水嘴I5和进水嘴II6,外筒体2的下部分别设有出水嘴I7和出水嘴II8,内筒体1的外圆上车出了双螺旋筋板9,内外筒体套装后,形成了双螺旋的水流通道。双螺旋水道将提供更大的冷却能力。内筒体的内孔中镶着石墨套筒,是与铁水直接接触的耐高温组件,用来使铁水凝固成型材,并利用其自润滑特性使型材能被拉出结晶器。
一种自润滑滚动轴承的制备方法,具体按照以下步骤实施:
步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为 2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:2.8%-3.1%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%;
步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成不同直径和壁厚的球铁管材;球铁管材的内径比轴承内外套圈成品内径小4-5mm,管材外径比轴承内外套圈成品外径大3-4mm;保持架型材的内外径加工余量也分别为4-5mm和3-4mm。
步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
如图3的工艺曲线所示,球化退火处理包括以下步骤:
a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度780℃,保温55-65min;
b.将步骤a处理的球铁管材炉冷至共析转变温度680℃,保温55-65min;
c.继续重复步骤a和步骤b不少于两次;
d.将步骤c处理的球铁管材炉冷至595-605℃,转为空冷至常温;
步骤4,将步骤3处理的球铁管材进行锯切和车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
如图4所示,等温淬火处理包括:将内外套圈加热至880-900℃,壁厚10mm以下的套圈,保温50-60min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入230-250℃的等温介质槽中,保持时间40-50min,出槽后空冷,随后转入清水槽中,冲洗盐巴;
步骤5,对步骤4得到的内外套圈进行检验;包括:金相组织中的石墨球化率不小于93%;石墨球数量不小于500个/mm2;基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上(由于是高硅铁素体);材料整体硬度要求不小于HRC48;
步骤6,将步骤2得到的空心型材进行退火处理,如图5所示,具体为:将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷,然后加工得到保持架,材料相当于牌号为QT400-18的球铁;
步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和外购的滚珠 (或滚柱)按常规工艺装配,滚珠的硬度与内外套圈硬度高出1-2HRC,得到自润滑滚动轴承。
本发明与现有技术相比的优点:
1、圆整而细密分布的石墨球,既为轴承转动副摩擦提供了润滑剂,又可避免点接触疲劳损伤。如图6所示,垂直连铸的球铁管材,球化率高达90%以上,经等温淬火后进一步提高了石墨的圆整度,降低了石墨凹坑棱边和尖角处疲劳启裂的几率;石墨球数多,达到500-700个/mm2,如此细密的石墨,其最大坑口面积,仅为球铁国标中7级石墨球(200个/mm2,是传统铸造所能获得的最小石墨球)坑口面积的几十分之一,也远远小于轴承中滚珠与套圈的瞬间接触面积,故不会成为疲劳裂纹源;
2、细密的等温淬火组织,使轴承内外套圈材料具有了良好的综合机械性能。内外套圈中20-40%的高碳奥氏体,在运行过程中,表层受滚珠的滚压后可转变为形变诱发马氏体,进一步提高了硬度和耐磨性,连铸型材中铁素体中的硅含量较高,淬火后的硬度比正常铁素体的硬度高出2-3倍,有效提高了套圈的整体强度,高碳奥氏体和高硅铁素体双相组织有效阻止了疲劳裂纹的深入发展,共同提高了材料的冲击功,延长了轴承使用寿命;
3、本发明中的ADI材料,由强韧兼备的奥-铁组织和石墨球组成,正是这些密集分布的石墨球,为滚动轴承提供了源源不断的润滑剂;
4、温升低。球铁材料的导热系数约为80以上,比钢的导热系数(40)大了一倍,摩擦热可以很迅速地传导出来,另外,球铁材料的抗回火性能高于钢,在较高温环境中工作,硬度不会降低。超细密ADI材料所制轴承的温升较低,可以工作于不超过等温淬火介质的温度(~200℃)环境;
5、噪音低。ADI材料的吸震性大于钢,可以减少滚动轴承的噪音;
6、重量轻。同样体积下ADI材料的重量比钢轻10%;
7、与锻件毛坯相比,高速精密垂直连铸的球铁空心型材的加工余量小。
本发明中,轴承的内外套圈,其原坯材料取自于垂直连续铸造的球墨铸铁管材,并经过了等温淬火处理,其金相为在“奥-铁组织”中嵌有细密的球状石墨。“奥-铁组织”中的富含碳与硅原子的纳米级尺寸的奥氏体和铁素体,为轴承套圈材料提供了良好的强韧性匹配,耐磨、耐冲击,20-40%的残余奥氏体既提高了耐疲劳性,又会诱发形***化而使套圈表面耐磨;石墨的球化率在93%以上,石墨球密度在500个/mm2以上,都达到了传统ADI组织 难以企及的高度。球状石墨为滚动摩擦提供了自润滑、吸收振动与快速导热的效果,其高度细密分布的特点又避免了引发点状接触疲劳裂纹。轴承滚珠沿用传统轴承钢,但硬度与套圈相同或略高。轴承保持架用连续铸造并经退火的球铁空心型材(QT400-18)制造。与轴承钢相比,ADI材料的淬火硬度在HRC48以上,致使它难以应用在高转速轴承上。所以,本发明将自润滑滚动轴承的适用范围,限制在“转速较低、工作温度200℃以下又难以经常润滑、频繁受冲击”的范围之内。
实施例1
步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:2.8%-3.1%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%;
步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成不同直径和壁厚的球铁管材;球铁管材的内径比轴承内外套圈成品内径小4-5mm,管材外径比轴承内外套圈成品外径大3-4mm;保持架型材的内外径加工余量也分别为4-5mm和3-4mm。
步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
球化退火处理包括以下步骤:
a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度780℃,保温60min;
b.将步骤a处理的球铁管材炉冷至共析转变温度680℃,保温55min;
c.继续重复步骤a和步骤b不少于两次;
d.将步骤c处理的球铁管材炉冷至600℃,转为空冷至常温;
步骤4,将步骤3处理的球铁管材进行锯切和车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
等温淬火处理包括:将内外套圈加热至880℃,壁厚10mm以下的套圈, 保温50min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入250℃的等温介质槽中,保持时间40min,出槽后空冷,随后转入清水槽中,冲洗盐巴;
步骤5,对步骤4得到的内外套圈进行检验;包括:金相组织中的石墨球化率不小于93%;石墨球数量不小于500个/mm2;基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上;材料整体硬度要求不小于HRC48;
步骤6,将步骤2得到的空心型材进行退火处理,具体为:将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷,然后加工得到保持架,牌号为QT400-18;
步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和外购的滚珠(或滚柱)按常规工艺装配,滚珠的硬度与内外套圈硬度高出1-2HRC,得到自润滑滚动轴承。
实施例2
步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:2.8%-3.1%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%;
步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成不同直径和壁厚的球铁管材;球铁管材的内径比轴承内外套圈成品内径小4-5mm,管材外径比轴承内外套圈成品外径大3-4mm;保持架型材的内外径加工余量也分别为4-5mm和3-4mm。
步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
球化退火处理包括以下步骤:
a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度780℃,保温55min;
b.将步骤a处理的球铁管材炉冷至共析转变温度680℃,保温60min;
c.继续重复步骤a和步骤b不少于两次;
d.将步骤c处理的球铁管材炉冷至595℃,转为空冷至常温;
步骤4,将步骤3处理的球铁管材进行锯切和车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
等温淬火处理包括:将内外套圈加热至900℃,壁厚10mm以下的套圈,保温55min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入240℃的等温介质槽中,保持时间45min,出槽后空冷,随后转入清水槽中,冲洗盐巴;
步骤5,对步骤4得到的内外套圈进行检验;包括:金相组织中的石墨球化率不小于93%;石墨球数量不小于500个/mm2;基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上;材料整体硬度要求不小于HRC48;
步骤6,将步骤2得到的空心型材进行退火处理,具体为:将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷,然后加工得到保持架,牌号为QT400-18;
步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和外购的滚珠(或滚柱)按常规工艺装配,滚珠的硬度与内外套圈硬度高出1-2HRC,得到自润滑滚动轴承。
实施例3
步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:2.8%-3.1%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%;
步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成不同直径和壁厚的球铁管材;球铁管材的内径比轴承内外套圈成品内径小4-5mm,管材外径比轴承内外套圈成品外径大3-4mm;保持架型材的内外径加工余量也分别为4-5mm和3-4mm。
步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
球化退火处理包括以下步骤:
a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度780℃,保温65min;
b.将步骤a处理的球铁管材炉冷至共析转变温度680℃,保温65min;
c.继续重复步骤a和步骤b不少于两次;
d.将步骤c处理的球铁管材炉冷至605℃,转为空冷至常温;
步骤4,将步骤3处理的球铁管材进行锯切和车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
等温淬火处理包括:将内外套圈加热至890℃,壁厚10mm以下的套圈,保温60min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入230℃的等温介质槽中,保持时间50min,出槽后空冷,随后转入清水槽中,冲洗盐巴;
步骤5,对步骤4得到的内外套圈进行检验;包括:金相组织中的石墨球化率不小于93%;石墨球数量不小于500个/mm2;基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上;材料整体硬度要求不小于HRC48;
步骤6,将步骤2得到的空心型材进行退火处理,具体为:将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷,然后加工得到保持架,牌号为QT400-18;
步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和外购的滚珠(或滚柱)按常规工艺装配,滚珠的硬度与内外套圈硬度高出1-2HRC,得到自润滑滚动轴承。

Claims (8)

  1. 一种自润滑滚动轴承,其特征在于,包括内外套圈、保持架和滚珠,所述内外套圈、保持架和滚珠采用常规工艺装配,内外套圈的铸铁材料的成分为:C:3.3%-3.5%,Si:2.7%-2.9%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,残镁含量0.03%-0.045%,Fe为余量,上述组分质量百分比之和为100%。
  2. 一种自润滑滚动轴承的制备方法,其特征在于,具体按照以下步骤实施:
    步骤1,用面包生铁、废钢和铁合金配置材料并熔化铁水,内外圈套的原铁水的质量百分比组分如下:C:3.4%-3.7%,Si:1.5%-1.7%,Mn:0.3%-0.5%,Cr:0.3%-0.5%,S≤0.05%,P≤0.05%,Fe和其他杂质为余量,以上各组分质量百分比总和为100%,再通过孕育和球化处理使铁水的终硅量为2.7%-2.9%,残镁含量0.03%-0.045%;保持架的原铁水成分为:C:3.3%-3.5%,Si:1.8%-2.0%,Mn:0.2%-0.3%,S≤0.05%,P≤0.05%,Fe为余量,上述组分质量百分比之和为100%,经由孕育和球化处理,终硅含量2.8-3.1%,残镁含量0.03%-0.045%;
    步骤2,将步骤1中的铁水通过垂直连铸方法,分别拉制成球铁管材;
    步骤3,将步骤2得到的球铁管材进行球化退火处理后检测石墨形态,其中石墨形态要求:石墨球化率≥90%,石墨球密度在100倍显微镜下不少于500个/mm2
    步骤4,将步骤3处理的球铁管材进行车削、磨削得到内外套圈,并在车削加工后磨削加工前,进行等温淬火处理,
    步骤5,对步骤4得到的内外套圈进行检验,检验包括:
    1)金相组织中的石墨球化率不小于93%;
    2)石墨球数量不小于500个/mm2
    3)基体组织中铁素体的硬度比正常铸造组织中铁素体的硬度高出一倍以上;
    4)材料整体硬度要求不小于HRC48;
    步骤6,将步骤2得到的球铁管材进行退火处理,然后加工得到保持架;
    步骤7,将步骤5得到的内外套圈、步骤6得到的保持架和滚珠按常规 工艺装配得到自润滑滚动轴承。
  3. 根据权利要求2所述的自润滑滚动轴承的制备方法,其特征在于,步骤2中球铁管材的内径比轴承内外套圈成品内径小4-5mm,球铁管材的外径比轴承内外套圈成品外径大3-4mm。
  4. 根据权利要求2或3所述的自润滑滚动轴承的制备方法,其特征在于,步骤2中垂直连铸方法中采用的结晶器为双螺旋两进两出的水冷结晶器,其结构为:包括相互套接的内筒体(1)和外筒体(2),所述内筒体(1)和外筒体(2)的顶端连接有上法兰盘(3),所述内筒体(1)和外筒体(2)的底端连接有下法兰盘(4),所述外筒体(2)的上部分别设有进水嘴I(5)和进水嘴II(6),所述外筒体(2)的下部分别设有出水嘴I(7)和出水嘴II(8),所述内筒体(1)的外圆上车出了双螺旋筋板(9),内外筒体套装后,形成了双螺旋的水流通道。
  5. 根据权利要求2所述的自润滑滚动轴承的制备方法,其特征在于,步骤3中球化退火处理包括以下步骤:
    a.将球铁管材在井式或箱式热处理炉中升温至共析转变温度Ac1+50℃,保温55-65min;
    b.将步骤a处理的球铁管材炉冷至共析转变温度Ac1-50℃,保温55-65min;
    c.继续重复步骤a和步骤b不少于两次;
    d.将步骤c处理的球铁管材炉冷至595-605℃,转为空冷直至常温。
  6. 根据权利要求2所述的自润滑滚动轴承的制备方法,其特征在于,步骤4中等温淬火处理包括:将内外套圈加热至880-900℃,壁厚10mm以下的套圈,保温50-60min,壁厚10mm以上套圈,厚度每增加1mm,保温时间增加2min,保温时间足够后,迅速浸入230-250℃的等温介质槽中,保持时间40-50min,出槽后空冷,随后转入清水槽中,冲洗盐巴。
  7. 根据权利要求2所述的自润滑滚动轴承的制备方法,其特征在于,步骤6中退火处理是将球铁管材在井式或箱式炉中升温至共析转变温度760℃,保温120min;随后炉冷到500℃以下,转为空冷。
  8. 根据权利要求2所述的自润滑滚动轴承的制备方法,其特征在于,步骤7中滚珠的硬度比内外套圈硬度高出1-2HRC。
PCT/CN2017/099793 2016-08-31 2017-08-31 一种自润滑滚动轴承及其制备方法 WO2018041170A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017004307.7T DE112017004307B4 (de) 2016-08-31 2017-08-31 Selbstschmierendes Wälzlager und Herstellungsverfahren hierfür
US16/327,884 US11085097B2 (en) 2016-08-31 2017-08-31 Self-lubricating rolling bearing and preparation method therefor
SE1950370A SE543490C2 (en) 2016-08-31 2017-08-31 Self-lubricating rolling bearing and preparation method therefor
JP2019511920A JP6846510B2 (ja) 2016-08-31 2017-08-31 自己潤滑性転がり軸受およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610792612.8A CN106319338B (zh) 2016-08-31 2016-08-31 一种自润滑滚动轴承及其制备方法
CN201610792612.8 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041170A1 true WO2018041170A1 (zh) 2018-03-08

Family

ID=57790099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099793 WO2018041170A1 (zh) 2016-08-31 2017-08-31 一种自润滑滚动轴承及其制备方法

Country Status (6)

Country Link
US (1) US11085097B2 (zh)
JP (1) JP6846510B2 (zh)
CN (1) CN106319338B (zh)
DE (1) DE112017004307B4 (zh)
SE (1) SE543490C2 (zh)
WO (1) WO2018041170A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319338B (zh) * 2016-08-31 2018-03-20 西安理工大学 一种自润滑滚动轴承及其制备方法
CN107504072A (zh) * 2017-08-10 2017-12-22 张天贵 滚动轴承的制备方法
CN107475603A (zh) * 2017-08-10 2017-12-15 张天贵 自润滑滚动轴承的制备方法
CN110592465A (zh) * 2019-09-16 2019-12-20 西安理工大学 一种基于结构赋能材料的滑动轴承及其制备方法
CN114713766A (zh) * 2022-03-29 2022-07-08 南京理工大学 一种关节轴承内圈的磨削工艺
CN115323128B (zh) * 2022-07-01 2023-10-20 江阴兴澄合金材料有限公司 一种基于罩式炉GCr15盘条球化退火工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018248B2 (ja) * 1982-04-09 1985-05-09 株式会社クボタ ネツク部の強靭な圧延用ロ−ル
CN87200694U (zh) * 1987-01-26 1988-01-27 辽宁省鞍山轴承厂 As铸铁轴承实体保持架
CN1278563A (zh) * 2000-07-10 2001-01-03 高福池 固体自润滑高耐磨合金铸件材料
CN101589661A (zh) * 2009-07-01 2009-12-02 宣化冶金工业有限责任公司 一种带有碳化物的等温淬火球铁犁铧及其生产方法
CN203235937U (zh) * 2012-12-05 2013-10-16 陕西华安铸铁型材有限公司 连铸结晶器
CN103834854A (zh) * 2014-03-20 2014-06-04 上海宝华威热处理设备有限公司 一种用于热处理生产线推拉车的等温淬火球墨铸铁辊轮及其生产方法
CN106319338A (zh) * 2016-08-31 2017-01-11 陕西同心连铸管业科技有限公司 一种自润滑滚动轴承及其制备方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2118867B1 (zh) 1970-12-24 1974-02-15 Etudes De Centrifugation
JPS5613421A (en) * 1979-07-09 1981-02-09 Riken Corp Tough and hard spheroidal graphite cast iron and its manufacture
JPS6034350U (ja) 1983-08-15 1985-03-08 株式会社神戸製鋼所 連続鋳造用チユ−ブラ鋳型
JPH06104846B2 (ja) 1988-12-20 1994-12-21 マツダ株式会社 鋳鉄製摺動部材及びその製造方法
JPH0788853B2 (ja) 1990-07-16 1995-09-27 株式会社安川電機 ころがり軸受
JP3462549B2 (ja) 1993-12-15 2003-11-05 岩手県 刃物及びその製造方法
JP2001124094A (ja) * 1999-10-27 2001-05-08 Minebea Co Ltd 軸受の外輪のランド仕上げ加工法及び軸受
JP2002113551A (ja) 2000-10-10 2002-04-16 Kogi Corp 連続鋳造によるパイプの製造方法及び装置
JP3971217B2 (ja) 2001-03-28 2007-09-05 株式会社栗本鐵工所 遠心力鋳造法によるダクタイル鋳鉄管およびその製造方法
JP2007127251A (ja) 2005-11-07 2007-05-24 Ntn Corp 複列自動調心ころ軸受
SE0701358L (sv) * 2007-06-01 2008-10-07 Skf Ab En lagerkomponent för ett rullningslager eller ett glidlager
CN100479948C (zh) 2007-10-24 2009-04-22 西安理工大学 低塑性金属空心型材的连铸成形设备
JP5582855B2 (ja) 2010-04-14 2014-09-03 高周波熱錬株式会社 機械構造部品の製造方法
JP5839465B2 (ja) * 2011-12-22 2016-01-06 曙ブレーキ工業株式会社 球状黒鉛鋳鉄の製造方法および球状黒鉛鋳鉄部材の製造方法
JP2014098458A (ja) 2012-11-15 2014-05-29 Nsk Ltd 自動調心ころ軸受
CN103131937A (zh) * 2013-01-28 2013-06-05 天津万立鑫晟新材料技术研究院有限公司 一种含碳化物的等温淬火球墨铸铁及其制备方法
JP2014181356A (ja) 2013-03-18 2014-09-29 Yasunaga Corp 鋳鉄カムシャフトのオーステンパー連続処理プロセス
JP6237459B2 (ja) 2014-05-15 2017-11-29 新日鐵住金株式会社 鋼管の熱処理方法およびそれを用いる軸受用鋼管の製造方法
CN105274423B (zh) * 2014-06-13 2017-02-22 中国科学院金属研究所 一种含碳化物的等温淬火球墨铸铁及其制备方法
JP6018248B2 (ja) 2014-06-17 2016-11-02 住友ゴム工業株式会社 タイヤ
CN104233051B (zh) * 2014-08-30 2017-02-08 广东省材料与加工研究所 一种含碳化物奥铁体球墨铸铁及其制备方法
CN105018833A (zh) * 2015-07-09 2015-11-04 王波林 一种等温淬火球铁及其生产推力杆端头的方法
CN105132790A (zh) * 2015-08-31 2015-12-09 广州有色金属研究院 一种含钒碳化物奥铁体球墨铸铁及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018248B2 (ja) * 1982-04-09 1985-05-09 株式会社クボタ ネツク部の強靭な圧延用ロ−ル
CN87200694U (zh) * 1987-01-26 1988-01-27 辽宁省鞍山轴承厂 As铸铁轴承实体保持架
CN1278563A (zh) * 2000-07-10 2001-01-03 高福池 固体自润滑高耐磨合金铸件材料
CN101589661A (zh) * 2009-07-01 2009-12-02 宣化冶金工业有限责任公司 一种带有碳化物的等温淬火球铁犁铧及其生产方法
CN203235937U (zh) * 2012-12-05 2013-10-16 陕西华安铸铁型材有限公司 连铸结晶器
CN103834854A (zh) * 2014-03-20 2014-06-04 上海宝华威热处理设备有限公司 一种用于热处理生产线推拉车的等温淬火球墨铸铁辊轮及其生产方法
CN106319338A (zh) * 2016-08-31 2017-01-11 陕西同心连铸管业科技有限公司 一种自润滑滚动轴承及其制备方法

Also Published As

Publication number Publication date
US20190194771A1 (en) 2019-06-27
SE1950370A1 (en) 2019-03-26
DE112017004307T5 (de) 2019-05-23
US11085097B2 (en) 2021-08-10
JP2019528414A (ja) 2019-10-10
CN106319338A (zh) 2017-01-11
SE543490C2 (en) 2021-03-09
CN106319338B (zh) 2018-03-20
DE112017004307B4 (de) 2024-04-04
JP6846510B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2018041170A1 (zh) 一种自润滑滚动轴承及其制备方法
WO2021114536A1 (zh) 一种滚珠丝杠轴承用钢及其制造方法
CN104148399B (zh) 用于轧钢中轧机架的耐磨轧辊及其制备方法
TWI476286B (zh) Wheel steel
CN101037760A (zh) 一种高碳高钒高速钢复合轧辊及其热处理方法
CN103602920B (zh) 一种轴承钢和耐磨轴承的制造工艺方法
CN110592465A (zh) 一种基于结构赋能材料的滑动轴承及其制备方法
CN107504072A (zh) 滚动轴承的制备方法
CN110964973B (zh) 一种高锰cadi及其热处理方法
CN110565007A (zh) 一种基于结构赋能材料的丝杠副的螺纹丝杠及制造方法
CN106367569A (zh) 一种新型淬火液及其在高铬耐磨铸铁淬火冷却中的应用
CN106367673A (zh) 一种自润滑低温升的谐波减速器及其制备方法
WO2022166155A1 (zh) 一种集装箱起重机车轮钢、车轮及其制备方法
CN105018864A (zh) 一种耐磨稀土合金材料
JPWO2020166637A1 (ja) 燃料噴射管用鋼管およびそれを用いた燃料噴射管
CN110629107A (zh) 一种基于结构赋能材料的向心关节轴承及制备方法
Gecu Microstructure, mechanical, and wear properties of Al-alloyed austempered ductile irons
Li et al. Friction resistance and bonding strength of high vanadium alloy steel/low carbon steel bimetal after heat treatments
JP6625420B2 (ja) 転動疲労寿命に優れた機械部品用鋼の製造方法
CN107475603A (zh) 自润滑滚动轴承的制备方法
CN102389960B (zh) 一种砼泵机械配管的铸造和热处理的生产方法
CN111471922B (zh) 用于轧制铝合金板材的cadi辊套及其制备方法
JP3748730B2 (ja) 連続鋳造設備のロール支持装置
CN105648349A (zh) 一种中厚板热矫直辊的制备方法
CN115637378B (zh) 一种滚动体用轴承钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511920

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17845472

Country of ref document: EP

Kind code of ref document: A1