WO2018039922A1 - 电调、飞行控制器和无人飞行器的控制方法及控制*** - Google Patents

电调、飞行控制器和无人飞行器的控制方法及控制*** Download PDF

Info

Publication number
WO2018039922A1
WO2018039922A1 PCT/CN2016/097355 CN2016097355W WO2018039922A1 WO 2018039922 A1 WO2018039922 A1 WO 2018039922A1 CN 2016097355 W CN2016097355 W CN 2016097355W WO 2018039922 A1 WO2018039922 A1 WO 2018039922A1
Authority
WO
WIPO (PCT)
Prior art keywords
esc
signal
throttle
flight controller
addressing
Prior art date
Application number
PCT/CN2016/097355
Other languages
English (en)
French (fr)
Inventor
蓝求
周长兴
刘万启
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680003376.5A priority Critical patent/CN107108040B/zh
Priority to PCT/CN2016/097355 priority patent/WO2018039922A1/zh
Publication of WO2018039922A1 publication Critical patent/WO2018039922A1/zh
Priority to US16/284,376 priority patent/US20190190408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/08Aircraft not otherwise provided for having multiple wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Definitions

  • the invention relates to the field of drones, in particular to a control method and a control system for an electric control, a flight controller and an unmanned aerial vehicle.
  • the flight controller refers to the controller of the UAV, which is mainly composed of a gyroscope (flight attitude perception), an accelerometer, a geomagnetic induction, a barometric pressure sensor (hover control), and a control circuit.
  • the power system includes the motor and ESC, and the ESC is an electronic governor that controls the motor speed and stabilizes the voltage.
  • the UAV is communicated between the flight controller and the ESC.
  • the ESC controls the speed of the motor, and the motor rotates to rotate the propeller to achieve flight.
  • the communication mode between the flight controller and the ESC is as follows: 1.
  • the flight control and the ESC are connected with a throttle control signal line.
  • the signal transmitted on the throttle control signal line is a pulse width modulation (PWM) signal with a fixed frequency and a high time variable transmitted by the flight control.
  • PWM pulse width modulation
  • the high level time is generally 1000us to 2000us. The longer the high pulse width time, the faster the ESC drive motor rotates.
  • a Universal Asynchronous Receiver/Transmitter (UART) communication line is also connected between the flight controller and the ESC. The flight controller and ESC communicate data through the UART.
  • the UART is a bus connection mode, and one UART of the flight control is connected to multiple ESCs. If you want the ESC to answer, you must distinguish and number the multiple ESCs, that is, the address corresponding to each ESC, and the address is unique. Otherwise, the ESCs of the same address will simultaneously respond to the flight control. A packet will cause a bus collision.
  • the invention provides a control method and a control system for an electric control, a flight controller and an unmanned aerial vehicle, which are used for eliminating the safety hazard of the UAV due to the ESC installation, and facilitating the production, assembly and repair of the UAV. ESC installation in the process.
  • a first aspect of the present invention provides a method for controlling an electrical tone, including:
  • a second aspect of the present invention provides a method for controlling a flight controller, including:
  • the addressing number of the target ESC is registered as the destination addressing number.
  • a third aspect of the present invention provides a control system for an ESC, comprising:
  • a fourth aspect of the present invention provides a control system for a flight controller, comprising:
  • One or more processors working individually or collectively, are used to:
  • the addressing number of the target ESC is registered as the destination addressing number.
  • a fifth aspect of the present invention provides an electrical adjustment comprising:
  • the ESC control system is mounted within the housing.
  • a sixth aspect of the present invention provides a flight controller, including:
  • a control system of the flight controller is mounted within the housing.
  • a seventh aspect of the present invention provides a control method for an unmanned aerial vehicle, which is applied to a control system of an unmanned aerial vehicle, wherein the control system of the unmanned aerial vehicle includes a flight controller and at least one electric tone, and the control method of the unmanned aerial vehicle include:
  • the flight controller transmits an addressing instruction to the at least one ESC via the bus, the addressing instruction for addressing one of the at least one electrical tune to a destination addressing number;
  • the flight controller sends a throttle feature signal to the target address to be addressed by the throttle control signal line;
  • the target ESC feeds back the feedback signal to the flight controller
  • the flight controller receives the feedback signal of the target ESC feedback, and registers an address number of the target ESC as the destination addressing number according to the feedback signal.
  • An eighth aspect of the present invention provides a control system for an unmanned aerial vehicle, including:
  • At least one ESC electrically connected to the flight controller
  • the flight controller sends a throttle feature signal and an addressing command to the target addressed ESC through the throttle control signal line; and the target ESC receiving the throttle feature signal is programmed according to the addressing instruction Addressing, generating a feedback signal, obtaining and recording the destination addressing number; the flight controller receiving the feedback signal, registering the addressing number of the target ESC as the feedback signal according to the feedback signal Describe the address number of the destination.
  • a ninth aspect of the present invention provides an unmanned aerial vehicle comprising:
  • the control system of the UAV is used to control the flight power device to provide flight power to the UAV.
  • the flight controller sends an addressing command to the ESC, and the flight controller sends a throttle characteristic signal to the target ESC that is expected to be addressed; the target ESC is addressed according to the throttle characteristic signal and the addressing instruction, generates a feedback signal, and obtains and records the purpose.
  • the addressing number is fed back to the flight controller, and the flight controller determines that the addressing number of the target ESC is registered as the destination addressing number after receiving the feedback signal.
  • the flight controller can The ESC is addressed later, and the numbered ESCs need not be installed to the corresponding motor position. This eliminates the safety hazard of the UAV due to ESC installation and facilitates the production of UAVs. ESC installation during assembly and rework.
  • FIG. 1 is a schematic structural view of an unmanned aerial vehicle of the present invention
  • FIG. 2 is a schematic diagram of an interactive embodiment of a method for controlling an ESC and a flight controller according to the present invention
  • FIG. 3 is a schematic diagram of another interactive embodiment of a method for controlling an ESC and a flight controller according to the present invention
  • FIG. 4 is a schematic diagram of an embodiment of a control system for an ESC in the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a control system of a flight controller according to the present invention.
  • Figure 6 is a schematic view showing an embodiment of an electric current in the present invention.
  • Figure 7 is a schematic view showing an embodiment of a flight controller in the present invention.
  • Figure 8 is a schematic view showing an embodiment of a control system for an unmanned aerial vehicle of the present invention.
  • Figure 9 is a schematic view of an embodiment of an unmanned aerial vehicle of the present invention.
  • the invention provides a control method and a control system for an electric control, a flight controller and an unmanned aerial vehicle, which are used for eliminating the safety hazard of the UAV due to the ESC installation, and are convenient for the production, assembly and repair of the UAV.
  • the ESC is installed.
  • FIG. 1 is a schematic diagram of an unmanned aerial vehicle including a control system and a flight power device.
  • the flight power device includes a motor 1 and a propeller 1 corresponding to the motor 1, a motor 2, and a propeller 2 corresponding to the motor 2, It is only illustrated by two axes. In actual cases, it can be single axis, four axis, six axis and vector control.
  • the rotation of the motor causes the propeller to rotate, thereby providing flight power for the unmanned aerial vehicle
  • the rotational speed of the motor is realized by the flight controller of the control system of the unmanned aerial vehicle and the communication between the ESC 1 and the ESC 2, the motor 1 and the electric Adjust 1 to correspond, motor 2 and ESC 2 correspond.
  • each motor in order to maintain the state of smooth flight, steering, take-off and landing of the unmanned aerial vehicle, each motor is required to be implemented at a specific rotational speed.
  • the corresponding ESCs need to be pre-programmed with different programs to realize the numbering, so that the flight controller can issue the throttle control signal according to the flight instruction, the ESC control Corresponding motor speed, so that the UAV can achieve smooth flight, steering or take-off according to flight instructions.
  • the ESC number is 1.
  • the original installation position should be the corresponding motor 1, but the installation error occurs and the installation position corresponds to Motor 2, so that the throttle control signal issued by the flight controller is required when the propeller 1 rotates, the motor 1 is connected to the ESC 2, then the propeller 1 will not rotate, and the propeller 1 of the motor 2 will rotate, thus resulting in no
  • the human aircraft cannot fly according to the instructions of the flight controller, and even the risk of propeller reversal occurs.
  • the assembler In the process of production, assembly and rework of the unmanned aerial vehicle, the assembler must assemble in strict accordance with the number of the ESC, making the installation troublesome.
  • the present invention provides a control method and a control system for an ESC, a flight controller, and an unmanned aerial vehicle for addressing an ESC.
  • the following is an example of interaction between an ESC and a flight controller.
  • Figure 2 For detailed explanation, refer to Figure 2, as follows:
  • the flight controller sends an addressing instruction to the ESC;
  • the flight controller when the UAV is initially powered on, since the plurality of ESCs are not addressed, the flight controller needs to address the ESC in the UAV before the flight, and will be programmed.
  • the address command is sent to each ESC.
  • the addressing instruction is used to address the ESC as the destination addressing number.
  • the UART communication line is connected between the flight controller and the ESC. The data is exchanged through the UART.
  • the UART communication line is the bus. Connection mode, the addressing instruction is issued by the UART communication line, and each ESC can be received.
  • the bus can be other types of data lines in addition to the UART communication line, which is not limited herein.
  • the ESC obtains an addressing instruction of the flight controller
  • the ESC obtains the addressing instruction sent by the flight controller through the UART communication line, but before the ESC receives the throttle characteristic signal, it is in an unpowered state, and the addressing instruction is not executed.
  • the flight controller sends a throttle feature signal to the target ESC that is expected to be addressed;
  • an ESC provides a throttle characteristic signal to enable the ESC to be addressed.
  • a throttle control signal line is connected between the flight controller and each ESC.
  • the throttle control signal line is a PWM signal line. Therefore, flight control The transmitter sends a throttle characteristic signal to the target ESC that is expected to be addressed through the PWM signal line.
  • step 205 the ESC determines whether the throttle feature signal is received, and if so, step 205 is performed;
  • the ESC detects whether the throttle characteristic signal sent by the flight controller is received through the throttle control signal line. If it is received, it indicates that the ESC is the target ESC, and step 205 is performed; if not received, the battery is indicated. The adjustment is not the target ESC.
  • the ESC sends a feedback signal to the flight controller for responding to the addressing instruction, and records the destination addressing number according to the addressing instruction.
  • the ESC after the ESC receives the throttle characteristic signal, indicating that the ESC is the target ESC, the ESC performs an addressing instruction, and sends a feedback signal to the flight controller for responding to the addressing instruction, according to the The address instruction records the destination addressing number. At this time, the address of the ESC has been completed, and the ESC already knows its own destination address number.
  • the flight controller determines whether the feedback signal of the target ESC response is received, and if so, step 207 is performed;
  • step 207 is performed.
  • the flight controller registers the address number of the target ESC as the destination addressing number.
  • the flight controller receives the feedback signal of the target ESC, indicating that the target ESC has been successfully addressed, the address number of the target ESC is registered as the target addressing number, and the target ESC is completed. Addressing, and in this way, each ESC is addressed.
  • the flight controller sends an addressing instruction to the ESC, the addressing instruction is used to address the ESC as the destination addressing number; the ESC obtains the addressing instruction of the flight controller; the flight controller is expected to compile
  • the target ESC transmits a throttle characteristic signal; the ESC determines whether the throttle characteristic signal is received; if so, the ESC is determined to be the target ESC, and a feedback signal for responding to the addressing command is sent to the flight controller, according to the addressing
  • the instruction records the destination addressing number; the flight controller determines whether the feedback signal of the target ESC response is received; if so, the flight controller registers the address number of the target ESC as the destination addressing number, compared to the prior art.
  • the flight controller can address the ESC at a later stage without having to install the numbered ESC to the corresponding motor position, thus eliminating the safety hazard of the UAV due to ESC installation and facilitating the unmanned ESC installation during the production, assembly and repair of aircraft.
  • the throttle characteristic signal sent by the flight controller to the target address to be addressed is the key to the addressing of the ESC in the present invention.
  • the following is a detailed description, as shown in FIG. 3, as follows:
  • the flight controller sends an addressing instruction to the ESC;
  • step 201 Please refer to step 201 for details.
  • the ESC obtains an addressing instruction of the flight controller
  • step 202 Please refer to step 202 for details.
  • the flight controller determines a target ESC that is expected to be addressed
  • the addressing numbers of each ESC are different. After the addressing command is issued between the two, the ESC needs to be used in multiple ESCs.
  • An ESC provides a throttle characteristic signal for the ESC to be addressed.
  • the flight controller generates a throttle characteristic signal, and sends a throttle characteristic signal to the target ESC;
  • a throttle characteristic signal is generated, and the throttle characteristic signal is sent to the target ESC.
  • step 306 the ESC determines whether the throttle feature signal is received, and if so, step 306 is performed, and if not, step 307 is performed;
  • the ESC detects whether the throttle characteristic signal sent by the flight controller is received through the throttle control signal line. If it is received, it indicates that the ESC is the target ESC, and step 306 is performed; if not received, the battery is indicated. If the adjustment is not the target ESC, go to step 307.
  • the ESC sends a feedback signal to the flight controller for responding to the addressing instruction, and records the destination addressing number according to the addressing instruction.
  • step 205 Please refer to step 205 for details.
  • the ESC deletes the addressing instruction
  • the ESC determines that the throttle characteristic signal is not received, indicating that the ESC is not the target ESC, the previously received addressing instruction will not be executed, and the address pressure will be reduced in order to reduce the memory pressure of the ESC.
  • the instruction is deleted.
  • step 308 the flight controller determines whether the feedback signal of the target electrical response is received, and if so, step 309 is performed, and if not, step 310 is performed;
  • step 310 is performed.
  • the flight controller registers the address number of the target ESC as the destination addressing number
  • step 207 Please refer to step 207 for details.
  • the flight controller sends an alarm instruction for controlling the alarm device to send an alarm message.
  • the flight controller does not receive the feedback signal of the target ESC response, it indicates that the addressing of the target ESC fails, then the UAV is dangerous at this time, and needs to be sent to control the alarm device to issue an alarm.
  • the alarm instruction of the information prompts the user of the danger at this time, and cannot operate the unmanned aerial vehicle for flight.
  • the determination of the target tones that are expected to be addressed is described, and the steps of deleting the addressing instructions when the ESC does not receive the throttle characteristic signal are added, and the flight controller does not receive the feedback signal.
  • the alarming step makes the invention save the storage space of the ESC during implementation and makes the UAV more secure.
  • step 306 is the feedback of the ESC to the addressing instruction and the recording destination number.
  • the whole process is implemented in multiple steps. The following is refined as follows:
  • the ESC after receiving the throttle characteristic signal, the ESC indicates that the ESC is the target ESC, and needs to execute the previously received addressing instruction for addressing, and the destination address number of the ESC is obtained by addressing.
  • the feedback signal needs to be generated during the addressing, and the feedback signal is sent to the flight controller through the UART communication line to indicate that the target ESC is addressed, and the ESC itself needs to record the destination addressing number to accurately A command sent by the flight controller to subsequently fly the UAV.
  • the method before the ESC obtains the addressing instruction of the flight controller, the method further includes:
  • the flight controller Before the flight controller sends the throttle feature signal to the intended address to be addressed, it also includes:
  • the flight controller since the newly assembled ESC has no addressing number before the UAV is initially powered on, the flight controller needs to know the installation information of the ESC, so that the throttle characteristic signal can be accurately sent to Target ESC, it should be noted that it can be that the ESC informs the flight control of the installation information.
  • the device may also be used by the user to introduce the ESC installation information into the flight controller after the ESC is assembled. The specific method is not limited.
  • the installation information of the ESC includes at least one of a mounting position, a product model, and a working pulse width value range.
  • the mounting position is a motor connected after the ESC assembly, and the product model and the working pulse width value range determine the generated throttle characteristic signal.
  • the working pulse width range of the normal operation of the ESC is: the high-level time of the PWM signal is 1000us to 2000us, then the throttle characteristic signal should not be in the working pulse width value range.
  • the flight controller needs to use the installation information of the ESC when determining the target ESC of the intended addressing, then the determination of the target ESC and the generation of the throttle characteristic signal.
  • the flight controller determines the target tones that are expected to be addressed, including:
  • the target ESC is determined based on the installation information of the target ESC.
  • the flight controller first acquires the installation information of the target ESC that is expected to be addressed, and can accurately locate the target ESC that is expected to be addressed according to the installation information.
  • the flight controller generates a throttle feature signal, including:
  • the throttle characteristic signal is generated according to the characteristic information of the throttle characteristic signal.
  • the flight controller sets the feature information of the throttle feature signal within a preset range, so that the throttle feature signal can be generated according to the feature information.
  • the signal is The frequency is fixed and the high-level time variable PWM signal
  • the high-level time is generally 1000us to 2000us, the longer the high-level pulse width time, the faster the ESC drive motor speed, then the characteristic information of the throttle characteristic signal is high power.
  • the high-level time of the throttle characteristic signal should not be 1000us to 2000us, then the preset range can be less than 1000us.
  • the characteristic information of the throttle characteristic signal can be Set to a value less than 1000us such as 500us or 100us.
  • the characteristic information of the above throttle characteristic signal is described by taking the high level time as an example.
  • the feature information includes at least one of a signal frequency, a signal time, or a signal amplitude.
  • the flight controller uses the PWM signal line as the throttle control signal line to generate the throttle characteristic signal, then the throttle characteristic signal is actually the PWM signal, and the ESC is normally operated, PWM
  • the signal is frequency fixed and high time variable.
  • the preset working pulse width value range is generally 1000us to 2000us. The longer the high level pulse width time, the faster the ESC drive motor speed, then the characteristic information of the throttle characteristic signal. It is a high-level pulse width value. In order to prevent the ESC from rotating when the address is addressed, the high-level time of the throttle characteristic signal should not be between 1000us and 2000us.
  • the concept of the characteristic information of the throttle characteristic signal is introduced, and then the specific method of determining whether the ESC receives the throttle characteristic signal is based on the characteristic information, as follows:
  • determining whether the throttle feature signal is received includes:
  • Whether the throttle signal is a throttle characteristic signal is determined according to the characteristic information.
  • the ESC can receive the throttle signal through the throttle signal interface, and analyze the characteristic information of the throttle signal acquired by the throttle signal, because the characteristic information of the throttle characteristic signal is processed by the flight controller, and the working throttle signal
  • the feature information is different, and then according to the feature information, it can be determined whether the throttle signal is a throttle feature signal, thereby determining whether the throttle feature signal is received.
  • determining, according to the feature information, whether the throttle signal is a throttle feature signal comprises:
  • the throttle signal is not a throttle feature signal.
  • the throttle signal sent by the communication between the flight controller and the ESC is used for the normal operation of the ESC, or is used for addressing, and only the characteristic information of the throttle characteristic signal and the ESC need to be normally operated.
  • the preset range of the characteristic information of the throttle signal is separated, and the throttle characteristic signal can be discriminated.
  • the throttle signal and the throttle characteristic signal are both PWM signals, and the PWM signal is characterized by a fixed frequency and a high time variable.
  • the preset working high level pulse width value is generally 1000us to 2000us, then the high-level pulse width value of the throttle characteristic signal is used as the characteristic information, and the high-level pulse width value is not between 1000us and 2000us, and the operation of changing the high-level pulse width value is simple and easy to implement.
  • the method further includes:
  • the control prompting device sends a prompt message indicating that the ESC side has been completed, and the flight controller side does not receive the feedback information.
  • the alarm it can be intuitively seen that it is a device problem of the ESC, or there is a problem with the connection between the ESC and the flight controller, for example, the communication interface and the throttle control interface are reversed, or the connection line is broken.
  • the prompting device and the alarm device mentioned in the above embodiments may be a buzzer, the buzzer may be integrated in the flight controller or the ESC, or a separate setting; the prompting device and the alarm device may also be It is the power motor of the unmanned aerial vehicle.
  • the ESC and flight controller control the vibration or rotation of the power motor to indicate the prompt information or alarm information.
  • the above embodiment illustrates the control method of the ESC and the flight controller by means of the interaction between the ESC and the flight controller.
  • an embodiment of the present invention provides a control system for an ESC, including:
  • processor 401 for:
  • the addressing instruction is used to address the electrical tones as the destination addressing number
  • the processor 401 in the control system of the ESC may be single-core or multi-core, and may be a processor 401 running separately, or multiple processors 401 running in common, and the processor 401 is used to obtain
  • the addressing instruction of the flight controller determines whether the throttle characteristic signal is received, and if so, sends a feedback signal for responding to the addressing instruction, and records the destination addressing number according to the addressing instruction, and the ESC can be compared with the prior art.
  • the ESC is mounted to the corresponding motor position, which eliminates the safety hazard of the UAV due to ESC installation and facilitates ESC installation during the production, assembly and rework of the UAV.
  • the ESC control system further includes: a communication interface 402 and a throttle signal interface 403;
  • the processor 401 is coupled to the flight controller via the communication interface 402 for receiving an addressing instruction and transmitting a feedback signal;
  • the processor 401 is coupled to the flight controller via a throttle signal interface 403 for receiving a throttle characteristic signal.
  • the communication interface 402 in the ESC control system is connected to the flight controller through the UART communication line
  • the throttle signal interface 403 is connected to the flight controller through the throttle control signal line
  • the processor communicates with the flight through the communication interface 402.
  • the controller is connected to receive the addressing instruction and send the feedback signal
  • the processor 401 is connected to the flight controller through the throttle signal interface 403 for receiving the throttle characteristic signal, because the communication interface 402 is a bus type UART communication line, and
  • the throttle control signal line connected to the throttle signal interface 403 is separately connected to the flight controller, so that one-to-one addressing of a plurality of electrical tones is possible.
  • the processor 401 is further configured to:
  • the processor 401 after receiving the throttle characteristic signal, the processor 401 indicates that the ESC is the target ESC, and needs to execute the previously received addressing instruction for addressing, and addressing the destination address of the ESC. No., and need to generate feedback signal when addressing, send the feedback signal to the flight controller through the UART communication line to indicate that the target ESC is addressed, and the ESC itself needs to record the destination address number to accurately The answer flight controller subsequently sends an instruction regarding the flight of the unmanned aerial vehicle.
  • the processor 401 is further configured to:
  • Whether the throttle signal is a throttle characteristic signal is determined according to the characteristic information.
  • the processor 401 can receive the throttle signal through the throttle signal interface 403, and analyze the characteristic information of the throttle signal acquired by the throttle signal, because the characteristic information of the throttle characteristic signal is processed by the flight controller, and the working The characteristic information of the throttle signal is different, and the processor 401 can determine whether the throttle signal is a throttle characteristic signal according to the characteristic information, thereby determining whether the throttle characteristic signal is received.
  • the characteristic information of the throttle signal includes at least one of a signal frequency, a signal time, or a signal amplitude.
  • the processor 401 is further configured to:
  • the throttle signal sent by the communication between the flight controller and the processor 401 is used for the normal operation of the ESC, or is used for addressing, then only the characteristic information of the throttle characteristic signal and the ESC need to be worked normally.
  • the throttle characteristic signal can be discriminated.
  • the throttle signal and the throttle characteristic signal are both PWM signals, and the PWM signal is characterized by a fixed frequency and a high time variable.
  • the preset working high-level pulse width value range is generally 1000us to 2000us, then the high-level pulse width value of the throttle characteristic signal is used as the characteristic information, and the high-level pulse width value is not between 1000us and 2000us, and Changing the high pulse width value is simple and easy to implement.
  • the throttle signal and the throttle characteristic signal are pulse width modulated PWM signals.
  • the characteristic information of the PWM signal is a high-level pulse width value, and the high-level pulse width value is not within a preset operating pulse width value range of the ESC.
  • control system of the ESC further includes: a prompting device 404;
  • the prompting device 404 is configured to issue prompt information according to the prompting instruction sent by the processor 401.
  • the prompting device 404 is a buzzer, and the processor 401 controls the buzzer to emit a prompt sound.
  • the buzzer is set to ESC or set separately.
  • the prompting device 404 is a power motor of the unmanned aerial vehicle, and the electronically controlled power motor vibrates or rotates to indicate the prompt information.
  • the processor 401 is further configured to:
  • the addressing instruction is deleted.
  • the processor 401 determines that the throttle characteristic signal is not received, indicating that the ESC is not the target ESC, the previously received addressing instruction is not executed, in order to reduce the memory pressure of the ESC, the processing is performed.
  • the device 401 deletes the addressing instruction.
  • the processor 401 is further configured to:
  • the flight controller since the newly assembled ESC has no addressing number before the UAV is initially powered on, the flight controller needs to know the installation information of the ESC, so that the throttle characteristic signal can be accurately transmitted. Go to the target ESC.
  • the electrical installation information includes at least one of a mounting location, a product model, and a working pulse width value range.
  • an embodiment of the present invention provides a control system for a flight controller, including:
  • processor 501 working individually or collectively, processor 501 is configured to:
  • the addressing instruction is used to address the ESC as the destination addressing number
  • the address number of the target ESC is registered as the destination addressing number.
  • the processor 501 in the control system of the flight controller may be single-core or multi-core, and may be operated by one processor 501 alone, or multiple processors 501 may be operated in common, and the processor 501 is used by the processor 501.
  • the flight controller can control the unaddressed target ESC for addressing compared to the prior art, eliminating the need to mount the numbered ESC to the corresponding motor position, thus eliminating The safety hazard of the human aircraft due to the installation of the ESC, and facilitates the ESC installation during the production, assembly and rework of the UAV.
  • control system of the flight controller further includes: a communication interface 502 and a throttle signal interface 503;
  • the processor 501 is connected to the ESC through the communication interface 502, for transmitting the addressing instruction and receiving the feedback signal;
  • the processor 501 is coupled to the ESC via a throttle signal interface 503 for transmitting a throttle feature signal.
  • the communication interface 502 in the control system of the flight controller is connected to the ESC through the UART communication line, and the throttle signal interface 503 is connected through the throttle control signal line and the ESC, wherein the processor 501 is electrically connected through the communication interface 502.
  • the connection is used for transmitting the addressing instruction and receiving the feedback signal, and the processor 501 is connected to the ESC through the throttle signal interface 503 for transmitting the throttle characteristic signal.
  • the throttle signal is The throttle control signal line connected to the interface 503 is separately connected to the ESC, making it possible to address one by one of a plurality of ESCs.
  • the processor 501 is further configured to:
  • a throttle characteristic signal is generated and a throttle characteristic signal is sent to the target ESC.
  • the processor 501 needs to determine the target ESC of the intended addressing when transmitting the throttle characteristic signal, thereby accurately transmitting. .
  • the processor 501 is further configured to:
  • the processor 501 since the newly assembled ESC has no addressing number before the UAV is initially powered on, the processor 501 needs to know the installation information of the ESC, so that the throttle characteristic signal can be accurately transmitted. Go to the target ESC.
  • the electrical installation information includes at least one of a mounting location, a product model, and a working pulse width value range.
  • the processor 501 is further configured to:
  • the target ESC is determined based on the installation information of the target ESC.
  • the processor 501 first obtains the installation information of the target ESC that is expected to be addressed, and can accurately locate the target ESC that is expected to be addressed according to the installation information.
  • the processor 501 is further configured to:
  • the throttle characteristic signal is generated according to the characteristic information of the throttle characteristic signal.
  • the processor 501 sets the feature information of the throttle feature signal within a preset range, so that the throttle feature signal can be generated according to the feature information.
  • the signal is The frequency is fixed and the high-level time variable PWM signal
  • the high-level time is generally 1000us to 2000us, the longer the high-level pulse width time, the faster the ESC drive motor speed, then the characteristic information of the throttle characteristic signal is high power.
  • the high-level time of the throttle characteristic signal should not be 1000us to 2000us, then the preset range can be less than 1000us.
  • the characteristic information of the throttle characteristic signal can be Set to a value less than 1000us such as 500us or 100us.
  • the characteristic information of the throttle characteristic signal includes at least one of a signal frequency, a signal time, or a signal amplitude.
  • the throttle characteristic signal is a pulse width modulated PWM signal.
  • the characteristic information of the PWM signal is a high-level pulse width value, and the high-level pulse width value is not within a preset operating pulse width value range of the ESC.
  • the processor 501 is further configured to:
  • an alarm instruction for controlling the alarm device to send the alarm information is sent.
  • the processor 501 does not receive the feedback signal of the target ESC response, it indicates that the addressing of the target ESC fails, then the UAV is dangerous at this time, and needs to be sent for controlling the alarm device to be sent.
  • the alarm command of the alarm information thus prompting the user for the danger at this time, Can operate unmanned aerial vehicles for flight.
  • the processor 501 is further configured to:
  • the processor 501 after registering the destination addressing number of the target ESC, the processor 501 sends a prompt instruction for controlling the prompting device to issue the prompt information to prompt completion of the addressing of the target ESC.
  • the alarm device and the prompting device are buzzer, and the flight controller controls the buzzer to emit a prompt sound.
  • the buzzer is located in the flight controller or is set separately.
  • the alarm device and the prompting device are the power motor of the unmanned aerial vehicle, and the flight controller controls the vibration of the power motor to sound or rotate to indicate the alarm information and the prompt information.
  • the above embodiment describes the control method and control system of the ESC and the flight controller.
  • the following describes the ESC and the flight controller separately, as follows:
  • an embodiment of the present invention provides an ESC, including:
  • the ESC control system 40 is mounted within the housing 601;
  • the ESC control system 40 includes:
  • processor 401 for:
  • the addressing instruction is used to address the electrical tones as the destination addressing number
  • the ESC sends a feedback signal to the flight controller for responding to the addressing command, and records the destination addressing number according to the addressing command. .
  • an embodiment of the present invention provides a flight controller, including:
  • the control system 50 of the flight controller is mounted in the housing 701;
  • the flight controller's control system 50 includes:
  • processor 501 working individually or collectively, processor 501 is configured to:
  • the addressing instruction is used to address the ESC as the destination addressing number
  • the flight controller registers the addressing number of the target ESC as the destination addressing number.
  • an embodiment of the present invention provides a control system for an unmanned aerial vehicle, including:
  • At least one ESC 802 is electrically connected to the flight controller 801;
  • the flight controller 801 sends the throttle feature signal and the addressing command to the target addressed electrical 802 through the throttle control signal line; the target electrical 802 that receives the throttle characteristic signal is addressed according to the addressing instruction to generate a feedback signal.
  • the destination address number is obtained and recorded; the flight controller 801 receives the feedback signal, and registers the address number of the target ESC 802 as the destination addressing number according to the feedback signal.
  • the flight controller 801 can address the ESC 802 at a later stage without installing the numbered ESC to the corresponding motor position, thus eliminating the unmanned aerial vehicle generated by the ESC installation. Safety hazards and facilitates ESC installation during the production, assembly and rework of UAVs.
  • the flight controller transmits an addressing instruction to the at least one ESC via the bus, the addressing instruction for addressing one of the at least one ESC to the destination addressing number;
  • the flight controller transmits a throttle characteristic signal to the target ESC that is expected to be addressed through the throttle control signal line;
  • the target ESC receives the throttle characteristic signal sent by the flight controller, performs addressing according to the throttle characteristic signal and the addressing instruction, generates a feedback signal, and obtains and records the destination addressing number;
  • the target ESC feeds back the feedback signal to the flight controller
  • the flight controller receives the feedback signal of the target ESC feedback, and edits the target ESC according to the feedback signal.
  • the address number is registered as the destination addressing number.
  • the flight controller can address the unaddressed ESC at a later stage without installing the numbered ESC to the corresponding motor position, thus eliminating the UAV installation due to the ESC installation.
  • an embodiment of the present invention provides an unmanned aerial vehicle, which includes:
  • the UAV control system 902 is used to control the flight power unit 901 to provide flight power to the unmanned aerial vehicle.
  • the flying power device 901 generally includes a motor and a propeller.
  • the motor drives the rotation of the propeller through the rotation speed of the flight controller and the ESC in the control system 902 of the UAV to provide flight power.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种电调、飞行控制器和无人飞行器的控制方法及控制***,用于消除无人飞行器因为电调安装而产生的安全隐患,并且方便无人飞行器的生产、装配及返修过程中的电调安装。该方法包括:飞行控制器向电调发送编址指令,编址指令用于将电调编址为目的编址号(201);电调获取飞行控制器的编址指令(202);飞行控制器向预期编址的目标电调发送油门特征信号(203);电调确定是否收到油门特征信号(204);若是,则电调向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目标编址号(205);飞行控制器确定是否接收到目标电调响应的反馈信号(206);若是,则飞行控制器将目标电调的编址号注册为目标编址号(207)。

Description

电调、飞行控制器和无人飞行器的控制方法及控制*** 技术领域
本发明涉及无人机领域,具体涉及电调、飞行控制器和无人飞行器的控制方法及控制***。
背景技术
在无人机技术中,飞行控制器指的是无人飞行器的控制器,主要由陀螺仪(飞行姿态感知)、加速计、地磁感应、气压传感器(悬停控制)及控制电路组成。动力***包括电机和电调,电调是控制电机转速及稳定电压的电子调速器。
无人飞行器是通过飞行控制器与电调之间通信,电调控制电机的转速,电机转动使得螺旋桨旋转,从而实现飞行。飞行控制器与电调之间的通信方式有:1、飞控和电调连接有油门控制信号线。油门控制信号线上面传输的是信号是飞控发送的频率固定及高电平时间可变的脉冲宽度调制(Pulse Width Modulation,PWM)信号。高电平时间一般为1000us至2000us。高电平脉宽时间越长,电调驱动电机转速越快。2、飞行控制器和电调之间还连接有通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART)通信线。飞行控制器和电调通过UART进行数据交互。UART为总线连接方式,飞控的一个UART连接多个电调。如果想让电调进行应答,那么必须对多个电调进行区分和编号,也就是得给每个电调对应的地址,并且地址得唯一,否则两个一样地址的电调同时应答飞控同一个数据包将会导致总线冲突。
在现有的技术中,为了避免总线冲突,必须对多个电调进行区分,可以给多个电调烧录不同的程序,从而使得每一个电调只能应答飞行控制器发出的一种数据包。
但是,四轴、六轴及矢量控制等多种形式的无人飞行器中的多个电调已经预先烧录程序,那么各个电调的编号已经确定,只能装配在预先定义的电机位置,例如1号电调必须装配在预先定义的1号电机位置,假如1号电调装配在其他电机的位置,将会导致螺旋桨反转等危险问题,因此,为了无人飞行器的 安全飞行,在无人飞行器后续装配生产和返修时,必须严格将已经编号的电调安装到对应的电机位置,使得无人飞行器的生产、装配及返修过程很麻烦。
发明内容
本发明提供电调、飞行控制器和无人飞行器的控制方法及控制***,用于用于消除无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
本发明第一方面提供一种电调的控制方法,包括:
获取飞行控制器的编址指令,所述编址指令用于将电调编址为目的编址号;
确定是否接收到油门特征信号;
若是,则发送用于响应所述编址指令的反馈信号,根据所述编址指令记录所述目的编址号。
本发明第二方面提供一种飞行控制器的控制方法,包括:
向电调发送编址指令,所述编址指令用于将所述电调编址为目的编址号;
向预期编址的目标电调发送油门特征信号;
确定是否接收到所述目标电调响应的反馈信号;
若是,则将所述目标电调的编址号注册为所述目的编址号。
本发明第三方面提供一种电调的控制***,包括:
一个或多个处理器,所述处理器单独地或共同地工作,所述处理器用于:
获取飞行控制器的编址指令,所述编址指令用于将电调编址为目的编址号;
确定是否接收到油门特征信号;
若是,则发送用于响应所述编址指令的反馈信号,根据所述编址指令记录所述目的编址号。
本发明第四方面提供一种飞行控制器的控制***,包括:
一个或多个处理器,单独地或共同地工作,所述处理器用于:
向电调发送编址指令,所述编址指令用于将所述电调编址为目的编址号;
向预期编址的目标电调发送油门特征信号;
确定是否接收到所述目标电调响应的反馈信号;
若是,则将所述目标电调的编址号注册为所述目的编址号。
本发明第五方面提供一种电调,包括:
壳体及上述任一项所述的电调的控制***;
所述电调的控制***安装在所述壳体内。
本发明第六方面提供一种飞行控制器,包括:
壳体及上述任一项所述的飞行控制器的控制***;
所述飞行控制器的控制***安装在所述壳体内。
本发明第七方面提供一种无人飞行器的控制方法,应用于无人飞行器的控制***,所述无人飞行器的控制***包括飞行控制器及至少一个电调,所述无人飞行器的控制方法包括:
飞行控制器通过总线向至少一个电调发送编址指令,所述编址指令用于将所述至少一个电调中的一个电调编址为目的编址号;
所述飞行控制器通过油门控制信号线向预期编址的目标电调发送油门特征信号;
所述目标电调接收所述飞行控制器发送的油门特征信号,根据所述油门特征信号及所述编址指令进行编址,生成反馈信号,得到并记录所述目的编址号;
所述目标电调将所述反馈信号反馈至所述飞行控制器;
所述飞行控制器接收所述目标电调反馈的所述反馈信号,根据所述反馈信号将所述目标电调的编址号注册为所述目的编址号。
本发明第八方面提供一种无人飞行器的控制***,包括:
飞行控制器;及
至少一个电调,与所述飞行控制器电连接;
其中,所述飞行控制器通过油门控制信号线向预期编址的目标电调发送油门特征信号以及编址指令;接收到所述油门特征信号的所述目标电调根据所述编址指令进行编址,生成反馈信号,得到并记录所述目的编址号;所述飞行控制器接收所述反馈信号,根据所述反馈信号将所述目标电调的编址号注册为所 述目的编址号。
本发明第九方面提供一种无人飞行器,包括:
飞行动力装置及上述所述的无人飞行器的控制***;
所述无人飞行器的控制***用于控制所述飞行动力装置为所述无人飞行器提供飞行动力。
从以上技术方案可以看出,本发明实施例具有以下优点:
飞行控制器向电调发送编址指令,飞行控制器向预期编址的目标电调发送油门特征信号;目标电调根据油门特征信号及编址指令进行编址,生成反馈信号,得到并记录目的编址号,并将反馈信号反馈至飞行控制器,飞行控制器确定接收到反馈信号后将目标电调的编址号注册为目的编址号,与现有技术相比,飞行控制器可以在后期对电调进行编址,而不需要将已经编号的电调安装到对应的电机位置,这样就消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明中无人飞行器的结构示意图;
图2为本发明中电调与飞行控制器的控制方法的一个交互式实施例示意图;
图3为本发明中电调与飞行控制器的控制方法的另一个交互式实施例示意图;
图4为本发明中电调的控制***的一个实施例示意图;
图5为本发明中飞行控制器的控制***的一个实施例示意图;
图6为本发明中电调的一个实施例示意图;
图7为本发明中飞行控制器的一个实施例示意图;
图8为本发明中无人飞行器的控制***的一个实施例示意图;
图9为本发明中无人飞行器的一个实施例示意图。
具体实施方式
本发明提供电调、飞行控制器和无人飞行器的控制方法及控制***,用于消除无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
首先简单介绍本发明应用的***构架或场景。
如图1所示为无人飞行器的示意图,无人飞行器包括控制***及飞行动力装置,飞行动力装置包括电机1和与电机1对应的螺旋桨1,电机2和与电机2对应的螺旋桨2,此处只是以两轴举例说明,在实际的情况中可以为单轴、四轴、六轴及矢量控制等。其中,电机转动使得螺旋桨旋转,从而为无人飞行器提供飞行动力,而电机的转动速度由无人飞行器的控制***的飞行控制器与电调1和电调2之间通信实现,电机1和电调1对应,电机2和电调2对应。
在现有技术中,为了保持无人飞行器的平稳飞行、转向、起飞和降落等状态,需要每一个电机按照特定的转速来实现。为了飞行控制器能够控制这两个电机,这两个电机对应的电调都需要预先烧录不同的程序,实现编号,从而使得飞行控制器能够按照飞行指示下发油门控制信号时,电调控制对应的电机的转速,从而使得无人飞行器按照飞行指示实现平稳飞行、转向或起飞等动作。这样导致电调必须按照预先的编号,连接到对应的电机,例如电调的编号是1,本来安装位置应该是对应的电机1,但是安装时出现错误,安装位置对应到了 电机2,这样就使得飞行控制器下发的油门控制信号是需要螺旋桨1转动时,电机1由于与电调2连接,那么螺旋桨1是不会转动的,而电机2螺旋桨会旋转,这样导致无人飞行器无法按照飞行控制器的指令进行飞行,甚至发生螺旋桨反转等危险,并且在无人飞行器的生产、装配及返修过程中,组装人员必须严格按照电调的编号进行装配,使得安装麻烦。
为了解决上述所说的问题,本发明提供了电调、飞行控制器和无人飞行器的控制方法及控制***用以对电调进行编址,下面通过电调和飞行控制器之间的交互实施例进行详细说明,参阅图2,具体如下:
201、飞行控制器向电调发送编址指令;
本实施例中,在无人飞行器刚开始上电时,由于多个电调是未进行编址的,因此飞行控制器在飞行之前,需要对无人飞行器中的电调进行编址,将编址指令发送至每一个电调,编址指令用于将电调编址为目的编址号,飞行控制器和电调之间连接有UART通信线,通过UART进行数据交互,UART通信线为总线连接方式,编址指令就是通过UART通信线下发的,每一个电调均能收到,总线除UART通信线之外还可以为其他类型的数据线,此处不做限定。
202、电调获取飞行控制器的编址指令;
本实施例中,电调通过UART通信线获取到飞行控制器发送的编址指令,但是电调未收到油门特征信号之前,是未通电的状态,不会执行该条编址指令。
203、飞行控制器向预期编址的目标电调发送油门特征信号;
本实施例中,由于电调存在多个,为了对电调进行区分,每一个电调的编址号都要不同,在之间下发了编址指令后,还需要为多个电调中的一个电调提供油门特征信号,才能让这个电调进行编址,飞行控制器单独和每一个电调之间都连接有油门控制信号线,油门控制信号线为PWM信号线,因此,飞行控制器向预期编址的目标电调发送油门特征信号是通过PWM信号线。
204、电调确定是否接收到油门特征信号,若是,则执行步骤205;
本实施例中,电调检测是否通过油门控制信号线接收到了飞行控制器发送的油门特征信号,如果接收到了,表示该电调就是目标电调,执行步骤205;如果没有接收到,表示该电调并非目标电调。
205、电调向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号;
本实施例中,在电调接收到油门特征信号后,表示该电调就是目标电调,那么该电调执行编址指令,向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号,此时,电调方的编址已经完成,电调已经知道自身的目的编址号。
206、飞行控制器确定是否接收到目标电调响应的反馈信号,若是,则执行步骤207;
本实施例中,飞行控制器发送了油门特征信号之后,还需要确定目标电调是否已经编址,因此,需要检测是否接收到目标电调响应的反馈信号,若是,则执行步骤207。
207、飞行控制器将目标电调的编址号注册为目的编址号。
本实施例中,如果飞行控制器接收到了目标电调的反馈信号,那么表示目标电调已经编址成功,那么就将目标电调的编址号注册为目标编址号,完成目标电调的编址,并且按照该方式,对每一个电调都进行编址。
本发明实施例中,飞行控制器向电调发送编址指令,编址指令用于将电调编址为目的编址号;电调获取飞行控制器的编址指令;飞行控制器向预期编址的目标电调发送油门特征信号;电调确定是否接收到油门特征信号;若是,则电调确定为目标电调,并向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号;飞行控制器确定是否接收到目标电调响应的反馈信号;若是,则飞行控制器将目标电调的编址号注册为目的编址号,与现有技术相比,飞行控制器可以在后期对电调进行编址,而不需要将已经编号的电调安装到对应的电机位置,这样消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
上述实施例中,飞行控制器向预期编址的目标电调发送的油门特征信号是本发明中电调进行编址的关键,下面进行详细说明,如图3所示,具体如下:
301、飞行控制器向电调发送编址指令;
详情请参考步骤201。
302、电调获取飞行控制器的编址指令;
详情请参考步骤202。
303、飞行控制器确定预期编址的目标电调;
本实施例中,由于电调存在多个,为了对电调进行区分,每一个电调的编址号都要不同,在之间下发了编址指令后,还需要为多个电调中的一个电调提供油门特征信号,才能让这个电调进行编址。
304、飞行控制器生成油门特征信号,并向目标电调发送油门特征信号;
本实施例中,在确定了目标电调之后,生成油门特征信号,将油门特征信号发送到目标电调。
305、电调确定是否接收到油门特征信号,若是,则执行步骤306,若否,则执行步骤307;
本实施例中,电调检测是否通过油门控制信号线接收到了飞行控制器发送的油门特征信号,如果接收到了,表示该电调就是目标电调,执行步骤306;如果没有接收到,表示该电调并非目标电调,则执行步骤307。
306、电调向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号;
详情请参考步骤205。
307、电调删除编址指令;
本实施例中,当电调确定未接收到油门特征信号时,表示该电调并非是目标电调,那么不会执行之前接收到的编址指令,为了减少电调的内存压力,将编址指令删除。
308、飞行控制器确定是否接收到目标电调响应的反馈信号,若是,则执行步骤309,若否,则执行步骤310;
本实施例中,飞行控制器发送了油门特征信号之后,还需要确定目标电调是否已经编址,因此,需要检测是否接收到目标电调响应的反馈信号,若是,则执行步骤309;若否,则执行步骤310。
309、飞行控制器将目标电调的编址号注册为目的编址号;
详情请参考步骤207。
310、飞行控制器发送用于控制告警装置发出告警信息的告警指令。
本实施例中,如果飞行控制器未接收到目标电调响应的反馈信号,那么表示目标电调的编址失败,那么此时无人飞行器是存在危险的,需要发送用于控制告警装置发出告警信息的告警指令,从而提示用户此时存在的危险,不能操作无人飞行器进行飞行。
本发明实施例中,对预期编址的目标电调的确定进行了说明,而且增加了电调未接收到油门特征信号时的删除编址指令步骤,以及飞行控制器在未收到反馈信号时候的告警步骤,使得本发明在实施时节省了电调的存储空间,并且使得无人飞行器更加安全。
上述实施例中,步骤306是电调对编址指令的反馈及记录目的编址号,整个过程是多步骤实施的,下面进行细化,如下:
根据油门特征信号执行编址指令进行编址,得到目的编址号;
根据编址指令生成反馈信号;
将反馈信号发送至飞行控制器;
记录目的编址号。
本发明实施例中,电调在接收到油门特征信号后,表示该电调即是目标电调,需要执行之前接收到的编址指令进行编址,编址得到该电调的目的编址号,并且编址时还需要生成反馈信号,将反馈信号通过UART通信线发送至飞行控制器,以表示目标电调进行了编址,而电调自身还需要记录下目的编址号,以准确的应答飞行控制器后续发送的关于无人飞行器飞行的指令。
可选的,本发明的一些实施例中,电调获取飞行控制器的编址指令之前,还包括:
获取电调的安装信息,并将安装信息发送至飞行控制器;以及
飞行控制器向预期编址的目标电调发送油门特征信号之前,还包括:
接收电调的安装信息。
本实施例中,由于在无人飞行器刚开始上电之前,新装配的电调是没有编址号的,那么飞行控制器需要知道电调的安装信息,从而可以准确的将油门特征信号发送到目标电调,需要说明的是,可以是电调将安装信息告知飞行控制 器,也可以是用户在装配好电调后,将电调的安装信息导入飞行控制器的,具体的方式不做限定。
其中,电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个,安装位置是电调装配后连接的电机,产品型号和工作脉宽值范围决定了生成的油门特征信号,例如电调平常的工作时的工作脉宽值范围为:PWM信号的高电平时间1000us至2000us,那么油门特征信号就应该不处于工作脉宽值范围。
从上一实施例中提出的安装信息可知,飞行控制器在确定预期编址的目标电调时,是需要使用到电调的安装信息的,那么对目标电调的确定和油门特征信号的生成进行细化,如下:
可选的,本发明的一些实施例中,飞行控制器确定预期编址的目标电调,包括:
获取预期编址的目标电调的安装信息;
根据目标电调的安装信息确定目标电调。
本发明实施例中,飞行控制器先获取到预期编址的目标电调的安装信息,根据安装信息可以准确的定位到预期编址的目标电调。
可选的,本发明的一些实施例中,飞行控制器生成油门特征信号,包括:
在预设范围内对油门特征信号的特征信息进行设置;
根据油门特征信号的特征信息生成油门特征信号。
本发明实施例中,飞行控制器在预设范围内对油门特征信号的特征信息进行设置,使得根据特征信息可以生成油门特征信号,按照以上实施例的例子,电调平常的工作时,信号为频率固定及高电平时间可变的PWM信号,高电平时间一般为1000us至2000us,高电平脉宽时间越长,电调驱动电机转速越快,那么油门特征信号的特征信息就是高电平时间,为了避免电调在编址的时候带动电机转动,油门特征信号的高电平时间应该不处于1000us至2000us,那么预设范围内可以是小于1000us,例如,油门特征信号的特征信息可以设置为500us或者100us等小于1000us的值。
需要说明的是,以上的油门特征信号的特征信息是以高电平时间为例说明 的,在实施中,特征信息包括信号频率、信号时间或信号幅度中的至少一种。
需要说明的是,按照实际应用中,飞行控制器是通过以PWM信号线作为油门控制信号线下发油门特征信号的,那么油门特征信号实际上是PWM信号,而电调平常的工作时,PWM信号是频率固定及高电平时间可变的,预置工作脉宽值范围一般为1000us至2000us,高电平脉宽时间越长,电调驱动电机转速越快,那么油门特征信号的特征信息就是高电平脉宽值,为了避免电调在编址的时候带动电机转动,油门特征信号的高电平时间应该不处于1000us至2000us。
上述实施例中,引入了油门特征信号的特征信息的概念,那么电调确定是否是接收到油门特征信号的具体方式就是根据特征信息,具体如下:
可选的,本发明的一些实施例中,确定是否接收到油门特征信号,包括:
通过电调的油门信号接口接收油门信号;
获取油门信号的特征信息;
根据特征信息判断油门信号是否为油门特征信号。
本发明实施例中,电调通过油门信号接口可以接收到油门信号,分析油门信号获取到油门信号的特征信息,由于油门特征信号的特征信息是飞行控制器进行了处理的,与工作的油门信号的特征信息有区别,那么根据特征信息就能判断出油门信号是否为油门特征信号,从而确定是否接收到油门特征信号。
可选的,本发明的一些实施例中,根据特征信息判断油门信号是否为油门特征信号,包括:
判断特征信息是否处于预设范围内;
若特征信息处于所述预设范围内,则确定油门信号是油门特征信号;
若特征信息不处于所述预设范围内,则确定油门信号不是油门特征信号。
本发明实施例中,飞行控制器与电调之间的通信所发送的油门信号用于电调正常工作,或者用于编址,那么只需要将油门特征信号的特征信息与电调正常工作时的油门信号的特征信息的预设范围区分开,就能实现油门特征信号的判别,例如,油门信号和油门特征信号都是PWM信号,PWM信号的特征是频率固定及高电平时间可变,预置的工作高电平脉宽值范围一般为1000us至 2000us,那么油门特征信号的高电平脉宽值作为特征信息,高电平脉宽值不处于1000us至2000us之间即可,而改变高电平脉宽值的操作简单,而且易于实现。
可选的,本发明的一些实施例中,记录目的编址号之后,还包括:
发送用于控制提示装置发出提示信息的提示指令。
本发明实施例中,电调在编址完成,并且记录了目的编址号之后,控制提示装置发出提示信息,表示电调一侧已经完成,与飞行控制器一侧,未接收到反馈信息时,发出告警相对应,可以直观的看到是电调的器件问题,还是电调与飞行控制器的连接出现问题,例如通信接口和油门控制接口接反了,或者连接线出现断裂等问题。
需要说明的是,以上实施例中提到的提示装置和告警装置,可以是蜂鸣器,蜂鸣器可以集成在飞行控制器或者电调中,或者单独的设置;提示装置和告警装置还可以是无人飞行器的动力电机,电调和飞行控制器控制动力电机振动发声或转动,以表示提示信息或告警信息。
上述实施例通过电调和飞行控制器交互的方式对电调和飞行控制器的控制方法进行了说明,下面分别对电调和飞行控制器的控制***进行说明,具体如下:
请参阅图4,本发明实施例提供一种电调的控制***,包括:
一个或多个处理器401,处理器401单独地或共同地工作,处理器401用于:
获取飞行控制器的编址指令,编址指令用于将电调编址为目的编址号;
确定是否接收到油门特征信号;
若是,则发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号。
本发明实施例中,电调的控制***中的处理器401可以是单核或者多核的,可以是一个处理器401单独地运行,或者多个处理器401共同地运行,处理器401用于获取飞行控制器的编址指令,确定是否接收到油门特征信号,若是,则发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号,与现有技术相比,电调可以根据飞行控制器的编址指令进行编址,从而不需要将已经编号 的电调安装到对应的电机位置,这样消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
可选的,本发明的一些实施例中,电调的控制***还包括:通信接口402及油门信号接口403;
处理器401通过通信接口402与飞行控制器连接,用于接收编址指令以及发送反馈信号;
处理器401通过油门信号接口403与飞行控制器连接,用于接收油门特征信号。
本发明实施例中,电调的控制***中的通信接口402通过UART通信线与飞行控制器连接,油门信号接口403通过油门控制信号线和飞行控制器连接,其中处理器通过通信接口402与飞行控制器连接,用于接收编址指令以及发送反馈信号,处理器401通过油门信号接口403与飞行控制器连接,用于接收油门特征信号,由于通信接口402是接总线类型的UART通信线,而油门信号接口403接的油门控制信号线单独与飞行控制器连接,使得多个电调的逐一编址成为可能。
可选的,本发明的一些实施例中,处理器401还用于:
根据油门特征信号执行编址指令进行编址,得到目的编址号;
根据编址指令生成反馈信号;
将反馈信号发送至飞行控制器;
记录目的编址号。
本发明实施例中,处理器401在接收到油门特征信号后,表示该电调即是目标电调,需要执行之前接收到的编址指令进行编址,编址得到该电调的目的编址号,并且编址时还需要生成反馈信号,将反馈信号通过UART通信线发送至飞行控制器,以表示目标电调进行了编址,而电调自身还需要记录下目的编址号,以准确的应答飞行控制器后续发送的关于无人飞行器飞行的指令。
可选的,本发明的一些实施例中,处理器401还用于:
通过电调的油门信号接口接收油门信号;
获取油门信号的特征信息;
根据特征信息判断油门信号是否为油门特征信号。
本发明实施例中,处理器401通过油门信号接口403可以接收到油门信号,分析油门信号获取到油门信号的特征信息,由于油门特征信号的特征信息是飞行控制器进行了处理的,与工作的油门信号的特征信息有区别,那么处理器401根据特征信息就能判断出油门信号是否为油门特征信号,从而确定是否接收到油门特征信号。
可选的,本发明的一些实施例中,油门信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
可选的,本发明的一些实施例中,处理器401还用于:
判断特征信息是否处于预设范围内;
若特征信息处于预设范围内,则确定油门信号是油门特征信号;
若特征信息不处于预设范围内,则确定油门信号不是油门特征信号。
本发明实施例中,飞行控制器与处理器401之间的通信所发送的油门信号用于电调正常工作,或者用于编址,那么只需要将油门特征信号的特征信息与电调正常工作时的油门信号的特征信息的预设范围区分开,就能实现油门特征信号的判别,例如,油门信号和油门特征信号都是PWM信号,PWM信号的特征是频率固定及高电平时间可变,预置的工作高电平脉宽值范围一般为1000us至2000us,那么油门特征信号的高电平脉宽值作为特征信息,高电平脉宽值不处于1000us至2000us之间即可,而改变高电平脉宽值的操作简单,而且易于实现。
可选的,本发明的一些实施例中,油门信号及油门特征信号为脉冲宽度调制PWM信号。
可选的,本发明的一些实施例中,PWM信号的特征信息为高电平脉宽值,高电平脉宽值不处于电调的预置工作脉宽值范围内。
可选的,本发明的一些实施例中,电调的控制***还包括:提示装置404;
提示装置404用于根据处理器401发送的提示指令发出提示信息。
可选的,本发明的一些实施例中,
提示装置404为蜂鸣器,处理器401控制蜂鸣器发出提示声音。
可选的,本发明的一些实施例中,
蜂鸣器设于电调,或者单独设置。
可选的,本发明的一些实施例中,
提示装置404为无人飞行器的动力电机,电调控制动力电机振动发声或转动,以表示提示信息。
可选的,本发明的一些实施例中,处理器401还用于:
若确定未接收到油门特征信号,则删除编址指令。
本发明实施例中,当处理器401确定未接收到油门特征信号时,表示该电调并非是目标电调,那么不会执行之前接收到的编址指令,为了减少电调的内存压力,处理器401将编址指令删除。
可选的,本发明的一些实施例中,处理器401还用于:
获取电调的安装信息,并将安装信息发送至飞行控制器。
本发明实施例中,由于在无人飞行器刚开始上电之前,新装配的电调是没有编址号的,那么飞行控制器需要知道电调的安装信息,从而可以准确的将油门特征信号发送到目标电调。
可选的,本发明的一些实施例中,电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
请参阅图5,本发明实施例提供一种飞行控制器的控制***,包括:
一个或多个处理器501,单独地或共同地工作,处理器501用于:
向电调发送编址指令,编址指令用于将电调编址为目的编址号;
向预期编址的目标电调发送油门特征信号;
确定是否接收到目标电调响应的反馈信号;
若是,则将目标电调的编址号注册为目的编址号。
本发明实施例中,飞行控制器的控制***中的处理器501可以是单核或者多核的,可以是一个处理器501单独地运行,或者多个处理器501共同地运行,处理器501用于向电调发送编址指令,向预期编址的目标电调发送油门特征信号,确定是否接收到目标电调响应的反馈信号,若是,则将目标电调的编址号 注册为目的编址号,与现有技术相比,飞行控制器可以控制未编址的目标电调进行编址,从而不需要将已经编号的电调安装到对应的电机位置,这样消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
可选的,本发明的一些实施例中,飞行控制器的控制***还包括:通信接口502及油门信号接口503;
处理器501通过通信接口502与电调连接,用于发送编址指令以及接收反馈信号;
处理器501通过油门信号接口503与电调连接,用于发送油门特征信号。
本发明实施例中,飞行控制器的控制***中的通信接口502通过UART通信线与电调连接,油门信号接口503通过油门控制信号线和电调连接,其中处理器501通过通信接口502与电调连接,用于发送编址指令以及接收反馈信号,处理器501通过油门信号接口503与电调连接,用于发送油门特征信号,由于通信接口502是接总线类型的UART通信线,而油门信号接口503接的油门控制信号线单独与电调连接,使得多个电调的逐一编址成为可能。
可选的,本发明的一些实施例中,处理器501还用于:
确定预期编址的目标电调;
生成油门特征信号,并向目标电调发送油门特征信号。
本发明实施例中,因为处理器501和电调之间的油门控制信号线不是总线形式,那么处理器501在发送油门特征信号时,还需要确定预期编址的目标电调,从而准确的发送。
可选的,本发明的一些实施例中,处理器501还用于:
接收电调的安装信息。
本发明实施例中,由于在无人飞行器刚开始上电之前,新装配的电调是没有编址号的,那么处理器501需要知道电调的安装信息,从而可以准确的将油门特征信号发送到目标电调。
可选的,本发明的一些实施例中,电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
可选的,本发明的一些实施例中,处理器501还用于:
获取预期编址的目标电调的安装信息;
根据目标电调的安装信息确定目标电调。
本发明实施例中,处理器501先获取到预期编址的目标电调的安装信息,根据安装信息可以准确的定位到预期编址的目标电调。
可选的,本发明的一些实施例中,处理器501还用于:
在预设范围内对油门特征信号的特征信息进行设置;
根据油门特征信号的特征信息生成油门特征信号。
本发明实施例中,处理器501在预设范围内对油门特征信号的特征信息进行设置,使得根据特征信息可以生成油门特征信号,按照以上实施例的例子,电调平常的工作时,信号为频率固定及高电平时间可变的PWM信号,高电平时间一般为1000us至2000us,高电平脉宽时间越长,电调驱动电机转速越快,那么油门特征信号的特征信息就是高电平时间,为了避免电调在编址的时候带动电机转动,油门特征信号的高电平时间应该不处于1000us至2000us,那么预设范围内可以是小于1000us,例如,油门特征信号的特征信息可以设置为500us或者100us等小于1000us的值。
可选的,本发明的一些实施例中,油门特征信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
可选的,本发明的一些实施例中,油门特征信号为脉冲宽度调制PWM信号。
可选的,本发明的一些实施例中,PWM信号的特征信息为高电平脉宽值,高电平脉宽值不处于电调的预置工作脉宽值范围内。
可选的,本发明的一些实施例中,处理器501还用于:
若确定未接收到目标电调响应的反馈信号,则发送用于控制告警装置发出告警信息的告警指令。
本发明实施例中,如果处理器501未接收到目标电调响应的反馈信号,那么表示目标电调的编址失败,那么此时无人飞行器是存在危险的,需要发送用于控制告警装置发出告警信息的告警指令,从而提示用户此时存在的危险,不 能操作无人飞行器进行飞行。
可选的,本发明的一些实施例中,处理器501还用于:
发送用于控制提示装置发出提示信息的提示指令。
本发明实施例中,处理器501在注册完目标电调的目的编址号之后,发送用于控制提示装置发出提示信息的提示指令,以提示对目标电调的编址完成。
可选的,本发明的一些实施例中,
告警装置和提示装置为蜂鸣器,飞行控制器控制蜂鸣器发出提示声音。
可选的,本发明的一些实施例中,
蜂鸣器设于飞行控制器,或者单独设置。
可选的,本发明的一些实施例中,
告警装置和提示装置为无人飞行器的动力电机,飞行控制器控制动力电机振动发声或转动,以表示告警信息和提示信息。
上述实施例对电调和飞行控制器的控制方法和控制***进行了说明,下面分别对电调和飞行控制器进行说明,具体如下:
请参阅图6,本发明实施例提供一种电调,包括:
壳体601及图4所示的电调的控制***40;
电调的控制***40安装在壳体601内;
电调的控制***40包括:
一个或多个处理器401,处理器401单独地或共同地工作,处理器401用于:
获取飞行控制器的编址指令,编址指令用于将电调编址为目的编址号;
确定是否接收到油门特征信号;
若是,则电调向飞行控制器发送用于响应编址指令的反馈信号,根据编址指令记录目的编址号。。
请参阅图7,本发明实施例提供一种飞行控制器,包括:
壳体701及图5所示的飞行控制器的控制***50;
飞行控制器的控制***50安装在壳体701内;
飞行控制器的控制***50包括:
一个或多个处理器501,单独地或共同地工作,处理器501用于:
向电调发送编址指令,编址指令用于将电调编址为目的编址号;
向预期编址的目标电调发送油门特征信号;
确定是否接收到目标电调响应的反馈信号;
若是,则飞行控制器将目标电调的编址号注册为目的编址号。
结合图6和图7所示的电调和飞行控制器对无人飞行器的控制***进行说明,具体如下:
请参阅图8,本发明实施例提供一种无人飞行器的控制***,包括:
飞行控制器801;及
至少一个电调802,与飞行控制器801电连接;;
其中,飞行控制器801通过油门控制信号线向预期编址的目标电调802发送油门特征信号以及编址指令;接收到油门特征信号的目标电调802根据编址指令进行编址,生成反馈信号,得到并记录目的编址号;飞行控制器801接收反馈信号,根据反馈信号将目标电调802的编址号注册为目的编址号。
本发明实施例中,飞行控制器801可以在后期对电调802进行编址,而不需要将已经编号的电调安装到对应的电机位置,这样消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
基于上述的无人飞行器的控制***,下面对应用于其中的无人飞行器的控制方法进行说明,具体如下:
飞行控制器通过总线向至少一个电调发送编址指令,编址指令用于将至少一个电调中的一个电调编址为目的编址号;
飞行控制器通过油门控制信号线向预期编址的目标电调发送油门特征信号;
目标电调接收飞行控制器发送的油门特征信号,根据油门特征信号及编址指令进行编址,生成反馈信号,得到并记录目的编址号;
目标电调将反馈信号反馈至飞行控制器;
飞行控制器接收目标电调反馈的反馈信号,根据反馈信号将目标电调的编 址号注册为目的编址号。
本发明实施例中,飞行控制器可以在后期对未编址的电调进行编址,而不需要将已经编号的电调安装到对应的电机位置,这样消除了无人飞行器因为电调安装而产生的安全隐患,并且方便了无人飞行器的生产、装配及返修过程中的电调安装。
请参阅图9,本发明实施例提供一种无人飞行器,其特征在于,包括:
飞行动力装置901及图8所示的无人飞行器的控制***902;
无人飞行器的控制***902用于控制飞行动力装置901为无人飞行器提供飞行动力。
本发明实施例中,飞行动力装置901一般包括电机和螺旋桨,电机通过无人飞行器的控制***902中飞行控制器和电调控制电机的转速来带动螺旋桨的转动,从而提供飞行动力。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本发明实施例所提供的数据传输的方法、接入网设备及用户设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (63)

  1. 一种电调的控制方法,其特征在于,所述电调的控制方法包括:
    获取飞行控制器的编址指令,所述编址指令用于将电调编址为目的编址号;
    确定是否接收到油门特征信号;
    若是,则发送用于响应所述编址指令的反馈信号,根据所述编址指令记录所述目的编址号。
  2. 根据权利要求1所述的电调的控制方法,其特征在于,所述发送用于响应所述编址指令的反馈信号,根据所述编址指令记录所述目的编址号,包括:
    根据所述油门特征信号执行所述编址指令进行编址,得到所述目的编址号;
    根据所述编址指令生成反馈信号;
    将所述反馈信号发送至所述飞行控制器;
    记录所述目的编址号。
  3. 根据权利要求2所述的电调的控制方法,其特征在于,所述确定是否接收到油门特征信号,包括:
    通过所述电调的油门信号接口接收油门信号;
    获取所述油门信号的特征信息;
    根据所述特征信息判断所述油门信号是否为油门特征信号。
  4. 根据权利要求3所述的电调的控制方法,其特征在于,所述油门信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
  5. 根据权利要求4所述的电调的控制方法,其特征在于,所述根据所述特征信息判断所述油门信号是否为油门特征信号,包括:
    判断所述特征信息是否处于预设范围内;
    若所述特征信息处于所述预设范围内,则确定所述油门信号是油门特征信号;
    若所述特征信息不处于所述预设范围内,则确定所述油门信号不是油门特征信号。
  6. 根据权利要求5所述的电调的控制方法,其特征在于,所述油门信号及所述油门特征信号为脉冲宽度调制PWM信号。
  7. 根据权利要求6所述的电调的控制方法,其特征在于,所述PWM信号的特征信息为高电平脉宽值,所述高电平脉宽值不处于所述电调的预置工作脉宽值范围内。
  8. 根据权利要求2所述的电调的控制方法,其特征在于,所述记录所述目的编址号之后,还包括:
    发送用于控制提示装置发出提示信息的提示指令。
  9. 根据权利要求8所述的电调的控制方法,其特征在于,
    所述提示装置为蜂鸣器,所述电调控制所述蜂鸣器发出提示声音。
  10. 根据权利要求9所述的电调的控制方法,其特征在于,
    所述蜂鸣器设于所述电调,或者单独设置。
  11. 根据权利要求9所述的电调的控制方法,其特征在于,
    所述提示装置为无人飞行器的动力电机,所述电调控制所述动力电机振动发声或转动,以表示所述提示信息。
  12. 根据权利要求1至11中任一项所述的电调的控制方法,其特征在于,所述电调的控制方法还包括:
    若确定未接收到油门特征信号,则删除所述编址指令。
  13. 根据权利要求12所述的电调的控制方法,其特征在于,所述获取飞行控制器的编址指令之前,还包括:
    获取电调的安装信息,并将所述安装信息发送至飞行控制器。
  14. 根据权利要求13所述逇电调的控制方法,其特征在于,所述电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
  15. 一种飞行控制器的控制方法,其特征在于,所述飞行控制器的控制方法包括:
    向电调发送编址指令,所述编址指令用于将所述电调编址为目的编址号;
    向预期编址的目标电调发送油门特征信号;
    确定是否接收到所述目标电调响应的反馈信号;
    若是,则将所述目标电调的编址号注册为所述目的编址号。
  16. 根据权利要求15所述的飞行控制器的控制方法,其特征在于,所述向预期编址的目标电调发送油门特征信号,包括:
    确定预期编址的目标电调;
    生成油门特征信号,并向所述目标电调发送所述油门特征信号。
  17. 根据权利要求16所述的飞行控制器的控制方法,其特征在于,所述向预期编址的目标电调发送油门特征信号之前,还包括:
    接收电调的安装信息。
  18. 根据权利要求17所述的飞行控制器的控制方法,其特征在于,所述电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
  19. 根据权利要求18所述的飞行控制器的控制方法,其特征在于,所述确定预期编址的目标电调,包括:
    获取预期编址的目标电调的安装信息;
    根据所述目标电调的安装信息确定目标电调。
  20. 根据权利要求19所述的飞行控制器的控制方法,其特征在于,所述生成油门特征信号,包括:
    在预设范围内对所述油门特征信号的特征信息进行设置;
    根据所述油门特征信号的特征信息生成油门特征信号。
  21. 根据权利要求20所述的飞行控制器的控制方法,其特征在于,所述油门特征信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
  22. 根据权利要求21所述的飞行控制器的控制方法,其特征在于,所述油门特征信号为脉冲宽度调制PWM信号。
  23. 根据权利要求22所述的飞行控制器的控制方法,其特征在于,所述PWM信号的特征信息为高电平脉宽值,所述高电平脉宽值不处于所述电调的预置工作脉宽值范围内。
  24. 根据权利要求15至23中任一项所述的飞行控制器的控制方法,其特征在于,所述飞行控制器的控制方法还包括:
    若确定未接收到所述目标电调响应的反馈信号,则发送用于控制告警装置 发出告警信息的告警指令。
  25. 根据权利要求24所述的飞行控制器的控制方法,其特征在于,所述将所述目标电调的编址号注册为所述目的编址号之后,还包括:
    发送用于控制提示装置发出提示信息的提示指令。
  26. 根据权利要求25所述的飞行控制器的控制方法,其特征在于,
    所述告警装置和所述提示装置为蜂鸣器,所述飞行控制器控制所述蜂鸣器发出提示声音。
  27. 根据权利要求26所述的飞行控制器的控制方法,其特征在于,
    所述蜂鸣器设于所述飞行控制器,或者单独设置。
  28. 根据权利要求25所述的飞行控制器的控制方法,其特征在于,
    所述告警装置和所述提示装置为无人飞行器的动力电机,所述飞行控制器控制所述动力电机振动发声或转动,以表示所述告警信息和所述提示信息。
  29. 一种电调的控制***,其特征在于,所述电调的控制***包括:
    一个或多个处理器,所述处理器单独地或共同地工作,所述处理器用于:
    获取飞行控制器的编址指令,所述编址指令用于将电调编址为目的编址号;
    确定是否接收到油门特征信号;
    若是,则发送用于响应所述编址指令的反馈信号,根据所述编址指令记录所述目的编址号。
  30. 根据权利要求29所述的电调的控制***,其特征在于,所述电调的控制***还包括:通信接口及油门信号接口;
    所述处理器通过所述通信接口与所述飞行控制器连接,用于接收所述编址指令以及发送所述反馈信号;
    所述处理器通过所述油门信号接口与所述飞行控制器连接,用于接收所述油门特征信号。
  31. 根据权利要求30所述的电调的控制***,其特征在于,所述处理器还用于:
    根据所述油门特征信号执行所述编址指令进行编址,得到所述目的编址 号;
    根据所述编址指令生成反馈信号;
    将所述反馈信号发送至所述飞行控制器;
    记录所述目的编址号。
  32. 根据权利要求31所述的电调的控制***,其特征在于,所述处理器还用于:
    通过所述电调的油门信号接口接收油门信号;
    获取所述油门信号的特征信息;
    根据所述特征信息判断所述油门信号是否为油门特征信号。
  33. 根据权利要求32所述的电调的控制***,其特征在于,所述油门信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
  34. 根据权利要求33所述的电调的控制***,其特征在于,所述处理器还用于:
    判断所述特征信息是否处于预设范围内;
    若所述特征信息处于所述预设范围内,则确定所述油门信号是油门特征信号;
    若所述特征信息不处于所述预设范围内,则确定所述油门信号不是油门特征信号。
  35. 根据权利要求34所述的电调的控制***,其特征在于,所述油门信号及所述油门特征信号为脉冲宽度调制PWM信号。
  36. 根据权利要求35所述的电调的控制***,其特征在于,所述PWM信号的特征信息为高电平脉宽值,所述高电平脉宽值不处于所述电调的预置工作脉宽值范围内。
  37. 根据权利要求31所述的电调的控制***,其特征在于,所述电调的控制***还包括:提示装置;
    所述提示装置用于根据所述处理器发送的提示指令发出提示信息。
  38. 根据权利要求37所述的电调的控制***,其特征在于,
    所述提示装置为蜂鸣器,所述处理器控制所述蜂鸣器发出提示声音。
  39. 根据权利要求38所述的电调的控制***,其特征在于,
    所述蜂鸣器设于所述电调,或者单独设置。
  40. 根据权利要求37所述的电调的控制***,其特征在于,
    所述提示装置为无人飞行器的动力电机,所述电调控制所述动力电机振动发声或转动,以表示所述提示信息。
  41. 根据权利要求29至40中任一项所述的电调的控制***,其特征在于,所述处理器还用于:
    若确定未接收到油门特征信号,则删除所述编址指令。
  42. 根据权利要求41所述的电调的控制***,其特征在于,所述处理器还用于:
    获取电调的安装信息,并将所述安装信息发送至飞行控制器。
  43. [根据细则91更正 11.11.2016] 
    根据权利要求42所述的电调的控制***,其特征在于,所述电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
  44. [根据细则91更正 11.11.2016]
    一种飞行控制器的控制***,其特征在于,所述飞行控制器的控制***包括:
    一个或多个处理器,单独地或共同地工作,所述处理器用于:
    向电调发送编址指令,所述编址指令用于将所述电调编址为目的编址号;
    向预期编址的目标电调发送油门特征信号;
    确定是否接收到所述目标电调响应的反馈信号;
    若是,则将所述目标电调的编址号注册为所述目的编址号。
  45. [根据细则91更正 11.11.2016]
    根据权利要求45所述的飞行控制器的控制***,其特征在于,所述飞行控制器的控制***还包括:通信接口及油门信号接口;
    所述处理器通过所述通信接口与所述电调连接,用于发送所述编址指令以及接收所述反馈信号;
    所述处理器通过所述油门信号接口与所述电调连接,用于发送所述油门特征信号。
  46. [根据细则91更正 11.11.2016]
    根据权利要求46所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    确定预期编址的目标电调;
    生成油门特征信号,并向所述目标电调发送所述油门特征信号。
  47. [根据细则91更正 11.11.2016]
    根据权利要求47所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    接收电调的安装信息。
  48. [根据细则91更正 11.11.2016] 
    根据权利要求48所述的飞行控制器的控制***,其特征在于,所述电调的安装信息包括安装位置、产品型号及工作脉宽值范围中的至少一个。
  49. [根据细则91更正 11.11.2016]
    根据权利要求49所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    获取预期编址的目标电调的安装信息;
    根据所述目标电调的安装信息确定目标电调。
  50. [根据细则91更正 11.11.2016]
    根据权利要求50所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    在预设范围内对所述油门特征信号的特征信息进行设置;
    根据所述油门特征信号的特征信息生成油门特征信号。
  51. [根据细则91更正 11.11.2016] 
    根据权利要求51所述的飞行控制器的控制***,其特征在于,所述油门特征信号的特征信息包括信号频率、信号时间或信号幅度中的至少一种。
  52. [根据细则91更正 11.11.2016] 
    根据权利要求52所述的飞行控制器的控制***,其特征在于,所述油门特征信号为脉冲宽度调制PWM信号。
  53. [根据细则91更正 11.11.2016] 
    根据权利要求53所述的飞行控制器的控制***,其特征在于,所述PWM信号的特征信息为高电平脉宽值,所述高电平脉宽值不处于所述电调的预置工作脉宽值范围内。
  54. [根据细则91更正 11.11.2016]
    根据权利要求45至54中任一项所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    若确定未接收到所述目标电调响应的反馈信号,则发送用于控制告警装置发出告警信息的告警指令。
  55. [根据细则91更正 11.11.2016]
    根据权利要求55所述的飞行控制器的控制***,其特征在于,所述处理器还用于:
    发送用于控制提示装置发出提示信息的提示指令。
  56. [根据细则91更正 11.11.2016]
    根据权利要求56所述的飞行控制器的控制***,其特征在于,
    所述告警装置和所述提示装置为蜂鸣器,所述飞行控制器控制所述蜂鸣器发出提示声音。
  57. [根据细则91更正 11.11.2016]
    根据权利要求57所述的飞行控制器的控制***,其特征在于,
    所述蜂鸣器设于所述飞行控制器,或者单独设置。
  58. [根据细则91更正 11.11.2016]
    根据权利要求56所述的飞行控制器的控制***,其特征在于,
    所述告警装置和所述提示装置为无人飞行器的动力电机,所述飞行控制器控制所述动力电机振动发声或转动,以表示所述告警信息和所述提示信息。
  59. [根据细则91更正 11.11.2016]
    一种电调,其特征在于,所述电调包括:
    壳体及权利要求29至44中任一项所述的电调的控制***;
    所述电调的控制***安装在所述壳体内。
  60. [根据细则91更正 11.11.2016]
    一种飞行控制器,其特征在于,所述飞行控制器包括:
    壳体及权利要求45至59中任一项所述的飞行控制器的控制***;
    所述飞行控制器的控制***安装在所述壳体内。
  61. [根据细则91更正 11.11.2016]
    一种无人飞行器的控制方法,其特征在于,应用于无人飞行器的控制***,所述无人飞行器的控制***包括飞行控制器及至少一个电调,所述无人飞行器的控制方法包括:
    飞行控制器通过总线向至少一个电调发送编址指令,所述编址指令用于将所述至少一个电调中的一个电调编址为目的编址号;
    所述飞行控制器通过油门控制信号线向预期编址的目标电调发送油门特征信号;
    所述目标电调接收所述飞行控制器发送的油门特征信号,根据所述油门特征信号及所述编址指令进行编址,生成反馈信号,得到并记录所述目的编址号;
    所述目标电调将所述反馈信号反馈至所述飞行控制器;
    所述飞行控制器接收所述目标电调反馈的所述反馈信号,根据所述反馈信号将所述目标电调的编址号注册为所述目的编址号。
  62. [根据细则91更正 11.11.2016]
    一种无人飞行器的控制***,其特征在于,包括:
    飞行控制器;及
    至少一个电调,与所述飞行控制器电连接;
    其中,所述飞行控制器通过油门控制信号线向预期编址的目标电调发送油门特征信号以及编址指令;接收到所述油门特征信号的所述目标电调根据所述编址指令进行编址,生成反馈信号,得到并记录所述目的编址号;所述飞行控制器接收所述反馈信号,根据所述反馈信号将所述目标电调的编址号注册为所述目的编址号。
  63. [根据细则91更正 11.11.2016]
    一种无人飞行器,其特征在于,包括:
    飞行动力装置及权利要求63所述的无人飞行器的控制***;
    所述无人飞行器的控制***用于控制所述飞行动力装置为所述无人飞行器提供飞行动力。
PCT/CN2016/097355 2016-08-30 2016-08-30 电调、飞行控制器和无人飞行器的控制方法及控制*** WO2018039922A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003376.5A CN107108040B (zh) 2016-08-30 2016-08-30 电调、飞行控制器和无人飞行器的控制方法及控制***
PCT/CN2016/097355 WO2018039922A1 (zh) 2016-08-30 2016-08-30 电调、飞行控制器和无人飞行器的控制方法及控制***
US16/284,376 US20190190408A1 (en) 2016-08-30 2019-02-25 Electric speed controller, flight controller, and control method and control system of unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097355 WO2018039922A1 (zh) 2016-08-30 2016-08-30 电调、飞行控制器和无人飞行器的控制方法及控制***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/284,376 Continuation US20190190408A1 (en) 2016-08-30 2019-02-25 Electric speed controller, flight controller, and control method and control system of unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2018039922A1 true WO2018039922A1 (zh) 2018-03-08

Family

ID=59676467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097355 WO2018039922A1 (zh) 2016-08-30 2016-08-30 电调、飞行控制器和无人飞行器的控制方法及控制***

Country Status (3)

Country Link
US (1) US20190190408A1 (zh)
CN (1) CN107108040B (zh)
WO (1) WO2018039922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772081A (zh) * 2021-09-28 2021-12-10 上海莘汭驱动技术有限公司 一种高性能无人机舵机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700884A (zh) * 2017-09-19 2018-10-23 深圳市大疆创新科技有限公司 无人机定位方法、装置及电调、动力***、无人机***
CN109581882A (zh) * 2018-11-20 2019-04-05 顺丰科技有限公司 动力测试***的主控制器、控制方法、***及存储介质
WO2020133060A1 (zh) * 2018-12-27 2020-07-02 深圳市大疆创新科技有限公司 一种控制方法、电机驱动设备、控制设备及可移动平台
CN110154030B (zh) * 2019-06-13 2021-05-18 哈尔滨玄智科技有限公司 一种对战机器人控制方法、对战机器人及控制终端
CN110658835B (zh) * 2019-09-19 2021-08-31 中国航空无线电电子研究所 一种无人机飞行控制方法和***
CN112373677B (zh) * 2020-11-18 2021-06-22 三生万物(北京)人工智能技术有限公司 一种六旋翼无人机动力缺失保护***、保护方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007682A (zh) * 2008-04-15 2011-04-06 松下电器产业株式会社 电机装置、具备该电机装置的电机驱动***以及集成电路装置
CN102270958A (zh) * 2010-06-02 2011-12-07 鹦鹉股份有限公司 遥控旋翼无人驾驶飞机的电动机的同步控制方法
CN104756394A (zh) * 2014-03-14 2015-07-01 深圳市大疆创新科技有限公司 无人驾驶飞行器及其数据处理方法
US20160129998A1 (en) * 2014-11-11 2016-05-12 Amazon Technologies, Inc. Unmanned aerial vehicle configuration for extended flight

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015138217A1 (en) * 2014-03-13 2015-09-17 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
CN205293077U (zh) * 2015-12-30 2016-06-08 深圳光启空间技术有限公司 无人机***
CN205366086U (zh) * 2016-01-22 2016-07-06 深圳市大疆创新科技有限公司 电子调速器及采用该电子调速器的无人飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007682A (zh) * 2008-04-15 2011-04-06 松下电器产业株式会社 电机装置、具备该电机装置的电机驱动***以及集成电路装置
CN102270958A (zh) * 2010-06-02 2011-12-07 鹦鹉股份有限公司 遥控旋翼无人驾驶飞机的电动机的同步控制方法
CN104756394A (zh) * 2014-03-14 2015-07-01 深圳市大疆创新科技有限公司 无人驾驶飞行器及其数据处理方法
US20160129998A1 (en) * 2014-11-11 2016-05-12 Amazon Technologies, Inc. Unmanned aerial vehicle configuration for extended flight

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772081A (zh) * 2021-09-28 2021-12-10 上海莘汭驱动技术有限公司 一种高性能无人机舵机
CN113772081B (zh) * 2021-09-28 2024-05-14 上海莘汭驱动技术有限公司 一种高性能无人机舵机

Also Published As

Publication number Publication date
CN107108040A (zh) 2017-08-29
CN107108040B (zh) 2018-10-16
US20190190408A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2018039922A1 (zh) 电调、飞行控制器和无人飞行器的控制方法及控制***
US20200094694A1 (en) Motor drive and flight control method, electronic speed control, power system, and unmanned aerial vehicle system
US9786188B2 (en) Safety motor controller for a vehicle
WO2019119829A1 (zh) 一种无人机控制方法、装置、遥控设备和无人机***
US9233315B2 (en) Model vehicle remote control system
EP3382942A1 (en) Network service configuration method and network management device
US7740516B2 (en) Electronic speed control programming
JP2008206670A (ja) ラジコン模型の統合制御システム
EP1961471B1 (en) Wireless remote-control model
CN108476008B (zh) 用于驱动电机转动的控制方法、电子调速器、动力套装和无人飞行器
WO2017147755A1 (zh) 油门控制信号处理方法、电子调速器、控制器及移动平台
JP2013067279A (ja) 操縦用通信装置、***縦体用通信装置及び操縦用通信システム
CN108883829B (zh) 用于无人飞行器的电子速度控制器臂
EP3647204B1 (en) Throttle control method and device, power system, and unmanned aerial vehicle
WO2017124438A1 (zh) 电子调速器与电机的连接器、动力***及无人飞行器
WO2019100806A1 (zh) 控制电机发音的方法、装置、电机控制器及智能终端
WO2024104338A1 (zh) 一种电机控制器控制方法、装置、设备及存储介质
WO2018059326A1 (zh) 飞行器电机控制方法、装置及***
CN111226177A (zh) 一种控制方法、电机驱动设备、控制设备及可移动平台
WO2019000378A1 (zh) 标识电调的方法、装置及动力***、可移动平台
WO2017124432A1 (zh) 信号线复用处理方法、无人飞行器、电子调速器及其mcu
JP6207483B2 (ja) 通信機器、***縦装置
WO2018053816A1 (zh) 遥控器的控制方法及遥控器
US20200334192A1 (en) Communication method, device, and system
KR20180125182A (ko) 드론용 블랙박스의 신호처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914490

Country of ref document: EP

Kind code of ref document: A1