WO2018040015A1 - 一种蜗壳和前向多翼离心风机 - Google Patents

一种蜗壳和前向多翼离心风机 Download PDF

Info

Publication number
WO2018040015A1
WO2018040015A1 PCT/CN2016/097656 CN2016097656W WO2018040015A1 WO 2018040015 A1 WO2018040015 A1 WO 2018040015A1 CN 2016097656 W CN2016097656 W CN 2016097656W WO 2018040015 A1 WO2018040015 A1 WO 2018040015A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
diameter
inlet side
arc surface
impeller
Prior art date
Application number
PCT/CN2016/097656
Other languages
English (en)
French (fr)
Inventor
何曙华
易榕
Original Assignee
广东泛仕达机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东泛仕达机电有限公司 filed Critical 广东泛仕达机电有限公司
Priority to PCT/CN2016/097656 priority Critical patent/WO2018040015A1/zh
Publication of WO2018040015A1 publication Critical patent/WO2018040015A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes

Definitions

  • Embodiments of the present invention relate to the technical field of fans, and in particular, to a volute and a forward multi-blade centrifugal fan.
  • the multi-blade centrifugal fan has the characteristics of large flow coefficient, high pressure coefficient and compact structure. It has been widely used in industrial products. At present, most of the fans in the range hood industry use multi-blade centrifugal fans.
  • the forward multi-blade centrifugal impeller comprises a volute, a wind guide ring, an impeller and a motor.
  • the air guide ring extends into the impeller and has a gap between the impeller and the impeller to prevent the impeller from rubbing against the air guide ring when the impeller is working, and the motor is fixed in the volute
  • One side plate is connected to the impeller inside the volute, and the other side of the volute opposite to the motor mounting side is provided with a volute air inlet side plate, and the air inlet side plate is usually a planar structure, such assembly The structure will cause the eddy current inside the inlet air guiding ring to increase and the noise to increase.
  • Embodiments of the present invention provide a volute that suppresses eddy current generation inside the air guiding ring and reduces eddy current noise.
  • the first air inlet side plate includes a circular arc surface gradually decreasing in diameter away from the volute enclosure, and a maximum diameter end of the circular arc surface is connected to the volute enclosure, the circular arc surface The smallest end of the diameter is connected to an air guiding ring, and the air guiding ring extends along the air inlet direction and the diameter is gradually reduced;
  • the height difference between the largest end of the circular arc surface and the smallest end of the circular arc surface is smaller than the height difference between the largest end of the diameter of the air guiding ring and the smallest end of the diameter of the air guiding ring.
  • the second air inlet side plate is provided with a conical boss protruding from a surface thereof, and the conical boss is coaxial with the impeller rotation axis.
  • the opening cross-sectional area of the conical boss is gradually reduced in a direction away from the volute shroud, and the impeller diameter is larger than the outer diameter of the conical boss and smaller than the inner circumference diameter of the conical boss.
  • the height difference between the outer circumference of the conical boss and the plane of the inner circumference is 3 mm to 5 mm.
  • the circular arc surface is symmetrical along the axis of rotation of the impeller.
  • Embodiments of the invention also relate to a forward multi-blade centrifugal fan comprising the volute, motor and impeller described above.
  • the impeller includes a plurality of circumferentially disposed blades, wherein the blades are an integral structure surrounded by a right-angled trapezoid and a rectangle, and an angle between a hypotenuse of the right-angled trapezoid and an extension of the upper base of the right-angled trapezoid It is 10° to 75°.
  • An extension line of the guide ring intersects a non-end point of the hypotenuse of the right-angle trapezoid
  • the width of the upper base is less than one-half of the width of the rectangle.
  • the first air inlet side plate of the volute in the embodiment includes a circular arc surface which is gradually reduced in diameter away from the volute enclosure, the circular arc surface protrudes from the volute enclosure, and is locally small.
  • the eddy current has a certain improvement effect, which reduces the area of the eddy current, thereby effectively reducing the eddy current noise.
  • FIG. 1 is an exploded view of a volute according to an embodiment of the present invention
  • FIG. 2 is a structural view of an entire volute after assembly according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view showing a size of an orthographic projection of a partial region of a volute according to an embodiment of the present invention
  • Figure 4 is an overall structural view of a forward multi-blade centrifugal fan including the volutes mentioned in Figures 1 to 3;
  • Figure 5 is a cross-sectional view of the forward multi-blade centrifugal fan of Figure 4.
  • Figure 6 is a structural view of an impeller and a motor in the forward multi-blade centrifugal fan of Figure 4;
  • Figure 7 is a schematic illustration of the dimensions of the impeller in the forward multi-blade centrifugal fan of Figure 4.
  • Embodiments of the present invention provide a volute that suppresses eddy current generation inside the air guiding ring and reduces eddy current noise.
  • a technical solution of a volute 1 according to an embodiment of the present invention includes:
  • volute enclosure 1D The volute enclosure 1D, the first inlet side panel 1E and the second inlet side panel 1F, the volute enclosure 1D is disposed between the first inlet side panel 1E and the second inlet side panel 1F, and the combination of the three Into the volute 1.
  • the first air inlet side panel 1E includes a circular arc surface 1B which is convex away from the volute enclosure 1D, and the circular arc surface 1B is symmetrical about the impeller rotation axis.
  • the diameter of the circular arc surface 1B gradually decreases, and the outermost end diameter is smaller than the innermost end diameter, where the outermost end means that the circular arc surface 1B is away from the volute enclosure
  • the outermost side of the 1D, the innermost end refers to the side that is circumferentially sealed to the volute enclosure 1D;
  • the outermost end of the circular arc surface 1B (ie, the smallest end of the diameter) is also circumferentially connected with the air guiding ring 1A, and the air guiding ring 1A and the circular arc surface 1B may be integrally formed, and the air guiding ring 1A is diameter along the air inlet direction.
  • the taper shape is gradually reduced, that is, the diameter of the joint between the air guide ring 1A and the arc surface 1B is the largest.
  • the height difference between the plane where the largest end of the circular arc surface 1B is located and the plane where the smallest end of the diameter is located is H6, and the height difference H6 can be specifically explained as: an extension line of the rotation axis of the impeller.
  • the intersection of the largest diameter end and the smallest diameter end of the circular arc surface respectively obtains two intersection points, and the distance between the two intersection points on the rotation axis is H6; between the plane where the largest end of the diameter of the air guide ring 1A is located and the plane where the smallest end of the diameter is located
  • the height difference is H9, and the height difference H9 can be specifically explained as: the extension line of the rotation axis of the impeller intersects with the largest end of the diameter of the air guide ring and the smallest end of the diameter to obtain two intersection points, and the distance between the two intersection points on the rotation axis
  • H6 ⁇ H9.
  • the inventors further tested the range of the height difference H6 between the plane where the largest end of the circular arc surface 1B is located and the plane where the smallest end of the diameter is located, and obtained the test results as follows:
  • the second air inlet side plate 1F is provided with a conical boss 1C protruding from the surface thereof. It is clear from the drawing that the conical boss 1C is located in the second air inlet. On the outer side of the side plate 1F, the center of the conical boss 1C is on the axis of rotation of the impeller. It should be noted that the second air inlet side plate 1F may further be provided with a cylinder protruding from the surface thereof, and the role of the cylinder is the same as that of the above-mentioned conical boss 1C, considering that the motor 3 is mounted on the second air inlet side.
  • the second air inlet side plate 1F is provided with a conical boss 1C or a cylinder protruding from the surface thereof, and firstly, the structural strength of the second air inlet side plate 1F can be strengthened, that is, the product life can be increased, and the vibration can be reduced. Noise; secondly, when the impeller is assembled with the second inlet side panel 1F, the impeller is flush with the bottom surface of the conical boss 1C, which can well reduce the gap between the second inlet side panel 1F and the impeller, thereby reducing airflow leakage. Improve energy efficiency while reducing eddy current noise.
  • the opening cross-sectional area of the conical boss 1C is gradually reduced in a direction away from the volute enclosure 1D, the impeller diameter D3 is larger than the outer diameter D5 of the conical boss, and smaller than the inner circumference diameter D4 of the conical boss, the cone
  • the outer diameter of the boss is the smallest diameter side
  • the inner diameter of the conical boss ring is the largest side of the diameter
  • the height difference H4 of the outer circumference of the conical boss and the plane of the inner circumference is 3 mm to 8 mm, and the height difference H4 can be specifically explained as: the extension line of the rotation axis of the impeller and the outer circumference of the conical boss respectively The inner circumference intersects to obtain two intersection points, and the distance between the two intersection points on the rotation axis is H4.
  • the magnitude of the noise value caused by the change of the height difference is specifically as follows:
  • an embodiment of the present invention further provides a forward multi-wing centrifugal fan, including the volute 1 , the motor 3 and the impeller mentioned in FIGS. 1 to 3 ;
  • the impeller includes a plurality of circumferentially disposed blades 2, the blade 2 is an integral structure surrounded by a right-angled trapezoidal body and a rectangular body, and the orthographic projection shape of the blade 2 is surrounded by a trapezoidal trapezoid and a rectangle.
  • Rectangular, rectangular can be understood as having a chamfer 2A, the long side of the rectangle is H1, the line of the long side is parallel to the axis of rotation, and the sum of the lengths of the long side H1 of the rectangle and the right side of the right angle trapezoid is H3, right angle trapezoid
  • the straight edge of the straight edge is parallel to the axis of rotation.
  • the upper bottom edge L2 of the right angle trapezoid is located on a side close to the first air inlet side panel 1E, and the lower bottom edge L1 of the right angle trapezoid coincides with the short side of the rectangle, and the short side of the rectangle is perpendicular to the long side of the rectangle.
  • the angle ⁇ between the oblique side of the right-angled trapezoid and the extension line of the upper base L2 of the right-angled trapezoid is 10° to 75°.
  • the relationship between the angle formed by the oblique line of the right-angled trapezoid and the extension line of the upper base L2 of the right-angled trapezoid is tested, and the test results are as follows:
  • the air guiding ring 1A extends into the impeller and has a gap with the impeller.
  • the extension line of the air guiding ring intersects the non-end point of the oblique side of the right-angled trapezoid, and the right-angled side of the right-angled trapezoid is rotated.
  • the distance of the axis is D3, the distance from the end point of the oblique side of the right-angled trapezoid to the rotation axis to the rotation axis is D2, and the distance from the smallest end point of the diameter of the air guide ring 1A to the rotation axis is D2, and the distance of the air guide ring 1A
  • the distance from the smallest end point of the diameter to the second inlet side panel 1F is H2, and thus it is possible to derive D1 ⁇ D2 ⁇ D3, H1 ⁇ H2 ⁇ H3.
  • D1 ⁇ D2 ⁇ D3 the diameter D2 of the inlet end of the air guiding ring is as large as possible to ensure the air inlet area of the airflow.
  • H1 ⁇ H2 ⁇ H3 is to make the blade end not in the chamfering area of the blade. If H3 ⁇ H2, there will be a gap between the end of the blade and the end of the air guiding ring, resulting in increased air leakage; if H1>H2, the air guiding ring 1A will stretch. Too much inside the impeller, resulting in reduced work at the end of the blade and reduced efficiency.
  • the width of the upper bottom edge L2 is less than one-half of the width of the short side L1 of the rectangle, and the purpose of less than one-half is mainly that there is sufficient material at the end of the blade to ensure the structural strength of the blade end, and the breakage at high speed operation is changed; One-half of the blade ends have too little material and will break at high speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种蜗壳,包括:第一进风侧板(1E)、蜗壳围板(1D)和第二进风侧板(1F),所述蜗壳围板(1D)位于所述第一进风侧板(1E)和所述第二进风侧板(1F)之间,所述第一进风侧板(1E)包括一沿远离所述蜗壳围板(1D)方向直径逐渐缩小的圆弧面(1B),所述圆弧面(1B)的直径最大端与所述蜗壳围板(1D)连接,所述圆弧面(1B)的直径最小端连接有一导风圈(1A),所述导风圈(1A)沿进风方向延伸且直径逐渐缩小;所述圆弧面(1B)的直径最大端与所述圆弧面(1B)的直径最小端的高度差小于所述导风圈(1A)的直径最大端与所述导风圈(1A)的直径最小端的高度差。该蜗壳可抑制导风圈内侧的涡流生成,降低涡流噪声。还提供一种前向多翼离心风机。

Description

一种蜗壳和前向多翼离心风机 技术领域
本发明实施例涉及风机技术领域,具体涉及一种蜗壳和前向多翼离心风机。
背景技术
多翼离心风机具有流量系数大、压力系数高和结构紧凑等特点,在工业产品中取得广泛应用,目前油烟机行业的风机绝大部分都采用多翼离心风机。
前向多翼离心叶轮包括蜗壳、导风圈、叶轮及电机组成,导风圈伸入叶轮内且与叶轮之间具有一段间隙,防止叶轮工作时与导风圈摩擦,电机固定在蜗壳的一个侧板上,并与蜗壳内部的叶轮相连接,蜗壳上与电机安装侧相对的另一侧设有蜗壳进风侧板,该进风侧板通常为平面结构,这样的装配结构会导致入口导风圈内侧的涡流加大,噪音加大。
发明内容
本发明实施例提供一种蜗壳,抑制导风圈内侧的涡流生成,降低涡流噪声。
本发明实施例一种蜗壳的技术方案包括:
第一进风侧板、蜗壳围板和第二进风侧板,所述蜗壳围板位于所述第一进风侧板和所述第二进风侧板之间,其特征在于,
所述第一进风侧板包括一沿远离所述蜗壳围板方向直径逐渐缩小的圆弧面,所述圆弧面的直径最大端与所述蜗壳围板连接,所述圆弧面的直径最小端连接一导风圈,所述导风圈沿进风方向延伸且直径逐渐缩小;
所述圆弧面的直径最大端与所述圆弧面的直径最小端的高度差小于所述导风圈的直径最大端与所述导风圈的直径最小端的高度差。
优选的,在上述蜗壳的技术方案中,
所述第二进风侧板上设有凸出于其表面的圆锥凸台,所述圆锥凸台与叶轮旋转轴同轴。
优选的,在上述蜗壳的技术方案中,
沿远离所述蜗壳围板的方向,所述圆锥凸台的开口截面积逐渐减小,叶轮直径大于所述圆锥凸台外周直径,且小于所述圆锥凸台内周直径。
优选的,在上述蜗壳的技术方案中,
所述圆锥凸台的外周与内周所在平面的高度差为3mm~5mm。
优选的,在上述蜗壳的技术方案中,
所述圆弧面沿叶轮旋转轴对称。
本发明实施例还提及一种前向多翼离心风机,包括上述所述的蜗壳、电机和叶轮。
优选的,在上述前向多翼离心风机的技术方案中,
所述叶轮包括若干周向设置的叶片,所述叶片为由直角梯形和矩形围成的一体结构,所述直角梯形的斜边与所述直角梯形的上底边的延长线围成的夹角为10°~75°。
优选的,在上述前向多翼离心风机的技术方案中,
述导风圈的延伸线与所述直角梯形的斜边的非端点相交,
优选的,在上述前向多翼离心风机的技术方案中,
所述上底边的宽度小于所述矩形的宽度的二分之一。
采用上述技术方案的有益效果是:
由于本实施例中的蜗壳的第一进风侧板上包括一沿远离蜗壳围板方向直径逐渐缩小的圆弧面,该圆弧面凸出于蜗壳围板,对于局部产生的小涡流有一定的改善作用,减小了涡流的区域,进而有效的降低了涡流噪声。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一种蜗壳的***图;
图2为本发明实施例一种蜗壳组装后的整体的结构图;
图3为本发明实施例一种蜗壳局部区域的正投影的尺寸的说明图;
图4为包含图1至图3中提及的蜗壳的前向多翼离心风机的整体结构图;
图5为图4的前向多翼离心风机的剖视图;;
图6为图4的前向多翼离心风机中的叶轮和电机的结构图;
图7为图4的前向多翼离心风机中的叶轮的尺寸示意图。
具体实施方式
本发明实施例提供一种蜗壳,抑制导风圈内侧的涡流生成,降低涡流噪声。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图3,本发明实施例一种蜗壳1的技术方案包括:
蜗壳围板1D、第一进风侧板1E和第二进风侧板1F,蜗壳围板1D设置在第一进风侧板1E和第二进风侧板1F之间,三者组合成蜗壳1。
如图1所示,第一进风侧板1E包括一远离蜗壳围板1D的方向凸起的圆弧面1B,该圆弧面1B可沿叶轮旋转轴对称。
在逐渐远离蜗壳围板1D的方向上,该圆弧面1B的直径逐渐减小,最外端直径小于最内端直径,此处最外端是指该圆弧面1B远离蜗壳围板1D的最外侧,最内端是指与蜗壳围板1D周向密封连接的一侧;
该圆弧面1B的最外端(即直径最小端)还周向连接有导风圈1A,导风圈1A与圆弧面1B可以为一体成形结构,导风圈1A为沿进风方向直径逐渐缩小的喇叭形,也就是说,导风圈1A与圆弧面1B的连接处直径最大。
如图3所示,圆弧面1B的直径最大端所在平面与直径最小端所在平面之间的高度差为H6,高度差H6具体可以解释为:叶轮的旋转轴线的延长线 分别与圆弧面的直径最大端、直径最小端相交得到两个交点,这两个交点在旋转轴线上的距离为H6;导风圈1A的直径最大端所在平面与直径最小端所在平面之间的高度差为H9,高度差H9具体可以解释为:叶轮的旋转轴线的延长线分别与导风圈的直径最大端、直径最小端相交得到两个交点,这两个交点在旋转轴线上的距离为H9,在确定了H6以及H9后,H6<H9。
针对H6与H9之间的关系,发明人进行测试,得到试验结果,如下:
H6与H9之间的关系 噪音值
H6<H9 39.1~40.3
H6≥H9 >40.3
发明人进一步对圆弧面1B的直径最大端所在平面与直径最小端所在平面之间的高度差H6的范围进行了测试,得到试验结果,如下:
H6 噪音值
<20mm >40.3
20mm~30mm 39.1~40.3
>30mm >41.2
如图2、图3及图4所示,第二进风侧板1F上设有凸出于其表面的圆锥凸台1C,根据附图可以清楚的知道,圆锥凸台1C位于第二进风侧板1F的外侧,圆锥凸台1C的圆心在叶轮旋转轴上。需要说明的是,第二进风侧板1F上还可以设有凸出于其表面的圆柱,圆柱的作用与上述圆锥凸台1C的作用相同,考虑到电机3是安装在第二进风侧板1F上,第二进风侧板1F设有凸出其表面的圆锥凸台1C或圆柱,首先能加强第二进风侧板1F的结构强度,即能增加产品寿命,还能减小振动噪音;其次,叶轮与第二进风侧板1F装配时,叶轮与圆锥凸台1C的底面平齐,能很好的减小第二进风侧板1F与叶轮的间隙,从而减少气流泄漏,提高能效的同时降低涡流噪音。
圆锥凸台1C的开口截面积沿远离蜗壳围板1D的方向逐渐减小,叶轮直径D3大于圆锥凸台外周直径D5,且小于圆锥凸台内周直径D4,圆锥 凸台外周直径为直径最小侧,圆锥凸台环内周直径为直径最大侧,且D5<D3<D4,通过这样设置可以避免叶轮与第二进风侧板1F之间的摩擦,确保正常使用。同理,圆柱的直径大于叶轮直径,避免了叶轮与第二进风侧板1F之间的摩擦,确保正常使用。
在上述蜗壳的技术方案中,圆锥凸台的外周与内周所在平面的高度差H4为3mm~8mm,高度差H4具体可以解释为:叶轮的旋转轴线的延长线分别与圆锥凸台的外周、内周相交得到两个交点,这两个交点在旋转轴线上的距离为H4,经过测试,上述高度差的数值变化而带来的噪音值的大小具体为:
H4 噪音值
<3mm >39.6
3mm≤H4≤8mm 39.1~39.6
>5mm >39.9
请参阅图4至图7,本发明实施例还提供一种前向多翼离心风机,包括图1至图3中提及的蜗壳1、电机3和叶轮;
如图7所示,叶轮包括若干周向设置的叶片2,叶片2为由直角梯形体和矩形体围成的一体结构,叶片2的正投影的形状由一直角梯形和一矩形围成的类矩形,类矩形可以理解为具有一倒角2A,该矩形的长边为H1,长边所在直线平行于旋转轴线,矩形的长边H1与直角梯形的直角边的长度之和为H3,直角梯形的直角边所在直线平行于旋转轴线。
该直角梯形的上底边L2位于靠近第一进风侧板1E的一侧,该直角梯形的下底边L1与矩形的短边相重合,该矩形的短边垂直于该矩形的长边,直角梯形的斜边与直角梯形的上底边L2的延长线所围成的夹角α为10°~75°。
本发明实施例根据直角梯形的斜边与直角梯形的上底边L2的延长线所围成的夹角与噪音值的关系进行了测试,得到测试结果如下:
Figure PCTCN2016097656-appb-000001
Figure PCTCN2016097656-appb-000002
如图5和图3所示,导风圈1A伸入叶轮内,且与叶轮之间具有间隙,导风圈的延伸线与直角梯形的斜边的非端点相交,直角梯形的直角边至旋转轴线的距离为D3,直角梯形的斜边的靠近旋转轴线的一侧的端点至旋转轴线的距离为D2,导风圈1A的直径最小端端点至旋转轴线的距离为D2,导风圈1A的直径最小端端点至第二进风侧板1F的距离为H2,由此可以推出的是D1<D2<D3,H1<H2<H3。当D1<D2<D3时,导风圈入口端直径D2尽可能的大,保证气流的进风面积,在相同风量下,会减小进风面上的平均风速,降低进风噪音;H1<H2<H3是让叶片未端在叶片倒角区域,假如H3<H2,那么叶片未端与导风圈未端就有间隙,导致气流泄漏加大;假如H1>H2那么导风圈1A会伸入叶轮内部太多,导致叶片未端做功减小,效率降低。
上底边L2的宽度小于矩形的短边L1宽度的二分之一,小于二分之一的目的主要是叶片未端有足够的材料,保证叶片末端的结构强度,变化高速运转时断裂;大于二分之一叶片未端材料太少,高速运转时会断裂。
根据图3还可以看出的是,导风圈1A的直径最大端所在平面至叶片2靠近第一进风侧板1E的一侧所在平面(即直角梯形的上底边L2所在平面)的高度差H5的具体范围是3mm<H5<5mm,蜗壳围板1D的高度H7<H3。
通过将本发明实施例中的前向多翼离心风机与现有风机进行比对,得到对比结果如下:
表1现有风机与本发明风机的参数对比
Figure PCTCN2016097656-appb-000003
表2本发明风机与标杆产品对比(标杆产品为现有风机中性能较高产品)
Figure PCTCN2016097656-appb-000004
经过上述比对可以发现,本发明的风机相对于现有技术而言,静压效率提高了5%,噪音值减少了5.2db。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种蜗壳,包括:第一进风侧板、蜗壳围板和第二进风侧板,所述蜗壳围板位于所述第一进风侧板和所述第二进风侧板之间,其特征在于,
    所述第一进风侧板包括一沿远离所述蜗壳围板方向直径逐渐缩小的圆弧面,所述圆弧面的直径最大端与所述蜗壳围板连接,所述圆弧面的直径最小端连接一导风圈,所述导风圈沿进风方向延伸且直径逐渐缩小;
    所述圆弧面的直径最大端与所述圆弧面的直径最小端的高度差小于所述导风圈的直径最大端与所述导风圈的直径最小端的高度差。
  2. 根据权利要求1所述的蜗壳,其特征在于,所述第二进风侧板上设有凸出于其表面的圆锥凸台,所述圆锥凸台与叶轮旋转轴同轴。
  3. 根据权利要求2所述的蜗壳,其特征在于,沿远离所述蜗壳围板的方向,所述圆锥凸台的开口截面积逐渐减小,叶轮直径大于所述圆锥凸台外周直径,且小于所述圆锥凸台内周直径。
  4. 根据权利要求3所述的蜗壳,其特征在于,所述圆锥凸台的外周与内周所在平面的高度差为3mm~5mm。
  5. 根据权利要求1所述的蜗壳,其特征在于,所述第二进风侧板上设有凸出于其表面的圆柱,所述圆柱的直径大于叶轮直径。
  6. 根据权利要求1所述的蜗壳,其特征在于,所述圆弧面沿叶轮旋转轴对称。
  7. 一种前向多翼离心风机,其特征在于,包括电机、叶轮以及权利要求1至6中任一项所述的蜗壳。
  8. 根据权利要求7所述的前向多翼离心风机,其特征在于,所述叶轮包括若干周向设置的叶片,所述叶片为由直角梯形体和矩形体围成的一体结构,所述直角梯形的斜边与所述直角梯形的上底边的延长线围成的夹角为10°~75°。
  9. 根据权利要求8所述的前向多翼离心风机,其特征在于,所述导风圈的延伸线与所述直角梯形的斜边的非端点相交,
  10. 根据权利要求9所述的前向多翼离心风机,其特征在于,所述上底边的宽度小于所述矩形的宽度的二分之一。
PCT/CN2016/097656 2016-08-31 2016-08-31 一种蜗壳和前向多翼离心风机 WO2018040015A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097656 WO2018040015A1 (zh) 2016-08-31 2016-08-31 一种蜗壳和前向多翼离心风机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097656 WO2018040015A1 (zh) 2016-08-31 2016-08-31 一种蜗壳和前向多翼离心风机

Publications (1)

Publication Number Publication Date
WO2018040015A1 true WO2018040015A1 (zh) 2018-03-08

Family

ID=61299773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097656 WO2018040015A1 (zh) 2016-08-31 2016-08-31 一种蜗壳和前向多翼离心风机

Country Status (1)

Country Link
WO (1) WO2018040015A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895012A (zh) * 2018-07-27 2018-11-27 中车大连机车研究所有限公司 一种动车组牵引电机冷却风机组
CN109382453A (zh) * 2018-12-03 2019-02-26 嵊州市英格电器有限公司 一种油烟机蜗壳折边滚边装置
CN110857790A (zh) * 2018-08-23 2020-03-03 宁波方太厨具有限公司 一种具有集流器的吸油烟机
CN110939946A (zh) * 2018-09-21 2020-03-31 青岛海尔智能技术研发有限公司 一种集成灶
CN116241502A (zh) * 2023-05-11 2023-06-09 佛山市南海九洲普惠风机有限公司 一种大流量高效率多翼前向离心风机
WO2024055614A1 (zh) * 2022-09-15 2024-03-21 佛山市顺德区美的电热电器制造有限公司 烟机组件和集成灶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921398A (ja) * 1995-07-04 1997-01-21 Toshiba Corp 遠心送風機
JPH09195997A (ja) * 1996-01-22 1997-07-29 Mitsubishi Electric Corp 遠心形送風機
CN103899576A (zh) * 2014-03-21 2014-07-02 美的集团股份有限公司 风机和空调器室外机
CN204003621U (zh) * 2014-08-11 2014-12-10 株洲时代装备技术有限责任公司 一种后向式离心风机
CN205119175U (zh) * 2015-05-08 2016-03-30 上海诺地乐通用设备制造有限公司 管道离心式排油烟风机
CN205503562U (zh) * 2016-01-29 2016-08-24 广东万和电气有限公司 带导流结构的离心风机蜗壳

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921398A (ja) * 1995-07-04 1997-01-21 Toshiba Corp 遠心送風機
JPH09195997A (ja) * 1996-01-22 1997-07-29 Mitsubishi Electric Corp 遠心形送風機
CN103899576A (zh) * 2014-03-21 2014-07-02 美的集团股份有限公司 风机和空调器室外机
CN204003621U (zh) * 2014-08-11 2014-12-10 株洲时代装备技术有限责任公司 一种后向式离心风机
CN205119175U (zh) * 2015-05-08 2016-03-30 上海诺地乐通用设备制造有限公司 管道离心式排油烟风机
CN205503562U (zh) * 2016-01-29 2016-08-24 广东万和电气有限公司 带导流结构的离心风机蜗壳

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895012A (zh) * 2018-07-27 2018-11-27 中车大连机车研究所有限公司 一种动车组牵引电机冷却风机组
CN110857790A (zh) * 2018-08-23 2020-03-03 宁波方太厨具有限公司 一种具有集流器的吸油烟机
CN110939946A (zh) * 2018-09-21 2020-03-31 青岛海尔智能技术研发有限公司 一种集成灶
CN109382453A (zh) * 2018-12-03 2019-02-26 嵊州市英格电器有限公司 一种油烟机蜗壳折边滚边装置
CN109382453B (zh) * 2018-12-03 2023-07-18 嵊州市英格电器有限公司 一种油烟机蜗壳折边滚边装置
WO2024055614A1 (zh) * 2022-09-15 2024-03-21 佛山市顺德区美的电热电器制造有限公司 烟机组件和集成灶
CN116241502A (zh) * 2023-05-11 2023-06-09 佛山市南海九洲普惠风机有限公司 一种大流量高效率多翼前向离心风机

Similar Documents

Publication Publication Date Title
WO2018040015A1 (zh) 一种蜗壳和前向多翼离心风机
US7163371B2 (en) Centrifugal fan
JP6129431B1 (ja) 送風機およびこの送風機を搭載した空気調和装置
US20150240645A1 (en) Propeller fan and air conditioner equipped with same
US10273973B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment
CN106593952B (zh) 轴流风叶及具有其的风机、空调室外机
WO2014141613A1 (ja) 送風装置
TW201934888A (zh) 軸流風扇
US11898576B2 (en) Centrifugal fan and air conditioning apparatus
JP4689262B2 (ja) 軸流ファン、空気調和機の室外機
JP2007198268A (ja) 遠心ファンとそれを備えた空気調和装置
JP5448874B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP4902718B2 (ja) 遠心送風機および電気掃除機
TWI414681B (zh) 軸流式風扇之扇輪
AU2017410135A1 (en) Propeller fan and outdoor unit for air-conditioning apparatus
JP2016017500A (ja) 遠心送風機
JPH05149297A (ja) 遠心フアン
US11536288B2 (en) Propeller fan
JP6265843B2 (ja) 換気送風機
JP2014139412A (ja) 多翼遠心ファン及びこれを備えた多翼遠心送風機
JP2016070075A (ja) 遠心送風機
JP2016183643A (ja) プロペラファン
JP2017160807A (ja) 送風機
TWI844293B (zh) 風扇及葉輪
CN219220823U (zh) 一种离心风机的叶轮、离心风机及吸油烟机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914581

Country of ref document: EP

Kind code of ref document: A1