WO2018037480A1 - Power measuring device and power measuring method - Google Patents

Power measuring device and power measuring method Download PDF

Info

Publication number
WO2018037480A1
WO2018037480A1 PCT/JP2016/074521 JP2016074521W WO2018037480A1 WO 2018037480 A1 WO2018037480 A1 WO 2018037480A1 JP 2016074521 W JP2016074521 W JP 2016074521W WO 2018037480 A1 WO2018037480 A1 WO 2018037480A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current value
control unit
sensor
current
Prior art date
Application number
PCT/JP2016/074521
Other languages
French (fr)
Japanese (ja)
Inventor
義統 中島
正裕 石原
真作 楠部
貴彦 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018535963A priority Critical patent/JP6599015B2/en
Priority to PCT/JP2016/074521 priority patent/WO2018037480A1/en
Publication of WO2018037480A1 publication Critical patent/WO2018037480A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage

Definitions

  • the present invention relates to a power measuring device and a power measuring method.
  • Patent Document 1 An example of the invention of such a power measuring device is disclosed in Patent Document 1, for example.
  • the invention of Patent Document 1 is characterized in that, if the current value or the power value is less than a predetermined threshold, it is determined that the current is zero and the power calculation is not performed by the latent motion prevention function.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a power measuring device and a power measuring method capable of measuring power consumption with higher accuracy.
  • a power measuring device configured in the device, A sensor for detecting a current value flowing in a power supply line for supplying power to the device; A control unit that calculates power consumed by the device based on the detected current value, and When the detected current value is smaller than a predetermined threshold value, the control unit generates power consumed by the device based on a predetermined estimated current value instead of the detected current value. calculate.
  • the control unit calculates the power consumed by the device based on the estimated current value when the current value detected by the sensor is smaller than the threshold value. As a result, even when the device is operating with low power at which the detection accuracy of the sensor is reduced, the power actually consumed by the device can be calculated using an appropriate estimated current value. As a result, the power measuring apparatus according to the present invention can measure the power consumption with higher accuracy.
  • the block diagram which shows the main structures of the air conditioning equipment which concerns on Embodiment 1 of this invention Schematic diagram for explaining information stored in the storage unit
  • the flowchart which shows an example of the electric power measurement process which concerns on Embodiment 1 of this invention.
  • Graph to explain phase error The flowchart which shows an example of the electric power measurement process which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a configuration diagram illustrating a main configuration of an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a power measuring device 10, a converter 20, an inverter 30, a load 41, a data output unit 42, and a current sensor 43 (43a to 43c).
  • the air conditioner 1 is connected to a power source 9 via a power supply line 91 (91a to 91c).
  • the power source 9 is a three-phase AC power source, and supplies power to the air conditioner 1 via the feeder line 91.
  • the power source 9 is not limited to such a three-phase AC power source, and may be a single-phase AC power source, for example.
  • the power measurement device 10 includes a current sensor 11 (11a to 11c), an acquisition unit 12, and a control unit 13, and measures the power consumed by the air conditioner 1.
  • the power measuring device 10 may further include a voltage sensor (not shown).
  • the voltage sensor is, for example, a PT (Potential Transformer) or a resistance voltage dividing circuit, and detects the voltage value of the power supply line 91.
  • the current sensor 11 is, for example, a CT (Current Transformer), and detects a current value flowing through the power supply line 91.
  • CT Current Transformer
  • the acquisition unit 12 acquires the current value detected by the current sensor 11. For example, the acquisition unit 12 acquires the current value by performing analog / digital conversion after appropriately amplifying or level-shifting the signal representing the current value detected by the current sensor 11. In addition, when it has the voltage sensor mentioned above, the acquisition part 12 acquires the voltage value detected by this voltage sensor similarly.
  • the acquisition unit 12 supplies the acquired current value and voltage value (when a voltage sensor is provided) to the control unit 13.
  • the control unit 13 includes, for example, a storage unit 131 and a CPU (Central Processing Unit) (not shown), and controls the power measuring device 10 and the entire air conditioner 1.
  • the storage unit 131 stores, for example, a program that prescribes power metering device processing, which will be described later, and a program that prescribes control processing for the inverter 30, as well as threshold values, estimated current values, and fixed voltages as shown in FIG. 2. Information including values is stored in advance.
  • the detection accuracy of the current sensor 11 decreases at a current value that is below the threshold value (a current value that is less than the threshold value).
  • the estimated current value is, for example, a current value estimated to be appropriate in a state where the current sensor 11 detects a current value less than the threshold (that is, a state with low detection accuracy), and is obtained in advance.
  • the fixed voltage value is a voltage value used for calculating the power consumed by the air conditioner 1 when the above-described voltage sensor is not provided, and is obtained in advance. That is, this fixed voltage value is not essential and can be omitted if a voltage sensor is provided.
  • the control unit 13 uses the information stored in the storage unit 131 and the current value detected by the current sensor 11 (the current value acquired via the acquisition unit 12), The power consumed by the air conditioner 1 is calculated. Specifically, when the current value detected by the current sensor 11 is equal to or greater than the threshold value stored in the storage unit 131, the control unit 13 determines the current value detected by the current sensor 11 and the voltage detected by the voltage sensor. The power consumption is calculated by multiplying the value (when the voltage sensor is provided) or the fixed voltage value (when the voltage sensor is not provided) stored in the storage unit 131.
  • the control unit 13 determines whether the current value detected by the current sensor 11 is less than the threshold value stored in the storage unit 131 (for example, if it is less than the threshold value continuously for a predetermined number of times).
  • the control unit 13 supplies data including the power calculated in this way to the data output unit 42.
  • control unit 13 controls the inverter 30 to drive the load 41.
  • control unit 13 controls the inverter 30 (a switching element 31 described later) according to the current value detected by the current sensor 43 to drive the load 41.
  • the converter 20 includes a rectifier diode 21 (21a to 21f) and a smoothing capacitor 22, and converts alternating current supplied from the power source 9 into direct current.
  • the six rectifier diodes 21 constitute a bridge circuit and full-wave rectify the three-phase alternating current.
  • a bridge circuit including four rectifier diodes 21 may be configured to perform full-wave rectification on the single-phase AC.
  • the smoothing capacitor 22 is disposed between the output terminals of the bridge circuit by the rectifier diode 21, reduces the pulsation component, and smoothes the direct current.
  • the inverter 30 includes switching elements 31 (31a to 31f) and diodes 32 (32a to 32f).
  • the inverter 30 is controlled by the control unit 13 and converts the direct current output from the converter 20 into alternating current (for example, a three-phase alternating current). ) And supplied to the load 41.
  • the switching element 31 is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the diode 32 is connected in antiparallel with the switching element 31.
  • the switching element 31 and the diode 32 constitute a switch unit for each set.
  • the two upper and lower switch units are connected in series to form a pair of switch circuits, and three switch circuits are connected in parallel for three phases to form a bridge circuit.
  • the load 41 is, for example, a three-phase motor, and is driven by a three-phase AC supplied from the inverter 30.
  • the data output unit 42 outputs the data supplied from the control unit 13. For example, when the data output unit 42 has a display function, data including the power (power amount) calculated by the control unit 13 is displayed. In addition, when the data output unit 42 has a communication function, data including the power calculated by the control unit 13 is transmitted to, for example, the user terminal.
  • the current sensor 43 is, for example, a CT, and detects an alternating current value supplied from the inverter 30 to the load 41.
  • FIG. 3 is a flowchart illustrating an example of the power measurement process according to the first embodiment of the present invention.
  • the control unit 13 acquires the current value detected by the current sensor 11 (step S101). That is, the current sensor 11 detects the value of current flowing through the feeder line 91. Then, the control unit 13 acquires the current value detected by the current sensor 11 via the acquisition unit 12. In addition, when it has the voltage sensor mentioned above, the control part 13 also acquires the voltage value detected by the voltage sensor via the acquisition part 12.
  • the control unit 13 determines whether or not the acquired current value is greater than or equal to a predetermined threshold (step S102). That is, the control unit 13 determines whether or not the current value detected by the current sensor 11 is greater than or equal to the threshold value stored in the storage unit 131.
  • control unit 13 determines that the current value is equal to or greater than the threshold value (step S102; Yes).
  • the control unit 13 calculates power based on the detected current value (step S103). Specifically, the control unit 13 determines the current value detected by the current sensor 11 and the voltage value detected by the voltage sensor (if the voltage sensor is provided) or the fixed voltage value stored in the storage unit 131 ( And the electric power consumed by the air conditioner 1 is calculated.
  • the control unit 13 calculates power based on the predetermined estimated current value (step S104). Specifically, the control unit 13 determines the estimated current value stored in the storage unit 131, the voltage value detected by the voltage sensor (if the voltage sensor is provided), or the fixed voltage value stored in the storage unit 131. The power consumed by the air conditioner 1 is calculated by multiplying (when no voltage sensor is provided).
  • the control unit 13 outputs the calculated power data (step S105). In other words, the control unit 13 supplies the power calculated in step S103 or step S104 to the data output unit 42 for output.
  • the power consumption is calculated based on the estimated current value stored in the storage unit 131.
  • the power actually consumed by the air conditioner 1 can be calculated using an appropriate estimated current value. it can.
  • power consumption can be measured with higher accuracy.
  • the control unit 13 can grasp the operating state of the air conditioner 1 (particularly, the driving state of the load 41).
  • the current value detected by the current sensor 11 In order for the current value detected by the current sensor 11 to be less than the threshold value, it is assumed that the load 41 is not driven but stopped. That is, only when the standby power of the air conditioner 1 is measured, the power using the estimated current value is measured. Therefore, the current sensor 11 can be a sensor with a high detection accuracy when a larger current flows, and the detection accuracy over a wide range (a wide range including a low current) is not required. Become. Therefore, the cost for the current sensor 11 can be further suppressed.
  • the estimated current value and the fixed voltage value as illustrated in FIG. 2 are stored in the storage unit 131 , but the estimated power is stored instead of (or in addition to) these. You may make it do.
  • This estimated power is, for example, the power of the air conditioner 1 that is estimated to be appropriate in a state where the current sensor 11 detects a current value less than the threshold value, and is obtained in advance.
  • the control unit 13 determines that the current value detected by the current sensor 11 is less than the threshold value as the power consumed by the air conditioner 1 Use estimated power. Thereby, even when the air conditioner 1 is operating with low power at which the detection accuracy of the current sensor 11 is reduced, appropriate estimated power can be obtained as power actually consumed by the air conditioner 1. As a result, power consumption can be measured with higher accuracy.
  • the process is divided depending on whether the current value detected by the current sensor 11 is equal to or greater than the threshold value or less than the threshold value.
  • the process may be divided.
  • a hysteresis may be configured using a plurality of threshold values so that a change in the vicinity of the threshold value does not easily occur.
  • control unit 13 may appropriately read out.
  • similar information may be read from a server on the Internet via a network, or similar information may be read from an auxiliary storage device represented by a memory card.
  • control unit 13 controls not only the power measuring device 10 but the entire air conditioner 1 has been described. However, the control unit 13 only controls the power measuring device 10 and the entire air conditioner 1. This control may be performed by another control unit.
  • Embodiment 2 In the first embodiment, the case where the process is separated based on the current value detected by the current sensor 11 has been described. However, the process may be separated based on another value considering the characteristics of the current sensor 11. . For example, the prediction error of the current sensor 11 may be obtained, and the process may be divided based on the obtained prediction error.
  • the second embodiment of the present invention which is characterized by dividing the processing based on the prediction error of the current sensor 11, will be described.
  • the structure of the air-conditioning equipment 1 is the same as FIG. 1 mentioned above.
  • a case where the above-described voltage sensor is included in the power measurement device 10 in the air conditioner 1 will be described as an example.
  • the storage unit 131 in the control unit 12 stores information on the ratio error, the phase error, the reference value, and the estimated power.
  • This ratio error is one of the characteristics of the current sensor 11 and represents the accuracy of the current value in the current sensor 11.
  • the ratio error is an error ratio between an ideal value and an actual measurement value at each measurement point, as indicated by a curve RE in FIG.
  • the storage unit 131 stores ratio error information as, for example, an approximate expression fx (I) that defines the curve RE. Instead of such approximate expression fx (I), ratio error information may be stored as tabular information in which the values of the curve RE are plotted.
  • the phase error is one of the characteristics of the current sensor 11 and represents the accuracy of the waveform in the current sensor 11.
  • the phase error is a phase shift of the output waveform with respect to the measurement original waveform, as indicated by a curve PE in FIG.
  • the storage unit 131 stores phase error information, for example, as an approximate expression fy (I) that defines the curve PE. Instead of such approximate expression fy (I), phase error information may be stored as tabular information in which the values of the curve PE are plotted.
  • the reference value is, for example, an upper limit value that allows the prediction error (more specifically, the absolute value of the prediction error) of the current sensor 11 and is obtained in advance. In other words, when the absolute value of the prediction error exceeds the reference time, an unacceptable error is included.
  • the estimated power is, for example, the power of the air conditioner 1 that is estimated to be appropriate in a state where the absolute value of the prediction error exceeds the reference value, and is obtained in advance.
  • the control unit 13 calculates a prediction error of the current sensor 11 using information such as the ratio error and the phase error. When the calculated absolute value of the prediction error exceeds the reference value, the control unit 13 uses this estimated power as the power consumed by the air conditioner 1.
  • V [V] can be obtained by the following equation 2.
  • the power factor ⁇ and the phase ⁇ [deg] can be obtained by the following equation 5.
  • the prediction error [%] is calculated. Since the power factor changes due to the phase error [deg], the power factor ⁇ x including the error can be obtained by the following Equation 6.
  • the phase error [deg] is represented by ⁇ .
  • phase error [%] between the power factor ⁇ and the power factor ⁇ x including the error can be obtained by the following Expression 7.
  • the ratio error [%] is obtained from FIGS. ] Is obtained as -1.0 [%]
  • the phase error [deg] is obtained as 1.2 [deg].
  • the power factor ⁇ x including the error, the phase error [%] between the power factor ⁇ and the power factor ⁇ x, and the prediction error [%] ] Is obtained as follows.
  • the control unit 13 Is used as the power consumed by the storage unit 131.
  • FIG. 6 is a flowchart showing an example of power measurement processing according to the second embodiment of the present invention.
  • the control unit 13 acquires the current value and the voltage value detected by the sensor (step S201). That is, the control unit 13 acquires the current value detected by the current sensor 11 and the voltage value detected by the voltage sensor via the acquisition unit 12.
  • Control unit 13 calculates power and power factor (step S202). That is, the control unit 13 calculates the power and the power factor using the above formulas 1 to 5.
  • the control unit 13 calculates a prediction error according to the current value and the power factor value (step S203). That is, the control unit 13 calculates a prediction error using the above-described Expressions 7 to 8.
  • the control unit 13 determines whether or not the absolute value of the prediction error is equal to or less than a reference value (step S204). When determining that the prediction error is equal to or less than the reference value (step S204; Yes), the control unit 13 outputs the calculated power data (step S205). That is, the control unit 13 supplies the power calculated in step S202 to the data output unit 42 for output.
  • step S204 when it is determined that the prediction error is not less than or equal to the reference value (exceeds the reference value) (step S204; No), the control unit 13 outputs estimated power data (step S206). That is, the control unit 13 supplies the estimated power stored in the storage unit 131 to the data output unit 42 for output.
  • the estimated power is used as the power consumed by the air conditioner 1.
  • the air conditioner 1 can be obtained as power consumption. As a result, power consumption can be measured with higher accuracy.
  • the prediction error may be presented to the user.
  • the control unit 13 supplies the prediction error calculated in step S203 to the data output unit 42 together with the power in step S205 to be output.
  • the accuracy of the measured power can be presented to the user by the prediction error.
  • the prediction error together with the power may be supplied to the data output unit 42 and output. In this case, since the accuracy is low, the user can be informed that appropriate estimated power is used.
  • all of the calculated power, estimated power, and prediction error may be output, and it may be left to the user to select which power based on the prediction error.
  • the case where only one estimated power is stored in the storage unit 131 has been described.
  • a plurality of estimated powers corresponding to temperature and humidity may be stored.
  • the estimated power is detected by a sensor (current sensor 11 or voltage sensor) disposed in the air conditioner 1, or a current value detected by attaching a more accurate sensor inside or outside the air conditioner 1 and Calculated based on the voltage value.
  • a plurality of estimated powers are calculated while appropriately changing the temperature and humidity, and stored in the storage unit 131.
  • a temperature sensor and a humidity sensor are added to the power measuring device 10.
  • the control part 13 uses corresponding estimated electric power according to the present temperature and humidity.
  • the current value and voltage value of the air conditioner 1 used in the actual environment may be collected over a long period of time, and the estimated power corresponding to various usage situations may be stored.
  • the control part 13 uses the estimated electric power corresponding to the present use condition.
  • the estimated power may be stored in the form of an approximate expression or a tabular form, and the estimated power may be obtained by linear interpolation according to the current situation.
  • the process is divided depending on whether the calculated prediction error is equal to or less than the reference value or exceeds the reference value.
  • the process may be divided.
  • a hysteresis may be configured using a plurality of reference values so that a change in the vicinity of the reference value does not easily occur.
  • Similar information may be stored and read from the control unit 13 as appropriate.
  • similar information may be read from a server on the Internet via a network, or similar information may be read from an auxiliary storage device represented by a memory card.
  • control unit 13 controls not only the power measurement device 10 but also the entire air conditioning device 1 has been described. However, the control unit 13 only controls the power measurement device 10 and the entire air conditioning device 1. This control may be performed by another control unit.
  • the power measuring device 10 is configured in the air conditioning device 1 .
  • the power measuring device 10 can be configured similarly in other devices.
  • the program executed by the control unit 13 is a CD-ROM (Compact Disc Read Only Memory), DVD (Digital Versatile Disc), MO (Magneto-Optical Disk), USB memory, It is also possible to store and distribute in a computer-readable recording medium such as a memory card. Then, by installing such a program on a specific or general-purpose computer, the computer can be caused to function as the power measurement device 10 in the first and second embodiments.
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • MO Magnetic-Optical Disk
  • USB memory USB memory
  • the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
  • the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
  • the present invention can be suitably employed in power measuring devices configured in various devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A current sensor (11) detects the value of a current flowing in a power supply line (91). A control unit (13) acquires, via an acquisition unit (12), the current value detected by the current sensor (11). The control unit (13) stores, in a storage unit (131), a predetermined threshold value and an estimated current value. On the basis of the current value detected by the current sensor (11), the control unit (13) calculates power to be consumed by an air conditioning apparatus (1). In the cases where the current value detected by the current sensor (11) is lower than the threshold value stored in the storage unit (131), the control unit (13) calculates power to be consumed by the air conditioning apparatus (1) on the basis of the estimated current value stored in the storage unit (131), instead of the current value detected by the current sensor (11).

Description

電力計測装置および電力計測方法Power measuring apparatus and power measuring method
 本発明は、電力計測装置および電力計測方法に関する。 The present invention relates to a power measuring device and a power measuring method.
 従来より、一般家庭や事業所において消費される電力や、個別の機器にて消費される電力を計測する電力計測装置が知られている。 2. Description of the Related Art Conventionally, power measuring devices that measure power consumed in ordinary homes or offices or power consumed by individual devices are known.
 このような電力計測装置の発明の一例が、例えば、特許文献1に開示されている。特許文献1の発明では、潜動防止機能により、電流値や電力値が予め定められた閾値未満であれば、ゼロ電流と判定して電力演算を行わないことを特徴としている。 An example of the invention of such a power measuring device is disclosed in Patent Document 1, for example. The invention of Patent Document 1 is characterized in that, if the current value or the power value is less than a predetermined threshold, it is determined that the current is zero and the power calculation is not performed by the latent motion prevention function.
特開2014-190837号公報JP 2014-190837 A
 電流トランス(CT:Current Transformer)を用いる電力計測装置では、電流トランスの特性から電流や力率が小さいと、計測誤差が大きくなってしまう。そのため、特許文献1のような潜動防止機能は、有用である。 In a power measuring device using a current transformer (CT), if the current or power factor is small, the measurement error increases due to the characteristics of the current transformer. Therefore, the latent motion prevention function as in Patent Document 1 is useful.
 しかしながら、特許文献1のような潜動防止機能を有していても、閾値の設定が適切でない(例えば、適正値よりも大きな閾値が設定された)場合では、潜動防止機能が十分に働かずに、誤差を含んだ電力演算が行われてしまい、結果として消費電力を高精度に計測することができないという問題があった。 However, even if it has a latent motion prevention function as in Patent Document 1, if the threshold setting is not appropriate (for example, a threshold value larger than the appropriate value is set), the latent motion prevention function works sufficiently. Therefore, there is a problem that power calculation including an error is performed, and as a result, power consumption cannot be measured with high accuracy.
 そのため、消費電力をより高精度に計測できる技術が求められていた。 Therefore, there is a need for a technology that can measure power consumption with higher accuracy.
 本発明は、上述のような課題を解決するためになされたものであり、消費電力をより高精度に計測できる電力計測装置および電力計測方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a power measuring device and a power measuring method capable of measuring power consumption with higher accuracy.
 上記目的を達成するため、本発明に係る電力計測装置は、
 機器内に構成された電力計測装置であって、
 前記機器に電力を供給するための給電線に流れる電流値を検出するセンサと、
 前記検出された電流値に基づいて、前記機器が消費する電力を算出する制御部と、を備え、
 前記制御部は、前記検出された電流値が予め定められた閾値よりも小さい場合に、前記検出された電流値の代わりに予め定められた推定電流値に基づいて、前記機器が消費する電力を算出する。
In order to achieve the above object, a power measuring device according to the present invention is
A power measuring device configured in the device,
A sensor for detecting a current value flowing in a power supply line for supplying power to the device;
A control unit that calculates power consumed by the device based on the detected current value, and
When the detected current value is smaller than a predetermined threshold value, the control unit generates power consumed by the device based on a predetermined estimated current value instead of the detected current value. calculate.
 制御部は、センサによって検出された電流値が閾値よりも小さい場合に、推定電流値に基づいて、機器が消費する電力を算出する。これにより、センサの検出精度が低下する小電力にて機器が動作している場合でも、適切な推定電流値を用いて、実際に機器が消費する電力を算出することができる。この結果、本発明に係る電力計測装置では、消費電力をより高精度に計測することができる。 The control unit calculates the power consumed by the device based on the estimated current value when the current value detected by the sensor is smaller than the threshold value. As a result, even when the device is operating with low power at which the detection accuracy of the sensor is reduced, the power actually consumed by the device can be calculated using an appropriate estimated current value. As a result, the power measuring apparatus according to the present invention can measure the power consumption with higher accuracy.
本発明の実施形態1に係る空調機器の主要な構成を示す構成図The block diagram which shows the main structures of the air conditioning equipment which concerns on Embodiment 1 of this invention 記憶部に記憶される情報を説明するための模式図Schematic diagram for explaining information stored in the storage unit 本発明の実施形態1に係る電力計測処理の一例を示すフローチャートThe flowchart which shows an example of the electric power measurement process which concerns on Embodiment 1 of this invention. 比誤差を説明するためのグラフGraph to explain the ratio error 位相誤差を説明するためのグラフGraph to explain phase error 本発明の実施形態2に係る電力計測処理の一例を示すフローチャートThe flowchart which shows an example of the electric power measurement process which concerns on Embodiment 2 of this invention.
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、実施形態では、本発明に係る電力計測装置が、空調機器内に構成された場合を一例として説明するが、他の機器内であっても、本発明に係る電力計測装置を同様に構成することができる。また、本明細書で使用する各図においては、共通する要素に同一の符号を付けるものとする。また、本発明は、以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々に変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although embodiment demonstrates the case where the power measuring device which concerns on this invention is comprised in an air conditioning apparatus as an example, the power measuring device which concerns on this invention is similarly comprised also in other apparatuses. can do. Moreover, in each figure used in this specification, the same code | symbol shall be attached | subjected to a common element. Further, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.
(実施形態1)
 図1は、本発明の実施形態1に係る空調機器1の主要な構成を示す構成図である。この空調機器1は、電力計測装置10と、コンバータ20と、インバータ30と、負荷41と、データ出力部42と、電流センサ43(43a~43c)とを備えている。空調機器1は、給電線91(91a~91c)を介して電源9と接続されている。この電源9は、一例として、三相交流電源であり、給電線91を介して、空調機器1に電力を供給する。なお、電源9は、このような三相交流電源に限られず、例えば、単相交流電源であってもよい。
(Embodiment 1)
FIG. 1 is a configuration diagram illustrating a main configuration of an air conditioner 1 according to Embodiment 1 of the present invention. The air conditioner 1 includes a power measuring device 10, a converter 20, an inverter 30, a load 41, a data output unit 42, and a current sensor 43 (43a to 43c). The air conditioner 1 is connected to a power source 9 via a power supply line 91 (91a to 91c). As an example, the power source 9 is a three-phase AC power source, and supplies power to the air conditioner 1 via the feeder line 91. The power source 9 is not limited to such a three-phase AC power source, and may be a single-phase AC power source, for example.
 電力計測装置10は、電流センサ11(11a~11c)と、取得部12と、制御部13とを含んでおり、空調機器1が消費する電力を計測する。なお、電力計測装置10は、図示せぬ電圧センサを更に備えていてもよい。この場合、電圧センサは、例えば、PT(Potential Transformer)又は抵抗分圧回路であり、給電線91の電圧値を検出する。 The power measurement device 10 includes a current sensor 11 (11a to 11c), an acquisition unit 12, and a control unit 13, and measures the power consumed by the air conditioner 1. The power measuring device 10 may further include a voltage sensor (not shown). In this case, the voltage sensor is, for example, a PT (Potential Transformer) or a resistance voltage dividing circuit, and detects the voltage value of the power supply line 91.
 電流センサ11は、例えば、CT(Current Transformer)であり、給電線91を流れる電流値を検出する。 The current sensor 11 is, for example, a CT (Current Transformer), and detects a current value flowing through the power supply line 91.
 取得部12は、電流センサ11によって検出された電流値を取得する。例えば、取得部12は、電流センサ11が検出した電流値を表す信号を、適宜、増幅やレベルシフトした後に、アナログ/デジタル変換することで、電流値を取得する。なお、上述した電圧センサを有している場合に、取得部12は、この電圧センサによって検出された電圧値も同様に取得する。取得部12は、取得した電流値や電圧値(電圧センサを有している場合)を、制御部13に供給する。 The acquisition unit 12 acquires the current value detected by the current sensor 11. For example, the acquisition unit 12 acquires the current value by performing analog / digital conversion after appropriately amplifying or level-shifting the signal representing the current value detected by the current sensor 11. In addition, when it has the voltage sensor mentioned above, the acquisition part 12 acquires the voltage value detected by this voltage sensor similarly. The acquisition unit 12 supplies the acquired current value and voltage value (when a voltage sensor is provided) to the control unit 13.
 制御部13は、例えば、記憶部131と図示せぬCPU(Central Processing Unit)とを備え、電力計測装置10並びに空調機器1全体を制御する。記憶部131には、例えば、後述する電力計測装置処理を規定したプログラムやインバータ30の制御処理を規定したプログラムが記憶されると共に、図2に示すような閾値、推定電流値、および、固定電圧値を含む情報が予め記憶されている。 The control unit 13 includes, for example, a storage unit 131 and a CPU (Central Processing Unit) (not shown), and controls the power measuring device 10 and the entire air conditioner 1. The storage unit 131 stores, for example, a program that prescribes power metering device processing, which will be described later, and a program that prescribes control processing for the inverter 30, as well as threshold values, estimated current values, and fixed voltages as shown in FIG. 2. Information including values is stored in advance.
 図2の閾値は、例えば、電流センサ11の検出精度が維持(許容)できる電流の下限値であり、事前に求められている。つまり、閾値を下回った電流値(閾値未満の電流値)では、電流センサ11の検出精度が低下することになる。 2 is, for example, a lower limit value of current that can maintain (allow) the detection accuracy of the current sensor 11, and is obtained in advance. That is, the detection accuracy of the current sensor 11 decreases at a current value that is below the threshold value (a current value that is less than the threshold value).
 推定電流値は、例えば、電流センサ11が閾値未満の電流値を検出した状態(つまり、検出精度の低い状態)において、適正と推定される電流値であり、事前に求められている。 The estimated current value is, for example, a current value estimated to be appropriate in a state where the current sensor 11 detects a current value less than the threshold (that is, a state with low detection accuracy), and is obtained in advance.
 固定電圧値は、上述した電圧センサを有していない場合に、空調機器1が消費する電力を算出するために用いられる電圧値であり、事前に求められている。つまり、この固定電圧値は、必須ではなく、電圧センサを有している場合には、省略可能である。 The fixed voltage value is a voltage value used for calculating the power consumed by the air conditioner 1 when the above-described voltage sensor is not provided, and is obtained in advance. That is, this fixed voltage value is not essential and can be omitted if a voltage sensor is provided.
 図1に戻って、制御部13は、このような記憶部131に記憶された情報と、電流センサ11により検出された電流値(取得部12を介して取得した電流値)とを用いて、空調機器1が消費する電力を算出する。具体的に制御部13は、電流センサ11により検出された電流値が、記憶部131に記憶された閾値以上であれば、電流センサ11により検出された電流値と、電圧センサにより検出された電圧値(電圧センサを有している場合)又は記憶部131に記憶された固定電圧値(電圧センサを有していない場合)とを乗算して、消費電力を算出する。一方、電流センサ11により検出された電流値が、記憶部131に記憶された閾値未満であれば(例えば、予め定められた回数分連続して、閾値未満であれば)、制御部13は、記憶部131に記憶された推定電流値と、電圧センサにより検出された電圧値(電圧センサを有している場合)又は記憶部131に記憶された固定電圧値(電圧センサを有していない場合)とを乗算して、消費電力を算出する。制御部13は、このように算出した電力を含めたデータを、データ出力部42に供給する。 Returning to FIG. 1, the control unit 13 uses the information stored in the storage unit 131 and the current value detected by the current sensor 11 (the current value acquired via the acquisition unit 12), The power consumed by the air conditioner 1 is calculated. Specifically, when the current value detected by the current sensor 11 is equal to or greater than the threshold value stored in the storage unit 131, the control unit 13 determines the current value detected by the current sensor 11 and the voltage detected by the voltage sensor. The power consumption is calculated by multiplying the value (when the voltage sensor is provided) or the fixed voltage value (when the voltage sensor is not provided) stored in the storage unit 131. On the other hand, if the current value detected by the current sensor 11 is less than the threshold value stored in the storage unit 131 (for example, if it is less than the threshold value continuously for a predetermined number of times), the control unit 13 The estimated current value stored in the storage unit 131 and the voltage value detected by the voltage sensor (when the voltage sensor is provided) or the fixed voltage value stored in the storage unit 131 (when the voltage sensor is not provided) ) To calculate the power consumption. The control unit 13 supplies data including the power calculated in this way to the data output unit 42.
 この他にも制御部13は、インバータ30を制御して、負荷41を駆動させる。例えば、制御部13は、電流センサ43により検出された電流値に応じて、インバータ30(後述するスイッチング素子31)を制御し、負荷41を駆動させる。 In addition to this, the control unit 13 controls the inverter 30 to drive the load 41. For example, the control unit 13 controls the inverter 30 (a switching element 31 described later) according to the current value detected by the current sensor 43 to drive the load 41.
 コンバータ20は、整流ダイオード21(21a~21f)と、平滑コンデンサ22とを含んでおり、電源9から供給される交流を直流に変換する。 The converter 20 includes a rectifier diode 21 (21a to 21f) and a smoothing capacitor 22, and converts alternating current supplied from the power source 9 into direct current.
 6つの整流ダイオード21は、ブリッジ回路を構成し、三相交流を全波整流する。なお、電源9が単相交流電源である場合には、例えば、4つの整流ダイオード21によるブリッジ回路を構成して、単相交流を全波整流してもよい。 The six rectifier diodes 21 constitute a bridge circuit and full-wave rectify the three-phase alternating current. In the case where the power source 9 is a single-phase AC power source, for example, a bridge circuit including four rectifier diodes 21 may be configured to perform full-wave rectification on the single-phase AC.
 平滑コンデンサ22は、整流ダイオード21によるブリッジ回路の出力端間に配置されており、脈動成分を減少させ、直流を平滑化する。 The smoothing capacitor 22 is disposed between the output terminals of the bridge circuit by the rectifier diode 21, reduces the pulsation component, and smoothes the direct current.
 インバータ30は、スイッチング素子31(31a~31f)と、ダイオード32(32a~32f)とを含んでおり、制御部13に制御され、コンバータ20から出力される直流を交流(一例として、三相交流)に変換して負荷41に供給する。 The inverter 30 includes switching elements 31 (31a to 31f) and diodes 32 (32a to 32f). The inverter 30 is controlled by the control unit 13 and converts the direct current output from the converter 20 into alternating current (for example, a three-phase alternating current). ) And supplied to the load 41.
 スイッチング素子31は、例えば、IGBT(Insulated Gate Bipolar Transistor)である。また、ダイオード32は、スイッチング素子31と逆並列に接続されている。これらスイッチング素子31およびダイオード32は、1組毎にスイッチ部を構成する。そして、上下2つのスイッチ部が直列に接続されて1対のスイッチ回路を構成し、更に、3つのスイッチ回路が並列に三相分接続されてブリッジ回路を構成する。 The switching element 31 is, for example, an IGBT (Insulated Gate Bipolar Transistor). The diode 32 is connected in antiparallel with the switching element 31. The switching element 31 and the diode 32 constitute a switch unit for each set. The two upper and lower switch units are connected in series to form a pair of switch circuits, and three switch circuits are connected in parallel for three phases to form a bridge circuit.
 負荷41は、例えば、三相モータであり、インバータ30から供給される三相交流によって駆動される。 The load 41 is, for example, a three-phase motor, and is driven by a three-phase AC supplied from the inverter 30.
 データ出力部42は、制御部13から供給されたデータを出力する。例えば、データ出力部42が、表示機能を有している場合に、制御部13が算出した電力(電力量)を含むデータを表示する。この他にも、データ出力部42が通信機能を有している場合に、制御部13が算出した電力を含むデータを、例えば、ユーザ端末に送信する。 The data output unit 42 outputs the data supplied from the control unit 13. For example, when the data output unit 42 has a display function, data including the power (power amount) calculated by the control unit 13 is displayed. In addition, when the data output unit 42 has a communication function, data including the power calculated by the control unit 13 is transmitted to, for example, the user terminal.
 電流センサ43は、例えば、CTであり、インバータ30から負荷41に供給される交流の電流値を検出する。 The current sensor 43 is, for example, a CT, and detects an alternating current value supplied from the inverter 30 to the load 41.
(電力計測装置の動作)
 以下、空調機器1における電力計測装置10(制御部13)の動作について、図3を参照して説明する。図3は、本発明の実施形態1に係る電力計測処理の一例を示すフローチャートである。
(Operation of power measuring device)
Hereinafter, operation | movement of the electric power measurement apparatus 10 (control part 13) in the air conditioner 1 is demonstrated with reference to FIG. FIG. 3 is a flowchart illustrating an example of the power measurement process according to the first embodiment of the present invention.
 制御部13は、電流センサ11により検出された電流値を取得する(ステップS101)。すなわち、電流センサ11は、給電線91を流れる電流値を検出する。そして、制御部13は、取得部12を介して、電流センサ11により検出された電流値を取得する。なお、上述した電圧センサを有している場合に、制御部13は、取得部12を介して、電圧センサにより検出された電圧値も取得する。 The control unit 13 acquires the current value detected by the current sensor 11 (step S101). That is, the current sensor 11 detects the value of current flowing through the feeder line 91. Then, the control unit 13 acquires the current value detected by the current sensor 11 via the acquisition unit 12. In addition, when it has the voltage sensor mentioned above, the control part 13 also acquires the voltage value detected by the voltage sensor via the acquisition part 12. FIG.
 制御部13は、取得した電流値が予め定められた閾値以上であるか否かを判別する(ステップS102)。つまり、制御部13は、電流センサ11により検出された電流値が、記憶部131に記憶された閾値以上であるかどうかを判別する。 The control unit 13 determines whether or not the acquired current value is greater than or equal to a predetermined threshold (step S102). That is, the control unit 13 determines whether or not the current value detected by the current sensor 11 is greater than or equal to the threshold value stored in the storage unit 131.
 制御部13は、電流値が閾値以上であると判別すると(ステップS102;Yes)、検出された電流値に基づいて、電力を算出する(ステップS103)。具体的に、制御部13は、電流センサ11により検出された電流値と、電圧センサにより検出された電圧値(電圧センサを有している場合)又は記憶部131に記憶された固定電圧値(電圧センサを有していない場合)とを乗算して、空調機器1が消費する電力を算出する。 When the control unit 13 determines that the current value is equal to or greater than the threshold value (step S102; Yes), the control unit 13 calculates power based on the detected current value (step S103). Specifically, the control unit 13 determines the current value detected by the current sensor 11 and the voltage value detected by the voltage sensor (if the voltage sensor is provided) or the fixed voltage value stored in the storage unit 131 ( And the electric power consumed by the air conditioner 1 is calculated.
 一方、電流値が閾値以上でない(閾値未満である)と判別した場合(ステップS102;No)に、制御部13は、予め定められた推定電流値に基づいて、電力を算出する(ステップS104)。具体的に、制御部13は、記憶部131に記憶された推定電流値と、電圧センサにより検出された電圧値(電圧センサを有している場合)又は記憶部131に記憶された固定電圧値(電圧センサを有していない場合)とを乗算して、空調機器1が消費する電力を算出する。 On the other hand, when it is determined that the current value is not equal to or greater than the threshold value (less than the threshold value) (step S102; No), the control unit 13 calculates power based on the predetermined estimated current value (step S104). . Specifically, the control unit 13 determines the estimated current value stored in the storage unit 131, the voltage value detected by the voltage sensor (if the voltage sensor is provided), or the fixed voltage value stored in the storage unit 131. The power consumed by the air conditioner 1 is calculated by multiplying (when no voltage sensor is provided).
 制御部13は、算出した電力のデータを出力する(ステップS105)。すなわち、制御部13は、ステップS103又はステップS104にて算出した電力をデータ出力部42に供給して出力させる。 The control unit 13 outputs the calculated power data (step S105). In other words, the control unit 13 supplies the power calculated in step S103 or step S104 to the data output unit 42 for output.
 このような電力計測処理により、電流センサ11により検出された電流値が閾値よりも小さい場合には、記憶部131に記憶された推定電流値に基づいて、消費電力が算出される。これにより、電流センサ11の検出精度が低下する小電力にて空調機器1が動作している場合でも、適切な推定電流値を用いて、実際に空調機器1が消費する電力を算出することができる。この結果、消費電力をより高精度に計測することができる。 In such a power measurement process, when the current value detected by the current sensor 11 is smaller than the threshold value, the power consumption is calculated based on the estimated current value stored in the storage unit 131. As a result, even when the air conditioner 1 is operating with low power at which the detection accuracy of the current sensor 11 is reduced, the power actually consumed by the air conditioner 1 can be calculated using an appropriate estimated current value. it can. As a result, power consumption can be measured with higher accuracy.
 また、制御部13は、空調機器1の動作状態(特に負荷41の駆動状態)を把握できている。そして、電流センサ11により検出される電流値が閾値未満となるには、負荷41が駆動時ではなく、停止時であることが想定される。つまり、空調機器1の待機電力を測定する際に限り、推定電流値を用いた電力が計測されることになる。そのため、電流センサ11には、より大電流が流れる際に検出精度が高いタイプのセンサを用いることができ、かつ、広い範囲(低電流まで含めた広い範囲)にわたる検出精度が求められないことになる。そのため、電流センサ11にかかるコストをより抑えることができる。 Further, the control unit 13 can grasp the operating state of the air conditioner 1 (particularly, the driving state of the load 41). In order for the current value detected by the current sensor 11 to be less than the threshold value, it is assumed that the load 41 is not driven but stopped. That is, only when the standby power of the air conditioner 1 is measured, the power using the estimated current value is measured. Therefore, the current sensor 11 can be a sensor with a high detection accuracy when a larger current flows, and the detection accuracy over a wide range (a wide range including a low current) is not required. Become. Therefore, the cost for the current sensor 11 can be further suppressed.
 また、電流センサ11がCTでない場合においても、検出精度の観点から電流量が小さくなると検出精度が悪化するタイプが多いため、本方式を用いることにより、消費電力をより高精度に計測することができる。 Even when the current sensor 11 is not a CT, from the viewpoint of detection accuracy, there are many types in which the detection accuracy deteriorates when the amount of current is small. Therefore, by using this method, power consumption can be measured with higher accuracy. it can.
(変形例)
 上記の実施形態1では、記憶部131に、図2に示すような推定電流値や固定電圧値を記憶する場合について説明したが、これらの代わりに(若しくは、更に加えて)、推定電力を記憶するようにしてもよい。この推定電力は、例えば、電流センサ11が閾値未満の電流値を検出した状態において、適正と推定される空調機器1の電力であり、事前に求められている。この推定電力を記憶部131に記憶している場合において、制御部13は、電流センサ11により検出された電流値が閾値未満であると判別した場合に、空調機器1が消費する電力として、この推定電力を用いる。これにより、電流センサ11の検出精度が低下する小電力にて空調機器1が動作している場合でも、適切な推定電力を、実際に空調機器1が消費する電力として得ることができる。この結果、消費電力をより高精度に計測することができる。
(Modification)
In the first embodiment, the case where the estimated current value and the fixed voltage value as illustrated in FIG. 2 are stored in the storage unit 131 has been described, but the estimated power is stored instead of (or in addition to) these. You may make it do. This estimated power is, for example, the power of the air conditioner 1 that is estimated to be appropriate in a state where the current sensor 11 detects a current value less than the threshold value, and is obtained in advance. In the case where the estimated power is stored in the storage unit 131, the control unit 13 determines that the current value detected by the current sensor 11 is less than the threshold value as the power consumed by the air conditioner 1 Use estimated power. Thereby, even when the air conditioner 1 is operating with low power at which the detection accuracy of the current sensor 11 is reduced, appropriate estimated power can be obtained as power actually consumed by the air conditioner 1. As a result, power consumption can be measured with higher accuracy.
 上記の実施形態1では、電流センサ11により検出された電流値が、閾値以上か、又は、閾値未満かで、処理の切り分けを行ったが、他にも、閾値より大きいか、又は、閾値以下かで、処理の切り分けを行ってもよい。また、1つの閾値で切り分けを行う代わりに、例えば、複数の閾値を用いてヒステリシスを構成し、閾値付近での変化が容易に起こらないようにしてもよい。 In the first embodiment, the process is divided depending on whether the current value detected by the current sensor 11 is equal to or greater than the threshold value or less than the threshold value. However, the process may be divided. Further, instead of performing the separation by one threshold value, for example, a hysteresis may be configured using a plurality of threshold values so that a change in the vicinity of the threshold value does not easily occur.
 上記の実施形態1では、制御部13内の記憶部131に、図2のような情報を記憶する場合について説明したが、他の構成(例えば、取得部12)に、同様の情報を記憶するようにし、制御部13が適宜読み出すようにしてもよい。この他にも、例えば、ネットワーク経由で、インターネット上のサーバから同様の情報を読み出したり、メモリカードに代表される補助記憶装置から同様の情報を読み出すようにしてもよい。 In the first embodiment, the case where information as illustrated in FIG. 2 is stored in the storage unit 131 in the control unit 13 has been described, but similar information is stored in another configuration (for example, the acquisition unit 12). In this way, the control unit 13 may appropriately read out. In addition, for example, similar information may be read from a server on the Internet via a network, or similar information may be read from an auxiliary storage device represented by a memory card.
 上記の実施形態1では、制御部13が、電力計測装置10だけでなく空調機器1全体を制御する場合について説明したが、制御部13が電力計測装置10の制御だけを行い、空調機器1全体の制御を他の制御部が行うようにしてもよい。 In the first embodiment, the case where the control unit 13 controls not only the power measuring device 10 but the entire air conditioner 1 has been described. However, the control unit 13 only controls the power measuring device 10 and the entire air conditioner 1. This control may be performed by another control unit.
(実施形態2)
 上記の実施形態1では、電流センサ11により検出された電流値を基準に、処理を切り分ける場合について説明したが、電流センサ11の特性を考慮した他の値を基準に、処理を切り分けてもよい。例えば、電流センサ11の予測誤差を求めるようにし、求めた予測誤差を基準に、処理を切り分けてもよい。
(Embodiment 2)
In the first embodiment, the case where the process is separated based on the current value detected by the current sensor 11 has been described. However, the process may be separated based on another value considering the characteristics of the current sensor 11. . For example, the prediction error of the current sensor 11 may be obtained, and the process may be divided based on the obtained prediction error.
 以下、電流センサ11の予測誤差を基準に、処理を切り分けることを特徴とした本発明の実施形態2について説明する。本発明の実施形態2においても、空調機器1の構成は、上述した図1と同じである。以下の実施形態2では、空調機器1における電力計測装置10に、上述した電圧センサが含まれている場合を一例として説明する。なお、電圧センサを用いずに、上述した固定電圧値を用いてもよい。 Hereinafter, the second embodiment of the present invention, which is characterized by dividing the processing based on the prediction error of the current sensor 11, will be described. Also in Embodiment 2 of this invention, the structure of the air-conditioning equipment 1 is the same as FIG. 1 mentioned above. In the following second embodiment, a case where the above-described voltage sensor is included in the power measurement device 10 in the air conditioner 1 will be described as an example. In addition, you may use the fixed voltage value mentioned above without using a voltage sensor.
 また、実施形態2では、制御部12における記憶部131に、比誤差、位相誤差、基準値、および、推定電力の情報が記憶されている。 In the second embodiment, the storage unit 131 in the control unit 12 stores information on the ratio error, the phase error, the reference value, and the estimated power.
 この比誤差は、電流センサ11の特性の1つであり、電流センサ11における電流値の精度を表している。例えば、比誤差は、図4の曲線REにて示されるように、各測定点における理想値と実測値の誤差比率である。記憶部131は、比誤差の情報を、例えば、曲線REを規定する近似式fx(I)として記憶する。なお、このような近似式fx(I)の代わりに、比誤差の情報を、曲線REの値をプロットした表形式の情報として記憶してもよい。 This ratio error is one of the characteristics of the current sensor 11 and represents the accuracy of the current value in the current sensor 11. For example, the ratio error is an error ratio between an ideal value and an actual measurement value at each measurement point, as indicated by a curve RE in FIG. The storage unit 131 stores ratio error information as, for example, an approximate expression fx (I) that defines the curve RE. Instead of such approximate expression fx (I), ratio error information may be stored as tabular information in which the values of the curve RE are plotted.
 位相誤差は、電流センサ11の特性の1つであり、電流センサ11における波形の精度を表している。例えば、位相誤差は、図5の曲線PEにて示されるように、測定原波形に対する出力波形の位相ずれである。記憶部131は、位相誤差の情報を、例えば、曲線PEを規定する近似式fy(I)として記憶する。なお、このような近似式fy(I)の代わりに、位相誤差の情報を、曲線PEの値をプロットした表形式の情報として記憶してもよい。 The phase error is one of the characteristics of the current sensor 11 and represents the accuracy of the waveform in the current sensor 11. For example, the phase error is a phase shift of the output waveform with respect to the measurement original waveform, as indicated by a curve PE in FIG. The storage unit 131 stores phase error information, for example, as an approximate expression fy (I) that defines the curve PE. Instead of such approximate expression fy (I), phase error information may be stored as tabular information in which the values of the curve PE are plotted.
 基準値は、例えば、電流センサ11の予測誤差(より詳細には、予測誤差の絶対値)が許容できる上限値であり、事前に求められている。つまり、予測誤差の絶対値が基準時を上回った場合、許容できない誤差を含んでいることになる。 The reference value is, for example, an upper limit value that allows the prediction error (more specifically, the absolute value of the prediction error) of the current sensor 11 and is obtained in advance. In other words, when the absolute value of the prediction error exceeds the reference time, an unacceptable error is included.
 推定電力は、例えば、予測誤差の絶対値が基準値を上回った状態において、適正と推定される空調機器1の電力であり、事前に求められている。 The estimated power is, for example, the power of the air conditioner 1 that is estimated to be appropriate in a state where the absolute value of the prediction error exceeds the reference value, and is obtained in advance.
 制御部13は、このような比誤差および位相誤差といった情報を用いて、電流センサ11の予測誤差を算出する。そして、算出した予測誤差の絶対値が、基準値を上回った場合に、制御部13は、空調機器1が消費する電力として、この推定電力を用いる。 The control unit 13 calculates a prediction error of the current sensor 11 using information such as the ratio error and the phase error. When the calculated absolute value of the prediction error exceeds the reference value, the control unit 13 uses this estimated power as the power consumed by the air conditioner 1.
 制御部13が行う予測誤差の算出について、以下、詳細に説明する。 The calculation of the prediction error performed by the control unit 13 will be described in detail below.
 電圧センサにて検出されたn個目の電圧値を、v(n)とし、また、電流センサ11にて検出されたn個目の電流値を、i(n)とすると、電流I[A]は、以下の式1にて求めることができる。 Assuming that the nth voltage value detected by the voltage sensor is v (n) and the nth current value detected by the current sensor 11 is i (n), the current I [A ] Can be obtained by the following Equation 1.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 また、電圧V[V]は、以下の式2にて求めることができる。 Further, the voltage V [V] can be obtained by the following equation 2.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 また、電力P[W]は、以下の式3にて求めることができる。 Further, the electric power P [W] can be obtained by the following equation 3.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 また、皮相電力S[VA]は、以下の式4にて求めることができる。 Further, the apparent power S [VA] can be obtained by the following equation 4.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 また、力率λ、および、位相θ[deg]は、以下の式5にて求めることができる。 Further, the power factor λ and the phase θ [deg] can be obtained by the following equation 5.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 また、比誤差を規定する上述した近似式fx(I)と、位相誤差を規定する上述した近似式fy(I)とに、式1にて求めた電流Iをそれぞれ代入することで、比誤差[%]、および、位相誤差[deg]を求めることができる。 Further, by substituting the current I obtained by Equation 1 into the above-described approximate equation fx (I) that defines the ratio error and the above-described approximate equation fy (I) that defines the phase error, the ratio error is calculated. [%] And phase error [deg] can be obtained.
 これらを基に、予測誤差[%]を算出する。なお、位相誤差[deg]により力率が変化することから、誤差を含んだ力率λxは、以下の式6にて求めることができる。なお、位相誤差[deg]は、Δθで表している。 Based on these, the prediction error [%] is calculated. Since the power factor changes due to the phase error [deg], the power factor λx including the error can be obtained by the following Equation 6. The phase error [deg] is represented by Δθ.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 また、力率λと誤差を含んだ力率λxとの位相誤差[%]は、以下の式7にて求めることができる。 Further, the phase error [%] between the power factor λ and the power factor λx including the error can be obtained by the following Expression 7.
位相誤差[%]={(λx/λ)-1}×100 ・・・(式7) Phase error [%] = {(λx / λ) −1} × 100 (Expression 7)
 最終的に予測誤差[%]は、以下の式8にて求めることができる。 Finally, the prediction error [%] can be obtained by the following equation 8.
予測誤差[%]=比誤差[%]+位相誤差[%] ・・・(式8) Prediction error [%] = Ratio error [%] + Phase error [%] (Equation 8)
 具体例を挙げると、式1にて求められた電流値I[A]が、2[A]であった場合、図4,5から(より詳細には、近似式から)、比誤差[%]が、-1.0[%]と求まり、位相誤差[deg]が、1.2[deg]と求まる。更に、力率λが0.5(=cos60[deg])であった場合、誤差を含んだ力率λx、力率λと力率λxとの位相誤差[%]、そして、予測誤差[%]は、以下のように求まる。 As a specific example, when the current value I [A] obtained by Equation 1 is 2 [A], the ratio error [%] is obtained from FIGS. ] Is obtained as -1.0 [%], and the phase error [deg] is obtained as 1.2 [deg]. Further, when the power factor λ is 0.5 (= cos 60 [deg]), the power factor λx including the error, the phase error [%] between the power factor λ and the power factor λx, and the prediction error [%] ] Is obtained as follows.
λx=cos(60+1.2)=0.4817
位相誤差[%]={(0.4817/0.5)-1}×100=-3.6
予測誤差[%]=(-1.0)+(-3.6)=-4.6
λx = cos (60 + 1.2) = 0.4817
Phase error [%] = {(0.4817 / 0.5) −1} × 100 = −3.6
Prediction error [%] = (− 1.0) + (− 3.6) = − 4.6
 制御部13は、このようにして求めた予測誤差[%]の絶対値(4.6[%])が、基準値(一例として、3[%])を超えている場合に、空調機器1が消費する電力として、記憶部131に記憶された推定電力を用いる。 When the absolute value (4.6 [%]) of the prediction error [%] thus obtained exceeds the reference value (3 [%] as an example), the control unit 13 Is used as the power consumed by the storage unit 131.
(電力計測装置の動作)
 以下、空調機器1における電力計測装置10(制御部13)の動作について、図6を参照して説明する。図6は、本発明の実施形態2に係る電力計測処理の一例を示すフローチャートである。
(Operation of power measuring device)
Hereinafter, operation | movement of the electric power measurement apparatus 10 (control part 13) in the air conditioner 1 is demonstrated with reference to FIG. FIG. 6 is a flowchart showing an example of power measurement processing according to the second embodiment of the present invention.
 制御部13は、センサにより検出された電流値および電圧値を取得する(ステップS201)。すなわち、制御部13は、取得部12を介して、電流センサ11により検出された電流値、および、電圧センサにより検出された電圧値を取得する。 The control unit 13 acquires the current value and the voltage value detected by the sensor (step S201). That is, the control unit 13 acquires the current value detected by the current sensor 11 and the voltage value detected by the voltage sensor via the acquisition unit 12.
 制御部13は、電力および力率を算出する(ステップS202)。すなわち、制御部13は、上述した式1~式5を用いて、電力および力率を算出する。 Control unit 13 calculates power and power factor (step S202). That is, the control unit 13 calculates the power and the power factor using the above formulas 1 to 5.
 制御部13は、電流値および力率の値に応じた予測誤差を算出する(ステップS203)。すなわち、制御部13は、上述した式7~式8を用いて、予測誤差を算出する。 The control unit 13 calculates a prediction error according to the current value and the power factor value (step S203). That is, the control unit 13 calculates a prediction error using the above-described Expressions 7 to 8.
 制御部13は、予測誤差の絶対値が基準値以下であるか否かを判別する(ステップS204)。制御部13は、予測誤差が基準値以下であると判別すると(ステップS204;Yes)、算出した電力のデータを出力する(ステップS205)。すなわち、制御部13は、ステップS202にて算出した電力をデータ出力部42に供給して出力させる。 The control unit 13 determines whether or not the absolute value of the prediction error is equal to or less than a reference value (step S204). When determining that the prediction error is equal to or less than the reference value (step S204; Yes), the control unit 13 outputs the calculated power data (step S205). That is, the control unit 13 supplies the power calculated in step S202 to the data output unit 42 for output.
 一方、予測誤差が基準値以下でない(基準値を超えている)と判別した場合(ステップS204;No)に、制御部13は、推定電力のデータを出力する(ステップS206)。すなわち、制御部13は、記憶部131に記憶された推定電力をデータ出力部42に供給して出力させる。 On the other hand, when it is determined that the prediction error is not less than or equal to the reference value (exceeds the reference value) (step S204; No), the control unit 13 outputs estimated power data (step S206). That is, the control unit 13 supplies the estimated power stored in the storage unit 131 to the data output unit 42 for output.
 このような電力計測処理により、算出された予測誤差の絶対値が基準値を超えている場合には、空調機器1が消費する電力として、推定電力を用いる。これにより、電流センサ11の特性により検出精度が低下する状況、つまり、電流量が低く力率が小さい状況で空調機器1が動作している場合でも、適切な推定電力を、実際に空調機器1が消費する電力として得ることができる。この結果、消費電力をより高精度に計測することができる。 When the absolute value of the prediction error calculated by such power measurement processing exceeds the reference value, the estimated power is used as the power consumed by the air conditioner 1. As a result, even when the air conditioner 1 is operating in a situation where the detection accuracy is lowered due to the characteristics of the current sensor 11, that is, in a situation where the current amount is low and the power factor is small, the air conditioner 1 Can be obtained as power consumption. As a result, power consumption can be measured with higher accuracy.
(変形例)
 上記の実施形態2では、算出した予測誤差を判別にだけ用いる場合について説明したが、この予測誤差をユーザに提示するようにしてもよい。例えば、制御部13は、ステップS203にて算出した予測誤差を、ステップS205にて電力と共にデータ出力部42に供給して出力させる。この場合、計測した電力の精度を、予測誤差によりユーザに提示することができる。また、ステップS206でも、電力と共に予測誤差をデータ出力部42に供給して出力させてもよい。この場合、精度が低かったため、適正な推定電力を用いたことを、ユーザに伝えることができる。
(Modification)
In the second embodiment, the case where the calculated prediction error is used only for determination has been described. However, the prediction error may be presented to the user. For example, the control unit 13 supplies the prediction error calculated in step S203 to the data output unit 42 together with the power in step S205 to be output. In this case, the accuracy of the measured power can be presented to the user by the prediction error. Also in step S206, the prediction error together with the power may be supplied to the data output unit 42 and output. In this case, since the accuracy is low, the user can be informed that appropriate estimated power is used.
 更に、算出した電力、推定電力、および、予測誤差を全て出力し、予測誤差によってどちらの電力を選ぶかをユーザに委ねてもよい。 Furthermore, all of the calculated power, estimated power, and prediction error may be output, and it may be left to the user to select which power based on the prediction error.
 上記の実施形態2では、記憶部131に、推定電力を1つだけ記憶する場合について説明したが、温度や湿度に応じた複数の推定電力を記憶するようにしてもよい。例えば、推定電力は、空調機器1に配置されたセンサ(電流センサ11や電圧センサ)にて検出、又は、より精度の高いセンサを空調機器1の内部や外部に取り付けて検出した、電流値および電圧値に基づいて算出される。その際に、温度や湿度を適宜変更しながら複数の推定電力を算出して、記憶部131に記憶しておく。なお、電力計測装置10には温度センサや湿度センサを付加する。そして、制御部13は、現在の温度や湿度に応じて、対応する推定電力を用いる。この他にも、実環境で使用される空調機器1の電流値および電圧値を長期間にわたって収集し、各種の使用状況に応じた推定電力を記憶するようにしてもよい。そして、制御部13は、現在の使用状況に対応する推定電力を用いる。 In the second embodiment, the case where only one estimated power is stored in the storage unit 131 has been described. However, a plurality of estimated powers corresponding to temperature and humidity may be stored. For example, the estimated power is detected by a sensor (current sensor 11 or voltage sensor) disposed in the air conditioner 1, or a current value detected by attaching a more accurate sensor inside or outside the air conditioner 1 and Calculated based on the voltage value. At that time, a plurality of estimated powers are calculated while appropriately changing the temperature and humidity, and stored in the storage unit 131. Note that a temperature sensor and a humidity sensor are added to the power measuring device 10. And the control part 13 uses corresponding estimated electric power according to the present temperature and humidity. In addition, the current value and voltage value of the air conditioner 1 used in the actual environment may be collected over a long period of time, and the estimated power corresponding to various usage situations may be stored. And the control part 13 uses the estimated electric power corresponding to the present use condition.
 更に、推定電力を近似式や表形式の形で記憶しておき、現在の状況に合わせて線形補完して推定電力を得るようにしてもよい。 Furthermore, the estimated power may be stored in the form of an approximate expression or a tabular form, and the estimated power may be obtained by linear interpolation according to the current situation.
 上記の実施形態2では、算出された予測誤差が、基準値以下か、又は、基準値を超えているかで、処理の切り分けを行ったが、他にも、基準値未満か、又は、基準値以上かで、処理の切り分けを行ってもよい。また、1つの基準値で切り分けを行う代わりに、例えば、複数の基準値を用いてヒステリシスを構成し、基準値付近での変化が容易に起こらないようにしてもよい。 In the second embodiment, the process is divided depending on whether the calculated prediction error is equal to or less than the reference value or exceeds the reference value. Thus, the process may be divided. Further, instead of performing the separation by one reference value, for example, a hysteresis may be configured using a plurality of reference values so that a change in the vicinity of the reference value does not easily occur.
 上記の実施形態2では、制御部13内の記憶部131に、比誤差、位相誤差、基準値、および、推定電力の情報を記憶する場合について説明したが、他の構成(例えば、取得部12)に、同様の情報を記憶するようにし、制御部13から適宜読み出すようにしてもよい。この他にも、例えば、ネットワーク経由で、インターネット上のサーバから同様の情報を読み出したり、メモリカードに代表される補助記憶装置から同様の情報を読み出すようにしてもよい。 In the second embodiment described above, the case where the information on the ratio error, the phase error, the reference value, and the estimated power is stored in the storage unit 131 in the control unit 13 has been described, but other configurations (for example, the acquisition unit 12). ), Similar information may be stored and read from the control unit 13 as appropriate. In addition, for example, similar information may be read from a server on the Internet via a network, or similar information may be read from an auxiliary storage device represented by a memory card.
 上記の実施形態2では、制御部13が、電力計測装置10だけでなく空調機器1全体を制御する場合について説明したが、制御部13が電力計測装置10の制御だけを行い、空調機器1全体の制御を他の制御部が行うようにしてもよい。 In the second embodiment, the case where the control unit 13 controls not only the power measurement device 10 but also the entire air conditioning device 1 has been described. However, the control unit 13 only controls the power measurement device 10 and the entire air conditioning device 1. This control may be performed by another control unit.
 上記の実施形態1,2では、空調機器1内に電力計測装置10が構成された場合について説明したが、他の機器内においても、同様に電力計測装置10を構成することができる。例えば、照明機器内や給湯機器内に同様の電力計測装置10を構成してもよい。 In the first and second embodiments, the case where the power measuring device 10 is configured in the air conditioning device 1 has been described. However, the power measuring device 10 can be configured similarly in other devices. For example, you may comprise the same electric power measuring apparatus 10 in lighting equipment or hot water supply equipment.
 また、上記の実施形態1,2において、制御部13によって実行されるプログラムは、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disk)、USBメモリ、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、かかるプログラムを特定の又は汎用のコンピュータにインストールすることによって、当該コンピュータを上記の実施形態1,2における電力計測装置10として機能させることも可能である。 In the first and second embodiments, the program executed by the control unit 13 is a CD-ROM (Compact Disc Read Only Memory), DVD (Digital Versatile Disc), MO (Magneto-Optical Disk), USB memory, It is also possible to store and distribute in a computer-readable recording medium such as a memory card. Then, by installing such a program on a specific or general-purpose computer, the computer can be caused to function as the power measurement device 10 in the first and second embodiments.
 また、上記のプログラムをインターネットといった通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。また、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Further, the above program may be stored in a disk device included in a server device on a communication network such as the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example. The above-described processing can also be achieved by starting and executing a program while transferring it via a communication network. Furthermore, the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを上記の記録媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 Note that when the above functions are realized by sharing an OS (Operating System) or when the functions are realized by cooperation between the OS and an application, only the part other than the OS is stored in the recording medium and distributed. It may also be downloaded to a computer.
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention can be variously modified and modified without departing from the spirit and scope of the broad sense. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、種々の機器内に構成される電力計測装置に好適に採用され得る。 The present invention can be suitably employed in power measuring devices configured in various devices.
 1 空調機器、10 電力計測装置、11(11a~11c),43(43a~43c) 電流センサ、12 取得部、13 制御部、131 記憶部、20 コンバータ、21(21a~21f) 整流ダイオード、22 平滑コンデンサ、30 インバータ、31(31a~31f) スイッチング素子、32(32a~32f) ダイオード、41 負荷、42 データ出力部、9 電源、91(91a~91c) 給電線 1 air conditioner, 10 power measuring device, 11 (11a to 11c), 43 (43a to 43c) current sensor, 12 acquisition unit, 13 control unit, 131 storage unit, 20 converter, 21 (21a to 21f) rectifier diode, 22 Smoothing capacitor, 30 inverter, 31 (31a to 31f) switching element, 32 (32a to 32f) diode, 41 load, 42 data output unit, 9 power supply, 91 (91a to 91c) feed line

Claims (5)

  1.  機器内に構成された電力計測装置であって、
     前記機器に電力を供給するための給電線に流れる電流値を検出するセンサと、
     前記検出された電流値に基づいて、前記機器が消費する電力を算出する制御部と、を備え、
     前記制御部は、前記検出された電流値が予め定められた閾値よりも小さい場合に、前記検出された電流値の代わりに予め定められた推定電流値に基づいて、前記機器が消費する電力を算出する、電力計測装置。
    A power measuring device configured in the device,
    A sensor for detecting a current value flowing in a power supply line for supplying power to the device;
    A control unit that calculates power consumed by the device based on the detected current value, and
    When the detected current value is smaller than a predetermined threshold value, the control unit generates power consumed by the device based on a predetermined estimated current value instead of the detected current value. A power measuring device to calculate.
  2.  前記制御部は、前記検出された電流値が予め定められた閾値よりも小さい場合に、前記機器が消費する電力として、予め定められた推定電力を用いる、
     請求項1に記載の電力計測装置。
    The control unit uses a predetermined estimated power as the power consumed by the device when the detected current value is smaller than a predetermined threshold.
    The power measuring device according to claim 1.
  3.  前記制御部は、前記検出された電流値と前記センサの特性値とに基づいて、前記センサの予測誤差を算出し、当該予測誤差の絶対値が予め定められた基準値を超える場合に、前記機器が消費する電力として、予め定められた推定電力を用いる、
     請求項1に記載の電力計測装置。
    The control unit calculates a prediction error of the sensor based on the detected current value and the characteristic value of the sensor, and when the absolute value of the prediction error exceeds a predetermined reference value, As the power consumed by the device, a predetermined estimated power is used.
    The power measuring device according to claim 1.
  4.  前記制御部は、前記センサの特性値として、比誤差および位相誤差を用いる、
     請求項3に記載の電力計測装置。
    The control unit uses a ratio error and a phase error as the characteristic value of the sensor.
    The power measuring device according to claim 3.
  5.  機器へ電力を供給する給電線に流れる電流値を検出するセンサを用いる電力計測方法であって、
     前記センサにより検出された電流値に基づいて、前記機器が消費する電力を算出する第1算出ステップと、
     予め定められた推定電流値に基づいて、前記機器が消費する電力を算出する第2算出ステップとを備え、
     前記センサにより検出された電流値が予め定められた閾値以上である場合に、前記第1算出ステップにて電力を算出し、前記センサにより検出された電流値が当該閾値よりも小さい場合に、前記第2算出ステップにて電力を算出する、電力計測方法。
    A power measurement method using a sensor that detects a current value flowing in a power supply line that supplies power to a device,
    A first calculation step of calculating power consumed by the device based on a current value detected by the sensor;
    A second calculation step of calculating power consumed by the device based on a predetermined estimated current value;
    When the current value detected by the sensor is greater than or equal to a predetermined threshold, power is calculated in the first calculation step, and when the current value detected by the sensor is smaller than the threshold, An electric power measurement method for calculating electric power in the second calculation step.
PCT/JP2016/074521 2016-08-23 2016-08-23 Power measuring device and power measuring method WO2018037480A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018535963A JP6599015B2 (en) 2016-08-23 2016-08-23 Power measuring apparatus and power measuring method
PCT/JP2016/074521 WO2018037480A1 (en) 2016-08-23 2016-08-23 Power measuring device and power measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074521 WO2018037480A1 (en) 2016-08-23 2016-08-23 Power measuring device and power measuring method

Publications (1)

Publication Number Publication Date
WO2018037480A1 true WO2018037480A1 (en) 2018-03-01

Family

ID=61245540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074521 WO2018037480A1 (en) 2016-08-23 2016-08-23 Power measuring device and power measuring method

Country Status (2)

Country Link
JP (1) JP6599015B2 (en)
WO (1) WO2018037480A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466547A (en) * 2021-07-30 2021-10-01 国网山东省电力公司德州供电公司 Electric energy meter metering method suitable for spot market transaction
WO2023084959A1 (en) * 2021-11-10 2023-05-19 三菱自動車工業株式会社 Electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059632A (en) * 1996-08-20 1998-03-03 Toshiba Corp Speed control device for hydraulic elevator
JP2008039483A (en) * 2006-08-02 2008-02-21 Toshiba Corp Electric power measuring system
JP2011061909A (en) * 2009-09-07 2011-03-24 Toyota Motor Corp Electric vehicle
JP2012223016A (en) * 2011-04-12 2012-11-12 Honda Motor Co Ltd Driving device for vehicle and vehicle
JP2014120108A (en) * 2012-12-19 2014-06-30 Hitachi Ltd Power monitoring device and power monitoring system
JP2015084850A (en) * 2013-10-29 2015-05-07 株式会社東芝 Household electrical appliance and washing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059632A (en) * 1996-08-20 1998-03-03 Toshiba Corp Speed control device for hydraulic elevator
JP2008039483A (en) * 2006-08-02 2008-02-21 Toshiba Corp Electric power measuring system
JP2011061909A (en) * 2009-09-07 2011-03-24 Toyota Motor Corp Electric vehicle
JP2012223016A (en) * 2011-04-12 2012-11-12 Honda Motor Co Ltd Driving device for vehicle and vehicle
JP2014120108A (en) * 2012-12-19 2014-06-30 Hitachi Ltd Power monitoring device and power monitoring system
JP2015084850A (en) * 2013-10-29 2015-05-07 株式会社東芝 Household electrical appliance and washing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466547A (en) * 2021-07-30 2021-10-01 国网山东省电力公司德州供电公司 Electric energy meter metering method suitable for spot market transaction
WO2023084959A1 (en) * 2021-11-10 2023-05-19 三菱自動車工業株式会社 Electric vehicle

Also Published As

Publication number Publication date
JP6599015B2 (en) 2019-10-30
JPWO2018037480A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
EP2682769B1 (en) Apparatus for diagnosing DC link capacitor of inverter
US20170187215A1 (en) Charging device
WO2012060207A1 (en) Power source device and programmable controller
WO2014199854A1 (en) Power measurement device, determination method, and program
US9846190B2 (en) Motor drive device including function to detect failure in insulation resistance deterioration detection unit of motor, and failure detection method
CN105281562A (en) Power system and control device
CN105656317B (en) System and method for operating a power converter
JPWO2009122520A1 (en) Motor drive control device
JP5597363B2 (en) Life prediction apparatus, power supply apparatus and life prediction method
JP6599015B2 (en) Power measuring apparatus and power measuring method
JP6393787B2 (en) Power management device and power storage device
JP2007295655A (en) Power converter
JP2009195044A (en) Power supply apparatus and method of notifying remaining life of electrolytic capacitor
JP4450792B2 (en) Power saving effect display device in inverter device
US9285410B2 (en) Control circuit, and power generation device having the same
JP5042396B2 (en) Power supply and controller
US9665744B2 (en) Input front-end circuit for switching power supply control integrated circuit and switching power supply controller having the same
JP2008172910A (en) Power conversion device
KR101791225B1 (en) Apparatus and method for detecting failure of rectifier
JP6587134B2 (en) CONVERTER, MOTOR DRIVE DEVICE, ABNORMALITY DETECTING METHOD, AND PROGRAM
JP2017112792A (en) Capacitor deterioration diagnostic method and power conversion device
JPWO2018131120A1 (en) Air conditioner
CN113544959A (en) Medium-voltage variable-frequency driver with artificial intelligence
EP2869453A1 (en) Apparatus for compensating phase error in inverter output voltage
JP2009177301A (en) Analog/digital conversion apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535963

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914154

Country of ref document: EP

Kind code of ref document: A1