WO2018040441A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2018040441A1
WO2018040441A1 PCT/CN2016/113438 CN2016113438W WO2018040441A1 WO 2018040441 A1 WO2018040441 A1 WO 2018040441A1 CN 2016113438 W CN2016113438 W CN 2016113438W WO 2018040441 A1 WO2018040441 A1 WO 2018040441A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating
air
chamber
middle door
duct
Prior art date
Application number
PCT/CN2016/113438
Other languages
English (en)
French (fr)
Inventor
陶海波
刘建如
姬立胜
聂圣源
戚斐斐
潘光亮
曹东强
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018040441A1 publication Critical patent/WO2018040441A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/04Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with more than one refrigeration unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation

Definitions

  • the invention relates to the field of household appliances, and in particular to a refrigerator.
  • a refrigerator generally refers to a single door, a double door double temperature, a three door three temperature, a cabinet type multi-door and the like, and generally has an independent freezing room and an outer door of the refrigerating room, so as to be separated according to different storage temperatures.
  • Store The refrigeration principle of this refrigerated freezer is divided into direct cooling and air cooling.
  • the direct cooling type refrigeration system usually uses a solenoid valve to control the flow of the refrigerant, and supplies the refrigerant to the evaporators of the respective refrigerating (freezing) chambers to cool the spaces to the required temperature.
  • Air-cooled chilling and freezing requires the installation of a corresponding air duct to supply air to each space.
  • the refrigerating compartment has a constant temperature and constant humidity (high humidity) function, but whether it is a direct cooling type or an air-cooled refrigerator, the relative humidity of the refrigerating compartment is relatively low, and the temperature fluctuates greatly, by using an inverter compressor and its frequency conversion.
  • the control system can reduce the temperature fluctuation of the refrigerating compartment, but the temperature fluctuation is not in the ideal range, and the cost of the inverter compressor and the variable frequency control system is high.
  • the food refrigerated in the refrigerating compartment is different, the user cannot select the refrigerating supply air temperature, and the temperature difference between the refrigerated supply air temperature and the refrigerating and cooling temperature is large, and the fruits and vegetables inside the refrigerating compartment may be frostbitten.
  • the present invention provides a refrigerator comprising: a casing defining a refrigerating compartment and a freezing compartment, wherein one side of the refrigerating compartment and the freezing compartment are respectively provided with a refrigerating air inlet in fluid communication therewith a channel and a freezing inlet duct; an evaporator disposed in the evaporator chamber at the rear of the freezing chamber, the freezing inlet duct being in fluid communication with the evaporator chamber; the intermediate duct being disposed in the refrigerating inlet duct and freezing into Selective fluid communication between the air ducts and the refrigerating inlet duct and the refrigerating inlet duct, the intermediate duct including the first air path and the second air path arranged side by side; the heat source is disposed in the second wind The inside of the road; the cold air self-evaporator can enter the first air passage and/or the second air passage through the freezing inlet duct to enter the refrigerating inlet duct.
  • the first air passage and the second air passage are arranged side by side along the width direction of the refrigerator.
  • the refrigerating compartment of the refrigerator is capable of switching between at least two refrigerating modes of the following three refrigerating modes, the first conventional cooling mode, the cold wind passing from the evaporator through the first wind The road is sent to the refrigerating inlet air duct; the second high air supply temperature mode, the cold air is sent from the evaporator to the refrigerating air inlet passage through the second air passage; the third mixed air supply mode, the cold air is passed from the evaporator to the first air passage And the second air path is sent to the refrigerating inlet duct.
  • the casing further defines a middle door chamber, the middle door chamber is located between the refrigerating chamber and the freezing chamber, and the intermediate air passage is disposed in the middle door chamber and Corresponds to the position of the refrigerating inlet duct and the freezing inlet duct.
  • a first middle door damper and a second middle door damper are respectively disposed at a communication between the first air path and the second air path and the evaporator cavity, and the first air path and a first refrigerating damper and a second refrigerating damper are respectively disposed at a communication between the second air passage and the refrigerating inlet duct, the first middle damper and the second middle damper and the first refrigerating damper and the second refrigerating damper Optional to open or close.
  • the first middle door damper and the second middle door damper are configured as a drag type damper in which one motor drags two blades.
  • the first refrigerating damper and the second refrigerating damper are configured as a drag type damper in which one motor drags two blades.
  • the refrigerator further includes a semiconductor module disposed at a rear portion of the middle door chamber for providing cooling to the middle door chamber, the semiconductor module having cold An end and a hot end, the cold end being in fluid communication with the middle door chamber, the heat source being comprised of the hot end.
  • the intermediate duct further includes a cooling duct in fluid communication with the middle door chamber, the cold end is located in the refrigerating duct, and the refrigerating duct is opposite to the The first air path and the second air path are independently arranged.
  • a water receiving box is disposed at a bottom of the cold end of the semiconductor module inside the middle door.
  • a first fan is disposed at a rear portion of the freezing chamber, and the first fan is configured to introduce cold air from the evaporator into a freezing chamber and a refrigerating chamber, and a rear side of the middle door chamber is disposed
  • a second fan is used to introduce cold air from the cold end of the semiconductor module into the middle door chamber.
  • the refrigerating chamber is further provided with a refrigerating return air passage in fluid communication with the evaporator chamber, and the cold air entering the refrigerating air inlet duct is returned to the evaporator through the refrigerating return air passage.
  • the rear portion of the middle door chamber is further provided with a middle door return air passage, the middle door return air passage is in fluid communication with the second air passage, and the middle door returns air
  • a return air switch is disposed in the circuit, and the return air switch selectively connects or disconnects the middle door return air passage from the refrigerating return air passage.
  • the cold air is sent from the evaporator to the refrigerating inlet duct via the second air passage, and the return air switch is closed to open between the refrigerating return air passage and the middle door return air passage. Fluid communication.
  • the refrigerator includes two types of cold air circulation systems: a first cold air circulation system: the cold air enters the freezer compartment and the refrigerating compartment from the evaporator, and then returns to the evaporator through the refrigerating return air passage; Cold air circulation system: cold air circulates between the cooling air duct and the middle door chamber from the cold end.
  • the invention has the beneficial effects that: the refrigerator of the invention can realize various air supply modes of the refrigerating room, and meet different needs of users, wherein one air channel is provided with a heat source, and the refrigerating air supply temperature is high, which is beneficial to food preservation and prevention. Frostbite.
  • the dual air duct and the semiconductor module are cooled for use in the middle door of the refrigerator, so that the constant temperature and constant humidity (high humidity) functions can be realized.
  • FIG. 1 is a schematic rear view of a refrigerator in a preferred embodiment of the present invention.
  • Figure 2 is a right side view of the refrigerator of Figure 1;
  • Figure 3 is a schematic view of a semiconductor module of the refrigerator of Figure 1;
  • Figure 4 is a schematic view of the air passage of the middle door compartment of the refrigerator of Figure 1.
  • the preferred embodiment discloses a refrigerator 100.
  • the refrigerator 100 includes a box body, and the box body defines three refrigerating compartments, respectively, which are refrigerating compartments 20 and
  • the door chamber 30 and the freezing chamber 40 are generally provided from the top to the bottom in the refrigerating chamber 20, the middle door chamber 30, and the freezing chamber 40.
  • the direction in which the refrigerating chamber 20, the middle door chamber 30, and the freezing chamber 40 are arranged from top to bottom is defined as the height direction of the refrigerator
  • the direction in which the user opens the refrigerator facing the refrigerator door and back to the refrigerator door is defined as
  • the thickness direction of the refrigerator defined perpendicular to the height direction and the thickness direction, is defined as the width direction of the refrigerator.
  • the refrigerator further has an evaporator 50 and a freezing fan 502, the evaporator 50 is disposed in the evaporator chamber 501 at the rear of the cabinet freezing chamber 40, and the freezing fan 502 is disposed in the upper portion of the evaporator 50 in the evaporator chamber 501, the evaporator 50
  • the defrosting device 70 is disposed at the lower portion.
  • the evaporator 50 may be any one of known evaporators such as a fin evaporator, a wire tube evaporator, an inflation evaporator, and a tube tube evaporator.
  • the refrigerator 100 constitutes a compression refrigeration cycle system by a compressor (not shown), a condenser (not shown), and an evaporator 50, and the refrigeration fan 502 introduces cold air from the evaporator 50 into the freezing compartment 40 and the refrigerating compartment. 20, that is, the freezing fan 502 and the circulation duct leading to the freezing compartment 40 and the refrigerating compartment 20 constitute a first cold air circulation system.
  • the compressor pushes the refrigerant circulation, and the refrigerant entering the evaporator 50 absorbs heat and evaporates.
  • the freezing fan 502 is sent to the corresponding refrigerating compartment through the circulation duct, that is, the cold air enters the refrigerating compartment 20 through the freezing compartment 40, that is, the refrigerating compartment 20 and
  • the refrigeration of the freezer compartment 40 is provided by a compression refrigeration system of the refrigerator 100.
  • the refrigerator 100 in this embodiment further includes a semiconductor module 60.
  • the semiconductor module 60 is an integrated module including a cold-end heat exchanger, a hot-end heat exchanger, and a connection between them.
  • Semiconductor chip 606, cold junction heat exchanger and hot end heat exchanger are referred to herein simply as cold end 602 and hot end 604.
  • the semiconductor module 60 is disposed at a rear portion of the door chamber 30 in the cabinet body, and one side of the middle door chamber 30 is provided with a cooling air passage in fluid communication with it, that is, a first air passage D of the middle door chamber 30, preferably, A wind tunnel D is disposed at the rear of the middle door chamber 30, and the cold end 602 of the semiconductor module 60 is located in the first air passage D, and the middle air duct D is further provided with a middle door blower 302, and the middle door blower 302 is located The upper portion of the cold end 602 is for introducing cold air from the cold end 602 into the middle door chamber 30.
  • the airflow and the cold end 602 inside the middle door chamber 30 are circulated through the first air passage D, that is, the cold air generated by the cold end 602 enters the middle door chamber 30 through the air inlet of the first air passage D, and then returns to the cold from the air outlet. End 602, such that the circulating duct of door chamber 30 constitutes a second cold air circulation system.
  • the rear end of the middle door chamber 30 is further provided with a second air passage, and the second air passage is located at the rear side of the first air passage D and is disposed independently of the first air passage D, that is, The second air passage and the first air passage D are not in fluid communication, and the two air passages are arranged side by side with respect to the thickness direction of the refrigerator 100.
  • the hot end 604 is located in the second air duct, and the second air duct includes the air inlet duct 304 and the return air duct 306 (the air passage through which the air flow indicated by the arrow M2 shown in FIG. 2 passes), and the cold air flows from the evaporator 50 through the air duct 304.
  • the flow to the hot end 604 is returned to the evaporator 50 via the return air passage 306.
  • the hot end 604 is disposed in the intake duct 304, the first duct D is adjacent to the intake duct 304, and the second duct is
  • the first air duct D is collectively referred to as a middle door air duct, and the semiconductor module 60 is located at a middle portion of the middle door air duct, so that the semiconductor module is easy to install and takes up little space.
  • the first air passage D and the second air passage constitute a front and rear double air passage, and the air circulation of each air passage is independent, and the air flow inside the middle door chamber 30 is circulated through the first air passage D and the semiconductor cold end heat exchanger.
  • the cold air circulation inside the middle door chamber 30 is realized by a separate middle door fan 302; the cold air sucked from the evaporator 50 is radiated through the semiconductor hot end 602 in the second air passage, and then returned to the bottom of the evaporator 50 through the middle door return air passage 306. Re-heat exchange with the evaporator 50. Therefore, it can be said that the cooling of the middle door chamber 30 is provided by the semiconductor module 60.
  • the second air duct is used for heat dissipation of the semiconductor, it is necessary to ensure sufficient cooling capacity to take away the maximum heat generated by the semiconductor operation, that is, to ensure the minimum cooling temperature in the middle door.
  • the cooling temperature of the middle door chamber is between 5-12 °C. Therefore, the semiconductor cold-end heat exchanger needs to ensure that the temperature is not lower than 0 °C (according to the test experience, it is generally lower than the cooling room temperature of 3-5 °C) to ensure the middle door.
  • the water vapor inside the chamber 30 will not be frosted on the cold-end heat exchanger, resulting in a decrease in internal humidity; a water-receiving box 309 is disposed at the bottom of the cold-end heat exchanger inside the middle door chamber 30 to prevent condensation of water vapor on the cold-end heat exchanger. When the drip is stored.
  • a freezing duct C is disposed at a rear portion of the freezing compartment 40, and a refrigerating duct is disposed at a rear portion of the refrigerating compartment 20, and the refrigerating duct is composed of a first section refrigerating duct B1 located at the middle door portion and a second section refrigerating wind located at the refrigerating part
  • the track B2 is configured, and the freezing fan 502 conveys cold air to the freezing compartment 40 and the refrigerating compartment 20 through the freezing duct C and the refrigerating duct.
  • the second air duct includes a left side air passage and a right side air passage A which are arranged side by side in the width direction of the refrigerator, that is, a first air passage and a second air passage, wherein the left air passage overlaps with the first refrigerating air passage B1, or Said sharing, that is, the same air duct, the second section of the refrigerating air duct B2 can be regarded as a refrigerating air inlet duct, and the hot end is located in the right side air path A, and the left side air path and the right side air path A are mutual Independent air ducts that can be disassembled and installed independently.
  • the freezing duct C and the second section refrigerating duct B2 may be in fluid communication through the right side air path A.
  • the first section of the refrigerating air duct B1 is disposed on the right side and the hot end 604 is located in the left side air path.
  • the second air passage described above includes two air passages, and those skilled in the art can easily think that the second air passage is a single air passage, and the middle door chamber can also have separate refrigeration with respect to the refrigerating chamber or the freezing chamber. Circulatory system.
  • the rear end of the refrigerating inlet duct of the refrigerating compartment 20 is provided with a refrigerating compartment return air inlet and a refrigerating return air duct 206 in fluid communication with the 261 evaporator chamber 501, that is, an air passage through which the airflow indicated by an arrow M1 in FIG. 2 passes, and the cold air evaporates.
  • the device 50 enters the second section of the refrigerating air duct B2, and then returns to the evaporator 50 via the refrigerating return duct 206.
  • the rear end of the middle door chamber 30 is provided with a middle door chamber return air opening 361, and the cold air exchanges heat with the hot end 604 to enter the return air passage 306 of the middle door chamber 30 through the middle door chamber return air opening 361, and the middle door chamber 30 is returned.
  • the air duct 306 can be selectively connected or disconnected from the refrigerating return air duct 206, that is, the return air duct 306 of the second air duct is provided with a return air switch 307, and the return air duct of the second air duct can be selectively selected by the return air switch 307.
  • 306 is in fluid communication or partitioned from the refrigerated return duct 206.
  • Such a duct arrangement is relatively compact, and of course, the return duct 306 of the second duct may be independently provided with respect to the refrigerating return duct 206.
  • the first section of the refrigerating air duct B1 is connected with the evaporator chamber to provide a middle door damper ZM1, that is, a first middle door damper, and a refrigerating damper LC1 is disposed between the first section of the refrigerating duct B1 and the second section of the refrigerating duct B2.
  • a refrigerating damper can realize the between the evaporator chamber and the first section of the refrigerating duct B1, the first section of the refrigerating duct B1 and the second section of the refrigerating duct B2 by controlling the opening and closing of the middle door damper ZM1 and the refrigerating damper LC1.
  • the fluid is connected or disconnected.
  • the right side air passage A of the second air passage is connected with the evaporator chamber 501 to provide a middle door damper ZM2, that is, a second middle door damper, and the right side air passage A of the second air passage and the second refrigerating air passage B2 are refrigerated.
  • the refrigerating damper LC2, that is, the second refrigerating damper is provided at the inlet of the inlet duct, and by controlling the opening and closing of the middle door damper ZM2 and the refrigerating damper LC2, the between the evaporator chamber 501 and the right side air passage A of the second duct can be realized.
  • the aforementioned middle door dampers ZM1, ZM2 and refrigerating dampers LC1, LC2 are one type of tow type damper in which one motor drives two blades, that is, the two blades can be independently switched without affecting each other.
  • the cross-sectional shape of all the air passages is a substantially rectangular shape, and of course, it may be a circular shape, a square shape, or the like.
  • respective indoor temperature sensors (not shown) and controllers (not shown) are installed in the refrigerating chamber 20, the middle door chamber 30, and the freezing chamber 40 according to installation in the refrigerating chamber 20, the middle door chamber 30, and freezing.
  • the signal transmitted by the temperature sensor in the chamber 40 adjusts the working condition of the compressor or the opening or closing of the damper or opens the Chengdu to maintain the refrigerator in the set state.
  • the refrigerator can be converted between the following several refrigerating modes or the intake mode:
  • the first type the normal cooling mode, that is, the middle door damper ZM1 and the refrigerating damper LC1 fan blades are opened, the middle door damper ZM2 and the refrigerating damper LC2 fan blades are closed, and the cold air is sucked from the evaporator 50 through the freezing fan 502, and then passes through the first stage of refrigerating
  • the air duct B1 and the second section of the refrigerating air duct B2 are sent to the refrigerating chamber 20 to cool the refrigerating chamber 20, that is, the conventional refrigerator refrigerating air supply mode, and the temperature of the refrigerating air supply port is generally lower than -10 ° C;
  • the second type: high air supply temperature mode that is, the middle door damper ZM1 and the refrigerating damper LC1 fan blades are closed, the middle door damper ZM2 and the refrigerating damper LC2 fan blades are opened, and the cold air is sucked from the evaporator 50 through the freezing fan 502, and passes through the second
  • the right side air passage A and the second section refrigerating air passage B2 of the air duct are sent to the refrigerating chamber 20 to refrigerate the refrigerating chamber 20, and the cold air passes through the right side air passage A of the second air duct to exchange heat with the semiconductor hot end 604.
  • the air is sent to the refrigerating chamber 20, so the air supply temperature to the refrigerating chamber 20 is higher than the conventional cooling mode, and the temperature is about -5 ° C to 0 ° C; in this mode, the middle door return air switch 307 is closed, and the cold air is sent to the refrigerating system.
  • the refrigerating return air passage 206 After the chamber 20 is returned to the bottom of the evaporator 50 through the refrigerating return air passage 206, the cold air is prevented from being sent to the refrigerating air, and part of the cold air flows to the middle door return air passage 306, which affects the air supply volume of the refrigerating; in this mode, the refrigerated air supply
  • the temperature difference between the temperature and the refrigerating and cooling temperature is small, which can prevent freezing of fruits and vegetables inside the refrigerating chamber 20, and is conducive to condensation and freezing inside the air duct of the refrigerator caused by low air supply temperature;
  • the third type mixed air supply mode
  • the middle door damper ZM1 and the refrigerating damper LC1 fan blades are opened
  • the middle door damper ZM2 and the refrigerating damper LC2 fan blades are also opened
  • the cold air is sucked from the evaporator 50 through the freezing fan 502, and passes through the second wind.
  • the right side air passage A and the first section of the refrigerating air passage B1 are sent to the refrigerating chamber 20 via the second refrigerating air passage B2 to cool the refrigerating chamber 20.
  • the refrigerating fan 502 corresponds to a higher fan speed.
  • the refrigerating air supply volume is large, and the supply air temperature is between the first and second supply air temperatures, and the supply air temperature is between -10 ° C and -5 ° C; in this mode, the refrigeration is increased by sending
  • the air volume can achieve rapid cooling, which is suitable for rapid cooling when refrigerating a large amount of hot food; in this mode, the middle door return air is opened 362 off, and the cold air is sent to the bottom of the evaporator 50 after being refrigerated and returned to the bottom of the evaporator.
  • the middle door return air is opened 362 off, and the cold air is sent to the bottom of the evaporator 50 after being refrigerated and returned to the bottom of the evaporator.
  • the middle door return air passage 306 which affects the amount of air supplied by the refrigerating.
  • the cooling of the middle door chamber in this embodiment is separately controlled by the semiconductor module 60, so when the middle door chamber 30 is not required to be used, It can be turned off separately. In addition, it is often unnecessary to open the refrigerating compartment 20 in winter. If it is necessary to separately close the refrigerating compartment, it is only necessary to close the middle door dampers ZM1, ZM2 and/or the refrigerating dampers LC1, LC2, at which time the refrigerating fan 502 follows the evaporator 50. Start and stop and intermittently rotate, thus reducing power consumption.
  • the refrigerator only needs a plurality of refrigerating air supply modes, and the semiconductor module is not required to separately cool the middle door chamber, that is, the second air passage is provided with two air passages, one of which is disposed in the air passage.
  • the heat source that is, is used to heat the cold air, that is, the cold air is sucked from the evaporator through the freezing fan and then sent to the refrigerating chamber through the heat source, so the air supply temperature to the refrigerating chamber is higher than the conventional cooling mode.
  • the opening or closing of the dampers of the two air passages the conversion of the refrigerator between the various refrigerating air supply modes can also be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱,包括:箱体,该箱体限定有冷藏室(20)和冷冻室(40),该冷藏室(20)和冷冻室(40)的一侧分别设置有与其流体连通的冷藏进风道和冷冻进风道(C);蒸发器(50),设置在冷冻室(40)后部的蒸发器腔(501)内,冷冻进风道(C)与该蒸发器腔(501)流体连通;中间风道,设置在冷藏进风道和冷冻进风道(C)之间,并和冷藏进风道以及冷冻进风道(C)之间可选择的流体连通,该中间风道包括并排设置的第一风路和第二风路;热源(604),设置在第二风路内;冷风自蒸发器(50)能够经冷冻进风道(C)可选择的进入第一风路和/或第二风路再进入冷藏进风道。该冰箱可以实现冷藏室(20)多种送风模式,满足用户不同需求。

Description

冰箱
本申请要求了申请日为2016年08月30日,申请号为201610769692.5,发明名称为“冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及家电领域,尤其涉及一种冰箱。
背景技术
现有技术中,冰箱泛指单门、双门双温、三门三温、柜式多门等电冰箱,一般具有独立的冷冻室和冷藏室的外门,以便根据不同的储藏温度而分开储存。这种冷藏冷冻箱的制冷原理分为直冷式和风冷式。直冷式的制冷***常用电磁阀控制制冷剂的流向,分别向各冷藏(冻)室的蒸发器供给致冷剂,使各空间冷却到所需温度。风冷式的冷藏冷冻需要设置相应的风道为各个空间送风。
随着人们生活水平的提高,人们对冰箱提出来更高的要求,如:为使电冰箱更能适应各种食物的冷藏,因为食品(例如蔬菜、水果等)保鲜对温度波动是相当敏感的,特别是冷藏温区的食品保鲜,温度波动会带动湿度变化,并且从食品中蒸发出来的水会以冷藏凝露水的形式持续流失,从而造成食品的保鲜周期大大的缩短。因此需要冷藏室具有恒温、恒湿(高湿)功能,但是无论是直冷式或者风冷式冰箱,冷藏室的相对湿度都比较低,而且温度波动较大,通过利用变频压缩机及其变频控制***,可以减小冷藏室的温度波动,但是温度波动还不是在理想的范围,而且变频压缩机和变频控制***的成本很高。
另外,冷藏室中冷藏的食物不同,用户无法选择冷藏的送风温度,而冷藏的送风温度与冷藏制冷温度的温差较大,可能会冻伤冷藏室内部的果蔬。
发明内容
本发明的目的在于提供一种冰箱,该冰箱可选择不同的冷藏送风温度,从而具有更好的冷藏效果。
为实现上述发明目的,本发明提供一种冰箱,包括:箱体,所述箱体限定有冷藏室和冷冻室,所述冷藏室和冷冻室的一侧分别设置有与其流体连通的冷藏进风道和冷冻进风道;蒸发器,设置在冷冻室后部的蒸发器腔内,所述冷冻进风道与所述蒸发器腔流体连通;中间风道,设置在冷藏进风道和冷冻进风道之间,并和冷藏进风道以及冷冻进风道之间可选择的流体连通,所述中间风道包括并排设置的第一风路和第二风路;热源,设置在第二风路内;冷风自蒸发器能够经冷冻进风道可选择的进入第一风路和/或第二风路再进入冷藏进风道。
作为本发明一实施方式的进一步改进,所述第一风路和第二风路沿着所述冰箱的宽度方向并排设置。
作为本发明一实施方式的进一步改进,所述冰箱的冷藏室能够在以下三种冷藏模式中的至少两种冷藏模式之间进行转换,第一种常规制冷模式,冷风从蒸发器经第一风路送入冷藏进风道;第二种高送风温度模式,冷风从蒸发器经第二风路送入冷藏进风道;第三种混合送风模式,冷风从蒸发器经第一风路和第二风路送入冷藏进风道。
作为本发明一实施方式的进一步改进,所述箱体还限定有中门室,所述中门室位于所述冷藏室和冷冻室之间,所述中间风道设置于所述中门室且与冷藏进风道和冷冻进风道位置对应。
作为本发明一实施方式的进一步改进,所述第一风路和第二风路与所述蒸发器腔连通处分别设置第一中门风门和第二中门风门,所述第一风路和第二风路与所述冷藏进风道连通处分别设置第一冷藏风门和第二冷藏风门,所述第一中门风门和第二中门风门与所述第一冷藏风门和第二冷藏风门 可选择的打开或者关闭。
作为本发明一实施方式的进一步改进,所述第一中门风门和第二中门风门构造为一个电机拖动两个扇叶的一拖二型风门。
作为本发明一实施方式的进一步改进,所述第一冷藏风门和第二冷藏风门构造为一个电机拖动两个扇叶的一拖二型风门。
作为本发明一实施方式的进一步改进,所述冰箱还包括半导体模组,所述半导体模组设置在中门室的后部,用于给中门室提供冷量,所述半导体模组具有冷端和热端,所述冷端与所述中门室流体连通,所述热源由所述热端构成。
作为本发明一实施方式的进一步改进,所述中间风道还包括与所述中门室流体连通的制冷风道,所述冷端位于所述制冷风道内,所述制冷风道相对于所述第一风路和第二风路独立设置。
作为本发明一实施方式的进一步改进,所述中门室内部半导体模组的冷端底部设置有接水盒。
作为本发明一实施方式的进一步改进,所述冷冻室的后部设置第一风机,所述第一风机用于将自蒸发器冷风引入冷冻室和冷藏室,所述中门室的后侧设置第二风机,所述第二风机用于将半导体模组冷端的冷风引入中门室。
作为本发明一实施方式的进一步改进,所述冷藏室还设置有与所述蒸发器腔流体连通的冷藏回风道,进入冷藏进风道的冷风再经冷藏回风道回风至蒸发器。
作为本发明一实施方式的进一步改进,所述中门室的后部还设置有中门回风道,所述中门回风道与所述第二风路流体连通,所述中门回风道内设置回风开关,所述回风开关可选择的将所述中门回风道与所述冷藏回风道流体连通或者隔断。
作为本发明一实施方式的进一步改进,在所述冷风从蒸发器经第二风路送入冷藏进风道,所述回风开关关闭以断开冷藏回风道与中门回风道之间的流体连通。
作为本发明一实施方式的进一步改进,所述冰箱包括两种冷风循环***,第一冷风循环***:冷风自蒸发器进入冷冻室和冷藏室后经冷藏回风道再回到蒸发器;第二冷风循环***:冷风自所述冷端在制冷风道和中门室之间循环。
与现有技术相比,本发明的有益效果在于:本发明冰箱可以实现冷藏室多种送风模式,满足用户不同需求,其中一个风道设置热源,冷藏送风温度高,利于食物保鲜,防止冻伤。另外,将双风道、半导体模组制冷用于冰箱的中门室,从而能够实现恒温、恒湿(高湿)功能。
附图说明
图1是本发明优选的实施方式中冰箱的后视示意图;
图2是图1中冰箱的右视图;
图3是图1中冰箱的半导体模块的示意图;
图4是图1中冰箱的中门室的风道示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
如图1至图2所示,本发明优选的实施例,该优选实施例公开了一种冰箱100,冰箱100包括箱体,箱体限定出三个制冷间室,分别是冷藏室20、中门室30以及冷冻室40,一般情况下,冷藏室20、中门室30以及冷冻室40自上而下设置。本实施例中,冷藏室20、中门室30以及冷冻室40自上而下排列的方向定义为冰箱的高度方向,用户开启冰箱面对冰箱门和背对冰箱门的方向定义为 冰箱的厚度方向,垂直于高度方向和厚度方向的定义为冰箱的宽度方向。冰箱还具有蒸发器50和冷冻风机502,蒸发器50设置在箱体冷冻室40后部的蒸发器腔501内,冷冻风机502设置在蒸发器腔501内蒸发器50的上部,蒸发器50的下部设置化霜器70。蒸发器50可以是已知的任何一种蒸发器,例如翅片蒸发器、丝管蒸发器、吹胀式蒸发器和板管蒸发器中的一种。本实施方式中,冰箱100通过压缩机(图未示)、冷凝器(图未示)和蒸发器50构成压缩制冷循环***,冷冻风机502将自蒸发器50的冷风引入冷冻室40和冷藏室20,即冷冻风机502和通向冷冻室40、冷藏室20的循环风道构成第一冷风循环***。工作时,压缩机推动冷媒循环,进入蒸发器50的冷媒吸热蒸发,冷冻风机502经循环风道送到相应的制冷间室,即冷风经冷冻室40进入冷藏室20,即冷藏室20和冷冻室40的制冷由冰箱100的压缩制冷***提供。
本实施例中的冰箱100还包括半导体模组60,如图3所示,半导体模组60为集成好的模组,包括冷端换热器、热端换热器以及连接在它们之间的半导体芯片606,冷端换热器和热端换热器在这里简称为冷端602和热端604。半导体模组60设置在箱体内中门室30的后部,中门室30的一侧设置有与之流体连通的制冷风道,即中门室30的第一风道D,优选的,第一风道D设置在中门室30的后部,半导体模组60的冷端602位于第一风道D内,而且第一风道D内还设有中门风机302,中门风机302位于冷端602的上部,用于将冷端602的冷风引入中门室30。其中,中门室30内部的气流与冷端602通过第一风道D循环,即冷端602产生的冷风通过第一风道D的进风口进入中门室30,再从出风口回到冷端602,如此中门室30的循环风道构成第二冷风循环***。
参照图1和图4所示,中门室30的后端还设有第二风道,第二风道位于第一风道D的后侧且相对第一风道D独立设置,也就是说,第二风道和第一风道D之间是不能流体连通的,两个风道相对于冰箱100的厚度方向并排设置。热端604位于第二风道内,第二风道包括进风道304和回风道306(图2所示箭头M2所示的气流经过的风道),冷风自蒸发器50经进风道304流动至热端604再经回风道306回风至蒸发器50,优选的,热端604设置在进风道304内,第一风道D与进风道304相邻,第二风道和第一风道D统称为中门风道,半导体模组60位于中门风道中间部位,从而半导体模组的安装简便,占用空间小。
第一风道D和第二风道构成了前后双层风道,并且各风道的风循环为独立的,中门室30内部的气流通过第一风道D与半导体冷端换热器循环,中门室30内部冷风循环通过单独的中门风机302实现;蒸发器50处吸来的冷风经第二风道中的半导体热端602散热后经中门回风道306回到蒸发器50底部,重新与蒸发器50换热。因此,可以说是中门室30的制冷是由半导体模组60提供冷量。第二风道为半导体散热时,需要保证足够的冷量可以将半导体工作时产生的最大热量带走,即能保证实现中门室内的最低制冷温度。
中门室制冷温度范围在5-12℃之间,因此,半导体冷端换热器需要保证温度不低于0℃(根据测试经验一般低于制冷间室温度3-5℃),保证中门室30内部水汽不会在冷端换热器上凝霜,导致内部湿度降低;中门室30内部冷端换热器底部设置有接水盒309,防止水汽在冷端换热器上凝露时的滴水存储。
冷冻室40后部设置有冷冻风道C,冷藏室20的后部设置有冷藏风道,冷藏风道由位于中门部的第一段冷藏风道B1和位于冷藏部的第二段冷藏风道B2构成,冷冻风机502将冷风通过冷冻风道C和冷藏风道输送至冷冻室40和冷藏室20。第二风道包括沿冰箱宽度方向并排设置的左侧风路和右侧风路A,即第一风路和第二风路,其中左侧风路和第一段冷藏风道B1重叠,或者说共用,即可以是同一风道,第二段冷藏风道B2可以认为是冷藏进风道,而热端位于右侧风路A内,左侧风路和右侧风路A二者为相互独立的风道,可独立拆卸和安装不受影响。另外,冷冻风道C和第二段冷藏风道B2之间可以通过右侧风路A流体连通。当然,也可以是第一段冷藏风道B1设置在右侧,而热端604位于左侧风路内。以上所述的第二风道包括两个风路,本领域技术人员可以很容易的想到,第二风道为单风路同样也可以实现中门室相对于冷藏室或者冷冻室具有单独的制冷循环***。
冷藏室20的冷藏进风道的后端设置有冷藏室回风口以及261蒸发器腔501流体连通的冷藏回风道206,即图2中箭头M1所示的气流经过的风道,冷风自蒸发器50进入第二段冷藏风道B2,再经冷藏回风道206回风至蒸发器50。同样中门室30的后端设置有中门室回风口361,冷风与热端604进行热交换后通过中门室回风口361进入中门室30的回风道306,中门室30的回风道306可选择与冷藏回风道206流体连通或者断开,即第二风道的回风道306设置回风开关307,通过回风开关307可选择的将第二风道的回风道306与冷藏回风道206流体连通或者隔断。这样的风道设置比较紧凑,当然,第二风道的回风道306相对于冷藏回风道206也可以独立设置。
第一段冷藏风道B1与蒸发器腔连通处设置中门风门ZM1,即第一中门风门,第一段冷藏风道B1和第二段冷藏风道B2之间设置冷藏风门LC1,即第一冷藏风门,通过控制中门风门ZM1和冷藏风门LC1的开启与关闭,可以实现蒸发器腔与第一段冷藏风道B1之间、第一段冷藏风道B1和第二段冷藏风道B2之间的流体连通或者断开。
第二风道的右侧风路A与蒸发器腔501连通处设置中门风门ZM2,即第二中门风门,第二风道的右侧风路A与第二段冷藏风道B2即冷藏进风道连通处设置冷藏风门LC2,即第二冷藏风门,通过控制中门风门ZM2和冷藏风门LC2的开启与关闭,可以实现蒸发器腔501与第二风道的右侧风路A之间、第二风道的右侧风路A和第二段冷藏风道B2之间的流体连通或者断开。
前述的中门风门ZM1、ZM2和冷藏风门LC1、LC2均为一个电机拖动两个扇叶的一拖二型风门,即两个扇叶可以独立开关互不影响。
本实施例中,所有风道的断面形状为大致的矩形,当然也可以是圆形、方形或者其他形状。另外,在冷藏室20、中门室30和冷冻室40内均设有各自的室内温度传感器(图未示)、控制器(图未示)根据安装在冷藏室20、中门室30和冷冻室40内温度传感器传送的信号,调整压缩机的工况或者风门的开闭或者开启成都,使冰箱维持在设定状态。
本实施例中优选的,通过对两个中门风门ZM1、ZM2和两个冷藏风门LC1、LC2的控制,可以实现冰箱在一下几种冷藏模式或者说是进风模式之间进行转换:
第一种:常规制冷模式,即中门风门ZM1和冷藏风门LC1扇叶打开,中门风门ZM2和冷藏风门LC2扇叶关闭,冷风从蒸发器50经冷冻风机502吸入后,通过第一段冷藏风道B1和第二段冷藏风道B2送入冷藏室20,为冷藏室20制冷,也就是常规的冰箱冷藏送风模式,冷藏送风口的温度一般低于-10℃以下;
第二种:高送风温度模式,即中门风门ZM1和冷藏风门LC1扇叶关闭,中门风门ZM2和冷藏风门LC2扇叶打开,冷风从蒸发器50经冷冻风机502吸入后,通过第二风道的右侧风路A和第二段冷藏风道B2送入冷藏室20,为冷藏室20制冷,由于冷风经过了第二风道的右侧风路A即与半导体热端604换热后再输送至冷藏室20,因此输送至冷藏室20的送风温度较常规制冷模式高,温度在-5℃至0℃左右;该模式下,中门回风开关307关闭,冷风输送至冷藏室20后经冷藏回风道206回到蒸发器50底部,避免向冷藏输送冷风的同时会有部分冷风流向中门回风道306,影响冷藏的送风量;该模式下,冷藏的送风温度与冷藏制冷温度的温差较小,可以防止冻伤冷藏室20内部的果蔬等,同时有利于送风温度低导致的冰箱风道内部凝露结冰等现象;
第三种:混合送风模式,中门风门ZM1和冷藏风门LC1扇叶打开,中门风门ZM2和冷藏风门LC2扇叶也打开,冷风从蒸发器50经冷冻风机502吸入后,通过第二风道的右侧风路A和第一段冷藏风道B1后经第二段冷藏风道B2送入冷藏室20,为冷藏室20制冷,该制冷模式下,冷冻风机502对应较高的风机转速,冷藏送风量较大,且送风温度介于第一种和第二种送风温度之间,送风温度在-10℃至-5℃之间;该模式下,冷藏依靠加大送风量可以实现快速制冷,适合于冷藏放入大量的热食物时快速制冷;该模式下,中门回风开362关关闭,冷风输送至冷藏后经冷藏回风回到蒸发器50底部,避免向冷藏输送冷风的同时会有部分冷风流向中门回风道306,影响冷藏的送风量。
本实施例中中门室的制冷是由半导体模组60单独控制的,因此,当不需要使用中门室30时, 可以将其单独关闭。另外,冬天往往不需要开启冷藏室20,如果需要单独关闭冷藏室,只需将中门风门ZM1、ZM2和/或冷藏风门LC1、LC2关闭即可,此时冷冻风机502随着蒸发器50的启停而间歇的转动,从而降低耗电量。
以上所述为优选的方案,如冰箱只需多种冷藏送风模式,也可以不需要半导体模组对中门室单独制冷,即第二风道设置两个风路,其中一个风路内设置热源,也就是用于给冷风升温,即冷风从蒸发器经冷冻风机吸入后经过热源再输送至冷藏室,因此输送至冷藏室的送风温度较常规制冷模式高。如此,通过控制这两条风路的风门开启或者关闭,同样可以实现冰箱在多种冷藏送风模式之间的转换。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种冰箱,其特征在于,包括:
    箱体,所述箱体限定有冷藏室和冷冻室,所述冷藏室和冷冻室的一侧分别设置有与其流体连通的冷藏进风道和冷冻进风道;
    蒸发器,设置在冷冻室后部的蒸发器腔内,所述冷冻进风道与所述蒸发器腔流体连通;
    中间风道,设置在冷藏进风道和冷冻进风道之间,并和冷藏进风道以及冷冻进风道之间可选择的流体连通,所述中间风道包括并排设置的第一风路和第二风路;
    热源,设置在第二风路内;
    冷风自蒸发器能够经冷冻进风道可选择的进入第一风路和/或第二风路再进入冷藏进风道。
  2. 根据权利要求1所述的冰箱,其特征在于,所述第一风路和第二风路沿着所述冰箱的宽度方向并排设置。
  3. 根据权利要求1所述的冰箱,其特征在于,所述冰箱的冷藏室能够在以下三种冷藏模式中的至少两种冷藏模式之间进行转换,第一种常规制冷模式,冷风从蒸发器经第一风路送入冷藏进风道;第二种高送风温度模式,冷风从蒸发器经第二风路送入冷藏进风道;第三种混合送风模式,冷风从蒸发器经第一风路和第二风路送入冷藏进风道。
  4. 根据权利要求1所述的冰箱,其特征在于,所述箱体还限定有中门室,所述中门室位于所述冷藏室和冷冻室之间,所述中间风道设置于所述中门室且与冷藏进风道和冷冻进风道位置对应。
  5. 根据权利要求4所述的冰箱,其特征在于,所述第一风路和第二风路与所述蒸发器腔连通处分别设置第一中门风门和第二中门风门,所述第一风路和第二风路与所述冷藏进风道连通处分别设置第一冷藏风门和第二冷藏风门,所述第一中门风门和第二中门风门与所述第一冷藏风门和第二冷藏风门可选择的打开或者关闭。
  6. 根据权利要求5所述的冰箱,其特征在于,所述第一中门风门和第二中门风门构造为一个电机拖动两个扇叶的一拖二型风门。
  7. 根据权利要求5所述的冰箱,其特征在于,所述第一冷藏风门和第二冷藏风门构造为一个电机拖动两个扇叶的一拖二型风门。
  8. 根据权利要求4所述的冰箱,其特征在于,所述冰箱还包括半导体模组,所述半导体模组设置在中门室的后部,用于给中门室提供冷量,所述半导体模组具有冷端和热端,所述冷端与所述中门室流体连通,所述热源由所述热端构成。
  9. 根据权利要求8所述的冰箱,其特征在于,所述中间风道还包括与所述中门室流体连通的制冷风道,所述冷端位于所述制冷风道内,所述制冷风道相对于所述第一风路和第二风路独立设置。
  10. 根据权利要求8所述的冰箱,其特征在于,所述中门室内部半导体模组的冷端底部设置有接水盒。
  11. 根据权利要求8所述的冰箱,其特征在于,所述冷冻室的后部设置第一风机,所述第一风机用于将自蒸发器冷风引入冷冻室和冷藏室,所述中门室的后侧设置第二风机,所述第二风机用于将半导体模组冷端的冷风引入中门室。
  12. 根据权利要求8所述的冰箱,其特征在于,所述冷藏室还设置有与所述蒸发器腔流体连通的冷藏回风道,进入冷藏进风道的冷风再经冷藏回风道回风至蒸发器。
  13. 根据权利要求12所述的冰箱,其特征在于,所述中门室的后部还设置有中门回风道,所述 中门回风道与所述第二风路流体连通,所述中门回风道内设置回风开关,所述回风开关可选择的将所述中门回风道与所述冷藏回风道流体连通或者隔断。
  14. 根据权利要求13所述的冰箱,其特征在于,在所述冷风从蒸发器经第二风路送入冷藏进风道,所述回风开关关闭以断开冷藏回风道与中门回风道之间的流体连通。
  15. 根据权利要求8所述的冰箱,其特征在于,所述冰箱包括两种冷风循环***,第一冷风循环***:冷风自蒸发器进入冷冻室和冷藏室后经冷藏回风道再回到蒸发器;第二冷风循环***:冷风自所述冷端在制冷风道和中门室之间循环。
PCT/CN2016/113438 2016-08-30 2016-12-30 冰箱 WO2018040441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610769692.5 2016-08-30
CN201610769692.5A CN106338171B (zh) 2016-08-30 2016-08-30 冰箱

Publications (1)

Publication Number Publication Date
WO2018040441A1 true WO2018040441A1 (zh) 2018-03-08

Family

ID=57823341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113438 WO2018040441A1 (zh) 2016-08-30 2016-12-30 冰箱

Country Status (2)

Country Link
CN (1) CN106338171B (zh)
WO (1) WO2018040441A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200284493A1 (en) * 2019-03-07 2020-09-10 Samsung Electronics Co., Ltd. Refrigerator
CN111780481A (zh) * 2020-08-05 2020-10-16 长虹美菱股份有限公司 一种具有冷藏冷冻一体式简易回风风道装置的冰箱
CN112378145A (zh) * 2020-12-01 2021-02-19 长虹美菱股份有限公司 一种进回风一体式的冷冻风道组件及冰箱
CN112856905A (zh) * 2020-12-22 2021-05-28 长虹美菱股份有限公司 一种冰箱
CN112864493A (zh) * 2021-02-01 2021-05-28 盐城国投中科新能源科技有限公司 一种新型的电池箱风冷***

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314602A (zh) * 2017-06-30 2017-11-03 青岛海尔特种电冰箱有限公司 冷藏冷冻装置
CN111174518A (zh) * 2018-11-09 2020-05-19 青岛海尔股份有限公司 冰箱
CN111197908A (zh) * 2018-11-19 2020-05-26 青岛海尔特种电冰柜有限公司 具有除湿功能的半导体制冷酒柜及除湿方法
CN114183976A (zh) * 2020-09-15 2022-03-15 青岛海尔电冰箱有限公司 冰箱
CN112984914A (zh) * 2021-03-30 2021-06-18 北京小米移动软件有限公司 一种冰箱及其制冷控制方法
CN113915891B (zh) * 2021-05-08 2022-12-16 海信冰箱有限公司 冰箱及其温度控制方法
CN115265038B (zh) * 2022-07-20 2024-03-12 澳柯玛股份有限公司 一种冰箱风道***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320942A (ja) * 1999-05-10 2000-11-24 Mitsubishi Electric Engineering Co Ltd 冷蔵庫
CN2419554Y (zh) * 1999-05-14 2001-02-14 于银龙 半导体间冷式冰箱
CN202166257U (zh) * 2011-06-13 2012-03-14 合肥美的荣事达电冰箱有限公司 一种冰箱
CN104329858A (zh) * 2014-03-28 2015-02-04 海尔集团公司 一种具有冷藏冷冻功能的混合制冷冰箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139276A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 冷蔵庫
US7051539B2 (en) * 2002-12-30 2006-05-30 Whirlpool Corporation Convertible refrigerator-freezer
KR20060077396A (ko) * 2004-12-30 2006-07-05 엘지전자 주식회사 냉장고 및 냉장고의 하이브리드 냉각구조
CN105222459B (zh) * 2014-06-30 2017-08-29 青岛海尔股份有限公司 冰箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320942A (ja) * 1999-05-10 2000-11-24 Mitsubishi Electric Engineering Co Ltd 冷蔵庫
CN2419554Y (zh) * 1999-05-14 2001-02-14 于银龙 半导体间冷式冰箱
CN202166257U (zh) * 2011-06-13 2012-03-14 合肥美的荣事达电冰箱有限公司 一种冰箱
CN104329858A (zh) * 2014-03-28 2015-02-04 海尔集团公司 一种具有冷藏冷冻功能的混合制冷冰箱

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200284493A1 (en) * 2019-03-07 2020-09-10 Samsung Electronics Co., Ltd. Refrigerator
CN111780481A (zh) * 2020-08-05 2020-10-16 长虹美菱股份有限公司 一种具有冷藏冷冻一体式简易回风风道装置的冰箱
CN112378145A (zh) * 2020-12-01 2021-02-19 长虹美菱股份有限公司 一种进回风一体式的冷冻风道组件及冰箱
CN112856905A (zh) * 2020-12-22 2021-05-28 长虹美菱股份有限公司 一种冰箱
CN112864493A (zh) * 2021-02-01 2021-05-28 盐城国投中科新能源科技有限公司 一种新型的电池箱风冷***

Also Published As

Publication number Publication date
CN106338171A (zh) 2017-01-18
CN106338171B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2018040442A1 (zh) 冰箱
WO2018040441A1 (zh) 冰箱
WO2018121592A1 (zh) 恒温冰箱及其控制方法
JP3576103B2 (ja) 冷蔵庫
CN101571337B (zh) 间冷式三门三温区电冰箱的变温室
KR101872607B1 (ko) 냉장고
WO2018032607A1 (zh) 一种风冷冰箱及其控制方法
KR20150070907A (ko) 냉장고 및 냉장고 제어 방법
JP6563273B2 (ja) 冷蔵庫
KR101189976B1 (ko) 복합형 김치냉장고
CN107062747A (zh) 一种冰箱风道组件以及冰箱
KR101369453B1 (ko) 냉장고 및 냉장고 냉기제어방법
CN213778313U (zh) 冰箱
JP2772173B2 (ja) 冷蔵庫
KR100678777B1 (ko) 냉장고
CN109373673B (zh) 冰箱
JP2012082985A (ja) 冷蔵庫
US20200248950A1 (en) Refrigerator appliance with direct-cooled in-door chamber
CN206695469U (zh) 冰箱
KR20130136203A (ko) 냉장고
WO2022148084A1 (zh) 冰箱
CN112254406A (zh) 一种酒柜
KR20140070519A (ko) 냉장고
KR20140086940A (ko) 냉장고
CN117847929A (zh) 用于冰箱的保鲜风道结构及冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915001

Country of ref document: EP

Kind code of ref document: A1